JP2011171283A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2011171283A
JP2011171283A JP2010258440A JP2010258440A JP2011171283A JP 2011171283 A JP2011171283 A JP 2011171283A JP 2010258440 A JP2010258440 A JP 2010258440A JP 2010258440 A JP2010258440 A JP 2010258440A JP 2011171283 A JP2011171283 A JP 2011171283A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
flow path
gas flow
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010258440A
Other languages
English (en)
Other versions
JP5591074B2 (ja
Inventor
Tadashi Nishiyama
忠志 西山
英彦 ▲高▼瀬
Hidehiko Takase
Takeshi Morimoto
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010258440A priority Critical patent/JP5591074B2/ja
Publication of JP2011171283A publication Critical patent/JP2011171283A/ja
Application granted granted Critical
Publication of JP5591074B2 publication Critical patent/JP5591074B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04335Temperature; Ambient temperature of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04522Humidity; Ambient humidity; Water content of cathode exhausts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

【課題】簡単な構成で、燃料電池スタック内の反応ガス流路から滞留水を容易且つ確実に排出させることを可能にする。
【解決手段】燃料電池システム10は、燃料電池スタック14と、前記燃料電池スタック14が傾斜して取り付けられる取り付け部16とを備える。燃料電池スタック14は、複数の燃料電池20を鉛直方向に積層するとともに、酸化剤ガス流路42と燃料ガス流路44とが対向流に構成される。燃料電池スタック14は、車両のフロントボックス内で、燃料ガス流路44の入口側が、前記燃料ガス流路44の出口側よりも水平方向に対して上方に配置された状態で、取り付け部16に対し前記水平方向に対し車長方向後方に向かって下方に傾斜して取り付けられている。
【選択図】図2

Description

本発明は、複数の燃料電池が積層される燃料電池スタックと、前記燃料電池スタックが水平方向に対し傾斜して取り付けられる取り付け部とを備える燃料電池システムに関する。
例えば、固体高分子型燃料電池は、高分子イオン交換膜からなる電解質膜の両側に、それぞれアノード側電極及びカソード側電極を配設した電解質膜・電極構造体(MEA)を、一対のセパレータによって挟持した発電ユニットを備えている。この種の燃料電池は、通常、所定の数(例えば、数百)の発電ユニットを積層することにより、例えば、車載用燃料電池スタックとして使用されている。
上記の燃料電池では、セパレータの面内に、アノード側電極に対向して燃料ガスを流すための燃料ガス流路(反応ガス流路)と、カソード側電極に対向して酸化剤ガスを流すための酸化剤ガス流路(反応ガス流路)とが設けられている。
この場合、上記の燃料ガス流路内には、凝縮水が発生するとともに、上記の酸化剤ガス流路内には、反応による生成水が発生し、それぞれの流路内に滞留水が惹起し易い。このため、燃料ガス流路や酸化剤ガス流路が滞留水によって閉塞され、燃料ガスや酸化剤ガスがアノード側電極やカソード側電極に良好に供給されないおそれがある。
そこで、例えば、特許文献1に開示されている燃料電池では、図16に示すように、基準平面hに対して傾斜自在である本体ケーシング1の中に、複数セルが積層されたセル集合体2が配置されている。本体ケーシング1の上部側には、各ガス流路に加湿ガスを供給する入口3が配置されるとともに、前記本体ケーシング1の下部側両端部には、前記ガス流路から排出される加湿ガスの第1出口4及び第2出口5が配置されている。
基準平面hに対して本体ケーシング1が傾斜した際に、底面6に誘導される水は、第2出口5に流れるとともに、開閉弁7を介して前記本体ケーシング1の外部に排出されている。これにより、ガス流路で過剰水になって滞留することがなく、発電性能の劣化を有効に抑制することができる、としている。
特開2003−92130号公報
ところで、一般的に、燃料ガス流路と酸化剤ガス流路とは、それぞれを流通する燃料ガスと酸化剤ガスとが、互いに同一方向に向かう平行流の他、互いに逆方向に向かう対向流に設定される場合がある。対向流が採用される際、燃料ガス流路の出入口と酸化剤ガス流路の出入口とは、互いに反対側に形成されている。具体的には、燃料ガス流路の入口側が酸化剤ガス流路の出口側に形成される一方、前記燃料ガス流路の出口側が前記酸化剤ガス流路の入口側に形成されている。
このため、上記の特許文献1のように、本体ケーシング1を基準平面hに対して傾斜させると、燃料ガス流路又は酸化剤ガス流路のいずれかの排水が困難になるという問題がある。
特に、燃料ガス流路では、燃料ガスとして純水素を用いる場合、入口側に連通する供給路と、出口側に連通する排出路とが、エゼクタにより連結されて燃料ガスの循環供給を行う構成が採用されている。この種のシステムでは、循環される燃料ガスの流量が十分でないため、燃料ガス流路に凝縮水が滞留し易い。従って、滞留した凝縮水により流動抵抗が増大し、反応面に十分に燃料ガスが供給されないため、前記燃料ガスのストイキが低下し、発電性能が劣化するという問題がある。
また、水素を強制的に循環させるポンプを設けたシステムでは、ポンプの能力を上げることにより対応することも考えられる。しかしながら、水素ガスの密度が小さいため、ポンプの負荷が著しく高くなり、システム全体の効率が大幅に低下するという問題がある。
本発明はこの種の問題を解決するものであり、簡単な構成で、燃料電池スタック内の反応ガス流路から滞留水を容易且つ確実に排出させることが可能な燃料電池システムを提供することを目的とする。
本発明に係る燃料電池システムは、燃料電池スタックと、前記燃料電池スタックが取り付けられる取り付け部とを備えている。
燃料電池スタックは、電解質膜の両側に一対の電極を設けた電解質膜・電極構造体とセパレータとが積層され、一方の電極と一方のセパレータとの間には、電極面に沿って燃料ガスを流通させる燃料ガス流路が形成され、且つ他方の電極と他方のセパレータとの間には、電極面に沿って酸化剤ガスを流通させる酸化剤ガス流路が形成されるとともに、前記燃料ガス流路と前記酸化剤ガス流路とが対向流を構成する燃料電池を備え、複数の前記燃料電池が積層されている。
そして、取り付け部は、車両のフロントボックス内に設けられ、燃料ガス流路の入口側が前記燃料ガス流路の出口側よりも水平方向に対して上方に配置された状態で、燃料電池スタックが、前記水平方向に対し車長方向(進行方向)後方に向かって下方に傾斜して車両に取り付けられている。
また、酸化剤ガス流路は、入口側が出口側よりも水平方向に対して下方に配置され、前記入口側には、燃料電池の積層方向に貫通して排水用連通孔が形成されるとともに、前記排水用連通孔は、燃料電池スタックの外部に延在するドレン配管に連通することが好ましい。
さらに、この燃料電池システムは、ドレン配管には、開閉弁が配設されることが好ましい。
さらにまた、この燃料電池システムは、排水用連通孔に滞留する凝縮水量を検出する検出手段を備えることが好ましい。
また、複数の燃料電池は、電極面の面方向を水平方向に沿わせた状態で鉛直方向に積層されることが好ましい。
さらに、複数の燃料電池は、電極面の面方向を鉛直方向に沿わせた状態で水平方向に積層されることが好ましい。
さらにまた、燃料ガス流路は、複数の波形状流路溝を有するとともに、前記波形状流路溝の中心線に沿う全ての燃料ガス流れ方向は、水平方向から下方に傾斜することが好ましい。
本発明によれば、燃料電池スタックは、燃料ガス流路の入口側が、前記燃料ガス流路の出口側よりも水平方向に対して上方に配置された状態で、取り付け部に対し傾斜して取り付けられている。このため、燃料ガス流路内の凝縮水は、前記燃料ガス流路の傾斜に沿って入口側から出口側に円滑且つ確実に排水され、前記燃料ガス流路に滞留水が存在することがない。これにより、燃料ガスのストイキが低下することがなく、良好な発電が維持される。
一方、酸化剤ガス流路を流通する酸化剤ガス、例えば、空気の流量は、燃料ガス流路を流通する燃料ガスの流量よりも多く且つガスの粘度及び密度が高いため、前記酸化剤ガス流路の両端(入口側と出口側)の圧力差が大きくなっている。従って、酸化剤ガス流路の入口側が、前記酸化剤ガス流路の出口側よりも下方に配置されていても、圧力差を利用して前記酸化剤ガス流路内の生成水は、入口側から出口側に円滑且つ確実に排水される。このため、酸化剤ガス流路に滞留水が存在することがなく、酸化剤ガスのストイキを維持して良好な発電が遂行される。
しかも、燃料電池スタックは、車両のフロントボックス内に水平方向に対し車長方向後方に向かって下方に傾斜して設けられている。従って、フロントボックス内では、周辺機器をコンパクト且つ効率的にレイアウトすることができる。
本発明の第1の実施形態に係る燃料電池システムが搭載される燃料電池自動車の概略説明図である。 前記燃料電池システムの概略構成説明図である。 前記燃料電池システムを構成する燃料電池の要部分解斜視説明図である。 燃料ガスのストイキと傾斜角度との関係説明図である。 酸化剤ガスのストイキと傾斜角度との関係説明図である。 ドレン処理を説明するフローチャートである。 凝縮水の蓄積マップの説明図である。 負荷と蓄積量との不安定性テーブルの説明図である。 前記燃料電池システムの配置スペースの説明図である。 本発明の第2の実施形態に係る燃料電池システムが搭載される燃料電池自動車の概略説明図である。 前記燃料電池システムの概略構成説明図である。 前記燃料電池システムを構成する燃料電池の要部分解斜視説明図である。 前記燃料電池を構成する燃料ガス流路の傾斜角度の説明図である。 前記燃料電池システムの配置スペースの説明図である。 他の波形状流路溝の説明図である。 特許文献1に開示されている燃料電池の説明図である。
図1に示すように、本発明の第1の実施形態に係る燃料電池システム10は、燃料電池自動車12に組み込まれる。
燃料電池システム10は、燃料電池スタック14と、ブラケット(図示せず)を介して車体に固定されるとともに、前記燃料電池スタック14が傾斜して取り付けられる取り付け部16とを備える。燃料電池スタック14は、燃料電池自動車12のフロントボックス18内に収容されるとともに、取り付け部16は、前記フロントボックス18内に構成される。
図2に示すように、燃料電池スタック14は、複数の燃料電池20を備えるとともに、複数の前記燃料電池20は、電極面の面方向を水平方向に沿わせた状態で鉛直方向に積層される。複数の燃料電池20は、矢印A方向(鉛直方向)に傾斜するとともに、前記燃料電池20の積層方向下端には、ターミナルプレート22a、絶縁プレート24a及びエンドプレート26aが配設される。燃料電池20の積層方向上端には、ターミナルプレート22b、絶縁プレート24b及びエンドプレート26bが配設される。
エンドプレート26a、26bには、複数本の連結バー28の両端が固定されており、前記エンドプレート26a、26b間に所定の締め付け荷重が付与される。
図3に示すように、燃料電池20は、電解質膜・電極構造体(MEA)30が、第1及び第2金属セパレータ32、34に挟持される。第1及び第2金属セパレータ32、34は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した縦長形状の金属板により構成される。
第1及び第2金属セパレータ32、34は、平面が矩形状を有するとともに、金属製薄板を波板状にプレス加工することにより、断面凹凸形状に成形される。なお、第1及び第2金属セパレータ32、34に代えて、例えば、第1及び第2カーボンセパレータ(図示せず)を採用してもよい。
燃料電池20の矢印B方向(車長方向)の一端縁部には、積層方向である矢印A方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス入口連通孔36aと、燃料ガス、例えば、水素含有ガスを排出するための燃料ガス出口連通孔38bとが設けられる。
燃料電池20の矢印B方向の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給するための燃料ガス入口連通孔38aと、酸化剤ガスを排出するための酸化剤ガス出口連通孔36bとが設けられる。
燃料電池20の矢印C方向(車幅方向)両端縁部には、矢印A方向に互いに連通して、冷却媒体を供給するための冷却媒体入口連通孔40aと、前記冷却媒体を排出するための冷却媒体出口連通孔40bとが設けられる。
第1金属セパレータ32の電解質膜・電極構造体30に向かう面32aには、酸化剤ガス入口連通孔36aと酸化剤ガス出口連通孔36bとに連通する酸化剤ガス流路42が設けられる。酸化剤ガス流路42は、例えば、サーペンタインガス流路のように途上で屈曲することがなく、矢印B方向の一方向にのみ延在する複数本の波形状流路溝42aを有するとともに、上流及び下流には、入口バッファ部43a及び出口バッファ部43bが設けられる。
第2金属セパレータ34の電解質膜・電極構造体30に向かう面34aには、燃料ガス入口連通孔38aと燃料ガス出口連通孔38bとに連通する燃料ガス流路44が設けられる。燃料ガス流路44は、同様に、途上で屈曲することがなく、矢印B方向の一方向にのみ延在する複数本の波形状流路溝42aを有するとともに、上流及び下流には、入口バッファ部45a及び出口バッファ部45bが設けられる。燃料ガス流路44と酸化剤ガス流路42とは、それぞれの流れ方向が逆方向に設定される対向流を構成する。具体的には、燃料ガス流路44と酸化剤ガス流路42とは、それぞれの流路延在方向(流路溝の伸びる方向)が略平行であり且つそれぞれの流路内部を流通するガス流れ方向が逆方向である。なお、波形状流路溝42a、44aに代えて、直線流路溝を採用してもよい。
互いに隣接する燃料電池20を構成する第1金属セパレータ32の面32bと、第2金属セパレータ34の面34bとの間には、冷却媒体入口連通孔40aと冷却媒体出口連通孔40bとを連通する冷却媒体流路46が設けられる。冷却媒体流路46は、第1金属セパレータ32の酸化剤ガス流路42の裏面形状と第2金属セパレータ34の燃料ガス流路44の裏面形状とが重なり合って構成される。
第1金属セパレータ32の面32a、32bには、第1シール部材48が、一体的又は個別に設けられるとともに、第2金属セパレータ34の面34a、34bには、第2シール部材50が、一体的に又は個別に設けられる。
第1及び第2シール部材48、50は、例えば、EPDM、NBR、フッ素ゴム、シリコンゴム、フロロシリコンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン、又はアクリルゴム等のシール材、クッション材、あるいはパッキン材を使用する。
電解質膜・電極構造体30は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜52と、前記固体高分子電解質膜52を挟持するカソード側電極54及びアノード側電極56とを備える。
カソード側電極54及びアノード側電極56は、カーボンペーパ等からなるガス拡散層と、白金合金が表面に担持された多孔質カーボン粒子が前記ガス拡散層の表面に一様に塗布されて形成される電極触媒層とを有する。電極触媒層は、固体高分子電解質膜52の両面に形成されている。
燃料電池20には、酸化剤ガス流路42の入口側である入口バッファ部43aに、積層方向に貫通して排水用連通孔58が形成される。排水用連通孔58は、固体高分子電解質膜52及び第2金属セパレータ34に設けられるとともに、前記第2金属セパレータ34の両面には、前記排水用連通孔58を周回してシール部50aが設けられる。
図2に示すように、エンドプレート26aには、配管マニホールド部60が装着される。この配管マニホールド部は、酸化剤ガス入口連通孔36a、燃料ガス入口連通孔38a、冷却媒体入口連通孔40a、酸化剤ガス出口連通孔36b、燃料ガス出口連通孔38b及び冷却媒体出口連通孔40bに、それぞれ連通する複数の独立したマニホールド部材を備える。なお、図2では、各マニホールド部材の詳細な記載は省略している。
燃料電池スタック14には、酸化剤ガスである空気を供給するための空気供給装置62と、燃料ガスである水素ガスを供給するための水素供給装置64と、冷却媒体を供給するための冷却媒体供給装置66とが接続される。
空気供給装置62は、エアポンプ68を備え、このエアポンプ68が接続される空気供給路70は、加湿器72を介装して燃料電池スタック14の酸化剤ガス入口連通孔36aに連通する。
空気供給装置62は、燃料電池スタック14の酸化剤ガス出口連通孔36bに連通する空気排出路74を有するとともに、前記空気排出路74は、加湿器72を介装して車外に延在する。加湿器72は、空気排出路74に排出される使用済みの加湿空気と、空気供給路70に導入される新たな空気との間で、水交換を行うことにより、この新たな空気を加湿する。
水素供給装置64は、高圧水素を貯留する水素タンク76を備え、この水素タンク76が水素供給路78に配置される。水素供給路78は、燃料電池スタック14の燃料ガス入口連通孔38aに連通するとともに、減圧弁80及びエゼクタ82を配設する。エゼクタ82の吸引口には、水素排出路84が連通するとともに、前記水素排出路84は、気液分離器86を介装して燃料電池スタック14の燃料ガス出口連通孔38bに連通する。
冷却媒体供給装置66は、ラジエータ88を備える。ラジエータ88には、冷却媒体循環路90が接続され、前記冷却媒体循環路90は、燃料電池スタック14の冷却媒体入口連通孔40a及び冷却媒体出口連通孔40bに両端が接続される。この冷却媒体循環路90には、冷媒ポンプ92が介装される。
燃料電池スタック14には、排水用連通孔58に連通して外部に延在するドレン配管94が接続される。このドレン配管94には、電磁弁(開閉弁)96が配置される。
燃料電池システム10は、ECU98により制御されるとともに、このECU98には、車体に作用する加減速度を検出するためのGセンサ100、車体の傾斜角度を検出するための傾斜角センサ102及び燃料電池スタック14の雰囲気温度(又は外気温度)を検出するための温度センサ104が接続される。
空気供給装置62には、酸化剤ガス入口連通孔36aと酸化剤ガス出口連通孔36bとの圧力差を検出するための差圧センサ106、前記酸化剤ガス入口連通孔36aの温度を検出するための温度センサ108及び排水用連通孔58の水位を検出するための水位レベルセンサ110が、必要に応じて設けられる。差圧センサ106、温度センサ108及び水位レベルセンサ110は、ECU98に接続される。
Gセンサ100は、燃料電池スタック14の近傍に位置して車体に固定される。このGセンサ100の設置方向は、加減速度検出方向が燃料ガス流路44における燃料ガスの流れ方向に平行な方向に設定される。
なお、燃料ガスの流れ方向は、燃料電池自動車12の前後方向(車長方向)(図1中、矢印B方向)であるため、Gセンサ100に代えて、車速センサからのデータに基づいて、ECU98内でGを計算してもよい。また、ブレーキやアクセルの踏み込み量に基づいて、Gを判断してもよい。
傾斜角センサ102は、例えば、振り子式(ホール素子、抵抗式、機械式、ジャイロ、カーナビ)等が用いられ、車体に固定されるとともに、設置方向は、回転面が燃料ガス流路44の燃料ガス流れ方向と平行に設定される。
水位レベルセンサ110は、例えば、フロート式(光学式、機械式)等が用いられ、燃料電池スタック14の内部、配管マニホールド部60、ドレン配管94又は前記ドレン配管94に連通する孔部等に設定される。
燃料電池スタック14は、図1及び図2に示すように、燃料電池自動車12の車長方向(進行方向)後方(矢印B1方向)に向かって水平基準線Hから下方向(重力方向)に角度α°だけ傾斜して設置される。角度α°は、4°〜90°の範囲内、好ましくは、20°〜80°の範囲内、より好ましくは、30°〜70°の範囲内に設定される。
図1に示すように、燃料電池自動車12内では、フロントボックス18内に、燃料電池スタック14の他、ラジエータ88、エアポンプ68、各種補機(加湿器72等を含む)111、走行用モータ112及びエアコン114等が配設される。走行用モータ112は、燃料電池スタック14から出力される電力によって駆動される。
燃料電池自動車12の後部側には、水素タンク76が配置されるとともに、この水素タンク76の前方には、バッテリ116が配置される。バッテリ116は、補機111、エアコン114の他、走行用モータ112に電力を供給可能であるとともに、燃料電池スタック14からの電力により充電される。
走行用モータ112は、燃料電池スタック14の下方に配置されるとともに、前記走行用モータ112の前後に近接してエアポンプ68と各種補機111とが配置される。エアポンプ68の上方近傍には、エアコン114が配置され、前記エアポンプ68及び前記エアコン114の前方近傍には、ラジエータ88が配置される。
このように構成される燃料電池システム10の動作について、以下に説明する。
先ず、燃料電池自動車12の図示しないイグニッションスイッチがオンされると、バッテリ116から補機111等に電力が供給され、燃料電池スタック14の運転が開始される。
図2に示すように、空気供給装置62では、エアポンプ68の駆動作用下に空気供給路70に導出された圧縮空気は、加湿器72で加湿された後、燃料電池スタック14の酸化剤ガス入口連通孔36aに供給される。
水素供給装置64では、水素タンク76に貯留されている高圧水素が、減圧弁80を介して減圧されて水素供給路78に送られる。燃料ガス(水素ガス)は、エゼクタ82のノズル部から噴出されるとともに、後述する使用済みの燃料ガスを吸引して、燃料電池スタック14の燃料ガス入口連通孔38aに供給される。
一方、冷却媒体供給装置66では、冷媒ポンプ92の作用下に、冷却媒体循環路90から燃料電池スタック14の冷却媒体入口連通孔40aに冷却媒体が供給される。
このため、図3に示すように、酸化剤ガスは、酸化剤ガス入口連通孔36aから第1金属セパレータ32の酸化剤ガス流路42に導入される。酸化剤ガスは、酸化剤ガス流路42に沿って矢印B方向に移動しながら、電解質膜・電極構造体30を構成するカソード側電極54に供給される。
一方、燃料ガスは、燃料ガス入口連通孔38aから第2金属セパレータ34の燃料ガス流路44に導入される。この燃料ガスは、燃料ガス流路44に沿って矢印B方向に移動しながら、電解質膜・電極構造体30を構成するアノード側電極56に供給される。
従って、電解質膜・電極構造体30では、カソード側電極54に供給される酸化剤ガスと、アノード側電極56に供給される燃料ガスとが、電極触媒層内で電気化学反応により消費され、発電が行われる。
次いで、カソード側電極54に供給されて消費された酸化剤ガスは、酸化剤ガス出口連通孔36bに沿って矢印A方向に移動し、空気排出路74に排出される(図2参照)。この酸化剤ガスは、加湿器72で新たな酸化剤ガスを加湿した後、車外に排出される。
一方、アノード側電極56に供給されて消費された燃料ガスは、燃料ガス出口連通孔38bに沿って矢印A方向に移動し、水素排出路84に排出される(図2参照)。この燃料ガスは、エゼクタ82の吸引作用下に、新たな燃料ガスに混在して水素供給路78に導入され、燃料ガスとして燃料電池スタック14に供給される。
また、冷却媒体入口連通孔40aに供給された冷却媒体(純水やエチレングリコール、オイル等)は、図3に示すように、第1及び第2金属セパレータ32、34間の冷却媒体流路46に導入され、矢印C方向に流通する。この冷却媒体は、電解質膜・電極構造体30を冷却した後、冷却媒体出口連通孔40bに排出される。冷却媒体は、図2に示すように、冷却媒体循環路90に戻されてラジエータ88で冷却された後、燃料電池スタック14に循環供給される。
この場合、第1の実施形態では、図1及び図2に示すように、燃料電池スタック14は、車長方向後方(矢印B1方向)に向かって水平基準線Hから下方向に角度α°だけ傾斜している。その際、燃料ガス流路44の入口側(燃料ガス入口連通孔38a側)は、前記燃料ガス流路44の出口側(燃料ガス出口連通孔38b側)よりも水平方向に対して上方に配置されている。
このため、燃料ガス流路44に残存する凝縮水は、この燃料ガス流路44の傾斜に沿って入口側から出口側に円滑且つ確実に排水され、前記燃料ガス流路44に滞留水が残存することがない。
具体的には、図4に示すように、燃料ガス流路44が水平方向に平行に配置される場合、燃料ガスのストイキを低下させると、セル電圧を安定して保持できる時間が著しく短くなり、発電安定性が低下する。これに対し、第1の実施形態では、燃料ガス流路44が、入口側から出口側に向かって下方に30°傾斜することにより、燃料ガスのストイキを低下させても、セル電圧を安定して保持できる時間が短くなることを抑制することができ、良好な発電が維持されるという効果が得られる。
一方、酸化剤ガス流路42では、入口側(酸化剤ガス入口連通孔36a側)が出口側(酸化剤ガス出口連通孔36b側)よりも水平方向に対して下方に配置されている。ここで、酸化剤ガス流路42に流通される酸化剤ガスの流量は、燃料ガス流路44に流通される燃料ガスの流量に比べて多量となり、且つガスの粘度及び密度が高いため、前記酸化剤ガス流路42の流路両端の圧力差が大きくなっている。
従って、酸化剤ガス流路42の入口側が、出口側よりも下方に配置されていても、圧力差を利用して、前記酸化剤ガス流路42内の生成水を入口側から出口側に円滑且つ確実に排水される。すなわち、図5に示すように、酸化剤ガス流路42は、入口側が出口側に対して下方に30°傾斜していても、水平方向に配置されている構成と同様のストイキを維持することができ、良好な発電が遂行される。
しかも、酸化剤ガス流路42では、燃料電池システム10の停止時に流路内の凝縮水を除去するために、多量の空気を前記流路内に流通させるパージ処理が行われている。パージ処理後、停止中、出口側に残留する凝縮水の一部は、時間をかけて少しずつ酸化剤ガス流路42の傾斜に沿って入口側に戻される。これにより、停止中において、酸化剤ガス流路42の入口側は、ドライ雰囲気からウエット雰囲気に移行して固体高分子電解質膜52が適度な水分を保持できるため、燃料電池スタック14の起動直後に、良好な発電性能を維持することが可能になるという利点がある。
その上、燃料ガス流路44の燃料ガス流れ方向と、酸化剤ガス流路42の酸化剤ガス流れ方向とは、対向流(逆方向)に設定されている。従って、酸化剤ガス流路42の入口側に、燃料ガス流路44の出口側の凝縮水が移動し易く、この酸化剤ガス流路42の入口側から良好に加湿状態が維持される。これにより、空気供給装置62では、加湿器72を廃止又は小型化できるという効果がある。
さらにまた、第1の実施形態では、燃料電池スタック14は、車長方向後方に向かって後部側が下方に傾斜して配置されている。このため、燃料電池自動車12に発進時の加速度(G)が発生すると、燃料電池スタック14には、車長方向後方(矢印B1方向)に向かうGが作用する。これにより、燃料電池スタック14内の燃料ガス流路44では、加速度によってこの燃料ガス流路44内に存在する凝縮水の排水が促進され、良好な排水処理が遂行される。
さらにまた、第1の実施形態では、図2及び図3に示すように、酸化剤ガス流路42の入口側には、入口バッファ部43aに対応して排水用連通孔58が形成されるとともに、前記排水用連通孔58は、燃料電池スタック14の外部に延在するドレン配管94に連通している。このドレン配管94には、電磁弁96が配設されている。
そして、水位レベルセンサ110は、酸化剤ガス流路42の入口側に存在する凝縮水の水位レベルを検出し、この検出された水位レベルが設定レベル以上であると判断された際に、ECU98は、電磁弁96を開放させる。従って、排水用連通孔58に滞留する凝縮水は、ドレン配管94から良好に排出される。
また、ECU98には、Gセンサ100、傾斜角センサ102及び差圧センサ106が接続されている。従って、Gセンサ100、傾斜角センサ102又は差圧センサ106の少なくともいずれかにより、排水性に影響を与える値が所定の時間だけ継続して検出された際には、燃料電池スタック14の出力電圧が低下する前に、酸化剤ガスのストイキを所定時間だけ増量させ、又は負荷を増加することにより、安定した運転を維持することができる。
次いで、ドレン配管94に配置されている電磁弁96の開放制御について、以下に説明する。
先ず、電磁弁96を開放させるための水位判定手段として、水位レベルセンサ110、差圧センサ106又は燃料電池20の電位センサ(図示せず)の少なくとも1つを用いている。
次いで、水位レベルセンサ110により所定水位以上の凝縮水、差圧センサ106により所定値以上の差圧、又は、電位センサにより所定値以下の電位、の少なくともいずれかが検出されると、ECU98は、排水用連通孔58に許容量以上の凝縮水が存在していると判断し、電磁弁96を所定の時間だけ開放させる。
一方、電磁弁96の開放制御を、上記の各種センサを使用することなく、行うこともできる。これを、図6に示すフローチャートに沿って以下に説明する。
予め、実験によって外気温(又は周辺温度や冷媒温度)と運転負荷とにおける凝縮水の蓄積量のマップが、図7に示すように得られている。また、図8には、運転負荷と不安定蓄積量との関係が、不安定性テーブルとして設定されている。
そこで、先ず、前回の処理で、電磁弁96が開放されたか否かが判断され、この電磁弁96が開放されたと判断されると(ステップS1中、YES)、ステップS2に進んで、積算タイマがリセットされ、運転持続時間の積算値が0に変更される(ステップS3)。
一方、前回の処理で、電磁弁96が開放されていない際には(ステップS1中、NO)、ステップS4に進んで、図7の凝縮水蓄積量マップに基づいて、各負荷と温度とにおける凝縮水蓄積量Δyが検索される。次に、ステップS5に進んで、運転持続時間の積算による凝縮水蓄積量の積算値yが積算されるとともに、図8の不安定性テーブルに基づいて、各負荷における不安定蓄積量ylが検索される(ステップS6)。さらに、ステップS7に進んで、積算値yが不安定蓄積量ylを超えると判断されると(ステップS7中、YES)、ステップS8に進んで、電磁弁96が所定の時間だけ開放される。
これにより、センサ類を用いずに、電磁弁96の開放制御が確実に行われるため、ドレン配管94からの排水処理が簡単且つ経済的に遂行される。
さらにまた、第1の実施形態では、図9に示すように、燃料電池スタック14が車長方向後方に向かって後端側が下方にα°だけ傾斜している。このため、燃料電池スタック14の周囲には、スペースS1、S2、S3及びS4が設けられる。
スペースS1は、スタック前方領域であり、空気供給系のデバイスである加湿器72や電磁弁96等を配置することができる。スペースS2は、スタック前方上方領域であり、例えば、ボンネットとのクリアランスを確保するためのクラッシュスペースとして機能する。
さらに、スペースS3は、スタック後方上部側領域であり、電装系デバイス、例えば、ECU98等が収容される。スペースS4は、スタック後方下部側領域であり、水素系デバイス、例えば、気液分離器86やエゼクタ82等を収容することができる。これにより、燃料電池自動車12のフロントボックス18内では、周辺機器をコンパクト且つ効率的にレイアウトすることが可能になるという効果が得られる。
図10は、本発明の第2の実施形態に係る燃料電池システム120が組み込まれる燃料電池自動車12の概略説明図である。
なお、第1の実施形態に係る燃料電池システム10と同一の構成要素には、同一の参照符号を付して、その詳細な説明は省略する。
燃料電池システム120は、燃料電池スタック122を備え、この燃料電池スタック122は、複数の燃料電池20が、電極面の面方向を鉛直方向(矢印A方向)に沿わせた状態で水平方向に積層される(図10及び図11参照)。
図12に示すように、燃料電池20は、第1金属セパレータ32、電解質膜・電極構造体30及び第2金属セパレータ34が、鉛直姿勢で矢印C方向(車幅方向)に積層される。複数の燃料電池20は、矢印B方向(車長方向)の一端縁部が鉛直下方向に傾斜することにより、燃料ガス入口連通孔38aが重力方向の最上位に配置される一方、燃料ガス出口連通孔38bが重力方向の最下位に配置される。
第2の実施形態では、燃料電池20の排水用連通孔58は、幅方向(短尺方向)で重力方向下方側に設けられる。
各燃料電池20では、図13に示すように、燃料ガス流路44を構成する波形状流路溝44aの中心線に沿う全ての燃料ガス流れ方向F1、F2が、水平基準線H(水平方向)から下方に0°を超える角度以上(角度β1°、β2°)傾斜した状態で、前記燃料電池20が前記水平基準線Hに対し角度α1°だけ傾斜する。具体的には、角度α1°は、20°〜90°の範囲内、好ましくは、35°〜80°の範囲内、より好ましくは、45°〜70°の範囲内に設定される。なお、酸化剤ガス流路42は、酸化剤ガス流れ方向が燃料ガス流れ方向と対向流を構成するが、上記の燃料ガス流路44と同一の角度に設定される。
図14に示すように、燃料電池スタック122は、長辺の後端側が車長方向後方(矢印B1方向)に向かって下方に傾斜するため、前記燃料電池スタック122の周囲には、スペースS11、S12、S13及びS14が設けられる。
スペースS11は、スタック前方領域であり、空気供給系のデバイスである加湿器72や電磁弁96等を配置することができる。スペースS12は、スタック前方上方領域であり、例えば、ボンネットとのクリアランスを確保するためのクラッシュスペースとして機能する。
さらに、スペースS13は、スタック後方上部側領域であり、電装系デバイス、例えば、ECU98等が収容される。スペースS14は、スタック後方下部側領域であり、水素系デバイス、例えば、気液分離器86やエゼクタ82等を収容することができる。
なお、波形状流路溝42a、44aは、図3及び図12に示すように、連続する湾曲形状を有しているが、これに限定されるものではなく、種々の形状に設定することができる。例えば、図15に示すように、直線部を挟んで交互に異なる方向に屈曲する直線(正面視、台形状の連続)により、波形状流路溝42a、44aを構成してもよい。また、真っ直ぐな直線状流路溝で構成してもよい。
この第2の実施形態では、燃料ガス入口連通孔38aが重力方向の最上位に配置される一方、燃料ガス出口連通孔38bが重力方向の最下位に配置されている。従って、燃料ガス流路44に残存する凝縮水は、この燃料ガス流路44の傾斜に沿って入口側から出口側に円滑且つ確実に排水され、排水性が一層向上するという効果が得られる。
しかも、燃料電池自動車12のフロントボックス18内では、周辺機器をコンパクト且つ効率的にレイアウトすることが可能になる等、上記の第1の実施形態と同様の効果が得られる。
10、120…燃料電池システム 12…燃料電池自動車
14、122…燃料電池スタック 16…取り付け部
18…フロントボックス 20…燃料電池
30…電解質膜・電極構造体 32、34…セパレータ
36a…酸化剤ガス入口連通孔 36b…酸化剤ガス出口連通孔
38a…燃料ガス入口連通孔 38b…燃料ガス出口連通孔
40a…冷却媒体入口連通孔 40b…冷却媒体出口連通孔
42…酸化剤ガス流路 44…燃料ガス流路
46…冷却媒体流路 52…固体高分子電解質膜
54…カソード側電極 56…アノード側電極
58…排水用連通孔 60…配管マニホールド部
62…空気供給装置 64…水素供給装置
66…冷却媒体供給装置 68…エアポンプ
72…加湿器 82…エゼクタ
88…ラジエータ 94…ドレン配管
96…電磁弁 98…ECU
100…Gセンサ 102…傾斜角センサ
104、108…温度センサ 106…差圧センサ
110…水位レベルセンサ 112…走行用モータ

Claims (7)

  1. 電解質膜の両側に一対の電極を設けた電解質膜・電極構造体とセパレータとが積層され、一方の電極と一方のセパレータとの間には、電極面に沿って燃料ガスを流通させる燃料ガス流路が形成され、且つ他方の電極と他方のセパレータとの間には、電極面に沿って酸化剤ガスを流通させる酸化剤ガス流路が形成されるとともに、前記燃料ガス流路と前記酸化剤ガス流路とが対向流を構成する燃料電池を備え、複数の前記燃料電池が積層される燃料電池スタックと、
    車両のフロントボックス内に設けられ、前記燃料ガス流路の入口側が該燃料ガス流路の出口側よりも水平方向に対して上方に配置された状態で、前記燃料電池スタックが、前記水平方向に対し車長方向後方に向かって下方に傾斜して車両に取り付けられる取り付け部と、
    を備えることを特徴とする燃料電池システム。
  2. 請求項1記載の燃料電池システムにおいて、前記酸化剤ガス流路は、入口側が出口側よりも水平方向に対して下方に配置され、
    前記入口側には、前記燃料電池の積層方向に貫通して排水用連通孔が形成されるとともに、
    前記排水用連通孔は、前記燃料電池スタックの外部に延在するドレン配管に連通することを特徴とする燃料電池システム。
  3. 請求項2記載の燃料電池システムにおいて、前記ドレン配管には、開閉弁が配設されることを特徴とする燃料電池システム。
  4. 請求項2又は3記載の燃料電池システムにおいて、前記排水用連通孔に滞留する凝縮水量を検出する検出手段を備えることを特徴とする燃料電池システム。
  5. 請求項1〜4のいずれか1項に記載の燃料電池システムにおいて、複数の前記燃料電池は、前記電極面の面方向を水平方向に沿わせた状態で鉛直方向に積層されることを特徴とする燃料電池システム。
  6. 請求項1〜4のいずれか1項に記載の燃料電池システムにおいて、複数の前記燃料電池は、前記電極面の面方向を鉛直方向に沿わせた状態で水平方向に積層されることを特徴とする燃料電池システム。
  7. 請求項6記載の燃料電池システムにおいて、前記燃料ガス流路は、複数の波形状流路溝を有するとともに、
    前記波形状流路溝の中心線に沿う全ての燃料ガス流れ方向は、水平方向から下方に傾斜することを特徴とする燃料電池システム。
JP2010258440A 2010-01-22 2010-11-19 燃料電池システム Expired - Fee Related JP5591074B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010258440A JP5591074B2 (ja) 2010-01-22 2010-11-19 燃料電池システム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010012380 2010-01-22
JP2010012380 2010-01-22
JP2010258440A JP5591074B2 (ja) 2010-01-22 2010-11-19 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2011171283A true JP2011171283A (ja) 2011-09-01
JP5591074B2 JP5591074B2 (ja) 2014-09-17

Family

ID=44296290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010258440A Expired - Fee Related JP5591074B2 (ja) 2010-01-22 2010-11-19 燃料電池システム

Country Status (3)

Country Link
US (1) US9564647B2 (ja)
JP (1) JP5591074B2 (ja)
CN (1) CN102136591B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018850A (ja) * 2019-07-17 2021-02-15 本田技研工業株式会社 燃料電池システム
DE102021108694A1 (de) 2020-06-02 2021-12-02 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130056932A (ko) * 2011-11-23 2013-05-31 에스케이이노베이션 주식회사 배터리 팩
JP6020332B2 (ja) * 2013-04-23 2016-11-02 トヨタ自動車株式会社 燃料電池ユニット
JP6024645B2 (ja) * 2013-11-15 2016-11-16 トヨタ自動車株式会社 燃料電池用セパレータおよび燃料電池スタック
KR101646372B1 (ko) * 2014-11-03 2016-08-12 현대자동차주식회사 연료전지차량의 공기블로워 제어방법
KR101724972B1 (ko) * 2015-12-15 2017-04-10 현대자동차주식회사 연료전지 셀
KR101734760B1 (ko) * 2016-04-18 2017-05-11 현대자동차주식회사 연료전지 스택의 제어 장치 및 그 방법
CN106450383B (zh) * 2016-11-29 2019-06-25 北京建筑大学 一种质子交换膜燃料电池水管理系统及其工作方法
DE102017214406A1 (de) * 2017-08-18 2019-02-21 Audi Ag Brennstoffzellensystem für ein Kraftfahrzeug
JP6973030B2 (ja) * 2017-12-21 2021-11-24 トヨタ自動車株式会社 電動車両
JP6974205B2 (ja) * 2018-02-09 2021-12-01 株式会社Soken 燃料電池システム
JP6939634B2 (ja) * 2018-02-21 2021-09-22 トヨタ自動車株式会社 燃料電池車両
JP6836210B2 (ja) 2018-12-26 2021-02-24 株式会社デンソー 車両用熱マネジメントシステム、熱輸送媒体、および車両走行用の電池の冷却方法
CN109687008B (zh) * 2019-01-15 2023-08-25 安徽明天氢能科技股份有限公司 一种燃料电池电堆系统组装托盘
JP7272912B2 (ja) * 2019-09-06 2023-05-12 株式会社Soken 燃料電池システム及びアノードオフガス排出量推定方法
DE102020207341A1 (de) 2020-06-15 2021-12-16 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzelleneinheit
KR20220029019A (ko) * 2020-09-01 2022-03-08 현대자동차주식회사 연료 전지 및 연료 전지 차량

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266925A (ja) * 2000-03-16 2001-09-28 Honda Motor Co Ltd 燃料電池スタック
JP2003173790A (ja) * 2001-12-06 2003-06-20 Honda Motor Co Ltd 車載用燃料電池システム
JP2007087739A (ja) * 2005-09-21 2007-04-05 Nissan Motor Co Ltd 燃料電池システム
JP2008152979A (ja) * 2006-12-14 2008-07-03 Toyota Motor Corp 燃料電池セル及び燃料電池積層体
JP2008171808A (ja) * 2007-12-14 2008-07-24 Equos Research Co Ltd 燃料電池スタック
JP2009016139A (ja) * 2007-07-03 2009-01-22 Honda Motor Co Ltd 固体高分子型燃料電池用電解質膜・電極構造体及び固体高分子型燃料電池
JP2009026519A (ja) * 2007-07-18 2009-02-05 Toyota Motor Corp 燃料電池および燃料電池搭載車両
JP2009238428A (ja) * 2008-03-26 2009-10-15 Honda Motor Co Ltd 燃料電池システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586128B1 (en) * 2000-05-09 2003-07-01 Ballard Power Systems, Inc. Differential pressure fluid flow fields for fuel cells
JP2003092130A (ja) 2001-09-14 2003-03-28 Mitsubishi Heavy Ind Ltd 燃料電池
JP4700886B2 (ja) 2002-01-28 2011-06-15 本田技研工業株式会社 燃料電池システム
JP2004063173A (ja) 2002-07-26 2004-02-26 Nissan Motor Co Ltd 燃料電池の構造
JP2004207106A (ja) 2002-12-26 2004-07-22 Sanyo Electric Co Ltd 固体高分子形燃料電池積層体
JP2005158339A (ja) 2003-11-21 2005-06-16 Nissan Motor Co Ltd 燃料電池
JP4417224B2 (ja) * 2004-10-25 2010-02-17 本田技研工業株式会社 燃料電池スタック
JP5079994B2 (ja) * 2004-11-25 2012-11-21 本田技研工業株式会社 燃料電池スタック
US7971670B2 (en) * 2005-10-25 2011-07-05 Nissan Motor Co., Ltd. Fuel cell electric vehicle
JP4668038B2 (ja) * 2005-11-16 2011-04-13 本田技研工業株式会社 燃料電池スタック
JP5082413B2 (ja) * 2006-12-05 2012-11-28 トヨタ自動車株式会社 移動体
JP2008251204A (ja) 2007-03-29 2008-10-16 Equos Research Co Ltd 燃料電池装置
JP5216240B2 (ja) 2007-05-24 2013-06-19 本田技研工業株式会社 燃料電池
JP5227543B2 (ja) * 2007-06-28 2013-07-03 本田技研工業株式会社 燃料電池
JP5306615B2 (ja) * 2007-08-09 2013-10-02 本田技研工業株式会社 燃料電池
JP5235351B2 (ja) 2007-08-10 2013-07-10 本田技研工業株式会社 燃料電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266925A (ja) * 2000-03-16 2001-09-28 Honda Motor Co Ltd 燃料電池スタック
JP2003173790A (ja) * 2001-12-06 2003-06-20 Honda Motor Co Ltd 車載用燃料電池システム
JP2007087739A (ja) * 2005-09-21 2007-04-05 Nissan Motor Co Ltd 燃料電池システム
JP2008152979A (ja) * 2006-12-14 2008-07-03 Toyota Motor Corp 燃料電池セル及び燃料電池積層体
JP2009016139A (ja) * 2007-07-03 2009-01-22 Honda Motor Co Ltd 固体高分子型燃料電池用電解質膜・電極構造体及び固体高分子型燃料電池
JP2009026519A (ja) * 2007-07-18 2009-02-05 Toyota Motor Corp 燃料電池および燃料電池搭載車両
JP2008171808A (ja) * 2007-12-14 2008-07-24 Equos Research Co Ltd 燃料電池スタック
JP2009238428A (ja) * 2008-03-26 2009-10-15 Honda Motor Co Ltd 燃料電池システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018850A (ja) * 2019-07-17 2021-02-15 本田技研工業株式会社 燃料電池システム
JP7120969B2 (ja) 2019-07-17 2022-08-17 本田技研工業株式会社 燃料電池システム
DE102021108694A1 (de) 2020-06-02 2021-12-02 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem
JP2021190357A (ja) * 2020-06-02 2021-12-13 トヨタ自動車株式会社 燃料電池システム
US11605823B2 (en) 2020-06-02 2023-03-14 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP7380431B2 (ja) 2020-06-02 2023-11-15 トヨタ自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
CN102136591A (zh) 2011-07-27
CN102136591B (zh) 2015-07-08
US20110183226A1 (en) 2011-07-28
JP5591074B2 (ja) 2014-09-17
US9564647B2 (en) 2017-02-07

Similar Documents

Publication Publication Date Title
JP5591074B2 (ja) 燃料電池システム
US9079508B2 (en) Fuel cell vehicle
US9017896B2 (en) Fuel cell system having fuel cell box and ventilation device
JP2012043778A (ja) 燃料電池システム及びその運転方法
JP2006147484A (ja) 加湿装置
JP5194406B2 (ja) 燃料電池システム
JP2008300096A (ja) 燃料電池システム
JP7130616B2 (ja) 燃料電池システム
JP5168980B2 (ja) 燃料電池装置
JP5437089B2 (ja) 燃料電池システム
JP2002056864A (ja) 燃料電池装置、及び、燃料電池装置の運転方法
JP5508915B2 (ja) 燃料電池システム
JP5450124B2 (ja) 燃料電池システム
JP5474606B2 (ja) 車載用燃料電池スタック
JP5310739B2 (ja) 燃料電池システム
JP7120983B2 (ja) 燃料電池システム
JP2009259772A (ja) 燃料電池スタック
JP2009048945A (ja) 燃料電池システム
JP4770137B2 (ja) 燃料電池システム及びその運転方法
JP4599927B2 (ja) 燃料電池システム及びその運転方法
JP2007227014A (ja) 燃料電池システム
JP2005149827A (ja) 燃料電池
JP2010125962A (ja) 車載用燃料電池システム
JP5434052B2 (ja) 気液分離器
JP4663623B2 (ja) 燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140729

R150 Certificate of patent or registration of utility model

Ref document number: 5591074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees