JP2010097174A - 光導波路の製造方法及び光導波路 - Google Patents

光導波路の製造方法及び光導波路 Download PDF

Info

Publication number
JP2010097174A
JP2010097174A JP2009078549A JP2009078549A JP2010097174A JP 2010097174 A JP2010097174 A JP 2010097174A JP 2009078549 A JP2009078549 A JP 2009078549A JP 2009078549 A JP2009078549 A JP 2009078549A JP 2010097174 A JP2010097174 A JP 2010097174A
Authority
JP
Japan
Prior art keywords
mesa
layer
waveguide
mask pattern
boundary position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009078549A
Other languages
English (en)
Other versions
JP5617178B2 (ja
Inventor
Masato Uetake
理人 植竹
Takayuki Yamamoto
剛之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009078549A priority Critical patent/JP5617178B2/ja
Publication of JP2010097174A publication Critical patent/JP2010097174A/ja
Application granted granted Critical
Publication of JP5617178B2 publication Critical patent/JP5617178B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】 埋込導波路の両側に、埋込層を選択成長させる際に、マスクで覆っているハイメサ導波路領域に向かって被り成長が生じる。
【解決手段】
基板上にメサを形成する。メサを長手方向に関して区分する第1の境界位置を基準として、一方の第1の向きに向かって延びるメサの上面と側面を覆うとともに、第1の境界位置からメサの側方に延びる境界線を一部の縁とし、境界線上の縁よりも第1の向きに広がる領域の基板の上面の少なくとも一部を覆う選択成長用マスクパターンを形成する。選択成長用マスクパターンをマスクとして用い、第1の境界位置を基準として第1の向きとは反対の第2の向きに向かって延びるメサの側面から側方に向かって成長し、成長の前面が斜面になる条件で埋込層を選択成長させる。埋込層の成長の先端が、境界線に沿う選択成長用マスクパターンの縁の先端まで達しない時点で埋込層の成長を停止させる。
【選択図】図10

Description

本発明は、光学的に相互に結合した半導体埋込導波路と、メサの周辺が空気または低屈折の媒体で満たされている所謂ハイメサ導波路とを含む光導波路の製造方法、及び光導波路に関する。
近年の通信トラフィックの飛躍的な増大に伴い、半導体レーザ、光増幅器、光変調器等を1枚の基板上に集積した多機能光集積素子の開発が活発化している。多機能光集積素子を実現することにより、小型化、低コスト化を図ることが可能になる。
一般に、半導体レーザ等の電流注入素子では、高い電流密度での駆動に適した埋込導波路構造が採用される。埋込導波路構造は、コア層(活性層)を含むメサと、その両脇に配置した半導体からなる埋込層とを含む。埋込導波路構造は、材料に内在する応力が小さいため、長期信頼性に優れている。
これに対し、光変調器、光合波器、曲がり導波路等には、ハイメサ導波路構造が適している。ハイメサ導波路構造では、メサの周辺が空気または低屈折率の媒体等で満たされている。ハイメサ導波路構造を採用すると、強い光閉じ込め効果を得ることができる。
埋込導波路のコアのパターニング、コアの両側への埋込層の形成、及びハイメサ導波路のコアのパターニングをこの工程順に行うことにより、埋込導波路とハイメサ導波路とを同一基板上に形成することができる(特許文献1)。
一般に、埋込導波路及びハイメサ導波路のコア幅は、1〜2μm程度と細い。両者のコアに、コアの幅方向の位置ずれや、回転方向の位置ずれが生じると、光結合効率が低下してしまう。光結合効率の低下を抑制するために、埋込導波路のコアとハイメサ導波路のコアとを異なるパターニング工程で形成する場合には、パターニング時に高い位置合わせ精度が要求される。
埋込導波路の積層構造とハイメサ導波路の積層構造とを形成した後、同一パターニング工程で両者のコアを同時に形成することにより、埋込導波路とハイメサ導波路とを同一基板上に形成することができる(特許文献2)。埋込導波路のコアと、ハイメサ導波路のコアとを、同一のパターニング工程で形成する場合には、両者の位置ずれは生じない。以下、埋込導波路とハイメサ導波路とを形成する方法について説明する。
基板の埋込導波路領域に、埋込導波路の積層構造を形成し、ハイメサ導波路領域に、ハイメサ導波路の積層構造を形成する。この積層構造を、同一のパターニング工程でパターニングすることにより、埋込導波路用のメサとハイメサ導波路用のメサとを形成する。メサの上面には、エッチング時に用いたマスクパターンが残っている。ハイメサ導波路領域のメサ及び基板の表面をマスクパターンで覆い、埋込導波路領域のメサの両側に、pn接合を有する電流ブロック層(埋込層)を選択成長させる。メサ上部のマスクパターン、及びハイメサ導波路領域のマスクパターンを除去した後、ハイメサ導波路領域のメサの両側にポリイミド等の樹脂を充填する。この方法は、メサの高さが1.5μm程度までの比較的低い場合に適用可能である。
特開2002−232069号公報 特開平8−162706号公報
光素子を高速動作させるために、寄生容量を低減させることが望まれる。pn接合を有する電流ブロック層に代えて、半絶縁性の電流ブロック層を用いることにより寄生容量を低減させることができる。この構造は、導波路メサ内に、比較的厚いクラッド層とコンタクト層とを含むため、メサが、例えば3μm程度まで高くなる。メサが高くなると、埋込導波路のメサの両側に埋め込む埋込層を厚くしなければならない。
埋込層が厚くなると、選択成長時にハイメサ導波路領域を覆っていたマスクの上に、埋込導波路領域からの被り成長が大きくなる。具体的には、埋込導波路領域とハイメサ導波路領域との境界近傍のマスクの上まで埋込層が侵入し、突起形状の部分や庇形状の部分が形成される。突起形状や庇形状の部分は、後工程の電極形成プロセス等において、断線や短絡の原因になる。
埋込層の成長時に、原料ガスに塩素系ガスを添加することにより、埋込層の表面の平坦度を高めることができる(特開2005−223300号公報)。通常、埋込導波路領域とハイメサ導波路領域との境界線は、[0−11]方向に延在している。塩素系ガスを添加すると、(100)面や(111)A面上の結晶成長速度が著しく遅くなるため、平坦度の高い良好な埋込層を形成することができる。ところが、3μm程度のメサの両側に、埋込層を成長させる工程で、塩素系ガスを添加しても、埋込導波路領域とハイメサ導波路領域との境界近傍のマスクの上に生じる被り成長を抑制することは困難であった。
本発明の一観点によれば、
下部クラッド層、コア層、及び上部クラッド層がこの順番に積層され、基板面内において延在するメサを、基板上に形成する工程と、
前記メサを、長手方向に関して区分する第1の境界位置を基準として、一方の第1の向きに向かって延びる前記メサの上面と側面を覆うとともに、前記第1の境界位置から該メサの側方に延びる境界線を一部の縁とし、該境界線上の縁よりも前記第1の向きに広がる領域の前記基板の上面の少なくとも一部を覆う選択成長用マスクパターンを形成する工程と、
前記選択成長用マスクパターンをマスクとして用い、前記第1の境界位置を基準として前記第1の向きとは反対側の第2の向きに向かって延びる前記メサの側面から側方に向かって成長し、成長の前面が斜面になる条件で埋込層を選択成長させる工程と
を有し、
前記埋込層の成長の先端が、前記境界線に沿う前記選択成長用マスクパターンの縁の先端まで達しない時点で前記埋込層の成長を停止させる光導波路の製造方法が提供される。
本発明の一観点によれば、
基板の上に、該基板面内の第1の方向に平行に配置され、下部クラッド層、コア層、及び上部クラッド層がこの順番に積層されたメサと、
前記メサの長手方向に関して、第1の境界位置を基準として第1の向きとは反対の第2の向きに向かって延びる前記メサの両側に配置され、平坦面と、該平坦面に連続し、前記メサから遠ざかるに従って低くなるように傾斜した斜面とを含む埋込層と
を有し、前記第1の境界位置よりも前記第1の向きに向かって延びる前記メサの両側には、前記埋込層よりも屈折率の小さな媒体が配置される光導波路が提供される。
埋込層の成長の先端が、境界線上の縁の先端まで達しない時点で埋込層の成長を停止させると、境界線上の縁から、選択成長用マスクパターンの上に生じる被り成長を抑制することができる。
実施例1による光導波路の製造方法の製造途中段階における斜視図である。 実施例1による光導波路の製造方法の製造途中段階における斜視図である。 実施例1による光導波路の製造方法の製造途中段階における斜視図である。 実施例1による光導波路の製造方法の製造途中段階における斜視図である。 実施例1による光導波路の製造方法の製造途中段階における斜視図である。 実施例1による光導波路の製造方法の製造途中段階における斜視図である。 実施例1による光導波路の製造方法の製造途中段階における斜視図である。 実施例1による光導波路の製造方法の製造途中段階における斜視図である。 実施例1による光導波路の製造方法の製造途中段階における斜視図である。 実施例1による光導波路の製造方法の製造途中段階における斜視図である。 実施例1による光導波路の製造方法を適用したときの、埋込層の成長の様子を示す線図である。 実施例1による光導波路の製造方法の製造途中段階における斜視図である。 実施例1による光導波路の製造方法の製造途中段階における斜視図である。 実施例1による光導波路の斜視図である。 (15A)及び(15B)は、それぞれ実施例1による光導波路の製造方法の製造途中段階における断面図及び平面図である。 (16A)及び(16B)は、それぞれ比較例による光導波路の製造方法の製造途中段階における斜視図及び断面図である。 (17A)及び(17B)は、それぞれ実施例2による光導波路の製造方法の製造途中段階における平面図及び断面図である。 選択成長用マスクパターンの第2の部分の幅W2と、段差の高さHとの関係を示すグラフである。 (19A)〜(19C)は、実施例2の変形例による光導波路の製造方法で用いられる選択成長用マスクパターンの平面図である。 (20A)は、実施例3による光導波路の製造方法で用いられる選択成長用マスクパターンの平面図であり、(20B)は、埋込層を成長させた後の斜視図である。 (21A)及び(21B)は、実施例3の変形例1による光導波路の製造方法で用いられる選択成長用マスクパターンの平面図である。 (22A)は、実施例3の変形例2による光導波路の製造方法で用いられる選択成長用マスクパターンの平面図であり、(22B)は、埋込層を成長させた後の斜視図である。 (23A)及び(23B)は、実施例4による光導波路の製造方法の製造途中段階における平面図である。 実施例4による光導波路の製造方法を適用したときの、埋込層の成長の様子を示す線図である。 実施例5による光導波路の製造途中段階における斜視図である。 実施例5による光導波路の斜視図である。 実施例5による光導波路を光変調器に適用した場合の保護膜の厚さと、光変調器の3dB帯域との関係を示すグラフである。 実施例6による光導波路の平面図及び断面図である。
図1〜図16を参照して実施例1について説明し、図17A〜図19Cを参照して実施例2について説明し、図20A〜図22Bを参照して実施例3について説明し、図23A〜図24を参照して実施例4について説明し、図25及び図26を参照して実施例5について説明し、図28を参照して実施例6について説明する。
図1〜図14を参照して、実施例1による光導波路の製造方法について説明する。
図1に示すように、基板20の上に、回折格子層21を形成する。基板20には、(100)面を主面とするn型InPが用いられる。基板20の主面に、境界線を介して相互に隣接するハイメサ導波路領域20Aと埋込導波路領域20Bとが画定されている。埋込導波路領域20B内の回折格子層21に、導波方向に周期性を持つ回折格子21Aが形成されている。回折格子21Aは、例えば厚さ0.05μmのn型InGaAsP層を形成したのち、パターニングすることにより形成される。ハイメサ導波路領域20Aには、このInGaAsP層は残らない。回折格子21Aを、厚さ0.05μmのn型InP層で埋め込むことにより、回折格子層21が形成される。ハイメサ導波路領域20Aの回折格子層21は、このn型InP層のみで構成される。
回折格子層21の上に、連続してn型InPからなる厚さ約0.10μmの下部クラッド層22を形成する。下部クラッド層22の上に、i型InGaAsPからなる厚さ約0.3μmの量子井戸活性層(コア層)23を形成する。コア層23は、厚さ10nmのバリア層と厚さ5nmの井戸層とが交互に積層された積層構造を有する。コア層23の上に、p型InPからなる厚さ0.15μmの上部クラッド層24を形成する。
回折格子層21から上部クラッド層24までの各層は、例えば有機金属化学気相成長(MO−CVD)法により形成される。
埋込導波路領域20B内の上部クラッド層24の一部を、酸化シリコン等からなるマスクパターン25で覆う。マスクパターン25は、埋込導波路のコアを配置すべき領域を含む平面形状を有する。
図2に示すように、マスクパターン25をエッチングマスクとして、上部クラッド層24及びコア層23をエッチングする。このエッチングには、例えば反応性イオンエッチング(RIE)が適用される。
図3に示すように、マスクパターン25を選択成長用のマスクとして用いて、下部クラッド層22の露出した領域上に、i型InGaAsPからなる厚さ0.3μmの量子井戸活性層(コア層)30を形成する。さらに、コア層30の上に、p型InPからなる厚さ0.15μmの上部クラッド層31を形成する。マスクパターン25の下には、図2に示したコア層23が残っている。埋込導波路領域20Bのコア層23と、ハイメサ導波路領域20Aのコア層30とが、相互にバットカップリングする。埋込導波路領域20Bのコア層23は、発光波長が1.55μmになるように構成されており、ハイメサ導波路領域20Bのコア層30は、吸収端波長が1.49μmになるように構成されている。上部クラッド層31を形成した後、マスクパターン25を除去する。
図4に示すように、上部クラッド層31及び埋込導波路領域20Bの上部クラッド層24(図2参照)の上に、さらにp型InPからなる厚さ1.5μmの上部クラッド層35を形成する。上部クラッド層35の上に、p型InGaAsからなる厚さ0.3μmのコンタクト層36を形成する。
コンタクト層36の上に、酸化シリコンからなるメサ用マスクパターン41を形成する。メサ用マスクパターン41は、例えば幅2μmの帯状の平面形状を有し、ハイメサ導波路領域20A内から埋込導波路領域20B内まで至る。メサ用マスクパターン41の長手方向は、基板20の[011]方向に平行である。
図5に示すように、メサ用マスクパターン41をエッチングマスクとして、コンタクト層36から基板20の表層部までエッチングする。メサ用マスクパターン41の下に、メサ40が形成される。メサ40の高さは、例えば3μmとする。ハイメサ導波路領域20Aと埋込導波路領域20Bとの境界線と、メサ40との交差箇所を「境界位置」と呼ぶこととする。メサ40は、この境界位置38によりハイメサ導波路部40Aと埋込導波路部40Bとに区分される。埋込導波路部40Bには、回折格子21Aが配置される。ハイメサ導波路部40Aにはコア層30が配置され、埋込導波路部40Bには、コア層30とは組成比の異なるコア層23が配置される。なお、ハイメサ導波路部40Aの上部クラッド層31と、埋込導波路部40Bの上部クラッド層24とは、共にp型InPで形成され、厚さ及び高さが等しいため、図5においては、両者の境界を示していない。
図6に示すように、メサ用マスクパターン41の上面、メサ40の側面、及び基板20の上面を覆うように、窒化シリコンからなるマスク膜42を形成する。メサ用マスクパターン41とマスク膜42とを、エッチング耐性が相互に異なる材料で形成しているため、一方を他方に対して選択的にエッチングすることができる。マスク膜42の厚さは、例えば0.2μmとする。
図7に示すように、ハイメサ導波路領域20A内のマスク膜42の一部の領域上にレジストパターン47を形成する。レジストパターン47は、ハイメサ導波路領域20A内のメサ40の上面と側面、及びメサ40の両側の平坦面を覆う。メサ40の長手方向に直交する方向のレジストパターン47の幅Wtは、例えば100μmとする。
図8に示すように、レジストパターン47をエッチングマスクとして、マスク膜42をエッチングすることにより、選択成長用マスクパターン42aを形成する。埋込導波路部40Bの上には、メサ用マスクパターン41が残っている。マスク膜42のエッチング後、レジストパターン47を除去する。
図9に示すように、ハイメサ導波路領域20Aに、選択成長用マスクパターン42aが残る。選択成長用マスクパターン42aは、境界位置38からメサ40の両側に延びる境界線に沿った縁(以下、「境界線上の縁」という)43を有する。境界線上の縁43は、メサ40の長手方向と直交する。すなわち、境界線上の縁43は、基板20の[0−11]方向に平行である。ここで、「−1」は、1のオーババーを表す。メサ40の長手方向に直交する方向に関する選択成長用マスクパターン42aの幅Wtは100μmである。
図10に示すように、選択成長用マスクパターン42aをマスクとして用い、基板20の上に、半絶縁性のInPからなる埋込層50を選択成長させる。半絶縁性InPには、Fe等の深い不純物準位を形成する元素がドープされている。埋込層50の成長は、例えば原料ガスに塩素系ガスを添加したMOCVDで行うことができる。成長条件は、例えば下記の通りである。
・In原料:トリメチルインジウム(流量0.35sccm)
・P原料:PH(流量100sccm)
・Fe原料:フェロセン(5.0×10−4sccm)
・塩素系ガス:1,2−ジクロロエタン(流量6sccm)・成長温度:590℃
・成長圧力:2.0×10Pa
なお、深い不純物準位を形成するための元素として、Feに代えて、Ru、Ti等をドープしてもよい。また、塩素系原料として、塩化メチル、ジクロロエチレン、塩化エチル、ジクロロプロパン等を用いてもよい。
上記条件で選択成長を行うと、(411)B面の成長速度が著しく速くなり、(100)面及び(111)A面の成長速度が著しく低下する。このため、(100)面である基板20の上面には、ほとんど結晶が成長しない。また、被り成長の原因になる(111)A面の成長が遅いため、被り成長が生じにくい。
選択成長を行う前に、メサ用マスクパターン41及び選択成長用マスクパターン42aで覆われていない領域の表層部、特に、埋込導波路領域20B内のメサ40の側面の表層部をウェットエッチングしてもよい。エッチング溶液として、例えば塩酸系の溶液、具体的には塩酸と酢酸と過酸化水素水との混合溶液を用いることができる。エッチングの深さは、例えば0.1μm程度とする。このウェットエッチングにより、ドライエッチング工程で形成された表層部のダメージ層、及びその後に形成された自然酸化膜を除去することができる。
図11に、埋込層50の成長の様子を示す。メサ40の側面の下端から成長が始まり、メサ40から遠ざかる向き、及び上方に向かって結晶成長が進む。このとき、成長の前面には(4−11)B面及び(41−1)B面が現れる。成長した結晶の上端が、メサ40とメサ用マスクパターン41との境界に達すると、上方への結晶成長はほとんど生じなくなる。このため、埋込層50は、図10に示したように、(100)面が現れた平坦面50Aと、(4−11)B面または(41−1)B面が現れた斜面50Bを有する形状になる。(100)面が現れている基板20の上面にも、ほとんど結晶が成長しない。
埋込層50の成長の先端(基板20の上面と斜面50Bとの交線)50Fが、境界線上の縁43の先端(メサ40から最も遠い点)43Fまで達しない時点で成長を停止させる。埋込層50を形成した後、選択成長用マスクパターン42aを除去する。選択成長用マスクパターン42aのエッチングには、例えばフッ化水素酸とフッ化アンモニウムとの混合液を用いることができる。
図12に示すように、ハイメサ導波路領域20Aに、基板20の上面及びメサ40の側面が露出する。メサ40の上面には、メサ用マスクパターン41が残っている。
図13に示すように、ハイメサ導波路領域20Aのメサ40の両側、及び埋込導波路領域20Bのうち埋込層50で埋め込まれていない領域に、低屈折率材料51を埋め込む。低屈折率材料51には、埋込層50よりも屈折率の低い材料、例えばベンゾシクロブテン(BCB)等が用いられる。BCBは、例えばスピン塗布法により形成することができる。低屈折率材料51に、酸化シリコン、窒化シリコン等を用いてもよい。酸化シリコン及び窒化シリコン等からなる低屈折率材料51は、例えば減圧化学気相成長(LP−CVD)法により形成することができる。低屈折率材料51を形成した後、メサ用マスクパターン41を除去する。
低屈折材料51を埋め込む前に、メサ用マスクパターン41で覆われていない領域の表層部、特に、ハイメサ導波路領域20A内のメサ40の側面の表層部をウェットエッチングしてもよい。エッチング溶液として、例えば塩酸系の溶液、具体的には塩酸と酢酸と過酸化水素水との混合溶液を用いることができる。エッチングの深さは、例えば0.1μm程度とする。このウェットエッチングにより、ドライエッチング工程で形成された表層部のダメージ層、及びその後に形成された自然酸化膜を除去することができる。
図14に示すように、埋込導波路領域20Bのメサ40の上に、上部電極53を形成し、基板20の背面に、下部電極54を形成する。ハイメサ導波路領域20Aのメサ40の上に、上部電極55を形成する。上部電極53、55は、Au/Zn/Auの3層構造を有し、下部電極54は、AuGe/Auの2層構造を有する。
埋込導波路領域20B内のメサ40は、分布帰還型レーザ(DFBレーザ)として機能し、ハイメサ導波路領域20A内のメサ40は、光変調器として機能する。
図15A及び図15Bに、それぞれ埋込層50を形成した時点の断面図及び平面図を示す。メサ40の両側に埋込層50が形成されている。埋込層50は、平坦面50A及び斜面50Bを含む。メサ40の長手方向に直交する方向(幅方向)に関する平坦面50A及び斜面50Bの幅を、それぞれWa及びWbとする。メサ40の側面から、境界線上の縁43の先端43Fまでの幅をW1とする。埋込層50の先端50Fが、境界線上の縁43の先端43Fまで達していないため、不等式Wa+Wb<W1が成立する。
この条件では、埋込層50が、選択成長用マスクパターン42aの上に被り成長することはほとんどなかった。
図16Aに、埋込層50の先端50Fが、境界線上の縁43の先端43Fを越えて成長したときの斜視図を示す。図16Bに、図16Aの一点鎖線16B−16Bにおける断面図を示す。
埋込層50の先端50Fが、選択成長用マスクパターン42aの先端43Fを越えると、選択成長用マスクパターン42aのメサ40に平行な縁44に沿って、ハイメサ導波路領域20A内に向かう成長が生じる。これにより、マスク外側成長部50Cが形成される。マスク外側成長部50Cが形成されると、選択成長用マスクパターン42aの境界線上の縁43と、メサ40に平行な縁44とが交わる頂点から、選択成長用マスクパターン42a内に向かう被り成長が生じる。これにより、被り成長部50Dが形成されてしまう。
被り成長を生じさせないために、埋込層50の先端50Fが、選択成長用マスクパターン42aの縁43の先端43Fに到達する前に、埋込層50の成長を停止させることにより、被り成長を抑制することができる。
上記実施例1では、コア層23、30にInGaAsPを用いたが、その他に、AlGaInAs、AlGaInP、InGaAs、InGaAsSb、GaInNAs等のIII−V族化合物半導体材料を用いてもよい。また、基板材料として、InP以外のIII−V族化合物半導体を用いてもよい。
実施例1では、埋込導波路部40Bを半導体レーザとし、ハイメサ導波路部40Aを光変調器としたが、他の光素子としてもよい。
図17Aに実施例2による光導波路の製造方法で用いられる選択成長用マスクパターン45及び成長した埋込層50の平面図を示す。実施例1では、図9及び図15Bに示したように、選択成長用マスクパターン42aの平面形状は、長方形であった。実施例2では、選択成長用マスクパターン45が、第1の部分45Aと第2の部分45Bとを含む。
第1の部分45Aは、境界位置38から、メサ40の長手方向に直交する方向に延びる帯状の平面形状を有し、境界線上の縁43を画定する。第2の部分45Bは、ハイメサ導波路領域20Aのメサ40の上面、側面、及びこの側面に連続する基板20の上面を覆う。メサ40の長手方向に直交する方向に関して、第2の部分45Bの寸法が第1の部分45Aの寸法よりも小さい。メサ40の側面から第1の部分45Aの先端までの距離(幅)をW1とし、メサ40の側面から第2の部分45Bの外側の縁までの距離(幅)をW2とすると、W1>W2である。一例として、幅W1を300μmとし、幅W2を10μmとする。
埋込層50の先端50Fは、第1の部分45Aの先端まで達していないが、第2の部分45Bの外側の縁よりも先まで延びている。すなわち、W2<Wa+Wb<W1である。埋込層50の先端50Fが、第1の部分45Aの先端まで達していないため、実施例1の場合と同様に、被り成長が抑制されている。
図17Bに、メサ40の長手方向に直交する断面図を示す。選択成長時に、埋込層50の上面がメサ40の上面まで達すると、上方への成長速度が著しく低下して、主として横方向にのみ成長するが、成長量が多くなると、埋込層50の上面が、メサ40の上面よりも高くなり、メサ40と埋込層50との境界に段差50Cが形成される。
図18に、第2の部分45Bの幅W2と、段差の高さHとの関係を示す。横軸は、第2の部分45Bの幅W2を単位「μm」で表し、縦軸は段差50Cの高さを単位「μm」で表す。なお、第1の部分45Aの先端は、製造に用いた基板の縁まで達している。また、メサ40の長手方向に関する第1の部分45Aの寸法Lは、5μmとした。横方向への成長の長さ、すなわちWa+Wbは20μmとした。
第2の部分45Bの幅W2を細くすると、段差50Cが低くなることがわかる。これは、第2の部分45Bを小さくしたことによって、選択成長時において、埋込層50の上面への気相拡散による原料供給が抑制されるためと考えられる。第1の部分45Aの、メサ40の長手方向の寸法Lを大きくすると、相対的に狭い幅の第2の部分45Bを設けた効果が現れなくなる。気相拡散による原料供給抑制の顕著な効果を得るために、第1の部分45Aの寸法Lを、気相拡散長に比べて短くすることが好ましい。具体的には、この寸法Lを100μm以下にすることが好ましい。
第2の部分45Bの幅W2が、埋込層50の幅Wa+Wbよりも広くなると、第2の部分45Bを小さくした効果が得られない。このため、第2の部分45Bの幅W2は、埋込層50の幅Wa+Wbよりも狭くすることが好ましい。第2の部分45Bは、メサ40の側面を覆っていればよい。すなわち、幅W2は、選択成長用マスクパターン42aの厚さ分あればよい。
図19A〜図19Cに、実施例2の変形例による選択成長用マスクパターンの平面図を示す。
図19Aに示す変形例では、選択成長用マスクパターン60は、長方形の外周線に沿った枠状の平面形状を有する。枠の1つの縁60Aは、ハイメサ導波路領域20Aと埋込導波路領域20Bとの境界線に沿い、もう一つの縁60Bは、メサ40の側面に沿う。縁60A及び60Bが、それぞれ実施例2の第1の部分45A及び第2の部分45Bに対応する。他の2つの縁は、埋込層50の選択成長にほとんど影響を与えない。
図19Bに示す変形例では、選択成長用マスクパターン61が、第1の部分61A、第2の部分61B、及び第3の部分61Cを含む。第1の部分61A及び第2の部分61Bの平面形状は、それぞれ実施例2の第1の部分45A及び第2の部分45Bの平面形状と等しい。第3の部分61Cは、埋込導波路領域20Bから最も遠い位置において、第2の部分61Bに連続する。第3の部分61Cの幅は、第2の部分61Bの幅よりも広い。第3の部分61Cは、埋込導波路領域20Bから離れているため、埋込層50の選択成長にほとんど影響を与えない。
図19Cに示す変形例では、選択成長用マスクパターン62が、第1の部分62Aと第2の部分62Bとを含む。第1の部分62A及び第2の部分62Bは、それぞれ実施例2の第1の部分45A及び第2の部分45Bに対応する。実施例2では、第1の部分45Aの平面形状が細長い長方形であったが、この変形例の第1の部分62Aは、メサ40から遠ざかるに従って、メサ40の長手方向の寸法が小さくなっている。ただし、第1の部分62Aの、埋込導波路領域20B側の縁は、ハイメサ導波路領域20Aと埋込導波路領域2Bとの境界線に一致する。このように、メサ40の長手方向に関する第1の部分62Aの寸法が変動していても、実施例2と同じ効果が得られる。
図20Aに、実施例3による光導波路の製造方法で用いられる選択成長用マスクパターン65の平面図を示す。実施例1では、図15Bに示したように、選択成長用マスクパターン42aの境界線上の縁43が、メサ40の長手方向と直交していた。実施例3では、境界線上の縁43が、メサ40の長手方向に直交する方向から角度θだけ傾いて、メサ40と交差している。この交差箇所が、ハイメサ導波路部40Aと埋込導波路部40Bとの境界位置38となる。
角度θを30°にして埋込層50を選択成長させ、埋込層50の先端50Fが選択成長用マスクパターン65の縁43の先端43Fに到達する前に成長を停止させたところ、図20Bに示すように、被り成長は生じなかった。このように、選択成長用マスクパターン65の境界線上の縁43を、メサ40の長手方向と直交させる必要はない。境界線上の縁43と、メサ40の長手方向に直交する方向とのなす角度が30°以下であれば、被り成長の発生を抑制することができる。
図21Aに、実施例3の変形例1による光導波路の製造方法で用いられる選択成長用マスクパターン65の平面図を示す。実施例3では、図20Aに示したように、選択成長用マスクパターン65の境界線上の縁43が1本の直線状であった。図21で示した変形例1では、境界位置38から一方の側に延びる境界線上の縁43Aと、他方の側に延びる境界線上の縁43Bとが、両方ともハイメサ導波路部40A側に傾いている。逆に、一方の縁43Aと他方の縁43Bとが、共に埋込導波路部40B側に傾いてもよい。
また、図21Bに示すように、傾いた境界線上の縁43A及び43Bを画定する第1の部分66Aと、第1の部分66Aよりも側方への張り出し量が少ない第2の部分66Bとで、選択成長用マスクパターン66を構成してもよい。
図21A及び図21Bに示した変形例1においても、実施例3と同様に、被り成長の発生を抑制することができる。
図22Aに、実施例3の変形例2による光導波路の製造方法で用いられる選択成長用マスクパターン65の平面図を示す。実施例1では、図15Bに示したように、メサ40の長手方向が[011]方向と平行であった。実施例3の変形例2では、メサ40の長手方向が[011]方向に対して傾いている。メサ40の長手方向と[011]方向とのなす角度をθとする。選択成長用マスクパターン65の境界線上の縁43は、[011]方向に対して直交する。
図22Bに、傾斜角度θを30°にして埋込層50を選択成長させた後の斜視図を示す。埋込層50の先端50Fが選択成長用マスクパターン65の縁43の先端43Fに到達する前に成長を停止させたところ、被り成長は生じなかった。このように、メサ40の長手方向を[011]方向と平行にする必要はない。メサ40の長手方向と[011]方向とのなす角度が30°以下であれば、被り成長の発生を抑制することができる。
図23A及び図23Bに、実施例4による光導波路の製造方法の途中段階における基板の平面図を示す。図23Aは、実施例1において図9に示した選択成長用マスクパターン42aを形成した段階の平面図に対応し、図23Bは、図10に示した埋込層50を形成した段階の平面図に対応する。
実施例4においては、メサ40の埋込導波路部40Bの側方に、複数の側方メサ48が形成されている。側方メサ48は、実施例1の図5に示したメサ用マスクパターン41に、側方メサ48に対応する領域を覆うパターンを追加しておくことにより形成することができる。側方メサ48は、境界線上の縁43の脇に設けられており、境界線上の縁43に平行な方向に離散的に配列している。
図24に、埋込層50の成長の様子を示す。側方メサ48とメサ40との間、及び側方メサ48同士の間において、両側のメサの側面の下端から内側に向かって結晶成長が始まる。両側から成長した結晶同士が衝突すると、成長前面の斜面の形状を維持したまま、上方に向かって成長が進む。メサ40及び側方メサ48の上面まで達すると、斜面が消滅して、平坦な上面になる。
側方メサ48が配置されていない領域の埋込導波路部40Bの側面、及び最も外側の側方メサ48の外側の側面から、外側に向かって、実施例1の場合と同様の横方向の成長が生ずる。
図23Bに示すように、メサ40と側方メサ48との間の空間、及び側方メサ48同士の間の空間が、埋込層50で充填される。さらに、側方メサ48が配置されていない領域のメサ40の両側、及び最も外側の側方メサ48よりも外側の領域に、埋込層50が形成される。最も外側の側方メサ48から外側に向かって成長した埋込層50の先端50Fが、境界線上の縁43の先端43Fに到達する前に、選択成長が停止されている。
選択成長用マスクパターン42a上から、気相拡散によって埋込導波路領域20B内に拡散した原料が、メサの間の空間を充填するために消費される。このため、選択成長用マスクパターン42aの縁43の近傍における過度の成長を抑制することができる。これにより、図17Bに示した段差50Cの発生を抑制することができる。
図25及び図26を参照して、実施例5による光導波路の製造方法について説明する。
実施例1の図12に示した構造に至るまでの工程は、実施例5と実施例1とで共通である。図12に示したように、ハイメサ導波路領域20Aに、基板20の上面及びメサ40の側面が露出する。メサ40の上面には、メサ用マスクパターン41が残っている。
図25に示すように、メサ用マスクパターン41を選択成長用のマスクとして、露出している半導体表面の上、特にメサ40の側面の上に、保護膜70を形成する。保護膜70には、InPの表面やメサ40の側面を下地としてエピタキシャル成長する半導体材料、好ましくはFeドープの半絶縁性InPが用いられる。なお、p型InPを用いてもよい。リーク電流増加防止の観点から、保護膜70には、半絶縁性の半導体を用いることが好ましい。保護膜70の厚さは、例えば0.1μmとする。
なお、保護膜70を形成する前に、メサ40の側面の表層部を塩酸系のエッチング液を用いてエッチングしておくことが好ましい。
保護膜70を形成した後の工程は、実施例1の図13に示した低屈折率材料51の形成以降の工程と共通である。
図26に示すように、低屈折率材料51、上部電極53、55、及び下部電極54が形成される。ハイメサ導波路領域20A内のメサ40の側面と低屈折率材料51との間に、保護膜70が配置されている。ハイメサ導波路のコア層30の側面が、半導体の保護膜70で覆われており、有機物や無機誘電体で形成される低屈折率材料51に直接接触しない。このため、低屈折率材料51の収縮または変形に起因するコア層30の側面からの低屈折率材料51の剥離、コア層30と低屈折率材料51との熱膨張係数の相違に起因するコア層30での歪の発生等による光導波路の信頼性低下を防止することができる。また、低屈折率材料51を形成することなく、ハイメサ導波路領域20A内の導波路の側面が大気で満たされる場合には、コア層30の側面の酸化に起因する光素子の信頼性低下を防止することができる。
図27に、ハイメサ導波路構造を有する光変調器の光小信号応答の3dB帯域と、メサ40の側面を覆う保護膜70の厚さとの関係を示す。横軸は、保護膜70の厚さを単位「μm」で表し、縦軸は、光変調器の光小信号応答の3dB帯域を単位「GHz」で表す。測定に用いた光変調器は、図26に示した光導波路のハイメサ導波路領域20Aの部分のみを別途作製したものである。なお、光変調器のコア層幅を1.4μm、素子長を1200μmとし、保護膜70には、FeドープのInPを用い、低屈折率材料51には、BCBを用いた。
保護膜70を厚くすると、3dB帯域が狭くなることがわかる。保護膜70に半絶縁性半導体を用いると、低屈折率材料を用いた場合よりも寄生容量が大きくなる。このため、保護膜70に起因する寄生容量で光変調器の高速応答が阻害される。これにより、保護膜70が厚くなるに従って、3dB帯域が狭くなる。
保護膜70の厚さが3μmより厚くなると、光小信号応答の3dB帯域の狭帯域化が飽和する。これは、ハイメサ導波路領域20A内の導波路が、実質的に埋込導波路と同じ構造になってしまうことを意味する。従って、保護膜70の厚さを3μ、より厚くすると、ハイメサ導波路構造を採用した意味がなくなってしまう。ハイメサ導波路構造の優位性を維持するために、保護膜70の厚さを3μmよりも薄くすることが好ましく、1μm以下にすることがより好ましい。
保護膜70の厚さの下限値は、メサ40の側面の全域を再現性よく被覆できる厚さであることが好ましい。
図28Aに、実施例6による光導波路の平面図を示す。図28B及び図28Cに、それぞれ図28Aの一点鎖線28B−28B及び一点鎖線28C−28Cにおける断面図を示す。
実施例1では、図5に示すように、回折格子21A及び多重量子井戸構造を有するコア層23を含む導波路と、回折格子を含まず、単層量子井戸構造を有するコア層30を含む導波路との境界が、ハイメサ導波路領域20Aと埋込導波路領域20Bとの境界位置38と一致していた。すなわち、コア層23を含む導波路は、その全域において埋込導波路構造を有し、もう一方のコア層30を含む導波路は、その全域においてハイメサ導波路構造を有している。
実施例6においては、コア層23を含む導波路と他のコア層30を含む導波路との境界位置81(図28A及び図28B)が、ハイメサ導波路領域20Aと埋込導波路領域20Aとの境界位置80(図28A及び図28C)から、埋込導波路領域20B側にずれている。第1の境界位置80を境にして、ハイメサ導波路領域20Aが広がる方向を第1の向き84と定義し、その反対向きを第2の向き85と定義する。
第2の境界位置81を境にして、第1の向き84に向かって延びる導波路の積層構造と、その反対の第2の向き85に向かって延びる導波路の積層構造とは相互に異なる。実施例6においては、第1の向き84に向かって延びる導波路のコア層30が単層の量子井戸構造を有し、第2の向き85に向かって延びる導波路のコア層23が多重量子井戸構造を有する。また、第2の向き85に向かって延びる導波路は、回折格子21Aを含むが、第1の向き84に向かって延びる導波路は回折格子を含まない。
ハイメサ導波路領域20A内の導波路は、屈曲部82において湾曲しているか、または折れ曲がっている。例えば、屈曲部82よりも第2の向き85に向かって延びる導波路は、半導体基板20の[011]方向に平行である。屈曲部82よりも第1の向き84に向かって延びる導波路は、[011]方向から[0−11]方向に10°傾斜している。
その他の構成は、実施例1による光導波路の構成と同一である。
第1の境界位置80は、図7に示したレジストパターン47の縁により画定される。第2の境界位置81は、図1に示した構造に至るまでの工程において、回折格子21Aを形成するためのマスクパターンの平面形状、及び図1に示したマスクパターン25の縁により画定される。屈曲部82の位置は、図4に示したメサ用マスクパターン41の平面形状により画定される。このように、第1の境界位置80、第2の境界位置81、及び屈曲部82の位置は、相互に独立して画定することができる。
実施例6では、図1に示したマスクパターン25の縁(第2の境界位置81)が、図7に示したレジストパターン47の縁(第1の境界位置80)よりも第2の向き85に向かってずれるように、マスクパターン25及びレジストパターン47の位置を設定しておけばよい。
相互に異なる積層構造を持つ2本の導波路が接続されている場合、両者の接続箇所で実効屈折率が不連続に変化する。このため、導波光の反射等によって結合損失が発生する。埋込導波路を伝搬する導波光は、ハイメサ導波路を伝搬する導波光に比べて、横方向の閉じ込めが弱い。このため、埋込導波路を伝搬する導波光は、実効屈折率の変化の影響を受けにくい。実施例6では、相互に積層構造が異なる導波路の接続箇所である第2の境界位置81が埋込導波路領域20B内に位置している。このため、導波光の損失を低減させることができる。
ハイメサ導波路は、埋込導波路よりも横方向の光閉じ込め効果が大きい。屈曲部82をハイメサ導波路領域20A内に配置することにより、屈曲に起因する導波損失を低減させることができる。また、導波損失が一定の条件であれば、屈曲部82の曲率半径を小さくすることができる。これにより光導波路を持つ素子の小型化を図ることが可能になる。
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
以上の実施例1〜6を含む実施形態に関し、更に以下の付記を開示する。
(付記1)
下部クラッド層、コア層、及び上部クラッド層がこの順番に積層され、基板面内において延在するメサを、基板上に形成する工程と、
前記メサを、長手方向に関して区分する第1の境界位置を基準として、一方の第1の向きに向かって延びる前記メサの上面と側面を覆うとともに、前記第1の境界位置から該メサの側方に延びる境界線を一部の縁とし、該境界線上の縁よりも前記第1の向きに広がる領域の前記基板の上面の少なくとも一部を覆う選択成長用マスクパターンを形成する工程と、
前記選択成長用マスクパターンをマスクとして用い、前記第1の境界位置を基準として前記第1の向きとは反対側の第2の向きに向かって延びる前記メサの側面から側方に向かって成長し、成長の前面が斜面になる条件で埋込層を選択成長させる工程と
を有し、
前記埋込層の成長の先端が、前記境界線に沿う前記選択成長用マスクパターンの縁の先端まで達しない時点で前記埋込層の成長を停止させる光導波路の製造方法。
(付記2)
前記基板が、III−V族化合物半導体の(100)面を主面とし、
前記境界線上の縁と、前記メサの長手方向に直交する方向とのなす角度が30°以下である付記1に記載の光導波路の製造方法。
(付記3)
前記基板が、III−V族化合物半導体の(100)面を主面とし、
前記メサの長手方向と、前記基板の[011]方向とのなす角度が30°以下である付記1または2に記載の光導波路の製造方法。
(付記4)
前記選択成長用マスクが、
前記境界線上の縁を画定する第1の部分と、
前記第1の部分に連続する第2の部分と
を含み、前記第2の部分は、前記第1の境界位置から前記第1の向きに向かって延びる前記メサの上面と側面、及び前記境界線から前記第1の向きに広がる領域の前記基板の上面を覆い、前記メサの長手方向に直交する方向に関して、前記第2の部分の寸法が、前記第1の部分の寸法よりも小さい付記1乃至3のいずれか1項に記載の光導波路の製造方法。
(付記5)
前記メサを形成する工程において、前記第1の境界位置から前記第2の向きに向かって延びる前記メサの側方に、該メサから間隔を隔てて少なくとも1つの側方メサを形成し、
前記埋込層を選択成長させる工程において、前記第1の境界位置から前記第2の向きに向かって延びる前記メサと前記側方メサとの間に、前記埋込層を充填すると共に、該側方メサの外側の側面から、前記埋込層を側方に向かって選択成長させる付記1乃至4のいずれか1項に記載の光導波路の製造方法。
(付記6)
基板の上に、該基板面内の第1の方向に平行に配置され、下部クラッド層、コア層、及び上部クラッド層がこの順番に積層されたメサと、
前記メサの長手方向に関して、第1の境界位置を基準として第1の向きとは反対の第2の向きに向かって延びる前記メサの両側に配置され、平坦面と、該平坦面に連続し、前記メサから遠ざかるに従って低くなるように傾斜した斜面とを含む埋込層と
を有し、前記第1の境界位置よりも前記第1の向きに向かって延びる前記メサの両側には、前記埋込層よりも屈折率の小さな媒体が配置される光導波路。
(付記7)
基板の上に、該基板面内の第1の方向に平行に配置され、下部クラッド層、コア層、及び上部クラッド層がこの順番に積層されたメサと、
前記メサの長手方向に関して、第1の境界位置を基準として第1の向きとは反対の第2の向きに向かって延びる前記メサの両側に配置され、平坦面と、該平坦面に連続し、前記メサから遠ざかるに従って低くなるように傾斜した斜面とを含む埋込層と
を有し、前記第1の境界位置よりも前記第1の向きに向かって延びる前記メサの両側には、前記埋込層よりも屈折率の小さな媒体が配置され、
さらに、前記第1の境界位置よりも前記第1の向きに向かって伸びる前記メサの側面を覆う半導体の保護膜を有することを特徴とする光導波路。
(付記8)
下部クラッド層、コア層、及び上部クラッド層がこの順番に積層され、基板面内において延在するメサを、基板上に形成する工程と、
前記メサを、長手方向に関して区分する第1の境界位置を基準として、一方の第1の向きに延びる前記メサの上面と側面を覆うとともに、前記第1の境界位置から該メサの側方に延びる境界線を一部の縁とし、該境界線よりも前記第1の向きに向かって広がる領域の前記基板の上面の少なくとも一部を覆う選択成長用マスクパターンを形成する工程と、
前記選択成長用マスクパターンをマスクとして用い、前記第1の境界位置を基準として前記第1の向きとは反対の第2の向きに向かって延びる前記メサの側面から側方に向かって成長し、成長の前面が斜面になる条件で埋込層を選択成長させる工程と、
前記選択成長用マスクパターンを除去する工程と、
前記選択成長用マスクパターンを除去した後、前記選択成長用マスクパターンで覆われていた領域の前記メサの側面を、半導体で形成された保護膜で覆う工程と
を有する光導波路の製造方法。
(付記9)
前記メサを形成する工程が、
前記基板の上に、下部クラッド層、コア層、及び上部クラッド層を含む第1の積層構造を形成する工程と、
前記メサの長手方向に関する第2の境界位置よりも前記第1の向きに広がる領域の前記第1の積層構造の少なくとも上層の一部分を除去する工程と、
前記基板の表面のうち、前記第1の積層構造の少なくとも上層が除去された領域の上に、前記第1の積層構造の前記上層の一部分とは異なる積層構造を持つ第2の積層構造を形成する工程と、
前記第1の積層構造と前記第2の積層構造とをパターニングすることにより、前記メサを形成する工程と
を含み、前記第2の境界位置が、前記第1の境界位置から前記第2の向きに向かってずれている付記8に記載の光導波路の製造方法。
(付記10)
基板上に、活性層を含む膜を形成する工程と、
前記活性層を含む膜を選択的に除去して、第1の導波路領域と第2の導波路領域とを含むメサを形成する工程と、
前記第2の導波路領域の側面に埋込層を配置する工程と、
前記第1の導波路領域の側面に前記埋込層よりも小さい厚さの半導体を含む保護膜を配置する工程と
を含むことを特徴とする光導波路の製造方法。
(付記11)
基板上に形成され、活性層を含み、第1の導波路領域と第2の導波路領域を含むメサと、
前記第2の導波路領域の側面に配置された埋込層と、
前記第1の導波路領域の側面に配置された、前記埋込層よりも小さい厚さの半導体を含む保護膜と
を含むことを特徴とする光導波路。
(付記12)
前記保護膜の厚さは、3μmより小さいことを特徴とする付記11に記載の光導波路。
20 基板
20A ハイメサ導波路領域
20B 埋込導波路領域
21 回折格子層
21A 回折格子
22 下部クラッド層
23 量子井戸活性層(コア層)
24 上部クラッド層
25 マスクパターン
30 量子井戸活性層(コア層)
31 上部クラッド層
35 上部クラッド層
36 コンタクト層
38 境界位置
40 メサ
40A ハイメサ導波路部(第1の導波路部)
40B 埋込導波路部(第2の導波路部)
41 メサ用マスクパターン
42 マスク膜
42a 選択成長用マスクパターン
43 縁
43F 先端
44 外側の縁
45 選択成長用マスクパターン
47 レジストパターン
48 側方メサ
50 埋込層
50A 平坦面
50B 斜面
50C マスク外側成長部
50D 被り成長部
50F 先端
51 低屈折率材料
53 上部電極
54 下部電極
55 上部電極
60、61、62、66 選択成長用マスクパターン
70 保護膜
80 第1の境界位置
81 第2の境界位置
82 屈曲部
84 第1の向き
85 第2の向き

Claims (8)

  1. 下部クラッド層、コア層、及び上部クラッド層がこの順番に積層され、基板面内において延在するメサを、基板上に形成する工程と、
    前記メサを、長手方向に関して区分する第1の境界位置を基準として、一方の第1の向きに向かって延びる前記メサの上面と側面を覆うとともに、前記第1の境界位置から該メサの側方に延びる境界線を一部の縁とし、該境界線上の縁よりも前記第1の向きに広がる領域の前記基板の上面の少なくとも一部を覆う選択成長用マスクパターンを形成する工程と、
    前記選択成長用マスクパターンをマスクとして用い、前記第1の境界位置を基準として前記第1の向きとは反対側の第2の向きに向かって延びる前記メサの側面から側方に向かって成長し、成長の前面が斜面になる条件で埋込層を選択成長させる工程と
    を有し、
    前記埋込層の成長の先端が、前記境界線に沿う前記選択成長用マスクパターンの縁の先端まで達しない時点で前記埋込層の成長を停止させる光導波路の製造方法。
  2. 前記選択成長用マスクが、
    前記境界線上の縁を画定する第1の部分と、
    前記第1の部分に連続する第2の部分と
    を含み、前記第2の部分は、前記第1の境界位置から前記第1の向きに向かって延びる前記メサの上面と側面、及び前記境界線から前記第1の向きに広がる領域の前記基板の上面を覆い、前記メサの長手方向に直交する方向に関して、前記第2の部分の寸法が、前記第1の部分の寸法よりも小さい請求項1に記載の光導波路の製造方法。
  3. 前記メサを形成する工程において、前記第1の境界位置から前記第2の向きに向かって延びる前記メサの側方に、該メサから間隔を隔てて少なくとも1つの側方メサを形成し、
    前記埋込層を選択成長させる工程において、前記第1の境界位置から前記第2の向きに向かって延びる前記メサと前記側方メサとの間に、前記埋込層を充填すると共に、該側方メサの外側の側面から、前記埋込層を側方に向かって選択成長させる請求項1または2に記載の光導波路の製造方法。
  4. 基板の上に、該基板面内の第1の方向に平行に配置され、下部クラッド層、コア層、及び上部クラッド層がこの順番に積層されたメサと、
    前記メサの長手方向に関して、第1の境界位置を基準として第1の向きとは反対の第2の向きに向かって延びる前記メサの両側に配置され、平坦面と、該平坦面に連続し、前記メサから遠ざかるに従って低くなるように傾斜した斜面とを含む埋込層と
    を有し、前記第1の境界位置よりも前記第1の向きに向かって延びる前記メサの両側には、前記埋込層よりも屈折率の小さな媒体が配置される光導波路。
  5. 基板の上に、該基板面内の第1の方向に平行に配置され、下部クラッド層、コア層、及び上部クラッド層がこの順番に積層されたメサと、
    前記メサの長手方向に関して、第1の境界位置を基準として第1の向きとは反対の第2の向きに向かって延びる前記メサの両側に配置され、平坦面と、該平坦面に連続し、前記メサから遠ざかるに従って低くなるように傾斜した斜面とを含む埋込層と
    を有し、前記第1の境界位置よりも前記第1の向きに向かって延びる前記メサの両側には、前記埋込層よりも屈折率の小さな媒体が配置され、
    さらに、前記第1の境界位置よりも前記第1の向きに向かって伸びる前記メサの側面を覆う半導体の保護膜を有することを特徴とする光導波路。
  6. 下部クラッド層、コア層、及び上部クラッド層がこの順番に積層され、基板面内において延在するメサを、基板上に形成する工程と、
    前記メサを、長手方向に関して区分する第1の境界位置を基準として、一方の第1の向きに延びる前記メサの上面と側面を覆うとともに、前記第1の境界位置から該メサの側方に延びる境界線を一部の縁とし、該境界線よりも前記第1の向きに向かって広がる領域の前記基板の上面の少なくとも一部を覆う選択成長用マスクパターンを形成する工程と、
    前記選択成長用マスクパターンをマスクとして用い、前記第1の境界位置を基準として前記第1の向きとは反対の第2の向きに向かって延びる前記メサの側面から側方に向かって成長し、成長の前面が斜面になる条件で埋込層を選択成長させる工程と、
    前記選択成長用マスクパターンを除去する工程と、
    前記選択成長用マスクパターンを除去した後、前記選択成長用マスクパターンで覆われていた領域の前記メサの側面を、半導体で形成された保護膜で覆う工程と
    を有する光導波路の製造方法。
  7. 基板上に形成され、活性層を含み、第1の導波路領域と第2の導波路領域を含むメサと、
    前記第2の導波路領域の側面に配置された埋込層と、
    前記第1の導波路領域の側面に配置された、前記埋込層よりも小さい厚さの半導体を含む保護膜と
    を含むことを特徴とする光導波路。
  8. 前記保護膜の厚さは、3μmより小さいことを特徴とする請求項7に記載の光導波路。
JP2009078549A 2008-09-19 2009-03-27 光導波路の製造方法 Active JP5617178B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078549A JP5617178B2 (ja) 2008-09-19 2009-03-27 光導波路の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008241046 2008-09-19
JP2008241046 2008-09-19
JP2009078549A JP5617178B2 (ja) 2008-09-19 2009-03-27 光導波路の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013126279A Division JP2013214762A (ja) 2008-09-19 2013-06-17 光導波路

Publications (2)

Publication Number Publication Date
JP2010097174A true JP2010097174A (ja) 2010-04-30
JP5617178B2 JP5617178B2 (ja) 2014-11-05

Family

ID=42258874

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009078549A Active JP5617178B2 (ja) 2008-09-19 2009-03-27 光導波路の製造方法
JP2013126279A Pending JP2013214762A (ja) 2008-09-19 2013-06-17 光導波路

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013126279A Pending JP2013214762A (ja) 2008-09-19 2013-06-17 光導波路

Country Status (1)

Country Link
JP (2) JP5617178B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258810A (ja) * 2010-06-10 2011-12-22 Mitsubishi Electric Corp 半導体光集積素子及びその製造方法
JP2012079990A (ja) * 2010-10-05 2012-04-19 Mitsubishi Electric Corp 集積化光半導体装置
JP2012222193A (ja) * 2011-04-11 2012-11-12 Sumitomo Electric Ind Ltd 光集積素子の製造方法
JP2013016648A (ja) * 2011-07-04 2013-01-24 Sumitomo Electric Ind Ltd 半導体光集積素子の製造方法
JP2013251505A (ja) * 2012-06-04 2013-12-12 Fujitsu Ltd 光半導体集積回路装置及びその製造方法
JP2014063842A (ja) * 2012-09-20 2014-04-10 Sumitomo Electric Ind Ltd 光導波路型半導体素子の製造方法および光導波路型半導体素子

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897509A (ja) * 1994-07-26 1996-04-12 Fujitsu Ltd 半導体装置及びその製造方法
JPH08162706A (ja) * 1994-11-30 1996-06-21 Oki Electric Ind Co Ltd 集積化半導体光素子の製造方法
JPH10256664A (ja) * 1997-03-13 1998-09-25 Fujitsu Ltd 光半導体装置のマーカ形成方法
JPH10326942A (ja) * 1997-03-26 1998-12-08 Mitsubishi Electric Corp 複合光デバイスとその製造方法
JPH1168222A (ja) * 1997-08-11 1999-03-09 Oki Electric Ind Co Ltd 半導体レーザの製造方法
JP2000039533A (ja) * 1998-07-06 2000-02-08 Alcatel 光集積回路の製造方法
JP2002232069A (ja) * 2001-02-02 2002-08-16 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置の製造方法
JP2002270947A (ja) * 2001-03-08 2002-09-20 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置の製造方法
JP2007103803A (ja) * 2005-10-06 2007-04-19 Sumitomo Electric Ind Ltd 半導体光素子及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114092A (ja) * 1987-10-28 1989-05-02 Hitachi Ltd 埋込み型半導体レーザ
JPH03283689A (ja) * 1990-03-30 1991-12-13 Oki Electric Ind Co Ltd 半導体レーザの製造方法
JP3924218B2 (ja) * 2002-08-06 2007-06-06 日本電信電話株式会社 半導体光素子及びその製造方法
JP5185537B2 (ja) * 2007-01-19 2013-04-17 富士通株式会社 光半導体装置およびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897509A (ja) * 1994-07-26 1996-04-12 Fujitsu Ltd 半導体装置及びその製造方法
JPH08162706A (ja) * 1994-11-30 1996-06-21 Oki Electric Ind Co Ltd 集積化半導体光素子の製造方法
JPH10256664A (ja) * 1997-03-13 1998-09-25 Fujitsu Ltd 光半導体装置のマーカ形成方法
JPH10326942A (ja) * 1997-03-26 1998-12-08 Mitsubishi Electric Corp 複合光デバイスとその製造方法
JPH1168222A (ja) * 1997-08-11 1999-03-09 Oki Electric Ind Co Ltd 半導体レーザの製造方法
JP2000039533A (ja) * 1998-07-06 2000-02-08 Alcatel 光集積回路の製造方法
JP2002232069A (ja) * 2001-02-02 2002-08-16 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置の製造方法
JP2002270947A (ja) * 2001-03-08 2002-09-20 Nippon Telegr & Teleph Corp <Ntt> 光半導体装置の製造方法
JP2007103803A (ja) * 2005-10-06 2007-04-19 Sumitomo Electric Ind Ltd 半導体光素子及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258810A (ja) * 2010-06-10 2011-12-22 Mitsubishi Electric Corp 半導体光集積素子及びその製造方法
JP2012079990A (ja) * 2010-10-05 2012-04-19 Mitsubishi Electric Corp 集積化光半導体装置
JP2012222193A (ja) * 2011-04-11 2012-11-12 Sumitomo Electric Ind Ltd 光集積素子の製造方法
JP2013016648A (ja) * 2011-07-04 2013-01-24 Sumitomo Electric Ind Ltd 半導体光集積素子の製造方法
JP2013251505A (ja) * 2012-06-04 2013-12-12 Fujitsu Ltd 光半導体集積回路装置及びその製造方法
JP2014063842A (ja) * 2012-09-20 2014-04-10 Sumitomo Electric Ind Ltd 光導波路型半導体素子の製造方法および光導波路型半導体素子

Also Published As

Publication number Publication date
JP2013214762A (ja) 2013-10-17
JP5617178B2 (ja) 2014-11-05

Similar Documents

Publication Publication Date Title
JP2013214762A (ja) 光導波路
JP2010267871A5 (ja)
JP6206247B2 (ja) 半導体装置の製造方法
US8637338B2 (en) Method for producing integrated optical device
JP4534985B2 (ja) 導波路型光デバイスおよびその製造方法
JP4514868B2 (ja) 半導体装置の製造方法
WO2007072807A1 (ja) 半導体素子、および半導体素子の製造方法
JP5314435B2 (ja) 集積光デバイス及びその製造方法
JP4213154B2 (ja) 半導体装置の製造方法
JP3762640B2 (ja) 半導体装置の製造方法および光導波路の製造方法、多層光導波路の製造方法
JP2012209489A (ja) 光半導体素子及びその製造方法
JPH1187844A (ja) 半導体光結合回路及びその製造方法
JP2006091880A (ja) アクティブ構造体に接続する低寄生容量の突合せ接合型パッシブ導波路装置及び方法
US8731344B2 (en) Method for manufacturing semiconductor optical modulator and semiconductor optical modulator
JP5029239B2 (ja) 半導体光素子およびその製造方法
JP4151043B2 (ja) 光半導体装置の製造方法
JP4769778B2 (ja) 光半導体素子及びその製造方法
JP5277877B2 (ja) 光導波路素子の製造方法
JP5228508B2 (ja) 集積化光半導体装置の製造方法及びその集積化光半導体装置
JP3654432B2 (ja) 光半導体装置の製造方法
JP5672771B2 (ja) 半導体光素子及びその製造方法
CN113994555A (zh) 半导体光源元件以及光半导体波导窗构造的制造方法
JP4534449B2 (ja) Mmi型半導体レーザおよびその製造方法
JP2012226162A (ja) マッハツェンダー変調器を作製する方法、及びマッハツェンダー変調器
JPH11223739A (ja) 集積型光回路素子及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5617178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150