JP2009283975A - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
JP2009283975A
JP2009283975A JP2009191624A JP2009191624A JP2009283975A JP 2009283975 A JP2009283975 A JP 2009283975A JP 2009191624 A JP2009191624 A JP 2009191624A JP 2009191624 A JP2009191624 A JP 2009191624A JP 2009283975 A JP2009283975 A JP 2009283975A
Authority
JP
Japan
Prior art keywords
plasma
bell jar
chamber
gas introduction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009191624A
Other languages
English (en)
Other versions
JP5279656B2 (ja
Inventor
Takayuki Kamaishi
貴之 釜石
Akinori Shimamura
明典 島村
Masahito Morishima
雅人 森嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2009191624A priority Critical patent/JP5279656B2/ja
Publication of JP2009283975A publication Critical patent/JP2009283975A/ja
Application granted granted Critical
Publication of JP5279656B2 publication Critical patent/JP5279656B2/ja
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins

Abstract

【課題】誘導結合プラズマを用いるプラズマ処理において、被処理体の面内均一性を向上させることが可能なプラズマ処理装置を提供すること。
【解決手段】プラズマ処理装置100′は、ウェハWを収容するチャンバー10′およびそのチャンバー10′の上方にチャンバー10′と連通するように設けられた誘電体壁からなるベルジャー141を有する処理容器と、チャンバー10′内に設けられたウェハWが載置されるサセプタ21と、ベルジャー141の外側の周囲に巻回され、ベルジャー141内に誘導電界を形成するコイル143と、処理容器内にプラズマ処理を行うためのガスを供給するガス供給機構60′とを備え、ベルジャー141は、内径Dと、中央部の内法高さHとの比D/Hで表される偏平率Kが、1.60〜9.25となる偏平な形状を呈し、内部のプラズマの分布密度をウェハWの平面内で均一化する。
【選択図】 図9

Description

本発明は、処理ガスを導入して基板のプラズマ処理を行うプラズマ処理装置に関する。
半導体製造工程においては、例えば、被処理体であるシリコンウェハに形成されたコンタクトホールの底部にTiを成膜し、Tiと基板のSiとの相互拡散によりTiSiを形成し、その上にTiN等のバリア層を形成し、さらにその上にAl層、W層、Cu層等を形成してホールの埋め込みと配線の形成が行われる。従来から、このような一連の工程を実施するためにクラスターツール型のような複数のチャンバーを有するメタル成膜システムが用いられている。このようなメタル成膜システムにおいては、良好なコンタクトを得るために成膜処理に先立って、シリコンウェハ上に形成された自然酸化膜やエッチングダメージ層等を除去する処理が施される。このような自然酸化膜を除去する装置としては、水素ガスとアルゴンガスを用いて誘導結合プラズマを形成するものが知られている(特許文献1)。
また、誘導結合プラズマを形成して処理する装置としては、被処理体である半導体ウェハを配置したチャンバーの上部に誘電体からなるベルジャーを設け、その外周部に、RF電源に接続されたコイルインダクタを巻回して誘導結合プラズマを発生させる構成が知られている(特許文献2、特許文献3、特許文献4、特許文献5)。
この種の誘導結合プラズマ処理装置としては、図1にその一部を示すように、ベルジャー401、コイル403、図示しないRF電源等を含むプラズマ発生部400と、被処理体が収容されるチャンバー201とを、処理ガスを導入するためのガス導入リング408を介してネジ止めしたものがある。具体的には、ベルジャー401は、ネジ部品410を用いてベルジャー押さえ409でガス導入リング408に固定される。その際に、ベルジャー押さえ409およびガス導入リング408とベルジャー401の間には、例えばPTFE(ポリテトラフロロエチレン)などの樹脂からなる環状の緩衝材409aが挿入されて、ベルジャー401を保護している。
ベルジャー401を保持したガス導入リング408は、リッドベース407によって保持されて、当該リッドベース407がチャンバー201に載置される構造となっている。
ベルジャー401とガス導入リング408との間、およびリッドベース407とチャンバー201との間には例えばOリングなどのシール材413および414が挿入されて気密性が保持されている。
例えばArガスやHガスなどの処理ガスは、ガス導入溝408bから、当該ガス導入溝408bに連通したガス孔408aより処理空間402に導入される構造になっている。このようにして導入された処理ガスをプラズマ励起して、被処理基板である半導体ウェハのプラズマ処理を行う。
この場合、プラズマ処理によって、例えばスパッタエッチングにより飛散した物質がガス導入リング408やリッドベース407の側面に付着して堆積物となる。この堆積物が厚くなると、堆積した場所より剥離してパーティクルとなり、装置の稼働率が低下し、半導体装置の歩留まりの低下などの問題が生じる。
そのため、処理空間402内において、前記ガス導入リング408およびリッドベース407を覆うようにカバーシールド411を、ネジ412によって取り付けた構造としている。このカバーシールド411上にエッチングにより飛散した物質が付着した場合、ネジ412の着脱によって当該カバーシールド411を交換して、堆積物の蓄積によるパーティクルの発生を防止している。
また、ガス孔408aから導入される処理ガスの拡散を遮ることがないように、カバーシールド411にはガス穴408aの直径より大きい孔部411aが設けられている。このため、ガス導入リング408のガス孔408aの周囲に堆積物が付着してしまう。そこでメンテナンスの際は、カバーシールド411とともにガス導入リング408も交換する必要がある。
しかしながら、カバーシールド411を交換する際には、ベルジャー401、ガス導入リング408およびリッドベース407を取り外す必要が有り、メンテナンスに時間を要する問題がある。また、ガス導入リング408はガス流路408bが形成されているなど構造が複雑であり、交換する部品の価格が高価となってしまい、装置のランニングコストが上昇して半導体装置の生産性低下の要因となる。
一方、この種の誘導結合型プラズマ処理装置においては、プラズマ処理に与える処理空間の形状が詳細には検討されておらず、必ずしもプラズマ処理の均一性が十分ではないという問題がある。
また、プラズマが形成される容器内でウェハを載置するサセプタの構造としては、ウェハの保持エリアを所定の深さの凹状に削り込んでウェハの位置決めを行えるようにしたものが知られている(特許文献6)。
しかしながら、このようなサセプタの構造を採用した場合にも、プラズマ処理の均一性が十分ではないという問題が生じる。
特開平4−336426号公報 特開平10−258227号公報 特開平10−116826号公報 特開平11−67746号公報 特開2002−237486号公報 特開2002−151412号公報
本発明は、誘導結合プラズマを用いるプラズマ処理において、被処理体の面内均一性を向上させることが可能なプラズマ処理装置を提供することを目的とする。
本発明は、設計や製作コストの上昇や装置構成の汎用性を損なうことなく、被処理体の面内均一性を向上させることが可能なプラズマ処理装置を提供することを目的とする。
本発明の第1の観点によれば、被処理基板に対してプラズマ処理を行うプラズマ処理装置であって、被処理体を収容するチャンバーと、前記チャンバーの上方にチャンバーと連通するように設けられた誘電体からなるベルジャーおよび前記ベルジャーの外側の周囲にコイル状に巻回され前記ベルジャー内に誘導電界を形成するアンテナを有し、前記ベルジャーの内側へプラズマを発生させるプラズマ発生部と、前記プラズマ発生部と前記チャンバーとの間に設けられ、前記プラズマ発生部と前記チャンバーとで画成される処理空間にプラズマ形成用のガスを導入するガス導入機構と、前記チャンバー内に設けられた被処理体が載置される載置台とを具備し、前記ベルジャーの内径Dと、前記ベルジャーの中央部の内法高さHとの比D/Hで表される偏平率Kが1.60〜9.25であるプラズマ処理装置が提供される。
本発明の第2の観点によれば、被処理基板に対してプラズマ処理を行うプラズマ処理装置であって、被処理体を収容するチャンバーと、前記チャンバーの上方にチャンバーと連通するように設けられた誘電体からなるベルジャーおよび前記ベルジャーの外側の周囲にコイル状に巻回され前記ベルジャー内に誘導電界を形成するアンテナを有し、前記ベルジャーの内側へプラズマを発生させるプラズマ発生部と、前記プラズマ発生部と前記チャンバーとの間に設けられ、前記プラズマ発生部と前記チャンバーとで画成される処理空間にプラズマ形成用のガスを導入するガス導入機構と、前記チャンバー内に設けられた被処理体が載置される載置台とを具備し、前記ベルジャーの内径Dと、前記ベルジャーの中央部の天井部分から前記載置台までの距離H1との比D/H1で表される偏平率K1が、0.90〜3.85であるプラズマ処理装置が提供される。
上記本発明の第1および第2の観点は、上述のような誘導結合プラズマを用いる処理装置では、ベルジャーの高さが、被処理基板に対するプラズマ分布密度のばらつきに大きく影響し、特に、大口径のシリコンウェハに対する上述のようなプラズマ処理において面内均一性を向上させるには、ベルジャーの高さの最適化が有効であるという本発明者らが見出した知見に基づいている。
上記本発明の第1の観点によれば、その内部にプラズマが形成されるベルジャーの偏平率Kを1.60〜9.25と大きな値とするので、載置台上に位置する被処理基板の上方のベルジャー内に形成されるプラズマが被処理体の処理面に沿って広がり、プラズマの密度分布が前記処理面に沿って均一化する。このため、プラズマ処理における被処理体の面内均一性が向上する。
上記本発明の第2の観点によれば、載置台からベルジャーの天井までの高さを加味したベルジャーの偏平率K1を0.90〜3.85と大きな値とするので、載置台上に位置する被処理体の上方のベルジャー内に形成されるプラズマが、被処理体の処理面に沿って広がり、プラズマの密度分布が前記処理面に沿って均一化する。このため、プラズマ処理における被処理体の面内均一性が向上する。
さらに、上記第1および第2の観点では、ベルジャーを偏平にするだけで、それ以外のチャンバー部分は既存の構成をそのまま用いることができ、チャンバー部分の設計変更等に起因するコスト高やチャンバー部分の外部接続構造の変更等による汎用性の低下を招くことなく、プラズマ処理における被処理体の面内均一性を向上させることができる。
従来のプラズマ処理装置の概略の一部を拡大した図である。 本発明の第1実施形態に係るプラズマ処理装置の概略を示す断面図である。 本発明の第1実施形態に係るプラズマ処理装置のガス導入機構部分を拡大して示す断面図である。 ガス導入機構を構成するガス導入ベースを示す斜視図である。 そのガス導入ベースを示す断面図である。 ガス導入機構を構成するガス導入プレートを示す斜視図である。 そのガス導入プレートを示す断面図である。 ガス導入機構の一部を拡大して示す断面図である。 ガス導入機構の変形例を示す断面図である。 本発明の第1実施形態に係るプラズマ処理装置の外観を示す斜視図である。 本発明の第2実施形態に係るプラズマ処理装置を示す断面図である。 従来のプラズマ処理装置のArプラズマのArの密度分布のシミュレーション結果を示す図である。 本発明の第2実施形態に係るプラズマ処理装置におけるプラズマ中のArの密度分布のシミュレーション結果を示す図である。 本発明の第2実施形態に係るプラズマ処理装置のベルジャーの形状の効果の一例を示すグラフである。 本発明の第2実施形態に係るプラズマ処理装置の変形例を示す断面図である。 本発明の第3実施形態に係るプラズマ処理装置における半導体ウェハ載置構造を示す概略断面図である。 図13の半導体ウェハ載置構造を拡大して示す断面図である。 図13の半導体ウェハ載置構造を示す平面図である。 本発明の第3実施形態における半導体ウェハ載置部分の段差とエッチング結果のバラツキとの関係を示すグラフである。
以下、添付図面を参照して本発明の実施形態について説明する。
<第1実施形態>
図2は、本発明の第1実施形態に係るプラズマ処理装置の構成の概略図である。プラズマ処理装置100は被処理基板をプラズマ処理する装置であり、例えば被処理基板上に形成される金属膜上やシリコン上に形成される自然酸化膜などの酸化膜を含む不純物層をプラズマエッチングして除去する工程に用いられる。
プラズマ処理装置100は、被処理基板である半導体ウェハを収容するチャンバー10と、チャンバー10内で半導体ウェハを保持するウェハ保持部20と、チャンバー10を覆うように設置され、ウェハにプラズマ処理を施す処理空間S内にプラズマを発生するプラズマ発生部40と、プラズマを発生するためのガスを前記処理空間Sに導入するためのガス導入機構50と、ガス導入機構50にプラズマを生成するためのガスを供給するガス供給機構60とを有している。また、図2には示されていないが、ガス導入機構50およびプラズマ発生部40を着脱する後述する着脱機構を有している。
チャンバー10はアルミニウムまたはアルミニウム合金等の金属材料からなり、円筒状をなす本体11と、本体11の下方に設けられた本体11よりも小径の円筒状をなす排気室12とを有している。排気室12は、本体11内を均一に排気するために設けられている。
チャンバー10の上方には、チャンバー10と連続するように、プラズマ発生部40の構成要素であるベルジャー41が設けられている。ベルジャー41は誘電体からなり上部が閉塞された円筒状、例えばドーム型をなしている。そして、チャンバー10およびベルジャー41により処理容器が構成され、その中が前記処理空間Sとなっている。
ウェハ保持部20は、被処理体である半導体ウェハWを水平に支持するための誘電性材料からなるサセプタ(載置台)21を有し、このサセプタ21が円筒状の誘電性材料からなる支持部材22に支持された状態で配置されている。なお、サセプタ21の上面にウェハWと略同形の凹部を形成し、この凹部にウェハWが落とし込まれるようにしてもよく、サセプタ21上面に静電吸着機構を設けて静電吸着するようにしてもよい。サセプタ21を構成する誘電性材料としては、セラミック材料、例えばAlN、Alを挙げることができ、中でも熱伝導性が高いAlNが好ましい。
サセプタ21の外周には、サセプタ21に載置されたウェハWのエッジを覆うようにシャドウリング23が昇降可能に設けられている。シャドウリング23は、プラズマをフォーカスし、均一なプラズマを形成するのに役立つ。また、サセプタ21をプラズマから保護する役割も有する。
サセプタ21内の上部にはMo、W等の金属からなるメッシュ状に形成された電極24が水平面状に埋設されており、この電極24には整合器26を介してウェハに高周波バイアスをかけてイオンを引き込むための高周波電源25が接続されている。
また、サセプタ21内には、電極24の下方位置にヒーター28が埋設されており、ヒーター電源29からヒーター28に給電することにより、ウェハWを所定の温度に加熱可能に構成されている。なお、電極24およびヒーター28への給電線は支持部材22の内部に挿通されている。
サセプタ21には、ウェハWを支持して昇降させるための3本(2本のみ図示)のウェハ昇降ピン31が挿通されており、サセプタ21の上面に対して突没可能に設けられている。これらウェハ昇降ピン31は支持板32に固定されており、エアシリンダ等の昇降機構33により支持板32を介して昇降される。
チャンバー10の本体11の内部には、その内壁に沿って本体11の内壁にプラズマエッチングにより生成された副生成物等が付着することを防止するための略円筒状をなすチャンバーシールド34が着脱自在に設けられている。このチャンバーシールド34は、Ti材(TiまたはTi合金)により構成されている。シールド材としてAl材を用いてもよいが、Al材では処理中においてパーティクルの発生があるので、付着物との密着性が高くパーティクルの発生を大幅に減少することができるTi材を用いることが好ましい。また、Al材のシールド本体にTiをコーティングして用いてもよい。さらに、チャンバーシールド34の表面は、付着物との密着性を向上させるため、ブラスト処理等で微小な凹凸形状にしてもよい。このチャンバーシールド34はチャンバー10の本体11の底壁に数カ所(図では2カ所)ボルト35により取り付けられており、ボルト35を外すことにより、チャンバー10の本体11から取り外すことができ、チャンバー10内のメンテナンスを容易に行うことができる。
チャンバー10の側壁は開口36を有しており、この開口36はゲートバルブ37により開閉されるようになっている。このゲートバルブ37を開にした状態で半導体ウェハWが隣接するロードロック室(図示せず)とチャンバー10内との間で搬送されるようになっている。
チャンバー10の排気室12は、本体11の底壁の中央部に形成された円形の穴を覆うように下方に向けて突出して設けられている。排気室12の側面には排気管38が接続されており、この排気管38には排気装置39が接続されている。そしてこの排気装置39を作動させることによりチャンバー10およびベルジャー41内を所定の真空度まで均一に減圧することが可能となっている。
前記プラズマ発生部40は、上述のベルジャー41と、ベルジャー41の外側に巻回されたアンテナ部材としてのコイル43と、コイル43に高周波電力を供給する高周波電源44と、ベルジャー41およびコイル43を覆い、プラズマの紫外線および電磁波をシールドする遮蔽容器46とを有している。
ベルジャー41は、例えば石英やAlN等のセラミックス材料のような誘電体材料で形成されており、円筒状の側壁部41aと、その上のドーム状の天壁部41bとを有している。コイル43は、このベルジャー41の円筒を形成する側壁部41aの外側に略水平方向にコイルとコイルの間が5〜10mmピッチで好ましくは8mmピッチで所定の巻回数で巻回されており、コイル43は、例えばフッ素樹脂等の絶縁材でサポートされて固定される。図示の例ではコイル43の巻回数は7巻である。
上記高周波電源44は、整合器45を介してコイル43に接続されている。高周波電源44は例えば300kHz〜60MHzの周波数の高周波電力を発生する。好ましくは450kHz〜13.56MHzである。高周波電源44からコイル43に高周波電力を供給することにより、誘電体材料からなるベルジャー41の側壁部41aを介してベルジャー41の内側の処理空間Sに誘導電磁界が形成されるようになっている。
ガス導入機構50は、チャンバー10とベルジャー41の間に設けられており、ベルジャー41を支持するとともにチャンバー10に載せられたガス導入ベース48と、このガス導入ベース48の内側に取り付けられたガス導入プレート49と、ガス導入ベース48にベルジャー41を固定するためのベルジャー押さえ47とを有している。そして、ガス供給機構60からの処理ガスが、後述するガス導入ベース48内に形成されたガス導入路48eおよびガス導入プレート49に形成されたガス吐出孔49aを介して処理空間Sに吐出されるようになっている。
ガス供給機構60は、Arガス供給源61、Hガス供給源62を有しており、これらガス供給源には、それぞれガスライン63,64が接続されており、これらガスライン63,64はガスライン65に接続されている。そして、これらガスはこのガスライン65を介してガス導入機構46へ導かれる。ガスライン63,64には、マスフローコントローラ66およびその前後の開閉バルブ67が設けられている。
このようにしてガス供給機構60のガスライン65を介してガス導入機構50に供給された、処理ガスであるArガス、Hガスは、ガス導入機構50のガス導入路48eおよびガス導入プレート49に形成されたガス吐出孔49aを介して処理空間Sに吐出され、上述のようにして処理空間Sに形成された誘導電磁界によりプラズマ化され、誘導結合プラズマが形成される。
次に、ガス導入機構50の構造について詳細に説明する。
図3に拡大して示すように、ガス導入ベース48には、チャンバー10の本体11の壁部に形成されたガス導入路11bに接続される第1のガス流路48aが形成され、この第1のガス流路48aは、ガス導入ベース48内に略環状または半円状に形成された第2のガス流路48bに接続されている。また、第2のガス流路48bからは内側に向けて等間隔にまたは対角的に複数の第3のガス流路48cが形成されている。一方、ガス導入ベース48とガス導入プレート49の間には、ガスが均一に拡散可能に略環状の第4のガス流路48dが形成されており、この第4のガス流路48dに前記第3のガス流路48cが接続されている。そして、これら第1〜第4のガス流路48a,48b,48c,48dが連通してガス導入路48eを構成している。
ガスライン65から導入された処理ガスは、ガス導入路11bを介して、ガス導入ベース48に形成された第1のガス流路48aから、略環状または半円状に形成された第2のガス流路48b中を均一に拡散する。そして、処理ガスは、当該第2のガス流路48bに連通し処理空間Sの方向へ向かう複数の第3のガス流路48cを介して、略環状の第4のガス流路48dに至る。
一方、上述したように、ガス導入プレート49には、第4のガス流路48dと処理空間Sとに連通したガス吐出孔49aが等間隔に複数形成されており、処理ガスは第4のガス流路48dからガス吐出孔49aを介して、処理空間Sに吐出される。また、ガス導入路11bと、第1のガス流路48aの接続部分の周囲には、シールリング52が設置されて、処理ガスを供給する経路の気密性を保持している。
また、ガス導入ベース48は、上述したようにベルジャー41を保持してチャンバー10の本体11に載置される構造となっている。その際、ガス導入ベース48とベルジャー41との間、およびガス導入ベース48とチャンバー10の本体11との間には、それぞれ例えばOリングなどのシール材53および54が介在されており、処理空間Sの気密性が保持される。
ベルジャー41はガス導入ベース48に保持され、その端部をベルジャー押さえ47によって固定されている。またベルジャー押さえ47はネジ55によってガス導入ベース48に締結されている。ベルジャー押さえ47およびガス導入ベース48とベルジャー41との間には、PTFEなどからなる緩衝材47aが介装されている。これは、例えば石英やAl、AlNなどの誘電材料からなるベルジャー41が、例えばAlなどの金属材料などからなるベルジャー押さえ47やガス導入ベース48に衝突して破損することを防ぐためである。また、ガス導入ベース48とガス導入プレート49とはネジ56によって締結されている。
次に、前記した処理ガス導入機構50を構成するガス導入ベース48およびガス導入プレート49をさらに詳細に説明する。
図4A、4Bは、ガス導入ベース48を示したものであり、図4Aはその斜視図であり、図4Bは、図4AにおけるA−A断面図である。ガス導入ベース48は、例えばAlなどの金属材料からなり、図4Aに示すように、その中央に略円形状の穴48fが形成された構造となっており、プラズマ処理装置100に取り付けた際に、穴48fが処理空間Sの一部を形成する。ガス導入ベース48には、図4Bの断面に示すように、上述した第1〜第3のガス流路48a,48b,48cが形成されており、第3のガス流路48cは、空間48d′に連通している。ガス導入ベース48の内周面は段差部が形成されており、この段差部にガス導入プレート49の段差部が係合されるようになっている。そして、ガス導入ベース48にガス導入プレート49が取り付けられた際に空間48d′に対応する部分に第4のガス流路48dが形成される。
図5A、5Bは、ガス導入プレート49を示したものであり、図5Aはその斜視図であり、図5Bは、図5AにおけるB−B断面図である。ガス導入プレート49は略環状をなし、例えばTiやAlなどの金属材、または、Al母材にTiを溶射等でコーティングしたコーティング材で構成されている。ガス導入プレート49は、段差部を有する円筒状の本体部49bと、その下端外縁部に形成された鍔部49cとを有しており、上記ガス吐出孔49aは、本体49bの周面に沿って複数設けられている。また、鍔部49cには、上述したネジ56を挿通してガス導入ベース48に固定するための複数の固定穴49dが形成されている。
これらガス導入ベース48およびガス導入プレート49を係合させて、ネジ56によって固定した状態を図6に示す。この図に示すように、ガス導入ベース48の段差部とガス導入プレート49の段差部とを一致させた状態で組み合わせ、ネジ56でこれらを固定する。そして、その際に、両者の間に第4のガス流路48dが形成され、この第4のガス流路48dに連通するガス吐出孔49aからガスが吐出される。ガス導入プレート49は、ネジ56によって、容易にガス導入ベース48より着脱が可能な構造となっている。
図7に示すように、第4のガス流路48dの側から処理空間Sの側に向かって広がった形状、例えば円錐状、ラッパ状を有するガス吐出孔49a′を形成するようにしてもよい。これにより、処理ガスを広い処理空間Sに効率よく均一に供給することが可能となる。
次に、以上のようなガス導入機構50およびプラズマ発生部40の着脱機構についてプラズマ処理装置100の外観を示す図8を参照して説明する。
図8に示すように、着脱機構70は、ガス導入機構50の外周を規定するガス導入プレート48の一辺側にネジ72cにより取り付けられた2つの第一ヒンジ部品72と、これら2つの第1ヒンジ部72の間に設けられ、チャンバー10の本体11にネジ73cによりねじ止めされた第2ヒンジ部品73を有している。ヒンジ部品72および73の中心部には、それぞれベアリング72a、73aが設けられており、これらベアリング72a、73aにはシャフト71が挿通されている。これにより、外形が矩形状をなすガス導入機構50とチャンバー10の外形が同様の矩形状をなす本体11とが合わさった装着状態から、シャフト71を回動中心にして、ガス導入機構50およびプラズマ発生部40を上方に回動させて、これらをチャンバー10から取り外した状態にすることが可能となっている。すなわち、ガス導入機構50およびプラズマ発生部40は、着脱機構70によりチャンバー10に対して容易に着脱可能となっており、ガス導入機構50およびプラズマ発生部40を上方に回動させた状態でメンテナンスを容易に行うことができる。
また、着脱機構70は、ダンパー75を有している。ダンパー75は、固定部材75aによりその一端がガス導入プレート48に、他端がチャンバー10の本体11に固定されている。
ダンパー75は、例えば内部に油圧機構などを有し、伸縮が可能な構造となっており、ガス導入機構50およびプラズマ発生部40を上方へ回動させる際に、伸長方向すなわち回動方向に付勢力を及ぼすようになっている。このため、ガス導入機構50およびプラズマ発生部40を上方に回動させる際に、ガス導入機構50およびプラズマ発生部40を支える力をその分少なくすることができる。さらに、ガス導入ベース48には、プラズマ発生部40の着脱の際に、作業者が把持するためのハンドル74が、ネジ74aにより取り付けられている。
次に、以上のように構成されたプラズマ処理装置100による処理動作について説明する。
まず、ゲートバルブ37を開にして、図示しない搬送アームによりチャンバー10内にウェハWを搬入し、サセプタ21から突出したウェハ昇降ピン31の上にウェハWを受け渡す。次いで、ウェハ昇降ピン31を下降させてウェハWをサセプタ21上面に載置して、シャドウリング23を下降させる。
その後、ゲートバルブ37を閉にして、排気装置39によりチャンバー10およびベルジャー41内を排気して所定の減圧状態にし、この減圧状態でガス供給機構60から供給されたArガスおよびHガスをガス導入機構50を介して処理空間Sに吐出させる。これと同時に、高周波電源25および高周波電源44から、それぞれサセプタ21内の電極24およびコイル43に高周波電力を供給することにより、処理空間Sに電界が生じ、ベルジャー41内に導入したガスを励起させてプラズマを点火する。
プラズマを点火した後、ベルジャー41内には誘導電流が流れ、連続的にプラズマが生成され、そのプラズマによりウェハW上に形成された自然酸化膜、例えばシリコン上に形成された酸化シリコンや金属膜の上に形成された金属酸化膜をエッチング除去する。この際に高周波電源25によりサセプタ21にバイアスが印加され、ヒーター28によりウェハWが所定温度に維持される。
この際の条件は、例えば、処理空間Sの圧力:0.1〜13.3Pa、好ましくは0.1〜2.7Pa、ウェハ温度:100〜500℃、ガス流量:Arが0.001〜0.03mL/min、Hが0〜0.06L/min好ましくは0〜0.03L/min、プラズマ生成用の高周波電源44の周波数:300kHz〜60MHz、好ましくは450kHz〜13.56MHz、電力:500〜3000W、バイアス用の高周波電源25の電力:0〜1000W(バイアス電位にして−20〜−200V)である。この際のプラズマ密度は、0.7〜10×1010atoms/cm3であり、好ましくは、1〜6×1010atoms/cm3である。このような条件で30秒程度処理することにより、例えばシリコン酸化膜(SiO)が10nm程度除去される。
このようにして自然酸化膜等の酸化物を含む不純物層を除去することにより、例えばその後に形成される膜の密着性が向上する、電気抵抗値が下がる等の効果が得られる。
この場合に、処理ガスを吐出させるガス導入機構50は、上述したように、ベルジャー41を保持する機能、およびチャンバー10の本体11に載置されて、気密性を保ちながら、処理空間Sに処理ガスを導入する機能を兼備している。このため、プラズマ処理装置の部品点数を削減して、構造を単純化し、プラズマ処理装置のコストダウンとなる効果がある。
また、半導体ウェハWを上述のようにプラズマ処理してスパッタエッチングする際には、スパッタリングにより、半導体ウェハW周囲の部材に飛散物質が堆積すると、パーティルなどの微粒子の発生原因となり、半導体装置の生産の歩留まりが低下してしまう。例えば、半導体ウェハWの周囲の部材で特に堆積物の蓄積する部分、例えばガス吐出孔49aの周囲には飛散物質が堆積しやすい。
そこで、本実施形態では、ガス導入プレート49をガス導入ベース48にネジ56により装着し、ガス導入プレート49を取り外し可能な構造としている。そのため、ガス導入プレート49の交換が容易であり、メンテナンス時間を短くできる。また、ガス導入プレート49は構造が単純で安価な部品となっており、メンテナンス時のコストを低く抑えることができる。
また、ガス導入機構50およびプラズマ発生部40を、上述のようにして着脱機構70により容易に着脱することができるので、プラズマ処理を繰り返してメンテナンスが必要となった際に、プラズマ処理装置100のメンテナンス時間を短縮し、稼働率を向上させることができ、ひいては半導体装置の生産性を向上させることができる。
具体的には、ベルジャー41を交換する際やウエットクリーニングなどの作業を行う際、チャンバー10のメンテナンスを行う場合に、プラズマ発生部40を取り外しする必要があるが、上述のようにプラズマ発生部40をガス導入機構50とともに回動させて取り外すことができ、これらのメンテナンス作業を短時間で行うことができる。
また、ガス導入機構50およびプラズマ発生部40がこのように容易に着脱可能であることから、ガス導入機構50およびプラズマ発生部40をチャンバー10から取り外して上述のようにガス導入機構のガス導入プレート49を交換する作業を容易にかつ短時間で行うことが可能となる。
さらに、着脱機構70はダンパー75を有し、このダンパー75がプラズマ発生部40に対し、それが開く方向に付勢力を及ぼすので、プラズマ発生部40を回動する際にプラズマ発生部40を支える力をその分少なくすることができ、メンテナンス作業が容易になり、作業効率が向上する。
<第2実施形態>
次に、本発明の第2実施形態について説明する。
図9は、本発明の第2実施形態に係るプラズマ処理装置の構成の概略図である。プラズマ処理装置100′は第1実施形態のプラズマ処理装置100と同様、例えば被処理基板上に形成される金属膜上やシリコン上に形成される自然酸化膜などの酸化膜を含む不純物層をプラズマエッチングして除去する工程に用いられるものであり、被処理基板である半導体ウェハを収容するチャンバー10′と、チャンバー10′内で半導体ウェハを保持するウェハ保持部20′と、チャンバー10′を覆うように設置され、ウェハにプラズマ処理を施す処理空間S内にプラズマを発生するプラズマ発生部40′と、プラズマを発生するためのガスを前記処理空間Sに導入するためのガス導入機構50′と、ガス導入機構50にプラズマを生成するためのガスを供給するガス供給機構60′とを有している。
これらのうちチャンバー10′と、ウェハ保持部20′およびその周辺の部材は第1実施形態と全く同様に構成されているので、図2と同じものには同じ符号を付して説明を省略する。
プラズマ発生部40′は、ベルジャー141と、ベルジャー141の外側に巻回されたアンテナ部材としてのコイル143と、コイル143に高周波電力を供給する高周波電源144と、ベルジャー141の天壁の上に設けられた対向電極としての導電性部材147とを有する。
ベルジャー141は、例えば石英やAl、AlN等のセラミックス材料のような誘電体材料で形成されており、円筒状の側壁部141aと、その上のドーム状の天壁部141b(半径R1=1600mm〜2200mm)と、側壁部141aと天壁部141bとを接続する湾曲状のコーナ部141c(半径R2=20mm〜40mm)を有する多半径ドーム形状を呈している。このベルジャー141の円筒を形成する側壁部141aの外側には上記コイル143が略水平方向にコイルとコイルの間が5〜10mmピッチで好ましくは8mmピッチで所定の巻回数で巻回されており、コイル143は、例えばフッ素樹脂等の絶縁材でサポートされて固定される。図示の例ではコイル143の巻回数は4巻である。上記高周波電源144は、整合器145を介してコイル143に接続されている。高周波電源144は300kHz〜60MHzの周波数を有している。好ましくは450kHz〜13.56MHzである。そして、高周波電源144からコイル143に高周波電力を供給することにより、誘電体材料からなるベルジャー141の側壁部141aを介してベルジャー141内側の処理空間Sに誘導電磁界が形成されるようになっている。
ガス導入機構50′は、チャンバー10′とベルジャー141との間に設けられた、リング状をなすガス導入部材130を有している。このガス導入部材130はAl等の導電性材料からなり、接地されている。ガス導入部材130には、その内周面に沿って複数のガス吐出孔131が形成されている。またガス導入部材130の内部には環状のガス流路132が設けられており、このガス流路132にはガス供給機構60′から後述するようにArガス、Hガス等が供給され、これらガスがガス流路132から上記ガス吐出孔131を介して処理空間Sへ吐出される。ガス吐出孔131は、水平に向けて形成され、処理ガスがベルジャー141内に供給される。また、ガス吐出孔131を斜め上に向けて形成し、処理ガスをベルジャー141内の中央部に向かって供給するようにしてもよい。
ガス供給機構60′は、プラズマ処理用のガスを処理空間Sに導入するためのものであり、例えば図2のガス供給機構60と同様に、ガス供給源、開閉バルブ、および流量制御のためのマスフローコントローラ(いずれも図示せず)を有しており、ガス配管161を介して上記ガス導入部材130へ所定のガスを供給する。なお、各配管のバルブおよびマスフローコントローラは図示しないコントローラにより制御される。
プラズマ処理用のガスとしては、Ar、Ne、Heが例示され、それぞれ単体で用いることができる。また、Ar、Ne、HeのいずれかとHとの併用、およびAr、Ne、HeのいずれかとNFとの併用であってもよい。これらの中では、図2の場合と同様、Ar単独、Ar+Hが好ましい。プラズマ処理用のガスは、エッチングしようとするターゲットに応じて適宜選択される。
前記導電性部材147は、対向電極として機能するとともに、ベルジャー141を押圧する機能を有し、表面が陽極酸化されたアルミニウム、アルミニウム、ステンレス鋼、チタン等で形成されている。
次に、ベルジャー141についてさらに詳細に説明する。
本実施形態では、プラズマの均一性を向上させてエッチングの面内均一性を高めるべく、ベルジャー141の偏平度等を規定している。
すなわち、ベルジャー141の側壁部141aの内径Dと、ドーム状の天壁部141bの中央部分の高さHとの比D/Hで定義される偏平率K(=D/H)の値は、1.60〜9.25になるように構成されている。
偏平率Kが1.60より小さいと面内均一性は向上できず、偏平率Kが9.25より大きいとプラズマ形成に必要なコイル143の巻回が実質的に困難になる。
また、ベルジャー141の円筒状の側壁部141aの内径Dと、ドーム状の天壁部141bの中央部分の、サセプタ21の上からの高さH1との比D/H1で定義される偏平率K1(=D/H1)の値は、0.90〜3.85になるように構成されている。
このような偏平率を有する場合、結果的に、コイル143の巻数は、10回以下、望ましくは、7〜2回程度、より好ましくは、4〜2回程度となる。
このベルジャー141の、ドーム状の天壁部141bの中央部分の高さHの値、ドーム状の天壁部141bの中央部分の、サセプタ21の上からの高さH1の値、および円筒状の側壁部141aの内径Dの値は、一例として、それぞれ、H=98mm、H1=209mm、およびD=450mmであり、このときの偏平率K=4.59、偏平率K1=2.15である。
また、他の各部の寸法関係の一例を示すと、ベルジャー141のドーム部の内法高さをH2、ベルジャー2の円筒部分の高さをH3(すなわち、H=H2+H3)、ガス導入部材30の厚さをH4、サセプタ11の上面からチャンバー1の開口端上面(ガス導入部材30の載置面)までの高さをH5、サセプタ11の上面からガス導入部材30の上面までの高さをH6としたとき、各部の寸法値、比率は、一例として以下のようになる。
すなわち、比率K2=H/H6は、略0.55〜1.50である。比率K3=H2/H3は2.1以下であり、好ましくは0.85以下、より好ましくは0.67以下である。
また、比率K4=H2/(H3+H6)は、0.75未満であり、好ましくは、0.65以下、さらに好ましくは、略0.55以下である。
また、H2が略29〜74mmの場合、H6+H3は、略97〜220mmである。H3が略35mm以上の場合、H5+H4は略62〜120mmである。H2が略29mmの場合、H3が略35〜100mmでは、H5は略0〜72mm以下、この好ましくは、略22〜72mmである。
以上のような比率で形成したベルジャー141を用いることで、ベルジャー141内の外周部分においてプラズマ密度の高い領域がウェハW側へ移行し、プラズマ密度が均一な領域を広くすることができる。これにより、ウェハWの存在部分に均一なプラズマが形成され、エッチング均一性が良好となる。このため、特に大口径のウェハ(基板)に有効である。
次に、このように構成されるプラズマ処理装置100′による処理動作について説明する。
まず、ゲートバルブ37を開にして、図示しない搬送アームによりチャンバー10′内にウェハWを搬入し、サセプタ21から突出したウェハ昇降ピン31の上にウェハWを受け渡す。次いで、ウェハ昇降ピン31を下降させてウェハWをサセプタ21上面に載置して、シャドウリング23を下降させる。
その後、ゲートバルブ37を閉にして、排気装置39によりチャンバー10′およびベルジャー141内を排気して所定の減圧状態にし、この減圧状態でガス供給機構60′から供給された所定のガス、例えばArガスをガス導入部材130のガス吐出孔131からベルジャー141内に吐出させる。これと同時に、バイアス用の高周波電源25およびプラズマ生成用の高周波電源144から、それぞれサセプタ21内の電極24およびコイル143に高周波電力を、それぞれ、0〜1000Wおよび500〜3000W供給することにより、コイル143と導電性部材147との間等に電界が生じ、ベルジャー141内に導入したガスを励起させてプラズマを点火する。プラズマを点火した後、ベルジャー141内には誘導電流が流れ、連続的にプラズマが生成され、そのプラズマによりウェハW上に形成された自然酸化膜、例えばシリコン上に形成された酸化シリコンや金属膜の上に形成された金属酸化膜をエッチング除去する。この際に高周波電源25によりサセプタ21にバイアスが印加され、ヒーター28によりウェハWが所定温度に維持される。その温度は20〜800℃であり、好ましくは20〜200℃である。
この際のプラズマ密度は、0.7〜10×1010atoms/cm3であり、好ましくは、1〜6×1010atoms/cm3である。このようなプラズマで30秒程度処理することにより、例えばシリコン酸化膜(SiO)が10nm程度除去される。
このようにして自然酸化膜等の酸化物を含む不純物層を除去することにより、例えばその後に形成される膜の密着性が向上する、電気抵抗値が下がる等の効果が得られる。
ここで、本実施形態の場合には、上述のようにベルジャー141の偏平率Kを1.60〜9.25に、あるいは偏平率K1を0.90〜3.85にしているので、ベルジャー141内に形成されるプラズマが、ウェハWの表面全体に対して均一に広がるように形成され、ベルジャー141内の外周部においてプラズマ密度の高い領域がウェハ側へ移行されるので、プラズマによるウェハWに対するエッチング処理が表面全体に対して均一に行われることとなり、エッチングの面内均一性が向上する。この場合に、R1=1600mm〜2200mm、R2=20mm〜40mm、と規定することにより、特にR1を大きくすることで、ベルジャー141の断面形状が長方形に近い偏平状となり、ベルジャー141内に形成されるプラズマが、ウェハWの表面全体に対してより均一に広がるように形成される。したがって、プラズマによるウェハWに対するエッチング処理が表面全体に対して均一に行われることとなり、エッチングの面内均一性が向上する。
図10Aは、従来の高さの高いベルジャー(高さHが137mm、内径Dが450mm、コイルの巻回数が10巻)の場合におけるベルジャー内のArプラズマのArの密度分布のシミュレーション結果を示し、図10Bは、本実施形態のベルジャー141(高さHが98mm、内径Dが450mm、コイルの巻回数が4巻)におけるプラズマ中のArの密度分布のシミュレーション結果を示している。
図10Aの従来の場合に比較して、より偏平な形状の本実施の形態の図10Bのほうが、ウェハWの平面方向に均一な広がりを持つArの密度分布が見られ、ウェハWに対するプラズマによるエッチングの面内均一性が向上することがこのシミュレーション結果からも裏付けられている。
すなわち、エッチングの均一性を向上させるには、ウェハ面上領域にプラズマ(Arイオン密度)を均一に形成する必要がある。従って、プラズマの均一な領域を形成するには、均一に形成するArイオン密度の領域にウェハWが晒されることが好ましい。
つまり、ベルジャー141を横に広く形成すればプラズマが広がるが、装置が大きくなり、また、プラズマ密度も減少し、パワーも必要になってくるので装置コストが高くなる。
本実施形態の場合には、ベルジャー141の偏平率K、K1、および比率K2〜K4、ならびに載置台面からベルジャー141内の天井部までの高さH1等を最適化したので、装置の大型化や消費電力の増大を招くことなく、低コストでプラズマ密度を維持し、均一性を向上させることができる。
図11に、載置台面からベルジャー141内の天井部までの高さH1とエッチング均一性の関係の一例を示す。この図11に例示されるように、H1が210mmまではエッチング均一性がほぼ一定であるが、250mmを超えるとエッチング均一性が大きく低下している。このため、本実施形態の場合には、上述のように、一例として、H1=209mmとすることで、良好なエッチング均一性を達成している。
なお、本実施形態では、コイル143の巻回数を削減し、ベルジャー141の高さを縮減して、ベルジャー141を偏平化するが、チャンバー10′は、従来の構成をそのまま用いる。その理由は、通常、チャンバーは、サセプタやゲートバルブ等の機構を、他の成膜装置等のプロセス装置と共通の設計にすることで、コストダウンが可能になるとともに、チャンバーに対してウェハの搬入出を行う外部搬送機構やロードロック室との接続構造を複数種の成膜装置やエッチング装置等のプロセス装置で共通化することにより、すなわち、チャンバーと外部搬送機構やロードロック室との接続構造の標準化により、複数のプロセス装置を相互に接続するマルチチャンバー化が容易になるからである。
換言すれば、本実施形態のプラズマ処理装置によれば、従来のチャンバーをそのまま用いることで、コストを抑制しつつ、かつ汎用性を損なうことなく、ウェハに対するプラズマ処理における面内均一性の向上を実現することができる。
本実施形態のプラズマ処理装置において、ガス導入機構として上記第1実施形態と同様のものを用いることが好ましい。その構成を図12に示す。この図のプラズマ処理装置は、図9のガス導入機構50′に代えて、第1実施形態のガス導入機構50を用いている。他は、図9と同様に構成されている。
なお、本実施形態においても、第1実施形態の着脱機構70と同様の着脱機構を設けることが好ましい。
<第3実施形態>
次に、本発明の第3実施形態について説明する。この第3実施形態は、被処理基板である半導体ウェハWの載置構造に特徴がある。
図13は、本発明の第3実施形態に係るプラズマ処理装置における半導体ウェハ載置構造を示す概略断面図である。本実施形態ではサセプタ21の上にキャップ状のマスクプレート170が着脱自在に設けられてウェハ保持部20″が構成され、このマスクプレート170の表面上にウェハWが載置されるようになっている。半導体ウェハ載置構造やチャンバー回りの構造は、第2実施形態と同様であるから、図13において、第2実施形態の図10と同じものには同じ符号を付して説明を簡略化する。
マスクプレート170は、石英(SiO)等の誘電体で構成されている。このマスクプレート170は、ウェハWを載置しない状態でプラズマ処理を行ってチャンバー10′内の初期化を行うため、および、サセプタ21からウェハWへ汚染物が飛散することを防止するために設けられており、特にシリコン上の酸化物をエッチング除去する際に有効である。
図14の拡大断面図に例示されるように、マスクプレート170の上面は、載置されるウェハWの裏面に接するウェハ載置領域170a、およびその外側の周辺領域170bが、段差をなすことなく、同じ厚さ(高さ)に平坦に形成されている。
一例としてウェハWの直径が300mmの場合、マスクプレート170の外径は、一例として、352mmである。
サセプタ21およびマスクプレート170において、ウェハ載置領域170aに対応する位置には、ウェハWを支持して昇降させるための3本(2本のみ図示)のウェハ昇降ピン31が挿通される貫通孔31bおよび貫通孔170cが穿設されており、この貫通孔31bおよび貫通孔170cを通じて、ウェハ昇降ピン31がマスクプレート170の上面に対して突没可能になっている。
図15に例示されるように、マスクプレート170の上面の周辺領域170bには、ウェハWの外縁部を取り囲むように、複数(本実施形態の場合は6個)の位置決め突起171が周方向にほぼ等間隔に配列されており、ウェハ載置領域170aに載置されたウェハWの位置ずれを防止している。図14に例示されるように、位置決め突起171の配列領域の直径は、その内側に配置されるウェハWの外周と個々の位置決め突起171との間隙Gが0.5〜2mm、望ましくは1mmになるように設定される。
この位置決め突起171の寸法は、高さがウェハWの厚さよりも低いことが好ましく、高さは0.775mm以下であり、さらに好ましくは、0.7mm以下、より好ましくは0.05〜0.3mm以下で、直径は0.2〜5mmである。位置決め突起171の寸法は、一例として、直径が2.4mmで高さが0.3mmであり、直径352mmのマスクプレート170の表面に占める面積は無視できる程度に小さい。すなわち、マスクプレート170の表面の周辺領域170bは、実質的にウェハ載置領域170aと同じ高さで平坦である。
マスクプレート170の上面のウェハ載置領域170aには、中心部から放射状に通気溝172が刻設されており、この通気溝172の端部は、ウェハ昇降ピン31が挿通される貫通孔170cおよび貫通孔31bに連通している。そして、ウェハWをマスクプレート170上のウェハ載置領域170aに載置する際には、ウェハWの裏面とマスクプレート170との間の雰囲気が通気溝172および貫通孔170c、貫通孔31bを通じてサセプタ21の裏面側に速やかに排出される。これにより、ウェハWが不安定な浮動状態となって位置ずれすることを防止して、安定かつ速やかな載置操作を行うことが可能になる。逆に、ウェハ昇降ピン31の突き上げ動作にてウェハWをマスクプレート170上から浮上させる際には、ウェハWの裏面側に貫通孔31b、貫通孔170cおよび通気溝172を通じてサセプタ21の裏面側の雰囲気が流れ込むことにより、ウェハWの裏面側が負圧になって浮上を妨げる吸着力が発生することを防止し、ウェハWの速やかな浮上操作を実現することができる。
ここで、図13〜図15に例示されるマスクプレート170では、上述のように、載置されるウェハWの裏面に接するウェハ載置領域170a、およびその外側の周辺領域170bが、段差をなすことなく、同じ厚さ(高さ)に平坦に形成されているので、プラズマ形成時におけるマスクプレート170(サセプタ21)の上面内におけるインピーダンスの分布が、ウェハ載置領域170a、およびその外側の周辺領域170bで均一になる。このため、プラズマの密度分布が、ウェハ載置領域170a(ウェハWの表面)上と、その外側の周辺領域170bとで均一化され、インピーダンスの分布の偏り等に起因して、ウェハWの中心部と周辺部とでエッチング速度が異なる等の処理のばらつきが解消され、ウェハWの全面においてエッチング処理等のプラズマ処理の面内均一性が向上する。
図16は、マスクプレート170のウェハ載置領域170aにウェハWを位置決めするための段差を形成した場合において、当該段差の高さ寸法Ts(横軸:単位mm)の値と、エッチング結果のばらつきNU(縦軸:単位%、1σの範囲からはずれた測定結果の個数の全測定結果に対する百分率であり小さいほど均一)を示した線図である。
この図16からも明らかなように、Tsの値が小さいほど、エッチングのばらつきNU%も小さくなり、Ts=0(すなわち、本実施形態のように、ウェハ載置領域170aと周辺領域170bとの段差がない平坦な場合に相当)で、ばらつきが最小となり、面内均一性が最も良好になることが知られる。
本実施形態のようにマスクプレート170を備えたウェハ載置構造を、図10の第2実施形態に係る偏平なベルジャー141を備えたプラズマ処理装置100′に適用した場合には、当該ベルジャー141の偏平化によるプラズマの分布密度の均一化との相乗効果で、より面内均一性を向上させる効果を期待することができる。
また、本実施の形態のマスクプレート170を備えたウエハ載置構造は、コイル143の巻回数が7回以上の比較的高さの高いベルジャーを備えた従来のプラズマ処理装置に適用した場合でも面内均一性の向上の効果を得ることができる。
なお、以上説明した実施形態は、あくまでも本発明の技術的内容を明らかにすることを意図するものであって、本発明はこのような実施形態のみ限定して解釈されるものではなく、本発明の思想の範囲内で、種々に変更して実施することができるものである。
たとえば、上記実施形態では本発明を自然酸化膜の除去を行う装置に適用した場合を示したが、本発明はコンタクトエッチング等を行う他のプラズマエッチング装置に適用することも可能であり、さらには、本発明を他のプラズマ処理装置に適用することも可能である。さらに、被処理体として半導体ウェハを用いた例について示したが、これに限らず、LCD基板等、他の被処理体に対しても適用可能である。
さらに、本発明の範囲を逸脱しない限り、上記実施形態の構成要素を適宜組み合わせたもの、あるいは上記実施の形態の構成要素を一部取り除いたものも本発明の範囲内である。

Claims (10)

  1. 被処理基板に対してプラズマ処理を行うプラズマ処理装置であって、
    被処理体を収容するチャンバーと、
    前記チャンバーの上方にチャンバーと連通するように設けられた誘電体からなるベルジャーおよび前記ベルジャーの外側の周囲にコイル状に巻回され前記ベルジャー内に誘導電界を形成するアンテナを有し、前記ベルジャーの内側へプラズマを発生させるプラズマ発生部と、
    前記プラズマ発生部と前記チャンバーとの間に設けられ、前記プラズマ発生部と前記チャンバーとで画成される処理空間にプラズマ形成用のガスを導入するガス導入機構と、
    前記チャンバー内に設けられた被処理体が載置される載置台と
    を具備し、
    前記ベルジャーの内径Dと、前記ベルジャーの中央部の内法高さHとの比D/Hで表される偏平率Kが1.60〜9.25であるプラズマ処理装置。
  2. 被処理基板に対してプラズマ処理を行うプラズマ処理装置であって、
    被処理体を収容するチャンバーと、
    前記チャンバーの上方にチャンバーと連通するように設けられた誘電体からなるベルジャーおよび前記ベルジャーの外側の周囲にコイル状に巻回され前記ベルジャー内に誘導電界を形成するアンテナを有し、前記ベルジャーの内側へプラズマを発生させるプラズマ発生部と、
    前記プラズマ発生部と前記チャンバーとの間に設けられ、前記プラズマ発生部と前記チャンバーとで画成される処理空間にプラズマ形成用のガスを導入するガス導入機構と、
    前記チャンバー内に設けられた被処理体が載置される載置台と
    を具備し、
    前記ベルジャーの内径Dと、前記ベルジャーの中央部の天井部分から前記載置台までの距離H1との比D/H1で表される偏平率K1が、0.90〜3.85であるプラズマ処理装置。
  3. 前記ベルジャーは円筒状の側壁部と、その上に設けられた天壁部とを有し、前記アンテナは円筒状の側壁部に巻回される請求項1または請求項2に記載のプラズマ処理装置。
  4. 前記アンテナの巻回数は、4回以下である請求項1から請求項3のいずれか1項に記載のプラズマ処理装置。
  5. 誘電体からなり前記載置台を覆うマスクをさらに具備し、前記マスクは、前記被処理体が載置される第1領域と、前記第1領域の周りの第2領域とが同一の高さに構成されている請求項1から請求項4のいずれか1項に記載のプラズマ処理装置。
  6. 前記第2領域には、前記被処理体を前記第1領域の位置に位置決めするための複数の突起が設けられている請求項5に記載のプラズマ処理装置。
  7. 前記第1領域には、前記被処理体を前記載置台から浮上させるための昇降ピンが貫通する複数のピン孔と、前記ピン孔に連通する溝パターンとが設けられている請求項5または請求項6に記載のプラズマ処理装置。
  8. 前記ガス導入機構は、
    前記ベルジャーを支持するとともに前記チャンバーに載せられ、処理ガスを前記処理空間に導入するガス導入路が形成され、その中央に前記処理空間の一部をなす穴部を有するガス導入ベースと、
    前記ガス導入ベースの前記穴部に取り外し可能に装着され、前記ガス導入路から前記処理空間に連通して前記処理ガスを前記処理空間に吐出する複数のガス吐出孔を有するリング状をなすガス導入プレートと
    を有する請求項1から請求項7のいずれか1項に記載のプラズマ処理装置。
  9. 前記ガス導入機構と前記プラズマ発生部とを、前記チャンバーに対して着脱させる着脱機構をさらに具備する請求項1から請求項8のいずれか1項に記載のプラズマ処理装置。
  10. 前記ベルジャーは、半径R1が1600mm〜2200mmの天壁部と、円筒状の側壁部と、前記天壁部と前記側壁部を接続する半径R2が20mm〜40mmのコーナ部とからなる多半径ドーム形状を呈する請求項1から請求項9のいずれか1項に記載のプラズマ処理装置。
JP2009191624A 2003-05-02 2009-08-21 プラズマ処理装置 Active JP5279656B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009191624A JP5279656B2 (ja) 2003-05-02 2009-08-21 プラズマ処理装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003127201 2003-05-02
JP2003127201 2003-05-02
JP2003180865 2003-06-25
JP2003180865 2003-06-25
JP2009191624A JP5279656B2 (ja) 2003-05-02 2009-08-21 プラズマ処理装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005505933A Division JP4394073B2 (ja) 2003-05-02 2004-04-28 処理ガス導入機構およびプラズマ処理装置

Publications (2)

Publication Number Publication Date
JP2009283975A true JP2009283975A (ja) 2009-12-03
JP5279656B2 JP5279656B2 (ja) 2013-09-04

Family

ID=33422096

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2005505933A Expired - Fee Related JP4394073B2 (ja) 2003-05-02 2004-04-28 処理ガス導入機構およびプラズマ処理装置
JP2009191624A Active JP5279656B2 (ja) 2003-05-02 2009-08-21 プラズマ処理装置
JP2009191630A Pending JP2009272657A (ja) 2003-05-02 2009-08-21 プラズマ処理装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2005505933A Expired - Fee Related JP4394073B2 (ja) 2003-05-02 2004-04-28 処理ガス導入機構およびプラズマ処理装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009191630A Pending JP2009272657A (ja) 2003-05-02 2009-08-21 プラズマ処理装置

Country Status (4)

Country Link
US (2) US20060060141A1 (ja)
JP (3) JP4394073B2 (ja)
KR (3) KR100783829B1 (ja)
WO (1) WO2004097919A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175121A (ja) * 2016-02-12 2017-09-28 ラム リサーチ コーポレーションLam Research Corporation プラズマ源のチャンバ部材、および、基板c−リングの平行移動のために半径方向外側に配置されたリフトピンを備えるペデスタル
WO2020123119A1 (en) * 2018-12-10 2020-06-18 Applied Materials, Inc. Dome stress isolating layer

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149332B1 (ko) 2005-07-29 2012-05-23 주성엔지니어링(주) 플라즈마 식각 장치
US7976671B2 (en) * 2006-10-30 2011-07-12 Applied Materials, Inc. Mask etch plasma reactor with variable process gas distribution
US20080178805A1 (en) * 2006-12-05 2008-07-31 Applied Materials, Inc. Mid-chamber gas distribution plate, tuned plasma flow control grid and electrode
KR101329569B1 (ko) * 2007-02-06 2013-11-14 램 리써치 코포레이션 막 형성 장치
KR101329570B1 (ko) * 2007-02-06 2013-11-22 (주)소슬 막 형성 장치
TWI404165B (zh) 2007-04-02 2013-08-01 Sosul Co Ltd 基材支撐裝置及包含該裝置之電漿蝕刻裝置
US20080289766A1 (en) * 2007-05-22 2008-11-27 Samsung Austin Semiconductor Lp Hot edge ring apparatus and method for increased etch rate uniformity and reduced polymer buildup
JP4931716B2 (ja) * 2007-07-18 2012-05-16 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ生成室
JP2009152434A (ja) * 2007-12-21 2009-07-09 Tokyo Electron Ltd 基板処理装置
US8828852B2 (en) * 2009-12-10 2014-09-09 California Institute Of Technology Delta-doping at wafer level for high throughput, high yield fabrication of silicon imaging arrays
JP5551946B2 (ja) * 2010-03-10 2014-07-16 東京エレクトロン株式会社 表面平坦化方法
US8562742B2 (en) * 2010-04-30 2013-10-22 Applied Materials, Inc. Apparatus for radial delivery of gas to a chamber and methods of use thereof
US9336996B2 (en) * 2011-02-24 2016-05-10 Lam Research Corporation Plasma processing systems including side coils and methods related to the plasma processing systems
US8802545B2 (en) 2011-03-14 2014-08-12 Plasma-Therm Llc Method and apparatus for plasma dicing a semi-conductor wafer
US9070760B2 (en) 2011-03-14 2015-06-30 Plasma-Therm Llc Method and apparatus for plasma dicing a semi-conductor wafer
WO2012137408A1 (ja) 2011-04-04 2012-10-11 キヤノンアネルバ株式会社 処理装置
US8562785B2 (en) * 2011-05-31 2013-10-22 Lam Research Corporation Gas distribution showerhead for inductively coupled plasma etch reactor
US9245717B2 (en) 2011-05-31 2016-01-26 Lam Research Corporation Gas distribution system for ceramic showerhead of plasma etch reactor
CN103426793B (zh) * 2012-05-24 2016-02-03 沈阳芯源微电子设备有限公司 基板冷热处理装置
KR101495288B1 (ko) * 2012-06-04 2015-02-24 피에스케이 주식회사 기판 처리 장치 및 방법
KR101546447B1 (ko) 2014-03-20 2015-08-25 피에스케이 주식회사 배플 및 이를 포함하는 기판 처리 장치
JP6298373B2 (ja) * 2014-07-11 2018-03-20 東京エレクトロン株式会社 プラズマ処理装置および上部電極アセンブリ
JP2016091654A (ja) * 2014-10-30 2016-05-23 東京エレクトロン株式会社 プラズマ処理装置
JP6503730B2 (ja) * 2014-12-22 2019-04-24 東京エレクトロン株式会社 成膜装置
US10957561B2 (en) 2015-07-30 2021-03-23 Lam Research Corporation Gas delivery system
JP6608218B2 (ja) * 2015-08-12 2019-11-20 株式会社ディスコ プラズマエッチング装置
US10825659B2 (en) 2016-01-07 2020-11-03 Lam Research Corporation Substrate processing chamber including multiple gas injection points and dual injector
US10651015B2 (en) 2016-02-12 2020-05-12 Lam Research Corporation Variable depth edge ring for etch uniformity control
KR102222183B1 (ko) * 2016-03-30 2021-03-02 도쿄엘렉트론가부시키가이샤 플라스마 전극 및 플라스마 처리 장치
US10410832B2 (en) 2016-08-19 2019-09-10 Lam Research Corporation Control of on-wafer CD uniformity with movable edge ring and gas injection adjustment
JP6615134B2 (ja) 2017-01-30 2019-12-04 日本碍子株式会社 ウエハ支持台
US11562890B2 (en) * 2018-12-06 2023-01-24 Applied Materials, Inc. Corrosion resistant ground shield of processing chamber
JP7194941B2 (ja) * 2019-04-18 2022-12-23 パナソニックIpマネジメント株式会社 プラズマ処理装置
CN112071733B (zh) * 2019-06-10 2024-03-12 中微半导体设备(上海)股份有限公司 用于真空处理设备的内衬装置和真空处理设备
KR20210125155A (ko) * 2020-04-07 2021-10-18 삼성디스플레이 주식회사 표시 장치의 제조방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131520A (ja) * 1986-11-21 1988-06-03 Toshiba Corp ドライエツチング装置
JPH08181195A (ja) * 1994-09-01 1996-07-12 Applied Materials Inc ペデスタル及びベース間の改善された熱伝達
JPH0969400A (ja) * 1995-06-18 1997-03-11 Tokyo Electron Ltd プラズマ処理装置
JPH10258227A (ja) * 1997-01-02 1998-09-29 Applied Materials Inc ハイブリッド導体と多半径ドームシーリングを持つrfプラズマリアクタ
JPH116069A (ja) * 1997-06-11 1999-01-12 Tokyo Electron Ltd 処理装置およびステージ装置
JPH11135296A (ja) * 1997-07-14 1999-05-21 Applied Materials Inc マルチモードアクセスを有する真空処理チャンバ
JP2001226773A (ja) * 1999-12-10 2001-08-21 Tokyo Electron Ltd 処理装置およびそれに用いられる耐食性部材
JP2002502555A (ja) * 1997-06-03 2002-01-22 アプライド マテリアルズ インコーポレイテッド 一体型イオンフォーカスリングを有する静電支持組立体
WO2003010809A1 (fr) * 2001-07-27 2003-02-06 Tokyo Electron Limited Dispositif de traitement au plasma et table de montage de substrat
JP2004006300A (ja) * 2002-04-09 2004-01-08 Matsushita Electric Ind Co Ltd プラズマ処理方法及び装置、プラズマ処理用トレー
JP2004047500A (ja) * 2001-06-01 2004-02-12 Tokyo Electron Ltd プラズマ処理装置およびその初期化方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US577289A (en) * 1897-02-16 Fluid-pressure regulator
JPH01126190A (ja) * 1987-11-10 1989-05-18 Mitsubishi Electric Corp 直流ブラシレスモータの制御装置
JPH01167746A (ja) * 1987-12-23 1989-07-03 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
JPH04336426A (ja) * 1991-05-14 1992-11-24 Fujitsu Ltd 半導体装置の製造方法
US6095083A (en) * 1991-06-27 2000-08-01 Applied Materiels, Inc. Vacuum processing chamber having multi-mode access
US5777289A (en) 1995-02-15 1998-07-07 Applied Materials, Inc. RF plasma reactor with hybrid conductor and multi-radius dome ceiling
TW283250B (en) * 1995-07-10 1996-08-11 Watkins Johnson Co Plasma enhanced chemical processing reactor and method
US6170428B1 (en) * 1996-07-15 2001-01-09 Applied Materials, Inc. Symmetric tunable inductively coupled HDP-CVD reactor
US5937323A (en) 1997-06-03 1999-08-10 Applied Materials, Inc. Sequencing of the recipe steps for the optimal low-k HDP-CVD processing
JPH1126190A (ja) * 1997-07-04 1999-01-29 Hitachi Ltd プラズマ処理装置
US6050446A (en) * 1997-07-11 2000-04-18 Applied Materials, Inc. Pivoting lid assembly for a chamber

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131520A (ja) * 1986-11-21 1988-06-03 Toshiba Corp ドライエツチング装置
JPH08181195A (ja) * 1994-09-01 1996-07-12 Applied Materials Inc ペデスタル及びベース間の改善された熱伝達
JPH0969400A (ja) * 1995-06-18 1997-03-11 Tokyo Electron Ltd プラズマ処理装置
JPH10258227A (ja) * 1997-01-02 1998-09-29 Applied Materials Inc ハイブリッド導体と多半径ドームシーリングを持つrfプラズマリアクタ
JP2002502555A (ja) * 1997-06-03 2002-01-22 アプライド マテリアルズ インコーポレイテッド 一体型イオンフォーカスリングを有する静電支持組立体
JPH116069A (ja) * 1997-06-11 1999-01-12 Tokyo Electron Ltd 処理装置およびステージ装置
JPH11135296A (ja) * 1997-07-14 1999-05-21 Applied Materials Inc マルチモードアクセスを有する真空処理チャンバ
JP2001226773A (ja) * 1999-12-10 2001-08-21 Tokyo Electron Ltd 処理装置およびそれに用いられる耐食性部材
JP2004047500A (ja) * 2001-06-01 2004-02-12 Tokyo Electron Ltd プラズマ処理装置およびその初期化方法
WO2003010809A1 (fr) * 2001-07-27 2003-02-06 Tokyo Electron Limited Dispositif de traitement au plasma et table de montage de substrat
JP2004006300A (ja) * 2002-04-09 2004-01-08 Matsushita Electric Ind Co Ltd プラズマ処理方法及び装置、プラズマ処理用トレー

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175121A (ja) * 2016-02-12 2017-09-28 ラム リサーチ コーポレーションLam Research Corporation プラズマ源のチャンバ部材、および、基板c−リングの平行移動のために半径方向外側に配置されたリフトピンを備えるペデスタル
WO2020123119A1 (en) * 2018-12-10 2020-06-18 Applied Materials, Inc. Dome stress isolating layer
US11326256B2 (en) 2018-12-10 2022-05-10 Applied Materials, Inc. Dome stress isolating layer

Also Published As

Publication number Publication date
KR100756095B1 (ko) 2007-09-05
KR100783829B1 (ko) 2007-12-10
KR20060003891A (ko) 2006-01-11
KR20070012572A (ko) 2007-01-25
US20060060141A1 (en) 2006-03-23
JPWO2004097919A1 (ja) 2006-07-13
US8191505B2 (en) 2012-06-05
JP2009272657A (ja) 2009-11-19
JP4394073B2 (ja) 2010-01-06
US20090260762A1 (en) 2009-10-22
KR20070012573A (ko) 2007-01-25
JP5279656B2 (ja) 2013-09-04
KR100739890B1 (ko) 2007-07-13
WO2004097919A1 (ja) 2004-11-11

Similar Documents

Publication Publication Date Title
JP5279656B2 (ja) プラズマ処理装置
TWI507091B (zh) 電漿處理設備
TWI553729B (zh) Plasma processing method
US20150020848A1 (en) Systems and Methods for In-Situ Wafer Edge and Backside Plasma Cleaning
JP2001077088A (ja) プラズマ処理装置
JP6339866B2 (ja) プラズマ処理装置およびクリーニング方法
CN100508117C (zh) 等离子体处理装置
US20090314435A1 (en) Plasma processing unit
JP2002241946A (ja) プラズマ処理装置
JP2017010993A (ja) プラズマ処理方法
JP2024037895A (ja) 保護コーティングを有するプロセスチャンバプロセスキット
KR20180124773A (ko) 플라즈마 처리 장치의 세정 방법
JP7175162B2 (ja) 被処理体のプラズマエッチング方法及びプラズマエッチング装置
US8974600B2 (en) Deposit protection cover and plasma processing apparatus
JP4091445B2 (ja) プラズマ処理装置およびプラズマ処理方法
WO2019235282A1 (ja) 基板処理装置およびシャワーヘッド
JP2004047500A (ja) プラズマ処理装置およびその初期化方法
JP2009152233A (ja) 半導体製造装置
TW202141620A (zh) 清洗方法及半導體裝置之製造方法
JP2007295001A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5279656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250