JP2009247893A - 治療用処置システム - Google Patents

治療用処置システム Download PDF

Info

Publication number
JP2009247893A
JP2009247893A JP2009083481A JP2009083481A JP2009247893A JP 2009247893 A JP2009247893 A JP 2009247893A JP 2009083481 A JP2009083481 A JP 2009083481A JP 2009083481 A JP2009083481 A JP 2009083481A JP 2009247893 A JP2009247893 A JP 2009247893A
Authority
JP
Japan
Prior art keywords
living tissue
frequency
energy
frequency energy
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009083481A
Other languages
English (en)
Other versions
JP2009247893A5 (ja
JP5220671B2 (ja
Inventor
Tomoyuki Takashino
智之 高篠
Kenichi Kimura
健一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Medical Systems Corp
Original Assignee
Olympus Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Medical Systems Corp filed Critical Olympus Medical Systems Corp
Publication of JP2009247893A publication Critical patent/JP2009247893A/ja
Publication of JP2009247893A5 publication Critical patent/JP2009247893A5/ja
Application granted granted Critical
Publication of JP5220671B2 publication Critical patent/JP5220671B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • A61B18/085Forceps, scissors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • A61B18/1447Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod wherein sliding surfaces cause opening/closing of the end effectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • A61B2018/00678Sensing and controlling the application of energy using a threshold value upper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00761Duration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound

Abstract

【課題】 生体組織をその組織の状態に応じて切り換えて処置可能な治療用処置システムを提供する。
【解決手段】 生体組織Lにエネルギを作用させて治療するための治療用処置システム10は、1対の保持部材36a,36b、高周波エネルギ出力部52a,52b、発熱部54および制御部を有する。保持部材は、生体組織を把持する。高周波エネルギ出力部は、保持部材に設けられ、保持部材間に把持した生体組織の生体情報(インピーダンス、位相情報)Z,θを収集するとともに、生体組織に高周波エネルギを作用させて生体組織を変性させる。発熱部は、保持部材に設けられ、保持部材間に把持した生体組織に熱を伝えるためにエネルギを供給する。制御部は、高周波エネルギ出力部で収集した生体情報に基づいて、高周波エネルギ出力部および発熱部へのエネルギの出力を制御する。
【選択図】 図2

Description

この発明は、エネルギを用いて生体組織を治療するための治療用処置システムに関する。
例えば特許文献1には、開閉可能な1対のジョー間に生体組織を保持し、生体組織を保持した1対のジョー間に高周波電流を流すことにより保持した生体組織を変性させるエレクトロサージカル器具(electrosurgical instrument)が開示されている。一般的にエレクトロサージカル器具は、生体組織に高周波工ネルギを流すことで生体内に発生するジュール熱を利用して組織の内部を瞬時に変性させること、これと同時に、瞬時に細胞膜を破壊しその破壊された細胞膜からタンパク質をはじめとする高分子化合物を含んだ細胞内成分を放出させるとともに、コラーゲンをはじめとする細胞外成分と均一化(リキッド化)させる作用を有することが知られている。この均一化により生体組織の接合面同士、組織の層間同士の接合に繋げることができる。
また、エレクトロサージカル器具の他の特徴としては、生体組織の状態(インピーダンスや位相情報)を検出することができること、そして、保持した生体組織のインピーダンスが高くなると生体組織に与えることができる高周波エネルギの出力が低減する特性を示すことなどが知られている。
例えば特許文献2には、開閉可能な1対のジョーにセラミックヒータを配設した熱凝固処置具が開示されている。セラミックヒータには発熱体が埋め込まれ、その発熱体に通電することによりセラミックヒータが発熱する。一般的にセラミックヒータをはじめとする熱凝固処置具は、1対のジョー間で保持した生体組織にヒータの熱を伝えることにより、生体組織を凝固させる作用を有する。よって、設定した温度に発熱体を発熱させることで、生体組織の状態に関係なく、均一的に熱エネルギを生体組織に与えることができる。そのため、生体組織のインピーダンスが上昇した後など、高周波エネルギを用いた処置では生体組織に対して十分に出力できない状態においても、熱凝固処置具は、生体組織に対して所望の出力を均一的に行うことができる。
米国特許出願公開2005/0113828号明細書 特開2001−190561号公報
上述した特許文献1のエレクトロサージカル器具では、生体組織に高周波エネルギを与える際の出力は生体組織の状態(特に組織インピーダンス)に大きく依存する。そのため、保持した生体組織の構造や厚さが不均一であると、生体組織に与える出力も不均一となり、均一的な安定した組織同士の接合を行うことが難しくなる。例えば、生体組織に脂肪層が含まれている場合では、インピーダンスが高い脂肪層の近傍には高周波エネルギを与え難くなる。さらに、保持した生体組織のインピーダンスが高い状態、例えば生体組織の凝固が進んで乾燥した状態になるにつれて、生体組織への高周波エネルギの投入が難しくなる。そのために所望の接合状態を作り出すことが難しいという課題を有する。
上述した特許文献2において、生体組織はセラミックヒータに接した部分からの熱エネルギの伝導により凝固される。熱伝導の良し悪しは、対象組織の熱伝導率に依存するために、熱伝導率の悪い生体組織では熱貫通性が低い。処置対象の生体組織が厚くなるにつれて接合面上の組織を変性させるための時間を要したり、十分な変性を引き起こすことが難しくなるという現象が生じる。また、熱エネルギの伝導によっても細胞膜を破壊することはできるが、熱エネルギの伝導による変性が生じた後に細胞膜を破壊する現象が引き起こされるので、破壊レベルが低い。このように熱による変性が生じた後の現象であるので、細胞膜の内側の物質、外側の物質の流動性も低い。このため、保持した生体組織の種類や状態(組織が厚い、体液の付着が多い等)によっては生体組織へのエネルギ投入に時間がかかったり、接合が不十分になる場合がある。
この発明は、生体組織をその組織の状態に応じて適切なエネルギ出力に切り換えて最適な状態で処置可能な治療用処置システムを提供することを目的とする。
上記課題を解決するために、本発明に係る、生体組織にエネルギを作用させて治療するための治療用処置システムは、少なくとも一方が他方に対して相対的に移動して生体組織を把持して前記生体組織を保持する1対の保持部材と、前記保持部材の少なくとも一方に設けられ、前記生体組織に高周波エネルギを作用させて生体組織を変性させるとともに、前記保持部材間に把持した生体組織の生体情報を収集する高周波エネルギ出力部と、エネルギの供給によって発熱し前記発熱部からの伝熱により生体組織を変性させるように前記保持部材の少なくとも一方に設けられ、前記保持部材間に把持した生体組織に熱を加える発熱部と、前記高周波エネルギ出力部材で収集した生体情報に基づいて、高周波エネルギ出力部および前記発熱部へのエネルギの出力を制御する制御部とを具備することを特徴とする。
高周波エネルギによる処置と発熱部による熱エネルギによる処置とに処置方式を切り換え可能であり、かつ、処置の際の生体組織の状態を検出しつつ処置の出力を制御部で制御しながら処置することができるので、生体組織をその組織の状態に応じて切り換えて処置することができる。このため、生体組織に対する処置を確実に行うことができる。
上記課題を解決するために、本発明に係る治療用処置システムは、高周波エネルギを供給可能な電極と発熱要素とを有する処置部を備え、生体組織を把持可能な処置具と、前記電極に高周波電力を供給して前記処置部で把持した生体組織を高周波エネルギで処置するとともに、前記電極を通して前記生体組織から得られる情報を収集する高周波駆動回路と、前記発熱要素に発熱用電力を供給して前記処置部で把持した生体組織を熱の作用で処置するとともに、前記発熱要素から生体組織に熱が伝導したときの生体組織の温度情報を前記発熱要素を通して収集する発熱要素駆動回路と、前記高周波駆動回路および/もしくは前記発熱要素駆動回路で収集した情報に基づいて前記高周波駆動回路および前記発熱要素駆動回路を制御する制御部とを具備することを特徴とする。
高周波エネルギによる処置と、発熱要素を発熱させる処置とに処置方式を切り換え可能であり、かつ、処置の際の生体組織の状態を検出しつつ処置の出力を制御部で制御しながら処置することができるので、生体組織をその組織の状態に応じて切り換えて処置することができる。このため、生体組織に対する処置を確実に行うことができる。
この発明によれば、生体組織をその組織の状態に応じて適切なエネルギ出力に切り換えて最適な状態で処置可能な治療用処置システムを提供することができる。
本発明の第1の実施の形態に係る治療用処置システムを示す概略図。 第1の実施の形態に係る治療用処置システムの概略的なブロック図。 第1の実施の形態に係る治療用処置システムの外科用処置具でバイポーラ型の高周波エネルギを与えて生体組織を処置する際の概略図。 第1の実施の形態に係る治療用処置システムの外科用処置具でモノポーラ型の高周波エネルギを与えて生体組織を処置する際の概略図。 第1の実施の形態に係る治療用処置システムを用いて生体組織に高周波エネルギを用いた処置および熱エネルギを用いた処置を行う場合の概略的なフローチャート。 第1の実施の形態に係る治療用処置システムを用いて生体組織に高周波エネルギを用いた処置および熱エネルギを用いた処置を行う場合のインピーダンスと時間との関係を示す概略的なグラフ。 第1の実施の形態の第1の変形例に係る治療用処置システムの概略的なブロック図。 第1の実施の形態の第1の変形例に係る治療用処置システムを用いて生体組織に高周波エネルギを用いた処置および熱エネルギを用いた処置を行う場合の出力電圧値情報と、出力電圧位相情報と、出力電流値情報と、出力電流位相情報とから得られる位相と時間との関係を示す概略的なグラフ。 第1の実施の形態の第2の変形例に係る、治療用処置システムを用いて生体組織に高周波エネルギを用いた処置および熱エネルギを用いた処置を行う場合の概略的なフローチャート。 第1の実施の形態の第3の変形例に係る、治療用処置システムを用いて生体組織に高周波エネルギを用いた処置および熱エネルギを用いた処置を行う場合の概略的なフローチャート。 第1の実施の形態の第4の変形例に係る治療用処置システムの概略的なブロック図。 本発明の第2の実施の形態に係る治療用処置システムを示す概略図。 (A)は第2の実施の形態に係る治療用処置システムのエネルギ処置具のシャフト、並びに保持部の閉じた状態の第1の保持部材および第2の保持部材を示す概略的な縦断面図、(B)は第2の実施の形態に係る治療用処置システムのエネルギ処置具のシャフト、並びに保持部の開いた状態の第1の保持部材および第2の保持部材を示す概略的な縦断面図。 (A)は第2の実施の形態に係る治療用処置システムのエネルギ処置具の保持部のうち、第2の保持部材に近接する側の第1の保持部材を示す概略的な平面図、(B)は第2の実施の形態に係る治療用処置システムのエネルギ処置具の保持部のうち、図11(A)に示す11B−11B線に沿う、第1の保持部材を示す概略的な縦断面図、(C)は第2の実施の形態に係る治療用処置システムのエネルギ処置具の保持部のうち、図11(A)に示す11C−11C線に沿う、第1の保持部材を示す概略的な横断面図。 第2の実施の形態に係る治療用処置システムのエネルギ処置具の保持部の第1の保持部材に配設された第1の高周波電極の裏面にヒータ部材が固定された状態を示す概略図。 第2の実施の形態に係る治療用処置システムの概略的なブロック図。 第2の実施の形態に係る治療用処置システムを用いて生体組織に高周波エネルギを用いた処置および熱エネルギを用いた処置を行う場合の概略的なフローチャート。 第2の実施の形態に係る治療用処置システムを用いて生体組織に高周波エネルギを用いた処置および熱エネルギを用いた処置を行う場合の、生体組織に所定の高周波エネルギを入力したときの時間に対する生体組織のインピーダンスの変化量を示すとともに、インピーダンスが所定の値に到達した後、高周波エネルギの代わりに所定の熱エネルギを入力したときの時間に対する生体組織のインピーダンスの変化量を示す概略的なグラフ。 第2の実施の形態に係る治療用処置システムの変形例を示す概略図。 (A)は第2の実施の形態の第1の変形例に係る治療用処置システムを用いて生体組織に対して高周波エネルギを用いた処置および熱エネルギを用いた処置を行う場合の、時間に対する生体組織への高周波エネルギの入力法、および、時間に対する生体組織への熱エネルギの入力法の一例を示す概略的なグラフ、(B)は第2の実施の形態の第1の変形例に係る治療用処置システムを用いて生体組織に対して高周波エネルギを用いた処置および熱エネルギを用いた処置を行う場合の、時間に対する生体組織への高周波エネルギの入力法、および、時間に対する生体組織への熱エネルギの入力法の一例を示す概略的なグラフ、(C)は第2の実施の形態の第1の変形例に係る治療用処置システムを用いて生体組織に対して高周波エネルギを用いた処置および熱エネルギを用いた処置を行う場合の、時間に対する生体組織への高周波エネルギの入力法、および、時間に対する生体組織への熱エネルギの入力法の一例を示す概略的なグラフ、(D)は第2の実施の形態の第1の変形例に係る治療用処置システムを用いて生体組織に対して高周波エネルギを用いた処置および熱エネルギを用いた処置を行う場合の、時間に対する生体組織への高周波エネルギの入力法、および、時間に対する生体組織への熱エネルギの入力法の一例を示す概略的なグラフ、(E)は第2の実施の形態の第1の変形例に係る治療用処置システムを用いて生体組織に対して高周波エネルギを用いた処置および熱エネルギを用いた処置を行う場合の、時間に対する生体組織への高周波エネルギの入力法、および、時間に対する生体組織への熱エネルギの入力法の一例を示す概略的なグラフ。 第2の実施の形態の第2の変形例に係る治療用処置システムのエネルギ処置具の保持部の第1の保持部材に配設された第1の高周波電極の裏面にヒータ部材が固定された状態を示す概略図。 第2の実施の形態の第3の変形例に係る外科用処置具の保持部のうち、第2の保持部材に近接する側の第1の保持部材を示す概略的な平面図。 第2の実施の形態の第3の変形例に係る外科用処置具の保持部のうち、図19Aに示す19B−19B線に沿う、第1の保持部材を示す概略的な縦断面図。 第2の実施の形態の第3の変形例に係る外科用処置具の保持部のうち、図19Aに示す19C−19C線に沿う、第1の保持部材を示す概略的な横断面図。 第2の実施の形態の第3の変形例の更なる変形例に係る外科用処置具の保持部のうち、第2の保持部材に近接する側の第1の保持部材を示す概略的な平面図。 (A)は小腸の2つの腸管を吻合した状態を示す概略的な斜視図であるとともに、後述する図20(C)に示す20A−20A線に沿う概略図、(B)は図20(A)中の符号20Bで示す部分を拡大して示す概略図、(C)は小腸の2つの腸管を吻合した後、これら腸管の端部を封止した状態を示す概略図、(D)は図20(A)中の符号20Bで示す部分を拡大して示す、図20(B)の変形例としての概略図。 (A)は第2の実施の形態の第4の変形例に係る外科用処置具の保持部のうち、第2の保持部材に近接する側の第1の保持部材を示す概略的な平面図、(B)は第2の実施の形態の第4の変形例に係る外科用処置具の保持部のうち、第2の保持部材に近接する側の第1の保持部材を示す概略的な平面図、(C)は第2の実施の形態の第4の変形例に係る外科用処置具の保持部のうち、第2の保持部材に近接する側の第1の保持部材を示す概略的な平面図。 (A)は第2の実施の形態の第5の変形例に係る外科用処置具の保持部のうち、第2の保持部材に近接する側の第1の保持部材を示す概略的な平面図、(B)は第2の実施の形態の第5の変形例に係る外科用処置具の保持部のうち、図22(A)に示す22B−22B線に沿う、第1の保持部材を示す概略的な横断面図、(C)は第2の実施の形態の第5の変形例の更なる変形例に係る外科用処置具の保持部のうち、図22(A)に示す22B−22B線に沿う、第1の保持部材を示す概略的な横断面図。 第3の実施の形態に係る治療用処置システムの変形例を示す概略図。 第3の実施の形態に係るエネルギ処置具の本体側保持部と離脱側保持部とを係合し、本体側保持部に対して離脱側保持部を離隔させた状態を示す概略的な縦断面図。 第3の実施の形態に係るエネルギ処置具の本体側保持部と離脱側保持部とを係合し、本体側保持部に対して離脱側保持部を契合させた状態を示す概略的な縦断面図。 第3の実施の形態に係るエネルギ処置具の本体側保持部の表面を示す概略図。 第3の実施の形態の変形例に係るエネルギ処置具の本体側保持部の表面を示す概略図。
以下、図面を参照しながらこの発明を実施するための形態について説明する。
[第1の実施の形態]
第1の実施の形態について図1から図5を用いて説明する。
図1に示すように、治療用処置システム10は、外科用処置具(治療用処置具)12と、エネルギ源14と、フットスイッチ16とを備えている。外科用処置具12は、例えば1対の高周波エネルギ出力用接続ケーブル22a,22bと1つの熱エネルギ出力用接続ケーブル24とによりエネルギ源14に接続されている。フットスイッチ16は、スイッチ用接続ケーブル26によりエネルギ源14に接続されている。
外科用処置具12は、1対の鋏構成部材32a,32bと、鋏構成部材32a,32bの基端部に設けられ術者が手に持って操作する1対のハンドル部34a,34bと、鋏構成部材32a,32bの先端部に設けられ処置する生体組織Lを保持して凝固、切開等の処置を行う1対のジョー(保持部材、処置部)36a,36bとを備えている。
1対の鋏構成部材32a,32bはそれらの先端と基端との間で互いが略交差する状態に重ねられている。鋏構成部材32a,32bの交差部には、鋏構成部材32a,32bを回動自在に連結する支点ピン38が設けられている。
1対のハンドル部34a,34bには、術者が指をかけるリング42a,42bが設けられている。術者が各々のリング42a,42bに例えば親指と中指を通して開閉させる動作を行うと、その動作に連動してジョー36a,36bが開閉する。
1対のジョー36a,36bには、生体組織Lにエネルギを与えるためのエネルギ放出要素が配設されている。一方のジョー36aには、エネルギ放出要素として第1の高周波電極52aが配設されている。他方のジョー36bには、エネルギ放出要素として、第2の高周波電極52bと、ヒータ部材54とが配設されている。このうち、ヒータ部材(発熱要素)54は、第2の高周波電極52bの裏面に固定された状態で他方のジョー36bに埋め込まれている。
このように、1対のジョー36a,36bは、第1および第2の高周波電極52a,52bによりそれぞれ導電性の組織保持面(組織把持面)を備えている。なお、ヒータ部材54は、薄膜抵抗や厚膜抵抗が発熱パターンとして形成されている。薄膜抵抗はPVD(Physical Vapor Deposition)やCVD(Chemical Vapor Deposition)などの薄膜形成法により形成される。厚膜抵抗は、スクリーン印刷などの厚膜形成法により形成される。発熱パターンは温度に比例して電気抵抗が増加する、いわゆる正の温度係数を有するモリブデン等の高融点金属により形成されている。
1対の鋏構成部材32a,32bの内部には、それぞれ電極52a,52bに電気信号を供給するための電源供給ライン62a,62bが配設されている。電源供給ライン62a,62bは、それぞれジョー36a,36bからハンドル部34a,34bまで延びている。リング42a,42bにはそれぞれバイポーラ用端子64a,64bが設けられている。バイポーラ用端子64a,64bはそれぞれ電源供給ライン62a,62bと電気的に接続されている。このため、ジョー36a,36b間(電極52a,52b間)に生体組織Lを把持した状態で、電源供給ライン62a,62bを通して電極52a,52bにエネルギが供給されると、電極52a,52b間の生体組織Lに高周波電流が通電されて生体組織Lが発熱する。
1対の鋏構成部材32a,32bのうちの他方の鋏構成部材32bには、ヒータ部材54に電力を供給するための電源供給ライン66が内部に配設されている。電源供給ライン66は、ジョー36bからハンドル部34bまで延びている。リング42bには、電源供給ライン66と電気的に接続されたヒータ部材用端子68が設けられている。このため、電源供給ライン66を通してヒータ部材54にエネルギが供給されると、ヒータ部材54が発熱し、その熱(熱エネルギ)がヒータ部材54に密着した第2の高周波電極52bに伝熱され、第2の高周波電極52bの表面に接触した生体組織Lに熱が伝えられる。
このような構造により、ヒータ部材54は、生体組織Lを把持するために開閉可能に支持された1対のジョー36a,36bの少なくとも一方(両方に設けられていることも好適である)に設けられ、ジョー36a,36b間に把持された生体組織Lを凝固させるための熱エネルギを付与可能な発熱手段となっている。
したがって、外科用処置具12は、これら電極52a,52b間に高周波電流を流すことによって、ジョー36a,36b間に把持した生体組織Lに高周波エネルギを与えることができる。また、ヒータ部材54にエネルギを与えて発熱させることによって、ヒータ部材54の発熱による熱エネルギを第2の電極52bを通して生体組織Lに伝導させて処置を行うことができる。
なお、フットスイッチ16は、ペダル16aを備えている。ペダル16aが押圧されているときには、高周波エネルギおよび/または熱エネルギを、適宜に設定した状態(エネルギ出力量、エネルギ出力タイミングなどを制御した状態)に基づいて出力する。ペダル16aの押圧が解除されると、高周波エネルギおよび熱エネルギの出力を強制的に停止させる。
図2に示すように、エネルギ源14の内部には、高周波エネルギ駆動回路72と、発熱要素駆動回路74とが配設されている。高周波エネルギ駆動回路72と、発熱要素駆動回路74とは、通信ケーブル82によりエネルギ源14の内部に接続されている。
高周波エネルギ駆動回路72は、出力制御部92と、高周波エネルギ出力用および制御用の電力を供給する可変電圧源(SW電源)94と、高周波電力の増幅および出力波形の整形を行う電力増幅器(AMP)96と、高周波エネルギ出力(電圧値および電流値)のモニタを行うセンサ98と、操作表示パネル(出力制御部92の設定手段(第1の設定手段))100とを備えている。このうち、可変電圧源(SW電源)94と、電力増幅器96と、センサ98とは、順次直列に接続されている。センサ98は、高周波エネルギ出力用接続ケーブル22a,22bを介して外科用処置具12に接続されている。出力制御部92には、可変電圧源94と、電力増幅器96と、センサ98とが接続されている。さらに、出力制御部92は、操作表示パネル100に接続されている。操作表示パネル100は、電極52a,52bを通してセンサ98でモニタした高周波エネルギ出力量を表示し、出力制御部92では、センサ98からのモニタ信号を基に、可変電圧源94と電力増幅器96に制御信号を送る。このようにして、高周波出力の制御が行われる。
このため、可変電圧源94から電力増幅器96で増幅された電力は、出力制御部92で制御されながらセンサ98から高周波エネルギ出力用接続ケーブル22a,22bを介して外科用処置具12の電極52a,52bに伝達される。
発熱要素駆動回路74は、発熱要素駆動回路用出力制御部102と、出力部104と、センサ106と、操作表示パネル(設定手段(第2の設定手段))108とを備えている。出力部104は、ヒータ部材54を発熱させるための電力(エネルギ)を供給する。センサ106は、ヒータ部材54への出力値(電圧値、電流値)のモニタを行い、モニタ信号を出力制御部102に送る。出力制御部102では、センサ106からのモニタ信号を基にして、電圧、電流、電力、抵抗値等の各種パラメータを演算する。
なお、ヒータ部材54の発熱パターンは正の温度係数を有している。このため、出力制御部102では、演算した抵抗値から更にヒータ部材54の温度Tも算出することができる。出力制御部102は、各種パラメータの演算結果を基に、出力部104に制御信号を送る。このため、ヒータ部材54の出力制御が行われる。
高周波エネルギ駆動回路72の出力制御部92と、発熱要素駆動回路74の出力制御部102とは、双方向に信号を伝達可能な通信ケーブル82により接続されている。高周波エネルギ駆動回路72の出力制御部92からは、フットスイッチ16のON/OFF信号が発熱要素駆動回路74の出力制御部102に送られる。高周波エネルギ駆動回路72の出力制御部92からは、センサ98のモニタ信号(電圧値、電流値)を基に演算した高周波エネルギ出力時のインピーダンス(電極52a,52b間に生体組織Lを保持した状態のインピーダンス)Zの大きさを示す信号が発熱要素駆動回路74の出力制御部102に送られる。なお、インピーダンスZは、センサ98からのモニタ信号を基に、出力制御部92で算出される。このため、電極52a,52bおよび高周波エネルギ駆動回路72はジョー36a,36b間に把持した生体組織Lに高周波エネルギを作用させて生体組織を変性させるとともに生体組織Lのインピーダンス情報Z(生体情報)を収集するのに用いられる高周波エネルギ出力部である。
発熱要素駆動回路74の出力制御部102からは、センサ106のモニタ信号(電圧値、電流値)を基に演算したヒータ部材54の温度Tを示す信号が高周波エネルギ駆動回路72の出力制御部92に送られる。高周波エネルギ駆動回路72の操作表示パネル100と発熱要素駆動回路74の操作表示パネル108とは、高周波エネルギ駆動回路72の出力制御部92、通信ケーブル82、および発熱要素駆動回路74の出力制御部102により接続されている。このため、操作表示パネル100,108同士の設定や表示内容は連動している。
以上説明したように、この実施の形態の外科用処置具12は、図2および図3Aに示すようにバイポーラ型高周波処置具として機能するとともに、図2に示すように発熱用処置具として機能する。
以下、治療用処置システム10の使用方法(作用)について説明する。
術者は、患者への処置の前に操作表示パネル(設定手段)100,108を操作して、外科用処置具12の出力条件(高周波エネルギ出力の設定電力Pset[W]、熱エネルギ出力の設定温度Tset[℃]、生体組織LのインピーダンスZの閾値Z1,Z2等)を出力制御部92,102に入力して設定しておく。閾値Z1は、生体組織Lの乾燥化が進み、インピーダンスZの値が上昇したときに高周波エネルギ出力が低下して適切なエネルギ投入ができない状態のときか、それよりも僅かに前の状態に設定することが好ましい。このような条件の下、閾値Z1を経験的に適当な値に設定する。また、閾値Z2は、生体組織Lの乾燥化がさらに進むような条件の下、閾値Z2を経験的に適当な値に設定する。なお、閾値Z1,Z2は、予め出力制御部92内のプログラムに組み込まれるようにしても良く、必ずしも術者が設定する必要はない。
なお、インピーダンスZの閾値Z1,Z2の関係は、閾値Z1よりも閾値Z2の方が大きい。例えば閾値Z1は500[Ω]〜1500[Ω]程度であることが好ましく、閾値Z2は2000[Ω]〜3000[Ω]程度であることが好ましい。また、閾値Z1,Z2は、所定の範囲内(例えば閾値Z1は500[Ω]〜1500[Ω]の範囲内、閾値Z2は2000[Ω]〜3000[Ω]の範囲内)に設定されるようにし、所定の範囲外の値を設定できないようにしておくことも好ましい。
術者は外科用処置具12のハンドル部34a,34bのリング42a,42bに指をかけて、外科用処置具12を操作して、凝固させたり切開したりするなどの処置を行いたい生体組織Lを周辺の生体組織から剥離させる。このようにして、処置対象の生体組織Lを保持し易いようにする。そして、ジョー36a,36bで生体組織Lを挟み込んで把持する。
続いて、術者はジョー36a,36bで生体組織Lを挟み込んだ状態を維持しつつ、フットスイッチ16のペダル16aを押圧する操作を行う。このため、外科用処置具12のジョー36a,36bの電極52a,52b間の生体組織Lに高周波エネルギが与えられたり、ヒータ部材54にエネルギが与えられて発熱させたヒータ部材54から電極52aを通して伝導する熱エネルギにより処置が行われる。
図4には、高周波エネルギ出力回路72と発熱要素駆動回路74とによる外科用処置具12の制御フローの一例を示す。
まず、高周波エネルギ出力回路72の出力制御部92は、スイッチ16からの信号に基づいて術者の操作によってスイッチ16のペダル16aが押圧されたか否か、すなわち、スイッチがONに切り換えられたか否かを判断する(STEP1)。
出力制御部92は、スイッチ16がONに切り換えられたと判断したとき、高周波エネルギ出力回路72の可変電圧源94から電力増幅器96およびセンサ98、高周波エネルギ出力用接続ケーブル22a,22bを介して外科用処置具12のジョー36a,36bの電極52a,52bの間に高周波エネルギを出力する(STEP2)。このとき、ジョー36a,36bの電極52a,52bの間には、操作表示パネル100で予め設定した設定電力Pset[W]、例えば20[W]〜80[W]程度の電力を供給する(STEP3)。
このため、第1の高周波電極52aは処置対象の生体組織Lを介して第2の高周波電極52bとの間に高周波電流を通電する。すなわち、電極52a,52b間に把持された生体組織Lに高周波エネルギを与える。このため、電極52a,52b間に把持した生体組織L内にジュール熱を発生させて生体組織L自体が加熱される。高周波の電圧による作用とジュール熱の作用により電極52a,52b間に保持された生体組織L内の細胞膜を破壊して細胞膜内物質を放出し、コラーゲンをはじめとする細胞外成分と均一化する。電極52a,52b間の生体組織Lには高周波電流が流されているので、このように均一化された組織Lに更なるジュール熱が作用し、例えば生体組織Lの接合面同士、組織の層間同士の接合が行われる。したがって、電極52a,52b間に高周波電流が通電されると、生体組織L自体が発熱して脱水されながら生体組織Lの内部が変性(生体組織Lが焼灼)される。
このとき、電極52a,52b間に保持した生体組織LのインピーダンスZは、電極52a,52bを通してセンサ(生体情報を収集する収集手段)98により測定されている。処置を始めたときのインピーダンスZ0は、電極の大きさや形状によってかわってくるが、図5に示すように、例えば60[Ω]程度である。そして、生体組織Lに高周波電流が通電されて生体組織Lが焼灼されるにつれてインピーダンスZの値は一度低下した後に上昇していく。このようなインピーダンスZの値の上昇は、生体組織Lから水分が抜けて乾燥化が進んでいることを示す。
次に、出力制御部92は、センサ98からの信号に基づいて演算した高周波エネルギの出力時のインピーダンスZの値が予め設定した閾値Z1(図5に示すように、ここでは約1000[Ω])を超えたか否か判断する(STEP4)。閾値Z1は、所定の電力が入力されたときに、経験的に予め分かっている、インピーダンスZの値の上昇率が鈍化するような値の近傍の値が選択されている。そして、出力制御部92が、インピーダンスZの値が閾値Z1よりも小さいと判断した場合、STEP3に処理を戻す。すなわち、ジョー36a,36bの電極52a,52b間に保持した生体組織Lに対して処置のための高周波エネルギを与え続ける。
一方、出力制御部92が、インピーダンスZの値が閾値Z1以上となったと判断した場合、出力制御部92は、電極52a,52bに供給している高周波エネルギ出力を低減させ、モニタ出力に切り換える(STEP5)。
ここで、モニタ出力とは、生体組織Lが処置されないレベルの微弱な高周波電流を出力することである。このようなモニタ出力により、電極52a,52bを通してセンサ98でジョー36a,36b間の生体組織LのインピーダンスZの変化をモニタし続けることができる。
そして、出力制御部92が、インピーダンスZの値が閾値Z1以上となったと判断した場合、高周波エネルギ駆動回路72の出力制御部92から通信ケーブル82を介して発熱要素駆動回路74の出力制御部102に信号が伝達される。そして、発熱要素駆動回路74の出力制御部102では、ヒータ部材54の温度が予め設定した温度Tset[℃]、例えば100[℃]〜300[℃]の温度になるようにヒータ部材54に電力(エネルギ)を供給する(STEP5)。このため、ヒータ部材54が発熱する。ヒータ部材54からの熱伝導により第2の電極52bに伝熱し、第2の電極52bに伝えられた熱(熱エネルギ)で第2の電極52bに接触した生体組織Lの表面側から内部に向かって生体組織Lを凝固させる。このとき、生体組織(タンパク質)を一体的に変性させるともに、タンパク質同士の結合の阻害要因である水分の除去を行う。高周波エネルギから熱エネルギへの切り換えは略同時に行われ、高周波エネルギによって細胞膜を破壊することにより熱伝導率が向上しているので、より効率的にヒータ部材54からの熱を生体組織に伝えることができる。
次に、出力制御部92は、モニタ出力でモニタしている生体組織LのインピーダンスZが予め設定した閾値Z2(図5に示すように、ここでは約2000[Ω])以上になったか判断する(STEP6)。インピーダンスZが閾値Z2よりも小さいと判断した場合、STEP4に処理を戻す。一方、インピーダンスZの値が閾値Z2を超えたと判断した場合、出力制御部92,102は高周波エネルギおよび熱エネルギの出力を停止させる(STEP7)。そして、治療用処置システム10を用いた生体組織Lの処置を終了させる。
なお、このような高周波エネルギおよび熱エネルギを出力する一連の処置が行われる間、フットスイッチ16のペダル16aは押圧されたままである。処置の途中でペダル16aを放して押圧を解除した場合、強制的に高周波エネルギおよび熱エネルギの出力を停止させる。
以上説明したように、この実施の形態によれば、以下の効果が得られる。
電極52a,52b間に保持した生体組織Lへの高周波エネルギの投入によりジュール熱を生体組織L内で発生させて、細胞膜を破壊して細胞内成分と細胞外成分とを均一化するとともに焼灼を行い、インピーダンスZを上昇させることができる。そして、高周波エネルギの投入により細胞膜が破壊されて熱伝導率が上昇した生体組織Lに対して、発熱させたヒータ部材54からの熱エネルギの伝導による凝固処置を行うことができる。
このとき、ジョー36a,36b間に保持した生体組織Lの状態(インピーダンスZや温度T)をモニタし、予め設定しておいたインピーダンスZの閾値Z1によって高周波エネルギの投入から熱エネルギの投入へのエネルギ投入の切り換え時を自動で判断して切り換えることができる。このため、高周波エネルギを用いた処置から熱エネルギを用いた処置への一連の切り換えを実現することができるので、処置を効率良く行うことができる。
すなわち、高周波エネルギ駆動回路72のセンサ98で高周波エネルギ出力のインピーダンスZの変化を計測し、その測定値に基づいて適宜の処置(高周波エネルギを用いた処置と熱エネルギを用いた処置)を行うことができる。したがって、このように、閾値Z1,Z2を計測することにより、術者は、外科用処置具12を用いて生体組織Lの組織変性の状態に合わせた処置を行うことができ、術者の感覚による処置のバラツキを防止して組織を均一化(安定化)することができる。
したがって、高周波エネルギおよび熱エネルギの投入タイミングを制御した状態で、高周波エネルギと熱エネルギからの熱伝導とを組み合わせてジョー36a,36b間に把持した生体組織Lに処置を行う際に、効率的かつ安定的に生体組織を変性(組織を焼灼および/または凝固等)させることができる。このように処置を行うことにより、エネルギの投入のロスを出来るだけ少なくした状態で生体組織Lに処置を行うことができ、処置時間の短縮を図ることができる。このため、患者にかける負担を大きく軽減させることができる。
生体組織Lをジョー36a,36bの電極52a,52b間に保持した状態でフットスイッチ16のペダル16aを押圧するだけで、高周波エネルギを用いた処置と熱エネルギを用いた処置との両方を面倒な切り換えをせずに自動的に行うことができる。すなわち、生体組織Lの種類や状態に応じて表示パネル100,108で出力Pset、温度TsetやインピーダンスZの閾値Z1,Z2等の処置条件を設定し、処置対象の生体組織Lを把持した後は、術者の感覚を要せず、スイッチ16のペダル16aを押圧し続けるだけで処置を行うことができる。そして、閾値Z2が設定した値を超えたとき、生体組織Lに対する処置を行い過ぎることが防止された状態で、高周波エネルギを用いた処置と熱エネルギを用いた処置との人為的な切り換えを必要とせずに自動的に終了させることができる。このため、処置の際に術者にかける負担を大きく軽減させることができる。
なお、閾値Z1を上昇値としたが、細胞膜の破壊が略終了するインピーダンス最下点付近に熱エネルギに切り替えるタイミングを設定することも可能である。
また、この実施の形態では、生体組織Lに高周波エネルギを投入した後、熱エネルギを与える処置について説明したが、タンパク質変性を引き起こさないレベルであれば熱エネルギを高周波エネルギと同時またはそれよりも先に投入しても良い。しかしながら、タンパク質変性(表面組織の変性、凝固等)を引き起こすような熱エネルギを、生体組織を処置するための処置高周波エネルギを供給するよりも先に供給するのは、生体組織に適切な高周波エネルギを投入し難くなるため、適さない。
また、この実施の形態では、図4中のSTEP6では、インピーダンスZの値が閾値Z2以上であるか否かを判断して、高周波エネルギおよび熱エネルギの出力を停止している。これとは別に、STEP5に移行してからの経過時間、例えばSTEP5で発熱要素設定温度Tset[℃]の出力が開始されてから例えば30秒(所定時間t)経過後に自動的に高周波エネルギおよび熱エネルギの出力を停止するようにしても良い。すなわち、インピーダンスZの変化を判断するのではなく、所定時間tの経過後に高周波エネルギ処置からヒータ部材54による処置に切り換えたり、処置を終了するように時間の経過により処置の状態を表示パネル100,108を用いて設定することも好ましい。また、インピーダンスZと時間の両者のうち、早く処置が終了した方を適宜に選択するように表示パネル100,108を用いて設定することも好ましい。例えば、所定時間tの経過よりも早くインピーダンスZの値が閾値Z2に達したときには、その時点で処置を終了し、インピーダンスZの値が閾値Z2に達する前に所定時間tが経過したときにもその時点で処置を終了するようにしても良い。
ここでは、図3Aに示すように、それぞれのジョー36a,36bに電位が異なる電極52a,52bを有するバイポーラ型の高周波エネルギ処置を行う外科用処置具12を用いることについて説明したが、図3Bに示すように、モノポーラ型の高周波エネルギ処置を行う外科用処置具を用いることも好適である。この場合、処置される患者Pには、対極板130が装着される。この対極板130は、通電ライン132を介してエネルギ源14に接続されている。さらに、一方のジョー36aに配設された電極52aと、他方のジョー36bに配設された電極52bとは、第1および第2の電源供給ライン62a,62bが電気的に接続された同電位の状態にある。この場合、第1および第2の高周波電極52a,52bに接触する生体組織Lの面積はそれぞれ小さいため、電流密度が高いが、対極板130の電流密度は低くなる。このため、ジョー36a,36bで把持される生体組織Lは加熱されるのに対して、対極板130に接触した生体組織Lの加熱は無視できる程度に小さい。したがって、ジョー36a,36bで把持した部分のうち、電極52a,52bに接触した生体組織Lのみ加熱されて変性される。
また、図示しないが、モノポーラ型の外科用処置具を用いる場合、ジョー36a,36bのうちの一方のジョーだけに高周波電極が配設されていることも好適である。
また、外科用処置具12の出力条件(高周波エネルギ出力の設定電力Pset[W]、熱エネルギ出力の設定温度Tset[℃]、生体組織Lの設定温度Tsetの閾値T1,T2等)を設定しておくことも好ましい。
[第1の実施の形態の第1の変形例]
次に、第1の変形例について図5Aおよび図5Bを用いて説明する。この変形例は第1の実施の形態の変形例であって、第1の実施の形態で説明した部材と同一の部材又は同一の作用を奏する部材については説明を省略する。以下、第2から第4の変形例についても同様である。
上述した第1の実施の形態では、インピーダンスZの変化を測定することによって生体組織Lの状態を判断することについて説明したが、位相の変化量(位相差Δθ)を判断することによって高周波エネルギを用いた処置から発熱要素を用いた処置に切り換えたり、処置を終了させても良い。この場合、図2に示すセンサ98は、図5Aに示すように、電圧検出部142と、電流検出部144と、位相検出部146とを有する。
可変電圧源94から電力増幅器96を通して高周波電圧を発生させた場合、電力増幅器96を通した高周波電圧に基づく、所定の周波数及びピーク値を有する高周波電流が、電流検出部144を介して外科用処置具12に出力される。電圧検出部142は、電力増幅器96を通した高周波電圧のピーク値を検出し、検出したピーク値を出力電圧値情報として位相検出部146に対して出力する。電流検出部144は、電力増幅器96を通した高周波電圧に基づいて発生する、高周波電流のピーク値を検出し、検出したピーク値を出力電流値情報として位相検出部146に対して出力する。
位相検出部146は、電圧検出部142から出力される出力電圧値情報に基づいて電力増幅器96を通して出力される高周波電圧の位相を検出した後、検出した位相を出力電圧位相情報として、出力電圧値情報と併せて出力制御部92に対して出力する。また、位相検出部146は、電流検出部144から出力される出力電流値情報に基づいて電力増幅器96を通した高周波電流の位相を検出した後、検出した位相を出力電流位相情報として、出力電流値情報に併せて出力制御部92に対して出力する。
出力制御部92は、位相検出部146から出力される出力電圧値情報と、出力電圧位相情報と、出力電流値情報と、出力電流位相情報とに基づいて、電力増幅器96を通して出力される高周波電圧及び高周波電流の位相差Δθを算出する。
出力制御部92は、フットスイッチ16のペダル16aの操作に応じて出力される指示信号と、算出した位相差Δθとに基づいて、可変電圧源94および電力増幅器96に対し、高周波電流及び高周波電圧の出力状態をON状態またはOFF状態として変更する制御を行う。
図5Bに示すように、電力増幅器96を通して出力される高周波電流及び高周波電圧の位相差Δθは、生体組織Lに対する処置を行う初期の段階においては0°または略0°である。なお、表示パネル100で位相差Δθの値は90°またはそれに近い値に設定しておく。
フットスイッチ16のペダル16aが継続して押圧され、ジョー36a,36bの電極52a,52b間に把持した生体組織Lの処置が進むにつれて生体組織Lから脱水されて組織Lが焼灼されたり凝固されたりする。このように処置が進むにつれて、電力増幅器96を通して出力される高周波電圧及び高周波電流の位相差Δθは、例えば適当な時間t1を境として、0°または略0°の状態から増加する。
その後、さらにフットスイッチ16のペダル16aが継続して押圧されることにより、所望の部位における処置が進むと、例えば時間t2以降において、出力制御部92により算出される位相差Δθの値は、図5Bに示す90°付近の一定の値をとる。
ここで、位相差Δθの閾値を90°に近い値として表示パネル100で設定されているものとする。このため、出力制御部92は、高周波エネルギの出力を低減させてモニタ出力とするとともに、発熱要素駆動回路74の出力制御部102に信号を送信して、出力部104からヒータ部材54にエネルギを供給させてヒータ部材54を発熱させる。このとき、例えば操作表示パネル108で所定の時間(時間t2から処置の終了までの時間)を設定しておくと、フットスイッチ16のペダル16aが継続して押圧された状態であっても一連の処置が終了する。
なお、この変形例において、出力制御部92は、位相差Δθが90°付近の一定の値になったことを検出した際に前述した制御を行うものに限らず、例えば、位相差Δθが45°より大きく、かつ、90°以下の所定の値で一定になったことを検出した際に前述した制御を行うものであっても良い。
また、インピーダンスZの変化および位相の変化の両者を組み合わせて生体組織Lに投入するエネルギの切り換えを行っても良い。すなわち、インピーダンスZの変化および位相の変化のうち、閾値への到達が早い方や遅い方など、適宜に表示パネル100,108で設定して用いることも好ましい。また、生体組織Lに投入するエネルギの切り換えは、高周波エネルギから熱エネルギへの切り換えを行っても良いし、高周波エネルギとともに熱エネルギを出力するように切り換えを行っても良い。
なお、以下の変形例や実施の形態では、主にインピーダンスZの閾値Z1,Z2の変化を用いて高周波エネルギ、熱エネルギの切り換えを行う例について説明するが、位相差Δθを用いて高周波エネルギ、熱エネルギの出力の切り換えを行っても良い。または、インピーダンスZおよび位相差Δθの変化を組み合わせて高周波エネルギ、熱エネルギの出力の切り換えを行っても良い。
[第1の実施の形態の第2の変形例]
次に、第2の変形例について図6を用いて説明する。
術者は、予め操作表示パネル100,108を操作して、外科用処置具12の出力条件(高周波エネルギ出力の設定電力Pset[W]、熱エネルギ出力の設定温度Tset[℃]、設定電力Psetの閾値Z1,Z2等)を設定しておく。
図6には、高周波エネルギ出力回路72と発熱要素駆動回路74とによる外科用処置具12の制御フローの一例を示す。
まず、高周波エネルギ出力回路72の出力制御部92は、術者の操作によってフットスイッチ16がONに切り換えられたか否かを判断する(STEP11)。
スイッチ16がONに切り換えられたものと判断したとき、外科用処置具12のジョー36a,36bの電極52a,52bの間の生体組織Lに高周波エネルギを出力するとともに、ヒータ部材54を発熱させる(STEP12)。
そして、ジョー36a,36bの電極52a,52bの間には、操作表示パネル100で予め設定した設定電力Pset[W]、例えば20[W]〜80[W]程度の電力を供給するとともに、ヒータ部材54のモニタ出力が開始される(STEP13)。モニタ出力とは、生体組織Lが処置されないレベルにエネルギを与えてヒータ部材54を発熱させることである。このようなモニタ出力により、センサ106でヒータ部材54の温度Tをモニタする。そして、ジョー36a,36b間の生体組織Lから電極52bを通して伝達される生体組織Lの温度変化の概略をモニタすることができる。すなわち、ヒータ部材54を温度センサとして機能させ、ジョー36a,36b間で把持した生体組織Lは高周波エネルギ出力回路72から供給される高周波エネルギによって、焼灼が開始される。
発熱要素駆動回路74の出力制御部102は、センサ106からの信号に基づいて演算した温度T(生体組織Lから電極52bを通して伝熱される温度)が予め設定した閾値T1(例えば100℃)以上となったかを判断する(STEP14)。温度Tが予め設定した閾値T1よりも小さいと判断した場合、STEP13に処理を戻す。一方、温度Tが予め設定した閾値T1以上であると判断した場合、発熱要素駆動回路74の出力制御部102から通信ケーブル82を介して高周波エネルギ出力回路72の出力制御部92に信号が伝達される。出力制御部92は、高周波エネルギ出力を低減させ、モニタ出力に切り換える。モニタ出力により、センサ98でジョー36a,36b間の生体組織LのインピーダンスZの変化をモニタすることができる。そして、発熱要素駆動回路74の出力制御部102では、ヒータ部材54の温度が予め設定した温度Tset[℃]、例えば100[℃]〜300[℃]の温度になるようにヒータ部材54にエネルギを供給する(STEP15)。このため、ジョー36a,36bの間に把持された生体組織Lは、ヒータ部材54からの熱伝導により第2の電極52bに伝熱し、その熱で第2の電極52bに密着した生体組織Lの表面側から内部に向かって生体組織Lを凝固させる。
次に、出力制御部92は、モニタ出力でモニタしている生体組織LのインピーダンスZが予め設定した閾値Z2以上であるか判断する(STEP16)。インピーダンスZが閾値Z2よりも小さいと判断した場合、STEP15に処理を戻す。一方、インピーダンスZが閾値Z2以上であると判断した場合、出力制御部92,102は高周波エネルギおよび熱エネルギの出力を停止させる(STEP17)。このため、生体組織Lの処置が完了する。
[第1の実施の形態の第3の変形例]
次に、第3の変形例について図7を用いて説明する。この変形例では、ヒータ部材54を温度センサとして用いている。
図7には、高周波エネルギ出力回路72と発熱要素駆動回路74とによる外科用処置具12の制御フローの一例を示す。ここで、STEP21からSTEP24までの処理は図6で示した第2の変形例と同じである。すなわち、図7中のSTEP21は図6中のSTEP11に対応し、STEP22はSTEP12に対応し、STEP23はSTEP13に対応し、STEP24はSTEP14に対応する。STEP24で生体組織Lの温度Tが、予め設定した閾値T1(例えばT1は100℃程度)以上であるかを判断する。温度Tがその閾値T1よりも小さいと判断した場合には、STEP23に処理を戻す。温度Tが閾値T1以上であると判断した場合、STEP25に移行して生体組織Lの処置が完了する。
[第1の実施の形態の第4の変形例]
次に、第4の変形例について図8を用いて説明する。この変形例は、第1の実施の形態で説明した発熱要素駆動回路74とは異なり、ヒータ部材54とは別に温度センサ(図示せず)を設けた例である。すなわち、この変形例においては、ヒータ部材54を温度センサとして用いず、別の温度センサにより例えば生体組織Lの温度を計測する。ヒータ部材54は、例えばNi−CrやFe−Cr等の材質で形成されている。ヒータ部材54の近傍には、サーミスタや熱電対等の温度センサが設けられている。
発熱要素駆動回路74には、ヒータ部材54を発熱させるための電力を供給する出力部104が設けられている。出力部104には、熱エネルギ出力用接続ケーブル24aを介して外科用処置具12が接続されている。また、発熱要素駆動回路74には、センサ106が設けられている。センサ106は、温度センサ用接続ケーブル24bを介して外科用処置具12のヒータ部材54とは別に設けられた温度センサに接続されている。このため、センサ106は、ヒータ部材54と別に設けられた温度センサからの信号に基づいて、ヒータ部材54の温度Tを示す信号を出力制御部102に送信する。出力制御部102は、センサ106からの信号に基づいて、出力部104に信号を送る。このため、ヒータ部材54の出力制御が行われる。
[第2の実施の形態]
次に、第2の実施の形態について図9から図15を用いて説明する。この実施の形態は第1の実施の形態の変形例である。
ここでは、エネルギ処置具(治療用処置具)として、例えば腹壁を通して処置を行うための、リニアタイプの外科用処置具212を例にして説明する。
図9に示すように、治療用処置システム210は、エネルギ処置具212と、エネルギ源214と、フットスイッチ216とを備えている。
エネルギ処置具212は、ハンドル222と、シャフト224と、開閉可能な保持部226とを備えている。ハンドル222は、ケーブル228を介してエネルギ源214に接続されている。エネルギ源214には、ペダル216aを有するフットスイッチ(ハンドスイッチでも良い)216が接続されている。このため、フットスイッチ216のペダル216aを術者が操作することにより、エネルギ源214から外科用処置具212へのエネルギの供給のON/OFFが切り換えられる。
ハンドル222は、術者が握り易い形状に形成され、例えば略L字状に形成されている。ハンドル222の一端には、シャフト224が配設されている。このシャフト224と同軸上のハンドル222の基端からは、上述したケーブル228が延出されている。
一方、ハンドル222の他端側は、術者に把持される把持部である。ハンドル222は、その他端側に並設されるように、保持部開閉ノブ232を備えている。この保持部開閉ノブ232は、ハンドル222の略中央の部分でシャフト224の後述するシース244(図10(A)および図10(B)参照)の基端に連結されている。この保持部開閉ノブ232をハンドル222の他端に対して近接および離隔させると、シース244がその軸方向に沿って移動する。ハンドル222は、さらに、保持部開閉ノブ232に並設された状態で、後述するカッタ254を移動させるためのカッタ駆動ノブ234を備えている。
図10(A)および図10(B)に示すように、シャフト224は、筒体242と、この筒体242の外側に摺動可能に配設されたシース244とを備えている。筒体242は、その基端部でハンドル222に固定されている(図9参照)。シース244は、筒体242の軸方向に沿ってスライド可能である。
筒体242の外側には、その軸方向に沿って凹部246が形成されている。この凹部246には、後述する第1の高周波電極(出力部)266に接続される第1の高周波電極用通電ライン266bとヒータ部材268に接続されるヒータ部材用通電ライン268aとが配設されている。筒体242の内部には、後述する第2の高周波電極(出力部)270に接続される第2の高周波電極用通電ライン270bが挿通されている。
シャフト224の筒体242の内部には、駆動ロッド252がその軸方向に沿って移動可能に配設されている。この駆動ロッド252の先端には、薄板状のカッタ(治療補助具)254が配設されている。このため、カッタ駆動ノブ234を操作すると、駆動ロッド252を介してカッタ254が移動する。
カッタ254は、その先端に刃254aが形成され、基端に駆動ロッド252の先端が固定されている。このカッタ254の先端と基端との間には、長溝254bが形成されている。この長溝254bには、シャフト224の軸方向に対して直交する方向に延びた移動規制ピン256がシャフト224の筒体242に固定されている。このため、カッタ254の長溝254bが移動規制ピン256に沿って移動する。そうすると、カッタ254は真っ直ぐに移動する。このとき、カッタ254は、後述する第1の保持部材262および第2の保持部材264のカッタ案内溝(流路、流体放出溝)262a,264aに配設される。
なお、カッタ254の長溝254bの一端、他端および一端と他端の間の少なくとも3箇所には、移動規制ピン256を係止し、カッタ254の移動を制御するための係止部254cが形成されている。
図9、図10(A)および図10(B)に示すように、保持部226は、シャフト224の先端に配設されている。図10(A)および図10(B)に示すように、保持部226は、第1の保持部材(第1のジョー)262と、第2の保持部材(第2のジョー)264とを備えている。
第1の保持部材262および第2の保持部材264自体は、それぞれ全体的に絶縁性を有することが好適である。第1の保持部材262は、第1の保持部材本体(以下、主に本体という)272と、この本体272の基端部に設けられた基部274とを一体的に備えている。第1の保持部材本体272および基部274には、カッタ254を案内するためのカッタ案内溝262aが形成されている。そして、本体272には、第1の高周波電極266と、ヒータ部材268とが配設されている。すなわち、第1の保持部材262には、出力部やエネルギ放出部として、第1の高周波電極266と、ヒータ部材268とが配設されている。
図10(A)から図12に示すように、第1の保持部材262の本体272には、凹部272aと、凹部272aの縁部を含む保持面272bとが形成されている。凹部272aには第1の高周波電極266が配設されている。第1の高周波電極266の表面と保持面272bとは異なる面である。保持面272bは、第1の高周波電極266の表面よりも、対向する第2の保持部材264の本体276に近接し、対向する第2の保持部材264の本体276の保持面276bに当接する。
第1の高周波電極266は、第1の電極コネクタ266aに電気的に接続されている。この第1の電極コネクタ266aは、第1の高周波電極用通電ライン266bを介してハンドル222から延出されたケーブル228に接続されている。ヒータ部材268は、ヒータ部材用通電ライン268aを介してハンドル222から延出されたケーブル228に接続されている。第2の保持部材264の本体276には、第2の高周波電極270が配設されている。第2の高周波電極270は、第2の電極コネクタ270aと電気的に接続されている。また、第2の電極コネクタ270aは、第2の高周波電極用通電ライン270bを介してハンドル222から延出されたケーブル228に接続されている。
図11(A)および図12に示すように、第1の高周波電極266は、例えば略U字状に、第1の保持部材262の本体272の基端部に2つの端部を有するように連続的に形成されている。このため、第1の高周波電極266には、第1の保持部材262とともにカッタ254を案内するカッタ案内溝(便宜的に符号262aを付す)が形成されている。
ヒータ部材268は、第1の高周波電極266の裏面に離散的に配設されている。このとき、第1の高周波電極266とヒータ部材268との間は絶縁されている。そして、ヒータ部材268を発熱させると、第1の高周波電極266にその熱が伝熱される。このため、第1の高周波電極266に接した生体組織Lが焼灼される。
なお、第1の保持部材262の絶縁性を有する本体272は、ヒータ部材268の外周を覆い、断熱性を有することが好ましい。このような構造により、ヒータ部材268で発熱させた熱を第1の高周波電極266に伝えたときに、熱の損失を少なくした状態で熱を伝えることができる。
第2の保持部材264は、第2の保持部材本体276と、この本体276の基端部に設けられた基部278とを一体的に備えている。第2の保持部材本体276および基部278には、カッタ254を案内するためのカッタ案内溝264aが形成されている。第2の本体276には、第2の高周波電極270が配設されている。すなわち、第2の保持部材264には、出力部やエネルギ放出部として第2の高周波電極270が配設されている。
第2の高周波電極270は、図示しないが、図11(A)に示す第1の高周波電極266と対称的に、例えば略U字状(同形状)に、第2の保持部材264の本体276の基端部に2つの端部を有するように連続的に形成されている。このため、第2の高周波電極270には、カッタ254を案内するカッタ案内溝(便宜的に符号264aを付す)が形成されている。
なお、第1および第2の保持部材262,264のカッタ案内溝262a,264aは互いに対向した状態に形成され、シャフト224の軸方向に沿って形成されている。そして、2つのカッタ案内溝262a,264aで1つのカッタ254を案内することができる。
図10(A)および図10(B)に示すエネルギ処置具212のシャフト224の筒体242およびシース244には、それぞれ後述する蒸気(気体)や液体(組織液)などの流体が放出される流体放出口242a,244aが形成されている。これら流体放出口242a,244aは、シャフト224の基端側に形成されている。
ここでは図示しないが、シース244の流体放出口244aの外周面には、接続口金が設けられていることも好適である。このとき、後述する流体は、カッタ案内溝262a,264a、シャフト224の筒体242の流体放出口242a、シャフト224のシース244の流体放出口244a、および、接続口金を通して排出される。この場合、接続口金内を吸引することによって生体組織Lから放出される蒸気や液体などの流体を流体放出口242a,244aから容易に排出することができる。
なお、流体放出口242a,244aはシャフト224に設けられていることが好適であるが、シャフト224ではなく、ハンドル222に設けられていることも好適である。
第1の保持部材262は、その基部274が、シャフト224の筒体242の先端部に固定されている。一方、第2の保持部材264は、その基部278が、シャフト224の軸方向に対して直交する方向に配設された支持ピン280によってシャフト224の筒体242の先端部に回動可能に支持されている。第2の保持部材264は、支持ピン280の軸回りに回動することにより第1の保持部材262に対して開閉可能である。この第2の保持部材264は、第1の保持部材262に対して開くように、例えば板バネなどの弾性部材280aにより付勢されている。
これら第1および第2の保持部材262,264の本体272,276の外表面は、滑らかな曲面状に形成されている。同様に、これら第1および第2の保持部材262,264の基部274,278の外表面も、滑らかな曲面状に形成されている。第1の保持部材262に対して第2の保持部材264が閉じた状態では、それぞれの保持部材262,264の本体272,276の断面は、略円形または略楕円状に形成されている。第1の保持部材262に対して第2の保持部材264が閉じた状態では、第1および第2の保持部材262,264の本体272,276の保持面272b,276bが互いに対向し、基部274,278は、円筒状に形成されている。この状態では、第1および第2の保持部材262,264の本体272,276の基端部の径の方が、基部274,278の径よりも大きく形成されている。そして、本体272,276と基部274,278との間には、それぞれ段差282a,282bが形成されている。
ここで、第1の保持部材262および第2の保持部材264は、第2の保持部材264が第1の保持部材262に対して閉じた状態で、その基部274,278を合わせた略円形または略楕円状の外周面が、筒体242の先端部の外周面に対して略面一または僅かに大径に形成されている。このため、シース244を筒体242に対してスライドさせて、シース244の先端で第1の保持部材262および第2の保持部材264の基部274,278を覆うことが可能である。この状態では、図10(A)に示すように、弾性部材280aの付勢力に抗して第1の保持部材262および第2の保持部材264が閉じる。一方、シース244の先端で第1の保持部材262および第2の保持部材264の基部274,278を覆った状態からシース244を筒体242の基端側にスライドさせると、図10(B)に示すように、弾性部材280aの付勢力によって第1の保持部材262に対して第2の保持部材264が開く。
また、この実施の形態では、第1の高周波電極266の基端部同士の間隔、および、第2の高周波電極270の基端部同士の間隔は、それぞれ第1の保持部材262および第2の保持部材264のカッタ案内溝262a,264aの幅の大きさ程度に形成されている(図12参照)が、第1の高周波電極266の基端部同士の間隔、および、第2の高周波電極270の基端部同士の間隔は、それぞれ適宜に設定可能である。すなわち、第1の保持部材262および第2の保持部材264のカッタ案内溝262a,264aの縁部から離れた位置に第1および第2の高周波電極266,270が設けられていても良い。
図13に示すように、エネルギ源214の内部には、制御部290と、高周波エネルギ出力回路292と、発熱要素駆動回路294と、表示部296と、スピーカ298とが配設されている。制御部290には、高周波エネルギ出力回路292と、発熱要素駆動回路294と、表示部296と、スピーカ298とが接続されており、制御部290でこれらを制御する。そして、高周波エネルギ駆動回路292および発熱要素駆動回路294は、制御部290を介して接続されている。制御部290には、フットスイッチ216が接続され、フットスイッチ216がONに切り換えられるとエネルギ処置具212による処置が行われ、OFFに切り換えられると処置が停止する。表示部296は、制御部290の設定手段として機能する。
なお、高周波エネルギ出力回路(高周波エネルギ出力部)292は、ここでは図示しないが、第1の実施の形態(図2参照)で説明したように、高周波エネルギを出力するとともに、インピーダンスZを検出可能である。すなわち、高周波エネルギ出力回路292は、エネルギ処置具212の第1および第2の高周波電極266,270間の生体組織LのインピーダンスZを計測するセンサ機能を有する。
また、発熱要素駆動回路294は、ここでは図示しない(図2参照)が、ヒータ部材268にエネルギを供給してヒータ部材268を発熱させるとともに、ヒータ部材268の発熱温度Tを計測するセンサ機能を有する。
次に、この実施の形態に係る治療用処置システム210の作用について説明する。
術者は、予めエネルギ源214の表示部296を操作して、治療用処置システム210の出力条件を設定しておく。具体的には、高周波エネルギ出力の設定電力Pset[W]、熱エネルギ出力の設定温度Tset[℃]、生体組織LのインピーダンスZの閾値Z1,Z2等を設定しておく。
図10(A)に示すように、第1の保持部材262に対して第2の保持部材264を閉じた状態で、例えば、腹壁を通して腹腔内に外科用処置具212の保持部226およびシャフト224を挿入する。外科用処置具212の保持部226を処置対象の生体組織Lに対して対峙させる。
第1の保持部材262および第2の保持部材264で処置対象の生体組織Lを保持するため、ハンドル222の保持部開閉ノブ232を操作する。このとき、筒体242に対してシース244をシャフト224の基端部側に移動させる。弾性部材280aの付勢力によって、基部274,278間を筒状に維持することができなくなり、第1の保持部材262に対して第2の保持部材264が開く。
処置対象の生体組織Lを第1の保持部材262の第1の高周波電極266と第2の保持部材264の第2の高周波電極270との間に配置する。この状態で、ハンドル222の保持部開閉ノブ232を操作する。このとき、筒体242に対してシース244をシャフト224の先端部側に移動させる。弾性部材280aの付勢力に抗してシース244によって、基部274,278間を閉じて筒状にする。このため、基部274に一体的に形成された第1の保持部材262の本体272と、基部278に一体的に形成された第2の保持部材264の本体276とが閉じる。すなわち、第1の保持部材262に対して第2の保持部材264が閉じる。このようにして、処置対象の生体組織Lを第1の保持部材262と第2の保持部材264との間で把持する。
このとき、第1の保持部材262に設けられた第1の高周波電極266と第2の保持部材264に設けられた第2の高周波電極270との両方に、処置対象の生体組織Lが接触している。第1の保持部材262の保持面272bのうちの縁部と第2の保持部材264の保持面276bのうちの縁部(図示せず)との対向する接触面の両方に、処置対象の生体組織Lの周辺組織が密着している。
図14には、高周波エネルギ出力回路292と発熱要素駆動回路294とによる外科用処置具212の制御フローの一例を示す。
第1および第2の保持部材262,264の間に生体組織を把持した状態で、フットスイッチ216を操作する。エネルギ源214の制御部290は、術者の操作によってスイッチ216がONに切り換えられたかを判断する(STEP41)。スイッチ216がONに切り換えられたとき、エネルギ源214の高周波エネルギ出力回路292からケーブル228を介して第1の高周波電極266および第2の高周波電極270の間の生体組織Lにエネルギを供給する(STEP42)。そして、第1および第2の保持部材262,264の電極266,270の間には、表示部296で予め設定した設定電力Pset[W]、例えば20[W]〜80[W]程度の電力を供給する。
このため、第1および第2の保持部材262,264間に把持した生体組織Lに高周波電流が流れ、生体組織Lを発熱させて組織の焼灼(組織の変性)を開始する。このとき、把持した生体組織LのインピーダンスZは、高周波エネルギ出力回路292により測定されている。処置を始めたときのインピーダンスZは、図15に示すように、例えば60[Ω]程度である。そして、生体組織Lに高周波電流が流れて生体組織Lが焼灼されるにつれてインピーダンスZの値が上昇していく。
このように、生体組織Lが焼灼されるにつれて、生体組織Lから流体(例えば液体(血液)および/または気体(水蒸気))が放出される。このとき、第1および第2の保持部材262,264の保持面272b,276bは電極266,270よりも生体組織Lに密着している。このため、保持面272b,276bは流体が第1および第2の保持部材262,264の外側に逃げるのを抑制する障壁部(ダム)として機能する。したがって、生体組織Lから放出された流体を、電極266,270の内側のカッタ案内溝262a,264aに流入させて、第1および第2の保持部材262,264からシャフト224に例えば吸引して流す。生体組織Lから流体が放出されている間は、カッタ案内溝262a,264aにその流体を流入させ続ける。このため、生体組織Lから温度が上昇した状態で放出された流体によってサーマルスプレッドが生じることを防止し、処置対象でない部分に影響を与えることを防止することができる。
次に、制御部290は、高周波エネルギ出力回路292からの信号に基づいて演算した高周波エネルギ出力時のインピーダンスZが予め設定した閾値Z1(図15に示すように、ここでは約1000[Ω])以上となったか判断する(STEP43)。閾値Z1は、予め分かっているインピーダンスZの値の上昇率が鈍化する位置にある。そして、インピーダンスZが閾値Z1よりも小さいと判断した場合、STEP42に処理を戻す。すなわち、第1および第2の保持部材262,264の電極266,270間に把持した生体組織Lに対して処置のための高周波エネルギを与え続ける。
インピーダンスZが閾値Z1よりも大きくなったと判断した場合、制御部290から発熱要素駆動回路294に信号が伝達される。そして、発熱要素駆動回路294は、ヒータ部材268の温度が予め設定した温度Tset[℃]、例えば100[℃]〜300[℃]の温度になるようにヒータ部材268に電力を供給する(STEP44)。このため、第1および第2の保持部材262,264の電極266,270の間に把持された生体組織Lは、ヒータ部材268から熱伝導により第1の電極266に伝熱し、その熱で第1の電極266に密着した生体組織Lの表面側から内部に向かって生体組織Lを凝固させる。
次に、制御部290は、高周波エネルギ出力回路292でモニタしている生体組織LのインピーダンスZが予め設定した閾値Z2(図15に示すように、ここでは約2000[Ω])以上になったか判断する(STEP45)。インピーダンスZが閾値Z2よりも小さいと判断した場合、STEP44に処理を戻す。一方、インピーダンスZが閾値Z2以上になったと判断した場合、制御部290はスピーカ298からブザーを発する(STEP46)とともに、高周波エネルギおよび熱エネルギの出力を停止させる(STEP47)。このため、治療用処置システム210を用いた生体組織Lの処置が完了する。
以上説明したように、この実施の形態によれば、以下の効果が得られる。第1の実施の形態で説明した効果については説明を省略する。
生体組織Lに高周波エネルギを与えて生体組織Lの細胞膜を破壊したとき、および/または、熱エネルギを与えて生体組織Lを焼灼したときに発生させた流体(水分、蒸気)をカッタ案内溝262a,264aに導くことができる。これらカッタ案内溝262a,264aに流体を導くことによって、生体組織Lから発せられる流体をエネルギ処置具212の内側を通してシャフト224またはハンドル222から排出することができる。このため、処置に関係ない生体組織が、処置された生体組織Lから発せられた流体により熱が加えられることを防止することができる。すなわち、これらカッタ案内溝262a,264aに生体組織Lからの流体を導くことによって、サーマルスプレッドが生じることを防止することができる。
なお、第2の実施の形態では、サーマルスプレッドの防止のため、第1の高周波電極266の外側の保持面272b,276bを障壁部として用いる構造について説明した。その他、第2の実施の形態の保持面272b,276bに例えば冷却媒体を介して冷却する冷却板などを設け、生体組織Lや蒸気などの流体を間接的に冷却可能な構造を有することも好適である。
また、この実施の形態では、腹壁を通して腹腔内(体内)の生体組織Lを処置するための、リニアタイプのエネルギ処置具212(図9参照)を例にして説明したが、例えば図16に示すように、腹壁を通して体外に処置対象組織を取り出して処置を行うオープン用のリニアタイプのエネルギ処置具(治療用処置具)212aを用いることもできる。
このエネルギ処置具212aは、ハンドル222と、保持部226とを備えている。すなわち、腹壁を通して処置するためのエネルギ処置具212(図9参照)とは異なり、シャフト224が除去されている。一方、シャフト224と同様の作用を有する部材がハンドル222内に配設されている。このため、図16に示すエネルギ処置具212aは、上述した図9に示すエネルギ処置具212と同様に使用することができる。
[第2の実施の形態の第1の変形例]
次に、第1の変形例について図17(A)から図17(E)を用いて説明する。この変形例は第2の実施の形態の変形例であって、第2の実施の形態で説明した部材と同一の部材又は同一の作用を奏する部材については説明を省略する。以下、第2から第5の変形例についても同様である。
この変形例では、高周波エネルギ出力回路292および発熱要素駆動回路294から発せられるエネルギの出力形態について説明する。
図17(A)に示す例は、第2の実施の形態の図15に示す例とは異なり、高周波エネルギ出力回路292からエネルギを出力して生体組織LのインピーダンスZが閾値Z1に達した後は、所定の時間おきに高周波エネルギを出力して生体組織LのインピーダンスZをその都度計測する。
一方、インピーダンスZが閾値Z1に到達すると同時に発熱要素駆動回路294からヒータ部材268にエネルギを出力してヒータ部材268から電極266を介して生体組織Lに熱(熱エネルギ)を伝えて処置を行う。
そして、インピーダンスZが閾値Z2に到達したときに、自動的に高周波エネルギ出力回路292および発熱要素駆動回路294からの出力を停止して、処置を自動的に終了させる。
図17(B)に示す例は、高周波エネルギ出力回路292からエネルギを出力して生体組織LのインピーダンスZが閾値Z1に達した後、モニタ出力として高周波エネルギを出力してインピーダンスZの変化を計測し続ける。
一方、ヒータ部材268にも、高周波エネルギ出力回路292からエネルギを出力するのと同時に発熱要素駆動回路294からエネルギを出力する。このときの出力は、生体組織Lの温度を計測する目的のモニタ出力である。そして、インピーダンスZが閾値Z1に到達すると同時に発熱要素駆動回路294からヒータ部材268に処置のためのエネルギを出力してヒータ部材268を発熱させ、ヒータ部材268から電極266を通して生体組織Lに熱エネルギを伝えて処置を行う。このとき、生体組織Lの温度を計測することもできる。
そして、インピーダンスZが閾値Z2に到達したときに、自動的に高周波エネルギ出力回路292および発熱要素駆動回路294からの出力を停止して、処置を自動的に終了させる。
図17(C)に示す例は、高周波エネルギ出力回路292からエネルギを出力して生体組織LのインピーダンスZが閾値Z1に達した後、モニタ出力として高周波エネルギを出力してインピーダンスZの変化を計測し続ける。
一方、インピーダンスZが閾値Z1に到達するのを予測し、閾値Z1に到達する直前から発熱要素駆動回路294からヒータ部材268にエネルギを出力してヒータ部材268から電極266を介して生体組織Lに熱を伝えて処置を行う。このとき、ヒータ部材268へのエネルギの供給量を徐々に大きくしていき、一定の状態に保持する。
そして、インピーダンスZが閾値Z2に到達したときに、自動的に高周波エネルギ出力回路292および発熱要素駆動回路294からの出力を停止して、処置を自動的に終了させる。
図17(D)に示す例は、高周波エネルギ出力回路292からエネルギを出力する前に、発熱要素駆動回路294からヒータ部材268にエネルギを出力してタンパク質変性を引き起こさない程度の温度(T0)に処置対象の生体組織Lを保温する例である。このように予備的に処置対象の生体組織Lを保温することにより、インピーダンスZを低下させて安定化させることができる。この後、上述したような適宜の処置を行うため、生体組織Lの処置の安定化をもたらすことができる。
図17(E)に示す例は、発熱要素駆動回路294からヒータ部材268に不連続的にエネルギを出力する例である。インピーダンスZが閾値Z1に到達する前に、一旦予備的にヒータ部材268にエネルギを与えて出力させておく。その後、インピーダンスZが閾値Z1に到達した後、発熱要素駆動回路294からヒータ部材268にエネルギを与えると、直ぐにヒータ部材268の温度を所望の温度まで上げることができる。
[第2の実施の形態の第2の変形例]
次に、第2の変形例について図18を用いて説明する。この変形例では、第1の保持部材262に配設されたヒータ部材268の他の好ましい形態について説明する。
図18に示すように、第1の保持部材262の本体272に配設された第1の高周波電極266の裏面には、スクリーンプリントされた厚膜の発熱抵抗体や、物理蒸着法(PVD)により形成された薄膜の発熱抵抗体、または、ニクロム線が配設される。このため、例えばU字状の第1の高周波電極266の裏面に切れ目なくU字状のヒータ部材268が固定されている。
このため、ヒータ部材268にエネルギを加えてヒータ部材268を発熱させたときには、ヒータ部材268から第1の高周波電極266に熱が伝えられる。
この変形例で説明したヒータ部材268は、厚膜または薄膜の発熱抵抗体やニクロム線に限らず、種々の発熱体が用いられる。
[第2の実施の形態の第3の変形例]
次に、第3の変形例について図19Aから図20(C)を用いて説明する。この変形例では、第1の保持部材262の形態について説明する。この変形例では、第1の保持部材262の本体272に配設された第1の高周波電極266の形態について主に説明するとともに、カッタ254を用いた処置について説明する。
図19Aから図19Cに示すように、第1の保持部材262の本体272には、第1の高周波電極266が配設されている。図19Aに示すように、第1の高周波電極266は、切れ目なく連続的に形成された連続電極(封止部材、第1の接合部材)302と、この連続電極302の外側に離散的に配設された複数の離散電極(維持部材、第2の接合部材)304とを備えている。
連続電極302は、例えば略U字状に、第1の保持部材262の本体272の基端部に2つの端部を有するように連続的に形成されている。連続電極302の基端部の間隔は、カッタ案内溝262aの幅程度である(図19Aおよび図19C参照)が、連続電極302の基端部の間隔は、適宜に設定可能である。すなわち、第1の保持部材262のカッタ案内溝262aの縁部から離れた位置に連続電極302が設けられていても良い。
複数の離散電極304は、略U字型の仮想的な軌跡に沿って、略等間隔に同形状のものが配設されている。離散電極304は、例えば円形状に形成されている。離散電極304同士は、互いに対して略所定の間隔に配設され、かつ、各離散電極304は、連続電極302に対しても適当な距離だけ離間した位置に配設されている。離散電極304の位置は、処置を行ったときに、第2の保持部材264の離散電極(図示せず)との間の生体組織Lが熱により変性することを許容するが、第1の保持部材262の離散電極304同士の間の生体組織Lが熱により変性することを極力防止するとともに、離散電極304と連続電極302との間の生体組織の熱による変性を極力防止した位置にある。
なお、ヒータ部材268は、第1の保持部材262の連続電極302および離散電極304の両方に固定されていることが好ましい。このため、ヒータ部材268から連続電極302および離散電極304への熱の伝導の不均一性をできるだけ防止することができ、生体組織Lに対してできるだけ均一的に熱を加えることができる。
第1の保持部材262の本体272および基部274には、カッタ254を通すカッタ案内溝262aが形成されている。第2の保持部材264の本体276および基部278には、カッタ254を通すカッタ案内溝264aが形成されている。これらカッタ案内溝262a,264aは、シャフト224の軸方向に沿って形成されている。このため、カッタ254は、カッタ案内溝262a,264aに沿って第1の保持部材262および第2の保持部材264の内部を移動可能である。
第2の実施の形態や第2の実施の形態の第2の変形例に記載されているように、連続電極302および/または離散電極304の裏面には、離散的および/または連続的にヒータ部材268が配設されている。
また、第2の保持部材264にも、第1の保持部材262と対称的に、第2の高周波電極270が配設されているものとする。これについての詳細な説明は省略する。
なお、図示しないが、第2の高周波電極270の連続電極には便宜的に符号306を付し、離散電極には符号308を付して以下の作用について説明する。
次に、この変形例に係る治療用処置システム210の作用について説明する。
図10(A)に示すように、第1の保持部材262に対して第2の保持部材264を閉じた状態で、例えば、腹壁を通して腹腔内にエネルギ処置具212の保持部226およびシャフト224を挿入する。そして、処置対象の生体組織Lを第1の保持部材262と第2の保持部材264との間で狭持する。
このとき、第1の保持部材262に設けられた第1の高周波電極266と第2の保持部材264に設けられた第2の高周波電極270との両方に、処置対象の生体組織Lが接触している。第1の保持部材262の本体272の保持面272bと第2の保持部材264の本体276の保持面276bとの両方に、処置対象の生体組織Lの周辺組織が密着している。
この状態で、フットスイッチ216のペダル216aを操作すると、第1の高周波電極266および第2の高周波電極270にエネルギが供給される。
第1の高周波電極266は処置対象の生体組織Lを介して第2の高周波電極270との間に高周波電流を通電する。このため、第1の高周波電極266と第2の高周波電極270との間の生体組織Lが加熱される。そうすると、第1および第2の高周波電極266,270の連続電極302,306によって生体組織Lが連続的(略U字状の状態)に変性される。さらに、第1および第2の高周波電極266,270の離散電極304,308によって、これら離散電極304,308間の生体組織Lが離散的に変性される。
フットスイッチ216のペダル216aを押圧した状態を維持しているときにインピーダンスZが閾値Z1に到達すると、高周波エネルギの供給量を低下させてモニタ出力に切り換えるとともに、ヒータ部材268にエネルギを供給してヒータ部材268を発熱させる。このため、ヒータ部材268から連続電極302および離散電極304にその熱エネルギが伝えられる。そうすると、生体組織Lは連続電極302および離散電極304の表面からの熱を受けて焼灼される。そして、インピーダンスZが閾値Z2に到達すると、高周波エネルギおよび熱エネルギの供給が停止される。すなわち、フットスイッチ216のペダル216aを押圧し続けて、インピーダンスZが閾値Z2に到達すると、自動的に処置が終了する。
ここで、このような作用を有する治療用処置システム210を用いて、図20(A)から図20(C)に示すように、例えば小腸の腸管IC1,IC2同士を吻合させる場合について説明する。
第1および第2の保持部材262,264の保持面272b,276bで、並設させた状態の1対の腸管IC1,IC2を、両腸管IC1,IC2の壁面を挟み込むように保持する。この状態で、フットスイッチ216のペダル216aを押圧すると、第1および第2の高周波電極266,270にそれぞれエネルギを供給する。すると、第1の保持部材262の連続電極302と第2の保持部材264の連続電極306との間に挟持した腸管IC1,IC2同士を加熱して変性させる。このため、腸管IC1,IC2の壁面同士が連続的に変性される。
また、連続電極302,306による生体組織の変性と同時に、第1の保持部材262の離散電極304と第2の保持部材264の離散電極308との間の腸管IC1,IC2同士を変性させる。このため、腸管IC1,IC2の壁面同士が離散的に変性される。
その後、インピーダンスZが閾値Z1に到達すると、高周波エネルギの供給量を低下させてモニタ出力に切り換えるとともに、ヒータ部材268にエネルギを供給してヒータ部材268を発熱させる。このため、ヒータ部材268から発せられる熱エネルギによりヒータ部材268から連続電極302および離散電極304に熱が伝えられ、その熱が腸管IC1,IC2に伝えられて壁面同士が接合される。そして、インピーダンスZが閾値Z2に到達すると、自動的にエネルギの供給が停止し、処置を終了させる。
このように、腸管IC1,IC2同士の生体組織が離散的に変性されて接合される。
そして、第1および第2の高周波電極266,270、ヒータ部材268へのエネルギの供給を止めた後、腸管IC1,IC2同士を把持したままで、図9に示すカッタ駆動ノブ234を操作して、図10(A)および図10(B)に示す状態からカッタ案内溝262a,264aに沿ってカッタ254を前進させる。カッタ254が前進するにつれて、連続電極302,306により変性されて接合された部位が切断される。そして、カッタ254は、連続電極302,306により略U字型に変性された部位の内側を、その先端部近傍まで切断する。このため、腸管IC1,IC2の壁面の略U字状に封止された間の部分が切断され、腸管IC1,IC2の壁面同士が連通する。すなわち、腸管IC1,IC2の壁面同士が吻合される。
この状態でハンドル222の保持部開閉ノブ232を操作して第1および第2の保持部材262,264を開く。このとき、腸間膜M側の第1の吻合部AN1、腸間膜Mがある側に対して反対側の第2の吻合部AN2が形成されている。例えば図20(B)に示すように、第2の吻合部AN2の連続的に接合された外側の部分は、離散的に変性されている。
さらに、第1および第2の保持部材262,264を閉じて腸管IC1,IC2同士の端部を保持した状態でフットスイッチ216のペダル216aを押圧して、高周波エネルギおよび熱エネルギを与える。このため、図20(C)に示すように、腸管IC1,IC2同士の端部が高周波電極266,270およびヒータ部材268により変性されてシールされる。すなわち、腸管IC1,IC2同士の端部には、シール部Sが形成される。このとき、図20(C)中の20A−20A線に沿う断面は、概略的には、図20(A)に示すような状態にある。このため、腸管IC1,IC2同士は、端部がシール部Sで密封された状態で吻合されている。
なお、シール部Sの余分な部位は、例えばカッタ254により切断される。このとき、腸管IC1,IC2同士の封止された端部(シール部S)のうち、連続的に接合された周囲の部分は、図20(B)に示すのと同様に、離散的に変性されている。すなわち、腸管IC1,IC2のうち、離散電極304,308で変性させて接合させた部位の間の生体組織は、変性されていない。このため、離散電極304,308で生体組織を接合した部分の周囲(近傍)は、変性されていない腸管IC1,IC2同士の生体組織が接触(密着)した状態にある。
したがって、腸間膜M側の第1の吻合部AN1は、腸管IC1,IC2同士が密着する方向に力が働く。そうすると、離散電極304,308で生体組織を変性させた部位が、より確実に生体組織同士を密着させるように力を発揮する。さらに、腸間膜Mがある側に対して反対側の第2の吻合部AN2は、腸管IC1,IC2同士が開く方向に力Fが働くが、離散電極304,308で生体組織を変性させた部位が、生体組織同士を密着させるように力を発揮する。したがって、腸管IC1,IC2の変性されていない生体組織同士の相互ネットワークが生じ、生体組織の組織再生力を発揮して、より早期に腸管IC1,IC2の生体組織が再生される。
以上説明したように、この変形例によれば、以下の効果が得られる。
第1および第2の保持部材262,264の保持面272b,276bに連続電極302,306および離散電極304,308をそれぞれ配置した。そして、第1の保持部材262の連続電極302と第2の保持部材264の連続電極306との間の生体組織(例えば腸管IC1,IC2同士)を加熱して変性させて連続的に接合させることができる。このため、例えば管状などの生体組織を密着させたりシールすることができる。さらに、第1の保持部材262の離散電極304と第2の保持部材264の離散電極308との間の生体組織(例えば腸管IC1,IC2同士)を加熱して変性させて生体組織同士を接合させることができる。すなわち、生体組織同士を離散的に接合することができる。
このとき、例えば図20(B)に示すように、生体組織同士を連続的に変性させて接合した部位と、離散的に変性させて接合した部位とは、近接した位置にある。そして、離散的に変性させて接合した部位の周囲の生体組織間は、変性されていない。このため、離散的に変性させて接合した部位の周囲の変性されていない生体組織を、互いに接触(密着)させた状態に維持することができる。すなわち、離散電極304,308は、例えば離れる方向の力Fが加えられる生体組織同士を密着させた状態に維持するのに大きな役割を果たす。
例えば2つの腸管IC1,IC2同士を吻合させる場合、図20(A)および図20(C)に示す腸間膜Mがある側に対して反対側は、互いの腸管IC1,IC2同士が離れる方向に力Fが働く。しかし、離散電極304により腸管IC1,IC2同士が離散的に接合されているので、腸管IC1,IC2同士を離散的に接合することができる。このため、腸管IC1,IC2同士を、互いに密着させた状態に維持することができる。
したがって、離散電極304,308により接合した生体組織同士の部位は、生体組織同士を互いに対して引き寄せて密着させた状態を維持する役割を果たす。すなわち、離散電極304,308により接合した生体組織同士の部位は、生体同士の癒着を維持する役割を果たす。このため、密着(癒着)した生体組織同士の相互ネットワークを生じさせ、生体組織の組織再生力をより発揮し易くして、より早期に生体組織を再生させることができる。
なお、この変形例では、第1の保持部材262の離散電極304は、略等間隔に配置され、かつ、それぞれ略同じ面積を有するものとして説明したが、隣接する離散電極304同士の間隔が異なっていたり、離散電極304の面積がそれぞれ異なっていたりすることも好適である。離散電極304で組織を離散的に処置した場合、その離散電極304に接触した部位は変性されるが、その離散電極304と、その離散電極304に隣接する離散電極304との間の生体組織の一部が変性されずに生体組織同士を接触させた状態に維持することができるのであれば、離散電極304は種々の変更が許容される。もちろん、第2の保持部材264の離散電極308も同様である。また、離散電極のヒータ設定温度と、連続電極のヒータ設定温度や出力時間、出力タイミングに差をもたせるなどの様々な組み合わせが可能である。
なお、この変形例では、カッタ254を設ける場合について説明したが、カッタ254は治療対象によっては設けられていなくても良い。カッタ254が設けられていない場合、上述したカッタ案内溝262a,264aは、例えば生体組織から生じる蒸気や液体などの流体をエネルギ処置具212のハンドル222側に導く流体放出溝(流路)として機能し得る。
次に、離散電極304の変形例を図19Dに示す。図19Aに示す第1の保持部材262の離散電極304は、略U字型の連続電極302の外側の、略U字型の仮想的な軌跡上に、等間隔に配置する例について説明した。離散電極304は、その他、図19Dに示すように、ジグザグ状の頂点の位置に配置されていることも好適である。すなわち、離散電極304は、2列に配設されていることも好適である。この場合の離散電極304間の配置や距離も、連続電極302の出力の大きさや、離散電極304自体の生体組織に対する面積などにより適宜に決められる。
なお、離散電極304の配置は、ランダムなど、種々の変更が許容される。また、離散電極304の形状も、矩形状、楕円状や菱形、多角形など、種々の変更が許容される。
以上説明したように、この変形例によれば、以下の効果が得られる。
第1および第2の保持部材262,264の保持面272b,276bに連続電極302,306および離散電極304,308をそれぞれ配置した。そして、第1の保持部材262の連続電極302と第2の保持部材264の連続電極306との間の生体組織(例えば腸管IC1,IC2同士)を加熱して変性させて連続的に接合させることができる。このため、例えば管状などの生体組織を密着させたりシールすることができる。さらに、第1の保持部材262の離散電極304と第2の保持部材264の離散電極308との間の生体組織(例えば腸管IC1,IC2同士)を加熱して変性させて生体組織同士を接合させることができる。すなわち、生体組織同士を離散的に接合することができる。
このとき、例えば図20(B)に示すように、生体組織同士を連続的に変性させて接合した部位と、離散的に変性させて接合した部位とは、近接した位置にある。そして、離散的に変性させて接合した部位の周囲の生体組織間は、変性されていない。このため、離散的に変性させて接合した部位の周囲の変性されていない生体組織を、互いに接触(密着)させた状態に維持することができる。すなわち、離散電極304,308は、例えば離れる方向の力Fが加えられる生体組織同士を密着させた状態に維持するのに大きな役割を果たす。
例えば2つの腸管IC1,IC2同士を吻合させる場合、図20(A)および図20(C)に示す腸間膜Mがある側に対して反対側は、互いの腸管IC1,IC2同士が離れる方向に力Fが働く。しかし、離散電極304により腸管IC1,IC2同士が離散的に接合されているので、腸管IC1,IC2同士を離散的に接合することができる。このため、腸管IC1,IC2同士を、互いに密着させた状態に維持することができる。
したがって、離散電極304,308により接合した生体組織同士の部位は、生体組織同士を互いに対して引き寄せて密着させた状態を維持する役割を果たす。すなわち、離散電極304,308により接合した生体組織同士の部位は、生体同士の癒着を維持する役割を果たす。このため、密着(癒着)した生体組織同士の相互ネットワークを生じさせ、生体組織の組織再生力をより発揮し易くして、より早期に生体組織を再生させることができる。
なお、この変形例では、第1の保持部材262の離散電極304は、略等間隔に配置され、かつ、それぞれ略同じ面積を有するものとして説明したが、隣接する離散電極304同士の間隔が異なっていたり、離散電極304の面積がそれぞれ異なっていたりすることも好適である。離散電極304で組織を離散的に処置した場合、その離散電極304に接触した部位は変性されるが、その離散電極304と、その離散電極304に隣接する離散電極304との間の生体組織の一部が変性されずに生体組織同士を接触させた状態に維持することができるのであれば、離散電極304は種々の変更が許容される。
[第2の実施の形態の第4の変形例]
次に、第4の変形例について図21(A)を用いて説明する。この変形例では、第1の保持部材262の形態について説明する。この変形例では、第1の保持部材262の本体272に配設された第1の高周波電極266の形態について説明する。
図21(A)に示すように、略U字状の連続電極302の外側には、連続電極302から枝分かれした複数の枝電極(維持部材、第2の接合部材)312が一体的に形成されている。これら枝電極(branched electrodes)312は、連続電極302の軸方向に対して直交する方向に延出されている。すなわち、この変形例では、第3の変形例で説明した離散電極304の代わりに枝電極312が配設されている。
各枝電極312は、略同じ長さ、略同じ幅に形成されている。すなわち、各枝電極312は、連続電極302からそれぞれ略同じ面積だけ延出されている。枝電極312同士の間隔は略等間隔である。
なお、枝電極312は、その枝電極312に接触する生体組織Lを変性させるが、隣接する枝電極312同士の間の生体組織Lの変性を防止する程度の出力である。このような出力は、高周波エネルギ出力回路292や発熱要素駆動回路294から枝電極312に入力されるエネルギの他、枝電極312同士の間隔や枝電極312自体の幅などに依存する。
この変形例に係る治療用処置システム210の作用および効果については、第2の実施の形態および第2の実施の形態の第3の変形例で説明した作用および効果と同様であるので、説明を省略する。
なお、各枝電極312の長さや幅(太さ)、更には、枝電極312同士の間隔や数は、適宜に設定される。図21(A)中では、連続電極302の太さは、枝電極312の太さに比べて太く描かれているが、同じ太さであったり、枝電極312の方が太かったりすることも許容される。
枝電極312は、例えば図21(B)および図21(C)に示すような変形例についても許容される。枝電極312の変形例について図21(B)を用いて説明する。
図21(B)に示すように、第1の保持部材262の本体272の最も先端側(基部274に対して離隔した側)の枝電極(維持部材、第2の接合部材)314は、図21(A)に示す第1の保持部材262の本体272の最も先端側の枝電極312に対して変形されている。すなわち、図21(B)に示す枝電極314は、図21(A)に示す第1の保持部材262の本体272の最も先端側の枝電極312に比べて長く形成されている。
また、図21(A)に示す最も先端側の枝電極312は、一方向にのみ(真っ直ぐに)延出されている。これに対して、図21(B)に示す枝電極314は、それぞれ、延出された角度が途中で変化(途中で屈曲)している。これは、例えば図20(C)に示すように腸管IC1,IC2を吻合したときに、連続電極302で変性させた部位の先端、すなわち、腸管IC1,IC2同士が二股に分かれる部位Bから腸管IC1,IC2同士の吻合を解除するように力Fが働いた場合に、腸管IC1,IC2同士を接合する接合力を増して、その吻合の解除を防止するためである。
図21(B)に示す枝電極314は、それぞれ少なくとも2方向に延出されている。これら枝電極314の場合、連続電極302に一体的であり連続電極302の略U字型の仮想的な軌跡に対して直交する方向に延出された第1の部分314aと、第1の部分314aに一体的であり第1の部分314aからさらに延出された第2の部分314bとを備えている。このうち、第2の部分314bは、枝電極312に平行な方向に延出されている。そして、このような構成において、枝電極314に第1の部分314aおよび第2の部分314bを有することで、二股に分かれる部位Bで生じる力Fに対応する接合面積を増加することができる。すなわち、第1の部分314aおよび第2の部分314bは、腸管IC1,IC2同士の接合を剥がれ難くしている。
したがって、腸管IC1,IC2に加えられる力Fに対する耐性を増加させることができるので、腸管IC1,IC2の吻合が解除され難い状態にすることができる。
次に、枝電極312の更なる変形例について図21(C)を用いて説明する。
図21(C)に示すように、第1の保持部材262の枝電極(維持部材、第2の接合部材)316は、図21Aに示す第1の保持部材262の枝電極312に対して変形されている。枝電極316は、連続電極302の軸方向(略U字型の仮想的な軌跡)に対して直交する方向ではなく、斜めに配設されている。この変形例の場合、各枝電極316は、例えば、基端側に向かって延出されている。
このため、図20(D)に示すように、腸管IC1,IC2同士には、連続電極302により接合された部分と、連続電極302により接合された部分の長手方向に対して適当な角度を持って枝電極316により接合された部分とがある。このうち、これら枝電極316は、図21(A)に示す枝電極312に比べて長く形成されている。また、枝電極316により接合された部分は、腸管IC1,IC2に加えられるFの方向に対して斜めである。そのために、枝電極316は、吻合を解除する方向の力Fに対応する接合面積が増加しているので、腸管IC1,IC2の吻合が解除され難い状態にすることができる。したがって、連続電極302に接続された部分の長手方向に対して適当な角度を持つ枝電極316は、腸管IC1,IC2同士を接合する接合力を増すことができる。
なお、図21(C)に示すように、第1の保持部材262の最も先端側の枝電極(維持部材、第2の接合部材)318は、図21(A)や図21(B)に示す第1の保持部材262の最も先端側の枝電極312,314に対して変形されている。すなわち、この変形例におけるこれら枝電極318は、図21(A)や図21(B)に示す第1の保持部材262の最も先端側の枝電極312,314に比べて長く形成されている。
さらに、図21(C)に示す枝電極318は、円弧状に延出されている。このため、枝電極318は、枝電極316とは異なる方向に延出されている。このような第1の保持部材262の先端側に設けられた枝電極318は、腸管IC1,IC2を吻合した場合に図21(C)に示すような部位Bに力F2が生じたときに対して耐性を増加させ、腸管IC1,IC2同士を剥がれ難くしている。
これは、例えば腸管IC1,IC2を吻合したときに、連続電極302で変性させた部位の先端、すなわち、腸管IC1,IC2同士が二股に分かれる部位Bから腸管IC1,IC2同士の吻合を解除するように力Fが働いた場合に、腸管IC1,IC2同士を接合する接合力を増して、その吻合の解除を防止するためである。
なお、この変形例では、力Fに対応する接合部の面積を増す場合に、第1の保持部材262の本体272の最も先端側にある枝電極として、第1の部分314aおよび第2の部分314bを有する枝電極314と、枝電極318とについて説明した。しかし、力Fに対応する接合部の面積を増すのであれば、第1の保持部材262の本体272の最も先端側にある枝電極の形状はこれら枝電極314,318に限定されるものではない。
[第2の実施の形態の第5の変形例]
次に、第5の変形例について図22(A)から図22(C)を用いて説明する。この変形例では、第1の保持部材262の本体272に配設された第1の高周波電極266の形態について説明する。
図22(A)に示すように、第1の高周波電極266(連続電極302および離散電極304)は、図19Aに示す第3の変形例と略同じ位置に配設されている。また、ヒータ部材268も図19Aに示す第3の変形例と略同じ位置に配設されている。
図22(A)および図22(B)に示すように、本体272には、連続電極302の外側に、蒸気や高温の液体などの流体の流路として第1の流体放出溝(連続電極用流体放出溝)332が形成されている。本体272には、離散電極304の外周に、蒸気や高温の液体などの流体の流路として第2の流体放出溝(離散電極用流体放出溝)334が形成されている。これら第1および第2の流体放出溝332,334は、連通路336によって連通されている。各連通路336は、管路として形成されている。すなわち、各連通路336は、本体272の内部に形成されている。そして各連通路336は、カッタ案内溝262aに基部274で連通されている。すなわち、第1の流体放出溝332および第2の流体放出溝334は、基部274でカッタ案内溝262aに連通されている。
第1の保持部材262の本体272には、第1の流体放出溝332の外側に、連続電極302の作用(ヒータ部材268の作用を含む)により放出された蒸気や高温の液体などの流体が第1の流体放出溝332の中に入り込むように連続電極用障壁部(ダム)342が形成されている。本体272には、第2の流体放出溝334の外周に、離散電極304の作用(ヒータ部材268の作用を含む)により放出された蒸気や高温の液体などの流体が第2の流体放出溝334の中に入り込むように離散電極用障壁部344が形成されている。図22(B)に示すように、これら障壁部342,344は、その保持面272bの平面に対して突出されている。
なお、第2の保持部材264にも同様に、連続電極306の外側に流体放出溝(便宜的に符号352を付す)が形成され、その流体放出溝352の外側に障壁部(便宜的に符号362を付す)が形成されている。また、第2の保持部材264の離散電極308の外周に流体放出溝(便宜的に符号354を付す)が形成され、その流体放出溝354の外周に障壁部(便宜的に符号364を付す)が形成されている。そして、連続電極306の外側の流体放出溝352と、離散電極308の外周の流体放出溝354とは、連通路(便宜的に符号356を付す)によって連通されている。
次に、この変形例に係る治療用処置システム210の作用について説明する。
第2の実施の形態で説明したように、処置対象の生体組織Lを第1の保持部材262と第2の保持部材264との間で保持する。このとき、第1の保持部材262の本体272の障壁部342,344と、第2の保持部材264の本体276の障壁部362,364とが生体組織Lに密着するとともに、生体組織Lが第1の高周波電極266および第2の高周波電極270に接触する。
この状態で、フットスイッチ216のペダル216aを操作する。エネルギ源214から第1の高周波電極266および第2の高周波電極270にそれぞれエネルギが供給される。そして、第1の高周波電極266と第2の高周波電極270との間の生体組織Lが高周波エネルギおよび熱エネルギによって加熱される。このとき、例えば、その生体組織Lの加熱された部分から蒸気や液体などの流体が放出される。
ここで、第1の保持部材262の本体272の第1の流体放出溝332は連続電極302の外側に配設され、第2の流体放出溝334は離散電極304の外周に配設されている。
このため、連続電極302の作用により放出された流体は、カッタ案内溝262aに流れ込むとともに、第1の流体放出溝332の内部に流れ込む。そして、流体は障壁部342により外側に流出することが防止されている。このため、生体組織Lから放出された流体は障壁部342によりも内側に閉じ込められて、外側に逃げることが防止されている。すなわち、障壁部342は、生体組織Lから放出された流体が障壁部342よりも外側に漏れ出すことを防止するダムの役割を果たす。
離散電極304の作用により放出された流体は、第2の流体放出溝334の内部に流れ込む。そして、流体は障壁部344により外側に流出することが防止されている。このため、生体組織Lから放出された流体は障壁部344によりも内側に閉じ込められて、外側に逃げることが防止されている。すなわち、障壁部344は、生体組織Lから放出された流体が障壁部344よりも外側に漏れ出すことを防止するダムの役割を果たす。
第2の流体放出溝334に流れ込んだ流体は、連通路336を通して第1の流体放出溝332に流れ込む。そして、この流体は、第1の流体放出溝332に流れ込んだ流体と一緒になって、第1の保持部材262の基部274に向かって流れる。そして、流体は、第1の流体放出溝332と例えば基部274において連通したカッタ案内溝262aに流れ込む。または、第1の流体放出溝332は、図示しないが、シャフト224の筒体242の内部で連通する。
そして、流体は、シャフト224の筒体242の流体放出口242aを通してシース244の流体放出口244aから外科用処置具212の外部に排出する。
以上説明したように、この変形例によれば、以下の効果が得られる。第2の実施の形態の第4の変形例で説明した効果と同様の効果については、記述を省略する。
外科用処置具212により、保持部226で保持した処置対象の生体組織Lに高周波電流を与えるときに、障壁部342,344,362,364を密着させることによって、処置対象の生体組織Lから放出される流体が、第1の保持部材262の障壁部342,344に向かって流れても、その流体を第1および第2の高周波電極266,270の第1および第2の流体放出溝332,334,352,354および連通路336,356内に導入することができる。
このため、生体組織Lの処置の際に高周波エネルギや熱エネルギにより処置された部位から放出される流体による影響を他の周辺組織に及ぼすことを防止することができる。すなわち、生体組織Lの処置の際に影響を及ぼす位置を、第1の高周波電極266および第2の高周波電極270間に高周波電流を通電した生体組織Lに限定することができる。
したがって、この変形例によれば、生体組織Lから生じる蒸気や液体(高温の体液)等の流体を外科用処置具212の外側に、例えばシャフト224の基端部側やハンドル222側で排出することによって、処置対象の生体組織Lの周辺の生体組織に蒸気や液体(体液)等の流体により影響を与えることを抑止することができる。
このように、蒸気や液体などの流体を組織と接触しない位置まで導くことは生体組織Lへの熱影響を抑止する上で重要であり、保持部226の周囲を覆うような、保持部226よりも大きい組織に処置を行う場合には熱影響を保持部226の外側に及ぼすことを防止することができる。保持部226に小さいながらも蒸気や液体などの流体が漏れ出す開放部(空間)が形成されてしまった場合はその部位より流体が放出され、保持部226の周囲の生体組織Lに熱影響をもたらすためである。
また、そのような開放部をなくすために高周波電極(エネルギ放出部)266,270の周囲を障壁部342,344,362,364で覆うことを行なっても、生体組織Lから発生する蒸気圧力等の流体圧力により開放部が形成され、流体が放出される可能性がある。そのため、流体圧力の上昇による不要な流体の放出を抑えるとともに、流体を所定方向に導き、放出する流路(第1および第2の流体放出溝332,334,352,354および連通路336,356)を設けることは有用な手段である。
次に、図22(A)および図22(B)に示す連通路336の変形例について図22(C)を用いて説明する。
図22(C)に示すように、連通路336(以下、第1の連通路とする)は、第5の変形例と同様に、管路として形成されている。この第1の連通路336には、本体272でカッタ案内溝262aにも連通された管路状の第2の連通路338が形成されている。
このように、生体組織Lから発生した流体を管路状の第1および第2の連通路336,338を通すことによって、生体組織Lに例えば高温である可能性がある流体を触れさせることを極力防止することができる。
[第3の実施の形態]
次に、第3の実施の形態について図23から図24Cを用いて説明する。この実施の形態は、種々の変形例を含む第1および第2の実施の形態の変形例である。
ここでは、エネルギ処置具として、例えば腹壁を通して、もしくは腹壁外で処置を行うための、サーキュラタイプのバイポーラ型エネルギ処置具(治療用処置具)412を例にして説明する。
図23に示すように、治療用処置システム410は、エネルギ処置具412と、エネルギ源214と、フットスイッチ216とを備えている。外科用処置具412は、ハンドル422と、シャフト424と、開閉可能な保持部426とを備えている。ハンドル422には、ケーブル228を介してエネルギ源214が接続されている。
ハンドル422には、保持部開閉ノブ432と、カッタ駆動レバー434が配設されている。保持部開閉ノブ432は、ハンドル422に対して回転可能である。この保持部開閉ノブ432をハンドル422に対して例えば右回りに回転させると、保持部426の後述する離脱側保持部(離脱側把持部)444が本体側保持部(本体側把持部)442に対して離隔(図24A参照)し、左回りに回転させると、離脱側保持部444が本体側保持部442に対して近接する(図24B参照)。
シャフト424は、円筒状に形成されている。このシャフト424は、生体組織Lへの挿入性を考慮して、適度に湾曲されている。もちろん、シャフト424が真っ直ぐに形成されていることも好適である。
シャフト424の先端には、保持部426が配設されている。図24Aおよび図24Bに示すように、保持部426は、シャフト424の先端に形成された本体側保持部(第1の保持部材、第1のジョー)442と、この本体側保持部442に着脱可能な離脱側保持部(第2の保持部材、第2のジョー)444とを備えている。本体側保持部442に対して離脱側保持部444が閉じた状態では、本体側保持部442および離脱側保持部444の保持面442a,444aが互いに対して接触している。
本体側保持部442は、円筒体452と、フレーム454と、通電用パイプ456とを備えている。これら円筒体452およびフレーム454は、絶縁性を有する。円筒体452は、シャフト424の先端に連結されている。フレーム454は、円筒体452に対して固定された状態で配設されている。
フレーム454は、その中心軸が開口されている。このフレーム454の開口された中心軸には、通電用パイプ456がフレーム454の中心軸に沿って所定の範囲内で移動可能に配設されている。この通電用パイプ456は、保持部開閉ノブ432を回転させると、図24Aおよび図24Bに示すように、例えばボールネジ(図示せず)の作用により所定の範囲内を移動可能である。この通電用パイプ456には、離脱側保持部444の後述する通電用シャフト482のコネクト部482aが係脱可能なように、径方向内方に突出する突起456aが形成されている。
図24Aおよび図24Bに示すように、円筒体452とフレーム454との間には、カッタ案内溝(空間)466が形成されている。このカッタ案内溝466には、円筒状のカッタ462が配設されている。このカッタ462の基端部は、シャフト424の内側に配設されたカッタ用プッシャ464の先端部に接続されている。カッタ462は、カッタ用プッシャ464の外周面に固定されている。図示しないが、このカッタ用プッシャ464の基端部はハンドル422のカッタ駆動レバー434に接続されている。このため、ハンドル422のカッタ駆動レバー434を操作すると、カッタ用プッシャ464を介してカッタ462が移動する。
このカッタ用プッシャ464とフレーム454との間には、第1の流体通気路(流体通路)468aが形成されている。そして、シャフト424またはハンドル422には、第1の流体通気路468aを通した流体を外部に排出する流体放出口(図示せず)が形成されている。
図24Aから図24Cに示すように、円筒体452の先端には、出力部やエネルギ放出部として、第1の高周波電極472とヒータ部材474とが配設されている。
第1の高周波電極472は、カッタ462が配設されたカッタ案内溝466の外側に配設されている。第1の高周波電極472は、カッタ案内溝466と同様に円環状に形成されている。この第1の高周波電極472には、第1の通電ライン472aの先端が固定されている。第1の通電ライン472aは、本体側保持部442、シャフト424、ハンドル422を介してケーブル228に接続されている。
ヒータ部材474は、図24Aから図24Cに示すように、適当な間隔おきに第1の高周波電極472の裏面に固定されている。ヒータ部材474には、ヒータ用通電ライン474aの先端が固定されている。このヒータ用通電ライン474aは、本体側保持部442、シャフト424、ハンドル422を介してケーブル228に接続されている。
第1の高周波電極472の外側には、円環状に蒸気放出溝476が形成されている。この流体放出溝476は、第1の流体通気路468aに連通されている。この流体放出溝476の外側には、第1の高周波電極472の表面よりも高い位置に保持面(組織接触面)442aが形成されている。すなわち、本体側狭持部442の保持面442aは、第1の高周波電極472の表面よりも離脱側保持部444の後述するヘッド部484に近接されている。このため、保持面442aは、蒸気等の流体が蒸気放出溝476よりも外側に逃げるのを防止する障壁部(ダム)の役割を果たす。
一方、離脱側保持部444は、コネクト部482aを有する通電用シャフト482と、ヘッド部484とを備えている。通電用シャフト482は、断面が円形状で、一端が先細に形成され、他端はヘッド部484に固定されている。コネクト部482aは、通電用パイプ456の突起456aに係合可能な凹溝状に形成されている。通電用シャフト482のコネクト部482a以外の部分の外表面は、コーティング等により絶縁されている。
ヘッド部484には、本体側保持部442の第1の高周波電極472に対向するように、第2の高周波電極486が配設されている。この第2の高周波電極486には、第2の通電ライン486aの一端が固定されている。第2の通電ライン486aの他端は通電用シャフト482に電気的に接続されている。
ヘッド部484に配設された第2の高周波電極486の内側には、カッタ462の刃を受けるように、円環状にカッタ受部488が形成されている。一方、第2の高周波電極486の外側には、円環状に流体放出溝490が形成されている。この流体放出溝490の外側には、第2の高周波電極486の表面よりも高い位置に保持面(組織接触面)444aが形成されている。すなわち、離脱側保持部444の保持面444aは、第2の高周波電極486の表面よりも本体側保持部442に近接されている。このため、保持面444aは、蒸気等の流体が蒸気放出溝490よりも外側に逃げるのを防止する障壁部(ダム)の役割を果たす。
さらに、流体放出溝490は、ヘッド部484および通電用シャフト482の流体放出路490aに連通されている。この流体放出路490aは、通電用パイプ456の第2の流体通気路(流体通路)468bに連通している。シャフト204またはハンドル202には、第2の流体通気路468bを通した流体を外部に排出する流体放出口(図示せず)が形成されている。
なお、通電用パイプ456は、シャフト424およびハンドル422を介してケーブル228に接続されている。このため、通電用パイプ456の突起456aに離脱側保持部444の通電用シャフト482のコネクト部482aが係合されると、第2の高周波電極486と通電用パイプ456とが電気的に接続される。
次に、この実施の形態に係る治療用処置システム410の作用について説明する。
術者は、予めエネルギ源214の表示部296(図13参照)を操作して、治療用処置システム210の出力条件を設定しておく。具体的には、高周波エネルギ出力の設定電力Pset[W]、熱エネルギ出力の設定温度Tset[℃]、生体組織LのインピーダンスZの閾値Z1,Z2等を設定しておく。
図24Bに示すように、本体側保持部442を離脱側保持部444に対して閉じた状態で例えば腹壁を通して腹腔内に外科用処置具412の保持部426およびシャフト424を挿入する。外科用処置具412の本体側保持部442と、離脱側保持部444とを処置したい生体組織Lに対して対峙させる。
本体側保持部442および離脱側保持部444で処置したい生体組織Lを把持するため、ハンドル422の保持部開閉ノブ432を操作する。このとき、ハンドル422に対して例えば右回りに回動させる。すると、図24Aに示すように、通電用パイプ456をシャフト424のフレーム454に対して先端部側に移動させる。このため、本体側保持部442と離脱側保持部444との間が開き、離脱側保持部444を本体側保持部442から離脱させることができる。
そして、処置したい生体組織Lを本体側保持部442の第1の高周波電極472と離脱側保持部444の第2の高周波電極486との間に配置する。離脱側保持部444の通電用シャフト482を本体側保持部442の通電用パイプ456に挿入する。この状態で、ハンドル422の保持部開閉ノブ432を例えば左回りに回動させる。このため、離脱側保持部444が本体側保持部442に対して閉じる。このようにして、処置対象の生体組織Lを本体側保持部442と離脱側保持部444との間で保持する。
この状態で、フットスイッチ216のペダル216aを操作し、エネルギ源214からケーブル228を介して第1の高周波電極472および第2の高周波電極486にそれぞれエネルギを供給する。このため、本体側保持部442と離脱側保持部444との間の生体組織Lがジュール熱により加熱される。このとき、把持した生体組織LのインピーダンスZは、高周波エネルギ出力回路292により測定されている。処置を始めたときのインピーダンスZは、図15に示すように、例えば60[Ω]程度である。そして、生体組織Lに高周波電流が流れて生体組織Lが焼灼されるにつれてインピーダンスZの値は一度低下した後に上昇していく。
このように、生体組織Lが焼灼されるにつれて、生体組織Lから流体(液体(血液)および/または気体(水蒸気))が放出される。このとき、生体組織Lから放出された流体を、本体側保持部442のカッタ案内溝466および流体放出溝476に流入させるとともに離脱側保持部444の流体放出溝490に流入させる。そして、本体側保持部442のカッタ案内溝466および流体放出溝476に流入させた流体は、カッタ案内溝466から第1の流体通気路468aを通してシャフト424に例えば吸引して流す。また、離脱側保持部444の流体放出溝490に流入させた流体は、ヘッド部484および通電用シャフト482の流体放出路490aから通電パイプ456の第2の流体通気路468bを通してシャフト424に例えば吸引して流す。
そして、生体組織Lから流体が放出されている間は、その流体を流入させ続ける。このため、生体組織Lから温度が上昇した状態で放出された流体によってサーマルスプレッドが生じることを防止し、処置対象でない部分に影響を与えることを防止することができる。
次に、制御部290は、高周波エネルギ出力回路292からの信号に基づいて演算した高周波エネルギ出力時のインピーダンスZが予め設定した閾値Z1(図15に示すように、ここでは約1000[Ω])以上となったか判断する。閾値Z1は、予め分かっているインピーダンスZの値の上昇率が悪くなる位置にある。そして、インピーダンスZが閾値Z1よりも小さいと判断した場合、本体側保持部442および離脱側保持部444の電極472,486間に把持した生体組織Lに対して処置のための高周波エネルギを与え続ける。
インピーダンスZが閾値Z1よりも大きくなったと判断した場合、制御部290から発熱要素駆動回路294に信号が伝達される。そして、発熱要素駆動回路294は、ヒータ部材474の温度が予め設定した温度Tset[℃]、例えば100[℃]〜300[℃]の温度になるようにヒータ部材474に電力を供給する。このため、本体側保持部442および離脱側保持部444の電極472,486の間に把持された生体組織Lは、ヒータ部材474から熱伝導により第1の高周波電極472に伝熱し、その熱で第1の高周波電極472に密着した生体組織Lの表面側から内部に向かって生体組織Lを凝固させる。
次に、制御部290は、高周波エネルギ出力回路292でモニタしている生体組織LのインピーダンスZが予め設定した閾値Z2以上になったか判断する。インピーダンスZが閾値Z2よりも小さいと判断した場合、ヒータ部材474にエネルギを与え続ける。一方、インピーダンスZが閾値Z2以上になったと判断した場合、制御部290はスピーカ298からブザーを発するとともに、高周波エネルギおよび熱エネルギの出力を停止させる。このため、治療用処置システム410を用いた生体組織Lの処置が完了する。
そうすると、第1および第2の高周波電極472,486によって生体組織Lが連続的(略円環状の状態)に変性される。
そして、ハンドル422のカッタ駆動レバー434を操作すると、カッタ462が本体側保持部442のカッタ案内溝466から突出して、離脱側保持部444のカッタ受部488に向かって移動する。カッタ462の先端に刃があるので、処置された生体組織Lが円弧状や円形状などに切断される。
以上説明したように、この実施の形態によれば、以下の効果が得られる。
本体側保持部442に第1の高周波電極472およびヒータ部材474を配置し、離脱側保持部444に第2の高周波電極486を配置した。このため、本体側保持部442と離脱側保持部444との間の生体組織Lを高周波エネルギおよび熱エネルギによって加熱して変性させて接合させることができる。このため、生体組織L同士を略円環状に封止することができる。
また、この実施の形態では、バイポーラ型外科用処置具412を用いて説明したが、第1の実施の形態で説明した図3Bに示すように、モノポーラ型の高周波処置を行うことも好適である。
[第3の実施の形態の第1の変形例]
次に、第1の変形例について図25を用いて説明する。
図25に示す外科用処置具412の本体側狭持部442には、第3の実施の形態の第1の高周波電極472とは異なり、高周波エネルギを出力するための複数の離散電極472aが配設されている。離散電極472aは、所定の間隔をおいて、円周上に配設されている。図示しないが、複数の離散電極472aの裏面には、ヒータ部材474が配設されている。
各離散電極472aは、蒸気放出溝476の代わりに、離散電極472aの中心に流体放出孔476aが形成されている。さらに、各離散電極472aの外周には、保持面442aと同じ面を有する障壁部442bが配設されている。
このため、各離散電極472aの作用(ヒータ部材474の作用を含む)により生体組織Lから放出された流体は、障壁部442bにより外側に逃げることが防止されている。そして、生体組織Lから放出された流体は、離散電極472aの中心にある流体放出孔476aに流れ込む。そうすると、流体放出孔476aに流れ込んだ流体は、カッタ案内溝466から第1の流体通気路468aを通してシャフト424に例えば吸引して流す。
一方、離脱側狭持部444の第2の高周波電極は図示しないが、第3の実施の形態で説明したように、円環状に形成された連続電極が配設されていたり、この変形例の本体側挟持部442の離散電極472aと同様(対称)に配設されていても良い。
なお、この変形例を含む第3の実施の形態では、図24Cおよび図25に示すような高周波電極472,472aを用いることについて説明したが、電極の形状や配置は、例えば種々の変形例を含む第2の実施の形態で説明した形態など、種々に変更可能である。このため、例えば、図24Cに示す高周波電極472の外側に離散電極や枝電極が配設されていることも好ましい。
これまで、いくつかの実施の形態について図面を参照しながら具体的に説明したが、この発明は、上述した実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で行なわれるすべての実施を含む。
10…治療用処置システム、12…外科用処置具、14…エネルギ源、16…フットスイッチ、16a…ペダル、22a,22b…高周波エネルギ出力用接続ケーブル、24…熱エネルギ出力用接続ケーブル、26…スイッチ用接続ケーブル、72…高周波エネルギ出力回路、74…発熱要素駆動回路、92…出力制御部、94…可変電圧源、96…電力増幅器、98…センサ、100…操作表示パネル、102…発熱要素駆動回路用出力制御部、104…出力部、106…センサ、108…操作表示パネル。

Claims (14)

  1. 生体組織にエネルギを作用させて治療するための治療用処置システムであって、
    少なくとも一方が他方に対して相対的に移動して生体組織を把持して前記生体組織を保持する1対の保持部材と、
    前記保持部材の少なくとも一方に設けられ、前記保持部材間に把持した生体組織の生体情報を収集するとともに、前記生体組織を変性させるために高周波エネルギを供給するための高周波エネルギ出力部と、
    前記保持部材の少なくとも一方に設けられ、前記保持部材間に把持した生体組織に熱を伝えるためにエネルギを供給するための発熱部と、
    前記高周波エネルギ出力部で収集した前記生体情報に基づいて、高周波エネルギ出力部および前記発熱部へのエネルギの出力を制御する制御部と、
    を具備することを特徴とする治療用処置システム。
  2. 前記高周波エネルギ出力部は、前記保持部材間に把持した生体組織のインピーダンス情報および/またはエネルギ出力による位相情報を収集可能なセンサを備え、
    前記制御部は、前記センサで収集した前記インピーダンス情報および/または位相情報に基づいて、前記高周波エネルギ出力部から放出される高周波エネルギによる処置、および、前記発熱部から伝導する熱エネルギによる処置を切り換え可能であることを特徴とする請求項1に記載の治療用処置システム。
  3. 前記制御部には、前記生体組織から得られる生体情報の第1の閾値を設定する設定手段が配設され、
    前記制御部は、前記高周波エネルギ出力部にエネルギを与えて前記高周波エネルギ出力部に備えた前記センサで前記生体組織から生体情報を得るとともに、前記高周波エネルギ出力部から出力される高周波エネルギで前記生体組織を処置している間に、前記生体組織から得た生体情報が前記設定手段で設定された前記第1の閾値に達した後、前記発熱部に前記生体組織を処置するエネルギを与えるようにしたことを特徴とする請求項2に記載の治療用処置システム。
  4. 前記制御部の設定手段には、前記第1の閾値よりも大きい、前記生体組織から得られる生体情報の第2の閾値が設定され、
    前記制御部は、前記生体組織から得た生体情報が前記設定手段で設定された前記第1の閾値に達した後、前記高周波エネルギ出力部へのエネルギの供給を抑えて前記高周波エネルギ出力部に備えたセンサで前記生体組織から生体情報を得るとともに、前記発熱部に前記生体組織を処置するエネルギを与えるようにし、生体情報が前記第2の閾値に達した後、前記高周波エネルギ出力部および前記発熱部に与えるエネルギの供給を停止するようにしたことを特徴とする請求項3に記載の治療用処置システム。
  5. 前記発熱部は、生体組織から伝導される温度情報を収集可能なセンサを備え、
    前記制御部は、前記センサで収集した前記生体組織から伝導される生体組織の温度情報に基づいて、前記高周波エネルギ出力部および前記発熱部による処置を切り換え可能であることを特徴とする請求項1に記載の治療用処置システム。
  6. 前記制御部は、前記生体組織から得られる温度情報の第1の閾値を設定する設定手段を備え、
    前記制御部は、前記高周波エネルギ出力部から出力されるエネルギで前記生体組織を処置するとともに、前記発熱部にエネルギを与えて前記発熱部で前記生体組織から温度情報を得ている間に、前記生体組織から得た温度情報が前記設定手段で設定された前記第1の閾値に達した後に、前記高周波エネルギ出力部へのエネルギの供給を抑制し前記発熱部に前記生体組織を処置するエネルギを与えるようにしたことを特徴とする請求項5に記載の治療用処置システム。
  7. 前記高周波エネルギ出力部は、前記保持部材間に把持した生体組織の生体情報を収集可能なセンサを備え、
    前記制御部は、前記センサで収集した生体情報に基づいて前記高周波エネルギ出力部および前記発熱部による処置を切り換え可能であり、
    前記制御部は、生体組織から得られる生体情報の第2の閾値を設定する設定手段を備え、
    前記制御部は、前記生体組織から得た温度情報が前記設定手段で設定された前記第1の閾値に達した後、前記高周波エネルギ出力部へのエネルギの供給を抑えて前記高周波エネルギ出力部で生体組織から生体情報を得るとともに、前記発熱部に前記生体組織を処置するエネルギを供給して前記第2の閾値に達した後、前記エネルギ出力部および前記発熱部に与えるエネルギの供給を停止するようにしたことを特徴とする請求項5もしくは請求項6に記載の治療用処置システム。
  8. 前記保持部材の少なくとも一方は、前記高周波出力部および/もしくは前記発熱部を備え、前記高周波エネルギ出力部および/もしくは前記発熱部の近傍に、前記保持部材間に把持された生体組織から発する気体および/もしくは液体を含む流体を通過させる管路を有することを特徴とする請求項1ないし請求項7のいずれか1に記載の治療用処置システム。
  9. 前記高周波出力部および前記発熱部は、前記少なくとも一方の保持部材に複数の電極を有することを特徴とする請求項1ないし請求項8のいずれか1に記載の治療用処置システム。
  10. 前記制御部には、高周波エネルギ出力部および前記発熱部に対して切り換え可能にするためにエネルギを与える時間を設定する設定手段が配設されていることを特徴とする請求項1ないし請求項9のいずれか1に記載の治療用処置システム。
  11. 高周波エネルギを供給可能な電極と発熱要素とを有する処置部を備えた生体組織を把持可能な処置具と、
    前記電極に高周波電力を供給して前記処置部で把持した生体組織を処置するとともに、前記電極を通して前記生体組織から得られる生体情報を収集する高周波駆動回路と、
    前記発熱要素に発熱用電力を供給して前記発熱要素から生体組織に熱が伝導することによって生体組織を熱の作用で処置するとともに、前記発熱要素を通して生体組織の温度情報を収集する発熱要素駆動回路と、
    前記高周波駆動回路および/もしくは前記発熱要素駆動回路で収集した情報に基づいて前記高周波駆動回路および前記発熱要素駆動回路を制御する制御部と
    を具備することを特徴とする治療用処置システム。
  12. 前記高周波駆動回路で収集する前記生体情報は、前記処置部で把持した生体組織のインピーダンスであり、
    前記制御部は、前記高周波駆動回路に前記インピーダンスの閾値を設定可能であり、前記処置部で把持した生体組織のインピーダンスが閾値に達すると、前記処置部へのエネルギの供給を前記高周波駆動回路と前記発熱要素駆動回路との間で切り換えるようにしたことを特徴とする請求項11に記載の治療用処置システム。
  13. 前記制御部は、前記発熱要素駆動回路に前記温度情報の閾値を設定可能であり、前記処置部で把持した生体組織の温度情報が閾値に達すると、前記処置部へのエネルギの供給を前記高周波駆動回路と前記発熱要素駆動回路との間で切り換えるようにしたことを特徴とする請求項11もしくは請求項12に記載の治療用処置システム。
  14. 前記処置部は、互いに対して開閉可能な第1のジョーと第2のジョーとを備え、
    前記第1のジョーと第2のジョーには、それぞれ、これらジョーの間に生体組織を挟んだ状態で前記生体組織に高周波エネルギを与えるバイポーラ電極を備え、
    前記第1のジョーと第2のジョーとの少なくとも一方には、発熱要素が配設されていることを特徴とする請求項11ないし請求項13のいずれか1に記載の治療用処置システム。
JP2009083481A 2008-04-01 2009-03-30 治療用処置システム Active JP5220671B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/060,359 2008-04-01
US12/060,359 US9642669B2 (en) 2008-04-01 2008-04-01 Treatment system, and treatment method for living tissue using energy

Publications (3)

Publication Number Publication Date
JP2009247893A true JP2009247893A (ja) 2009-10-29
JP2009247893A5 JP2009247893A5 (ja) 2010-07-15
JP5220671B2 JP5220671B2 (ja) 2013-06-26

Family

ID=40821648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009083481A Active JP5220671B2 (ja) 2008-04-01 2009-03-30 治療用処置システム

Country Status (3)

Country Link
US (3) US9642669B2 (ja)
EP (1) EP2106762B1 (ja)
JP (1) JP5220671B2 (ja)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194059A (ja) * 2010-03-19 2011-10-06 Olympus Corp 治療用処置システム
WO2012043469A1 (ja) * 2010-09-27 2012-04-05 オリンパス株式会社 治療用処置装置
WO2012081515A1 (ja) * 2010-12-14 2012-06-21 オリンパス株式会社 治療用処置装置
WO2012081514A1 (ja) * 2010-12-14 2012-06-21 オリンパス株式会社 治療用処置装置及びその制御方法
WO2012133512A1 (ja) * 2011-03-30 2012-10-04 オリンパスメディカルシステムズ株式会社 熱切開鉗子および熱切開鉗子システム
JP2012196340A (ja) * 2011-03-22 2012-10-18 Olympus Medical Systems Corp 治療用処置装置
WO2013021805A1 (ja) * 2011-08-05 2013-02-14 オリンパス株式会社 治療用処置装置
WO2013088890A1 (ja) * 2011-12-12 2013-06-20 オリンパスメディカルシステムズ株式会社 処置システムおよび処置システムの制御方法
WO2013088891A1 (ja) * 2011-12-12 2013-06-20 オリンパスメディカルシステムズ株式会社 処置システム及び処置システムの制御方法
JP2013525049A (ja) * 2010-05-05 2013-06-20 アエスクラップ アクチェンゲゼルシャフト 生体組織部分を接続するための手術システム
WO2013088892A1 (ja) * 2011-12-12 2013-06-20 オリンパスメディカルシステムズ株式会社 処置システム及び処置システムの制御方法
WO2013088893A1 (ja) * 2011-12-12 2013-06-20 オリンパスメディカルシステムズ株式会社 処置システム及び処置システムの制御方法
JP2013542765A (ja) * 2010-10-01 2013-11-28 アプライド メディカル リソーシーズ コーポレイション ジョー及び/又は電極、及び電気手術用増幅器を持つ電気手術器具
JP2014008136A (ja) * 2012-06-28 2014-01-20 Olympus Corp 治療用処置装置
JP2014023757A (ja) * 2012-07-27 2014-02-06 Olympus Medical Systems Corp 治療用処置装置及びその制御方法
WO2014080862A1 (ja) 2012-11-20 2014-05-30 オリンパスメディカルシステムズ株式会社 組織切除装置
JP2014529452A (ja) * 2011-09-02 2014-11-13 オリンパス・ウィンター・アンド・イベ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 電極配列及び電気手術用掴み器具
JP2015136604A (ja) * 2014-01-24 2015-07-30 オリンパス株式会社 治療用処置装置
JP2015204974A (ja) * 2014-04-18 2015-11-19 オリンパス株式会社 治療用処置装置
JP2016041317A (ja) * 2013-08-02 2016-03-31 オリンパス株式会社 生体組織接合システム、および、生体組織接合システムの作動方法
WO2016067800A1 (ja) * 2014-10-31 2016-05-06 オリンパス株式会社 エネルギー処置装置
JP2016512720A (ja) * 2013-03-15 2016-05-09 ジャイラス エーシーエムアイ インク 組合せ電気手術デバイス
US9504515B2 (en) 2011-05-24 2016-11-29 Olympus Corporation Treatment device
WO2017018205A1 (ja) * 2015-07-24 2017-02-02 オリンパス株式会社 エネルギー処置システム、エネルギー制御装置及びエネルギー処置具
WO2017018171A1 (ja) * 2015-07-27 2017-02-02 オリンパス株式会社 エネルギー処置システム及びエネルギー制御装置
US9707028B2 (en) 2014-08-20 2017-07-18 Gyrus Acmi, Inc. Multi-mode combination electrosurgical device
WO2017122345A1 (ja) * 2016-01-15 2017-07-20 オリンパス株式会社 エネルギー制御装置及び処置システム
JP2017524389A (ja) * 2014-05-12 2017-08-31 ジャイラス エーシーエムアイ インク 抵抗加熱された電気手術デバイス
US9763730B2 (en) 2013-03-15 2017-09-19 Gyrus Acmi, Inc. Electrosurgical instrument
US9901388B2 (en) 2013-03-15 2018-02-27 Gyrus Acmi, Inc. Hand switched combined electrosurgical monopolar and bipolar device
US9901389B2 (en) 2013-03-15 2018-02-27 Gyrus Acmi, Inc. Offset forceps
WO2018167878A1 (ja) * 2017-03-15 2018-09-20 オリンパス株式会社 エネルギー源装置
WO2018211629A1 (ja) * 2017-05-17 2018-11-22 オリンパス株式会社 制御装置及び処置システム
JP2019013759A (ja) * 2017-07-06 2019-01-31 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. 複数の電極を用いる温度制御式短時間アブレーション
US10314636B2 (en) 2013-02-01 2019-06-11 Olympus Corporation Treatment apparatus and method for controlling the same
WO2019142252A1 (ja) * 2018-01-17 2019-07-25 オリンパス株式会社 制御装置及び制御装置の作動方法
US10893900B2 (en) 2013-03-15 2021-01-19 Gyrus Acmi, Inc. Combination electrosurgical device
US11000328B2 (en) 2016-11-09 2021-05-11 Gyrus Acmi, Inc. Resistively heated electrosurgical device
US11051879B2 (en) 2015-12-21 2021-07-06 Olympus Corporation Control device for surgical instrument, and surgical system
WO2022102813A1 (ko) * 2020-11-12 2022-05-19 (주)아이티시 고주파 및 저주파 치료 기능이 부가된 체외 충격파 의료기
US11439456B2 (en) 2017-03-15 2022-09-13 Olympus Corporation Energy source apparatus
US11446077B2 (en) 2017-03-08 2022-09-20 Olympus Corporation Energy source apparatus
US11507117B2 (en) 2017-03-08 2022-11-22 Olympus Corporation Energy source apparatus
KR20230161373A (ko) 2022-05-17 2023-11-27 (주)아이티시 고주파 및 저주파 치료 기능이 부가된 바이폴라형 체외 충격파 의료기

Families Citing this family (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
EP1802245B8 (en) 2004-10-08 2016-09-28 Ethicon Endo-Surgery, LLC Ultrasonic surgical instrument
US8197472B2 (en) 2005-03-25 2012-06-12 Maquet Cardiovascular, Llc Tissue welding and cutting apparatus and method
US7918848B2 (en) 2005-03-25 2011-04-05 Maquet Cardiovascular, Llc Tissue welding and cutting apparatus and method
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
AU2008308606B2 (en) 2007-10-05 2014-12-18 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
ES2428719T3 (es) 2008-03-31 2013-11-11 Applied Medical Resources Corporation Sistema electroquirúrgico con medios para medir permitividad y conductividad del tejido
US20090299353A1 (en) * 2008-04-11 2009-12-03 Lumenis Ltd. Tissue Treatment Device and Method
US8348947B2 (en) 2008-04-25 2013-01-08 Olympus Medical Systems Corp. Treatment system, and treatment method for living tissue using energy
US9968396B2 (en) 2008-05-27 2018-05-15 Maquet Cardiovascular Llc Surgical instrument and method
US9402680B2 (en) 2008-05-27 2016-08-02 Maquet Cardiovasular, Llc Surgical instrument and method
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US20100185197A1 (en) * 2009-01-21 2010-07-22 Satomi Sakao Medical treatment apparatus, treatment instrument and treatment method for living tissue using energy
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US8523851B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Inductively heated multi-mode ultrasonic surgical tool
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9955858B2 (en) 2009-08-21 2018-05-01 Maquet Cardiovascular Llc Surgical instrument and method for use
US9039695B2 (en) 2009-10-09 2015-05-26 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8939974B2 (en) 2009-10-09 2015-01-27 Ethicon Endo-Surgery, Inc. Surgical instrument comprising first and second drive systems actuatable by a common trigger mechanism
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US8747404B2 (en) 2009-10-09 2014-06-10 Ethicon Endo-Surgery, Inc. Surgical instrument for transmitting energy to tissue comprising non-conductive grasping portions
US8574231B2 (en) 2009-10-09 2013-11-05 Ethicon Endo-Surgery, Inc. Surgical instrument for transmitting energy to tissue comprising a movable electrode or insulator
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US8906016B2 (en) * 2009-10-09 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical instrument for transmitting energy to tissue comprising steam control paths
CN102378601B (zh) * 2009-10-28 2014-04-30 奥林巴斯医疗株式会社 高频手术装置以及医疗设备的动作方法
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8696665B2 (en) 2010-03-26 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical cutting and sealing instrument with reduced firing force
US8834518B2 (en) 2010-04-12 2014-09-16 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8496682B2 (en) 2010-04-12 2013-07-30 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
US8709035B2 (en) 2010-04-12 2014-04-29 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with jaws having a parallel closure motion
US8535311B2 (en) 2010-04-22 2013-09-17 Ethicon Endo-Surgery, Inc. Electrosurgical instrument comprising closing and firing systems
US8685020B2 (en) 2010-05-17 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instruments and end effectors therefor
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8888776B2 (en) 2010-06-09 2014-11-18 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing an electrode
US8753338B2 (en) 2010-06-10 2014-06-17 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing a thermal management system
US9005199B2 (en) 2010-06-10 2015-04-14 Ethicon Endo-Surgery, Inc. Heat management configurations for controlling heat dissipation from electrosurgical instruments
US8764747B2 (en) 2010-06-10 2014-07-01 Ethicon Endo-Surgery, Inc. Electrosurgical instrument comprising sequentially activated electrodes
US9149324B2 (en) 2010-07-08 2015-10-06 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an articulatable end effector
US8613383B2 (en) 2010-07-14 2013-12-24 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
US8453906B2 (en) 2010-07-14 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9011437B2 (en) 2010-07-23 2015-04-21 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8979843B2 (en) 2010-07-23 2015-03-17 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US8628529B2 (en) 2010-10-26 2014-01-14 Ethicon Endo-Surgery, Inc. Surgical instrument with magnetic clamping force
US8715277B2 (en) 2010-12-08 2014-05-06 Ethicon Endo-Surgery, Inc. Control of jaw compression in surgical instrument having end effector with opposing jaw members
GB201100443D0 (en) * 2011-01-11 2011-02-23 Creo Medical Ltd Electrosurgical instrument
EP2644144B1 (en) * 2011-03-09 2014-05-14 Olympus Medical Systems Corp. Bipolar treatment device
CA2868742A1 (en) 2011-04-08 2013-07-18 Domain Surgical, Inc. Impedance matching circuit
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US8858544B2 (en) 2011-05-16 2014-10-14 Domain Surgical, Inc. Surgical instrument guide
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
US9044243B2 (en) 2011-08-30 2015-06-02 Ethcon Endo-Surgery, Inc. Surgical cutting and fastening device with descendible second trigger arrangement
WO2013040255A2 (en) 2011-09-13 2013-03-21 Domain Surgical, Inc. Sealing and/or cutting instrument
JP6234932B2 (ja) 2011-10-24 2017-11-22 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. 医療用器具
US8926609B2 (en) 2011-11-08 2015-01-06 Olympus Medical Systems Corp. Treatment device and treatment method
AU2012347871B2 (en) 2011-12-06 2017-11-23 Domain Surgical Inc. System and method of controlling power delivery to a surgical instrument
WO2013119545A1 (en) 2012-02-10 2013-08-15 Ethicon-Endo Surgery, Inc. Robotically controlled surgical instrument
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US20140005640A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical end effector jaw and electrode configurations
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
WO2014052181A1 (en) 2012-09-28 2014-04-03 Ethicon Endo-Surgery, Inc. Multi-function bi-polar forceps
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
EP3000425A4 (en) 2013-08-02 2017-01-25 Olympus Corporation Treatment system, instrument control device, and treatment system operation method
US9295514B2 (en) 2013-08-30 2016-03-29 Ethicon Endo-Surgery, Llc Surgical devices with close quarter articulation features
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9861428B2 (en) 2013-09-16 2018-01-09 Ethicon Llc Integrated systems for electrosurgical steam or smoke control
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
US9526565B2 (en) 2013-11-08 2016-12-27 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9408660B2 (en) 2014-01-17 2016-08-09 Ethicon Endo-Surgery, Llc Device trigger dampening mechanism
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10524852B1 (en) 2014-03-28 2020-01-07 Ethicon Llc Distal sealing end effector with spacers
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US9757186B2 (en) 2014-04-17 2017-09-12 Ethicon Llc Device status feedback for bipolar tissue spacer
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
WO2015176074A2 (en) 2014-05-16 2015-11-19 Applied Medical Resources Corporation Electrosurgical system
EP3148465B1 (en) 2014-05-30 2018-05-16 Applied Medical Resources Corporation Electrosurgical system with an instrument comprising a jaw with a central insulative pad
US9700333B2 (en) 2014-06-30 2017-07-11 Ethicon Llc Surgical instrument with variable tissue compression
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
EP3087941B1 (en) 2014-08-05 2020-03-11 Olympus Corporation Therapeutic treatment system
US10194976B2 (en) 2014-08-25 2019-02-05 Ethicon Llc Lockout disabling mechanism
US9877776B2 (en) 2014-08-25 2018-01-30 Ethicon Llc Simultaneous I-beam and spring driven cam jaw closure mechanism
EP3108840B1 (en) * 2014-08-26 2024-01-31 Olympus Corporation Electric surgical treatment system
US10194972B2 (en) 2014-08-26 2019-02-05 Ethicon Llc Managing tissue treatment
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10111699B2 (en) 2014-12-22 2018-10-30 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US9848937B2 (en) 2014-12-22 2017-12-26 Ethicon Llc End effector with detectable configurations
US10092348B2 (en) 2014-12-22 2018-10-09 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US10420603B2 (en) 2014-12-23 2019-09-24 Applied Medical Resources Corporation Bipolar electrosurgical sealer and divider
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10117702B2 (en) 2015-04-10 2018-11-06 Ethicon Llc Surgical generator systems and related methods
US10130410B2 (en) 2015-04-17 2018-11-20 Ethicon Llc Electrosurgical instrument including a cutting member decouplable from a cutting member trigger
US9872725B2 (en) 2015-04-29 2018-01-23 Ethicon Llc RF tissue sealer with mode selection
WO2016175038A1 (ja) * 2015-04-30 2016-11-03 オリンパス株式会社 処置具
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11051840B2 (en) 2016-01-15 2021-07-06 Ethicon Llc Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
WO2017149765A1 (ja) * 2016-03-04 2017-09-08 オリンパス株式会社 エネルギー制御装置及びエネルギー処置具
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10828056B2 (en) 2016-08-25 2020-11-10 Ethicon Llc Ultrasonic transducer to waveguide acoustic coupling, connections, and configurations
US20180071010A1 (en) * 2016-09-12 2018-03-15 Kogent Surgical, LLC Temperature monitoring electrosurgical system
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US10667834B2 (en) 2017-11-02 2020-06-02 Gyrus Acmi, Inc. Bias device for biasing a gripping device with a shuttle on a central body
US11383373B2 (en) 2017-11-02 2022-07-12 Gyms Acmi, Inc. Bias device for biasing a gripping device by biasing working arms apart
US11298801B2 (en) 2017-11-02 2022-04-12 Gyrus Acmi, Inc. Bias device for biasing a gripping device including a central body and shuttles on the working arms
CA3111558A1 (en) 2018-09-05 2020-03-12 Applied Medical Resources Corporation Electrosurgical generator control system
US11696796B2 (en) 2018-11-16 2023-07-11 Applied Medical Resources Corporation Electrosurgical system
US11413102B2 (en) 2019-06-27 2022-08-16 Cilag Gmbh International Multi-access port for surgical robotic systems
US11547468B2 (en) 2019-06-27 2023-01-10 Cilag Gmbh International Robotic surgical system with safety and cooperative sensing control
US11607278B2 (en) 2019-06-27 2023-03-21 Cilag Gmbh International Cooperative robotic surgical systems
US11723729B2 (en) 2019-06-27 2023-08-15 Cilag Gmbh International Robotic surgical assembly coupling safety mechanisms
US11612445B2 (en) 2019-06-27 2023-03-28 Cilag Gmbh International Cooperative operation of robotic arms
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US20210196349A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with flexible wiring assemblies
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US20210196362A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical end effectors with thermally insulative and thermally conductive portions
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US20210393310A1 (en) * 2020-06-23 2021-12-23 Olympus Corporation Method for controlling a medical device and a medical device implementing the same
DE102020207835A1 (de) * 2020-06-24 2021-12-30 Robert Bosch Gesellschaft mit beschränkter Haftung Chirurgisches Instrument
US11931026B2 (en) 2021-06-30 2024-03-19 Cilag Gmbh International Staple cartridge replacement
US11957342B2 (en) 2021-11-01 2024-04-16 Cilag Gmbh International Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204739A (ja) * 1986-03-03 1987-09-09 オリンパス光学工業株式会社 止血装置
JPS62211057A (ja) * 1986-03-12 1987-09-17 オリンパス光学工業株式会社 超音波振動処置装置
JPH0898845A (ja) * 1994-07-28 1996-04-16 Ethicon Endo Surgery Inc 組織を電気外科的に処置するための方法と器具
JP2000271145A (ja) * 1999-03-24 2000-10-03 Olympus Optical Co Ltd 治療装置及び治療システム
US20020082593A1 (en) * 2000-11-16 2002-06-27 Olympus Optical Co., Ltd. Heating treatment system
JP2005000224A (ja) * 2003-06-09 2005-01-06 Olympus Corp 電気手術装置
US20060064086A1 (en) * 2003-03-13 2006-03-23 Darren Odom Bipolar forceps with multiple electrode array end effector assembly
JP2007037568A (ja) * 2005-07-29 2007-02-15 Olympus Medical Systems Corp 医療用処置具、医療用処置装置
US20080015575A1 (en) * 2006-07-14 2008-01-17 Sherwood Services Ag Vessel sealing instrument with pre-heated electrodes
JP2008055151A (ja) * 2006-08-30 2008-03-13 Olympus Medical Systems Corp 手術用処置装置及び、手術用処置装置の駆動方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547871A (en) * 1993-01-25 1996-08-20 American Cyanamid Company Heterologous signal sequences for secretion of insect controlling proteins
AU4252596A (en) 1994-12-13 1996-07-03 Torben Lorentzen An electrosurgical instrument for tissue ablation, an apparatus, and a method for providing a lesion in damaged and diseased tissue from a mammal
US5647871A (en) 1995-03-10 1997-07-15 Microsurge, Inc. Electrosurgery with cooled electrodes
US6033399A (en) 1997-04-09 2000-03-07 Valleylab, Inc. Electrosurgical generator with adaptive power control
US6726686B2 (en) * 1997-11-12 2004-04-27 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US6562037B2 (en) 1998-02-12 2003-05-13 Boris E. Paton Bonding of soft biological tissues by passing high frequency electric current therethrough
US6514252B2 (en) * 1998-05-01 2003-02-04 Perfect Surgical Techniques, Inc. Bipolar surgical instruments having focused electrical fields
US7137980B2 (en) * 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
ES2261392T3 (es) 1999-09-01 2006-11-16 Sherwood Services Ag Instrumento electroquirurgico que reduce la dispersion termica.
JP2001190561A (ja) 2000-01-12 2001-07-17 Olympus Optical Co Ltd 凝固処置具
US6953461B2 (en) 2002-05-16 2005-10-11 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US6500176B1 (en) 2000-10-23 2002-12-31 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US20020111624A1 (en) 2001-01-26 2002-08-15 Witt David A. Coagulating electrosurgical instrument with tissue dam
US20030073987A1 (en) 2001-10-16 2003-04-17 Olympus Optical Co., Ltd. Treating apparatus and treating device for treating living-body tissue
US6929644B2 (en) * 2001-10-22 2005-08-16 Surgrx Inc. Electrosurgical jaw structure for controlled energy delivery
US8075558B2 (en) 2002-04-30 2011-12-13 Surgrx, Inc. Electrosurgical instrument and method
US6926716B2 (en) 2001-11-09 2005-08-09 Surgrx Inc. Electrosurgical instrument
US7160299B2 (en) 2003-05-01 2007-01-09 Sherwood Services Ag Method of fusing biomaterials with radiofrequency energy
US7442193B2 (en) 2003-11-20 2008-10-28 Covidien Ag Electrically conductive/insulative over-shoe for tissue fusion
US8197472B2 (en) 2005-03-25 2012-06-12 Maquet Cardiovascular, Llc Tissue welding and cutting apparatus and method
US7942874B2 (en) * 2005-05-12 2011-05-17 Aragon Surgical, Inc. Apparatus for tissue cauterization
US20090076506A1 (en) 2007-09-18 2009-03-19 Surgrx, Inc. Electrosurgical instrument and method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204739A (ja) * 1986-03-03 1987-09-09 オリンパス光学工業株式会社 止血装置
JPS62211057A (ja) * 1986-03-12 1987-09-17 オリンパス光学工業株式会社 超音波振動処置装置
JPH0898845A (ja) * 1994-07-28 1996-04-16 Ethicon Endo Surgery Inc 組織を電気外科的に処置するための方法と器具
JP2000271145A (ja) * 1999-03-24 2000-10-03 Olympus Optical Co Ltd 治療装置及び治療システム
US20020082593A1 (en) * 2000-11-16 2002-06-27 Olympus Optical Co., Ltd. Heating treatment system
US20060064086A1 (en) * 2003-03-13 2006-03-23 Darren Odom Bipolar forceps with multiple electrode array end effector assembly
JP2005000224A (ja) * 2003-06-09 2005-01-06 Olympus Corp 電気手術装置
JP2007037568A (ja) * 2005-07-29 2007-02-15 Olympus Medical Systems Corp 医療用処置具、医療用処置装置
US20080015575A1 (en) * 2006-07-14 2008-01-17 Sherwood Services Ag Vessel sealing instrument with pre-heated electrodes
JP2008023335A (ja) * 2006-07-14 2008-02-07 Covidien Ag 予熱電極を有する脈管密封器具
JP2008055151A (ja) * 2006-08-30 2008-03-13 Olympus Medical Systems Corp 手術用処置装置及び、手術用処置装置の駆動方法

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194059A (ja) * 2010-03-19 2011-10-06 Olympus Corp 治療用処置システム
JP2015186580A (ja) * 2010-05-05 2015-10-29 アエスクラップ アクチェンゲゼルシャフト 生体組織部分を接続するための手術システム
US9642667B2 (en) 2010-05-05 2017-05-09 Aesculap Ag Surgical system for connecting body tissue parts
JP2013525049A (ja) * 2010-05-05 2013-06-20 アエスクラップ アクチェンゲゼルシャフト 生体組織部分を接続するための手術システム
WO2012043469A1 (ja) * 2010-09-27 2012-04-05 オリンパス株式会社 治療用処置装置
JP2012070779A (ja) * 2010-09-27 2012-04-12 Olympus Corp 治療用処置装置
US9186205B2 (en) 2010-09-27 2015-11-17 Olympus Corporation Surgical treatment system
JP7139399B2 (ja) 2010-10-01 2022-09-20 アプライド メディカル リソーシーズ コーポレイション ジョー及び/又は電極、及び電気手術用増幅器を持つ電気手術器具
JP2021028006A (ja) * 2010-10-01 2021-02-25 アプライド メディカル リソーシーズ コーポレイション ジョー及び/又は電極、及び電気手術用増幅器を持つ電気手術器具
JP2013542765A (ja) * 2010-10-01 2013-11-28 アプライド メディカル リソーシーズ コーポレイション ジョー及び/又は電極、及び電気手術用増幅器を持つ電気手術器具
US9833278B2 (en) 2010-12-14 2017-12-05 Olympus Corporation Medical treatment apparatus and method of controlling the same
US10022177B2 (en) 2010-12-14 2018-07-17 Olympus Corporation Medical treatment apparatus
WO2012081515A1 (ja) * 2010-12-14 2012-06-21 オリンパス株式会社 治療用処置装置
WO2012081514A1 (ja) * 2010-12-14 2012-06-21 オリンパス株式会社 治療用処置装置及びその制御方法
JP2012125338A (ja) * 2010-12-14 2012-07-05 Olympus Corp 治療用処置装置及びその制御方法
JP2012125339A (ja) * 2010-12-14 2012-07-05 Olympus Corp 治療用処置装置
CN103260538A (zh) * 2010-12-14 2013-08-21 奥林巴斯株式会社 治疗用处置装置及其控制方法
CN103260538B (zh) * 2010-12-14 2015-07-22 奥林巴斯株式会社 治疗用处置装置及其控制方法
JP2012196340A (ja) * 2011-03-22 2012-10-18 Olympus Medical Systems Corp 治療用処置装置
WO2012133512A1 (ja) * 2011-03-30 2012-10-04 オリンパスメディカルシステムズ株式会社 熱切開鉗子および熱切開鉗子システム
US9504515B2 (en) 2011-05-24 2016-11-29 Olympus Corporation Treatment device
JP2013034568A (ja) * 2011-08-05 2013-02-21 Olympus Corp 治療用処置装置
WO2013021805A1 (ja) * 2011-08-05 2013-02-14 オリンパス株式会社 治療用処置装置
US9675402B2 (en) 2011-08-05 2017-06-13 Olympus Corporation Treatment device for medical treatment
US9724152B2 (en) 2011-09-02 2017-08-08 Olympus Winter & Ibe Gmbh Electrode arrangement and electrosurgical gripping instrument
JP2014529452A (ja) * 2011-09-02 2014-11-13 オリンパス・ウィンター・アンド・イベ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 電極配列及び電気手術用掴み器具
US10441341B2 (en) 2011-12-12 2019-10-15 Olympus Corporation Treatment system and actuation method for treatment system
JP5412602B2 (ja) * 2011-12-12 2014-02-12 オリンパスメディカルシステムズ株式会社 処置システムおよび処置システムの作動方法
JPWO2013088891A1 (ja) * 2011-12-12 2015-04-27 オリンパスメディカルシステムズ株式会社 処置システム及び処置システムの作動方法
US9119619B2 (en) 2011-12-12 2015-09-01 Olympus Medical Systems Corp. Treatment system and actuation method for treatment system
US9155884B2 (en) 2011-12-12 2015-10-13 Olympus Corporation Treatment system and actuation method for treatment system
WO2013088890A1 (ja) * 2011-12-12 2013-06-20 オリンパスメディカルシステムズ株式会社 処置システムおよび処置システムの制御方法
CN103747755A (zh) * 2011-12-12 2014-04-23 奥林巴斯医疗株式会社 处置系统以及处置系统的控制方法
WO2013088892A1 (ja) * 2011-12-12 2013-06-20 オリンパスメディカルシステムズ株式会社 処置システム及び処置システムの制御方法
WO2013088891A1 (ja) * 2011-12-12 2013-06-20 オリンパスメディカルシステムズ株式会社 処置システム及び処置システムの制御方法
JPWO2013088892A1 (ja) * 2011-12-12 2015-04-27 オリンパスメディカルシステムズ株式会社 処置システムおよび処置システムの作動方法
WO2013088893A1 (ja) * 2011-12-12 2013-06-20 オリンパスメディカルシステムズ株式会社 処置システム及び処置システムの制御方法
CN103747755B (zh) * 2011-12-12 2016-05-11 奥林巴斯株式会社 处置系统以及处置系统的控制方法
US9414882B2 (en) 2011-12-12 2016-08-16 Olympus Corporation Treatment system and actuation method for treatment system
JP2014008136A (ja) * 2012-06-28 2014-01-20 Olympus Corp 治療用処置装置
US9937001B2 (en) 2012-06-28 2018-04-10 Olympus Corporation Therapeutic treatment apparatus
JP2014023757A (ja) * 2012-07-27 2014-02-06 Olympus Medical Systems Corp 治療用処置装置及びその制御方法
WO2014080862A1 (ja) 2012-11-20 2014-05-30 オリンパスメディカルシステムズ株式会社 組織切除装置
US10314636B2 (en) 2013-02-01 2019-06-11 Olympus Corporation Treatment apparatus and method for controlling the same
US9668805B2 (en) 2013-03-15 2017-06-06 Gyrus Acmi Inc Combination electrosurgical device
US10893900B2 (en) 2013-03-15 2021-01-19 Gyrus Acmi, Inc. Combination electrosurgical device
US11957401B2 (en) 2013-03-15 2024-04-16 Gyrus Acmi, Inc. Electrosurgical instrument
US11224477B2 (en) 2013-03-15 2022-01-18 Gyrus Acmi, Inc. Combination electrosurgical device
US11779384B2 (en) 2013-03-15 2023-10-10 Gyrus Acmi, Inc. Combination electrosurgical device
US11744634B2 (en) 2013-03-15 2023-09-05 Gyrus Acmi, Inc. Offset forceps
US10292757B2 (en) 2013-03-15 2019-05-21 Gyrus Acmi, Inc. Electrosurgical instrument
US9763730B2 (en) 2013-03-15 2017-09-19 Gyrus Acmi, Inc. Electrosurgical instrument
US10828087B2 (en) 2013-03-15 2020-11-10 Gyrus Acmi, Inc. Hand switched combined electrosurgical monopolar and bipolar device
US10085793B2 (en) 2013-03-15 2018-10-02 Gyrus Acmi, Inc. Offset forceps
US10271895B2 (en) 2013-03-15 2019-04-30 Gyrus Acmi Inc Combination electrosurgical device
US9901388B2 (en) 2013-03-15 2018-02-27 Gyrus Acmi, Inc. Hand switched combined electrosurgical monopolar and bipolar device
US9901389B2 (en) 2013-03-15 2018-02-27 Gyrus Acmi, Inc. Offset forceps
JP2016512720A (ja) * 2013-03-15 2016-05-09 ジャイラス エーシーエムアイ インク 組合せ電気手術デバイス
US10245097B2 (en) 2013-08-02 2019-04-02 Olympus Corporation Living tissue bonding system and method for operating living tissue bonding system
JP2016041317A (ja) * 2013-08-02 2016-03-31 オリンパス株式会社 生体組織接合システム、および、生体組織接合システムの作動方法
WO2015111662A1 (ja) * 2014-01-24 2015-07-30 オリンパス株式会社 治療用処置装置
JP2015136604A (ja) * 2014-01-24 2015-07-30 オリンパス株式会社 治療用処置装置
JP2015204974A (ja) * 2014-04-18 2015-11-19 オリンパス株式会社 治療用処置装置
US9918774B2 (en) 2014-05-12 2018-03-20 Gyrus Acmi, Inc. Resistively heated electrosurgical device
JP2017524389A (ja) * 2014-05-12 2017-08-31 ジャイラス エーシーエムアイ インク 抵抗加熱された電気手術デバイス
US10182861B2 (en) 2014-08-20 2019-01-22 Gyrus Acmi, Inc. Reconfigurable electrosurgical device
US11344361B2 (en) 2014-08-20 2022-05-31 Gyms Acmi, Inc. Surgical forceps and latching system
US10456191B2 (en) 2014-08-20 2019-10-29 Gyrus Acmi, Inc. Surgical forceps and latching system
US9707028B2 (en) 2014-08-20 2017-07-18 Gyrus Acmi, Inc. Multi-mode combination electrosurgical device
US10898260B2 (en) 2014-08-20 2021-01-26 Gyrus Acmi, Inc. Reconfigurable electrosurgical device
US9808305B2 (en) 2014-10-31 2017-11-07 Olympus Corporation Energy treatment apparatus
WO2016067800A1 (ja) * 2014-10-31 2016-05-06 オリンパス株式会社 エネルギー処置装置
JP6001225B1 (ja) * 2014-10-31 2016-10-05 オリンパス株式会社 エネルギー処置装置
US10363083B2 (en) 2015-07-24 2019-07-30 Olympus Corporation Energy treatment system, energy control device, and energy treatment instrument
JP6109458B1 (ja) * 2015-07-24 2017-04-05 オリンパス株式会社 エネルギー処置システム、エネルギー制御装置及びエネルギー処置具
WO2017018205A1 (ja) * 2015-07-24 2017-02-02 オリンパス株式会社 エネルギー処置システム、エネルギー制御装置及びエネルギー処置具
WO2017018171A1 (ja) * 2015-07-27 2017-02-02 オリンパス株式会社 エネルギー処置システム及びエネルギー制御装置
US11051879B2 (en) 2015-12-21 2021-07-06 Olympus Corporation Control device for surgical instrument, and surgical system
WO2017122345A1 (ja) * 2016-01-15 2017-07-20 オリンパス株式会社 エネルギー制御装置及び処置システム
US11129671B2 (en) 2016-01-15 2021-09-28 Olympus Corporation Energy control device, treatment system and actuating method of energy control device
JP6234652B1 (ja) * 2016-01-15 2017-11-22 オリンパス株式会社 エネルギー制御装置及び処置システム
US11000328B2 (en) 2016-11-09 2021-05-11 Gyrus Acmi, Inc. Resistively heated electrosurgical device
US11507117B2 (en) 2017-03-08 2022-11-22 Olympus Corporation Energy source apparatus
US11446077B2 (en) 2017-03-08 2022-09-20 Olympus Corporation Energy source apparatus
WO2018167878A1 (ja) * 2017-03-15 2018-09-20 オリンパス株式会社 エネルギー源装置
US11439456B2 (en) 2017-03-15 2022-09-13 Olympus Corporation Energy source apparatus
US11298177B2 (en) 2017-03-15 2022-04-12 Olympus Corporation Energy source apparatus
WO2018211629A1 (ja) * 2017-05-17 2018-11-22 オリンパス株式会社 制御装置及び処置システム
JP2019013759A (ja) * 2017-07-06 2019-01-31 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. 複数の電極を用いる温度制御式短時間アブレーション
WO2019142252A1 (ja) * 2018-01-17 2019-07-25 オリンパス株式会社 制御装置及び制御装置の作動方法
KR20220066222A (ko) 2020-11-12 2022-05-24 (주)아이티시 고주파 및 저주파 치료 기능이 부가된 체외 충격파 의료기
WO2022102813A1 (ko) * 2020-11-12 2022-05-19 (주)아이티시 고주파 및 저주파 치료 기능이 부가된 체외 충격파 의료기
KR20230089567A (ko) 2020-11-12 2023-06-20 (주)아이티시 고주파 및 저주파 치료 기능이 부가된 체외 충격파 의료기
KR20230161373A (ko) 2022-05-17 2023-11-27 (주)아이티시 고주파 및 저주파 치료 기능이 부가된 바이폴라형 체외 충격파 의료기
KR20230161300A (ko) 2022-05-17 2023-11-27 (주)아이티시 고주파 및 저주파 치료 기능이 부가된 체외 충격파 의료기

Also Published As

Publication number Publication date
US20090248002A1 (en) 2009-10-01
US20170238989A1 (en) 2017-08-24
EP2106762B1 (en) 2015-05-27
US10098688B2 (en) 2018-10-16
JP5220671B2 (ja) 2013-06-26
US9642669B2 (en) 2017-05-09
EP2106762A1 (en) 2009-10-07
US20190008573A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP5220671B2 (ja) 治療用処置システム
US8500735B2 (en) Treatment method for living tissue using energy
US9033983B2 (en) Treatment system, treatment instrument, and method for treating living tissue by use of energy
JP5231290B2 (ja) 治療用処置システムおよび治療用処置具
US8500736B2 (en) Treatment method for living tissue using energy
JP5315154B2 (ja) エレクトロサージカルデバイス、および、治療処置装置
KR101196970B1 (ko) 외과수술 도구
JP5116383B2 (ja) 予熱電極を有する脈管密封器具
US9375264B2 (en) Multi-circuit seal plates
WO2013040255A2 (en) Sealing and/or cutting instrument

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5220671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250