WO2015111662A1 - 治療用処置装置 - Google Patents

治療用処置装置 Download PDF

Info

Publication number
WO2015111662A1
WO2015111662A1 PCT/JP2015/051700 JP2015051700W WO2015111662A1 WO 2015111662 A1 WO2015111662 A1 WO 2015111662A1 JP 2015051700 W JP2015051700 W JP 2015051700W WO 2015111662 A1 WO2015111662 A1 WO 2015111662A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency electrode
resistance pattern
region
heat
conversion element
Prior art date
Application number
PCT/JP2015/051700
Other languages
English (en)
French (fr)
Inventor
工藤 貢一
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201580005473.3A priority Critical patent/CN106413612A/zh
Priority to EP15740270.2A priority patent/EP3097880A4/en
Publication of WO2015111662A1 publication Critical patent/WO2015111662A1/ja
Priority to US15/216,846 priority patent/US20160324566A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • A61B18/085Forceps, scissors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00089Thermal conductivity
    • A61B2018/00095Thermal conductivity high, i.e. heat conducting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00196Moving parts reciprocating lengthwise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00607Coagulation and cutting with the same instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1266Generators therefor with DC current output
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B2018/1452Probes having pivoting end effectors, e.g. forceps including means for cutting
    • A61B2018/1455Probes having pivoting end effectors, e.g. forceps including means for cutting having a moving blade for cutting tissue grasped by the jaws

Definitions

  • the present invention relates to a therapeutic treatment apparatus.
  • a therapeutic treatment apparatus for treating living tissue using thermal energy is known.
  • Japanese Patent Application Laid-Open No. 2013-034568 discloses the following therapeutic treatment apparatus. That is, this therapeutic treatment apparatus has an openable and closable high-frequency electrode that grips a living tissue to be treated.
  • the high frequency electrode is connected to a high frequency electrode conducting line for applying a high frequency voltage.
  • the high-frequency electrode also functions as a heat transfer plate that transfers heat to the grasped living tissue.
  • the high frequency electrode is provided with a seat heater as an electrothermal conversion element for heating the high frequency electrode. Therefore, this therapeutic treatment apparatus can apply a high frequency voltage to the grasped living tissue, and can further apply thermal energy to the living tissue.
  • the therapeutic treatment apparatus can cauterize and treat living tissue with high-frequency energy and thermal energy.
  • the high-frequency electrode energization line is directly joined to the high-frequency electrode and has good thermal conductivity. For this reason, in the high frequency electrode which functions as a heat transfer plate, heat radiation from the high frequency electrode energization line is large. As a result, the temperature of the high-frequency electrode tends to be non-uniform in the region where the high-frequency electrode energization line is connected. However, the temperature of the high frequency electrode is preferably uniform.
  • An object of the present invention is to provide a therapeutic treatment apparatus with a small temperature difference in the heat transfer plate.
  • a therapeutic treatment apparatus is a therapeutic treatment apparatus for treating a biological tissue, and contacts the biological tissue with heat and power.
  • a conductive heat transfer plate that is configured to transmit the heat
  • an electrothermal conversion element that is provided on the heat transfer plate and includes an electric resistance pattern that generates heat when a voltage is applied thereto, and a current to the heat transfer plate.
  • a lead wire configured to supply, and includes a first region including a region where a distance from the lead wire is smaller than a predetermined value in a pattern region in which the electric resistance pattern of the electrothermal conversion element is formed.
  • the heat generation density due to the electric resistance pattern in one region is higher than the heat generation density due to the electric resistance pattern in a second region including at least a part of the pattern region other than the first region. .
  • the heat generation density by the electrothermal conversion element is adjusted for each region, a therapeutic treatment device with a small temperature difference in the heat transfer plate is provided.
  • FIG. 1 is a schematic diagram illustrating a configuration example of a therapeutic treatment system according to each embodiment.
  • FIG. 2A is a schematic cross-sectional view illustrating a configuration example of a shaft and a holding unit of the energy treatment device according to each embodiment, and is a diagram illustrating a state in which the holding unit is closed.
  • FIG. 2B is a schematic cross-sectional view illustrating a configuration example of the shaft and the holding unit of the energy treatment device according to each embodiment, and is a diagram illustrating a state in which the holding unit is opened.
  • FIG. 3A is a plan view illustrating an outline of a configuration example of a first holding member of the holding unit according to each embodiment.
  • FIG. 3B is a schematic diagram illustrating a configuration example of the first holding member of the holding unit according to each embodiment, and is a vertical cross-sectional view taken along line 3B-3B shown in FIG. 3A.
  • FIG. 3C is a schematic diagram illustrating a configuration example of the first holding member of the holding unit according to each embodiment, and is a cross-sectional view taken along line 3C-3C shown in FIG. 3A.
  • FIG. 4 is an exploded perspective view illustrating a configuration example of the first electrode unit according to the first embodiment.
  • FIG. 5 is a perspective view illustrating a configuration example of the first electrode unit according to the first embodiment.
  • FIG. 6 is a perspective view illustrating a configuration example of the first high-frequency electrode, the high heat conductive heat-resistant adhesive sheet, the electric resistance pattern, the first high-frequency electrode energization line, and the like according to the first embodiment.
  • FIG. 7 is a perspective view illustrating a configuration example of a first high-frequency electrode, a high heat conductive heat-resistant adhesive sheet, an electric resistance pattern, a first high-frequency electrode energization line, and the like according to the second embodiment.
  • the therapeutic treatment apparatus is an apparatus for use in treatment of living tissue.
  • This therapeutic treatment apparatus causes high-frequency energy and thermal energy to act on a living tissue.
  • An outline of the appearance of the therapeutic treatment apparatus 300 is shown in FIG.
  • the therapeutic treatment apparatus 300 includes an energy treatment instrument 310, a control device 370, and a foot switch 380.
  • the energy treatment tool 310 is a linear type surgical treatment tool for performing treatment by penetrating the abdominal wall, for example.
  • the energy treatment device 310 includes a handle 350, a shaft 340 attached to the handle 350, and a holding unit 320 provided at the tip of the shaft 340.
  • the holding unit 320 can be opened and closed, and is a treatment unit that holds a living tissue to be treated and performs treatment such as coagulation and incision of the living tissue.
  • the holding portion 320 side is referred to as a distal end side
  • the handle 350 side is referred to as a proximal end side.
  • the handle 350 includes a plurality of operation knobs 352 for operating the holding unit 320.
  • the shape of the energy treatment device 310 shown here is an example, and other shapes may be used as long as they have the same function.
  • the holding portion, the handle, and the operation knob may have a shape different from the shape shown in FIG. 1, or the shaft may be curved.
  • the energy treatment tool 310 is not limited to the forceps type that grips the living tissue, but may be a trowel-type treatment tool that is used by being pressed against the living tissue.
  • the handle 350 is connected to the control device 370 via the cable 360.
  • the cable 360 and the control device 370 are connected by a connector 365, and this connection is detachable. That is, the therapeutic treatment apparatus 300 is configured such that the energy treatment tool 310 can be exchanged for each treatment.
  • a foot switch 380 is connected to the control device 370.
  • the foot switch 380 operated with a foot may be replaced with a switch operated with a hand or other switches. When the operator operates the pedal of the foot switch 380, ON / OFF of the supply of energy from the control device 370 to the energy treatment tool 310 is switched.
  • FIGS. 2A and 2B An example of the structure of the holding part 320 and the shaft 340 is shown in FIGS. 2A and 2B.
  • 2A shows a state in which the holding unit 320 is closed
  • FIG. 2B shows a state in which the holding unit 320 is opened.
  • the shaft 340 includes a cylindrical body 342 and a sheath 343.
  • the cylindrical body 342 is fixed to the handle 350 at its proximal end.
  • the sheath 343 is provided on the outer periphery of the cylindrical body 342 so as to be slidable along the axial direction of the cylindrical body 342.
  • a holding part 320 is provided at the tip of the cylindrical body 342.
  • the holding unit 320 includes a first holding member 322 and a second holding member 324.
  • the base portion of the first holding member 322 is fixed to the distal end portion of the cylindrical body 342 of the shaft 340.
  • the base portion of the second holding member 324 is rotatably supported by a support pin 346 at the distal end portion of the cylindrical body 342 of the shaft 340. Therefore, the second holding member 324 rotates around the axis of the support pin 346 and opens or closes with respect to the first holding member 322.
  • the cross-sectional shape of the base part of the first holding member 322 and the base part of the second holding member 324 is circular.
  • the second holding member 324 is biased by an elastic member 347 such as a leaf spring so as to open with respect to the first holding member 322.
  • the second holding member 324 opens with respect to the first holding member 322 by the urging force of the elastic member 347, as shown in FIG. 2B.
  • a drive rod 344 connected to one of the operation knobs 352 on the base end side is installed so as to be movable along the axial direction of the cylindrical body 342.
  • a thin plate-like cutter 345 having a blade formed on the distal end side is installed on the distal end side of the drive rod 344.
  • the cutter 345 moves along the axial direction of the cylindrical body 342 via the drive rod 344.
  • the cutter 345 moves to the distal end side, the cutter 345 is accommodated in a first cutter guide groove 332 and a second cutter guide groove 334 described later formed in the holding portion 320.
  • FIG. 3A is a plan view of the first holding member 322 when viewed from the direction of the first high-frequency electrode 110.
  • 3B is a cross-sectional view taken along line 3B-3B of FIG. 3A.
  • 3C is a cross-sectional view taken along line 3C-3C in FIG. 3A.
  • the first holding member 322 is formed with a first cutter guide groove 332 for guiding the cutter 345 described above.
  • the first holding member 322 is provided with a first high-frequency electrode 110 including, for example, a conductive copper thin plate.
  • the first high-frequency electrode 110 is configured to come into contact with a living tissue on one main surface (hereinafter referred to as a first main surface). Since the first high-frequency electrode 110 has the first cutter guide groove 332, the planar shape thereof is a U-shape as shown in FIG. 3A.
  • the first high-frequency electrode 110 is electrically connected to a first high-frequency electrode conducting line 162 that functions as a lead wire for applying a high-frequency voltage to the first high-frequency electrode 110 as described in detail later. ing.
  • the first high-frequency electrode 110 is connected to the control device 370 via the first high-frequency electrode energization line 162 and the cable 360.
  • the electrothermal conversion element 140 and the cover member 150 are arranged on the second main surface of the first high-frequency electrode 110 that does not come into contact with the living tissue, as will be described in detail later.
  • the 1st electrode part 100 which consists of the 1st high frequency electrode 110, the electrothermal conversion element 140, the cover member 150 grade
  • the first electrode unit 100 is embedded and fixed in the first holding member main body 326. A configuration example of the first electrode unit 100 will be described in detail later.
  • the second holding member 324 has a shape that is symmetric to the first holding member 322 and has the same structure as the first holding member 322. That is, a second cutter guide groove 334 is formed in the second holding member 324 at a position facing the first cutter guide groove 332. Further, the second holding member 324 is provided with a second high-frequency electrode 210 at a position facing the first high-frequency electrode 110. The second high-frequency electrode 210 is configured to come into contact with the living tissue on one main surface thereof. The second high-frequency electrode 210 is connected to the control device 370 via the second high-frequency electrode energization line 262 and the cable 360.
  • an electrothermal conversion element and a cover member are disposed on the surface of the second high-frequency electrode 210 that does not come into contact with the living tissue.
  • the second electrode unit 200 including the second high-frequency electrode 210, the electrothermal conversion element, the cover member, and the like is formed.
  • the second electrode unit 200 is embedded and fixed in the second holding member main body 328.
  • the first electrode unit 100 will be described in detail.
  • the second electrode unit 200 has the same structure as that of the first electrode unit 100, and thus the description of the second electrode unit 200 is omitted.
  • An exploded perspective view of the first electrode unit 100 is shown in FIG.
  • the first electrode unit 100 includes a first high-frequency electrode 110, a high heat conduction heat resistant adhesive sheet 130, an electrothermal conversion element 140, and a cover member 150.
  • the electrothermal conversion element 140 includes a substrate 142 and an electric resistance pattern 144.
  • FIG. 5 shows a perspective view of the first electrode unit 100 in which the first high-frequency electrode 110, the high heat conduction heat-resistant adhesive sheet 130, the electrothermal conversion element 140, and the cover member 150 are assembled.
  • the first high-frequency electrode 110, the high thermal conductive heat-resistant adhesive sheet 130, and the electrothermal conversion element 140 have a U shape so as to form a first cutter guide groove 332.
  • the cover member 150 has a groove shape so as to form the first cutter guide groove 332.
  • the first electrode unit 100 forms a first cutter guide groove 332 as a whole.
  • the first high-frequency electrode energization line 162 and the first heater energization line 164 extend from the proximal end side of the first electrode portion 100.
  • the electrothermal conversion element 140 has a substrate 142 containing, for example, polyimide.
  • the shape of the substrate 142 generally matches the shape of the first high-frequency electrode 110 as shown in FIG.
  • the substrate 142 is slightly longer than the first high-frequency electrode 110 and has a slightly narrower width.
  • a portion of the electrothermal conversion element 140 that protrudes from the first high-frequency electrode 110 is referred to as an extending portion.
  • An electrical resistance pattern 144 is formed in most regions other than the extended portion of the substrate 142 by, for example, a stainless (SUS) pattern.
  • First lead connection portions 146 connected to both ends of the electrical resistance pattern 144 are formed by SUS patterns at the end portions including the extending portion of the substrate 142.
  • the electrothermal conversion element 140 functions as a seat heater.
  • the thickness of the electrothermal conversion element 140 is, for example, about 100 ⁇ m.
  • the first high-frequency electrode 110 and the electrothermal conversion element 140 are bonded to each other by a high heat conductive heat-resistant adhesive sheet 130.
  • the electrothermal conversion element 140 is bonded so that the surface on which the electric resistance pattern 144 is formed faces the first high-frequency electrode 110 side.
  • the high heat conductive heat-resistant adhesive sheet 130 is a sheet having high thermal conductivity, withstanding high temperatures, and having adhesiveness.
  • the high heat conductive heat-resistant adhesive sheet 130 is formed, for example, by mixing an epoxy resin and a ceramic having high heat conductivity such as alumina or aluminum nitride.
  • the high heat conductive heat resistant adhesive sheet 130 has high adhesive performance, good thermal conductivity, and electrical insulation.
  • the thickness of the high heat conductive heat resistant adhesive sheet 130 is, for example, about 50 ⁇ m.
  • the high heat conductive heat resistant adhesive sheet 130 has substantially the same shape as the first high frequency electrode 110. However, the high heat conductive heat resistant adhesive sheet 130 is slightly longer than the first high frequency electrode 110. Since the high heat conductive heat-resistant adhesive sheet 130 is longer than the first high-frequency electrode 110, electrical insulation between the first high-frequency electrode 110 and the first lead connection portion 146 is ensured.
  • a pair of first heater energization lines 164 are connected to the pair of first lead connection portions 146.
  • the first heater energization line 164 is connected to the surface of the electrothermal conversion element 140 where the electrical resistance pattern 144 is formed, that is, the surface facing the first high-frequency electrode 110.
  • the electrical resistance pattern 144 When a voltage is applied to the electrical resistance pattern 144 from the first heater energization line 164 via the first lead connection portion 146, the electrical resistance pattern 144 generates heat, and this heat causes the first high-frequency electrode 110 to flow. It is transmitted to living tissue.
  • the electric resistance pattern 144 of the electrothermal conversion element 140 is located closer to the first high frequency electrode 110 than the substrate 142 of the electrothermal conversion element 140, and the high heat conductive heat resistant adhesive sheet 130 is interposed between the first high frequency electrode 110 and the electrothermal conversion element 140. Has been placed. Therefore, the electrical resistance pattern 144 is thermally coupled to the first high-frequency electrode 110 via the high heat conductive heat resistant adhesive sheet 130. Since only the high heat conductive heat-resistant adhesive sheet 130 exists between the electric resistance pattern 144 and the first high frequency electrode 110, the heat generated in the electric resistance pattern 144 is efficiently transmitted to the first high frequency electrode 110. The The heat transmitted to the first high-frequency electrode 110 is transmitted to the living tissue grasped by the holding unit 320. Thus, the first high-frequency electrode 110 also functions as a heat transfer plate that transfers heat to the living tissue.
  • the first high-frequency electrode 110 is further connected with a first high-frequency electrode conducting line 162.
  • the first high-frequency electrode energization line 162 is connected to a portion of the second main surface of the first high-frequency electrode 110 where the high heat conductive heat-resistant adhesive sheet 130 and the electrothermal conversion element 140 are not bonded by, for example, solder. .
  • solder By applying a high-frequency voltage to the first high-frequency electrode 110 from the first high-frequency electrode energization line 162, the first high-frequency electrode 110 applies a high-frequency voltage to the living tissue grasped by the holding unit 320.
  • the cover member 150 is made of heat-resistant resin.
  • the cover member 150 has a shape corresponding to the first high-frequency electrode 110.
  • the cover member 150 has a thickness of about 0.3 mm, for example.
  • the cover member 150 and the surrounding first holding member body 326 include the first high-frequency electrode 110 and the high heat conductive heat-resistant adhesive sheet. It is preferable to have a thermal conductivity lower than 130. Since the thermal conductivity of the cover member 150 and the first holding member main body 326 is low, the heat loss generated in the electrothermal conversion element 140 is reduced.
  • FIG. 6 shows the arrangement of the electrical resistance pattern 144 and the first high-frequency electrode conducting line 162 on the first high-frequency electrode 110.
  • the high heat conductive heat resistant adhesive sheet 130 is shown, but the substrate 142 of the electrothermal conversion element 140 is not shown.
  • the first high-frequency electrode energization line 162 is disposed along the electrothermal conversion element 140 on the side of the electrothermal conversion element 140 in parallel with the longitudinal direction of the first high-frequency electrode 110.
  • the electrical connection between the first high-frequency electrode 110 and the first high-frequency electrode conducting line 162 is disposed near the center in the longitudinal direction of the first high-frequency electrode 110.
  • the electrical connection between the first high-frequency electrode 110 and the first high-frequency electrode energization line 162 corresponds to the side of the region where the electrical resistance pattern 144 is formed in the electrothermal transducer 140.
  • the electric resistance pattern 144 is formed in a wave shape.
  • the line width of the electrical resistance pattern 144 is substantially uniform throughout.
  • the density of the electrical resistance pattern 144 is such that the first high-frequency electrode energization line 162 is disposed on the side where the first high-frequency electrode energization line 162 is disposed across the first cutter guide groove 332. It is formed so as to be higher than the non-side. That is, the pitch of the electrical resistance pattern 144 formed in the vicinity where the first high-frequency electrode energization line 162 is disposed is smaller than the pitch of other portions.
  • the heat generation density of the electrothermal conversion element 140 is increased in the portion where the electrical resistance pattern 144 is densely formed. That is, the heat generation density in the vicinity where the first high-frequency electrode energization line 162 is disposed is higher than the heat generation density of other portions.
  • the first electrode unit 100 has been described above, but the second electrode unit 200 is the same as the first electrode unit 100.
  • each value may be set individually, or a set of setting values corresponding to the surgical procedure may be selected.
  • the holding part 320 and the shaft 340 of the energy treatment device 310 are inserted into the abdominal cavity through the abdominal wall, for example.
  • the operator operates the operation knob 352 to open and close the holding unit 320, and grasps the living tissue to be treated by the first holding member 322 and the second holding member 324.
  • the first main surface of both the first high-frequency electrode 110 provided on the first holding member 322 and the second high-frequency electrode 210 provided on the second holding member 324 is subjected to treatment. Living tissue comes into contact.
  • the operator operates the foot switch 380 after holding the living tissue to be treated by the holding unit 320.
  • the foot switch 380 is switched ON, the first high-frequency electrode 110 and the first high-frequency electrode 110 and the second high-frequency electrode energization line 262 passing through the cable 360 from the control device 370 are connected.
  • the high frequency power of the preset power is supplied to the two high frequency electrodes 210.
  • the supplied power is, for example, about 20W to 80W.
  • the living tissue generates heat and the tissue is cauterized. By this cauterization, the tissue is denatured and solidified.
  • the control device 370 supplies power to the electrothermal conversion element 140 so that the temperature of the first high frequency electrode 110 becomes the target temperature.
  • the target temperature is 200 ° C., for example.
  • the current flows from the control device 370 through the electric resistance pattern 144 of the electrothermal transducer 140 via the cable 360 and the first heater energization line 164.
  • the electrical resistance pattern 144 generates heat due to current.
  • the heat generated in the electrical resistance pattern 144 is transmitted to the first high-frequency electrode 110 through the high heat conductive heat resistant adhesive sheet 130. As a result, the temperature of the first high-frequency electrode 110 increases.
  • electric power is supplied to the electrothermal conversion element of the second electrode unit 200 so that the temperature of the second high-frequency electrode 210 becomes the target temperature.
  • Electric power is supplied from the control device 370 to the electrothermal conversion element of the second electrode unit 200 via the cable 360 and the second heater energization line 264, and the temperature of the second high-frequency electrode 210 rises.
  • the living tissue in contact with the first high-frequency electrode 110 or the second high-frequency electrode 210 is further cauterized and further solidified by these heats.
  • the control device 370 stops outputting thermal energy.
  • the operator operates the operation knob 352 to move the cutter 345 and cut the living tissue. The treatment of the living tissue is thus completed.
  • the first electrode unit 100 a high voltage is passed through the first high-frequency electrode 110. For this reason, a relatively thick conducting wire is used for the first high-frequency electrode conducting line 162. Since the first high-frequency electrode conducting line 162 is a thick conducting wire, it has good thermal conductivity. Therefore, the temperature of the first high-frequency electrode 110 tends to decrease in the vicinity of the first high-frequency electrode energization line 162 due to heat conduction by the first high-frequency electrode energization line 162.
  • the density of the electrical resistance pattern 144 formed in the vicinity where the first high-frequency electrode energization line 162 is disposed is higher than other portions. Yes. Since the density of the electrical resistance pattern 144 is higher than that of the other portions, the heat generation density of the electrothermal conversion element 140 in the vicinity of the first high-frequency electrode energization line 162 is the heat generation density of other portions of the electrothermal conversion element 140. Higher than. As a result, the temperature of the first high-frequency electrode 110 in the vicinity of the first high-frequency electrode energization line 162 becomes sufficiently high in spite of the release of heat from the first high-frequency electrode energization line 162. That is, the temperature difference is small in the first high-frequency electrode 110. The same applies to the second electrode unit 200.
  • the electric resistance pattern 144 formed in the electrothermal conversion element 140 has a density on the side where the first high-frequency electrode energization line 162 is disposed across the first cutter guide groove 332.
  • the first high-frequency electrode energization line 162 is formed to be higher than the density on the side where it is not disposed.
  • the present invention is not limited to this.
  • the electric resistance pattern 144 is formed in the vicinity of the first high-frequency electrode energization line 162.
  • the electric resistance pattern 144 may be formed roughly in a portion that is densely formed and is away from the first high-frequency electrode conducting line 162.
  • the electric resistance pattern 144 is formed so that the heat generation density is increased in the vicinity of the first high-frequency electrode energization line 162, and the heat generation density is decreased in a portion away from the first high-frequency electrode energization line 162.
  • An electrical resistance pattern 144 may be formed.
  • the electric resistance pattern 144 may be formed more densely at the end portion of the electrothermal conversion element 140 than the other portions, and the heat generation density may be increased. As described above, the electric resistance pattern 144 is formed more densely than the other portions in the position where the heat of the first high-frequency electrode 110 is easily released, and the heat generation density is increased, so that the temperature of the first high-frequency electrode 110 is uniform. Can be.
  • the heat generation density in the vicinity where the first high-frequency electrode energization line 162 is disposed is higher than the heat generation density of other portions. However, in the present embodiment, a portion having a higher heat generation density is shown. Does not prevent it from being included.
  • the heat generation density by the electric resistance pattern 144 in the first region including the region where the distance from the energization line 162 is smaller than a predetermined value is the second including at least a part of the region other than the first region in the pattern region. It is higher than the heat generation density due to the electric resistance pattern 144 in the region. Further, in the pattern region, the heat generation density by the electric resistance pattern 144 in the third region including the region where the distance from the end of the first high-frequency electrode 110 is smaller than a predetermined value is the electric density in the second region. It is higher than the heat generation density by the resistance pattern 144.
  • the first high-frequency electrode conducting line 162 is connected to the first high-frequency electrode 110 near the center in the longitudinal axis direction of the first high-frequency electrode 110 is shown.
  • the first high-frequency electrode energization line 162 may be provided in the vicinity of the region where the electrical resistance pattern 144 is formed in the electrothermal conversion element 140, and the electrical resistance in the vicinity of the first high-frequency electrode energization line 162. It is only necessary that the pattern 144 is formed denser than the electric resistance pattern 144 in at least some other regions.
  • the heat generation density varies depending on the portion of the electrothermal conversion element 140 by changing the pitch of the electric resistance pattern 144 formed in a wave shape, and the first high-frequency electrode 110 is changed.
  • the temperature is made uniform.
  • the method of changing the heat generation density is not limited to this.
  • the electric resistance may be increased by narrowing the line width of the electric resistance pattern 144 and the heat generation amount of the electrothermal conversion element 140 may be increased.
  • the amount of heat generation may be adjusted by adjusting both the pitch and the line width of the electrical resistance pattern 144.
  • FIG. 7 shows the configuration of the first high-frequency electrode 110, the electrothermal conversion element 140, the first high-frequency electrode conducting line 162, and the like in the first electrode unit 100 according to the present embodiment.
  • the electrothermal conversion element 140 and the high heat conduction heat-resistant adhesive sheet 130 according to the present embodiment are provided with a notch 148.
  • the first high-frequency electrode conducting line 162 is connected to the first high-frequency electrode 110 at the notch 148.
  • the electric resistance pattern 144 of the electrothermal conversion element 140 according to the present embodiment is formed more densely in the vicinity of the notch 148 than the other portions.
  • the electric resistance pattern 144 is densely formed in the region where the notch 148 is present. That is, the heat generation density by the electrical resistance pattern 144 is higher in the region where the notch 148 is present than in other regions.
  • the first high-frequency electrode energization line 162 can be disposed so as to overlap the electrothermal conversion element 140 by providing the notch 148 in the electrothermal conversion element 140 as in the present embodiment.
  • the first electrode unit 100 can be miniaturized.
  • the heat generation density of the electrothermal conversion element 140 is adjusted so as to compensate for a decrease in heat generation density caused by providing the notch 148 in the electrothermal conversion element 140 and heat outflow caused by the presence of the first high-frequency electrode energization line 162. Has been. Therefore, a temperature difference hardly occurs in the first high-frequency electrode 110.
  • the present invention is not limited to this, and an opening is provided in the electrothermal conversion element 140 instead of the notch, and the first high-frequency electrode energization line 162 is connected to the first high-frequency electrode 110 in this opening. Good.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

治療用処置装置(300)は高周波電極(110)を有する。高周波電極(110)上には、電気抵抗パターン(144)を有する電熱変換素子(140)が接着されている。電気抵抗パターン(144)は電力を熱に変換し、高周波電極(110)を加熱する。よって、高周波電極(110)と接触している生体組織が焼灼される。高周波電極(110)には通電ライン(162)が接続されている。通電ライン(162)は太く、熱伝導性が高いので、電気抵抗パターン(144)から高周波電極(110)に伝導された熱は、通電ライン(162)に伝わる。このため、通電ライン(162)の近傍において、高周波電極(110)の温度は上昇しにくい。これを補償するために、通電ライン(162)の近傍において、電気抵抗パターン(144)は密に形成されている。よって、電気抵抗パターン(144)は通電ライン(162)の近傍において高密度で熱を発生し、高周波電極(110)の温度は比較的均一に上昇する。

Description

治療用処置装置
 本発明は、治療用処置装置に関する。
 熱エネルギを用いて生体組織を治療する治療用処置装置が知られている。例えば日本国特開2013-034568号公報には、次のような治療用処置装置が開示されている。すなわち、この治療用処置装置は、処置対象である生体組織を把持する開閉可能な高周波電極を有している。この高周波電極には、高周波電圧を印加するための高周波電極用通電ラインが接続されている。また、高周波電極は、把持した生体組織に熱を伝える伝熱板としても機能する。高周波電極には、高周波電極を加熱するための電熱変換素子としてのシートヒータが配置されている。したがって、この治療用処置装置は、把持した生体組織に高周波電圧を印加することができ、さらに、生体組織に熱エネルギを作用させることができる。治療用処置装置は、高周波エネルギと熱エネルギとによって、生体組織を焼灼し、処置することができる。
 高周波電極用通電ラインは、高周波電極に直接接合されており、かつ、熱伝導率がよい。このため、伝熱板として機能する高周波電極において、高周波電極用通電ラインからの放熱は大きい。その結果、高周波電極用通電ラインが接続されている領域において、高周波電極の温度が不均一になりやすい。しかしながら、高周波電極の温度は均一であることが好ましい。
 本発明は、伝熱板における温度差が小さい治療用処置装置を提供することを目的とする。
 前記目的を果たすため、本発明の一態様によれば、治療用処置装置は、生体組織を治療するための治療用処置装置であって、前記生体組織に接触してこの生体組織に熱と電力とを伝えるように構成された導電性の伝熱板と、前記伝熱板に設けられ、電圧が印加されることで発熱する電気抵抗パターンを含む電熱変換素子と、前記伝熱板に電流を供給するように構成されたリード線とを具備し、前記電熱変換素子の前記電気抵抗パターンが形成されているパターン領域のうち、前記リード線からの距離が所定の値よりも小さい領域を含む第1の領域における前記電気抵抗パターンによる発熱密度は、前記パターン領域のうち前記第1の領域以外の領域の少なくとも一部を含む第2の領域における前記電気抵抗パターンによる発熱密度よりも高い。
 本発明によれば、電熱変換素子による発熱密度が領域ごとに調整されているので、伝熱板における温度差が小さい治療用処置装置が提供される。
図1は、各実施形態に係る治療用処置システムの構成例を示す概略図である。 図2Aは、各実施形態に係るエネルギ処置具のシャフト及び保持部の構成例を示す断面の概略図であり、保持部が閉じた状態を示す図である。 図2Bは、各実施形態に係るエネルギ処置具のシャフト及び保持部の構成例を示す断面の概略図であり、保持部が開いた状態を示す図である。 図3Aは、各実施形態に係る保持部の第1の保持部材の構成例の概略を示す平面図である。 図3Bは、各実施形態に係る保持部の第1の保持部材の構成例を示す概略図であり、図3Aに示す3B-3B線に沿う縦断面図である。 図3Cは、各実施形態に係る保持部の第1の保持部材の構成例を示す概略図であり、図3Aに示す3C-3C線に沿う横断面図である。 図4は、第1の実施形態に係る第1の電極部の構成例を示す分解斜視図である。 図5は、第1の実施形態に係る第1の電極部の構成例を示す斜視図である。 図6は、第1の実施形態に係る第1の高周波電極、高熱伝導耐熱接着シート、電気抵抗パターン、第1の高周波電極用通電ライン等の構成例を示す斜視図である。 図7は、第2の実施形態に係る第1の高周波電極、高熱伝導耐熱接着シート、電気抵抗パターン、第1の高周波電極用通電ライン等の構成例を示す斜視図である。
 [第1の実施形態]
 本発明の第1の実施形態について図面を参照して説明する。本実施形態に係る治療用処置装置は、生体組織の治療に用いるための装置である。この治療用処置装置は、生体組織に高周波エネルギと熱エネルギとを作用させる。治療用処置装置300の外観の概略を図1に示す。この図に示すように、治療用処置装置300は、エネルギ処置具310と、制御装置370と、フットスイッチ380とを備えている。
 エネルギ処置具310は、例えば腹壁を貫通させて処置を行うための、リニアタイプの外科治療用処置具である。エネルギ処置具310は、ハンドル350と、ハンドル350に取り付けられたシャフト340と、シャフト340の先端に設けられた保持部320とを有する。保持部320は、開閉可能であり、処置対象である生体組織を把持して、生体組織の凝固、切開等の処置を行う処置部である。以降説明のため、保持部320側を先端側と称し、ハンドル350側を基端側と称する。ハンドル350は、保持部320を操作するための複数の操作ノブ352を備えている。
 なお、ここで示したエネルギ処置具310の形状は、もちろん一例であり、同様の機能を有していれば、他の形状でもよい。例えば、保持部やハンドルや操作ノブが図1に示す形状とは異なる形状をしていてもよいし、シャフトが湾曲していてもよい。さらに、エネルギ処置具310は、生体組織を把持する鉗子型に限らず、生体組織に押し付けて用いるこて型の処置具でもよい。
 ハンドル350は、ケーブル360を介して制御装置370に接続されている。ここで、ケーブル360と制御装置370とは、コネクタ365によって接続されており、この接続は着脱自在となっている。すなわち、治療用処置装置300は、処置毎にエネルギ処置具310を交換することができるように構成されている。制御装置370には、フットスイッチ380が接続されている。足で操作するフットスイッチ380は、手で操作するスイッチやその他のスイッチに置き換えられてもよい。フットスイッチ380のペダルを術者が操作することにより、制御装置370からエネルギ処置具310へのエネルギの供給のON/OFFが切り換えられる。
 保持部320及びシャフト340の構造の一例を図2A及び図2Bに示す。図2Aは保持部320が閉じた状態を示し、図2Bは保持部320が開いた状態を示す。シャフト340は、筒体342とシース343とを備えている。筒体342は、その基端部でハンドル350に固定されている。シース343は、筒体342の外周に、筒体342の軸方向に沿って摺動可能に設けられている。
 筒体342の先端部には、保持部320が設けられている。保持部320は、第1の保持部材322と、第2の保持部材324とを備えている。第1の保持部材322の基部は、シャフト340の筒体342の先端部に固定されている。一方、第2の保持部材324の基部は、シャフト340の筒体342の先端部に、支持ピン346によって回動可能に支持されている。したがって、第2の保持部材324は、支持ピン346の軸回りに回動し、第1の保持部材322に対して開いたり閉じたりする。
 保持部320が閉じた状態では、第1の保持部材322の基部と第2の保持部材324の基部とを合わせた断面形状は円形になる。第2の保持部材324は、第1の保持部材322に対して開くように、例えば板バネなどの弾性部材347により付勢されている。シース343を筒体342に対して先端側にスライドさせてシース343によって第1の保持部材322の基部及び第2の保持部材324の基部を覆うと、図2Aに示すように、弾性部材347の付勢力に抗して第1の保持部材322及び第2の保持部材324は閉じる。一方、シース343を筒体342の基端側にスライドさせると、図2Bに示すように、弾性部材347の付勢力によって第1の保持部材322に対して第2の保持部材324は開く。
 筒体342の内部には、後述する第1の高周波電極110に接続された第1の高周波電極用通電ライン162と、第2の高周波電極210に接続された第2の高周波電極用通電ライン262とが設けられている。また、筒体342の内部には、第1の高周波電極110に配置された発熱部材として機能する電熱変換素子140に接続された一対の第1のヒータ用通電ライン164と、第2の高周波電極210に配置された電熱変換素子に接続された一対の第2のヒータ用通電ライン264とが設けられている。
 筒体342の内部には、その基端側で操作ノブ352の一つと接続した駆動ロッド344が、筒体342の軸方向に沿って移動可能に設置されている。駆動ロッド344の先端側には、先端側に刃が形成された薄板状のカッタ345が設置されている。操作ノブ352が操作されると、駆動ロッド344を介してカッタ345は、筒体342の軸方向に沿って移動する。カッタ345が先端側に移動するとき、カッタ345は、保持部320に形成された後述する第1のカッタ案内溝332及び第2のカッタ案内溝334内に収まる。
 第1の保持部材322の構成の概略を図3A、図3B及び図3Cに示す。図3Aは、第1の保持部材322を第1の高周波電極110の方向から見た平面図である。図3Bは、図3Aの3B-3B線に沿った断面図である。図3Cは、図3Aの3C-3C線に沿った断面図である。これらの図に示すように、第1の保持部材322には、前記したカッタ345を案内するための第1のカッタ案内溝332が形成されている。
 第1の保持部材322には、例えば導電性を有する銅の薄板を含む第1の高周波電極110が設けられている。この第1の高周波電極110は、その一方の主面(以降、第1の主面と称する)で生体組織と接触するように構成されている。第1の高周波電極110は、第1のカッタ案内溝332を有するので、その平面形状は、図3Aに示されるように、U字形状となっている。
 第1の高周波電極110には、後に詳述するようにして第1の高周波電極110に高周波電圧を印加するためのリード線として機能する第1の高周波電極用通電ライン162が電気的に接続されている。第1の高周波電極110は、この第1の高周波電極用通電ライン162及びケーブル360を介して制御装置370に接続されている。
 また、第1の高周波電極110の生体組織と接触しない第2の主面には、後に詳述するように、電熱変換素子140及びカバー部材150が配置されている。このようにして、第1の高周波電極110、電熱変換素子140及びカバー部材150等からなる第1の電極部100が形成されている。第1の電極部100は、第1の保持部材本体326に埋め込まれて固定されている。なお、第1の電極部100の構成例を後にさらに詳述する。
 図2A及び図2Bに示すように、第2の保持部材324は、第1の保持部材322と対称をなす形状をしており、第1の保持部材322と同様の構造を有する。すなわち、第2の保持部材324には、第1のカッタ案内溝332と対向する位置に、第2のカッタ案内溝334が形成されている。また、第2の保持部材324には、第1の高周波電極110と対向する位置に、第2の高周波電極210が設けられている。この第2の高周波電極210は、その一方の主面で生体組織と接触するように構成されている。第2の高周波電極210は、第2の高周波電極用通電ライン262及びケーブル360を介して制御装置370に接続されている。
 また、第2の高周波電極210の生体組織と接触しない面には、電熱変換素子及びカバー部材が配置されている。このようにして、第2の高周波電極210、電熱変換素子及びカバー部材等からなる第2の電極部200が形成されている。第2の電極部200は、第2の保持部材本体328に埋め込まれて固定されている。
 第1の電極部100について詳述する。なお、第2の電極部200は、第1の電極部100と同様の構造を有するので、第2の電極部200についての説明は省略する。第1の電極部100の分解斜視図を図4に示す。この図に示すように、第1の電極部100は、第1の高周波電極110と、高熱伝導耐熱接着シート130と、電熱変換素子140と、カバー部材150とを有する。電熱変換素子140は、基板142と電気抵抗パターン144とを有する。第1の高周波電極110と、高熱伝導耐熱接着シート130と、電熱変換素子140と、カバー部材150とを組み立てた第1の電極部100の斜視図を図5に示す。
 図4に示すように、第1の高周波電極110、高熱伝導耐熱接着シート130、及び電熱変換素子140は、第1のカッタ案内溝332を形成するようにU字形状をしている。また、カバー部材150は、第1のカッタ案内溝332を形成するように、溝を有する形状をしている。図5に示すように、第1の電極部100は、全体として第1のカッタ案内溝332を形成する。また、第1の高周波電極用通電ライン162と第1のヒータ用通電ライン164とは、第1の電極部100の基端側から延伸する。
 図4に示すように、電熱変換素子140は、例えばポリイミドを含む基板142を有する。この基板142の形状は、図4に示すように概して第1の高周波電極110の形状に一致している。基板142は、第1の高周波電極110よりも長さがやや長く、幅がやや細い。電熱変換素子140のうち第1の高周波電極110から突出する部分を延在部と称することにする。
 基板142の延在部以外の大部分の領域には、例えばステンレス(SUS)のパターンによって、電気抵抗パターン144が形成されている。基板142の延在部を含む端部には、電気抵抗パターン144の両端に接続された第1のリード接続部146がそれぞれSUSパターンによって形成されている。一対の第1のリード接続部146に電圧が印加されることで、電気抵抗パターン144は発熱する。このように、電熱変換素子140は、シートヒータとして機能する。なお、電熱変換素子140の厚さは例えば100μm程度である。
 第1の高周波電極110と電熱変換素子140とは、高熱伝導耐熱接着シート130によって接着されている。ここで、電熱変換素子140は、電気抵抗パターン144が形成されている面を第1の高周波電極110側に向けて接着されている。高熱伝導耐熱接着シート130は、熱伝導率が高く、かつ、高温に耐え、接着性を有するシートである。高熱伝導耐熱接着シート130は、例えばエポキシ樹脂に、アルミナや窒化アルミ等といった熱伝導率の高いセラミックが混合されることで形成されている。高熱伝導耐熱接着シート130は、高い接着性能と、良好な熱伝導性と、電気絶縁性とを有している。高熱伝導耐熱接着シート130の厚さは、例えば50μm程度である。
 高熱伝導耐熱接着シート130は、第1の高周波電極110とほぼ同様の形状をしている。ただし、高熱伝導耐熱接着シート130は、第1の高周波電極110よりもやや長い。高熱伝導耐熱接着シート130が第1の高周波電極110よりも長いことで、第1の高周波電極110と第1のリード接続部146との間の電気的絶縁性が確保される。
 一対の第1のリード接続部146には、一対の第1のヒータ用通電ライン164が接続されている。第1のヒータ用通電ライン164は、電熱変換素子140の電気抵抗パターン144が形成されている面、すなわち、第1の高周波電極110と対向する面に接続されている。第1のヒータ用通電ライン164から第1のリード接続部146を介して電気抵抗パターン144に電圧が印加されることで、電気抵抗パターン144は発熱し、この熱は第1の高周波電極110を介して生体組織に伝えられる。
 電熱変換素子140の電気抵抗パターン144は、電熱変換素子140の基板142よりも第1の高周波電極110側に位置し、第1の高周波電極110との間に高熱伝導耐熱接着シート130を介して配置されている。したがって、電気抵抗パターン144は、第1の高周波電極110と、高熱伝導耐熱接着シート130を介して熱的に結合されている。電気抵抗パターン144と第1の高周波電極110との間には、高熱伝導耐熱接着シート130のみしか存在しないので、電気抵抗パターン144で発生した熱は、効率よく第1の高周波電極110に伝達される。第1の高周波電極110に伝達された熱は、保持部320で把持された生体組織に伝えられる。このように、第1の高周波電極110は、生体組織に熱を伝える伝熱板としても機能する。
 第1の高周波電極110には、さらに第1の高周波電極用通電ライン162が接続されている。第1の高周波電極用通電ライン162は、第1の高周波電極110の第2の主面のうち高熱伝導耐熱接着シート130及び電熱変換素子140が接着されていない部分に例えばハンダによって接続されている。第1の高周波電極用通電ライン162から第1の高周波電極110に高周波電圧が印加されることで、第1の高周波電極110は、保持部320で把持された生体組織に高周波電圧を印加する。
 カバー部材150は、耐熱性を有する樹脂製である。カバー部材150は、第1の高周波電極110に対応する形状をしている。カバー部材150の厚さは、例えば0.3mm程度である。
 電熱変換素子140で生じた熱を効率よく第1の高周波電極110へ伝えるために、カバー部材150及びその周囲の第1の保持部材本体326は、第1の高周波電極110や高熱伝導耐熱接着シート130の熱伝導率よりも低い熱伝導率を有することが好ましい。カバー部材150及び第1の保持部材本体326の熱伝導率が低いことで、電熱変換素子140で生じた熱の損失は小さくなる。
 第1の高周波電極110と、電熱変換素子140の電気抵抗パターン144と、第1の高周波電極用通電ライン162とについてさらに詳述する。図6に第1の高周波電極110上の電気抵抗パターン144と第1の高周波電極用通電ライン162との配置を示す。この図では、わかりやすさのため、高熱伝導耐熱接着シート130は示されているが、電熱変換素子140の基板142は示されていない。
 図6に示すように、第1の高周波電極用通電ライン162は、第1の高周波電極110の長手方向と平行に、電熱変換素子140の脇に電熱変換素子140に沿って配置されている。また、第1の高周波電極110と第1の高周波電極用通電ライン162との電気的接続部は、第1の高周波電極110の長手方向について中央付近に配置されている。第1の高周波電極110と第1の高周波電極用通電ライン162との電気的接続部は、電熱変換素子140において電気抵抗パターン144が形成されている領域の脇に相当する。
 また、電気抵抗パターン144は、波型に形成されている。電気抵抗パターン144の線幅は、全体にわたってほぼ均一である。一方、電気抵抗パターン144の密度は、第1のカッタ案内溝332を挟んで第1の高周波電極用通電ライン162が配置されている側の方が、第1の高周波電極用通電ライン162が配置されていない側よりも高くなるように形成されている。すなわち、第1の高周波電極用通電ライン162が配置されている付近に形成された電気抵抗パターン144のピッチは他の部分のピッチよりも小さい。
 上記のように電気抵抗パターン144が形成されることにより、電気抵抗パターン144が密に形成されている部分において、電熱変換素子140の発熱密度は高くなる。すなわち、第1の高周波電極用通電ライン162が配置されている付近の発熱密度は、他の部分の発熱密度よりも高い。
 以上、第1の電極部100について説明したが、第2の電極部200も第1の電極部100と同様である。
 次に本実施形態に係る治療用処置装置300の動作を説明する。術者は、予め制御装置370の入力部を操作して、治療用処置装置300の出力条件、例えば、高周波エネルギ出力の設定電力、熱エネルギ出力の目標温度や加熱時間等を設定しておく。治療用処置装置300は、それぞれの値が個別に設定されるようになっていてもよいし、術式に応じた設定値のセットが選択されるようになっていてもよい。
 エネルギ処置具310の保持部320及びシャフト340は、例えば、腹壁を通して腹腔内に挿入される。術者は、操作ノブ352を操作して保持部320を開閉させ、第1の保持部材322と第2の保持部材324とによって処置対象の生体組織を把持する。このとき、第1の保持部材322に設けられた第1の高周波電極110と第2の保持部材324に設けられた第2の高周波電極210との両方の第1の主面に、処置対象の生体組織が接触する。
 術者は、保持部320によって処置対象の生体組織を把持したら、フットスイッチ380を操作する。フットスイッチ380がONに切り換えられると、制御装置370からケーブル360内を通る第1の高周波電極用通電ライン162及び第2の高周波電極用通電ライン262を介して、第1の高周波電極110及び第2の高周波電極210に、予め設定した電力の高周波電力が供給される。供給される電力は、例えば、20W~80W程度である。その結果、生体組織は発熱し、組織が焼灼される。この焼灼により、当該組織は変性し、凝固する。
 次に制御装置370は、高周波エネルギの出力を停止した後、第1の高周波電極110の温度が目標温度になるように、電熱変換素子140に電力を供給する。ここで、目標温度は、例えば200℃である。このとき電流は、制御装置370から、ケーブル360及び第1のヒータ用通電ライン164を介して、電熱変換素子140の電気抵抗パターン144を流れる。電気抵抗パターン144は、電流によって発熱する。電気抵抗パターン144で発生した熱は、高熱伝導耐熱接着シート130を介して、第1の高周波電極110に伝わる。その結果、第1の高周波電極110の温度は上昇する。
 同様に、第2の高周波電極210の温度が目標温度になるように、第2の電極部200の電熱変換素子に電力が供給される。制御装置370から、ケーブル360及び第2のヒータ用通電ライン264を介して、第2の電極部200の電熱変換素子に電力が供給され、第2の高周波電極210の温度は上昇する。
 これらの熱によって第1の高周波電極110又は第2の高周波電極210と接触している生体組織は更に焼灼され、更に凝固する。加熱によって生体組織が凝固したら、制御装置370は、熱エネルギの出力を停止する。最後に術者は、操作ノブ352を操作してカッタ345を移動させ、生体組織を切断する。以上によって生体組織の処置が完了する。
 本実施形態に係る第1の電極部100では、第1の高周波電極110に高電圧を流す。このため、第1の高周波電極用通電ライン162には比較的太い導線が用いられる。第1の高周波電極用通電ライン162は、太い導線であるため熱伝導性がよい。したがって、第1の高周波電極用通電ライン162による熱伝導のため第1の高周波電極用通電ライン162の近傍において第1の高周波電極110の温度は低下しやすい。
 そこで本実施形態では、図6を参照して説明したとおり、第1の高周波電極用通電ライン162が配置されている付近に形成された電気抵抗パターン144の密度は他の部分よりも高くなっている。電気抵抗パターン144の密度が他の部分よりも高くなっているため、第1の高周波電極用通電ライン162の近傍における電熱変換素子140の発熱密度は、電熱変換素子140の他の部分の発熱密度よりも高くなる。その結果、第1の高周波電極用通電ライン162による熱の放出があるにも関わらず、第1の高周波電極用通電ライン162の近傍の第1の高周波電極110の温度は十分に高くなる。すなわち、第1の高周波電極110において温度差は小さくなる。第2の電極部200についても同様である。
 なお、本実施形態では、電熱変換素子140に形成された電気抵抗パターン144は、第1のカッタ案内溝332を挟んで第1の高周波電極用通電ライン162が配置されている側の密度が、第1の高周波電極用通電ライン162が配置されていない側の密度よりも高くなるように形成されている。しかしながらこれに限らず、例えば第1のカッタ案内溝332よりも第1の高周波電極用通電ライン162が配置されている側において、第1の高周波電極用通電ライン162の近傍では電気抵抗パターン144が密に形成され、第1の高周波電極用通電ライン162から離れた部分において電気抵抗パターン144が粗に形成されてもよい。すなわち、第1の高周波電極用通電ライン162の近傍では発熱密度が高くなるように電気抵抗パターン144が形成され、第1の高周波電極用通電ライン162から離れた部分においては発熱密度が低くなるように電気抵抗パターン144が形成されてもよい。
 また、第1の高周波電極110の先端部や基端部などの端部では、熱が放出されやすい。したがって、放出される熱を補償するため、電熱変換素子140の端部において電気抵抗パターン144が他の部分よりも密に形成され、発熱密度が高くされてもよい。このように、第1の高周波電極110の熱が放出されやすい位置において電気抵抗パターン144が他の部分よりも密に形成され発熱密度が高くされることで、第1の高周波電極110の温度は均一になり得る。本実施形態では第1の高周波電極用通電ライン162が配置されている付近の発熱密度は他の部分の発熱密度よりも高い例を示したが、本実施形態は、さらに発熱密度が高い部分が含まれることを妨げない。
 このように、本実施形態に係る第1の電極部100において、電熱変換素子140の電気抵抗パターン144が形成されている領域をパターン領域としたときに、パターン領域のうち、第1の高周波電極用通電ライン162からの距離が所定の値よりも小さい領域を含む第1の領域における電気抵抗パターン144による発熱密度は、パターン領域のうち第1の領域以外の領域の少なくとも一部を含む第2の領域における電気抵抗パターン144による発熱密度よりも高い。また、パターン領域のうち、第1の高周波電極110の端部からの距離が所定の値よりも小さい領域を含む第3の領域における電気抵抗パターン144による発熱密度は、前記第2の領域における電気抵抗パターン144による発熱密度よりも高い。
 なお、本実施形態では、第1の高周波電極用通電ライン162が第1の高周波電極110の長手軸方向について中央付近において第1の高周波電極110に接続されている例を示したが、これに限らない。第1の高周波電極用通電ライン162は、電熱変換素子140において電気抵抗パターン144が形成されている領域の近傍に設けられていればよく、第1の高周波電極用通電ライン162の近傍の電気抵抗パターン144が、少なくとも他の一部の領域の電気抵抗パターン144よりも密に形成されていればよい。
 本実施形態では、図6等に示すように、波型に形成されている電気抵抗パターン144のピッチを変化させることによって電熱変換素子140の部位によって発熱密度を異ならせ、第1の高周波電極110の温度の均一化を図っている。しかしながら、発熱密度を変化させる方法はこれに限らない。例えば、電熱変換素子140において発熱密度を高くしたい領域について、電気抵抗パターン144の線幅を狭くすることで電気抵抗を大きくし、電熱変換素子140の発熱量を大きくしてもよい。また、電気抵抗パターン144のピッチと線幅とをともに調整することで、発熱量が調整されてもよい。
 [第2の実施形態]
 第2の実施形態について説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。本実施形態では、第1の電極部100において、第1の高周波電極110、電熱変換素子140及び第1の高周波電極用通電ライン162の構成が第1の実施形態に係る第1の電極部100と異なる。
 本実施形態に係る第1の電極部100における第1の高周波電極110、電熱変換素子140及び第1の高周波電極用通電ライン162等の構成を図7に示す。図7に示すように、本実施形態に係る電熱変換素子140及び高熱伝導耐熱接着シート130には、切り欠き部148が設けられている。第1の高周波電極用通電ライン162は、この切り欠き部148において第1の高周波電極110と接続している。また、本実施形態に係る電熱変換素子140の電気抵抗パターン144は、切り欠き部148の近傍において、他の部分よりも密に形成されている。
 本実施形態では、切り欠き部148において第1の高周波電極用通電ライン162が第1の高周波電極110に接続されているので、この部分において第1の高周波電極用通電ライン162がから熱の流出が起こりやすい。また、切り欠き部148において電気抵抗パターン144が形成されている領域が狭くなっているので、相対的に発熱量が下がりやすい。そこで、本実施形態では、切り欠き部148がある領域において、電気抵抗パターン144は密に形成されている。すなわち、電気抵抗パターン144による発熱密度は、切り欠き部148がある領域において他の領域よりも高い。
 本実施形態にように電熱変換素子140に切り欠き部148が設けられることによって第1の高周波電極用通電ライン162は、電熱変換素子140と重なるように配置され得る。その結果、第1の電極部100は小型化され得る。また、電熱変換素子140に切り欠き部148を設けることによって生じる発熱密度の低下や第1の高周波電極用通電ライン162の存在によって生じる熱流出を補償するように電熱変換素子140の発熱密度が調整されている。したがって、第1の高周波電極110において温度差が生じにくい。
 なお、本実施形態では、図7に示すように、電熱変換素子140の縁に切欠き部が設けられている例を示した。しかしながらこれに限らず、切欠き部の代わりに電熱変換素子140内に開口部が設けられ、この開口部において第1の高周波電極用通電ライン162が第1の高周波電極110に接続されていてもよい。
 100…第1の電極部、110…第1の高周波電極、130…高熱伝導耐熱接着シート、140…電熱変換素子、142…基板、144…電気抵抗パターン、146…リード接続部、148…切り欠き部、150…カバー部材、162…第1の高周波電極用通電ライン、164…第1のヒータ用通電ライン、200…第2の電極部、210…第2の高周波電極、262…第2の高周波電極用通電ライン、264…第2のヒータ用通電ライン、300…治療用処置装置、310…エネルギ処置具、320…保持部、322…第1の保持部材、324…第2の保持部材、326…第1の保持部材本体、328…第2の保持部材本体、332…第1のカッタ案内溝、334…第2のカッタ案内溝、340…シャフト、342…筒体、343…シース、344…駆動ロッド、345…カッタ、346…支持ピン、347…弾性部材、350…ハンドル、352…操作ノブ、360…ケーブル、365…コネクタ、370…制御装置、380…フットスイッチ。

Claims (5)

  1.  生体組織を治療するための治療用処置装置であって、
     前記生体組織に接触してこの生体組織に熱と電力とを伝えるように構成された導電性の伝熱板と、
     前記伝熱板に設けられ、電圧が印加されることで発熱する電気抵抗パターンを含む電熱変換素子と、
     前記伝熱板に電流を供給するように構成されたリード線と
     を具備し、
     前記電熱変換素子の前記電気抵抗パターンが形成されているパターン領域のうち、前記リード線からの距離が所定の値よりも小さい領域を含む第1の領域における前記電気抵抗パターンによる発熱密度は、前記パターン領域のうち前記第1の領域以外の領域の少なくとも一部を含む第2の領域における前記電気抵抗パターンによる発熱密度よりも高い、
     治療用処置装置。
  2.  前記第1の領域における前記電気抵抗パターンのピッチが前記第2の領域における前記電気抵抗パターンのピッチよりも小さいことで前記第1の領域における発熱密度が前記第2の領域における発熱密度よりも高い、請求項1に記載の治療用処置装置。
  3.  前記第1の領域における前記電気抵抗パターンの線幅が前記第2の領域における前記電気抵抗パターンの線幅よりも細いことで前記第1の領域における発熱密度が前記第2の領域における発熱密度よりも高い、請求項1に記載の治療用処置装置。
  4.  前記電熱変換素子には、切欠き部又は開口部が設けられており、
     前記リード線は、前記切欠き部又は前記開口部において前記伝熱板に接続している、
     請求項1乃至3のうち何れか1項に記載の治療用処置装置。
  5.  前記パターン領域のうち、前記伝熱板の端部からの距離が所定の値よりも小さい領域を含む第3の領域における前記電気抵抗パターンによる発熱密度は、前記第2の領域における前記電気抵抗パターンによる発熱密度よりも高い、
     請求項1乃至3のうち何れか1項に記載の治療用処置装置。
PCT/JP2015/051700 2014-01-24 2015-01-22 治療用処置装置 WO2015111662A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580005473.3A CN106413612A (zh) 2014-01-24 2015-01-22 治疗用处置装置
EP15740270.2A EP3097880A4 (en) 2014-01-24 2015-01-22 Therapeutic apparatus
US15/216,846 US20160324566A1 (en) 2014-01-24 2016-07-22 Treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014011843A JP6274881B2 (ja) 2014-01-24 2014-01-24 治療用処置装置
JP2014-011843 2014-01-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/216,846 Continuation US20160324566A1 (en) 2014-01-24 2016-07-22 Treatment apparatus

Publications (1)

Publication Number Publication Date
WO2015111662A1 true WO2015111662A1 (ja) 2015-07-30

Family

ID=53681463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051700 WO2015111662A1 (ja) 2014-01-24 2015-01-22 治療用処置装置

Country Status (5)

Country Link
US (1) US20160324566A1 (ja)
EP (1) EP3097880A4 (ja)
JP (1) JP6274881B2 (ja)
CN (1) CN106413612A (ja)
WO (1) WO2015111662A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185815A1 (ja) * 2017-04-03 2018-10-11 オリンパス株式会社 熱処置具
WO2020053958A1 (ja) * 2018-09-11 2020-03-19 オリンパス株式会社 医療用ヒータ、処置具、及び処置具の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163410A1 (ja) * 2016-03-25 2017-09-28 オリンパス株式会社 エネルギ処置具
WO2018150532A1 (ja) 2017-02-17 2018-08-23 オリンパス株式会社 処置具
WO2018189884A1 (ja) * 2017-04-14 2018-10-18 オリンパス株式会社 処置具
US11648047B2 (en) 2017-10-06 2023-05-16 Vive Scientific, Llc System and method to treat obstructive sleep apnea
JP7179070B2 (ja) * 2018-08-31 2022-11-28 オリンパス株式会社 医療用ヒータ、処置具、及び処置具の製造方法
WO2023148632A1 (en) * 2022-02-01 2023-08-10 Covidien Lp Thermal elements for surgical instruments and surgical instruments incorporating the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259356A (ja) * 1988-08-25 1990-02-28 Toshiba Lighting & Technol Corp 定着用加熱体、定着装置および画像形成装置
JPH04101381A (ja) * 1990-08-17 1992-04-02 Ngk Insulators Ltd 半導体ウエハー加熱装置
JPH08250266A (ja) * 1995-03-15 1996-09-27 Ushio Inc 棒状発熱体
JP2002141163A (ja) * 2000-10-31 2002-05-17 Kyocera Corp セラミックヒーター及びこれを用いた光合分波器
JP2009247893A (ja) * 2008-04-01 2009-10-29 Olympus Medical Systems Corp 治療用処置システム
JP2013034568A (ja) 2011-08-05 2013-02-21 Olympus Corp 治療用処置装置
JP2013106909A (ja) * 2011-11-24 2013-06-06 Olympus Medical Systems Corp 治療用処置装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5687462B2 (ja) * 2010-09-27 2015-03-18 オリンパス株式会社 治療用処置装置
JP5631716B2 (ja) * 2010-12-14 2014-11-26 オリンパス株式会社 治療用処置装置
JP5622551B2 (ja) * 2010-12-14 2014-11-12 オリンパス株式会社 治療用処置装置及びその制御方法
US9615877B2 (en) * 2011-06-17 2017-04-11 Covidien Lp Tissue sealing forceps
WO2013040255A2 (en) * 2011-09-13 2013-03-21 Domain Surgical, Inc. Sealing and/or cutting instrument
US9011435B2 (en) * 2012-02-24 2015-04-21 Covidien Lp Method for manufacturing vessel sealing instrument with reduced thermal spread
US20150060527A1 (en) * 2013-08-29 2015-03-05 Weihua Tang Non-uniform heater for reduced temperature gradient during thermal compression bonding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259356A (ja) * 1988-08-25 1990-02-28 Toshiba Lighting & Technol Corp 定着用加熱体、定着装置および画像形成装置
JPH04101381A (ja) * 1990-08-17 1992-04-02 Ngk Insulators Ltd 半導体ウエハー加熱装置
JPH08250266A (ja) * 1995-03-15 1996-09-27 Ushio Inc 棒状発熱体
JP2002141163A (ja) * 2000-10-31 2002-05-17 Kyocera Corp セラミックヒーター及びこれを用いた光合分波器
JP2009247893A (ja) * 2008-04-01 2009-10-29 Olympus Medical Systems Corp 治療用処置システム
JP2013034568A (ja) 2011-08-05 2013-02-21 Olympus Corp 治療用処置装置
JP2013106909A (ja) * 2011-11-24 2013-06-06 Olympus Medical Systems Corp 治療用処置装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185815A1 (ja) * 2017-04-03 2018-10-11 オリンパス株式会社 熱処置具
US11311331B2 (en) 2017-04-03 2022-04-26 Olympus Corporation Thermal treatment system
WO2020053958A1 (ja) * 2018-09-11 2020-03-19 オリンパス株式会社 医療用ヒータ、処置具、及び処置具の製造方法
JPWO2020053958A1 (ja) * 2018-09-11 2021-08-30 オリンパス株式会社 医療用ヒータ、処置具、及び処置具の製造方法
JP7044895B2 (ja) 2018-09-11 2022-03-30 オリンパス株式会社 医療用ヒータ、処置具、及び処置具の製造方法

Also Published As

Publication number Publication date
EP3097880A1 (en) 2016-11-30
CN106413612A (zh) 2017-02-15
JP6274881B2 (ja) 2018-02-07
JP2015136604A (ja) 2015-07-30
EP3097880A4 (en) 2017-09-27
US20160324566A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP6274881B2 (ja) 治療用処置装置
JP5988868B2 (ja) 治療用処置装置
JP5988885B2 (ja) 治療用処置装置
JP5931604B2 (ja) 治療用処置装置
JP5631716B2 (ja) 治療用処置装置
JP5814685B2 (ja) 治療用処置装置
JP5797348B2 (ja) 治療用処置装置及びその製造方法
JP2013106909A (ja) 治療用処置装置
JP2013034614A (ja) 治療用処置装置
JP2013034613A (ja) 治療用処置装置
JP2012161566A (ja) 治療用処置装置及びその制御方法
WO2018055778A1 (ja) 処置具及び処置システム
JP5704985B2 (ja) 治療用処置装置
JP6000717B2 (ja) 治療用処置装置及びその制御方法
JP2012249807A (ja) 治療用処置装置及びその制御方法
CN106999240B (zh) 处置器具
CN109475380B (zh) 处置器具
JP2012165948A (ja) 治療用処置装置及びその製造方法
WO2018193493A1 (ja) 処置具
WO2018146730A1 (ja) エネルギ付与構造体及び処置具
WO2014148199A1 (ja) 治療用処置装置
JP2012249806A (ja) 治療用処置装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015740270

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015740270

Country of ref document: EP