WO2017163410A1 - エネルギ処置具 - Google Patents

エネルギ処置具 Download PDF

Info

Publication number
WO2017163410A1
WO2017163410A1 PCT/JP2016/059678 JP2016059678W WO2017163410A1 WO 2017163410 A1 WO2017163410 A1 WO 2017163410A1 JP 2016059678 W JP2016059678 W JP 2016059678W WO 2017163410 A1 WO2017163410 A1 WO 2017163410A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
thermal resistance
pair
substrate
wiring
Prior art date
Application number
PCT/JP2016/059678
Other languages
English (en)
French (fr)
Inventor
亮 松井
尚英 鶴田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2018506732A priority Critical patent/JPWO2017163410A1/ja
Priority to PCT/JP2016/059678 priority patent/WO2017163410A1/ja
Publication of WO2017163410A1 publication Critical patent/WO2017163410A1/ja
Priority to US16/047,501 priority patent/US20180344380A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/10Power sources therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • A61B18/085Forceps, scissors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00089Thermal conductivity
    • A61B2018/00095Thermal conductivity high, i.e. heat conducting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00089Thermal conductivity
    • A61B2018/00101Thermal conductivity low, i.e. thermally insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00172Connectors and adapters therefor
    • A61B2018/00178Electrical connectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting

Definitions

  • the present invention relates to an energy treatment device.
  • an energy treatment tool thermal tissue surgery system
  • thermal energy treatment tool that treats biological tissues by applying thermal energy to the biological tissues (joining (or anastomosis), cutting, etc.)
  • the energy treatment tool described in Patent Literature 1 includes a pair of jaws that sandwich a living tissue. Resistance heating elements are respectively embedded in the pair of jaws. Then, when the resistance heating element is energized through the cable, the jaw is heated, and thermal energy is applied to the living tissue that contacts the jaw.
  • the energy treatment device described in Patent Document 1 has a structure in which a cable is connected to the jaw, the heat of the jaw is easy to flow into the cable (conductor such as copper). That is, in the jaw, the temperature around the part where the cable (conductor) is connected is likely to decrease. For this reason, there is a problem that the temperature of the jaw varies (the temperature of the treatment surface in contact with the living tissue in the jaw also varies), and heat energy cannot be uniformly applied to the living tissue.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an energy treatment device capable of uniformly applying thermal energy to a living tissue to be treated.
  • an energy treatment tool generates a heat energy and a heat transfer plate having a treatment surface for treating a living tissue, and the heat energy is transferred to the heat transfer plate.
  • An energy generation unit that transmits to the plate; and a wiring unit that is connected to the energy generation unit and serves as an energization path to the energy generation unit.
  • the wiring unit is lower than the low thermal resistance unit and the low thermal resistance unit. A high thermal resistance portion, and a low thermal resistance portion and a high thermal resistance portion connecting between the energy generation portions.
  • thermoelectric treatment device of the present invention there is an effect that heat energy can be uniformly applied to a living tissue to be treated.
  • FIG. 1 is a diagram schematically showing a treatment system according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged view of the distal end portion of the energy treatment device shown in FIG.
  • FIG. 3 is a perspective view showing the configuration of the energy application structure shown in FIG. 4 is an exploded perspective view of the energy application structure shown in FIG.
  • FIG. 5 is a view of the energy application structure shown in FIG. 3 as viewed from the back side of the treatment surface.
  • 6 is a side view of the energy application structure shown in FIG.
  • FIG. 7 is a diagram showing a configuration of the energy application structure according to Embodiment 2 of the present invention.
  • FIG. 8 is a diagram showing the configuration of the energy application structure according to Embodiment 3 of the present invention.
  • FIG. 9 is a diagram showing a configuration of an energy application structure according to Embodiment 4 of the present invention.
  • FIG. 10 is a diagram illustrating a circuit model of the wiring relay unit illustrated in FIG. 9.
  • FIG. 1 is a diagram schematically showing a treatment system 1 according to Embodiment 1 of the present invention.
  • the treatment system 1 applies energy to a biological tissue that is a treatment target, and treats (joins (or anastomoses), separates, etc.) the biological tissue.
  • the treatment system 1 includes an energy treatment tool 2, a control device 3, and a foot switch 4.
  • the energy treatment device 2 is, for example, a linear type surgical treatment device for performing treatment on a living tissue through an abdominal wall.
  • the energy treatment device 2 includes a handle 5, a shaft 6, and a clamping unit 7.
  • the handle 5 is a portion that the operator holds.
  • the handle 5 is provided with an operation knob 51 as shown in FIG.
  • the shaft 6 has a substantially cylindrical shape, and one end (right end portion in FIG. 1) is connected to the handle 5. Further, a clamping portion 7 is attached to the other end of the shaft 6 (left end portion in FIG. 1).
  • an opening / closing mechanism (not shown) that opens and closes the holding members 8, 8 ′ (FIG.
  • FIG. 2 is an enlarged view of the distal end portion of the energy treatment device 2.
  • the clamping part 7 is a part which clamps a biological tissue and treats the said biological tissue.
  • the clamping unit 7 includes a pair of holding members 8 and 8 ′ and a pair of energy applying structures 9 and 9 ′.
  • the pair of holding members 8 and 8 ' are pivotally supported on the other end (left end portion in FIG. 2) of the shaft 6 so as to be openable and closable in the direction of the arrow R1 (FIG. 2).
  • These holding members 8 and 8 ' are formed by molding a resin material (fluororesin or the like), for example.
  • the energy application structures 9 and 9 ' have the same configuration, and in an upside down posture, the upper surface and the upper side of the holding member 8 disposed on the lower side in FIGS. Are respectively supported by the lower surface of the holding member 8 '. For this reason, below, only the structure of the energy provision structure 9 supported by the holding member 8 is demonstrated.
  • FIG. 3 is a perspective view showing the configuration of the energy application structure 9.
  • 4 is an exploded perspective view of the energy applying structure 9 shown in FIG.
  • FIG. 5 is a view of the energy applying structure 9 shown in FIG. 3 as viewed from the back side of the treatment surface 911.
  • FIG. 6 is a side view of the energy application structure 9 shown in FIG.
  • the energy application structure 9 applies thermal energy to the living tissue under the control of the control device 3.
  • the energy applying structure 9 includes a heat transfer plate 91, a ceramic heater 92, a wiring relay portion 93, and a pair of lead wires 94 that constitute the electric cable C.
  • the heat transfer plate 91 is a thin plate having a long shape (a long shape extending in the left-right direction in FIGS. 3 to 6), and the energy applying structure 9 is attached to the holding member 8, and on one plate surface.
  • a certain treatment surface 911 faces the holding member 8 'side (the upper side in FIGS. 1 and 2).
  • Examples of the material of the heat transfer plate 91 include a high thermal conductivity ceramic material such as aluminum nitride, and a high thermal conductivity metal material such as copper and aluminum. Then, the heat transfer plate 91 transmits the heat from the ceramic heater 92 to the living tissue with the treatment surface 911 in contact with the living tissue in a state where the living tissue is held by the holding unit 7 (heat energy is transferred to the living body). To the organization).
  • the ceramic heater 92 generates heat energy and transmits the heat energy to the heat transfer plate 91 (heats the heat transfer plate 91). That is, the ceramic heater 92 has a function as an energy generating unit according to the present invention.
  • the ceramic heater 92 includes a ceramic substrate 921 and a heating element 922.
  • the ceramic substrate 921 is a long plate made of a highly thermally conductive ceramic material such as aluminum nitride or alumina.
  • the width dimension and the length dimension (the length dimension in the left-right direction in FIGS. 3 to 6) of the ceramic substrate 921 are set to be smaller than the width dimension and the length dimension of the heat transfer plate 91, respectively. ing.
  • the heating element 922 is formed on one plate surface of the ceramic substrate 921 by vapor deposition or the like, and is made of a conductive material such as platinum. As shown in FIG. 4, the heating element 922 includes a pair of electrodes 9221 and a resistance pattern 9222. Note that the material of the heating element 922 is not limited to platinum, and a conductive material such as stainless steel or tungsten may be employed. Further, the heating element 922 is not limited to the configuration formed on one plate surface of the ceramic substrate 921 by vapor deposition or the like, and a configuration in which stainless steel or the like is processed and bonded by thermocompression bonding may be employed.
  • the pair of electrodes 9221 respectively extend from one end side (right end portion side in FIG. 4) to the other end side (left end portion side in FIG. 4) of the ceramic substrate 921, and are mutually connected along the width direction of the ceramic substrate 921. opposite.
  • One end of the resistance pattern 9222 is connected (conducted) to one electrode 9221 and extends from the one end along a U-shape following the outer edge shape of the ceramic substrate 921 while meandering in a wavy shape with a constant line width.
  • the end is connected (conductive) to the other electrode 9221.
  • the resistance pattern 9222 generates heat (generates thermal energy) when voltage is applied (energized) to the pair of electrodes 9221.
  • a bonding metal layer (not shown) formed of a multilayer film of titanium, platinum, and gold is formed on the entire other plate surface (the plate surface on which the heating element 922 is not provided) of the ceramic substrate 921 described above. ) Is formed.
  • the ceramic heater 92 is fixed by AuSn joining the said back surface and the said metal layer for joining so that it may be located in the approximate center part of the width direction in the back surface of the treatment surface 911 in the heat exchanger plate 91.
  • the wiring relay portion 93 is formed of a flexible substrate and electrically connects a pair of lead wires 94 (each conductor 941) and a pair of electrodes 9221 that constitute the electric cable C.
  • the wiring relay unit 93 includes a substrate 931 and a pair of wiring patterns 932.
  • the substrate 931 is indicated by a one-dot chain line.
  • the substrate 931 is a long sheet made of an insulating material such as polyimide.
  • the width dimension of the substrate 931 is set to be substantially the same as the width dimension of the ceramic substrate 921.
  • the pair of wiring patterns 932 are each formed on one surface of the substrate 931 by vapor deposition or the like.
  • the same material (copper) as the conductor 941 of the lead wire 94 is adopted as the material of the wiring pattern 932.
  • the pair of wiring patterns 932 extend from one end side (the left end portion in FIGS. 5 and 6) to the other end side (the right end portion in FIGS. 5 and 6) of the substrate 931. Along each other.
  • the pair of electrodes 9221 are connected to one end side of the pair of wiring patterns 932 (the left end side in FIG. 6) via a bonding layer BL1 (FIG. 6) made of a conductive material such as gold, AuSn, or silver. ) Are respectively connected (joined). Further, the other end side (the right end side in FIG. 6) of the pair of wiring patterns 932 has a pair of bonding layers BL2 (FIG. 6) made of a conductive material such as gold, AuSn, or silver. Each conductor 941 of the lead wire 94 is connected (joined). As shown in FIG. 6, an insulating sheet 933 such as polyimide is attached to the surface of the substrate 931 on which the pair of wiring patterns 932 is provided so as to cover the exposed portions of the pair of wiring patterns 932. Yes.
  • the conductor 941 and the wiring pattern 932 described above serve as an energization path from the control device 3 to the ceramic heater 92, and have a function as the wiring portion 10 (FIGS. 5 and 6) according to the present invention.
  • the conductor 941 and the wiring pattern 932 are made of the same material (copper), but the cross-sectional area obtained by cutting the wiring pattern 932 along the cut surface along the width direction is the cross-sectional area of the conductor 941 ( It is set smaller than the cross-sectional area cut by a cutting plane orthogonal to the longitudinal direction. For this reason, the thermal resistance per unit length in the longitudinal direction in the wiring pattern 932 is higher than the thermal resistance per unit length in the longitudinal direction of the conductor 941.
  • the wiring pattern 932 has a function as a high thermal resistance portion according to the present invention. Further, the conductor 941 has a function as a low thermal resistance portion according to the present invention. Note that the length dimension in the longitudinal direction of the wiring pattern 932 is preferably a minimum necessary length (for example, about 10 mm) in consideration of the thermal resistance and electrical resistance of the wiring pattern 932.
  • the foot switch 4 is a part operated by the operator with his / her foot. In response to the operation on the foot switch 4, the energization of the ceramic heater 92 (resistance pattern 9222) is switched on and off. Note that the means for switching on and off is not limited to the foot switch 4, and other switches that are operated by hand may be employed.
  • the control device 3 includes a CPU (Central Processing Unit) and the like, and comprehensively controls the operation of the energy treatment device 2 according to a predetermined control program.
  • CPU Central Processing Unit
  • control device 3 performs ceramics via a pair of lead wires 94 and a wiring relay portion 93 (a pair of wiring patterns 932) in response to an operation to the foot switch 4 by the operator (an operation to turn on the power).
  • a voltage is applied to the heater 92 (the pair of electrodes 9221) (the resistance pattern 9222 is energized) to heat the heat transfer plate 91.
  • the energy treatment device 2 In the energy treatment device 2 according to the first embodiment described above, a pair having a higher thermal resistance than the lead wire 94 (conductor 941) between the ceramic heater 92 (the pair of electrodes 9221) and the pair of lead wires 94.
  • the wiring patterns 932 are connected to each other. That is, the energy treatment device 2 has a structure in which heat generated by the ceramic heater 92 does not easily flow into the lead wire 94. For this reason, in the heat exchanger plate 91, there is no location where temperature falls locally, and the temperature of the treatment surface 911 can be equalized. Therefore, according to the energy treatment tool 2 according to the first embodiment, there is an effect that heat energy can be uniformly applied to the living tissue.
  • the heat generated by the ceramic heater 92 is difficult to flow into the lead wire 94, it is not necessary to increase the heat resistance of the lead wire 94, and a cheaper lead wire 94 can be used. Furthermore, by adopting such an energy treatment tool 2, it is possible to heat the heat transfer plate 91 to the target temperature in a short time and treat the living tissue in a short time compared to the conventional configuration.
  • the wiring pattern 932 is formed of a thin film deposited on the substrate 931 and is set smaller than the cross-sectional area of the conductor 941. For this reason, the high thermal resistance part which has a higher thermal resistance than the conductor 941 according to the present invention can be easily manufactured with a simple structure. Furthermore, even if the high thermal resistance portion is provided in the energy treatment device 2 by configuring the high thermal resistance portion according to the present invention with the wiring pattern 932 formed on the flexible substrate (wiring relay portion 93), the energy treatment device 2 does not hinder downsizing.
  • a sheet heater for example, see JP-A-2015-208415
  • a resistance pattern on a substrate made of an insulating material such as polyimide is used. It is also possible to adopt. However, in the sheet heater, since an insulating material such as polyimide is used for the substrate, it is difficult to heat the heat transfer plate 91 to a high temperature range that can be realized by the ceramic heater 92.
  • the ceramic heater 92 is employed as the energy generating unit according to the present invention.
  • the heat transfer plate 91 can be heated to a higher temperature range, and the living tissue can be treated in a short time.
  • the temperature variation of the treatment surface 911 becomes remarkable due to the flow of heat into the pair of lead wires 94, as in the first embodiment.
  • the temperature of the treatment surface 911 can be made uniform by interposing the wiring relay portion 93 between the ceramic heater 92 and the pair of lead wires 94.
  • FIG. 7 is a diagram showing a configuration of an energy application structure 9A according to Embodiment 2 of the present invention. Specifically, FIG. 7 is a side view corresponding to FIG. In the energy application structure 9A according to the second exemplary embodiment, as shown in FIG. 7, the wiring relay unit 93 is used instead of the energy application structure 9 (FIGS. 3 to 6) described in the first exemplary embodiment. A wiring relay portion 93A is employed.
  • the energy applying structure (not shown) supported by the holding member 8 ′ has the same configuration as the energy applying structure 9 ⁇ / b> A supported by the holding member 8.
  • the wiring relay unit 93A is a pair of materials different from the wiring patterns 932 (a material different from that of the conductor 941).
  • the wiring pattern 932A is adopted.
  • nickel is adopted as the material of the wiring pattern 932A.
  • the thermal conductivity of nickel is about 1/5 that of copper (conductor 941). For this reason, the thermal resistance per unit length in the longitudinal direction in the wiring pattern 932A is higher than the thermal resistance per unit length in the longitudinal direction in the conductor 941 as in the first embodiment. That is, the wiring pattern 932A functions as a high thermal resistance portion according to the present invention.
  • the conductor 941 and the wiring pattern 932A have a function as the wiring portion 10A (FIG. 7) according to the present invention.
  • the electrical resistivity of nickel is about four times that of copper.
  • the thickness is made larger than that of the wiring pattern 932 described in Embodiment 1 described above (FIG. 7).
  • the material of the wiring pattern 932A is not limited to nickel as long as it has a lower thermal conductivity than the conductor 941, and other materials may be used.
  • the wiring pattern 932A is made of a material different from that of the conductor 941, like the energy application structure 9A according to the second embodiment described above, the same effects as those of the first embodiment described above can be obtained.
  • FIG. 8 is a diagram showing a configuration of an energy application structure 9B according to Embodiment 3 of the present invention. Specifically, FIG. 8 corresponds to FIG.
  • the wiring relay unit 93 is replaced.
  • the wiring relay portion 93B is employed.
  • the energy application structure (not shown) supported by the holding member 8 ′ has the same configuration as the energy application structure 9 ⁇ / b> B supported by the holding member 8.
  • the wiring relay portion 93B is formed of a flexible substrate similarly to the wiring relay portion 93 described in the first embodiment, but the substrate 931B is different in shape from the substrate 931 and the pair of wiring patterns 932. And a pair of wiring patterns 932B.
  • the substrate 931B is indicated by a one-dot chain line.
  • the substrate 931B has a shape in which the width dimension on one end side (left end side in FIG. 8) is smaller than the width dimension on the other end side (right end side in FIG. 8).
  • substrate narrow region 931B1 a region having a small width dimension on one end side
  • substrate wide region 931B2 a region having a large width dimension on the other end side
  • Substrate narrow region 931B1 has a width dimension substantially the same as the width dimension of ceramic substrate 921 and extends in the longitudinal direction (left-right direction in FIG. 8).
  • the wide substrate region 931B2 projects outward in the width direction from the boundary position with the narrow substrate region 931B1, and extends in the longitudinal direction with a width dimension larger than that of the narrow substrate region 931B.
  • the pair of wiring patterns 932B corresponds to the shape of the substrate 931B, and the width dimension on one end side (left end side in FIG. 8) is the other end side (right end side in FIG. 8). Each has a shape smaller than the width dimension.
  • a region having a small width dimension on one end side is referred to as a pattern narrow region 932B1
  • a region having a large width dimension on the other end side is referred to as a pattern narrow region 932B2.
  • the pair of pattern narrow regions 932B1 are arranged in the longitudinal direction with a constant width dimension from one end side (left end side in FIG.
  • the pair of pattern narrow regions 932B1 oppose each other along the width direction of the substrate 931B.
  • the pair of wide pattern areas 932B2 project outward from the boundary position with the pair of narrow pattern areas 932B1 so as to follow the outer shape of the wide substrate area 931B2, and are wider than the width dimension of the narrow pattern areas 932B1.
  • Each extends along the longitudinal direction with a large width dimension.
  • region 932B2 mutually opposes along the width direction of the board
  • region 932B2 is the same as the thickness dimension of pattern narrow area
  • the pair of electrodes 9221 has one end side of the pair of pattern narrow regions 932 ⁇ / b> B ⁇ b> 1 via a bonding layer (not shown) made of a conductive material such as gold, AuSn, or silver. (Left end side in FIG. 8) is connected (joined).
  • a pair of pattern wide regions 932B2 on the other end side (the right end portion side in FIG. 8) is connected via a bonding layer (not shown) made of a conductive material such as gold, AuSn, or silver.
  • Each conductor 941 of the lead wire 94 is connected (joined).
  • the surface of the substrate 931 on which the pair of wiring patterns 932B is provided covers the exposed portions of the pair of wiring patterns 932B as in the first embodiment described above.
  • An insulating sheet such as polyimide is attached.
  • the cross-sectional area obtained by cutting the pattern wide region 932B2 along the cut surface along the width direction is set smaller than the cross-sectional area of the conductor 941 (cross-sectional area cut along the cut surface perpendicular to the longitudinal direction). Further, the cross-sectional area obtained by cutting the pattern narrow region 932B1 along the cut surface along the width direction is set smaller than the cross-sectional area obtained when the pattern wide region 932B2 is cut along the cut surface along the width direction. For this reason, the thermal resistance per unit length in the longitudinal direction decreases in the order of the pattern narrow region 932B1, the pattern wide region 932B2, and the conductor 941. That is, the wiring pattern 932B has a function as a high thermal resistance portion according to the present invention. Further, the conductor 941 and the wiring pattern 932B have a function as the wiring portion 10B (FIG. 8) according to the present invention.
  • FIG. 9 is a diagram showing a configuration of an energy application structure 9C according to Embodiment 4 of the present invention. Specifically, FIG. 9 is a side view corresponding to FIG. FIG. 10 is a diagram illustrating a circuit model of the wiring relay unit 93C.
  • the energy application structure 9C according to the fourth embodiment as shown in FIG. 9, instead of the wiring relay unit 93, the energy application structure 9 (FIGS. 3 to 6) described in the first embodiment is used.
  • a wiring relay part 93C is employed.
  • the energy applying structure (not shown) supported by the holding member 8 ′ has the same configuration as the energy applying structure 9 ⁇ / b> C supported by the holding member 8.
  • the wiring relay part 93C is configured by a flexible substrate, similar to the wiring relay part 93 described in the first embodiment.
  • the wiring relay portion 93C includes a substrate 931C, a pair of first wiring patterns 932C1, and a pair of second wiring patterns 932C2.
  • the substrate 931C is a long sheet made of an insulating material such as polyimide (dielectric), like the substrate 931 described in the first embodiment.
  • the pair of first wiring patterns 932C1 is formed on one surface 931C1 of the substrate 931C by vapor deposition or the like, and has a function as a wiring according to the present invention.
  • the pair of first wiring patterns 932C1 extend from one end side (left end portion side in FIG.
  • a pair of first electrodes EL1 (FIG. 9) is formed at each end (right end in FIG. 9) of the pair of first wiring patterns 932C1.
  • the pair of second wiring patterns 932C2 are formed on the other surface 931C2 of the substrate 931C by vapor deposition or the like, and have a function as wiring according to the present invention.
  • the pair of second wiring patterns 932C2 extend from the other end side (right end side in FIG. 9) of the substrate 931C to a substantially central portion in the longitudinal direction of the substrate 931C, and are mutually along the width direction of the substrate 931C. opposite.
  • a pair of second electrodes EL2 (FIG. 9) is respectively formed at one end (left end portion in FIG. 9) of the pair of second wiring patterns 932C2 so as to face the pair of first electrodes EL1. ing.
  • the substrate 931C is provided with a through hole 931C3 (FIG.
  • a pair of third electrodes EL3 (FIG. 9) electrically connected to the pair of second wiring patterns 932C2 through the through holes 931C3, respectively, are formed.
  • each of the surfaces 931C1 and 931C2 of the substrate 931C has a pair of first wiring patterns 932C1, a pair of electrodes EL1, a pair of second wiring patterns 932C2, and a pair of second electrodes EL2 as in the first embodiment.
  • an insulating sheet 933 such as polyimide is attached so as to cover the exposed portions of the pair of third electrodes EL3.
  • the first and second wiring patterns 932C1 and 932C2 function as energization paths, but since the substrate 931C made of an insulating material having low thermal conductivity is interposed between them, they are connected to each other. Not conducting. For this reason, the thermal resistance of the energization path (the first wiring pattern 932C1 to the substrate 931C to the second wiring pattern 932C2) is higher than the thermal resistance of the conductor 941. That is, the said electricity supply path has a function as a high thermal resistance part which concerns on this invention.
  • the shape of the energy treatment device 2 is not limited to the shape described in the first to fourth embodiments described above, and may have other shapes, for example, as long as it has a similar function. It may have a shape like forceps, or the shaft 6 may have a curved shape.
  • the energy application structures 9 (9A to 9C) and 9 ′ are provided on both of the holding members 8 and 8 ′, but the present invention is not limited to this, and the holding members 8 and 8 are not limited thereto. You may employ
  • the energy application structures 9 (9A to 9C) and 9 ′ are configured to apply thermal energy to a living tissue.
  • a configuration in which energy or ultrasonic energy is applied may be used.
  • the pair of lead wires 94 may be omitted, and the ceramic heater 92 and the control device 3 may be connected only by the wiring relay portion 93B.
  • the pattern narrow region 932B1 has a function as a high thermal resistance portion according to the present invention
  • the pattern wide region 932B2 functions as a low thermal resistance portion according to the present invention.

Abstract

 エネルギ処置具2は、生体組織を処置する処置面911を有する伝熱板91と、熱エネルギを発生し、当該熱エネルギを伝熱板91に伝達するエネルギ発生部92と、エネルギ発生部92に接続され、エネルギ発生部92への通電経路となる配線部10とを備える。配線部10は、低熱抵抗部941と、低熱抵抗部941よりも高い熱抵抗であり、低熱抵抗部941及びエネルギ発生部92間を接続する高熱抵抗部932とを備える。

Description

エネルギ処置具
 本発明は、エネルギ処置具に関する。
 従来、生体組織に熱エネルギを付与することにより生体組織を処置(接合(若しくは吻合)及び切離等)するエネルギ処置具(熱組織手術システム)が知られている(例えば、特許文献1参照)。
 特許文献1に記載のエネルギ処置具は、生体組織を挟持する一対のジョーを備える。一対のジョーには、抵抗発熱素子がそれぞれ埋設されている。そして、ケーブルを介して抵抗発熱素子に通電することにより、ジョーが加熱され、当該ジョーに接触した生体組織に対して熱エネルギが付与される。
特開2012-24583号公報
 しかしながら、特許文献1に記載のエネルギ処置具では、ジョーにケーブルが接続した構造となっているため、ジョーの熱がケーブル(銅等の導体)に流れ込み易い構造となっている。すなわち、ジョーにおいて、ケーブル(導体)が接続された部位周辺は、温度が低下し易いものとなる。このため、ジョーの温度にバラつきが生じ(ジョーにおける生体組織に接触する処置面の温度にもバラつきが生じ)、生体組織に対して均一に熱エネルギを付与することができない、という問題がある。
 本発明は、上記に鑑みてなされたものであって、処置対象である生体組織に対して均一に熱エネルギを付与することができるエネルギ処置具を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るエネルギ処置具は、生体組織を処置する処置面を有する伝熱板と、熱エネルギを発生し、当該熱エネルギを前記伝熱板に伝達するエネルギ発生部と、前記エネルギ発生部に接続され、当該エネルギ発生部への通電経路となる配線部と、を備え、前記配線部は、低熱抵抗部と、当該低熱抵抗部よりも高い熱抵抗であり、当該低熱抵抗部及び前記エネルギ発生部間を接続する高熱抵抗部と、を備える。
 本発明に係るエネルギ処置具によれば、処置対象である生体組織に対して均一に熱エネルギを付与することができる、という効果を奏する。
図1は、本発明の実施の形態1に係る処置システムを模式的に示す図である。 図2は、図1に示したエネルギ処置具の先端部分を拡大した図である。 図3は、図2に示したエネルギ付与構造の構成を示す斜視図である。 図4は、図3に示したエネルギ付与構造の分解斜視図である。 図5は、図3に示したエネルギ付与構造を処置面の裏面側から見た図である。 図6は、図3に示したエネルギ付与構造の側面図である。 図7は、本発明の実施の形態2に係るエネルギ付与構造の構成を示す図である。 図8は、本発明の実施の形態3に係るエネルギ付与構造の構成を示す図である。 図9は、本発明の実施の形態4に係るエネルギ付与構造の構成を示す図である。 図10は、図9に示した配線中継部の回路モデルを示す図である。
 以下に、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。
(実施の形態1)
 〔エネルギ処置システムの概略構成〕
 図1は、本発明の実施の形態1に係る処置システム1を模式的に示す図である。
 処置システム1は、処置対象である生体組織にエネルギを付与し、当該生体組織を処置(接合(若しくは吻合)及び切離等)する。この処置システム1は、図1に示すように、エネルギ処置具2と、制御装置3と、フットスイッチ4とを備える。
 〔エネルギ処置具の構成〕
 エネルギ処置具2は、例えば、腹壁を通して生体組織に処置を行うためのリニアタイプの外科医療用処置具である。このエネルギ処置具2は、図1に示すように、ハンドル5と、シャフト6と、挟持部7とを備える。
 ハンドル5は、術者が把持する部分である。そして、このハンドル5には、図1に示すように、操作ノブ51が設けられている。
 シャフト6は、図1に示すように、略円筒形状を有し、一端(図1中、右端部)がハンドル5に接続されている。また、シャフト6の他端(図1中、左端部)には、挟持部7が取り付けられている。そして、このシャフト6の内部には、術者による操作ノブ51の操作に応じて、挟持部7を構成する保持部材8,8´(図1)を開閉させる開閉機構(図示略)が設けられている。また、このシャフト6の内部には、制御装置3に接続された電気ケーブルC(図1)がハンドル5を介して一端側から他端側まで配設されている。
 〔挟持部の構成〕
 図2は、エネルギ処置具2の先端部分を拡大した図である。
 なお、図1及び図2において、「´」が付加されていない符号が示す構成と「´」が付加された符号が示す構成とは、同一の構成である。
 挟持部7は、生体組織を挟持して、当該生体組織を処置する部分である。この挟持部7は、図1または図2に示すように、一対の保持部材8,8´と、一対のエネルギ付与構造9,9´とを備える。
 一対の保持部材8,8´は、矢印R1(図2)方向に開閉可能にシャフト6の他端(図2中、左端部)にそれぞれ軸支され、術者による操作ノブ51の操作に応じて矢印R1方向に開閉する。これら保持部材8,8´は、例えば、樹脂材料(フッ素樹脂等)を成型したものである。
 なお、エネルギ付与構造9,9´は、同一の構成を有し、上下逆の姿勢で、図1,図2中、下方側に配設された保持部材8における上方側の面、及び上方側に配設された保持部材8´における下方側の面にそれぞれ支持される。このため、以下では、保持部材8に支持されるエネルギ付与構造9の構成のみを説明する。
 〔エネルギ付与構造の構成〕
 図3は、エネルギ付与構造9の構成を示す斜視図である。図4は、図3に示したエネルギ付与構造9の分解斜視図である。図5は、図3に示したエネルギ付与構造9を処置面911の裏面側から見た図である。図6は、図3に示したエネルギ付与構造9の側面図である。
 エネルギ付与構造9は、制御装置3による制御の下、生体組織に対して熱エネルギを付与する。このエネルギ付与構造9は、図3ないし図6に示すように、伝熱板91と、セラミックヒータ92と、配線中継部93と、電気ケーブルCを構成する一対のリード線94とを備える。
 伝熱板91は、長尺状(図3ないし図6中、左右方向に延びる長尺状)の薄板であり、エネルギ付与構造9が保持部材8に取り付けられた状態で、一方の板面である処置面911が保持部材8´側(図1及び図2中、上方側)を向く。この伝熱板91の材料としては、例えば窒化アルミニウム等の高熱伝導性のセラミック材料、銅やアルミニウム等の高熱伝導性の金属材料等を例示することができる。そして、伝熱板91は、挟持部7にて生体組織を挟持した状態で、処置面911が当該生体組織に接触し、セラミックヒータ92からの熱を当該生体組織に伝達する(熱エネルギを生体組織に付与する)。
 セラミックヒータ92は、熱エネルギを発生し、当該熱エネルギを伝熱板91に伝達する(伝熱板91を加熱する)。すなわち、セラミックヒータ92は、本発明に係るエネルギ発生部としての機能を有する。このセラミックヒータ92は、図3ないし図6に示すように、セラミック基板921と、発熱体922とを備える。
 セラミック基板921は、窒化アルミニウムやアルミナ等の高熱伝導性のセラミック材料で構成された長尺状の板体である。
 ここで、セラミック基板921の幅寸法及び長さ寸法(図3~図6中、左右方向の長さ寸法)は、伝熱板91の幅寸法及び長さ寸法よりもそれぞれ小さくなるように設定されている。
 発熱体922は、セラミック基板921の一方の板面上に蒸着等で形成されたものであり、プラチナ等の導電性材料で構成されている。この発熱体922は、図4に示すように、一対の電極9221と、抵抗パターン9222とを備える。
 なお、発熱体922の材料としては、プラチナに限られず、ステンレスやタングステン等の導電性材料を採用しても構わない。また、発熱体922としては、セラミック基板921の一方の板面に蒸着等により形成した構成に限られず、ステンレス等を加工して熱圧着により貼り合わせた構成を採用しても構わない。
 一対の電極9221は、セラミック基板921の一端側(図4中、右端部側)から他端側(図4中、左端部側)に向けてそれぞれ延び、セラミック基板921の幅方向に沿って互いに対向する。
 抵抗パターン9222は、一端が一方の電極9221に接続(導通)し、当該一端から、一定の線幅で波状に蛇行しながら、セラミック基板921の外縁形状に倣うU字形状に沿って延び、他端が他方の電極9221に接続(導通)する。
 そして、抵抗パターン9222は、一対の電極9221に電圧が印加(通電)されることにより、発熱する(熱エネルギを発生する)。
 上述したセラミック基板921における他方の板面(発熱体922が設けられていない板面)全体には、例えば、チタンとプラチナと金とからなる多層の膜で構成された接合用金属層(図示略)が形成されている。そして、セラミックヒータ92は、伝熱板91における処置面911の裏面において、幅方向の略中央部分に位置するように、当該裏面と当該接合用金属層とをAuSn接合することにより固定されている。
 配線中継部93は、フレキシブル基板で構成され、電気ケーブルCを構成する一対のリード線94(各導体941)と一対の電極9221とをそれぞれ電気的に接続する。この配線中継部93は、図5または図6に示すように、基板931と、一対の配線パターン932とを備える。なお、図5では、説明の便宜上、基板931を一点鎖線で示している。
 基板931は、ポリイミド等の絶縁材料で構成された長尺状のシートである。
 ここで、基板931の幅寸法は、セラミック基板921の幅寸法と略同一となるように設定されている。
 一対の配線パターン932は、基板931の一方の面上に蒸着等でそれぞれ形成されたものである。本実施の形態1では、配線パターン932の材料として、リード線94の導体941と同一の材料(銅)を採用している。そして、一対の配線パターン932は、基板931の一端側(図5,図6中、左端部側)から他端側(図5,図6中、右端部)までそれぞれ延び、基板931の幅方向に沿って互いに対向する。
 そして、一対の電極9221には、金、AuSn、銀等の導電性材料で構成された接合層BL1(図6)を介して、一対の配線パターン932の一端側(図6中、左端部側)がそれぞれ接続(接合)される。また、一対の配線パターン932の他端側(図6中、右端部側)には、金、AuSn、銀等の導電性材料で構成された接合層BL2(図6)を介して、一対のリード線94の各導体941がそれぞれ接続(接合)される。
 なお、基板931における一対の配線パターン932が設けられた面には、図6に示すように、一対の配線パターン932の露出した部分を覆うように、ポリイミド等の絶縁シート933が貼り付けられている。
 以上説明した導体941及び配線パターン932は、制御装置3からセラミックヒータ92への通電経路となり、本発明に係る配線部10(図5,図6)としての機能を有する。
 ここで、上述したように導体941と配線パターン932とは同一の材料(銅)で構成されているが、配線パターン932を幅方向に沿う切断面で切断した断面積を導体941の断面積(長手方向に直交する切断面で切断した断面積)よりも小さく設定している。このため、配線パターン932における長手方向の単位長さ当たりの熱抵抗は、導体941における長手方向の単位長さ当たりの熱抵抗よりも高い。すなわち、配線パターン932は、本発明に係る高熱抵抗部としての機能を有する。また、導体941は、本発明に係る低熱抵抗部としての機能を有する。
 なお、配線パターン932における長手方向の長さ寸法は、当該配線パターン932の熱抵抗及び電気抵抗を考慮して、必要最小限の長さ(例えば、10mm程度)とすることが好ましい。
 〔制御装置及びフットスイッチの構成〕
 フットスイッチ4は、術者が足で操作する部分である。そして、フットスイッチ4への当該操作に応じて、セラミックヒータ92(抵抗パターン9222)への通電のオン及びオフが切り替えられる。
 なお、当該オン及びオフを切り替える手段としては、フットスイッチ4に限られず、その他、手で操作するスイッチ等を採用しても構わない。
 制御装置3は、CPU(Central Processing Unit)等を含んで構成され、所定の制御プログラムにしたがって、エネルギ処置具2の動作を統括的に制御する。より具体的に、制御装置3は、術者によるフットスイッチ4への操作(通電オンの操作)に応じて、一対のリード線94及び配線中継部93(一対の配線パターン932)を介してセラミックヒータ92(一対の電極9221)に電圧を印加(抵抗パターン9222に通電)して、伝熱板91を加熱する。
 〔処置システムの動作〕
 次に、上述した処置システム1の動作について説明する。
 術者は、エネルギ処置具2を把持し、当該エネルギ処置具2の先端部分(挟持部7及びシャフト6の一部)を、例えば、トロッカ等を用いて腹壁を通して腹腔内に挿入する。そして、術者は、操作ノブ51を操作し、挟持部7にて処置対象の生体組織を挟持する。
 次に、術者は、フットスイッチ4を操作し、制御装置3からエネルギ処置具2(セラミックヒータ92)への通電をオンに切り替える。当該オンに切り替えられると、制御装置3は、一対のリード線94及び配線中継部93を介して、一対の電極9221に電圧を印加し、伝熱板91を加熱する。そして、伝熱板91の熱により、当該伝熱板91に接触している生体組織は処置される。
 以上説明した本実施の形態1に係るエネルギ処置具2では、セラミックヒータ92(一対の電極9221)と一対のリード線94との間は、リード線94(導体941)よりも熱抵抗が高い一対の配線パターン932にてそれぞれ接続されている。すなわち、エネルギ処置具2は、セラミックヒータ92で発生した熱がリード線94に流れ込み難い構造となっている。このため、伝熱板91において、局部的に温度が低下する箇所がなく、処置面911の温度を均一化することができる。
 したがって、本実施の形態1に係るエネルギ処置具2によれば、生体組織に対して均一に熱エネルギを付与することができる、という効果を奏する。また、セラミックヒータ92で発生した熱がリード線94に流れ込み難い構造であるため、リード線94の耐熱性を高くする必要がなく、より安価なリード線94を用いることが可能となる。さらに、このようなエネルギ処置具2を採用することで、従来の構成と比較して、伝熱板91を短時間で目標温度まで加熱し、生体組織を短時間で処置することができる。
 また、本実施の形態1に係るエネルギ処置具2では、配線パターン932は、基板931上に蒸着された薄膜で構成され、導体941の断面積よりも小さく設定されている。このため、導体941よりも高い熱抵抗を有する本発明に係る高熱抵抗部を簡素な構造で容易に製造することができる。さらに、本発明に係る高熱抵抗部をフレキシブル基板(配線中継部93)に形成された配線パターン932で構成することで、当該高熱抵抗部をエネルギ処置具2に設けたとしても、当該エネルギ処置具2の小型化を阻害することがない。
 ところで、本発明に係るエネルギ発生部としては、セラミックヒータ92の他、ポリイミド等の絶縁材料で構成された基板上に抵抗パターンを設けたシートヒータ(例えば、特開2015-208415号公報参照)を採用することも可能である。しかしながら、当該シートヒータでは、基板にポリイミド等の絶縁材料が用いられているため、セラミックヒータ92で実現することができる高温域まで伝熱板91を加熱することが難しい。
 これに対して、本実施の形態1に係るエネルギ処置具2では、本発明に係るエネルギ発生部として、セラミックヒータ92を採用している。このため、上述したシートヒータと比較して、伝熱板91をより高温域まで加熱することができ、生体組織を短時間で処置することが可能となる。特に、このような高温域まで伝熱板91を加熱した場合には、一対のリード線94への熱の流れ込みにより処置面911の温度のバラつきが顕著になるところ、本実施の形態1のように配線中継部93をセラミックヒータ92と一対のリード線94との間に介在させることにより、処置面911の温度を均一化することができる。
(実施の形態2)
 次に、本発明の実施の形態2について説明する。
 本実施の形態2の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図7は、本発明の実施の形態2に係るエネルギ付与構造9Aの構成を示す図である。具体的に、図7は、図6に対応した側面図である。
 本実施の形態2に係るエネルギ付与構造9Aでは、図7に示すように、上述した実施の形態1で説明したエネルギ付与構造9(図3~図6)に対して、配線中継部93の代わりに配線中継部93Aを採用している。なお、保持部材8´に支持されるエネルギ付与構造(図示略)は、保持部材8に支持されるエネルギ付与構造9Aと同様の構成である。
 具体的に、配線中継部93Aは、図7に示すように、実施の形態1における一対の配線パターン932の代わりに、当該配線パターン932とは材料が異なる(導体941とは材料が異なる)一対の配線パターン932Aを採用している。
 本実施の形態2では、配線パターン932Aの材料として、ニッケルを採用している。ニッケルの熱伝導率は、銅(導体941)の熱伝導率の約1/5である。このため、配線パターン932Aにおける長手方向の単位長さ当たりの熱抵抗は、上述した実施の形態1と同様に、導体941における長手方向の単位長さ当たりの熱抵抗よりも高い。すなわち、配線パターン932Aは、本発明に係る高熱抵抗部としての機能を有する。また、導体941及び配線パターン932Aは、本発明に係る配線部10A(図7)としての機能を有する。
 ここで、ニッケルの電気抵抗率は、銅の電気抵抗率の約4倍である。このため、本実施の形態2では、配線パターン932Aでの電気抵抗を低減させるために、上述した実施の形態1で説明した配線パターン932に対して、厚みを大きいものとしている(図7)。
 なお、配線パターン932Aの材料としては、導体941よりも低い熱伝導率を有する材料であれば、ニッケルに限られず、その他の材料を用いても構わない。
 以上説明した本実施の形態2に係るエネルギ付与構造9Aのように配線パターン932Aを導体941と異なる材料で構成した場合であっても、上述した実施の形態1と同様の効果を奏する。
(実施の形態3)
 次に、本発明の実施の形態3について説明する。
 本実施の形態3の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図8は、本発明の実施の形態3に係るエネルギ付与構造9Bの構成を示す図である。具体的に、図8は、図5に対応した図である。
 本実施の形態3に係るエネルギ付与構造9Bでは、図8に示すように、上述した実施の形態1で説明したエネルギ付与構造9(図3~図6)に対して、配線中継部93の代わりに配線中継部93Bを採用している。なお、保持部材8´に支持されるエネルギ付与構造(図示略)は、保持部材8に支持されるエネルギ付与構造9Bと同様の構成である。
 具体的に、配線中継部93Bは、上述した実施の形態1で説明した配線中継部93と同様にフレキシブル基板で構成されているが、基板931及び一対の配線パターン932とは形状が異なる基板931B及び一対の配線パターン932Bで構成されている。なお、図8では、説明の便宜上、基板931Bを一点鎖線で示している。
 基板931Bは、図8に示すように、一端側(図8中、左端部側)の幅寸法が他端側(図8中、右端部側)の幅寸法よりも小さい形状を有する。以下、一端側の幅寸法が小さい領域を基板幅狭領域931B1とし、他端側の幅寸法が大きい領域を基板幅広領域931B2とする。
 基板幅狭領域931B1は、セラミック基板921の幅寸法と略同一の幅寸法で長手方向(図8中、左右方向)に沿って延びる。
 基板幅広領域931B2は、基板幅狭領域931B1との境界位置から幅方向外側に張り出し、当該基板幅狭領域931Bよりも大きい幅寸法で長手方向に沿って延びる。
 一対の配線パターン932Bは、図8に示すように、基板931Bの形状に対応させて、一端側(図8中、左端部側)の幅寸法が他端側(図8中、右端部側)の幅寸法よりも小さい形状をそれぞれ有する。以下、一端側の幅寸法が小さい領域をパターン幅狭領域932B1とし、他端側の幅寸法が大きい領域をパターン幅狭領域932B2とする。
 一対のパターン幅狭領域932B1は、基板幅狭領域931B1の一端側(図8中、左端部側)から基板幅狭領域931B1及び基板幅広領域931B2の境界位置付近まで一定の幅寸法で長手方向に沿ってそれぞれ延びる。そして、一対のパターン幅狭領域932B1は、基板931Bの幅方向に沿って互いに対向する。
 一対のパターン幅広領域932B2は、一対のパターン幅狭領域932B1との境界位置から、基板幅広領域931B2の外形形状に倣うように幅方向外側にそれぞれ張り出し、当該パターン幅狭領域932B1の幅寸法よりも大きい幅寸法で長手方向に沿ってそれぞれ延びる。そして、一対のパターン幅広領域932B2は、基板931Bの幅方向に沿って互いに対向する。
 なお、パターン幅広領域932B2の厚み寸法は、パターン幅狭領域932B1の厚み寸法と同一である。
 そして、一対の電極9221には、図8に示すように、金、AuSn、銀等の導電性材料で構成された接合層(図示略)を介して、一対のパターン幅狭領域932B1の一端側(図8中、左端部側)がそれぞれ接続(接合)される。また、一対のパターン幅広領域932B2の他端側(図8中、右端部側)には、金、AuSn、銀等の導電性材料で構成された接合層(図示略)を介して、一対のリード線94の各導体941がそれぞれ接続(接合)される。
 なお、具体的な図示は省略したが、基板931における一対の配線パターン932Bが設けられた面には、上述した実施の形態1と同様に、一対の配線パターン932Bの露出した部分を覆うように、ポリイミド等の絶縁シートが貼り付けられている。
 ここで、パターン幅広領域932B2を幅方向に沿う切断面で切断した断面積は、導体941の断面積(長手方向に直交する切断面で切断した断面積)よりも小さく設定している。また、パターン幅狭領域932B1を幅方向に沿う切断面で切断した断面積は、パターン幅広領域932B2を幅方向に沿う切断面で切断した断面積よりも小さく設定している。このため、長手方向の単位長さ当たりの熱抵抗は、パターン幅狭領域932B1、パターン幅広領域932B2、及び導体941の順に低くなっている。すなわち、配線パターン932Bは、本発明に係る高熱抵抗部としての機能を有する。また、導体941及び配線パターン932Bは、本発明に係る配線部10B(図8)としての機能を有する。
 以上説明した本実施の形態3に係るエネルギ付与構造9Bのように配線パターン932Bをパターン幅狭領域932B1及びパターン幅広領域932B2で構成した場合であっても、上述した実施の形態1と同様の効果を奏する。
(実施の形態4)
 次に、本発明の実施の形態4について説明する。
 本実施の形態4の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図9は、本発明の実施の形態4に係るエネルギ付与構造9Cの構成を示す図である。具体的に、図9は、図6に対応した側面図である。図10は、配線中継部93Cの回路モデルを示す図である。
 本実施の形態4に係るエネルギ付与構造9Cでは、図9に示すように、上述した実施の形態1で説明したエネルギ付与構造9(図3~図6)に対して、配線中継部93の代わりに配線中継部93Cを採用している。なお、保持部材8´に支持されるエネルギ付与構造(図示略)は、保持部材8に支持されるエネルギ付与構造9Cと同様の構成である。
 具体的に、配線中継部93Cは、上述した実施の形態1で説明した配線中継部93と同様に、フレキシブル基板で構成されている。この配線中継部93Cは、図9に示すように、基板931Cと、一対の第1配線パターン932C1と、一対の第2配線パターン932C2とを備える。
 基板931Cは、上述した実施の形態1で説明した基板931と同様に、ポリイミド(誘電体)等の絶縁材料で構成された長尺状のシートである。
 一対の第1配線パターン932C1は、基板931Cの一方の面931C1上に蒸着等でそれぞれ形成されたものであり、本発明に係る配線としての機能を有する。そして、一対の第1配線パターン932C1は、基板931Cの一端側(図9中、左端部側)から当該基板931Cにおける長手方向の略中央部分までそれぞれ延び、基板931Cの幅方向に沿って互いに対向する。
 そして、一対の第1配線パターン932C1の各一端(図9中、右端部)には、一対の第1電極EL1(図9)がそれぞれ形成されている。
 一対の第2配線パターン932C2は、基板931Cの他方の面931C2上に蒸着等でそれぞれ形成されたものであり、本発明に係る配線としての機能を有する。そして、一対の第2配線パターン932C2は、基板931Cの他端側(図9中、右端部側)から当該基板931Cにおける長手方向の略中央部分までそれぞれ延び、基板931Cの幅方向に沿って互いに対向する。
 そして、一対の第2配線パターン932C2の各一端(図9中、左端部)には、一対の第1電極EL1とそれぞれ対向するように、一対の第2電極EL2(図9)がそれぞれ形成されている。
 また、基板931Cには、一対の第2配線パターン932C2の他端側(図9中、右端部側)の位置に、スルーホール931C3(図9)が設けられている。さらに、基板931Cの一方の面931C1には、スルーホール931C3を介して、一対の第2配線パターン932C2と電気的にそれぞれ接続する一対の第3電極EL3(図9)がそれぞれ形成されている。
 そして、一対の電極9221には、接合層BL1(図9)を介して、一対の第1配線パターン932C1の各他端側(図9中、左端部側)がそれぞれ接続(接合)される。また、一対の第3電極EL3には、接合層BL2(図9)を介して、一対のリード線94の各導体941がそれぞれ接続(接合)される。
 なお、基板931Cの各面931C1,931C2には、上述した実施の形態1と同様に、一対の第1配線パターン932C1、一対の電極EL1、一対の第2配線パターン932C2、一対の第2電極EL2、及び一対の第3電極EL3の露出した部分を覆うように、ポリイミド等の絶縁シート933がそれぞれ貼り付けられている。
 以上の構成により、図10に示すように、制御装置3から一対のリード線94を介して一対の第3電極EL3に交流電力(例えば、数MHz~数十MHzの周波数)が供給されると、互いに対向する第1,第2電極EL1,EL2同士が容量結合により無接点接続され、セラミックヒータ92(抵抗パターン9222)に通電されることとなる。
 すなわち、導体941、一対の第1配線パターン932C1、及び一対の第2配線パターン932C2は、制御装置3からセラミックヒータ92への通電経路となり、本発明に係る配線部10C(図9,図10)としての機能を有する。
 ここで、第1,第2配線パターン932C1,932C2は、通電経路として機能するが、これらの間に熱伝導率の低い絶縁性の材料で構成された基板931Cが介在しているため、互いに接続(導通)していない。このため、当該通電経路(第1配線パターン932C1~基板931C~第2配線パターン932C2)の熱抵抗は、導体941の熱抵抗よりも高い。すなわち、当該通電経路は、本発明に係る高熱抵抗部としての機能を有する。
 以上説明した本実施の形態4に係るエネルギ付与構造9Cのように第1,第2配線パターン932C1,932C2を容量結合により互いに無接点接続した場合であっても、上述した実施の形態1と同様の効果を奏する。
(その他の実施の形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1~4によってのみ限定されるべきものではない。
 上述した実施の形態1~4において、エネルギ処置具2の形状は、上述した実施の形態1~4で説明した形状に限られず、同様の機能を有していれば、その他の形状、例えば、鉗子のような形状を有していてもよく、あるいは、シャフト6が湾曲した形状を有していても構わない。
 上述した実施の形態1~4では、エネルギ付与構造9(9A~9C),9´は、保持部材8,8´の双方にそれぞれ設けられていたが、これに限られず、保持部材8,8´のいずれか一方にのみ設けた構成を採用しても構わない。
 上述した実施の形態1~4では、エネルギ付与構造9(9A~9C),9´は、生体組織に対して熱エネルギを付与する構成としていたが、これに限られず、熱エネルギの他、高周波エネルギや超音波エネルギを付与する構成としても構わない。
 上述した実施の形態3において、一対のリード線94を省略し、配線中継部93Bのみでセラミックヒータ92及び制御装置3間を接続しても構わない。このように構成した場合には、配線中継部93Bにおいて、パターン幅狭領域932B1が本発明に係る高熱抵抗部としての機能を有し、パターン幅広領域932B2が本発明に係る低熱抵抗部としての機能を有する。
 1 処置システム
 2 エネルギ処置具
 3 制御装置
 4 フットスイッチ
 5 ハンドル
 6 シャフト
 7 挟持部
 8,8´ 保持部材
 9,9A~9C,9´ エネルギ付与構造
 10,10A~10C 配線部
 51 操作ノブ
 91 伝熱板
 92 セラミックヒータ
 93,93A~93C 配線中継部
 94 リード線
 911 処置面
 921 セラミック基板
 922 発熱体
 931,931B,931C 基板
 931B1 基板幅狭領域
 931B2 基板幅広領域
 931C1,931C2 面
 931C3 スルーホール
 932,932A,932B 配線パターン
 932B1 パターン幅狭領域
 932B2 パターン幅広領域
 932C1 第1配線パターン
 932C2 第2配線パターン
 933 絶縁シート
 941 導体
 9221 電極
 9222 抵抗パターン
 BL1,BL2 接合層
 C 電気ケーブル
 EL1~EL3 第1~第3電極

Claims (6)

  1.  生体組織を処置する処置面を有する伝熱板と、
     熱エネルギを発生し、当該熱エネルギを前記伝熱板に伝達するエネルギ発生部と、
     前記エネルギ発生部に接続され、当該エネルギ発生部への通電経路となる配線部と、を備え、
     前記配線部は、
     低熱抵抗部と、
     当該低熱抵抗部よりも高い熱抵抗であり、当該低熱抵抗部及び前記エネルギ発生部間を接続する高熱抵抗部と、を備える
    エネルギ処置具。
  2.  前記高熱抵抗部は、前記低熱抵抗部よりも断面積が小さい領域を有する
    請求項1に記載のエネルギ処置具。
  3.  前記高熱抵抗部は、前記低熱抵抗部よりも熱伝導率が低い材料で構成されている
    請求項1に記載のエネルギ処置具。
  4.  前記高熱抵抗部は、容量結合により互いに無接点接続する複数の配線を備える
    請求項1に記載のエネルギ処置具。
  5.  前記エネルギ発生部は、一方の板面が前記伝熱板に接合されるセラミック基板と、当該セラミック基板における他方の板面上に設けられ、通電により熱エネルギを発生する発熱体と、を備えるセラミックヒータで構成されている
    請求項1~4のいずれか一つに記載のエネルギ処置具。
  6.  前記低熱抵抗部は、リード線で構成され、
     前記高熱抵抗部は、フレキシブル基板に形成された配線パターンで構成されている
    請求項1~5のいずれか一つに記載のエネルギ処置具。
PCT/JP2016/059678 2016-03-25 2016-03-25 エネルギ処置具 WO2017163410A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018506732A JPWO2017163410A1 (ja) 2016-03-25 2016-03-25 エネルギ処置具
PCT/JP2016/059678 WO2017163410A1 (ja) 2016-03-25 2016-03-25 エネルギ処置具
US16/047,501 US20180344380A1 (en) 2016-03-25 2018-07-27 Energy treatment tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059678 WO2017163410A1 (ja) 2016-03-25 2016-03-25 エネルギ処置具

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/047,501 Continuation US20180344380A1 (en) 2016-03-25 2018-07-27 Energy treatment tool

Publications (1)

Publication Number Publication Date
WO2017163410A1 true WO2017163410A1 (ja) 2017-09-28

Family

ID=59901290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059678 WO2017163410A1 (ja) 2016-03-25 2016-03-25 エネルギ処置具

Country Status (3)

Country Link
US (1) US20180344380A1 (ja)
JP (1) JPWO2017163410A1 (ja)
WO (1) WO2017163410A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161179A (en) * 1980-05-15 1981-12-11 Ricoh Co Ltd Thermal head
JPH0259356A (ja) * 1988-08-25 1990-02-28 Toshiba Lighting & Technol Corp 定着用加熱体、定着装置および画像形成装置
JP2013106909A (ja) * 2011-11-24 2013-06-06 Olympus Medical Systems Corp 治療用処置装置
JP2015136604A (ja) * 2014-01-24 2015-07-30 オリンパス株式会社 治療用処置装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161179A (en) * 1980-05-15 1981-12-11 Ricoh Co Ltd Thermal head
JPH0259356A (ja) * 1988-08-25 1990-02-28 Toshiba Lighting & Technol Corp 定着用加熱体、定着装置および画像形成装置
JP2013106909A (ja) * 2011-11-24 2013-06-06 Olympus Medical Systems Corp 治療用処置装置
JP2015136604A (ja) * 2014-01-24 2015-07-30 オリンパス株式会社 治療用処置装置

Also Published As

Publication number Publication date
JPWO2017163410A1 (ja) 2019-01-24
US20180344380A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
CN109788978B (zh) 处置器具
JP5631716B2 (ja) 治療用処置装置
JP6487723B2 (ja) 医療用処置装置
US10603097B2 (en) Treatment energy application structure and medical treatment device
US20180028254A1 (en) Therapeutic energy applying structure and medical treatment device
WO2017163410A1 (ja) エネルギ処置具
WO2018055778A1 (ja) 処置具及び処置システム
JP6458127B2 (ja) 治療用エネルギ付与構造及び医療用処置装置
US20180055555A1 (en) Therapeutic energy applying structure and medical treatment device
JP6833849B2 (ja) 処置具
JP7044895B2 (ja) 医療用ヒータ、処置具、及び処置具の製造方法
WO2018146730A1 (ja) エネルギ付与構造体及び処置具
US20210000526A1 (en) Method of manufacturing medical heater, medical heater, treatment tool, and treatment system
WO2020012623A1 (ja) 処置具
JP2012165948A (ja) 治療用処置装置及びその製造方法
WO2018146729A1 (ja) エネルギ付与構造体及び処置具
WO2019092845A1 (ja) 処置具
US20190110831A1 (en) Treatment tool
WO2020012622A1 (ja) 処置具
WO2018092278A1 (ja) エネルギー処置具
WO2020183681A1 (ja) 医療用ヒータ及び処置具
WO2019092822A1 (ja) 処置具
WO2019202717A1 (ja) 処置具
WO2020044563A1 (ja) 医療用ヒータ、処置具、及び処置具の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018506732

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895441

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895441

Country of ref document: EP

Kind code of ref document: A1