JP6234652B1 - エネルギー制御装置及び処置システム - Google Patents

エネルギー制御装置及び処置システム Download PDF

Info

Publication number
JP6234652B1
JP6234652B1 JP2017544982A JP2017544982A JP6234652B1 JP 6234652 B1 JP6234652 B1 JP 6234652B1 JP 2017544982 A JP2017544982 A JP 2017544982A JP 2017544982 A JP2017544982 A JP 2017544982A JP 6234652 B1 JP6234652 B1 JP 6234652B1
Authority
JP
Japan
Prior art keywords
energy
output
output phase
treatment
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017544982A
Other languages
English (en)
Other versions
JPWO2017122345A1 (ja
Inventor
本田 吉隆
吉隆 本田
林田 剛史
剛史 林田
ダニロ ジュニア バリング レガスピ
ダニロ ジュニア バリング レガスピ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Application granted granted Critical
Publication of JP6234652B1 publication Critical patent/JP6234652B1/ja
Publication of JPWO2017122345A1 publication Critical patent/JPWO2017122345A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • A61B18/085Forceps, scissors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/10Power sources therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B17/320092Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
    • A61B2017/320095Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw with sealing or cauterizing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00684Sensing and controlling the application of energy using lookup tables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00886Duration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Dentistry (AREA)
  • Mechanical Engineering (AREA)
  • Surgical Instruments (AREA)

Abstract

エネルギー制御装置(3)は、電極(31,32)及び機能要素(36)を備えるエネルギー処置具(2)へのエネルギー供給を制御する。第1及び第2の出力フェーズでは、電極(31,32)に第1の電気エネルギーが供給される。すると、処置対象の血管に高周波電流が流れ、血管が封止される。この際、血管の初期インピーダンスZ0 が検出される。第3の出力フェーズでは、電極(31,32)に第1の電気エネルギーが供給されるとともに、機能要素(36)に第2の電気エネルギーが供給される。すると、血管に高周波電流が流れるとともに、機能要素(36)に熱、超音波振動等の処置エネルギーが発生し、血管が切開、封止される。Z0 が大きい場合、血管の体積は小さい。この場合、エネルギー制御装置(3)は、処置エネルギーを小さくするように、処置エネルギーに関するパラメータ及び第3の出力フェーズの継続時間を設定する。このため、処置エネルギーが処置対象以外の生体組織へ侵襲することが有効に防止される。

Description

本発明は、エネルギーを用いて処置対象を処置するエネルギー処置具へのエネルギーの供給を制御するエネルギー制御装置、及び、そのエネルギー制御装置を備える処置システムに関する。
特許文献1には、エンドエフェクタに電極及び発熱体が設けられるエネルギー処置具、及び、そのエネルギー処置具へのエネルギーの供給を制御するエネルギー制御装置が開示されている。このエネルギー処置具では、エネルギー制御装置から電極に第1の電気エネルギーが供給されることにより、エンドエフェクタで把持される処置対象に高周波電流が流れる。また、エネルギー制御装置から発熱体に第2の電気エネルギーが供給されることにより、発熱体で熱が発生し、エンドエフェクタで把持される処置対象に発生した熱が付与される。処置においては、電極に供給される第1の電気エネルギーのみがエネルギー制御装置から出力される第1の出力フェーズが、出力開始から継続される。そして、把持される処置対象のインピーダンスが切替え値に到達すると、発熱体に供給される第2の電気エネルギーのみがエネルギー制御装置から出力される第2の出力フェーズに、第1の出力フェーズから切替えられる。第2の出力フェーズの開始からしばらく経過するまでは、第2の電気エネルギーの出力に関して、発熱体を所定の温度で経時的に一定に保つ定温度制御が行われる。
米国特許出願公開第2013/338740号明細書
前記特許文献1では、第2の出力フェーズにおいて、処置される処置対象の状態ではなく、発熱体の状態に基づいて第2の電気エネルギーの出力(発熱体での発熱)が制御されている。処置対象の状態に直接的に基づいて第2の電気エネルギーの出力が制御されていないことにより、発熱体で発生する熱を用いた処置に影響を及ぼす可能性がある。
本発明は前記課題に着目してなされたものであり、その目的とするところは、エネルギー処置具へのエネルギーの供給を制御することにより、処置対象の状態に応じて処置エネルギーが適切に処置対象に付与されるエネルギー制御装置を提供することにある。また、そのエネルギー制御装置を備える処置システムを提供することにある。
前記目的を達成するため、本発明のある態様は、電極及び機能要素を備えるエネルギー処置具へのエネルギーの供給を制御するエネルギー制御装置であって、第1の電気エネルギーを出力し、出力された前記第1の電気エネルギーを前記電極に供給することにより、処置対象に高周波電流を流す第1のエネルギー出力部と、前記第1の電気エネルギーとは異なる第2の電気エネルギーを出力し、出力された前記第2の電気エネルギーを前記機能要素に供給することにより、前記機能要素において前記高周波電流とは異なる処置エネルギーを発生させる第2のエネルギー出力部と、前記第1のエネルギー出力部からの前記第1の電気エネルギーの出力及び前記第2のエネルギー出力部からの前記第2の電気エネルギーの出力を制御する制御部と、を備え、前記制御部は、前記第1の電気エネルギーのみが出力される単独出力フェーズを出力開始から継続することと、前記第1の電気エネルギー及び前記第2の電気エネルギーが同時に出力され、かつ、前記高周波電流及び前記処置エネルギーの両方に起因して前記処置対象が変性される同時出力フェーズに、前記単独出力フェーズから移行することと、前記単独出力フェーズにおいて経時的に前記処置対象のインピーダンスを検出することと、前記単独出力フェーズのある時点における前記インピーダンス及び前記単独出力フェーズにおける前記インピーダンスの経時的な変化に基づいて、前記同時出力フェーズでの前記処置エネルギーに関するパラメータ及び前記同時出力フェーズの継続時間を設定し、設定された前記パラメータ及び前記継続時間に基づいて、前記同時出力フェーズにおける前記第2の電気エネルギーの出力を制御することと、を実行する。
本発明によれば、エネルギー処置具へのエネルギーの供給を制御することにより、処置対象の状態に応じて処置エネルギーが適切に処置対象に付与されるエネルギー制御装置、及び、そのエネルギー制御装置を備える処置システムを提供することができる。
図1は、第1の実施形態に係る処置システムを示す概略図である。 図2は、第1の実施形態に係るエネルギー制御装置からエネルギー処置具にエネルギーを供給する構成を概略的に示すブロック図である。 図3は、第1の実施形態のある実施例の機能要素を説明する概略図である。 図4は、第1の実施形態の別のある実施例の機能要素を説明する概略図である。 図5は、第1の実施形態に係るエネルギー制御装置の制御部によって行われる、処置における処理を示すフローチャートである。 図6は、第1の実施形態に係るエネルギー制御装置を用いた処置での、処置対象のインピーダンスの経時的な変化の一例を示す概略図である。 図7は、第1の実施形態に係るエネルギー制御装置を用いた処置での、第1の電気エネルギーの出力電力の経時的な変化の一例を示す概略図である。 図8は、第1の実施形態に係る制御部が、第1の出力フェーズでの制御において行う処理を示すフローチャートである。 図9は、第1の実施形態に係る制御部が、第2の出力フェーズでの制御において行う処理を示すフローチャートである。 図10Aは、第1の実施形態のある実施例及び別のある実施例のそれぞれにおいて、第3の出力フェーズでの第2の電気エネルギーの出力制御の制御パターンを決定する処理を説明する概略図である。 図10Bは、第1の実施形態のさらに別のある実施例において、第3の出力フェーズでの第2の電気エネルギーの出力制御の制御パターンを決定する処理を説明する概略図である。 図11は、第1の実施形態のある実施例及び別のある実施例のそれぞれでの、第3の出力フェーズでの第2の電気エネルギーの出力制御の制御パターンに対する処置エネルギーに関するパラメータ及び第3の出力フェーズの継続時間の関係を示す概略図である。 図12は、第1の実施形態に係る制御部が、第3の出力フェーズでの制御において行う処理を示すフローチャートである。 図13は、第1の変形例での、第3の出力フェーズでの第2の電気エネルギーの出力制御の制御パターンに対する処置エネルギーに関するパラメータ及び第3の出力フェーズの継続時間の関係を示す概略図である。 図14は、第2の変形例での、第3の出力フェーズでの第2の電気エネルギーの出力制御の制御パターンに対する処置エネルギーに関するパラメータ及び第3の出力フェーズの継続時間の関係を示す概略図である。 図15は、第3の変形例に係るエネルギー制御装置の制御部によって行われる、処置における処理を示すフローチャートである。 図16は、第4の変形例に係るエネルギー制御装置の制御部によって行われる、処置における処理を示すフローチャートである。 図17は、第4の変形例に係るエネルギー制御装置を用いた処置での、中継出力フェーズでの第2の電気エネルギーの出力電力の経時的な変化の一例を示す概略図である。 図18は、第4の変形例に係る制御部が、第2の出力フェーズでの制御において行う処理を示すフローチャートである。 図19は、第4の変形例に係る制御部が、中継出力フェーズでの制御において行う処理を示すフローチャートである。
(第1の実施形態)
本発明の第1の実施形態について、図1乃至図12を参照して説明する。
図1は、本実施形態の処置システム1を示す図である。図1に示すように、処置システム1は、エネルギー処置具2と、エネルギー処置具2へのエネルギーの供給を制御するエネルギー制御装置3と、を備える。ここで、図1において、矢印C1側を先端側とし、矢印C2側(先端側とは反対側)を基端側とする。
エネルギー処置具2は、保持可能なハウジング5と、ハウジング5の先端側に連結されるシャフト6と、シャフト6の先端部に設けられるエンドエフェクタ7と、を備える。ハウジング5には、グリップ11が設けられるとともに、ハンドル12が回動可能に取付けられている。ハンドル12がハウジング5に対して回動することにより、ハンドル12がグリップ11に対して開く又は閉じる。
エンドエフェクタ7は、処置において処置対象に接触し、第1の把持片15及び第2の把持片16を備える。ハンドル12をグリップ11に対して開く又は閉じることにより、一対の把持片15,16の間が開く又は閉じる。これにより、一対の把持片15,16の間で血管(生体組織)等の処置対象を把持可能となる。なお、把持片15,16の一方がシャフト6の先端部に回動可能に取付けられてもよく、把持片15,16の両方がシャフト6の先端部に回動可能に取付けられてもよい。また、シャフト6に挿通されるロッド部材(図示しない)が設けられ、把持片15,16の一方(例えば第1の把持片15)が、ロッド部材のシャフト6からの先端側への突出部分によって形成されてもよい。また、本実施形態では、ハウジング5に回転ノブ17が回転可能に取付けられている。回転ノブ17がハウジング5に対して回転することにより、シャフト6及びエンドエフェクタ7がハウジング5に対してシャフト6の中心軸回りに回転ノブ17と一緒に回転する。
ハウジング5には、ケーブル13の一端が接続されている。ケーブル13の他端は、エネルギー制御装置3に分離可能に接続される。また、ハウジング5には、エネルギー操作入力部として操作ボタン18が取付けられている。操作ボタン18を押圧することにより、エネルギー制御装置3に対し、エネルギー制御装置3からエネルギー処置具2へエネルギーを出力させる操作(信号)が入力される。なお、操作ボタン18の代わりに又は加えて、エネルギー処置具2とは別体のフットスイッチ等が、エネルギー操作入力部として設けられてもよい。
図2は、エネルギー制御装置3からエネルギー処置具2にエネルギー(第1の電気エネルギー及び第2の電気エネルギー)を供給する構成を示す図である。図2に示すように、エネルギー制御装置3は、処置システム全体を制御する制御部21と、記憶媒体22と、を備える。制御部(制御回路)21は、CPU(Central Processing Unit)、ASIC(Application Specific Integrated Circuit)又はFPGA(Field Programmable Gate
Array)等を含む集積回路又はプロセッサ等から形成されている。制御部21は、1つの集積回路等から形成されてもよく、複数の集積回路等から形成されてもよい。制御部21での処理は、制御部21又は記憶媒体22に記憶されたプログラムに従って行われる。また、記憶媒体22には、制御部21で用いられる処理プログラム、及び、制御部21での演算で用いられるパラメータ及びテーブル等が記憶されている。制御部21は、操作ボタン18等のエネルギー操作入力部での操作入力の有無を検出する。
また、エネルギー制御装置3は、バッテリー又はコンセント等である電源23と、第1のエネルギー出力部25及び第2のエネルギー出力部26と、を備える。第1のエネルギー出力部25は、変換回路及びアンプ回路等を備える駆動回路等であり、電源23からの電力を第1の電気エネルギーに変換する。そして、変換された第1の電気エネルギーが、第1のエネルギー出力部25から出力される。また、第2のエネルギー出力部26は、変換回路及びアンプ回路等を備える駆動回路等であり、電源23からの電力を第1の電気エネルギーとは異なる第2の電気エネルギーに変換する。そして、変換された第2の電気エネルギーが、第2のエネルギー出力部26から出力される。制御部21は、エネルギー出力部25,26のそれぞれの駆動を制御し、第1のエネルギー出力部25から第1の電気エネルギーの出力及び第2のエネルギー出力部26からの第2の電気エネルギーの出力を制御する。制御部21での制御によって、第1の電気エネルギーの出力電力P、出力電流I及び出力電圧Vが調整されるとともに、第2の電気エネルギーの出力電力P´、出力電流I´及び出力電圧V´が調整される。
エネルギー処置具2のエンドエフェクタ7には、第1の電極31及び第2の電極32が設けられている。例えば、第1の電極31は、第1の把持片15に設けられ、第2の電極32は、第2の把持片16に設けられている。第1のエネルギー出力部(第1の駆動回路)25から出力された第1の電気エネルギーは、電極31,32に供給される。したがって、第1のエネルギー出力部25と電極31,32との間には、エネルギー制御装置3の内部、ケーブル13の内部及びエネルギー処置具2を通って、第1の電気エネルギーを供給する第1の供給回路41が形成されている。ここで、第1の電気エネルギーは、高周波電気エネルギー(高周波電力)である。このため、把持片15,16の間で処置対象が把持される状態で電極31,32に第1の電気エネルギーが供給されることにより、把持される処置対象を通して電極31,32の間に高周波電流が流れる。処置対象に高周波電流が流れることにより、処置対象において熱が発生し、熱によって処置対象が変性される。
第1の供給回路41には、電流検出回路27及び電圧検出回路28が設けられている。第1のエネルギー出力部25から第1の電気エネルギーが出力されている状態では、電流検出回路27は出力電流Iの電流値を検出し、電圧検出回路28は出力電圧Vの電圧値を検出する。エネルギー制御装置3には、A/D変換器29が設けられている。A/D変換器29には、電流検出回路27で検出された電流値を示すアナログ信号、及び、電圧検出回路28で検出された電圧値を示すアナログ信号が伝達される。A/D変換器29は、電流値を示すアナログ信号及び電圧値を示すアナログ信号をデジタル信号に変換し、変換されたデジタル信号を制御部21に伝達する。
第1のエネルギー出力部25から第1の電気エネルギーが出力されている状態では、制御部21は、第1の電気エネルギーの出力電流I及び出力電圧Vに関する情報を取得する。そして、制御部21は、出力電流I及び出力電圧Vに基づいて、把持される処置対象及び電極31,32を含む第1の供給回路41のインピーダンスを検出する。これにより、把持される処置対象のインピーダンスZが検出される。すなわち、第1のエネルギー出力部25から第1の電気エネルギーが出力されている状態では、第1の電気エネルギーの出力電流I及び出力電圧Vに基づいて、処置対象のインピーダンス(組織インピーダンス)Zを経時的に検出する。
エネルギー処置具2のエンドエフェクタ7には、機能要素36が設けられている。第2のエネルギー出力部(第2の駆動回路)26から出力された第2の電気エネルギーは、機能要素36に供給される。したがって、第2のエネルギー出力部26と機能要素36との間には、エネルギー制御装置3の内部、ケーブル13の内部及びエネルギー処置具2を通って、第2の電気エネルギーを供給する第2の供給回路42が形成されている。機能要素36に第2の電気エネルギーが供給されることにより、高周波電流とは異なる処置エネルギーが機能要素36で発生する。
第2の供給回路42には、電流検出回路37及び電圧検出回路38が設けられている。第2のエネルギー出力部26から第2の電気エネルギーが出力されている状態では、電流検出回路37は出力電流I´の電流値を検出し、電圧検出回路38は出力電圧V´の電圧値を検出する。エネルギー制御装置3には、A/D変換器39が設けられている。A/D変換器39には、電流検出回路37で検出された電流値を示すアナログ信号、及び、電圧検出回路38で検出された電圧値を示すアナログ信号が伝達される。A/D変換器39は、電流値を示すアナログ信号及び電圧値を示すアナログ信号をデジタル信号に変換し、変換されたデジタル信号を制御部21に伝達する。
第2のエネルギー出力部26から第2の電気エネルギーが出力されている状態では、制御部21は、第2の電気エネルギーの出力電流I´及び出力電圧V´に関する情報を取得する。そして、制御部21は、出力電流I´及び出力電圧V´に基づいて、機能要素36を含む第2の供給回路42のインピーダンスを検出する。
図3は、ある実施例の機能要素36を示している。図3の実施例では、機能要素36としてエンドエフェクタ7に発熱体36Aが設けられている。なお、本実施例では発熱体36Aは、第2の把持片16に設けられているが、発熱体36Aは、把持片15,16の少なくとも一方に設けられていればよい。第2の電気エネルギーが発熱体36Aに供給されることにより、処置エネルギーとして熱が発熱体36Aで発生する。発熱体36Aで発生した熱は、エンドエフェクタ7に伝達され、処置対象に付与される。これにより、発熱体36Aで発生した熱によって、処置対象が変性される。
本実施例では、第2の電気エネルギーとして直流電力又は交流電力が供給される。発熱体36Aで発生する発熱量(ジュール熱)Qは、第2の電気エネルギーの出力電力P´を増加させると、増加する。また、発熱体36Aでの発熱量Q(すなわち、処置エネルギーとして発生する熱エネルギー)は、出力電流I´を増加させた場合、及び、出力電圧V´を増加させた場合のそれぞれにおいても、増加する。
本実施例では、制御部21は、第2の電気エネルギーの出力電流I´及び出力電圧V´に基づいて、発熱体36Aの抵抗(可変抵抗)Rを経時的に検出する。発熱体36Aでの発熱量Qは、発熱体36Aの抵抗Rに対応して、変化する。このため、発熱体36Aの抵抗Rが変化することにより、発熱体36Aでの発熱量Qが変化し、エンドエフェクタ7(処置対象)の温度Tが変化する。本実施例では、制御部21は、発熱体36Aの抵抗Rに基づいてエンドエフェクタ7の温度Tを経時的に検出する。この場合、発熱体36Aの抵抗Rとエンドエフェクタ7の温度Tとの関係を示すテーブル等が、記憶媒体22に記憶される。
図4は、別のある実施例の機能要素36を示している。図4の実施例では、機能要素36としてハウジング5の内部に超音波振動子36Bが設けられている。第2の電気エネルギーが超音波振動子36Bに供給されることにより、処置エネルギーとして超音波振動が超音波振動子36Bで発生する。本実施例では、シャフト6に振動伝達部材(ロッド部材)43が挿通され、振動伝達部材43のシャフト6からの先端側への突出部分によって、第1の把持片15が形成される。そして、超音波振動子36B及び振動伝達部材43によって、振動体40が形成される。超音波振動子36Bで発生した超音波振動は、エンドエフェクタ7の第1の把持片15に伝達される。把持片15,16の間で処置対象が把持される状態で、超音波振動によって振動伝達部材43が振動することにより、処置対象と第1の把持片15との間で摩擦熱が発生する。発生した摩擦熱によって、処置対象が変性される。
本実施例では、第2の電気エネルギーとして所定の周波数の交流電力が供給される。これにより、超音波振動子36B及び振動伝達部材43を含む振動体40が、所定の共振周波数で振動する。振動体40での超音波振動の振幅U及び振動速度ν(すなわち、処置エネルギーとして発生する振動エネルギー)は、第2の電気エネルギーの出力電流I´を増加させると、増加する。本実施例では、制御部21は、第2の電気エネルギーの出力電流I´に基づいて、振動体40での振幅U及び振動速度νを経時的に検出する。この場合、第2の電気エネルギーの出力電流I´に対する振動体40での振幅U及び振動速度νの関係を示すテーブル等が、記憶媒体22に記憶される。また、本実施例では、制御部21は、第2の電気エネルギーの出力電流I´及び出力電圧V´に基づいて、振動体40の音響インピーダンスZ´を経時的に検出する。音響インピーダンスZ´は、振動体40の振動に対する負荷を示す。
なお、エネルギー制御装置3には、第1の電気エネルギー及び第2の電気エネルギーのエネルギーレベルを設定するレベル設定部(図示しない)として、ダイヤル又はタッチパネル等が設けられてもよい。この場合、制御部21は、設定されたエネルギーレベルに基づいて、エネルギー出力部25,26のそれぞれからの出力を制御する。また、エネルギー制御装置3には、第1の電気エネルギー及び第2の電気エネルギーのそれぞれの設定されたエネルギーレベルが表示される表示部(図示しない)としてモニタ等が設けられてもよく、警告音等を発する警告部(図示しない)としてブザー等が設けられてもよい。この場合、表示部及び警告部の作動は、制御部21によって制御される。
次に、エネルギー制御装置3及び処置システム1の作用及び効果について説明する。処置システム1で処置を行う際には、エネルギー処置具2を、ケーブル13を介してエネルギー制御装置3に接続する。そして、出力される第1の電気エネルギー及び第2の電気エネルギーのエネルギーレベルのそれぞれを、希望するエネルギーの範囲に設定する。そして、腹腔等の体腔の内部にエネルギー処置具2のエンドエフェクタ7を挿入する。そして、把持片15,16の間に生体組織等の処置対象が位置する状態で、ハンドル12をグリップ11に対して閉じる。これにより、把持片15,16の間が閉じ、把持片15,16の間で処置対象が把持される。処置対象が把持される状態において操作ボタン18で操作入力が行われることにより、後述するように第1の電気エネルギー及び第2の電気エネルギーの出力が制御され、処置対象が処置される。
図5は、処置においてエネルギー制御装置3の制御部21によって行われる処理を示すフローチャートである。図5に示すように、制御部21は、操作ボタン(エネルギー操作入力部)18での操作入力が行われたか否か(すなわち、操作入力がONかOFFか)を判断する(ステップS101)。操作入力が行われていない場合は(ステップS101−No)、ステップS101に戻る。すなわち、制御部21は、操作ボタン18で操作入力が行われるまで、待機する。操作入力が行われると(ステップS101−Yes)、制御部21は、第1の出力フェーズでの制御を実行する(ステップS102)。第1の出力フェーズでの制御が終了すると、制御部21は、第2の出力フェーズでの制御を実行する(ステップS103)。第2の出力フェーズでの制御が終了すると、制御部21は、第3の出力フェーズでの制御を実行する(ステップS104)。本実施形態では、第3の出力フェーズが終了すると、制御部21による第1の電気エネルギー及び第2の電気エネルギーの出力制御が終了する。第1の出力フェーズでの制御から第2の出力フェーズでの制御への移行は、タイムラグなく、連続的に実行される。第2の出力フェーズでの制御から第3の出力フェーズでの制御への移行は、タイムラグなく、連続的に実行される。
図6は、処置における処置対象のインピーダンス(組織インピーダンス)Zの経時的な変化の一例を示す図であり、図7は、処置における第1の電気エネルギーの出力電力Pの経時的な変化の一例を示す図である。図6及び図7では、横軸に第1の出力フェーズでの制御開始(第1の電気エネルギーの出力開始)を基準とする時間tを示している。また、図6では縦軸に処置対象のインピーダンスZを示し、図7では縦軸に出力電力Pを示している。
図6及び図7に示すように、本実施形態では、第1の出力フェーズ乃至第3の出力フェーズのいずれにおいても、第1のエネルギー出力部25から第1の電気エネルギーが出力される。このため、第1の出力フェーズ乃至第3の出力フェーズのいずれにおいても、把持される処置対象に高周波電流が流れる。そして、高周波電流に起因して発生する熱によって処置対象が変性され、処置対象が封止される。
また、本実施形態では、第1の出力フェーズ乃至第3の出力フェーズのいずれにおいても、第1の電気エネルギーの出力電流I及び出力電圧Vに基づいて、処置対象のインピーダンスZが経時的に検出される。ここで、第1の電気エネルギーの出力が開始され、高周波電流が処置対象に流れ始めると、高周波電流に起因する熱によって処置対象内(生体組織内)の水分が蒸発するまでは、インピーダンスZは経時的に減少する。そして、処置対象内の水分が蒸発した後は、高周波電流に起因する熱によって処置対象の温度が上昇することに対応して、インピーダンスZは経時的に増加する。このため、インピーダンスZは、第1の電気エネルギーの出力開始(第1の出力フェーズでの出力開始)から最小値Zminになるまで経時的に減少するとともに、インピーダンスZは、最小値Zminになった以後において経時的に増加する。
また、本実施形態では、第1の出力フェーズ及び第2の出力フェーズは、第1の電気エネルギーのみが出力され、第2のエネルギー出力部26から第2の電気エネルギーは出力されない単独出力フェーズとなる。このため、第1の出力フェーズ及び第2の出力フェーズでは、機能要素36に第2の電気エネルギーが供給されず、機能要素36(発熱体36A又は超音波振動子36B等)で処置エネルギー(熱又は超音波振動等)が発生しない。したがって、単独出力フェーズでは、処置対象を流れる高周波電流のみに起因して、処置対象が変性される。本実施形態では、第1の電気エネルギーの出力開始から、単独出力フェーズが継続される。
また、第3の出力フェーズは、第1の電気エネルギー及び第2の電気エネルギーの両方が同時に出力される同時出力フェーズとなる。このため、第3の出力フェーズでは、機能要素36に第2の電気エネルギーが供給され、機能要素36で処置エネルギーが発生する。したがって、同時出力フェーズでは、処置対象を流れる高周波電流及び機能要素36で発生する処置エネルギー(熱又は超音波振動等)の両方に起因して、処置対象が変性される。この際、高周波電流に起因して処置対象が封止されるとともに、処置エネルギーに起因して処置対象が切開と同時に封止される。第2の出力フェーズから第3の出力フェーズに切替わることにより、単独出力フェーズから同時出力フェーズに移行する。
図8は、第1の出力フェーズでの制御において制御部21によって行われる処理を示すフローチャートである。図8に示すように、第1の出力フェーズでの制御においては、制御部21は、電力値P0で第1の電気エネルギー(高周波電力)を出力し、電力値P0の第1の電気エネルギーを電極31,32に供給する(ステップS111)。そして、制御部21は、電流検出回路27及び電圧検出回路28から第1の電気エネルギーの出力電流I及び出力電圧Vを取得し、出力電流I及び出力電圧Vに基づいて処置対象のインピーダンスZを検出する(ステップS112)。
そして、制御部21は、第1の出力フェーズの開始(第1の電気エネルギーの出力開始)から基準時間Δtref経過したか否かを判断する(ステップS113)。基準時間Δtrefは、術者によって設定されてもよく、記憶媒体22に記憶されていてもよい。また、基準時間Δtrefは、第1の出力フェーズの開始からインピーダンスZが最小値Zminになるまでの時間よりも短く、100ms程度であることが好ましい。基準時間Δtref経過していない場合は(ステップS113−No)、ステップS111に戻り、電力値P0での第1の電気エネルギーの出力(ステップS111)及びインピーダンスZの検出(ステップS112)が、繰返し行われる。基準時間Δtref経過した場合は(ステップS113−Yes)、第1の出力フェーズでの制御は終了し、第2の出力フェーズへと移行する。
前述のような処理が行われることにより、第1の出力フェーズでは、基準時間Δtrefの間、第1の電気エネルギーの出力電力Pを電力値P0で経時的に一定に保つ定電力制御が行われる。また、基準時間Δtrefは、第1の出力フェーズの開始からインピーダンスZが最小値Zminになるまでの時間よりも短いため、第1の出力フェーズは、インピーダンスZが最小値Zminに到達する前に終了する。
また、第1の出力フェーズで検出される処置対象のインピーダンスZを初期インピーダンスZ0とする。初期インピーダンスZ0は、第1の電気エネルギーの出力開始時のインピーダンスZであってもよく、第1の出力フェーズ(基準時間Δtref)の間でのインピーダンスZの中間値又は平均値であってもよい。すなわち、単独出力フェーズにおいて第1の電気エネルギーの出力開始時又はその直後におけるインピーダンスZが、初期インピーダンスZ0として検出される。
第2の出力フェーズでは、第1の出力フェーズで検出した初期インピーダンスZ0に基づいて、第1の電気エネルギーの出力が制御される。ある実施例では、第2の出力フェーズにおいて制御部21は、初期インピーダンスZ0に基づいて、時間tでの第1の電気エネルギーの出力電圧V(t)を調整し、第1の電気エネルギーの出力を制御する。そして、例えば、時間tでの出力電圧(電極31,32間の電圧)V(t)について式(1)が成立する状態に、第1の電気エネルギーの出力が制御される。
Figure 0006234652
この場合、第2の出力フェーズにおいて、出力電圧V(t)は、経時的に一次関数的に(線形的に)増加する。ここで、式(1)のαは、第2の出力フェーズでの出力電圧V(t)の経時的な増加率を示し、初期インピーダンスZ0に基づいて決定される。また、式(1)のβは定数である。本実施例では、出力電圧V(t)の経時的な増加率αが決定されることにより、第2の出力フェーズでの第1の電気エネルギーの出力制御についての制御パターンY(Y1,Y2,Y3)が決定される。なお、本実施例では、3つの制御パターンY1,Y2,Y3のいずれか1つに基づいて、第2の出力フェーズでの第1の電気エネルギーの出力制御が行われるが、これに限るものではない。すなわち、第2の出力フェーズでの第1の電気エネルギーの出力制御の制御パターンYの数は、複数に分類されていれば、2つであっても、4つであってもよい。また、初期インピーダンスZ0に関係なく、1つの制御パターンYのみで、第2の出力フェーズでの第1の電気エネルギーの出力制御が行われてもよい。
例えば、制御パターンY1で第1の電気エネルギーの出力制御が行われる場合に比べ、制御パターンY2で出力制御が行われる場合は、出力電圧Vの経時的な増加率αが、大きく設定される。また、制御パターンY2で出力制御が行われる場合に比べ、制御パターンY3で出力制御が行われる場合は、出力電圧Vの経時的な増加率αが、大きく設定される。これにより、制御パターンY1で出力制御が行われる場合に比べ、制御パターンY2で出力制御が行われる場合は、出力電力Pの経時的な増加率α´が大きく、制御パターンY2で出力制御が行われる場合に比べ、制御パターンY3で出力制御が行われる場合は、出力電力Pの経時的な増加率α´が大きい(図7参照)。なお、図7では、第2の出力フェーズでの第1の電気エネルギーの出力電力Pの経時的な変化を、制御パターンY1で出力制御が行われる場合は実線で、制御パターンY2で出力制御が行われる場合を破線で、制御パターンY3で出力制御が行われる場合を一点鎖線で、それぞれ示している。
ここで、例えば処置対象が細い(体積vの小さい)血管である場合は、電流が流れる経路が太い血管に対して少なく、処置対象に含まれる水分の量が少なくなるため、処置対象に高周波電流が比較的流れ難くなる。このため、第1の出力フェーズにおいて検出される初期インピーダンスZ0は、太い血管の場合に比べて大きくなる。この場合、出力電圧V(t)の経時的な増加率αが小さい制御パターンY(例えば制御パターンY1)で、第1の電気エネルギーの出力制御が行われる。一方、例えば処置対象が太い(体積vの大きい)血管である場合は、電流が流れる経路が細い血管に対して多く、処置対象に含まれる水分の量が多くなるため、処置対象に高周波電流が比較的流れ易くなる。このため、検出される初期インピーダンスZ0は、細い血管の場合に比べて小さくなる。この場合、出力電圧V(t)の経時的な増加率αが大きい制御パターンY(例えば制御パターンY3)で、第1の電気エネルギーの出力制御が行われる。
なお、別のある実施例では、第2の出力フェーズにおいて、出力電圧V(t)が経時的に二次関数的又は指数関数的等の非線形的に増加する状態に、第1の電気エネルギーの出力制御が行われてもよい。この場合も、初期インピーダンスZ0に基づいて、出力電圧V(t)の経時的な増加率αが調整される。また、さらに別のある実施例では、第2の出力フェーズにおいて、出力電力P(t)又は出力電流I(t)が経時的に線形的又は非線形的に増加する状態に、第1の電気エネルギーの出力制御が行われてもよい。この場合は、初期インピーダンスZ0に基づいて、出力電力P(t)の経時的な増加率α´又は出力電流I(t)の経時的な増加率α´´が調整される。
図9は、第2の出力フェーズでの制御において制御部21によって行われる処理を示すフローチャートである。なお、ここでは、第2の出力フェーズにおいて出力電圧V(t)を経時的に線形的に増加させる出力制御が行われる実施例について説明する。図9に示すように、第2の出力フェーズでの制御においては、制御部21は、第1の出力フェーズで検出された初期インピーダンスZ0に基づいて、時間tのそれぞれにおける出力電圧V(t)を算出する(ステップS121)。この際、初期インピーダンスZ0に基づいて、前述の制御パターンY及び出力電圧V(t)の経時的な増加率αを決定し、出力電圧V(t)を算出する。そして、制御部21は、時間tに対応する出力電圧V(t)で、第1のエネルギー出力部25から第1の電気エネルギーを出力させる(ステップS122)。また、制御部21は、出力電流I及び出力電圧Vに基づいて処置対象のインピーダンスZを検出する(ステップS123)。
そして、制御部21は、処置対象のインピーダンスZが最小値Zminに到達したか否かを判断する(ステップS124)。そして、インピーダンスZが最小値Zminに到達した以後において(ステップS124−Yes)、制御部21は、インピーダンスZが切替え値Zswに到達したか否かを判断する(ステップS125)。インピーダンスZが最小値Zminに到達していない場合(ステップS124−No)、及び、インピーダンスZが切替え値Zswに到達していない場合は(ステップS125−No)、ステップS122に戻り、出力電圧V(t)での第1の電気エネルギーの出力(ステップS122)及びインピーダンスZの検出(ステップS123)が、繰返し行われる。インピーダンスZが切替え値Zswに到達した場合は(ステップS125−Yes)、第2の出力フェーズでの制御は終了し、第3の出力フェーズへと移行する。すなわち、インピーダンスZが切替え値Zswに到達したことに基づいて、単独出力フェーズから同時出力フェーズに切替えられる。
制御部21は、インピーダンスZが経時的に減少しているか、又は、経時的に増加しているかを判断し、インピーダンスZの経時的に減少する状態から経時的に増加する状態への切替わりを検出する。これにより、インピーダンスZの最小値Zminを検出可能となる。また、インピーダンスZの切替え値Zswは、最小値Zminと同一の大きさ、又は、最小値Zminより僅かに大きく設定される。切替え値Zswが最小値Zminと同一の大きさに設定される場合は、制御部21は、インピーダンスZの最小値Zminを到達した時点又はその直後に、インピーダンスZが切替え値Zswに到達したと判断する。また、切替え値Zswが最小値Zminより僅かに大きく設定される場合は、制御部21は、インピーダンスZが最小値Zminから僅かに増加した時点又はその直後に、インピーダンスZが切替え値Zswに到達したと判断する。ここで、第2の出力フェーズでの制御開始からインピーダンスZが切替え値Zswに到達するまでの到達時間Δtjudgeを、規定する。本実施形態では、到達時間Δtjudgeの間、第2の出力フェーズでの出力制御が継続される。インピーダンスZが切替え値Zswに到達したと判断されることにより、制御部21は、到達時間Δtjudgeを検出する。
第3の出力フェーズに移行すると、第1の電気エネルギー及び第2の電気エネルギーが同時に出力される。そして、前述のように、高周波電流及び機能要素36で発生する処置エネルギーの両方に起因して処置対象が変性される。ある実施例では、第3の出力フェーズにおいて処置対象のインピーダンスZが閾値Zth(図6参照)に到達するまでは(インピーダンスZが閾値Zthより小さい場合は)、制御部21は、第1の電気エネルギーの出力電力Pを電力値Pconstで経時的に一定に保つ定電力制御を行う。そして、第3の出力フェーズにおいてインピーダンスZが閾値Zthに到達した後は(インピーダンスZが閾値Zth以上の場合は)、制御部21は、第1の電気エネルギーの出力電圧Vを電圧値Vconstで経時的に一定に保つ定電圧制御を行う。定電圧制御が行われている状態では、出力電力Pは、経時的に減少する。なお、閾値Zthは、切替え値Zchより大きい。また、閾値Zthは、初期インピーダンスZ0より大きいことが好ましい。
また、別のある実施例では、単独出力フェーズでのインピーダンスZの経時的な変化(例えば、初期インピーダンスZ0及び到達時間Δtjudge等)に基づいて、第3の出力フェーズの時間tのそれぞれにおけるインピーダンスZの目標値Ztar(t)を設定する。例えば、第3の出力フェーズにおいて経時的に線形的に増加する状態に、インピーダンスZの目標値Ztar(t)を設定する。そして、制御部21は、インピーダンスZが目標値Ztar(t)に沿って変化する状態に、第3の出力フェーズでの第1の電気エネルギーの出力を制御し、出力電力P、出力電流I及び出力電圧Vが調整される。例えば、時間tにおいてインピーダンスZ(t)が目標値Ztar(t)より小さい場合は、第1の電気エネルギーの出力電力Pを増加させる。なお、第3の出力フェーズにおける第1の電気エネルギーの制御については、前述の実施例に限るものではない。
第3の出力フェーズ(同時出力フェーズ)では、制御部21は、決定された(選択された)制御パターンXに基づいて、第2の電気エネルギーの出力を制御する。そして、第3の出力フェーズにおいて、制御部21は、単独出力フェーズ(第1の出力フェーズ及び第2の出力フェーズ)のある時点での処置対象のインピーダンスZ及び単独出力フェーズでの処置対象のインピーダンスZの経時的な変化の少なくとも一方に基づいて、処置対象の体積v等の処置対象の状態を判断する(特定する)とともに、制御パターンXを決定する。例えば、第1の出力フェーズ検出された初期インピーダンスZ0、及び、第2の出力フェーズの継続時間に相当する到達時間Δtjudgeの少なくとも一方に基づいて、処置対象の状態を判断され、制御パターンXが決定される。なお、単独出力フェーズでのインピーダンスZに関する情報は、初期インピーダンスZ0及び到達時間Δtjudgeに限るものではない。例えば、初期インピーダンスZ0及び到達時間Δtjudgeの代わりに又は加えて、前述の最小値Zmin,初期インピーダンスZ0から最小値ZminまでのインピーダンスZの減少率ξ、及び、第1の出力フェーズと第2の出力フェーズと合計時間(Δtref+Δtjudge)等の少なくとも1つに基づいて、処置対象の状態が特定され、制御パターンXが決定されてもよい。
図10Aは、ある実施例及び別のある実施例のそれぞれにおいて、第3の出力フェーズでの第2の電気エネルギーの出力制御の制御パターンXを決定する処理を説明する図である。また、図10Bは、さらに別のある実施例において、第3の出力フェーズでの第2の電気エネルギーの出力制御の制御パターンXを決定する処理を説明する図である。なお、制御パターンXを決定(選択)する方法については、図10A及び図10Bを用いて説明する実施例に限定されるものではない。また、以下の実施例のそれぞれでは、処置対象の状態(単独出力フェーズでのインピーダンスの経時的な変化)に基づいて、制御パターンX1〜X3のいずれか1つが選択される。例えば、制御パターンX2は、処置対象の体積vが適度な大きさであると判断された場合に選択される。そして、制御パターンX1は、処置対象の体積vが比較的小さいと判断された場合に選択され、制御パターンX3は、処置対象の体積vが比較的大きいと判断された場合に選択される。
図10Aに示すように、ある実施例では、初期インピーダンスZ0に基づいて、処置対象の状態(処置対象の体積v)が判断され、制御パターンXが決定される。この場合、第1の基準値Za及び第1の基準値Zaより小さい第2の基準値Zbを用いて、判断が行われる。初期インピーダンスZ0が第1の基準値Zaより大きい場合は、制御部21は、処置対象の体積vが比較的小さいと判断し、制御パターンX1で第2の電気エネルギーの出力を制御する。また、初期インピーダンスZ0が第2の基準値Zbより大きく、かつ、第1の基準値Za以下の場合は、制御部21は、処置対象の体積vが適度な大きさであると判断し、制御パターンX2で第2の電気エネルギーの出力を制御する。そして、初期インピーダンスZ0が第2の基準値Zb以下の場合は、制御部21は、処置対象の体積vが比較的大きいと判断し、制御パターンX3で第2の電気エネルギーの出力を制御する。
図10Aに示すように、別のある実施例では、切替え値ZswまでのインピーダンスZの到達時間Δtjudgeに基づいて、処置対象の状態(処置対象の体積v)が特定され、制御パターンXが決定される。この場合、第1の基準時間Δta及び第1の基準時間Δtaより長い第2の基準時間Δtbを用いて、判断が行われる。到達時間Δtjudgeが第1の基準時間Δtaより短い場合は、制御部21は、処置対象の体積vが比較的小さいと判断し、制御パターンX1で第2の電気エネルギーの出力を制御する。また、到達時間Δtjudgeが第2の基準時間Δtbより短く、かつ、第1の基準時間Δta以上の場合は、制御部21は、処置対象の体積vが適度な大きさであると判断し、制御パターンX2で第2の電気エネルギーの出力を制御する。そして、到達時間Δtjudgeが第2の基準時間Δtb以上の場合は、制御部21は、処置対象の体積vが比較的大きいと判断し、制御パターンX3で第2の電気エネルギーの出力を制御する。なお、例えば、第1の基準時間Δtaは600ms、第2の基準時間Δtbは1000msである。
図10Bに示すように、さらに別のある実施例では、初期インピーダンスZ0、及び、切替え値ZswまでのインピーダンスZの到達時間Δtjudgeの両方に基づいて、処置対象の状態(処置対象の体積v)が判断され、制御パターンXが決定される。この場合、基準値Zc及び基準時間Δtcを用いて、判断が行われる。初期インピーダンスZ0が基準値Zcより大きく、かつ、到達時間Δtjudgeが基準時間Δtcより短い場合は、制御部21は、処置対象の体積vが比較的小さいと判断し、制御パターンX1で第2の電気エネルギーの出力を制御する。また、初期インピーダンスZ0が基準値Zc以下で、かつ、到達時間Δtjudgeが基準時間Δtcより短い場合は、制御部21は、処置対象の体積vが適度な大きさであると判断し、制御パターンX2で第2の電気エネルギーの出力を制御する。そして、到達時間Δtjudgeが基準時間Δtc以上の場合は、初期インピーダンスZ0に関係なく、制御部21は、処置対象の体積vが比較的大きいと判断し、制御パターンX3で第2の電気エネルギーの出力を制御する。
第3の出力フェーズでは、制御部21は、単独出力フェーズのある時点におけるインピーダンスZ及び単独出力フェーズにおけるインピーダンスZの経過時的な変化の少なくとも一方に基づいて、機能要素36で発生する処置エネルギーに関するパラメータ、及び、第3の出力フェーズ(同時出力フェーズ)の継続時間Δtsetを設定する。処置エネルギーに関するパラメータ及び継続時間Δtsetは、決定された第2の電気エネルギーの出力制御の制御パターンXに対応させて、設定される。ここで、機能要素36が発熱体36Aである場合は、処置エネルギー(熱エネルギー)に関するパラメータとして、第3の出力フェーズにおける発熱体36Aの温度T等が設定される。また、機能要素36が超音波振動子36Bである場合は、処置エネルギー(振動エネルギー)に関するパラメータとして、第3の出力フェーズにおける振動体40での振幅U及び振動速度ν等が設定される。第3の出力フェーズでは、決定された制御パターンX、設定された処置エネルギーに関するパラメータ、及び、設定された第3の出力フェーズの継続時間Δtsetに基づいて、制御部21は第2の電気エネルギーの出力を制御する。
図11は、ある実施例及び別のある実施例のそれぞれでの、第3の出力フェーズでの第2の電気エネルギーの出力制御の制御パターンXに対する処置エネルギーに関するパラメータ及び第3の出力フェーズの継続時間Δtsetの関係を示している。なお、制御パターンXの決定は、前述したように行われる。
図11に示すある実施例では、機能要素36として発熱体36Aが設けられ、制御パターンX1が選択された場合、第2の電気エネルギーの出力に関して発熱体36Aを第1の設定温度T1で経時的に一定に保つ定温度制御が行われるとともに、第3の出力フェーズが第1の設定時間Δt1継続する。また、制御パターンX2が選択された場合、発熱体36Aを第1の設定温度T1より高い第2の設定温度T2で経時的に一定に保つ定温度制御が行われ、第3の出力フェーズが第1の設定時間Δt1より長い第2の設定時間Δt2継続する。そして、制御パターンX3が選択された場合、発熱体36Aを第2の設定温度T2より高い第3の設定温度T3で経時的に一定に保つ定温度制御が行われ、第3の出力フェーズが第2の設定時間Δt2より長い第3の設定時間Δt3継続する。
第2の電気エネルギーの出力が大きくなると、発熱体36Aで発生する熱エネルギー(処置エネルギー)が大きくなり、発熱体36Aの温度Tが高くなる。このため、制御パターンX2での出力制御では、制御パターンX1での出力制御に比べ、出力される第2の電気エネルギーが大きくなり、発熱体36Aで発生する熱エネルギーが大きくなる。同様に、制御パターンX3での出力制御では、制御パターンX2での出力制御に比べ、出力される第2の電気エネルギーが大きくなり、発熱体36Aで発生する熱エネルギーが大きくなる。なお、例えば、第1の設定温度T1は180℃、第2の設定温度T2は200℃、第3の設定温度T3は220℃、第1の設定時間Δt1が2s、第2の設定時間Δt2が3s、第3の設定時間Δt3が4sである。
図11に示す別のある実施例では、機能要素36として超音波振動子36Bが設けられ、制御パターンX1が選択された場合、振動体40(エンドエフェクタ7)での振幅Uを第1の設定振幅U1で経時的に一定に保つ状態に第2の電気エネルギーが出力され、第3の出力フェーズが第1の設定時間Δt1継続する。すなわち、第1の設定時間Δt1の間、出力電流I´が電流値I´1で経時的に一定に保たれる定電流制御が行われる。また、制御パターンX2が選択された場合、振動体40での振幅を第1の設定振幅U1より大きい第2の設定振幅U2で経時的に一定に保つ状態に第2の電気エネルギーが出力され、第3の出力フェーズが第1の設定時間Δt1より長い第2の設定時間Δt2継続する。すなわち、第2の設定時間Δt2の間、出力電流I´が電流値I´1より大きい電流値I´2で経時的に一定に保たれる定電流制御が行われる。そして、制御パターンX3が選択された場合、振動体40での振幅を第2の設定振幅U2より大きい第3の設定振幅U3で経時的に一定に保つ状態に第2の電気エネルギーが出力され、第3の出力フェーズが第2の設定時間Δt2より長い第3の設定時間Δt3継続する。すなわち、第3の設定時間Δt3の間、出力電流I´が電流値I´2より大きい電流値I´3で経時的に一定に保たれる定電流制御が行われる。
出力電流I´を大きくすることによって第2の電気エネルギーの出力が大きくなると、超音波振動子36Bで発生する振動エネルギー(処置エネルギー)が大きくなり、振動体14での振幅Uが大きくなる。このため、制御パターンX2での出力制御では、制御パターンX1での出力制御に比べ、出力される第2の電気エネルギーが大きくなり、超音波振動子36Bで発生する振動エネルギーが大きくなる。同様に、制御パターンX3での出力制御では、制御パターンX2での出力制御に比べ、出力される第2の電気エネルギーが大きくなり、超音波振動子36Bで発生する振動エネルギーが大きくなる。なお、例えば、振幅Uを振動体40の先端での振幅とした場合、第1の設定振幅U1は40μm、第2の設定振幅U2は60μm、第3の設定振幅U3は180μmである。また、設定振幅U1,U2,U3の代わりに設定振動速度ν1,ν2,ν3(ν1<ν2<ν3)が設定される場合も、設定振幅U1,U2,U3が設定される場合と同様に説明可能である。
前述のようにして本実施形態では、単独出力フェーズにおけるインピーダンスZの経時的な変化に対応させて、同時出力フェーズ(第3の出力フェーズ)の継続時間Δtsetが調整される。そして、単独出力フェーズにおけるインピーダンスZの経時的な変化に対応させて、第2のエネルギー出力部26から出力される第2の電気エネルギーの大きさが調整され、機能要素36で発生する処置エネルギー(熱エネルギー又は振動エネルギー等)の大きさが調整される。
また、初期インピーダンスZ0に基づいて第3の出力フェーズでの制御パターンXが決定される実施例では、初期インピーダンスZ0が基準値(例えばZa;Zb;Zc)以下の場合は、初期インピーダンスZ0が基準値(例えばZa;Zb;Zc)より大きい場合に比べて、第3の出力フェーズの継続時間Δtsetが長くなる。そして、初期インピーダンスZ0が基準値(例えばZa;Zb;Zc)以下の場合は、初期インピーダンスZ0が基準値(例えばZa;Zb;Zc)より大きい場合に比べて、第3の出力フェーズにおいて出力される第2の電気エネルギーが大きくなり、同時出力フェーズにおいて機能要素36で発生する処置エネルギー(熱エネルギー又は振動エネルギー等)が大きくなる。
また、インピーダンスZの切替え値Zswへの到達時間Δtjudgeに基づいて第3の出力フェーズでの制御パターンXが決定される実施例では、到達時間Δtjudgeが基準時間(例えばΔta;Δtb;Δtc)以上の場合は、到達時間Δtjudgeが基準時間(例えばΔta;Δtb;Δtc)より短い場合に比べて、第3の出力フェーズの継続時間Δtsetが長くなる。そして、到達時間Δtjudgeが基準時間(例えばΔta;Δtb;Δtc)以上の場合は、到達時間Δtjudgeが基準時間(例えばΔta;Δtb;Δtc)より短い場合に比べて、第3の出力フェーズにおいて出力される第2の電気エネルギーが大きくなり、同時出力フェーズにおいて機能要素36で発生する処置エネルギー(熱エネルギー又は振動エネルギー等)が大きくなる。
図12は、第3の出力フェーズでの制御において制御部21によって行われる処理を示すフローチャートである。図12に示すように、第3の出力フェーズでの制御においては、制御部21は、単独出力フェーズ(第1の出力フェーズ及び第2の出力フェーズ)での処置対象のインピーダンスZの経時的な変化を取得する(ステップS131)。この際、初期インピーダンスZ0、及び、切替え値ZswまでのインピーダンスZの到達時間Δtjudge等が、取得される。そして、制御部21は、単独出力フェーズでのインピーダンスZの経時的な変化に関する情報に基づいて、処置対象の体積v等の処置対象の状態を判断し、第3の出力フェーズにおける第2の電気エネルギーの出力制御の制御パターンXを決定する(ステップS132)。この際、例えば、前述した実施例のいずれかと同様にして、制御パターンXが選択される。そして、制御部21は、決定した制御パターンXに対応させて、機能要素36で発生する処置エネルギーに関するパラメータ(温度T又は振幅U等)を設定し(ステップ133)、第3の出力フェーズの継続時間Δtsetを設定する(ステップS134)。この際、例えば、前述した実施例のいずれかと同様にして、処置エネルギーに関するパラメータ及び継続時間Δtsetが設定される。
そして、決定した制御パターンX、設定した処置エネルギーに関するパラメータ、及び、設定した継続時間Δtsetに基づいて、制御部21は、第1の電気エネルギー及び第2の電気エネルギーを同時出力させる(ステップS135)。これにより、高周波電流及び機能要素36で発生する処置エネルギーの両方に起因して、処置対象が変性される。この際、例えば、前述した実施例のいずれかと同様にして、第1の電気エネルギー及び第2の電気エネルギーの出力制御が行われる。そして、制御部21は、第3の出力フェーズでの制御開始から設定した継続時間Δtset経過したか否かを判断する(ステップS136)。継続時間Δtset経過していない場合は(ステップS136−No)、ステップS135に戻り、第1の電気エネルギー及び第2の電気エネルギーの同時出力を継続する。継続時間Δtset経過した場合は(ステップS136−Yes)、制御部21は、第1の電気エネルギー及び第2の電気エネルギーの出力を停止させ(ステップS137)、第3の出力フェーズでの制御を終了する。
前述のように制御部21による制御が行われることにより、本実施形態では、単独出力フェーズにおける処置対象のインピーダンスZの経時的な変化(例えば初期インピーダンスZ0及び到達時間Δtjudge等)に基づいて、同時出力フェーズでの処置エネルギーに関するパラメータ(温度T又は振幅U等)及び同時出力フェーズの継続時間Δtsetが設定される。そして、設定されたパラメータ及び継続時間Δtsetに基づいて、同時出力フェーズ(第3の出力フェーズ)における第2の電気エネルギーの出力が制御される。処置対象のインピーダンスZに基づいて処置エネルギーに関するパラメータ及び継続時間Δtsetが設定されるため、処置対象の体積v等の処置対象の状態に対応させて処置エネルギーに関するパラメータ及び継続時間Δtsetが設定される。また、処置対象の状態に対応させたパラメータ及び継続時間Δtsetに基づいて第2の電気エネルギーの出力が制御されるため、処置対象の体積v等の処置対象の状態に対応させて機能要素36で適切に処置エネルギー(熱又は超音波振動等)が発生する。これにより、同時出力フェーズにおいて、処置対象の状態に対応させて、機能要素36で発生する処置エネルギーが処置対象に適切に付与される。
また、本実施形態では、処置対象の状態に対応させて第3の出力フェーズの継続時間Δtsetが適切に設定される。このため、第3の出力フェーズでは、処置対象の体積v等の処置対象の状態に対応させて、高周波電流及び機能要素36で発生する処置エネルギーが適切な時間だけ処置対象に付与される。
前述のように処置対象の状態に対応させて高周波電流及び処置エネルギー(熱又は振動振動等)が適切に処置対象に付与されるため、本実施形態では、高周波電流及び処置エネルギーに起因して発生する熱が生体組織の処置対象以外の部位へ侵襲することが、有効に防止される。特に、エンドエフェクタ7の幅方向についての高周波電流及び処置エネルギーに起因する熱の処置対象から処置対象以外の部位への侵襲(サーマルサイドスプレッド)が、有効に防止される。処置対象の状態に対応させて高周波電流及び処置エネルギー(熱又は振動振動等)が処置対象に付与されるため、本実施形態では、第3の出力フェーズの終了後において、処置対象(血管)の封止部分のVBP(Vessel Burst Pressure)が高い値となる。したがって、第1の出力フェーズ乃至第3の出力フェーズを通して行われた処置によって、処置対象が確実に封止される。なお、VBTは、処置終了後(第3の出力フェーズ終了後)において処置対象の封止部分に水圧を印加した場合に、封止部分が剥離する圧力である。
(変形例)
なお、処置エネルギーに関するパラメータ及び第3の出力フェーズの継続時間Δtsetを設定する方法については、第1の実施形態で前述した方法(図11参照)に限るものではない。図13に示す第1の変形例では、第3の出力フェーズ(同時出力フェーズ)において、制御部21は、第2のエネルギー出力部26からの前記第2の電気エネルギーの出力を制御することにより、第3の出力フェーズにおいて機能要素36で発生する処置エネルギーを経時的に増加させている。これにより、機能要素36が発熱体36Aである実施例では、第3の出力フェーズにおいて発熱体36Aの温度Tが初期温度T0から経時的に(線形的に)増加する。また、機能要素36が超音波振動子36Bである実施例では、第3の出力フェーズにおいて振動体40の振幅Uが初期振幅U0から経時的に(線形的に)増加する。
本変形例では、単独出力フェーズのある時点におけるインピーダンスZ及び単独出力フェーズでの処置対象のインピーダンスZの経時的な変化の少なくとも一方に基づいて、同時出力フェーズの継続時間Δtsetの長さが調整される。例えば、制御パターンX1で第2の電気エネルギーの出力制御が行われる場合は、第3の出力フェーズが第1の設定時間Δt1継続し、制御パターンX3で出力制御が行われる場合は、第3の出力フェーズが第1の設定時間Δt1より長い第2の設定時間Δt2継続する。そして、制御パターンX3で出力制御が行われる場合は、第3の出力フェーズが第2の設定時間Δt2より長い第3の設定時間Δt3継続する。
前述のように第3の出力フェーズの継続時間Δtsetの長さが調整されることにより、本変形例では、第3の出力フェーズ(同時出力フェーズ)の終了時での処置エネルギーの大きさが調整される。これにより、機能要素36が発熱体36Aである実施例では、制御パターンX1で第2の電気エネルギーの出力制御が行われる場合は、第3の出力フェーズの終了時に第1の終了温度T1まで初期温度T0から発熱体36Aの温度Tが上昇する。そして、制御パターンX2で出力制御が行われる場合は、第3の出力フェーズの終了時に第1の終了温度T1より高い第2の終了温度T2まで発熱体36Aの温度Tが上昇し、制御パターンX3で出力制御が行われる場合は、第3の出力フェーズの終了時に第2の終了温度T2より高い第3の終了温度T3まで発熱体36Aの温度Tが上昇する。
なお、本変形例では、いずれの制御パターンXが選択された場合も、温度Tの経時的な増加率εは同一となる。機能要素36が超音波振動子36Bである実施例でも、初期温度T0及び終了温度T1,T2,T3の代わりに、初期振幅U0及び終了振幅U1,U2,U3(U0<U1<U2<U3)を用いる、又は、初期振動速度ν0及び終了振動速度ν1,ν2,ν3(ν0<ν1<ν2<ν3)を用いることにより、機能要素36が発熱体36Aである実施例と同様に説明可能である。図13では、第3の出力フェーズでの発熱体36Aの温度(振動体40の振幅U)の経時的な変化を、制御パターンX1で出力制御が行われる場合は実線で、制御パターンX2で出力制御が行われる場合を破線で、制御パターンX3で出力制御が行われる場合を一点鎖線で、それぞれ示している。
図13に示す第2の変形例でも、第3の出力フェーズ(同時出力フェーズ)において、制御部21は、第2のエネルギー出力部26からの前記第2の電気エネルギーの出力を制御することにより、第3の出力フェーズにおいて機能要素36で発生する処置エネルギーを経時的に増加させている。ただし、本変形例では、単独出力フェーズにおけるインピーダンスZの経時的な変化に対応させて、同時出力フェーズにおいて機能要素36で発生する処置エネルギーの経時的な増加率が調整される。例えば、制御パターンX1で出力制御が行われる場合に比べて、制御パターンX2で出力制御が行われる場合は、処置エネルギーの経時的な増加率が大きくなる。そして、制御パターンX2で出力制御が行われる場合に比べて、制御パターンX3で出力制御が行われる場合は、処置エネルギーの経時的な増加率が大きくなる。
ここで、初期インピーダンスZ0に基づいて第3の出力フェーズでの制御パターンXが決定される実施例では、初期インピーダンスZ0が基準値(例えばZa;Zb;Zc)以下の場合は、初期インピーダンスZ0が基準値(例えばZa;Zb;Zc)より大きい場合に比べて、第3の出力フェーズでの処置エネルギー(熱エネルギー又は振動エネルギー等)の経時的な増加率が大きくなる。また、インピーダンスZの切替え値Zswへの到達時間Δtjudgeに基づいて第3の出力フェーズでの制御パターンXが決定される実施例では、到達時間Δtjudgeが基準時間(例えばΔta;Δtb;Δtc)以上の場合は、到達時間Δtjudgeが基準時間(例えばΔta;Δtb;Δtc)より短い場合に比べて、第3の出力フェーズでの処置エネルギーの経時的な増加率が大きくなる。
前述のように第3の出力フェーズでの処置エネルギーの経時的な増加率が調整されることにより、本変形例では、第3の出力フェーズ(同時出力フェーズ)の終了時での処置エネルギーの大きさが調整される。例えば、機能要素36が発熱体36Aである実施例では、制御パターンX1で第2の電気エネルギーの出力制御が行われる場合は、第3の出力フェーズにおいて発熱体36Aの温度Tが初期温度T0から第1の設定増加率ε1で経時的に増加し、第3の出力フェーズの終了時に第1の終了温度T1まで発熱体36Aの温度が上昇する。そして、制御パターンX2で出力制御が行われる場合は、第3の出力フェーズにおいて発熱体36Aの温度Tが第1の設定増加率ε1より大きい第2の設定増加率ε2で経時的に増加し、第3の出力フェーズの終了時に第1の終了温度T1より高い第2の終了温度T2まで発熱体36Aの温度が上昇する。そして、制御パターンX3で出力制御が行われる場合は、第3の出力フェーズにおいて発熱体36Aの温度Tが第2の設定増加率ε2より大きい第3の設定増加率ε3で経時的に増加し、第3の出力フェーズの終了時に第2の終了温度T2より高い第3の終了温度T3まで発熱体36Aの温度が上昇する。
なお、本変形例では、いずれの制御パターンXが選択された場合も、第3の出力モードの継続時間Δtsetの長さ、及び、第3の出力フェーズでの制御開始時の処置エネルギーの大きさ(初期温度T0)は同一となる。機能要素36が超音波振動子36Bである実施例でも、初期温度T0及び終了温度T1,T2,T3の代わりに、初期振幅U0及び終了振幅U1,U2,U3(U0<U1<U2<U3)を用いる、又は、初期振動速度ν0及び終了振動速度ν1,ν2,ν3(ν0<ν1<ν2<ν3)を用いることにより、機能要素36が発熱体36Aである実施例と同様に説明可能である。図14では、第3の出力フェーズでの発熱体36Aの温度(振動体40の振幅U)の経時的な変化を、制御パターンX1で出力制御が行われる場合は実線で、制御パターンX2で出力制御が行われる場合を破線で、制御パターンX3で出力制御が行われる場合を一点鎖線で、それぞれ示している。
また、前述の実施形態等では、第3の出力フェーズにおいて、3つの制御パターンX1〜X3のいずれか1つに基づいて、第2の電気エネルギーの出力制御が行われるが、これに限るものではない。第3の出力フェーズでは、単独出力フェーズのある時点におけるインピーダンスZ及び単独出力フェーズでのインピーダンスZの経時的な変化の少なくとも一方に基づいて、複数の制御パターンXのいずれか1つに基づいて、第2の電気エネルギーの出力が制御されればよい。すなわち、第3の出力フェーズでの第2の電気エネルギーの出力制御の制御パターンXの数は、複数に分類されていれば、2つであっても、4つであってもよい。
また、前述の実施形態等では、第3の出力フェーズを設定された継続時間Δtsetだけ継続させた後において、制御部21は、第1の電気エネルギー及び第2の電気エネルギーの出力を停止させるが、これに限るものではない。例えば、第3の変形例として図15に示すように、第3の出力フェーズでの制御(ステップS104)が終了した後において、制御部21は、第4の出力フェーズでの制御を実行する(ステップS105)。本変形例では、第3の出力フェーズでの制御においてステップS137の処理が行われることなく、第3の出力フェーズから第4の出力フェーズへ移行する。
第4の出力フェーズでは、制御部21での出力制御によって、高周波電流及び処置エネルギー(熱又は超音波振動等)のそれぞれに起因して処置対象が変性されない状態に、第1の電気エネルギー及び第2の電気エネルギーの少なくとも一方が出力される。例えば、第4の出力フェーズでは、第1の電気エネルギーが出力されても、高周波電流に起因して処置対象が変性されない程度に第1の電気エネルギーが小さい、又は、高周波電流に起因して処置対象が変性されない程度の微小時間のみ第1の電気エネルギーが間欠出力される。同様に、第4の出力フェーズでは、第2の電気エネルギーが出力されても、処置エネルギーに起因して処置対象が変性されない程度に第2の電気エネルギーが小さい、又は、処置エネルギーに起因して処置対象が変性されない程度の微小時間のみ第2の電気エネルギーが間欠出力される。
制御部21は、操作ボタン18での操作入力がONの状態で維持されている限り(ステップS106−No)、第4の出力フェーズでの出力制御を継続する。そして、制御部21は、操作入力がOFFの状態に切替わったことに基づいて(ステップS106−Yes)、第1の電気エネルギー及び第2の電気エネルギーの出力を停止させる(ステップS107)。なお、ステップS106の処理の代わりに、制御部21は、第4の出力フェーズの開始(第3の出力フェーズの終了)から規定時間Δtstop経過したことに基づいて、第1の電気エネルギー及び第2の電気エネルギーの出力を停止させてもよい。
また、前述の実施形態等では、制御部21は、インピーダンスZの最小値Zminへの到達時以後に第2の電気エネルギーの出力が開始されるが、これに限るものではない。例えば、第4の変形例として図16乃至図19に示すように、インピーダンスZが最小値Zminへ到達する前に、第2の電気エネルギーの出力が開始されてもよい。本変形例では、図16に示すように、第2の出力フェーズでの制御(ステップS103)が終了した後において、制御部21は、中継出力フェーズでの制御を実行する(ステップS108)。そして、中継出力フェーズでの制御(ステップS108)が終了した後に、制御部21は、第3の出力フェーズでの制御を実行する(ステップS104)。また、本変形例では、第1の出力フェーズ及び第2の出力フェーズは、第1の電気エネルギーのみが出力され、第2のエネルギー出力部26から第2の電気エネルギーは出力されない単独出力フェーズとなる。そして、中継出力フェーズ及び第3の出力フェーズは、第1の電気エネルギー及び第2の電気エネルギーの両方が同時に出力される同時出力フェーズとなる。
本変形例では、第1の出力フェーズで検出した初期インピーダンスZ0に基づいて、制御部21は、第2の電気エネルギーの出力を開始するタイミング(すなわち、第2の出力フェーズから中継出力フェーズへ切替わるタイミング)を制御する。図17は、中継出力フェーズでの第2の電気エネルギーの出力電力P´の経時的な変化の一例を示す図である。図17では、横軸に第1の出力フェーズでの制御開始(第1の電気エネルギーの出力開始)を基準とする時間tを示し、縦軸に出力電力P´を示している。
図17に示すように、本変形例のある実施例では、初期インピーダンスZ0に基づいて、中継出力フェーズでの第2の電気エネルギーの出力制御についての制御パターンr(r1,r2,r3)が決定される。そして、中継出力フェーズでは、決定された制御パターンrに対応させて、第2の電気エネルギーの出力が制御される。例えば、制御パターンr1で第2の電気エネルギーの出力制御が行われる場合、第1の出力フェーズから第2の出力フェーズに切替わった後、時間ts1に到達したことに基づいて、第2の電気エネルギーの出力を開始する。すなわち、時間ts1に到達したことに基づいて、第1の電気エネルギーのみが出力される単独出力フェーズ(第2の出力フェーズ)から第1の電気エネルギー及び第2の電気エネルギーが同時に出力される同時出力フェーズ(中継出力フェーズ)に切替わる。制御パターンr1では、中継出力フェーズは、時間ts1から時間ts0まで継続し、中継出力フェーズの間に出力電力P´は、P´0からP´1まで経時的に増加する。
制御パターンr2で第2の電気エネルギーの出力制御が行われる場合、時間ts1より後の時間ts2に到達したことに基づいて、第2の電気エネルギーの出力が開始され、中継出力フェーズに切り替わる。そして、中継出力フェーズは、時間ts2から時間ts0まで継続し、中継出力フェーズの間に出力電力P´は、P´0からP´1より小さいP´2まで経時的に増加する。このため、制御パターンr2で第2の電気エネルギーの出力制御が行われる場合、制御パターンr1で第2の電気エネルギーの出力制御が行われる場合に比べて、第2の出力フェーズ(単独出力フェーズ)の時間が長くなり、中継出力フェーズの時間が短くなる。また、制御パターンr3で第2の電気エネルギーの出力制御が行われる場合、時間ts2より後の時間ts3に到達したことに基づいて、第2の電気エネルギーの出力が開始され、中継出力フェーズに切り替わる。そして、中継出力フェーズは、時間ts3から時間ts0まで継続し、中継出力フェーズの間に出力電力P´は、P´0からP´2より小さいP´3まで経時的に増加する。このため、制御パターンr3で第2の電気エネルギーの出力制御が行われる場合、制御パターンr2で第2の電気エネルギーの出力制御が行われる場合に比べて、第2の出力フェーズ(単独出力フェーズ)の時間が長くなり、中継出力フェーズの時間が短くなる。
なお、図17では、中継出力フェーズでの第2の電気エネルギーの出力電力P´の経時的な変化を、制御パターンr1で出力制御が行われる場合は一点鎖線で、制御パターンr2で出力制御が行われる場合を破線で、制御パターンr3で出力制御が行われる場合を実線で、それぞれ示している。また、時間ts1,ts2,ts3は、インピーダンスZが最小値Zminへ到達する前であり、時間ts0は、インピーダンスZの最小値Zminへの到達時以後である。
ここで、例えば処置対象が細い(体積vの小さい)血管である場合は、電流が流れる経路が太い血管に対して少なく、処置対象に含まれる水分の量が少なくなるため、処置対象に高周波電流が比較的流れ難くなる。このため、第1の出力フェーズにおいて検出される初期インピーダンスZ0は、太い血管の場合に比べて大きくなる。この場合、第2の電気エネルギーの出力を開始するタイミング(第2の出力フェーズから中継出力フェーズへ切替わるタイミング)が遅い制御パターンr(例えば制御パターンr3)で、第2の電気エネルギーの出力制御が行われる。一方、例えば処置対象が太い(体積vの大きい)血管である場合は、電流が流れる経路が細い血管に対して多く、処置対象に含まれる水分の量が多くなるため、処置対象に高周波電流が比較的流れ易くなる。このため、検出される初期インピーダンスZ0は、細い血管の場合に比べて小さくなる。この場合、第2の電気エネルギーの出力を開始するタイミングが早い制御パターンr(例えば制御パターンr1)で、第2の電気エネルギーの出力制御が行われる。
図18は、第2の出力フェーズでの制御において本変形例の制御部21によって行われる処理を示すフローチャートであり、図19は、中継出力フェーズでの制御において本変形例の制御部21によって行われる処理を示すフローチャートである。なお、ここでは、第2の出力フェーズの開始から中継出力フェーズの終了まで第1の電気エネルギーの出力電圧V(t)を経時的に線形的に増加させる出力制御が行われる実施例について説明する。図18に示すように、第2の出力フェーズでの制御においては、制御部21は、第1の出力フェーズで検出された初期インピーダンスZ0に基づいて、第2の出力フェーズ及び中継出力フェーズでの時間tのそれぞれにおける出力電圧V(t)を算出する(ステップS141)。この際、初期インピーダンスZ0に基づいて、第2の出力フェーズ及び中継出力フェーズにおける、第1の電気エネルギーの制御パターン(例えばY)及び出力電圧V(t)の経時的な増加率αを決定し、出力電圧V(t)を算出する。また、初期インピーダンスZ0に基づいて、制御部21は、第2の電気エネルギーの出力を開始する開始時間tstartを設定する(ステップS142)。なお、開始時間tstartは、例えば前述のts1,ts2又はts3等であり、インピーダンスZの最小値Zminへの到達時より前の時間に、設定される。そして、制御部21は、時間tに対応する出力電圧V(t)で、第1のエネルギー出力部25から第1の電気エネルギーを出力させる(ステップS143)。また、制御部21は、出力電流I及び出力電圧Vに基づいて処置対象のインピーダンスZを検出する(ステップS144)。
そして、制御部21は、時間tが設定された開始時間tstartに到達したか否かを判断する(ステップS145)。時間tが開始時間tstartに到達していない場合は(ステップS145−No)、ステップS143に戻り、出力電圧V(t)での第1の電気エネルギーの出力(ステップS143)及びインピーダンスZの検出(ステップS144)が、繰返し行われる。時間tが開始時間tstartに到達した場合は(ステップS145−Yes)、第2の出力フェーズ(単独出力フェーズ)での制御は終了し、中継出力フェーズ(同時出力フェーズ)へと移行する。
図19に示すように、中継出力フェーズでの制御においては、制御部21は、開始時間tstartに基づいて、中継出力フェーズでの第2の電気エネルギーの出力制御の制御パターンrを選択する(ステップS151)。そして、制御部21は、ステップS141において算出された時間tに対応する出力電圧V(t)で、第1のエネルギー出力部25から第1の電気エネルギーを出力させる(ステップS152)。また、制御部21は、ステップS151で選択された制御パターンrに対応させて、第2のエネルギー出力部26から第2の電気エネルギーを出力させる(ステップS153)。さらに、制御部21は、出力電流I及び出力電圧Vに基づいて処置対象のインピーダンスZを検出する(ステップS154)。
そして、制御部21は、処置対象のインピーダンスZが最小値Zminに到達したか否かを判断する(ステップS155)。そして、インピーダンスZが最小値Zminに到達した以後において(ステップS155−Yes)、制御部21は、インピーダンスZが切替え値Zswに到達したか否かを判断する(ステップS156)。インピーダンスZが最小値Zminに到達していない場合(ステップS155−No)、及び、インピーダンスZが切替え値Zswに到達していない場合は(ステップS156−No)、ステップS152に戻り、出力電圧V(t)での第1の電気エネルギーの出力(ステップS152)、制御パターンrに対応させた第2の電気エネルギーの出力(ステップS153)及びインピーダンスZの検出(ステップS154)が、繰返し行われる。インピーダンスZが切替え値Zswに到達した場合は(ステップS156−Yes)、中継出力フェーズでの制御は終了し、第3の出力フェーズへと移行する。
また、前述の実施形態等では、エンドエフェクタ7は一対の把持片15,16を備えるが、これに限るものではない。例えば、エンドエフェクタ(7)に設けられる電極と体外に配置される対極板との間で、処置対象を通して高周波電流を流す構成に、前述の制御が適用されてもよい。この場合、例えば、エンドエフェクタ(7)がフック状又はヘラ状等に形成され、機能要素(36)である超音波振動子(36B)で発生した超音波振動が、処置エネルギーとしてエンドエフェクタ(7)に伝達される。
前述の実施形態等では、制御部(21)は、第1の電気エネルギーのみが電極(31,32)に供給される単独出力フェーズを出力開始から継続することと、第1の電気エネルギー及び第2の電気エネルギーが同時に出力され、かつ、高周波電流及び機能要素(36)で発生する処置エネルギーの両方に起因して処置対象が変性される同時出力フェーズに、単独出力フェーズから移行することと、単独出力フェーズにおいて経時的に処置対象のインピーダンス(Z)を検出することと、を実行する。また、制御部(21)は、単独出力フェーズのある時点におけるインピーダンス(Z)及び単独出力フェーズにおけるインピーダンス(Z)の経時的な変化の少なくとも一方に基づいて、同時出力フェーズでの処置エネルギーに関するパラメータ(温度T又は振幅U等)及び同時出力フェーズの継続時間(Δtset)を設定し、設定されたパラメータ及び継続時間(Δtset)に基づいて、同時出力フェーズにおける第2の電気エネルギーの出力を制御する。
以上、本発明の実施形態等について説明したが、本発明は前述の実施形態等に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形ができることは勿論である。

Claims (14)

  1. 電極及び機能要素を備えるエネルギー処置具へのエネルギーの供給を制御するエネルギー制御装置であって、
    第1の電気エネルギーを出力し、出力された前記第1の電気エネルギーを前記電極に供給することにより、処置対象に高周波電流を流す第1のエネルギー出力部と、
    前記第1の電気エネルギーとは異なる第2の電気エネルギーを出力し、出力された前記第2の電気エネルギーを前記機能要素に供給することにより、前記機能要素において前記高周波電流とは異なる処置エネルギーを発生させる第2のエネルギー出力部と、
    前記第1のエネルギー出力部からの前記第1の電気エネルギーの出力及び前記第2のエネルギー出力部からの前記第2の電気エネルギーの出力を制御する制御部と、
    を具備し、
    前記制御部は、
    前記第1の電気エネルギーのみが出力される単独出力フェーズを出力開始から継続することと、
    前記第1の電気エネルギー及び前記第2の電気エネルギーが同時に出力され、かつ、前記高周波電流及び前記処置エネルギーの両方に起因して前記処置対象が変性される同時出力フェーズに、前記単独出力フェーズから移行することと、
    前記単独出力フェーズにおいて経時的に前記処置対象のインピーダンスを検出することと、
    前記単独出力フェーズのある時点における前記インピーダンス及び前記単独出力フェーズでの前記インピーダンスの経時的な変化の少なくとも一方に基づいて、前記同時出力フェーズでの前記処置エネルギーに関するパラメータ及び前記同時出力フェーズの継続時間を設定し、設定された前記パラメータ及び前記継続時間に基づいて、前記同時出力フェーズにおける前記第2の電気エネルギーの出力を制御することと、
    を実行する、エネルギー制御装置。
  2. 前記制御部は、前記単独出力フェーズの前記ある時点における前記インピーダンス及び前記単独出力フェーズにおける前記インピーダンスの経時的な前記変化の少なくとも一方に対応させて、前記同時出力フェーズの前記継続時間の長さを調整する、請求項1のエネルギー制御装置。
  3. 前記制御部は、前記同時出力フェーズにおいて前記第2のエネルギー出力部からの前記第2の電気エネルギーの出力を制御することにより、前記同時出力フェーズにおいて前記機能要素で発生する前記処置エネルギーを経時的に増加させ、
    前記制御部は、前記同時出力フェーズの前記継続時間の前記長さを調整することにより、前記同時出力フェーズの終了時での前記処置エネルギーの大きさを調整する、
    請求項2のエネルギー制御装置。
  4. 前記制御部は、前記単独出力フェーズの前記ある時点における前記インピーダンス及び前記単独出力フェーズにおける前記インピーダンスの経時的な前記変化の少なくとも一方に対応させて、前記同時出力フェーズにおいて前記機能要素で発生する前記処置エネルギーの大きさを調整する、請求項1のエネルギー制御装置。
  5. 前記制御部は、前記同時出力フェーズにおいて前記第2のエネルギー出力部からの前記第2の電気エネルギーの出力を制御することにより、前記同時出力フェーズにおいて前記機能要素で発生する前記処置エネルギーを経時的に増加させ、
    前記制御部は、前記単独出力フェーズの前記ある時点における前記インピーダンス及び前記単独出力フェーズにおける前記インピーダンスの経時的な前記変化の少なくとも一方に対応させて前記同時出力フェーズでの前記処置エネルギーの経時的な増加率を調整することにより、前記同時出力フェーズの終了時での前記処置エネルギーの前記大きさを調整する、
    請求項4のエネルギー制御装置。
  6. 前記制御部は、前記単独出力フェーズにおいて前記インピーダンスが最小値に到達した以後に、前記インピーダンスが切替え値に到達したことに基づいて、前記単独出力フェーズから前記同時出力フェーズに移行する、請求項1のエネルギー制御装置。
  7. 前記制御部は、前記単独出力フェーズにおいて、出力開始時又はその直後における前記インピーダンスである初期インピーダンスの検出、及び、前記インピーダンスが前記切替え値に到達するまでの到達時間の検出の少なくとも一方を実行し、
    前記制御部は、検出された前記初期インピーダンス及び前記到達時間の少なくとも一方に基づいて、前記同時出力フェーズでの前記処置エネルギーに関する前記パラメータ及び前記同時出力フェーズの前記継続時間を設定する、
    請求項6のエネルギー制御装置。
  8. 前記制御部は、
    前記初期インピーダンスが基準値以下の場合に、前記初期インピーダンスが前記基準値より大きい場合に比べて、前記同時出力フェーズの前記継続時間を長くするか、及び、
    前記切替え値への前記到達時間が基準時間以上の場合に、前記切替え値への前記到達時間が前記基準時間より短い場合に比べて、前記同時出力フェーズの前記継続時間を長くするか、
    の少なくとも一方を実行する、請求項7のエネルギー制御装置。
  9. 前記制御部は、
    前記初期インピーダンスが基準値以下の場合に、前記初期インピーダンスが前記基準値より大きい場合に比べて、前記同時出力フェーズにおいて前記機能要素で発生する前記処置エネルギーを大きくするか、及び、
    前記切替え値への前記到達時間が基準時間以上となる場合に、前記切替え値への前記到達時間が前記基準時間より短い場合に比べて、前記同時出力フェーズにおいて前記機能要素で発生する前記処置エネルギーを大きくするか、
    の少なくとも一方を実行する、請求項7のエネルギー制御装置。
  10. 前記制御部は、前記同時出力フェーズにおいて前記第2のエネルギー出力部からの前記第2の電気エネルギーの出力を制御することにより、前記同時出力フェーズにおいて前記機能要素で発生する前記処置エネルギーを経時的に増加させ、
    前記制御部は、
    前記初期インピーダンスが基準値以下の場合に、前記初期インピーダンスが前記基準値より大きい場合に比べて、前記同時出力フェーズでの前記処置エネルギーの経時的な増加率を大きくするか、及び、
    前記切替え値への前記到達時間が基準時間以上となる場合に、前記切替え値への前記到達時間が前記基準時間より短い場合に比べて、前記同時出力フェーズでの前記処置エネルギーの経時的な前記増加率を大きくするか、
    の少なくとも一方を実行する、請求項7のエネルギー制御装置。
  11. 前記制御部は、前記同時出力フェーズを設定された前記継続時間だけ継続させた後において、前記第1の電気エネルギー及び前記第2の電気エネルギーの出力を停止させる、又は、前記高周波電流及び前記処置エネルギーのそれぞれに起因して前記処置対象が変性されない状態に前記第1の電気エネルギー及び前記第2の電気エネルギーの少なくとも一方が出力されるフェーズに移行する、請求項1のエネルギー制御装置。
  12. 請求項1のエネルギー制御装置と、
    前記エネルギー制御装置から前記第1の電気エネルギー及び前記第2の電気エネルギーが供給される前記エネルギー処置具と、
    を具備し、
    前記エネルギー処置具は、
    前記処置対象に接触するエンドエフェクタと、
    前記エンドエフェクタに設けられ、前記第1の電気エネルギーが供給されることにより、前記処置対象に前記高周波電流を流す前記電極と、
    前記第2の電気エネルギーが供給されることにより、前記高周波電流とは異なる前記処置エネルギーを発生する前記機能要素と、
    を備える、処置システム。
  13. 前記機能要素は、前記第2の電気エネルギーが供給されることにより、前記処置エネルギーとして熱を発生し、発生した前記熱を前記エンドエフェクタに伝達する発熱体を備える、請求項12の処置システム。
  14. 前記機能要素は、前記第2の電気エネルギーが供給されることにより、前記処置エネルギーとして超音波振動を発生し、発生した前記超音波振動を前記エンドエフェクタに伝達することにより、前記エンドエフェクタを振動させる超音波振動子を備える、請求項12の処置システム。
JP2017544982A 2016-01-15 2016-01-15 エネルギー制御装置及び処置システム Active JP6234652B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051120 WO2017122345A1 (ja) 2016-01-15 2016-01-15 エネルギー制御装置及び処置システム

Publications (2)

Publication Number Publication Date
JP6234652B1 true JP6234652B1 (ja) 2017-11-22
JPWO2017122345A1 JPWO2017122345A1 (ja) 2018-01-18

Family

ID=59311038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017544982A Active JP6234652B1 (ja) 2016-01-15 2016-01-15 エネルギー制御装置及び処置システム

Country Status (5)

Country Link
US (1) US11129671B2 (ja)
EP (1) EP3403605A4 (ja)
JP (1) JP6234652B1 (ja)
CN (1) CN108463181B (ja)
WO (1) WO2017122345A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112912023A (zh) * 2018-11-07 2021-06-04 直观外科手术操作公司 Rf电外科组织密封系统和方法
CN114191041B (zh) * 2021-12-09 2024-04-02 上海益超医疗器械有限公司 向外科器械输出驱动信号的方法、设备、装置及电子设备
CN114831725B (zh) * 2022-05-05 2024-01-26 以诺康医疗科技(苏州)有限公司 一种电外科发生器、电外科系统及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037568A (ja) * 2005-07-29 2007-02-15 Olympus Medical Systems Corp 医療用処置具、医療用処置装置
JP2008036439A (ja) * 2006-08-08 2008-02-21 Covidien Ag 初期の組織インピーダンスを測定するためのシステムおよび方法
JP2008055151A (ja) * 2006-08-30 2008-03-13 Olympus Medical Systems Corp 手術用処置装置及び、手術用処置装置の駆動方法
JP2009247893A (ja) * 2008-04-01 2009-10-29 Olympus Medical Systems Corp 治療用処置システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306505A (ja) * 2001-04-13 2002-10-22 Olympus Optical Co Ltd 電気手術装置
ATE320767T1 (de) * 2001-09-28 2006-04-15 Rita Medical Systems Inc Impedanzgesteuerte vorrichtung zur ablation von gewebe
US20130096471A1 (en) * 2010-08-02 2013-04-18 Guided Therapy Systems, Llc Systems and methods for treating injuries to joints and connective tissue
CN200942123Y (zh) * 2006-03-30 2007-09-05 迈德医疗科技(上海)有限公司 用于射频消融治疗的射频产生及控制装置
US20090076506A1 (en) * 2007-09-18 2009-03-19 Surgrx, Inc. Electrosurgical instrument and method
US8500735B2 (en) 2008-04-01 2013-08-06 Olympus Medical Systems Corp. Treatment method for living tissue using energy
US8500736B2 (en) 2008-04-01 2013-08-06 Olympus Medical Systems Corp. Treatment method for living tissue using energy
CN103260539B (zh) * 2011-02-10 2016-02-17 奥林巴斯株式会社 高频手术装置以及手术装置
EP2540244B1 (de) * 2011-06-30 2017-08-16 Erbe Elektromedizin GmbH Vorrichtung zum optimierten Koagulieren von biologischem Gewebe
CN103717161B (zh) * 2011-12-12 2016-03-09 奥林巴斯株式会社 处置系统
WO2015016347A1 (ja) * 2013-08-02 2015-02-05 オリンパスメディカルシステムズ株式会社 処置システム、処置具制御装置、および処置システムの作動方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007037568A (ja) * 2005-07-29 2007-02-15 Olympus Medical Systems Corp 医療用処置具、医療用処置装置
JP2008036439A (ja) * 2006-08-08 2008-02-21 Covidien Ag 初期の組織インピーダンスを測定するためのシステムおよび方法
JP2008055151A (ja) * 2006-08-30 2008-03-13 Olympus Medical Systems Corp 手術用処置装置及び、手術用処置装置の駆動方法
JP2009247893A (ja) * 2008-04-01 2009-10-29 Olympus Medical Systems Corp 治療用処置システム

Also Published As

Publication number Publication date
EP3403605A1 (en) 2018-11-21
EP3403605A4 (en) 2019-10-02
WO2017122345A1 (ja) 2017-07-20
US20180318000A1 (en) 2018-11-08
US11129671B2 (en) 2021-09-28
JPWO2017122345A1 (ja) 2018-01-18
CN108463181B (zh) 2020-11-24
CN108463181A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
US20190046263A1 (en) Treatment system and control device
JP6234652B1 (ja) エネルギー制御装置及び処置システム
WO2017051563A1 (ja) 電源装置、電源装置を備える手術システム、及び電源装置の作動方法
US11172981B2 (en) Treatment system, control device and treatment method
US11141215B2 (en) Energy treatment instrument, treatment system, and controller
JP6246418B2 (ja) 電源装置の作動方法、電源装置、及び高周波処置システム
JP6129460B1 (ja) 電源装置の作動方法、電源装置、及び高周波処置システム
US11399859B2 (en) Energy control device and treatment system
JP2019209134A (ja) 超音波血管封止の方法及びシステム
US20180177544A1 (en) Energy treatment instrument, treatment system, and controller
JP6129459B1 (ja) 電源装置の作動方法、電源装置、及び高周波処置システム
US11712286B2 (en) Treatment system, control device and treatment method
WO2018229891A1 (ja) 制御装置
JP7009546B2 (ja) 処置システム
WO2018020637A1 (ja) 電源装置及び処置システム
JP6064103B1 (ja) 電源装置、電源装置を備える手術システム、及び電源装置の作動方法
WO2017094063A1 (ja) 手術システム、手術器具、手術器具の制御方法、及び手術器具の制御プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170824

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170824

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171024

R151 Written notification of patent or utility model registration

Ref document number: 6234652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250