JP2008112843A - 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池 - Google Patents

単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池 Download PDF

Info

Publication number
JP2008112843A
JP2008112843A JP2006294553A JP2006294553A JP2008112843A JP 2008112843 A JP2008112843 A JP 2008112843A JP 2006294553 A JP2006294553 A JP 2006294553A JP 2006294553 A JP2006294553 A JP 2006294553A JP 2008112843 A JP2008112843 A JP 2008112843A
Authority
JP
Japan
Prior art keywords
single crystal
crystal silicon
solar cell
silicon solar
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006294553A
Other languages
English (en)
Inventor
Atsuo Ito
厚雄 伊藤
Shoji Akiyama
昌次 秋山
Makoto Kawai
信 川合
Koichi Tanaka
好一 田中
Yuuji Tobisaka
優二 飛坂
Yoshihiro Kubota
芳宏 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006294553A priority Critical patent/JP2008112843A/ja
Priority to KR1020070103828A priority patent/KR101341199B1/ko
Priority to US11/976,021 priority patent/US8030118B2/en
Priority to EP07020918A priority patent/EP1921683A3/en
Priority to TW096140587A priority patent/TW200836355A/zh
Priority to CN2007101851237A priority patent/CN101174658B/zh
Publication of JP2008112843A publication Critical patent/JP2008112843A/ja
Priority to US13/137,281 priority patent/US20110290321A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

【課題】 シリコン太陽電池において、その原料となる珪素の有効活用を図るために光変換層を薄膜とするとともに、変換特性に優れ、更に光照射による劣化の少ない単結晶シリコン太陽電池を、家屋等の採光用窓材料としても使用可能な、シースルー型太陽電池として提供する。
【解決手段】 単結晶シリコン基板に水素イオンまたは希ガスイオンの少なくとも一方を注入する工程と、前記イオン注入面を貼り合わせ面として、前記単結晶シリコン基板を、透明導電性接着剤を介して透明絶縁性基板と密着させる工程と、前記透明導電性接着剤を硬化させて透明導電性膜とすると共に、前記単結晶シリコン基板と前記透明絶縁性基板とを貼り合わせる工程と、前記イオン注入層に衝撃を与えて前記単結晶シリコン基板を機械的に剥離して、単結晶シリコン層とする工程と、前記単結晶シリコン層にpn接合を形成する工程とを含む単結晶シリコン太陽電池の製造方法。
【選択図】 図1

Description

本発明は、単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池に関するものであり、特に透明絶縁性基板上に単結晶シリコン層を形成する単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池に関するものである。
珪素を主原料とする太陽電池は、その結晶性により単結晶シリコン太陽電池、多結晶シリコン太陽電池、非晶質シリコン太陽電池に分類される。このうち、単結晶シリコン太陽電池は、結晶引上げによる単結晶インゴットをワイヤーソーによりウエーハ状に切り出し、100〜200μm厚のウエーハに加工し、これにpn接合、電極、保護膜等を形成して太陽電池セルとしている。
多結晶シリコンでは、結晶引き上げによらず、鋳型にて溶融金属珪素を結晶化させることで多結晶のインゴットを製造し、これを単結晶シリコン太陽電池と同様にワイヤーソーによりウエーハ状に切り出し、同様に100〜200μm厚のウエーハとし、単結晶シリコン基板と同様にpn接合、電極、保護膜を形成して太陽電池セルとしている。
非晶質シリコン太陽電池では、例えば、プラズマCVD法により、シランガスを気相中で放電により分解することで、基板上に非晶質の水素化珪素膜を形成し、これにドーピングガスとしてジボラン、ホスフィン等を添加し、同時に堆積させることで、pn接合と成膜工程を同時に行い、電極、保護膜を形成して太陽電池セルとしている。非晶質シリコン太陽電池では、非晶質シリコンが直接遷移型として入射光を吸収するため、その光吸収係数は単結晶及び多結晶シリコンのそれと比べおよそ一桁高い(非特許文献1)ことで、非晶質シリコン層の厚さは結晶系の太陽電池に比べておよそ100分の1の膜厚の1μm前後で十分であるという利点がある。近年、太陽電池の生産量が世界で年間1ギガワットを越し、今後更に生産量が伸びることを考えると、資源を有効に活用できる薄膜の非晶質シリコン太陽電池に対する期待は大きい。
しかし、非晶質シリコン太陽電池の製造には、原料にシランやジシラン等の高純度のガス原料を用いることや、そのガス原料の有効利用率はプラズマCVD装置内で基板以外に堆積するものもあることなどの事情から、結晶系太陽電池に必要な膜厚との単純な比較で資源の有効利用率を決定することはできない。また、結晶系太陽電池が変換効率において15%前後であるのに対して、非晶質シリコン太陽電池は10%前後であり、更に、光照射下における出力特性劣化の問題が依然残されている。
そこで、結晶系シリコン材料を用いて薄膜太陽電池を開発する試みが種々なされている(非特許文献2)。例えば、アルミナ基板やグラファイト基板等にトリクロロシランガスやテトラクロロシランガス等を用いて多結晶の薄膜を堆積させるものである。この堆積膜には結晶欠陥が多く、そのままでは変換効率が低いので、変換効率を向上させるために、帯域溶融を行い、結晶性を改善する必要がある(例えば特許文献1参照)。しかし、このような帯域溶融による方法をとっても、結晶粒界でのリーク電流及びライフタイムの低下により長波長域での光電流応答特性が低下する等の問題があった。
特開2004−342909号公報 高橋清、浜川圭弘、後川昭雄編著、「太陽光発電」、丸善、1980年、233頁 高橋清、浜川圭弘、後川昭雄編著、「太陽光発電」、丸善、1980年、217頁
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、シリコン太陽電池において、その原料となる珪素の有効活用を図るために光変換層を薄膜とするとともに、変換特性に優れ、更に光照射による劣化の少ない単結晶シリコン太陽電池を、家屋等の採光用窓材料としても使用可能な、受光した可視光のうち一部を透過するシースルー型太陽電池として提供すること、及びその製造方法を提供することにある。
上記目的達成のため、本発明は、透明絶縁性基板上に、光変換層として単結晶シリコン層が配置されている単結晶シリコン太陽電池を製造する方法であって、少なくとも、透明絶縁性基板と第一導電型の単結晶シリコン基板とを用意する工程と、前記単結晶シリコン基板に水素イオンまたは希ガスイオンの少なくとも一方を注入して、イオン注入層を形成する工程と、前記イオン注入面を貼り合わせ面として、前記単結晶シリコン基板を、透明導電性接着剤を介して前記透明絶縁性基板と密着させる工程と、前記透明導電性接着剤を硬化させて透明導電性膜とすると共に、前記単結晶シリコン基板と前記透明絶縁性基板とを貼り合わせる工程と、前記イオン注入層に衝撃を与えて前記単結晶シリコン基板を機械的に剥離して、単結晶シリコン層とする工程と、前記単結晶シリコン層に前記第一導電型とは異なる導電型である第二導電型の拡散層を形成してpn接合を形成する工程と、前記単結晶シリコン層上に電極を形成する工程とを含むことを特徴とする単結晶シリコン太陽電池の製造方法を提供する(請求項1)。
このような工程を含む単結晶シリコン太陽電池の製造方法によって、透明絶縁性基板上に光変換層として単結晶シリコン層が配置されている単結晶シリコン太陽電池を製造することができる。
また、単結晶シリコン基板と透明絶縁性基板を、透明導電性接着剤を用いて貼り合わせるため、両者を強固に貼り合わせることができる。従って、結合力を高める高温熱処理を施さなくても十分に強固な接合となる。また、このように接合面が強固に接合しているので、その後イオン注入層に衝撃を与えて単結晶シリコン基板を機械的に剥離し、透明絶縁性基板上に薄い単結晶シリコン層を形成することができる。従って、剥離のための熱処理を行なわなくても単結晶シリコン層の薄膜化ができる。
そして、このような工程を含む単結晶シリコン太陽電池の製造方法によれば、光変換層としての単結晶シリコン層の形成を、単結晶シリコン基板から剥離することによって行うので、該単結晶シリコン層の結晶性を高くすることができる。その結果、太陽電池としての変換効率を高くすることができる。
また、単結晶シリコン層の形成のための単結晶シリコン基板の剥離を、加熱によらず機械剥離によって行うので、光変換層に熱膨張率の相違に基づく亀裂や欠陥が導入されることを抑制することができる。
また、シリコン層の薄い薄膜太陽電池とするので、珪素原料を節約し、有効に利用することができる。
この場合、前記透明絶縁性基板を、石英ガラス、結晶化ガラス、硼珪酸ガラス、ソーダライムガラスのいずれかとすることができる(請求項2)。
このように、透明絶縁性基板を、石英ガラス、結晶化ガラス、硼珪酸ガラス、ソーダライムガラスのいずれかとすれば、これらは光学的特性が良好な透明絶縁性基板であり、シースルー型単結晶シリコン太陽電池を容易に製造できる。また、製造した単結晶シリコン太陽電池を既存の窓ガラス等と置換することも容易になる。
また、前記透明導電性接着剤を、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウムのうち少なくとも一種を含有し、ドナー形成用添加材料を含有するものとすることが好ましい(請求項3)。
このように、透明導電性接着剤を、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウムのうち少なくとも一種を含有し、ドナー形成用添加材料を含有するものとすれば、面抵抗が低く、単結晶シリコン太陽電池の変換光である可視光付近の透過率が高い透明導電性膜とすることができる。
また、前記透明導電性接着剤を、シリコーン樹脂、アクリル樹脂、脂環式アクリル樹脂、液晶ポリマー、ポリカーボネート、ポリエチレンテレフタレートのうち少なくとも一種を含有するものとすることが好ましい(請求項4)。
このように、透明導電性接着剤を、シリコーン樹脂、アクリル樹脂、脂環式アクリル樹脂、液晶ポリマー、ポリカーボネート、ポリエチレンテレフタレートのうち少なくとも一種を含有するものとすれば、これらは接着剤としての機能を有し、可視光透過性に優れるため、良好な透明導電性膜を形成することができる。
さらに、前記イオン注入の深さを、イオン注入面から0.1μm以上5μm以下とすることが好ましい(請求項5)。
このように、イオン注入の深さを、イオン注入面から0.1μm以上5μm以下とすることにより、製造される単結晶シリコン太陽電池の光変換層としての単結晶シリコン層の厚さをおよそ0.1μm以上5μm以下とすることができる。そして、このような厚さの単結晶シリコン層を有する単結晶シリコン太陽電池であれば、薄膜単結晶シリコン太陽電池として実用的な効率が得られるとともに、使用する珪素原料の量を節約できる。また、このような厚さの単結晶シリコン層を有する単結晶シリコン太陽電池であれば、確実に一部可視光を透過することができる。
また、本発明は、上記のいずれかの単結晶シリコン太陽電池の製造方法によって製造された単結晶シリコン太陽電池を提供する(請求項6)。
このように、上記のいずれかの単結晶シリコン太陽電池の製造方法によって製造された単結晶シリコン太陽電池であれば、光変換層としての単結晶シリコン層の形成を、単結晶シリコン基板から剥離することによって行い、単結晶シリコン層の剥離を、加熱によらず機械剥離によって行ったものであるので、結晶性の高い単結晶シリコン層とすることができる。そのため、膜厚に比して変換効率が高い薄膜太陽電池とすることができる。また、単結晶シリコン層の厚さが薄い薄膜太陽電池であるので、珪素原料を有効に利用することができる。
また、本発明は、少なくとも、透明絶縁性基板と、透明導電性膜と、pn接合が形成された単結晶シリコン層と、電極とが順次積層されたものであることを特徴とする単結晶シリコン太陽電池を提供する(請求項7)。
このように、少なくとも、透明絶縁性基板と、透明導電性膜と、pn接合が形成された単結晶シリコン層と、電極とが順次積層されたものであることを特徴とする単結晶シリコン太陽電池であれば、透明絶縁性基板上に光変換層が配置されているシリコン太陽電池として、光変換層を単結晶シリコン層とした太陽電池であるので、膜厚に比して変換効率が高い太陽電池とすることができる。
この場合、前記透明絶縁性基板は、石英ガラス、結晶化ガラス、硼珪酸ガラス、ソーダライムガラスのいずれかであることが好ましい(請求項8)。
このように、透明絶縁性基板が、石英ガラス、結晶化ガラス、硼珪酸ガラス、ソーダライムガラスのいずれかであれば、これらは光学的特性が良好な透明絶縁性基板であるので、透明度の高いシースルー型単結晶シリコン太陽電池とすることができる。また、製造した単結晶シリコン太陽電池を既存の窓ガラス等と置換することも容易である。
また、前記透明導電性膜は、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウムのうち少なくとも一種を含有し、ドナー形成用添加材料を含有するものであることが好ましい(請求項9)。
このように、透明導電性膜が、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウムのうち少なくとも一種を含有し、ドナー形成用添加材料を含有するものであれば、面抵抗が低く、単結晶シリコン太陽電池の変換光である可視光付近の透過率が高い透明導電性膜とすることができる。
また、前記透明導電性膜は、シリコーン樹脂、アクリル樹脂、脂環式アクリル樹脂、液晶ポリマー、ポリカーボネート、ポリエチレンテレフタレートのうち少なくとも一種を含有するものであることが好ましい(請求項10)。
このように、前記透明導電性膜は、シリコーン樹脂、アクリル樹脂、脂環式アクリル樹脂、液晶ポリマー、ポリカーボネート、ポリエチレンテレフタレートのうち少なくとも一種を含有するものであれば、これらは可視光透過性に優れるため、良好な透明導電性膜とすることができる。
また、前記単結晶シリコン層の膜厚は、0.1μm以上5μm以下であることが好ましい(請求項11)。
このように、単結晶シリコン層の膜厚が、0.1μm以上5μm以下であれば、薄膜単結晶シリコン太陽電池として実用的な効率が得られるとともに、使用する珪素原料の量を節約できる。また、このような厚さの単結晶シリコン層を有する単結晶シリコン太陽電池であれば、確実に一部可視光を透過することができる。
さらに、上記のいずれかの単結晶シリコン太陽電池は、一方の面側から見たときに、他方の面側が透けて見えるものであることが好ましい(請求項12)。
このように、一方の面側から見たときに、他方の面側が透けて見える、透明な太陽電池であれば、既存の窓ガラス等と置換できるなど、様々な場面に応用することができる。
本発明に従う単結晶シリコン太陽電池の製造方法であれば、結晶性が良好であり、変換効率の高い単結晶シリコン層を光変換層としたシースルー型薄膜太陽電池を製造することができる。
また、本発明に従う単結晶シリコン太陽電池であれば、透明絶縁性基板上に光変換層が配置されているシリコン太陽電池において、光変換層を単結晶シリコン層とした太陽電池であるので、膜厚に比して変換効率が高い太陽電池とすることができる。
前述したように、珪素原料を節約できる薄膜太陽電池においても、より一層の高変換効率が求められており、そのために結晶系太陽電池とすることを採用した上で、さらに結晶性を改善することが求められていた。
そこで本発明者らは、単結晶シリコン基板を透明絶縁性基板に貼り合わせた後に該単結晶シリコン基板を薄膜化することによって、光変換層としてのシリコン層の結晶性を高くすることを見出した。さらに、単結晶シリコン基板と透明絶縁性基板を貼り合わせる際に、透明導電性接着剤を用い、これを硬化させることによって熱処理をしなくても接合強度を高くし、また剥離の際にも機械的剥離を行なうことで高温の熱処理をせずに剥離することによって単結晶シリコン層の結晶性を良好に保つことができることに想到した。また、このような薄膜太陽電池であれば、家屋の窓材料としても使用可能な、一方の表面側から見て他方の表面側が透けて見える、いわゆるシースルー型太陽電池とすることできることに想到し、本発明を完成させた。
以下、本発明の実施の形態について具体的に説明するが、本発明はこれらに限定されるものではない。
図1は、本発明に係る単結晶シリコン太陽電池の製造方法の一例を示す工程図である。
まず、単結晶シリコン基板11及び透明絶縁性基板12を用意する(工程a)。
単結晶シリコン基板としては特に限定されず、例えばチョクラルスキー法により育成された単結晶をスライスして得られたもので、例えば直径が100〜300mm、導電型がp型またはn型、抵抗率が0.1〜20Ω・cm程度のものを用いることができる。
また、透明絶縁性基板には石英ガラス、結晶化ガラス、硼珪酸ガラス、ソーダライムガラス等が選択される。これらに限定するものではないが、透明であり、窓ガラス材料に代替しうることを鑑みると上記のようなガラス材料が望ましい。また、透明絶縁性基板を、ガラス材料として汎用なソーダライムガラスとする場合には、その表面にディップコート法により酸化ケイ素皮膜或いは酸化スズ皮膜(ネサ膜)等を形成したものとしてもよい。これらの皮膜はソーダライムガラス中のアルカリ金属成分の表面への溶出及び拡散を防ぐバッファ膜として機能するため好ましい。
次に、単結晶シリコン基板11に水素イオンまたは希ガスイオンの少なくとも一方を注入して、イオン注入層14を形成する(工程b)。
例えば、単結晶シリコン基板の温度を200〜450℃とし、その表面13から所望の単結晶シリコン層の厚さに対応する深さ、例えば0.1〜5μm以下の深さにイオン注入層14を形成できるような注入エネルギーで、所定の線量の水素イオンまたは希ガスイオンの少なくとも一方を注入する。この場合、水素イオンは軽いために、同じ加速エネルギーにおいて、よりイオン注入面13からより深く注入されるために特に好ましい。水素イオンの電荷は正負のいずれでもよく、原子イオンの他、水素ガスイオンであってもよい。希ガスイオンの場合も電荷の正負はいずれでもよい。
また、単結晶シリコン基板の表面にあらかじめ薄いシリコン酸化膜などの絶縁膜を形成しておき、それを通してイオン注入を行なえば、注入イオンのチャネリングを抑制する効果が得られる。
次に、イオン注入面13を貼り合わせ面として、単結晶シリコン基板11を、導電性接着剤15を介して透明絶縁性基板12と密着させる(工程c)。
透明導電性接着剤としては、例えば、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウム等を含有し、これらの材料の導電性を高めるドナー形成用添加材料を含有する透明導電性材料が挙げられる。ドナー形成用添加材料としては、酸化インジウムにはスズを添加していわゆる酸化インジウムスズ(スズ添加酸化インジウム、ITO)とすることの他、酸化スズにはフッ素やアンチモン、酸化亜鉛にはガリウムやアルミニウムを添加することが一般的であるが、これらに限定されるものではなく、適宜設計される。そして、この透明導電性接着剤には、アクリル樹脂、脂環式アクリル樹脂、シリコーン樹脂、液晶ポリマー、ポリカーボネート、ポリエチレンテレフタレート等の可視光透過性に優れる樹脂に上記の透明導電性材料の粒子をフィラーとして含有するものとすることが好ましい。その他、ポリエチレンジオキシチオフェン−ポリスチレンスルホン酸(PEDOT/PSS)等の有機導電性ポリマーを用いることを選択することもできる。なお、透明導電性材料のフィラーとしては、上記の透明導電性材料粒子の他にもカーボン或いは銀のナノ粒子を選択することもできるが、この場合、透明度が比較的低いものとなる。使用される透明導電性接着剤は、これらに限定されるものではないが、面抵抗が100Ω/□以下であり、可視光の透過率が80%以上であることが好ましい。
そして、このような透明導電性接着剤を介して単結晶シリコン基板と透明絶縁性基板を密着させる。このとき、単結晶シリコン基板は、イオン注入面13を貼り合わせ面とする。
具体的には、例えば、まず、単結晶シリコン基板と透明絶縁性基板の少なくとも一方の貼り合わせ面に、透明導電性接着剤層を形成する。この透明導電性接着剤層の形成には、スリットダイコート、ディップコート法等の塗布法などを選択することができる。次に、単結晶シリコン基板と透明絶縁性基板をこの透明導電性接着剤層を介して密着させる。
次に、透明導電性接着剤15を硬化させて透明導電性膜16とすると共に、単結晶シリコン基板11と透明絶縁性基板12とを貼り合わせる(工程d)。
この透明導電性接着剤の硬化方法は特に限定されず、材料に合わせて適宜選択される。例えば、一旦250℃程度まで加熱して透明導電性接着剤を軟化させ、再び冷却する方法、溶剤を揮発させる方法等で透明導電性接着剤を硬化させて単結晶シリコン基板と透明絶縁性基板を強固に貼り合わせる。但し、この硬化処理は室温から250℃前後までの温度条件で行うものとし、300℃以上の熱処理は行わない。単結晶シリコン基板11と、透明絶縁性基板12を貼り合わせた状態で300℃以上の高温熱処理を行うと、両者の熱膨張係数の違いから、熱歪、ひび割れ、剥離等が発生するおそれがあるためである。このように、300℃以上の高温熱処理を行わないようにすることは、後述する工程eの単結晶シリコン基板11の剥離転写が終了するまでは同様である。
次に、イオン注入層14に衝撃を与えて前記単結晶シリコン基板11を機械的に剥離して、単結晶シリコン層17とする(工程e)。
本発明においてはイオン注入層に衝撃を与えて機械的剥離を行なうので、加熱に伴う熱歪、ひび割れ、剥離等が発生するおそれがない。イオン注入層に衝撃を与えるためには、例えばガスや液体等の流体のジェットを接合したウエーハの側面から連続的または断続的に吹き付ければよいが、衝撃により機械的剥離が生じる方法であれば特に限定はされない。
なお、単結晶シリコン基板の機械剥離の際に、透明絶縁性基板の背面に第一の補助基板を密着させるとともに前記単結晶シリコン基板の背面に第二の補助基板を密着させて単結晶シリコン基板の剥離を行うことが望ましい。このように補助基板を用いて機械剥離を行えば、剥離転写されたシリコン単結晶層17に、反りによる微小な亀裂及びこれによる結晶欠陥の発生を防止し、太陽電池の変換効率の低下を防止することができる。両者の基板が1mm程度以下の厚さのように薄い場合にはこの方法による効果が顕著である。例えば、透明絶縁性基板がソーダライムガラスであって、その厚さが0.7mmの場合には、補助基板を同じソーダライムガラスとし、その総計の厚さを1mm以上として剥離を行う。
また、単結晶シリコン基板の剥離転写を行った後、単結晶シリコン層17の表面付近におけるイオン注入ダメージを回復するための熱処理を行ってもよい。この時点では既に単結晶シリコン基板11は剥離転写され、薄膜の単結晶シリコン層17となっているため、表面付近の局所的な熱処理を300℃以上で行っても亀裂やそれに伴う欠陥は新たにほとんど導入されない。また、このことは以降の工程でも同様である。
次に、単結晶シリコン層17に工程aで用意した単結晶シリコン基板の導電型である第一導電型とは異なる導電型である第二導電型の拡散層を形成して第一導電型シリコン層21、第二導電型シリコン層22から成り、pn接合が形成された単結晶シリコン層とする(工程f)。
工程aで用意した単結晶シリコン基板11がp型単結晶シリコンであった場合には、n型の拡散層を、n型の単結晶シリコンであった場合には、p型の拡散層を形成する。第二導電型の拡散層の形成方法は例えば以下のようにすることができる。工程aで用意した単結晶シリコン基板11がp型であった場合には、単結晶シリコン層17の表面にリンの元素イオンをイオン注入法で注入し、これに、フラッシュランプアニールまたは単結晶シリコン層表面での吸収係数の高い紫外線、深紫外線のレーザー照射等を行い、ドナーの活性化処理を行うことでpn接合を形成することができる。このようなpn接合は、ドナーを形成するリンを含むペースト状の組成物を作成し、これを単結晶シリコン層17表面に塗布し、これをフラッシュランプアニールまたは単結晶シリコン層表面での吸収係数の高い紫外線、深紫外線のレーザー照射、赤外線加熱炉等で拡散処理を行うことであってもよい。
なお、このようにしてpn接合を形成した後、例えばタッチポリッシュと呼ばれる研磨代が5〜400nmと極めて少ない研磨を行ってもよい。
次に、単結晶シリコン層17の、第二導電型シリコン層22側の表面に電極23を形成する(工程g)。
拡散処理をした表面に、金属または透明導電性材料を用いて、真空蒸着法または化成スパッタ法等により線状等の電極を形成することで、電極である透明導電性膜16の対極となる電極23を形成する。さらに、金属を含んだ導電性ペーストを用いて印刷法により集電電極を形成することもできる。この集電電極形成用組成物の硬化は前記のフラッシュランプアニールや赤外線加熱法等によって行われる。本発明に係る単結晶シリコン太陽電池を確実に一方の面側から見たときに他方の面側が透けて見えるものである構造とするために、金属の電極を形成する場合は、電極面積を光受光面全体の80%以下、より好ましくは50%以下にするのが良い。透明導電性膜を形成する場合は全面に形成してもよい。また、集電電極は透明絶縁基板の端部に形成するものであってもよい。
また、電極23形成後、窒化珪素等の保護膜等をさらに形成してもよい。
そして、工程a〜gにより製造された単結晶シリコン太陽電池は、製造の際に熱歪、剥離、ひび割れ等が発生しておらず、薄くて良好な膜厚均一性を有し、結晶性に優れ、透明絶縁性基板上に単結晶シリコン層を有する単結晶シリコン太陽電池31である。
なお、工程eで単結晶シリコン層17を剥離転写した後の残りの単結晶シリコン基板は、剥離後の粗面およびイオン注入層を研磨により平滑化および除去処理を行い、繰り返しイオン注入処理を行うことで、再び、単結晶シリコン基板11として利用することができる。本発明の単結晶シリコン太陽電池の製造方法では、イオン注入工程から剥離工程において、単結晶シリコン基板を300℃以上に加熱する必要がないため、酸素誘起欠陥が単結晶シリコン基板に導入されるおそれがない。そのため、最初に1mm弱の単結晶シリコン基板を用いた場合には、単結晶シリコン層17の膜厚を5μmとする場合には、100回以上剥離転写することも可能となる。
このような製造方法によって製造された単結晶シリコン太陽電池31は、図1(g)に示すように、透明絶縁性基板12と、透明導電性膜16と、pn接合が形成された単結晶シリコン層17と、電極23とが順次積層されたものである。
単結晶シリコン層17が0.1μm以上5μmであれば、薄膜単結晶シリコン太陽電池として実用的な効率が得られるとともに、使用する珪素原料の量を節約できる。また、このような厚さの単結晶シリコン層を有する単結晶シリコン太陽電池であれば、確実に一部可視光を透過して透明とすることができる。
また、本発明に係る単結晶シリコン太陽電池31は、一方の面側から見たときに他方の面側が透けて見えるものとすることができ、この場合、受光面は透明絶縁性基板12側と電極23側のいずれとすることもできる。
(実施例)
単結晶シリコン基板11として、一方の面が鏡面研磨された直径200mm(8インチ)、結晶面(100)、p型、面抵抗15Ωcmの単結晶シリコン基板を用意した。また、透明絶縁性基板12として、直径200mm(8インチ)、厚さ2.5mmの石英ガラス基板を用意した(工程a)。
次に、単結晶シリコン基板11に、加速電圧350keVで水素プラスイオンをドーズ量1.0×1017/cmの条件で注入した(工程b)。イオン注入層14の深さはイオン注入面13からおよそ3μmとなった。
次に、石英ガラス基板12にアンチモンをドープした酸化スズの皮膜をスプレー法により形成し、これに酸化インジウムスズからなる平均粒径1.0μmの導電性粒子をフィラーとして、アルコキシシランとテトラアルコキシシランの加水分解重縮合物に上記導電性粒子を80wt%含む導電性材料とし、これをイソプロピルアルコールの溶媒に溶かし、透明導電性接着剤とした。この透明導電性接着剤15を介し、単結晶シリコン11と石英ガラス基板12を密着させた(工程c)。
この貼り合せ基板を250℃で2時間加熱処理後、室温に戻すことによって透明導電性接着剤15を硬化させて透明導電性膜16とすると共に、単結晶シリコン11と石英ガラス基板12を強固に貼り合わせた(工程d)。
次に、接合界面近傍に高圧窒素ガスを吹き付けた後、該吹き付け面から剥離が開始するように、単結晶シリコン基板を引き剥がすように機械的に剥離を行った(工程e)。このとき、単結晶シリコン基板および石英ガラス基板に背面から補助基板を吸着させた後剥離するようにした。また、剥離転写された単結晶シリコンにフラッシュランプアニール法により表面が瞬間的に700℃以上となる条件で照射し、水素注入ダメージを回復した。
単結晶シリコン層17の表面に、リンガラスを含むエチルセロソルブを増粘剤とする拡散用ペーストをスクリーン印刷法により全面に塗布した。これにフラッシュランプにより瞬間的に表面が600℃以上となるように照射を行い、およそ1μmの接合深さのpn接合界面を形成した(工程f)。
この拡散ペーストを弗酸及びアセトン、イソプロピルアルコールで除去洗浄後、真空蒸着法及びパターニング法により銀電極23を形成した(工程g)。その後、さらに銀の集電電極パターンを金属マスクを用いて真空蒸着法により形成した。その後、取り出し電極部分を除いた表面を反応性スパッタ法により窒化珪素の保護皮膜を形成した。
このようにして、透明絶縁性基板、透明導電性膜、pn接合が形成された単結晶シリコン層と、電極とが順次積層された薄膜単結晶シリコン太陽電池31を製造した。
このようにして製造した単結晶シリコン太陽電池に、ソーラーシュミレーターによりAM1.5で100mW/cmの光を照射し、変換効率を求めた。変換効率は7%であり、経時変化はなかった。
また、この太陽電池を透かして晴天時の日中において、室外から外光を取り入れ、室外を覗くと、室外の様子を見ることが出来た。
尚、本発明は上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的思想に包含される。
本発明に係る単結晶シリコン太陽電池の製造方法の一例を示す工程図である。
符号の説明
11…単結晶シリコン基板、 12…透明絶縁性基板、
13…イオン注入面、 14…イオン注入層、
15…透明導電性接着剤、 16…透明導電性膜、
17…単結晶シリコン層、
21…第一導電型シリコン層、 22…第二導電型シリコン層、
23…電極、
31…単結晶シリコン太陽電池。

Claims (12)

  1. 透明絶縁性基板上に、光変換層として単結晶シリコン層が配置されている単結晶シリコン太陽電池を製造する方法であって、少なくとも、
    透明絶縁性基板と第一導電型の単結晶シリコン基板とを用意する工程と、
    前記単結晶シリコン基板に水素イオンまたは希ガスイオンの少なくとも一方を注入して、イオン注入層を形成する工程と、
    前記イオン注入面を貼り合わせ面として、前記単結晶シリコン基板を、透明導電性接着剤を介して前記透明絶縁性基板と密着させる工程と、
    前記透明導電性接着剤を硬化させて透明導電性膜とすると共に、前記単結晶シリコン基板と前記透明絶縁性基板とを貼り合わせる工程と、
    前記イオン注入層に衝撃を与えて前記単結晶シリコン基板を機械的に剥離して、単結晶シリコン層とする工程と、
    前記単結晶シリコン層に前記第一導電型とは異なる導電型である第二導電型の拡散層を形成してpn接合を形成する工程と、
    前記単結晶シリコン層上に電極を形成する工程と
    を含むことを特徴とする単結晶シリコン太陽電池の製造方法。
  2. 前記透明絶縁性基板を、石英ガラス、結晶化ガラス、硼珪酸ガラス、ソーダライムガラスのいずれかとすることを特徴とする請求項1に記載の単結晶シリコン太陽電池の製造方法。
  3. 前記透明導電性接着剤を、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウムのうち少なくとも一種を含有し、ドナー形成用添加材料を含有するものとすることを特徴とする請求項1または請求項2に記載の単結晶シリコン太陽電池の製造方法。
  4. 前記透明導電性接着剤を、シリコーン樹脂、アクリル樹脂、脂環式アクリル樹脂、液晶ポリマー、ポリカーボネート、ポリエチレンテレフタレートのうち少なくとも一種を含有するものとすることを特徴とする請求項1ないし請求項3のいずれか一項に記載の単結晶シリコン太陽電池の製造方法。
  5. 前記イオン注入の深さを、イオン注入面から0.1μm以上5μm以下とすることを特徴とする請求項1ないし請求項4のいずれか一項に記載の単結晶シリコン太陽電池の製造方法。
  6. 請求項1ないし請求項5のいずれか一項に記載の単結晶シリコン太陽電池の製造方法によって製造された単結晶シリコン太陽電池。
  7. 少なくとも、透明絶縁性基板と、透明導電性膜と、pn接合が形成された単結晶シリコン層と、電極とが順次積層されたものであることを特徴とする単結晶シリコン太陽電池。
  8. 前記透明絶縁性基板は、石英ガラス、結晶化ガラス、硼珪酸ガラス、ソーダライムガラスのいずれかであることを特徴とする請求項7に記載の単結晶シリコン太陽電池の製造方法。
  9. 前記透明導電性膜は、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウムのうち少なくとも一種を含有し、ドナー形成用添加材料を含有するものであることを特徴とする請求項7または請求項8に記載の単結晶シリコン太陽電池。
  10. 前記透明導電性膜は、シリコーン樹脂、アクリル樹脂、脂環式アクリル樹脂、液晶ポリマー、ポリカーボネート、ポリエチレンテレフタレートのうち少なくとも一種を含有するものであることを特徴とする請求項7ないし請求項9のいずれか一項に記載の単結晶シリコン太陽電池。
  11. 前記単結晶シリコン層の膜厚は、0.1μm以上5μm以下であることを特徴とする請求項7ないし請求項10のいずれか一項に記載の単結晶シリコン太陽電池。
  12. 前記単結晶シリコン太陽電池は、一方の面側から見たときに、他方の面側が透けて見えるものであることを特徴とする請求項6ないし請求項11のいずれか一項に記載の単結晶シリコン太陽電池。
JP2006294553A 2006-10-30 2006-10-30 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池 Pending JP2008112843A (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006294553A JP2008112843A (ja) 2006-10-30 2006-10-30 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池
KR1020070103828A KR101341199B1 (ko) 2006-10-30 2007-10-16 단결정 실리콘 태양전지의 제조 방법 및 단결정 실리콘 태양전지
US11/976,021 US8030118B2 (en) 2006-10-30 2007-10-19 Method for producing single crystal silicon solar cell and single crystal silicon solar cell
EP07020918A EP1921683A3 (en) 2006-10-30 2007-10-25 Method for producing single crystal silicon solar cell and single crystal silicon solar cell
TW096140587A TW200836355A (en) 2006-10-30 2007-10-29 Fabrication method of single crystal silicon solar battery and single crystal silicon solar battery
CN2007101851237A CN101174658B (zh) 2006-10-30 2007-10-30 单晶硅太阳能电池的制造方法及单晶硅太阳能电池
US13/137,281 US20110290321A1 (en) 2006-10-30 2011-08-03 Method for producing single crystal silicon solar cell and single crystal silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006294553A JP2008112843A (ja) 2006-10-30 2006-10-30 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池

Publications (1)

Publication Number Publication Date
JP2008112843A true JP2008112843A (ja) 2008-05-15

Family

ID=39247768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006294553A Pending JP2008112843A (ja) 2006-10-30 2006-10-30 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池

Country Status (6)

Country Link
US (2) US8030118B2 (ja)
EP (1) EP1921683A3 (ja)
JP (1) JP2008112843A (ja)
KR (1) KR101341199B1 (ja)
CN (1) CN101174658B (ja)
TW (1) TW200836355A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054537A (ja) * 2010-08-04 2012-03-15 Semiconductor Energy Lab Co Ltd 電気二重層キャパシタ、又は太陽光発電装置
JPWO2011007483A1 (ja) * 2009-07-14 2012-12-20 日本電気株式会社 縦型トランジスタ及びその製造方法、並びに半導体装置
JP2013164941A (ja) * 2012-02-10 2013-08-22 Konica Minolta Inc 透明電極の製造方法、透明電極及びそれを用いた有機電子素子

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112847A (ja) * 2006-10-30 2008-05-15 Shin Etsu Chem Co Ltd 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池
KR101594335B1 (ko) * 2007-12-03 2016-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
JP2010050356A (ja) * 2008-08-22 2010-03-04 Shin-Etsu Chemical Co Ltd ヘテロ接合太陽電池の製造方法及びヘテロ接合太陽電池
JP5496608B2 (ja) * 2008-11-12 2014-05-21 信越化学工業株式会社 Soi基板の作製方法
TWI504002B (zh) * 2009-06-05 2015-10-11 Semiconductor Energy Lab 光電轉換裝置
US10000411B2 (en) 2010-01-16 2018-06-19 Cardinal Cg Company Insulating glass unit transparent conductivity and low emissivity coating technology
US10000965B2 (en) 2010-01-16 2018-06-19 Cardinal Cg Company Insulating glass unit transparent conductive coating technology
US10060180B2 (en) 2010-01-16 2018-08-28 Cardinal Cg Company Flash-treated indium tin oxide coatings, production methods, and insulating glass unit transparent conductive coating technology
CN102122684B (zh) * 2011-01-27 2012-08-22 中山大学 一种应用于晶体硅太阳电池的电极制备方法
KR102245511B1 (ko) * 2012-12-27 2021-04-28 엘지디스플레이 주식회사 플렉서블 유기 발광 표시 장치 및 플렉서블 유기 발광 표시 장치 제조 방법
US10615297B2 (en) * 2013-02-22 2020-04-07 International Business Machines Corporation Electrode formation for heterojunction solar cells
TW201515738A (zh) * 2013-09-12 2015-05-01 Cima Nanotech Israel Ltd 於製造金屬奈米粒子組合物之方法
EP3167117A4 (en) * 2014-07-08 2018-02-28 Xyleco, Inc. Marking plastic-based products
KR102396820B1 (ko) * 2017-09-06 2022-05-16 한국전자통신연구원 태양 전지 모듈 및 그 제조 방법
CN109326719B (zh) * 2018-09-28 2022-05-27 青岛融合装备科技有限公司 一种基于n型单晶硅衬底的异质结太阳能电池及其制备方法
US11028012B2 (en) 2018-10-31 2021-06-08 Cardinal Cg Company Low solar heat gain coatings, laminated glass assemblies, and methods of producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211128A (ja) * 1991-09-18 1993-08-20 Commiss Energ Atom 薄い半導体材料フィルムの製造方法
JPH07106617A (ja) * 1993-09-30 1995-04-21 Canon Inc 透明電極及びその形成方法並びに該透明電極を用いた太陽電池
JPH08213645A (ja) * 1995-02-02 1996-08-20 Sony Corp 基体から素子形成層を分離する方法
JPH09331077A (ja) * 1996-06-10 1997-12-22 Ion Kogaku Kenkyusho:Kk 太陽電池およびその製造方法
US6013563A (en) * 1997-05-12 2000-01-11 Silicon Genesis Corporation Controlled cleaning process
JP2000150940A (ja) * 1998-11-18 2000-05-30 Denso Corp 半導体微粒子集合体及びその製造方法
WO2006093817A2 (en) * 2005-02-28 2006-09-08 Silicon Genesis Corporation Substrate stiffness method and resulting devices

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3280455T3 (de) 1981-11-04 2000-07-13 Kanegafuchi Chemical Ind Biegsame photovoltaische Vorrichtung.
US4427839A (en) 1981-11-09 1984-01-24 General Electric Company Faceted low absorptance solar cell
JPS63287077A (ja) 1987-05-20 1988-11-24 Hitachi Ltd 光電変換デバイス
US4927770A (en) 1988-11-14 1990-05-22 Electric Power Research Inst. Corp. Of District Of Columbia Method of fabricating back surface point contact solar cells
JP2821830B2 (ja) 1992-05-14 1998-11-05 セイコーインスツルメンツ株式会社 半導体薄膜素子その応用装置および半導体薄膜素子の製造方法
JP3360919B2 (ja) 1993-06-11 2003-01-07 三菱電機株式会社 薄膜太陽電池の製造方法,及び薄膜太陽電池
JPH1093122A (ja) 1996-09-10 1998-04-10 Nippon Telegr & Teleph Corp <Ntt> 薄膜太陽電池の製造方法
SG67458A1 (en) 1996-12-18 1999-09-21 Canon Kk Process for producing semiconductor article
US5956571A (en) 1997-05-02 1999-09-21 Yang; Mei-Hua Solar battery with thin film type of single crystal silicon
JPH114008A (ja) 1997-06-11 1999-01-06 Nippon Telegr & Teleph Corp <Ntt> 薄膜太陽電池の製造方法
US5972732A (en) 1997-12-19 1999-10-26 Sandia Corporation Method of monolithic module assembly
US6331208B1 (en) 1998-05-15 2001-12-18 Canon Kabushiki Kaisha Process for producing solar cell, process for producing thin-film semiconductor, process for separating thin-film semiconductor, and process for forming semiconductor
JP3385972B2 (ja) * 1998-07-10 2003-03-10 信越半導体株式会社 貼り合わせウェーハの製造方法および貼り合わせウェーハ
JP2000164905A (ja) 1998-09-22 2000-06-16 Canon Inc 光電変換装置の製造方法とその製造装置
US6555443B1 (en) 1998-11-11 2003-04-29 Robert Bosch Gmbh Method for production of a thin film and a thin-film solar cell, in particular, on a carrier substrate
DE19936941B4 (de) * 1998-11-11 2008-11-06 Robert Bosch Gmbh Verfahren zur Herstellung dünner Schichten, insbesondere Dünnschichtsolarzellen, auf einem Trägersubstrat
JP4329183B2 (ja) 1999-10-14 2009-09-09 ソニー株式会社 単一セル型薄膜単結晶シリコン太陽電池の製造方法、バックコンタクト型薄膜単結晶シリコン太陽電池の製造方法および集積型薄膜単結晶シリコン太陽電池の製造方法
JP2001189477A (ja) 1999-12-28 2001-07-10 Komatsu Ltd 光電変換装置の製造方法及び光電変換装置
JP2001217443A (ja) 2000-02-04 2001-08-10 Sony Corp 半導体素子およびその製造方法、太陽電池およびその製造方法ならびに半導体素子を用いた光学素子
JP2001284616A (ja) 2000-04-03 2001-10-12 Toyota Motor Corp 熱光発電装置用光電変換素子
JP2001130986A (ja) * 2000-04-27 2001-05-15 Yamatoya & Co Ltd 銅メッキセラミックス基板、及びそれを用いたペルチィエ素子、並びに銅メッキセラミックス基板の製造方法
JP2003017723A (ja) * 2001-06-29 2003-01-17 Shin Etsu Handotai Co Ltd 半導体薄膜の製造方法及び太陽電池の製造方法
JP3727879B2 (ja) * 2001-12-18 2005-12-21 三菱重工業株式会社 結晶性Si薄膜の評価方法
US7176528B2 (en) 2003-02-18 2007-02-13 Corning Incorporated Glass-based SOI structures
JP2004304622A (ja) 2003-03-31 2004-10-28 Fujitsu Media Device Kk 弾性表面波デバイス及びその製造方法
US7235461B2 (en) 2003-04-29 2007-06-26 S.O.I.Tec Silicon On Insulator Technologies Method for bonding semiconductor structures together
JP4594601B2 (ja) 2003-05-16 2010-12-08 日立電線株式会社 結晶シリコン系薄膜太陽電池の製造方法及びそれを用いて形成した太陽電池
US7700869B2 (en) 2005-02-03 2010-04-20 Guardian Industries Corp. Solar cell low iron patterned glass and method of making same
JP4728030B2 (ja) * 2005-04-14 2011-07-20 信越化学工業株式会社 Soiウエーハの製造方法
JP5128761B2 (ja) 2005-05-19 2013-01-23 信越化学工業株式会社 Soiウエーハの製造方法
JP2008112848A (ja) * 2006-10-30 2008-05-15 Shin Etsu Chem Co Ltd 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池
JP2008112840A (ja) * 2006-10-30 2008-05-15 Shin Etsu Chem Co Ltd 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池
JP5090716B2 (ja) * 2006-11-24 2012-12-05 信越化学工業株式会社 単結晶シリコン太陽電池の製造方法
JP5166745B2 (ja) * 2007-03-07 2013-03-21 信越化学工業株式会社 単結晶シリコン太陽電池の製造方法
JP5048380B2 (ja) * 2007-04-09 2012-10-17 信越化学工業株式会社 単結晶シリコン太陽電池の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211128A (ja) * 1991-09-18 1993-08-20 Commiss Energ Atom 薄い半導体材料フィルムの製造方法
JPH07106617A (ja) * 1993-09-30 1995-04-21 Canon Inc 透明電極及びその形成方法並びに該透明電極を用いた太陽電池
JPH08213645A (ja) * 1995-02-02 1996-08-20 Sony Corp 基体から素子形成層を分離する方法
JPH09331077A (ja) * 1996-06-10 1997-12-22 Ion Kogaku Kenkyusho:Kk 太陽電池およびその製造方法
US6013563A (en) * 1997-05-12 2000-01-11 Silicon Genesis Corporation Controlled cleaning process
JP2000150940A (ja) * 1998-11-18 2000-05-30 Denso Corp 半導体微粒子集合体及びその製造方法
WO2006093817A2 (en) * 2005-02-28 2006-09-08 Silicon Genesis Corporation Substrate stiffness method and resulting devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011007483A1 (ja) * 2009-07-14 2012-12-20 日本電気株式会社 縦型トランジスタ及びその製造方法、並びに半導体装置
JP5468609B2 (ja) * 2009-07-14 2014-04-09 ルネサスエレクトロニクス株式会社 縦型トランジスタ及びその製造方法、並びに半導体装置
JP2012054537A (ja) * 2010-08-04 2012-03-15 Semiconductor Energy Lab Co Ltd 電気二重層キャパシタ、又は太陽光発電装置
JP2013164941A (ja) * 2012-02-10 2013-08-22 Konica Minolta Inc 透明電極の製造方法、透明電極及びそれを用いた有機電子素子

Also Published As

Publication number Publication date
EP1921683A2 (en) 2008-05-14
US20110290321A1 (en) 2011-12-01
CN101174658A (zh) 2008-05-07
US8030118B2 (en) 2011-10-04
US20080099066A1 (en) 2008-05-01
KR101341199B1 (ko) 2013-12-12
KR20080039230A (ko) 2008-05-07
EP1921683A3 (en) 2011-06-15
TW200836355A (en) 2008-09-01
CN101174658B (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5166745B2 (ja) 単結晶シリコン太陽電池の製造方法
JP2008112843A (ja) 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池
JP5090716B2 (ja) 単結晶シリコン太陽電池の製造方法
TWI485873B (zh) A single crystal silicon solar cell manufacturing method and a single crystal silicon solar cell
US8227290B2 (en) Method for producing single crystal silicon solar cell and single crystal silicon solar cell
JP2008112848A (ja) 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池
EP2157621B1 (en) Heterojunction solar cell and process for manufacturing the same
JP4866210B2 (ja) 単結晶シリコン太陽電池の製造方法
JP4955367B2 (ja) 単結晶シリコン太陽電池の製造方法
JP2011216920A (ja) 単結晶シリコン太陽電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100531

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720