JP2011216920A - 単結晶シリコン太陽電池 - Google Patents
単結晶シリコン太陽電池 Download PDFInfo
- Publication number
- JP2011216920A JP2011216920A JP2011171484A JP2011171484A JP2011216920A JP 2011216920 A JP2011216920 A JP 2011216920A JP 2011171484 A JP2011171484 A JP 2011171484A JP 2011171484 A JP2011171484 A JP 2011171484A JP 2011216920 A JP2011216920 A JP 2011216920A
- Authority
- JP
- Japan
- Prior art keywords
- crystal silicon
- single crystal
- solar cell
- layer
- electrode pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
【解決手段】 単結晶シリコン基板に水素イオンまたは希ガスイオンの少なくとも一方を注入する工程と、透明絶縁性基板に集電電極パターンを形成する工程と、前記集電電極パターンを埋め込むように透明樹脂層を形成する工程と、前記集電電極パターンを露出させ、前記単結晶シリコン基板のイオン注入面と前記透明絶縁性基板上の前記透明樹脂層の表面とを、前記集電電極パターンが前記単結晶シリコン基板と接触するようにして密着させる工程と、前記透明樹脂層を硬化させて両基板を貼り合わせる工程と、前記イオン注入層に衝撃を与えて前記単結晶シリコン基板を機械的に剥離して、単結晶シリコン層とする工程と、前記単結晶シリコン層にpn接合を形成する工程とを含む単結晶シリコン太陽電池の製造方法。
【選択図】 図1
Description
また、単結晶シリコン基板と、集電電極パターンを形成した透明絶縁性基板とを、透明樹脂層を硬化させて貼り合わせるため、両者を強固に貼り合わせることができる。従って、結合力を高める高温熱処理を施さなくても十分に強固な接合となる。また、このように接合面が強固に接合しているので、その後イオン注入層に衝撃を与えて単結晶シリコン基板を機械的に剥離し、透明絶縁性基板上に薄い単結晶シリコン層を形成することができる。従って、剥離のための熱処理を行わなくても単結晶シリコン層の薄膜化ができる。
また、単結晶シリコン層の形成のための単結晶シリコン基板の剥離を、加熱によらず機械剥離によって行うので、光変換層に熱膨張率の相違に基づく亀裂や欠陥が導入されることを抑制することができる。
また、シリコン層の薄い薄膜太陽電池とするので、珪素原料を節約し、有効に利用することができる。
このように、透明絶縁性基板を、石英ガラス、結晶化ガラス、硼珪酸ガラス、ソーダライムガラスのいずれかとすれば、これらは光学的特性が良好な透明絶縁性基板であり、シースルー型単結晶シリコン太陽電池を容易に製造できる。また、製造した単結晶シリコン太陽電池を既存の窓ガラス等と置換することも容易になる。
このように、透明樹脂層を、シリコーン樹脂、アクリル樹脂、脂環式アクリル樹脂、液晶ポリマー、ポリカーボネート、ポリエチレンテレフタレートのうち少なくとも一種を含有するものとすれば、これらは接着剤としての機能を有し、可視光透過性に優れるため、硬化させて良好な透明硬化樹脂層を形成することができる。
このように、透明樹脂層の硬化を上記の手法のうち少なくとも1つによって行えば、高温の熱処理を行わなくても、短時間で容易に透明樹脂層の硬化を行うことができる。
このうち、タングステン、チタン、クロム、モリブデン、ジルコニウム、ハフニウム、ニッケルのような高融点金属を含有するものを用いて集電電極パターンとすれば、太陽電池の製造工程中に高温熱処理があっても、集電電極パターンをより確実に形成することができる。また、集電電極パターンを、アルミニウムを含有するものとすれば、コンタクト抵抗が低く、直列抵抗が低い集電電極パターンを容易に形成することができる。
このように、集電電極パターンを、単結晶シリコンに対してドナー又はアクセプターを形成する添加材料を含有するものとすれば、熱処理により、単結晶シリコン基板の集電電極パターンとの接合界面近傍にドナー又はアクセプターの拡散領域を形成することができる。
このように、イオン注入の深さを、イオン注入面から0.1μm以上5μm以下とすることにより、製造される単結晶シリコン太陽電池の光変換層としての単結晶シリコン層の厚さをおよそ0.1μm以上5μm以下とすることができる。そして、このような厚さの単結晶シリコン層を有する単結晶シリコン太陽電池であれば、薄膜単結晶シリコン太陽電池として実用的な効率が得られるとともに、使用する珪素原料の量を節約できる。また、このような厚さの単結晶シリコン層を有する単結晶シリコン太陽電池であれば、確実に一部可視光を透過することができる。
このように、上記のいずれかの単結晶シリコン太陽電池の製造方法によって製造された単結晶シリコン太陽電池であれば、光変換層としての単結晶シリコン層の形成を、単結晶シリコン基板から剥離することによって行い、単結晶シリコン層の剥離を、加熱によらず機械剥離によって行ったものであるので、結晶性の高い単結晶シリコン層とすることができる。そのため、膜厚に比して変換効率が高い薄膜太陽電池とすることができる。また、単結晶シリコン層の厚さが薄い薄膜太陽電池であるので、珪素原料を有効に利用することができる。
このように、透明絶縁性基板が、石英ガラス、結晶化ガラス、硼珪酸ガラス、ソーダライムガラスのいずれかであれば、これらは光学的特性が良好な透明絶縁性基板であるので、透明度の高いシースルー型単結晶シリコン太陽電池とすることができる。また、このような単結晶シリコン太陽電池であれば、既存の窓ガラス等と置換することも容易である。
このように、集電電極パターンが、タングステン、チタン、クロム、アルミニウム、モリブデン、ジルコニウム、ハフニウム、ニッケルのうち少なくとも一種を含有するものであっても透明絶縁性基板上に光変換層が配置されているシリコン太陽電池として、膜厚に比して変換効率が高い太陽電池とすることができる。
このように、単結晶シリコン層の膜厚が、0.1μm以上5μm以下であれば、薄膜単結晶シリコン太陽電池として実用的な効率が得られるとともに、使用する珪素原料の量を節約できる。また、このような厚さの単結晶シリコン層を有する単結晶シリコン太陽電池であれば、確実に一部可視光を透過することができる。
このように、一方の面側から見たときに、他方の面側が透けて見える、透明な太陽電池であれば、既存の窓ガラス等と置換できるなど、様々な場面に応用することができる。
また、本発明に従う単結晶シリコン太陽電池であれば、透明絶縁性基板上に光変換層が配置されているシリコン太陽電池において、光変換層を単結晶シリコン層とした太陽電池であるので、膜厚に比して変換効率が高い太陽電池とすることができる。
図1は、本発明に係る単結晶シリコン太陽電池の製造方法の一例を示す工程図である。
単結晶シリコン基板としては特に限定されず、例えばチョクラルスキー法により育成された単結晶をスライスして得られたもので、例えば直径が100〜300mm、導電型がp型またはn型、抵抗率が0.1〜20Ω・cm程度のものを用いることができる。
また、透明絶縁性基板には石英ガラス、結晶化ガラス、硼珪酸ガラス、ソーダライムガラス等が選択される。これらに限定するものではないが、透明であり、窓ガラス材料に代替しうることを鑑みると上記のようなガラス材料が望ましい。また、透明絶縁性基板を、ガラス材料として汎用なソーダライムガラスとする場合には、その表面にディップコート法により酸化珪素皮膜或いは酸化スズ皮膜(ネサ膜)等を形成したものとしてもよい。これらの皮膜はソーダライムガラス中のアルカリ金属成分の表面への溶出及び拡散を防ぐバッファ膜として機能するため好ましい。
例えば、単結晶シリコン基板の温度を200〜450℃とし、その表面13から所望の単結晶シリコン層の厚さに対応する深さ、例えば0.1〜5μm以下の深さにイオン注入層14を形成できるような注入エネルギーで、所定の線量の水素イオンまたは希ガスイオンの少なくとも一方を注入する。この場合、水素イオンは軽いために、同じ加速エネルギーにおいて、よりイオン注入面13からより深く注入されるために特に好ましい。水素イオンの電荷は正負のいずれでもよく、原子イオンの他、水素ガスイオンであってもよい。希ガスイオンの場合も電荷の正負はいずれでもよい。
また、単結晶シリコン基板の表面にあらかじめ薄いシリコン酸化膜などの絶縁膜を形成しておき、それを通してイオン注入を行えば、注入イオンのチャネリングを抑制する効果が得られる。なお、厚い絶縁膜を形成する場合は、該絶縁膜を工程eの密着工程の前にエッチング等により取り除く必要がある。
集電電極パターン19の形成用材料としては、当該分野で用いられる通常のものを使用することができるが、タングステン、チタン、クロム、モリブデン、ジルコニウム、ハフニウム、ニッケルのような高融点金属を含有するものを用いれば、後述する工程gの剥離転写工程の終了後に例えば700℃以上の高温で処理を行う場合であっても、より確実に集電電極パターン19を形成することができるので好ましい。また、アルミニウムを含有するものとすれば、コンタクト抵抗が低く、直列抵抗が低い集電電極パターンを容易に形成することができる。なお、本発明に係る単結晶シリコン太陽電池を確実に一方の面側から見たときに他方の面側が透けて見えるものである構造とするために、金属の電極を形成する場合は、集電電極パターン19の電極面積を受光面全体の80%以下、より好ましくは50%以下にするのが良い。
透明樹脂層15の形成材料としては、アクリル樹脂、脂環式アクリル樹脂、シリコーン樹脂、液晶ポリマー、ポリカーボネート、ポリエチレンテレフタレート等の可視光透過性に優れる樹脂を採用することが好ましい。使用される透明樹脂材料は、これらに限定されるものではないが、可視光の透過率が80%以上であることが好ましい。
集電電極パターン19を露出させる方法は特に限定されるものではなく、集電電極パターン19を覆う透明樹脂を除去するなどして、集電電極パターン19が単結晶シリコン基板11と接触し、単結晶シリコン基板11と透明絶縁性基板12との間が透明樹脂で満たされるようにすればよい。
この透明樹脂層15の硬化処理は、透明絶縁性基板12側からの赤外線ランプ加熱、赤外線フラッシュランプ加熱、赤外線レーザー加熱、可視光ランプ照射、可視光フラッシュランプ照射、可視光レーザー照射、紫外光ランプ照射、紫外光フラッシュランプ照射、紫外光レーザー照射の手法のうち少なくとも1種によって行えば、短時間で容易に行うことができるので好ましい。なお、この透明樹脂層15の硬化方法は上記のものに限定されず、250℃以下の熱処理を併用してもよく、250℃以下の熱処理を単独で行うことによってもよい。但し、この硬化処理は室温から250℃前後までの温度条件で行うものとし、300℃以上の熱処理は行わない。単結晶シリコン基板11と、透明絶縁性基板12を貼り合わせた状態で300℃以上の高温熱処理を行うと、両者の熱膨張係数の違いから、熱歪、ひび割れ、剥離等が発生するおそれがあるためである。このように、300℃以上の高温熱処理を行わないようにすることは、後述する工程gの単結晶シリコン基板11の剥離転写が終了するまでは同様である。
本発明においてはイオン注入層に衝撃を与えて機械的剥離を行うので、加熱に伴う熱歪、ひび割れ、剥離等が発生するおそれがない。イオン注入層に衝撃を与えるためには、例えばガスや液体等の流体のジェットを接合したウエーハの側面から連続的または断続的に吹き付ければよいが、衝撃により機械的剥離が生じる方法であれば特に限定はされない。
また、単結晶シリコン基板の剥離転写を行った後、単結晶シリコン層17の表面付近におけるイオン注入ダメージを回復するための熱処理を行ってもよい。この時点では既に単結晶シリコン基板11は剥離転写され、薄膜の単結晶シリコン層17となっているため、表面付近の局所的な熱処理を300℃以上で行っても亀裂やそれに伴う欠陥は新たにほとんど導入されない。また、このことは以降の工程でも同様である。
工程aで用意した単結晶シリコン基板11がp型単結晶シリコンであった場合には、n型の拡散層を、n型の単結晶シリコンであった場合には、p型の拡散層を形成する。第二導電型の拡散層の形成方法は特に限定されず、例えば以下のようにすることができる。工程aで用意した単結晶シリコン基板11がp型であった場合には、単結晶シリコン層17の表面にリンの元素イオンをイオン注入法で注入し、これに、フラッシュランプアニールまたは単結晶シリコン層表面での吸収係数の高い紫外線、深紫外線のレーザー照射等を行い、ドナーの活性化処理を行うことでpn接合を形成することができる。このようなpn接合は、ドナーを形成するリンを含むペースト状の組成物を作成し、これを単結晶シリコン層17表面に塗布し、これをフラッシュランプアニールまたは単結晶シリコン層表面での吸収係数の高い紫外線、深紫外線のレーザー照射、赤外線加熱炉等で拡散処理を行うことであってもよい。
なお、このようにしてpn接合を形成した後、例えばタッチポリッシュと呼ばれる研磨代が5〜400nmと極めて少ない研磨を行ってもよい。
拡散処理をした表面に、金属または透明導電性材料を用いて、真空蒸着法または化成スパッタ法等により線状等の電極を形成することで、埋め込み集電電極パターン19の対極となる電極23を形成する。さらに、金属を含んだ導電性ペーストを用いて印刷法により電極23側の集電電極を形成することもできる。この電極23側の集電電極形成用組成物の硬化は前記のフラッシュランプアニールや赤外線加熱法等によって行われる。本発明に係る単結晶シリコン太陽電池を確実に一方の面側から見たときに他方の面側が透けて見えるものである構造とするために、金属の電極を形成する場合は、電極面積を受光面全体の80%以下、より好ましくは50%以下にするのが良い。透明導電性膜を形成する場合は全面に形成してもよい。また、電極23側の集電電極は透明絶縁性基板の端部に形成するものであってもよい。
また、電極23形成後、窒化珪素等の保護膜等をさらに形成してもよい。
なお、集電電極パターン19の形成用材料の主成分が単結晶シリコンに対してドナー又はアクセプターを形成するための役割を兼ねることもできる。例えば、集電電極パターン19の形成用材料としてアルミニウムを用いた場合、後述する工程hの剥離転写工程後に熱処理することによってアルミニウムが単結晶シリコン基板内に拡散させ、単結晶シリコン基板内でアクセプターを形成してp+層とすることもできる。
単結晶シリコン基板11として、一方の面が鏡面研磨された直径200mm(8インチ)、結晶面(100)、n型、面抵抗15Ωcmの単結晶シリコン基板を用意した。また、透明絶縁性基板12として、直径200mm(8インチ)、厚さ2.5mmの石英ガラス基板を用意した(工程a)。なお、両者の基板表面を化学的機械研磨(CMP)により研磨し、原子間力顕微鏡(AFM)により、10μm×10μm走査において平均粗さ0.3nm以下となるような鏡面が得られるように研磨を行った。
次に、紫外光レーザーを透明絶縁性基板12側から15秒間照射し、透明樹脂層15を硬化させるとともに、単結晶シリコン基板11と透明絶縁性基板12とを強固に貼り合わせた(工程f)。
過剰な拡散ペーストを弗酸及びアセトン、イソプロピルアルコールで除去洗浄後、真空蒸着法及びパターニング法により銀電極23を形成した(工程i)。その後、さらに銀の集電電極パターンを金属マスクを用いて真空蒸着法により形成した。その後、取り出し電極部分を除いた表面を反応性スパッタ法により窒化珪素の保護皮膜を形成した。
このようにして製造した単結晶シリコン太陽電池に、ソーラーシミュレーターによりAM1.5で100mW/cm2の光を照射し、変換効率を求めた。変換効率は8.7%であり、経時変化はなかった。
また、この太陽電池を透かして晴天時の日中において、室外から外光を取り入れ、室外を覗くと、室外の様子を見ることが出来た。
13…イオン注入面、 14…イオン注入層、
15…透明樹脂層、 16…透明硬化樹脂層、
17…単結晶シリコン層、 19…集電電極パターン、
21…第一導電型シリコン層、 22…第二導電型シリコン層、 23…電極、
31…単結晶シリコン太陽電池。
Claims (2)
- 少なくとも、透明絶縁性基板と、集電電極パターンが埋め込まれたシリコーン樹脂からなる透明硬化樹脂層と、pn接合が形成された単結晶シリコン層と、電極とが順次積層され、前記集電電極パターンが前記単結晶シリコン層と接合界面を有し、前記透明絶縁性基板は、石英ガラス、結晶化ガラス、硼珪酸ガラス、ソーダライムガラスのいずれかであり、前記集電電極パターンは、タングステン、チタン、クロム、アルミニウム、モリブデン、ジルコニウム、ハフニウム、ニッケルのうち少なくとも一種を含有するものであり、前記単結晶シリコン層の膜厚は、0.1μm以上5μm以下であることを特徴とする単結晶シリコン太陽電池。
- 前記単結晶シリコン太陽電池は、一方の面側から見たときに、他方の面側が透けて見えるものであることを特徴とする請求項1に記載の単結晶シリコン太陽電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011171484A JP2011216920A (ja) | 2011-08-05 | 2011-08-05 | 単結晶シリコン太陽電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011171484A JP2011216920A (ja) | 2011-08-05 | 2011-08-05 | 単結晶シリコン太陽電池 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006302535A Division JP4866210B2 (ja) | 2006-11-08 | 2006-11-08 | 単結晶シリコン太陽電池の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011216920A true JP2011216920A (ja) | 2011-10-27 |
Family
ID=44946276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011171484A Pending JP2011216920A (ja) | 2011-08-05 | 2011-08-05 | 単結晶シリコン太陽電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011216920A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102956724A (zh) * | 2012-11-27 | 2013-03-06 | 宁波贝达新能源科技有限公司 | 单晶硅太阳能电池 |
JP2014017366A (ja) * | 2012-07-09 | 2014-01-30 | Sharp Corp | 薄膜化合物太陽電池セルおよびその製造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08213645A (ja) * | 1995-02-02 | 1996-08-20 | Sony Corp | 基体から素子形成層を分離する方法 |
JPH1093122A (ja) * | 1996-09-10 | 1998-04-10 | Nippon Telegr & Teleph Corp <Ntt> | 薄膜太陽電池の製造方法 |
JPH10150211A (ja) * | 1996-11-19 | 1998-06-02 | Sony Corp | 薄膜単結晶半導体太陽電池およびその製造方法 |
JP2003092422A (ja) * | 2001-09-18 | 2003-03-28 | Canon Inc | 太陽電池モジュールの製造方法 |
-
2011
- 2011-08-05 JP JP2011171484A patent/JP2011216920A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08213645A (ja) * | 1995-02-02 | 1996-08-20 | Sony Corp | 基体から素子形成層を分離する方法 |
JPH1093122A (ja) * | 1996-09-10 | 1998-04-10 | Nippon Telegr & Teleph Corp <Ntt> | 薄膜太陽電池の製造方法 |
JPH10150211A (ja) * | 1996-11-19 | 1998-06-02 | Sony Corp | 薄膜単結晶半導体太陽電池およびその製造方法 |
JP2003092422A (ja) * | 2001-09-18 | 2003-03-28 | Canon Inc | 太陽電池モジュールの製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014017366A (ja) * | 2012-07-09 | 2014-01-30 | Sharp Corp | 薄膜化合物太陽電池セルおよびその製造方法 |
CN102956724A (zh) * | 2012-11-27 | 2013-03-06 | 宁波贝达新能源科技有限公司 | 单晶硅太阳能电池 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5166745B2 (ja) | 単結晶シリコン太陽電池の製造方法 | |
JP5090716B2 (ja) | 単結晶シリコン太陽電池の製造方法 | |
KR101341199B1 (ko) | 단결정 실리콘 태양전지의 제조 방법 및 단결정 실리콘 태양전지 | |
JP2008112847A (ja) | 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池 | |
JP2008112848A (ja) | 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池 | |
JP5048380B2 (ja) | 単結晶シリコン太陽電池の製造方法 | |
US8227290B2 (en) | Method for producing single crystal silicon solar cell and single crystal silicon solar cell | |
JP2010050356A (ja) | ヘテロ接合太陽電池の製造方法及びヘテロ接合太陽電池 | |
JP4866210B2 (ja) | 単結晶シリコン太陽電池の製造方法 | |
JP4955367B2 (ja) | 単結晶シリコン太陽電池の製造方法 | |
JP2011216920A (ja) | 単結晶シリコン太陽電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130129 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130625 |