JP2008112078A - 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ、及び電子写真感光体の製造方法 - Google Patents

電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ、及び電子写真感光体の製造方法 Download PDF

Info

Publication number
JP2008112078A
JP2008112078A JP2006296146A JP2006296146A JP2008112078A JP 2008112078 A JP2008112078 A JP 2008112078A JP 2006296146 A JP2006296146 A JP 2006296146A JP 2006296146 A JP2006296146 A JP 2006296146A JP 2008112078 A JP2008112078 A JP 2008112078A
Authority
JP
Japan
Prior art keywords
group
photosensitive member
electrophotographic photosensitive
layer
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006296146A
Other languages
English (en)
Other versions
JP4771909B2 (ja
Inventor
Yoshiteru Yanagawa
宜輝 梁川
Michio Kimura
美知夫 木村
Nozomi Tamoto
望 田元
Hiromi Tada
裕美 多田
Tetsuya Tone
哲也 利根
Tomoyuki Shimada
知幸 島田
Chiaki Tanaka
千秋 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006296146A priority Critical patent/JP4771909B2/ja
Priority to US11/926,748 priority patent/US7855040B2/en
Publication of JP2008112078A publication Critical patent/JP2008112078A/ja
Application granted granted Critical
Publication of JP4771909B2 publication Critical patent/JP4771909B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0532Macromolecular bonding materials obtained by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0546Polymers comprising at least one carboxyl radical, e.g. polyacrylic acid, polycrotonic acid, polymaleic acid; Derivatives thereof, e.g. their esters, salts, anhydrides, nitriles, amides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0525Coating methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0532Macromolecular bonding materials obtained by reactions only involving carbon-to-carbon unsatured bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0616Hydrazines; Hydrazones
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0627Heterocyclic compounds containing one hetero ring being five-membered
    • G03G5/0629Heterocyclic compounds containing one hetero ring being five-membered containing one hetero atom
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14717Macromolecular material obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14734Polymers comprising at least one carboxyl radical, e.g. polyacrylic acid, polycrotonic acid, polymaleic acid; Derivatives thereof, e.g. their esters, salts, anhydrides, nitriles, amides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14791Macromolecular compounds characterised by their structure, e.g. block polymers, reticulated polymers, or by their chemical properties, e.g. by molecular weight or acidity

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

【課題】長期に渡り極めて安定した電気特性と高い機械的耐久性を維持することによって、長期間、高精細な画像を得ることができる電子写真感光体の製造方法、およびそれを用いて形成した電子写真感光体、それを用いた画像形成装置、画像形成方法および画像形成装置用プロセスカートリッジを提供すること。
【解決手段】導電性支持体上に少なくとも感光層と表面保護層を有する電子写真感光体の製造方法において、該表面保護層が少なくともラジカル重合性化合物を光硬化することにより形成された後、該表面保護層に電荷輸送性化合物を含む超臨界流体及び/または亜臨界流体を接触させることを特徴とする電子写真感光体の製造方法。
【選択図】図1

Description

本発明は複写機やレーザープリンタ及びファクシミリ等の電子写真感光体の製造方法、およびそれを用いて形成した電子写真感光体、それを用いた画像形成装置、画像形成方法および画像形成装置用プロセスカートリッジに関する。
具体的には、長期使用において極めて安定した電気特性および高い機械的耐久性を維持可能な電子写真感光体の製造方法および電子写真感光体、それを用いた画像形成装置、画像形成方法および画像形成装置用プロセスカートリッジに関する。
近年、有機感光体(OPC)は良好な性能、様々な利点から、無機感光体に代わり複写機、ファクシミリ、レーザープリンタ及びこれらの複合機に多く用いられている。この理由としては、例えば、(i)光吸収波長域の広さ及び吸収量の大きさ等の光学特性、(ii)高感度、安定な帯電特性等の電気的特性、(iii)材料の選択範囲の広さ、(iv)製造の容易さ、(v)低コスト、(vi)無毒性、等が挙げられる。
一方、最近画像形成装置の小型化から感光体の小径化が進み、機械の高速化やメンテナンスフリーの動きも加わり感光体の高耐久化が切望されるようになってきた。この観点からみると、有機感光体は、表面層が低分子電荷輸送材料と不活性高分子を主成分としているため一般に柔らかく、電子写真プロセスにおいて繰り返し使用された場合、現像システムやクリーニングシステムによる機械的な負荷により摩耗が発生しやすいという欠点を有している。加えて高画質化の要求からトナー粒子の小粒径化に伴いクリーニング性を上げる目的でクリーニングブレードのゴム硬度の上昇と当接圧力の上昇が余儀なくされ、このことも感光体の摩耗を促進する要因となっている。この様な感光体の摩耗は、感度の劣化、帯電性の低下などの電気的特性を劣化させ、画像濃度低下、地肌汚れ等の異常画像の原因となる。また摩耗が局所的に発生した傷は、クリーニング不良によるスジ状汚れ画像をもたらす。現状では感光体の寿命はこの摩耗や傷が律速となり、交換に至っている。
したがって、有機感光体の高耐久化においては前述の摩耗量を低減し、安定した電気特性を長期間に渡り維持することが不可欠であり、更に優れたクリーニング性、転写性を付与させるために、良好な表面性を有する有機感光体が必要とされており、これらが当分野でもっとも解決が迫られている課題である。
感光層の耐摩耗性を改良する技術としては、(1)表面層に硬化性バインダーを用いたもの(特許文献1:特開昭56−48637号公報)、(2)高分子型電荷輸送物質を用いたもの(特許文献2:特開昭64−1728号公報)、(3)表面層に無機フィラーを分散させたもの(特許文献3:特開平4−281461号公報)等が挙げられる。これらの技術の内、(1)の硬化性バインダーを用いたものは、電荷輸送物質との相溶性が悪いためや重合開始剤、未反応残基などの不純物により残留電位が上昇し画像濃度低下が発生し易い傾向がある。また、(2)の高分子型電荷輸送物質を用いたもの、及び(3)の無機フィラーを分散させたものは、ある程度の耐摩耗性向上が可能であるものの、有機感光体に求められている耐久性を十二分に満足させるまでには至っていない。更に(3)の無機フィラーを分散させたものは、無機フィラー表面に存在するチャージキャリアのトラップ(OPCでは、通常、正孔の捕獲中心)により残留電位が上昇し、画像濃度低下が発生し易い傾向にある。これら(1)、(2)、(3)の技術では、有機感光体に求められる電気的な耐久性、機械的な耐久性をも含めた総合的な耐久性を十二分に満足するには至っていない。
更に、(1)の耐摩耗性と耐傷性を改良するために多官能の硬化型アクリレートモノマーを含有させた感光体も知られている(特許文献4:特許第3262488号公報)。しかし、この感光体においては、感光層上に設けた保護層にこの多官能の硬化型アクリレートモノマーを含有させる旨の記載があるものの、この保護層においては電荷輸送物質を含有せしめてもよいことが記載されているのみで具体的な記載はなく、しかも、単に表面層に低分子の電荷輸送物質を含有させた場合には、上記硬化物との相溶性の問題があり、これにより、低分子電荷輸送物質の析出、クラックの発生が起こり、機械強度も低下してしまうことがあった。また相溶性向上のためにポリカーボネート樹脂を含有させる記載もあるが、硬化型アクリルモノマー含有量が減少し、結果的には十分な耐摩耗性を達成できていない。また表面層に電荷輸送物質を含まない感光体については、露光部電位低下のために表面層を薄膜とする記載があるが、膜厚が薄いために感光体の寿命が短い。また帯電電位や露光部電位の環境安定性が悪く温室度環境の影響によりその値は大きく変動し、十分な値を維持するには至っていないのが現状である。
これらに代わる感光層の耐摩耗技術として、炭素−炭素二重結合を有するモノマーと、炭素─炭素二重結合を有する電荷輸送物質及びバインダー樹脂からなる塗工液を用いて形成した電荷輸送層を設けることが知られており(特許文献5:特許第3194392号公報)、このバインダー樹脂には、炭素─炭素二重結合を有し、上記電荷輸送物質に対して反応性を有するものと、上記二重結合を有せず反応性を有しないものが含まれる。この感光体は耐摩耗性と良好な電気的特性を両立しており注目されるが、バインダー樹脂として反応性を有しないものを使用した場合においては、バインダー樹脂と、上記モノマーと電荷輸送物質との反応により生成した硬化物との相溶性が悪く、相分離から架橋時に表面凹凸が生じ、クリーニング不良を引き起こす傾向が見られた。また、上記のように、この場合バインダー樹脂がモノマーの硬化を妨げるほか、この感光体において使用される上記モノマーとして具体的に記載されているものは2官能性のものであり、この2官能性モノマーでは官能基数が少なく充分な架橋密度が得られず、耐摩耗性の点では未だ満足するには至らなかった。また、反応性を有するバインダーを使用した場合においても、上記モノマーおよび上記バインダー樹脂に含有される官能基数の低さから、上記電荷輸送物質の結合量と架橋密度との両立は難しく、電気特性及び耐摩耗性も充分とは言えないものであった。
また、同一分子内に二つ以上の連鎖重合性官能基を有する正孔輸送性化合物を硬化した化合物を含有する感光層も知られている(特許文献6:特開2000−66425号公報)。しかし、この感光層は嵩高い正孔輸送性化合物が二つ以上の連鎖重合性官能基を有するため硬化物中に歪みが発生し内部応力が高くなり、表面層の荒れや経時におけるクラックが発生しやすい場合があり、十分な耐久性を有していない。
また硬化物中の歪みが大きいことから、膜密度が十分に向上されていない場合があり、十分に高い耐摩耗性を達成することができない。さらに、膜密度が低いために緻密な架橋膜が実現されておらず、酸化性ガスや湿度といった環境変化で特性が安定しないときがあり、実使用環境において残像が異常画像として発生することがあった。つまり長期に安定した画像出力が実現されていない。
さらに、電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと電荷輸送性構造を有する1官能のラジカル重合性化合物を硬化させた架橋型電荷輸送層も知られており(特許文献7:特開2004−302450号公報、特許文献8:特開2004−302451号公報、特許文献9:特開2004−302452号公報、特許文献10:特開2005−099688号公報、特許文献11:特開2005−107401号公報、特許文献12:特開2005−107490号公報、特許文献13:特開2005−115322号公報、特許文献14:特開2005−140825号公報、特許文献15:特開2005−156784号公報、特許文献16:特開2005−157026号公報、特許文献17:特開2005−157297号公報、特許文献18:特開2005−189821号公報、特許文献19:特開2005−189828号公報、特許文献20:特開2006−71856号公報)、電荷輸送性構造を有する1官能のラジカル重合性化合物を用いることにより、機械的および電気的な耐久性と同時に感光層のクラックを抑制している。しかし、架橋表面層の形成方法によっては、架橋型電荷輸送層の膜密度が十分高くない場合があり、そのような場合に緻密な架橋表面層が実現されず、酸化性ガスや湿度といった環境変化で特性が安定しないときがあり、実使用環境において残像が異常画像として発生することがあった。また、架橋表面層を光硬化する際に電荷輸送性構造を有する1官能のラジカル重合性化合物についても高エネルギーの光が照射されることで、電荷輸送機能を担う電荷輸送性構造の分解が避けられず、安定した電気特性を維持することが困難であった。つまり長期に安定した高画質画像出力が実現されていない。
以上のようなことから、これら従来技術における電荷輸送性構造を化学結合させた架橋感光層を有する感光体においても、高い機械的耐久性と長期に安定した電気特性の両立は達成されておらず、長期間における高画質画像出力は実現されていない。つまり現状では充分な総合特性を有しているとは言えない。
特開昭56−48637号公報 特開昭64−1728号公報 特開平4−281461号公報 特許第3262488号公報 特許第3194392号公報 特開2000−66425号公報 特開2004−302450号公報 特開2004−302451号公報 特開2004−302452号公報 特開2005−099688号公報 特開2005−107401号公報 特開2005−107490号公報 特開2005−115322号公報 特開2005−140825号公報 特開2005−156784号公報 特開2005−157026号公報 特開2005−157297号公報 特開2005−189821号公報 特開2005−189828号公報 特開2006−71856号公報
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、長期に渡り極めて安定した電気特性と高い機械的耐久性を維持することによって、長期間、高精細な画像を得ることができる電子写真感光体の製造方法、およびそれを用いて形成した電子写真感光体、それを用いた画像形成装置、画像形成方法および画像形成装置用プロセスカートリッジを提供することを目的とする。
本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、導電性支持体上に少なくとも感光層と表面保護層を有する電子写真感光体において、該表面保護層が少なくともラジカル重合性化合物を光硬化することにより形成された後、該表面保護層に電荷輸送性化合物を含む超臨界流体及び/または亜臨界流体を接触させたものとすることによって、長期に渡って極めて安定な電気特性と高い機械的耐久性を維持することができる電子写真感光体が作製できることを見い出した。
つまり、本発明では硬化終了後の架橋表面保護層に電荷輸送性化合物を含む超臨界流体及び/又は亜臨界流体を接触させることで、十分に発達した架橋膜中に電荷輸送性化合物を注入することができるため、架橋密度が極めて高く、より緻密な架橋表面保護層を構築することができ、高い機械的耐久性が実現される。
また、一般的に電荷輸送性化合物は硬化に必要な波長領域に大きな吸光係数を有していることが多く、ラジカル重合性化合物の硬化を阻害することが知られているが、本発明においてはこの影響も受けない。また、この様にして作製した電子写真感光体を用いれば、架橋表面保護層中の電荷輸送性構造に高エネルギー光が照射されずに済み、従って架橋表面層における電荷輸送性構造の劣化が極めて少なく、長期間に渡り安定した電気特性を維持することが可能となる。従って高い機械的耐久性と長期に渡り安定した電気特性の両立が可能となった。
すなわち上記課題は、本発明の(1)〜(17)により解決される。
(1)「導電性支持体上に少なくとも感光層と表面保護層を有する電子写真感光体の製造方法において、該表面保護層が少なくともラジカル重合性化合物を光硬化することにより形成された後、該表面保護層に電荷輸送性化合物を含む超臨界流体及び/または亜臨界流体を接触させることを特徴とする電子写真感光体の製造方法」、
(2)「前記超臨界流体及び/または亜臨界流体が、二酸化炭素であることを特徴とする前記第(1)項に記載の電子写真感光体の製造方法」、
(3)「前記超臨界流体及び/または亜臨界流体が、二酸化炭素と他流体との混合物であることを特徴とする前記第(1)項又は第(2)項に記載の電子写真感光体の製造方法」、
(4)「前記他流体が、メタノール、エタノールから選択される少なくとも一種であることを特徴とする前記第(1)項乃至第(3)項のいずれかに記載の電子写真感光体の製造方法」、
(5)「前記超臨界流体及び/または亜臨界流体における電荷輸送性化合物の含有量が0.5g/L以上であることを特徴とする前記第(1)項乃至第(4)項のいずれかに記載の電子写真感光体の製造方法」、
(6)「前記超臨界流体及び/または亜臨界流体の温度が30〜140℃であることを特徴する請求項1乃至5のいずれかに記載の電子写真感光体の製造方法。
(7)「前記ラジカル重合性化合物が電荷輸送性構造を有しないものであること特徴とする前記第(1)項乃至第(6)項のいずれかに記載の電子写真感光体の製造方法」、
(8)「前記ラジカル重合性化合物のラジカル重合性官能基が3つ以上であることを特徴とする前記第(1)項乃至第(7)項のいずれかに記載の電子写真感光体の製造方法」、
(9)「前記電荷輸送性化合物がラジカル重合性官能基を有していないことを特徴とする前記第(1)項乃至第(8)項のいずれかに記載の電子写真感光体の製造方法」、
(10)「前記電荷輸送性化合物がトリアリールアミン構造、ヒドラゾン構造、ピラゾリン構造およびカルバゾール構造よりなる群から選ばれた構造を有するものであることを特徴とする前記第(1)項乃至第(9)項のいずれかに記載の電子写真感光体の製造方法」、
(11)「前記電荷輸送性化合物がトリアリールアミン構造を有するものであることを特徴とする前記第(1)項乃至第(10)項のいずれかに記載の電子写真感光体の製造方法」、
(12)「導電性支持体上に少なくとも感光層と表面保護層を有する電子写真感光体において、該表面保護層が少なくともラジカル重合性化合物を光硬化することにより形成された後、該表面保護層に電荷輸送性化合物を含む超臨界流体及び/または亜臨界流体を接触させたものであることを特徴とする前記第(1)項乃至第(11)項のいずれかに記載の製造方法で形成された電子写真感光体」、
(13)「前記超臨界流体及び/または亜臨界流体が、二酸化炭素であることを特徴とする前記第(12)項に記載の電子写真感光体」、
(14)「前記感光層が電荷発生層、電荷輸送層の順に積層されたものであることを特徴とする前記第(12)項又は第(13)項に記載の電子写真感光体」、
(15)「前記第(12)項乃至第(14)項のいずれかに記載の電子写真感光体を用いて、少なくとも電子写真感光体を帯電させる帯電プロセスと、帯電プロセスによって帯電させられた電子写真感光体表面に静電潜像を形成する潜像形成プロセスと、潜像形成プロセスによって形成された静電潜像にトナーを付着させる現像プロセスと、現像プロセスによって形成されたトナー像を被転写体に転写させる転写プロセスと、転写後に電子写真感光体表面に残留したトナーを電子写真感光体表面から除去するクリーニングプロセスとを含むことを特徴とする画像形成方法」、
(16)「前記第(12)項乃至第(14)項のいずれかに記載の電子写真感光体と、少なくとも電子写真感光体を帯電させる帯電器と、帯電器によって帯電させられた電子写真感光体表面に静電潜像を形成する潜像形成器と、潜像形成器によって形成された静電潜像にトナーを付着させる現像器と、現像器よって形成されたトナー像を被転写体に転写させる転写器と、転写後に電子写真感光体表面に残留したトナーを電子写真感光体表面から除去するクリーニング器とを有する画像形成装置」、
(17)「前記第(12)項乃至第(14)項のいずれかに記載の電子写真感光体と、少なくとも電子写真感光体を帯電させる帯電器と、帯電器によって帯電させられた電子写真感光体表面に静電潜像を形成する潜像形成器と、潜像形成器によって形成された静電潜像にトナーを付着させる現像器と、現像器よって形成されたトナー像を被転写体に転写させる転写器と、転写後に電子写真感光体表面に残留したトナーを電子写真感光体表面から除去するクリーニング器からなる群から選ばれた一つの手段を有するものであって、画像形成装置本体に着脱可能としたことを特徴とする画像形成装置用プロセスカートリッジ」。
本発明により、従来における諸問題を解決でき、長期間に渡り極めて安定した電気特性および高い機械的耐久性を維持できる電子写真感光体の製造方法、およびそれを用いて形成した電子写真感光体、それを用いた画像形成装置、画像形成方法および画像形成装置用プロセスカートリッジが提供される。
本発明の実施の形態の説明として、初めに超臨界流体および亜臨界流体について説明する。
超臨界流体とは、気体と液体が共存できる限界の温度・圧力(臨界点)を超えた状態にある流体を指す。超臨界流体の特徴としては、高密度状態において、一般に物質を溶かす能力がその流体の常温での溶解力よりも非常に大きいという特徴を有する。これは流体が高圧力下にあるため、流体の運動エネルギーが大きいこと、また、粘性が小さいためと考えられている。また、温度・圧力による密度の調整によって溶解性の制御ができるため、適用範囲が広いことも特筆すべき特性である。一般には密度0.2g/cm以上の超臨界流体が化学物質に対する溶媒として用いられることが多い。また、超臨界流体は前述の通り、流体の運動エネルギーが大きいこと、また、粘性が小さいことから媒質への拡散が早い。このため一般に用いられる溶媒では多孔質体へ浸透しにくいが、超臨界流体を用いれば比較的容易に多孔質体へ浸透することが知られている。さらに、熱伝導度は液体よりも大きいため、超臨界中で生じた化学反応による反応熱は速やかに除去することが可能である。
前記超臨界流体としては、気体と液体とが共存できる限界(臨界点)を超えた温度・圧力領域において非凝縮性高密度流体として存在し、圧縮しても凝縮を起こさず、臨界温度以上、かつ、臨界圧力以上の状態にある流体である限り、特に制限はなく、目的に応じて適宜選択することができる。また、超臨界流体の臨界温度および臨界圧力としては特に制限はない。
これらの流体としては、たとえば一酸化炭素、二酸化炭素、アンモニア、窒素、水、メタノール、エタノール、エタン、プロパン、ブタン、ヘキサン、2,3−ジメチルブタン、ベンゼン、クロロトリフロロメタン、ジメチルエーテルなどが挙げられる。
臨界温度としては、−267.9〜300℃が好ましく、0〜140℃が特に好ましい。超臨界中に対する媒質が熱により変性するようなものを用いる場合には臨界温度が低いものが好ましい。たとえば、二酸化炭素(臨界温度31.0℃)、エタン(臨界温度32.2℃)、プロパン(臨界温度96.6℃)、アンモニア(臨界温度132.3℃)などが挙げられる。
また、本発明における亜臨界流体とは物質毎に決まっている超臨界状態よりも温度、圧力の両方、又はいずれか一方が低い状態で気体および液体とは異なる性質を備えた流体であって、物質毎に異なるので一概には言えないが、例えば一般的には温度が臨界点温度より0〜30℃、圧力が臨界点圧力より0〜5MPa低い状態の流体を言う。亜臨界流体としては、臨界点近傍の温度・圧力領域において高圧液体として存在する限り、特に制限はなく、目的に応じて適宜選択することができる。超臨界流体として挙げられる各種材料は、亜臨界流体としても好適に使用することができる。本発明に対しては超臨界流体または亜臨界流体を単独で使用しても良いし、2種類以上混合して用いても良い。
本発明に記載するような有機材料に対して超臨界流体または亜臨界流体を適用する場合、媒体として二酸化炭素を主媒体として用いることが好ましい。二酸化炭素は超臨界圧力が7.3MPa、超臨界温度が31.0℃と比較的容易に超臨界状態を作り出せ、有機材料に対する熱ダメージが小さいこと、さらに不燃性・低毒性で取り扱いが容易であることが利点として挙げられるため、食品工業の分野では広く用いられている。
超臨界流体および亜臨界流体に対する本発明に記載の有機材料の溶解性を制御するために、超臨界流体または亜臨界流体に有機溶媒をエントレーナーとして添加することができる。一般には超臨界流体または亜臨界流体に溶解させたい溶質、本発明においては有機材料に対して親和力が強い溶媒をエントレーナーとして選択することが好ましい。エントレーナー添加によって所望の溶質に対する超臨界流体や亜臨界流体の溶解度を調整することができる。エントレーナーとして用いる溶媒には特に制限はなく、目的に応じて適宜選択することができる。たとえば、メタノール、エタノール、アセトン、酢酸エチル、プロパノール、アンモニア、メラミン、尿素、チオエチレングリコール、一酸化炭素、窒素、水、エタン、プロパンなどが挙げられるが、これに限定されるわけではない。
本発明においては導電性支持体上に少なくとも感光層と表面保護層を有する電子写真感光体において、該表面保護層が少なくともラジカル重合性化合物を光硬化することにより形成された後、該表面保護層に電荷輸送性化合物を含む超臨界流体及び/または亜臨界流体を接触させることで架橋表面保護層中に電荷輸送性化合物を注入する。
具体的には電子写真感光体が固定された高圧セル中に電荷輸送性化合物を含有する超臨界流体または亜臨界流体を導入し、両者を接触させることで行なう。この処理によって架橋表面保護層中に超臨界流体または亜臨界流体が入り込み、架橋膜を可塑化することにより架橋膜の粘性が低下し、超臨界流体または亜臨界流体中に溶解している電荷輸送性化合物が架橋表面層中に入り込むことで電荷輸送性化合物が注入される。架橋膜中に取り込まれた電荷輸送性化合物は粘性が低下した架橋膜中を比較的速く拡散することができるため、架橋膜深部に至るまで電荷輸送性化合物を注入することができる。
本発明に記載している架橋表面保護層と電荷輸送性化合物を含有した超臨界流体及び/または亜臨界流体の接触とは、両者が物理的に接触していれば形態は特に限定されない。たとえば高圧セル中に一定量の超臨界流体または亜臨界流体を導入した後封止し、所定時間経過後に超臨界流体または亜臨界流体を高圧セルから取り除くことで電子写真感光体を取り出しても良いし、高圧セル中に超臨界流体または亜臨界流体を連続的に供給、排出し、所定時間経過後に電子写真感光体を取り出しても良い。前者のプロセスでは高圧セル中に導入される電荷輸送性化合物の量は、超臨界流体または亜臨界流体中に含まれる量のみであり、電子写真感光体内部と超臨界流体または亜臨界流体中との電荷輸送性化合物の濃度勾配は経時で小さくなり、注入速度も濃度勾配の減少に従って小さくなる。結果として、架橋表面層中への電荷輸送性化合物の注入速度は比較的小さいといった欠点がある一方で、製造設備が比較的単純で安価に電子写真感光体を製造することができる。後者のプロセスでは、架橋表面層には一定濃度の超臨界流体または亜臨界流体が供給されるため、架橋表面層内部と超臨界流体または亜臨界流体中の電荷輸送性化合物の濃度勾配は前者のプロセスと比較して大きくなることから、短時間で所望量の電荷輸送性化合物を注入することが可能である。しかしながら、超臨界流体または亜臨界流体を循環させる装置(処理容器としての耐圧性ベッセル入口に設けられる複数ステップ例えば2〜4ステップの昇圧手段、除熱手段、出口に設けられる複数ステップの降圧手段、等を含む)が必要であること、さらに超臨界流体または亜臨界流体中の電荷輸送性化合物の濃度を制御する装置が必要であることから、比較的大がかりな製造装置を要するといった欠点が挙げられる。本願発明においてはいずれのプロセスも適用可能であり、目的に応じて適宜選択することが可能である。
超臨界流体または亜臨界流体中の電荷輸送性化合物の含有量としては0.5g/L以上であることが良く、好ましくは1g/L以上である。0.5g/Lを下回る場合は、架橋表面層中への電荷輸送性化合物の注入速度が遅く、所望の電子写真感光体を得るために要する時間が長くなる。
架橋表面保護層に電荷輸送性化合物を含有する超臨界流体または亜臨界流体を接触させる時間は、電荷輸送性化合物の注入速度、架橋表面層膜厚によって適宜決定すると良い。
また、エントレーナー効果が期待できる溶媒以外に、架橋表面層中に含有させたいレベリング剤や酸化防止剤などの添加剤を超臨界流体または亜臨界流体中に予め溶解させておいても良い。これによって、電荷輸送性化合物と同時にこれらの添加剤を注入することが可能である。また予め架橋表面層に含有されている物質の除去を抑制することを目的として、含有化合物を超臨界流体または亜臨界流体中に予め溶解させておいても良い。
本発明に記載の架橋表面層は熱により変質・分解することがあることから、本発明に記載の電荷輸送性化合物を架橋表面層中に注入する工程での温度は好ましくは30℃以上140℃以下、さらに好ましくは30℃以上100℃以下が良い。30℃を下回る場合には超臨界流体または亜臨界流体の溶解性・拡散性が低いために電荷輸送性化合物を架橋表面層中に注入することが困難となる場合が多く、また、140℃を上回る場合には、架橋表面層の構成成分の変性・分解が生じたり、電子写真感光体が機能分離型積層感光体である場合には隣接層に含まれる構成成分のしみ出しなどの原因になるため好ましくない。
より効率的に電荷輸送性化合物を架橋表面層中に注入するためには、温度条件を電荷輸送性化合物の軟化点よりも5℃以上高い温度条件で行なうことが好ましい。この場合、超臨界流体または亜臨界流体中で電荷輸送性化合物が溶融することにより、流体中の濃度が均一になりやすい。この場合、超臨界流体または亜臨界流体中で粘性の下がった架橋表面層中に電荷輸送性化合物が入り込みやすい状態となる。本現象の理由はまだ明確となっていないが、超臨界流体中または亜臨界流体中の電荷輸送性化合物の濃度が飽和状態以上であり、溶け残っていたとしても、流体中で比較的均一な状態であり、架橋表面層中に電荷輸送性化合物が注入されることで流体中の電荷輸送性化合物の濃度が低下したとしても、流体中に均一に分散している電荷輸送性化合物が速やかに流体中に溶解することで、流体中の電荷輸送性化合物の濃度が飽和状態を維持するためと考えられる。
次に、本発明の電子写真感光体の構成を図面に沿って説明する。
図1は、本発明の電子写真感光体の構成を表わす断面図であり、導電性支持体(41)上に、感光層(43)と保護層(48)が設けられている。
図2は、本発明の電子写真感光体の別の構成例を示す断面図であり、導電性支持体(41)上に、電荷発生層(45)、電荷輸送層(47)と保護層(48)が設けられている。
図3は、本発明の更に別の構成を表わす断面図であり、導電性支持体(41)上に、中間層(49)、電荷発生層(45)、電荷輸送層(47)と保護層(48)が設けられている。
<導電性支持体について>
導電性支持体(41)としては、体積抵抗1010Ω・cm以下の導電性を示すもの、例えば、アルミニウム、ニッケル、クロム、ニクロム、銅、金、銀、白金などの金属、酸化スズ、酸化インジウムなどの金属酸化物を蒸着またはスパッタリングにより、フィルム状もしくは円筒状のプラスチック、紙に被覆したもの、あるいはアルミニウム、アルミニウム合金、ニッケル、ステンレスなどの板およびそれらを押し出し、引き抜きなどの工法で素管化後、切削、超仕上げ、研摩などの表面処理を施した管などを使用することができる。また、特開昭52−36016号公報に開示されたエンドレスニッケルベルト、エンドレスステンレスベルトも導電性支持体として用いることができる。
この他、上記支持体上に導電性粉体を適当な結着樹脂に分散して塗工したものについても、本発明の導電性支持体として用いることができる。
この導電性粉体としては、カーボンブラック、アセチレンブラック、また、アルミニウム、ニッケル、鉄、ニクロム、銅、亜鉛、銀などの金属粉、あるいは導電性酸化スズ、ITOなどの金属酸化物粉体などが挙げられる。また、同時に用いられる結着樹脂には、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂などの熱可塑性、熱硬化性樹脂または光硬化性樹脂が挙げられる。このような導電性層は、これらの導電性粉体と結着樹脂を適当な溶剤、例えば、テトラヒドロフラン、ジクロロメタン、メチルエチルケトン、トルエンなどに分散して塗布することにより設けることができる。
さらに、適当な円筒基体上にポリ塩化ビニル、ポリプロピレン、ポリエステル、ポリスチレン、ポリ塩化ビニリデン、ポリエチレン、塩化ゴム、テフロン(登録商標)などの素材に前記導電性粉体を含有させた熱収縮チューブによって導電性層を設けてなるものも、本発明の導電性支持体として良好に用いることができる。
また、これらの中でも陽極酸化皮膜処理を簡便に行なうことのできるアルミニウムからなる円筒状支持体が最も良好に使用できる。ここでいうアルミニウムとは、純アルミニウム系あるいはアルミニウム合金のいずれをも含むものである。具体的には、JIS 1000番台、3000番台、5000番台、6000番台のアルミニウムあるいはアルミニウム合金が最も適している。陽極酸化皮膜は各種金属、各種合金を電解質溶液中において陽極酸化処理したものであるが、中でもアルミニウムもしくはアルミニウム合金を電解質溶液中で陽極酸化処理を行なったアルマイトと呼ばれる被膜が本発明に用いる感光体には最も適している。特に、反転現像(ネガ及びポジ現像)に用いた際に発生する点欠陥(黒ポチ、地汚れ)を防止する点で優れている。
陽極酸化処理は、クロム酸、硫酸、蓚酸、リン酸、硼酸、スルファミン酸などの酸性浴中において行なわれる。このうち、硫酸浴による処理が最も適している。一例を挙げると、硫酸濃度:10〜20%、浴温:5〜25℃、電流密度:1〜4A/dm、電解電圧:5〜30V、処理時間:5〜60分程度の範囲で処理が行なわれるが、これに限定するものではない。このように作製される陽極酸化皮膜は、多孔質であり、また絶縁性が高いため、表面が非常に不安定な状況である。このため、作製後の経時変化が存在し、陽極酸化皮膜の物性値が変化しやすい。これを回避するため、陽極酸化皮膜を更に封孔処理することが好ましい。封孔処理には、フッ化ニッケルや酢酸ニッケルを含有する水溶液に陽極酸化皮膜を浸漬する方法、陽極酸化皮膜を沸騰水に浸漬する方法、加圧水蒸気により処理する方法などがある。このうち、酢酸ニッケルを含有する水溶液に浸漬する方法が最も好ましい。封孔処理に引き続き、陽極酸化皮膜の洗浄処理が行なわれる。これは、封孔処理により付着した金属塩等の過剰なものを除去することが主な目的である。これが支持体(陽極酸化皮膜)表面に過剰に残存すると、この上に形成する塗膜の品質に悪影響を与えるだけでなく、一般的に低抵抗成分が残ってしまうため、逆に地汚れの発生原因にもなってしまう。洗浄は純水1回の洗浄でも構わないが、通常は多段階の洗浄を行なう。この際、最終の洗浄液が可能な限りきれい(脱イオンされた)ものであることが好ましい。また、多段階の洗浄工程のうち1工程に接触部材による物理的なこすり洗浄を施すことが好ましい。以上のようにして形成される陽極酸化皮膜の膜厚は、5〜15μm程度が好ましい。これより薄すぎる場合には陽極酸化皮膜としてのバリア性の効果が充分でなく、これより厚すぎる場合には電極としての時定数が大きくなりすぎて、残留電位の発生や感光体のレスポンスが低下する場合がある。
<中間層について>
本発明の感光体においては、導電性支持体と感光層(電荷発生層)との間に中間層を設けることができる。中間層は一般には樹脂を主成分とするが、これらの樹脂はその上に感光層を溶媒で塗布することを考えると、一般の有機溶剤に対して耐溶剤性の高い樹脂であることが好ましい。このような樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウム等の水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロン等のアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、フェノール樹脂、アルキッド−メラミン樹脂、エポキシ樹脂等、三次元網目構造を形成する硬化型樹脂等が挙げられる。また、中間層にはモアレ防止、残留電位の低減等のために酸化チタン、シリカ、アルミナ、酸化ジルコニウム、酸化スズ、酸化インジウム等で例示できる金属酸化物の微粉末顔料を加えてもよい。
これらの中間層は前述の感光層の如く適当な溶媒、塗工法を用いて形成することができる。更に本発明の中間層として、シランカップリング剤、チタンカップリング剤、クロムカップリング剤等を使用することもできる。この他、本発明の中間層には、Alを陽極酸化にて設けたものや、ポリパラキシリレン(パリレン)等の有機物やSiO、SnO、TiO、ITO、CeO等の無機物を真空薄膜作成法にて設けたものも良好に使用できる。このほかにも公知のものを用いることができる。中間層の膜厚は0〜5μmが適当である。
中間層は、感光体の帯電時に電極側に誘起される逆極性の電荷の感光層への注入を防止する機能と、レーザー光のようなコヒーレント光による書き込み時に生じるモアレを防止する機能の少なくとも2つの機能を有する。この機能を2つ以上の層に機能分離した機能分離型中間層は、本発明に用いられる感光体には有効な手段である。以下に、電荷ブロッキング層とモアレ防止層の機能分離型中間層について説明する。
電荷ブロッキング層は、感光体帯電時に電極(導電性支持体)に誘起される逆極性の電荷が、支持体から感光層に注入するのを防止する機能を有する層である。負帯電の場合には正孔注入防止、正帯電の場合には電子注入防止の機能を有する。電荷ブロッキング層としては、酸化アルミ層に代表される陽極酸化被膜、SiOに代表される無機系の絶縁層、金属酸化物のガラス質ネットワークから形成される層、ポリフォスファゼンからなる層、アミノシラン反応生成物からなる層、この他には絶縁性の結着剤樹脂からなる層、硬化性の結着剤樹脂からなる層等が挙げられる。中でも湿式塗工法で形成可能な絶縁性の結着樹脂あるいは硬化性の結着樹脂から構成される層が良好に使用できる。電荷ブロッキング層は、その上にモアレ防止層や感光層を積層するものであるから、これらを湿式塗工法で設ける場合には、これらの塗工溶媒により塗膜が侵されない材料あるいは構成からなることが肝要である。
使用できる結着剤樹脂としては、ポリアミド、ポリエステル、塩化ビニル−酢酸ビニル共重合体等の熱可塑性樹脂や熱硬化性樹脂例えば、活性水素(−OH基、−NH基、−NH基等の水素)を複数個含有する化合物とイソシアネート基を複数個含有する化合物及び/又はエポキシ基を複数個含有する化合物とを熱重合させた熱硬化性樹脂等も使用できる。この場合活性水素を複数個含有する化合物としては、例えばポリビニルブチラール、フェノキシ樹脂、フェノール樹脂、ポリアミド、ポリエステル、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、ヒドロキシエチルメタアクリレート基等の活性水素を含有するアクリル系樹脂等が挙げられる。イソシアネート基を複数個含有する化合物としては、たとえば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメタンジイソシアネート等とこれらのプレポリマー等が挙げられ、エポキシ基を複数有する化合物としては、ビスフェノールA型エポキシ樹脂等が挙げられる。中でも、成膜性、環境安定性、溶剤耐性の点などから、ポリアミドが最も良好に用いられる。その中でもN−メトキシメチル化ナイロンが最も好ましい。ポリアミド樹脂は、電荷の注入を抑制する効果が高い上に残留電位に与える影響が少ない。また、これらのポリアミド樹脂は、アルコール可溶性の樹脂であって、ケトン系溶媒には不溶性を示し、また浸積塗工においても均一な薄膜を形成することができ、塗工性に優れている。特に、この下引き層は残留電位上昇の影響を最小限にするために薄膜にする必要がある上、膜厚の均一性が要求されるため、塗工性は画質安定性において重要な意味を持っている。
しかし、一般にアルコール可溶性樹脂は湿度依存性が大きく、それにより低湿環境下では抵抗が高くなり残留電位上昇が、高湿環境下では抵抗が低くなり、帯電低下が引き起こされ、環境依存性が大きいことが大きな課題であった。しかし、N−メトキシメチル化ナイロンは、高い絶縁性を示し、導電性支持体から注入される電荷のブロッキング性に非常に優れている上、残留電位に与える影響が少なく、さらに環境依存性が大幅に低減され、画像形成装置の使用環境が変化しても常に安定した画質を維持することが可能であるため、下引き層を積層した場合に最も好適に用いられる。加えて、N−メトキシメチル化ナイロンを用いた場合には残留電位の膜厚依存性が小さく、そのため残留電位への影響を低減し、かつ高い地汚れ抑制効果を得ることが可能となる。
N−メトキシメチル化ナイロンにおけるメトキシメチル基の置換率は、特に限定されるものではないが、15mol%〜45mol%であることが好ましい。N−メトキシメチル化ナイロンを用いたことによる上記効果は、メトキシメチル化度によって影響され、メトキシメチル基の置換率が45mol%より高い場合には、湿度依存性が増加し、15mol%より低い場合はアルコール溶液としたときに白濁したりする傾向が見られ、塗工液の経時安定性がやや低下する場合がある。
また、オイルフリーアルキド樹脂とアミノ樹脂例えば、ブチル化メラミン樹脂等を熱重合させた熱硬化性樹脂、さらにまた、不飽和結合を有するポリウレタン、不飽和ポリエステル等の不飽和結合を有する樹脂と、チオキサントン系化合物、メチルベンジルフォルメート等の光重合開始剤との組合せ等の光硬化性樹脂も結着剤樹脂として使用できる。
また、整流性のある導電性高分子や、帯電極性に合わせてアクセプター(ドナー)性の樹脂・化合物などを加えて、基体からの電荷注入を制抑するなどの機能やPN接合機能を持たせても良い。
また、電荷ブロッキング層の膜厚は0.1μm以上2.0μm未満、好ましくは0.3μm以上2.0μm以下程度が適当である。電荷ブロッキング層が厚くなると、帯電と露光の繰返しによって、特に低温低湿で残留電位の上昇が著しく、また、膜厚が薄すぎるとブロッキング性の効果が小さくなる、また電荷ブロッキング層には、必要に応じて硬化(架橋)に必要な薬剤、溶剤、添加剤、硬化促進材等を加えて、常法により、ブレード塗工、浸漬塗工法、スプレーコート、ビートコート、ノズルコート法などにより基体上に形成される。塗布後は乾燥や加熱、光等の硬化処理により乾燥あるいは硬化させる。
モアレ防止層は、レーザー光のようなコヒーレント光による書き込みを行なう際に、感光層内部での光干渉によるモアレ像の発生を防止する機能を有する層である。基本的には、前記書き込み光の光散乱を起こす機能を有する。このような機能を発現するために、モアレ防止層は屈折率の大きな材料を有することが有効である。一般には、無機顔料とバインダー樹脂を含有し、無機顔料がバインダー樹脂に分散された構成からなる。特に、無機顔料の中でも白色の顔料が有効に使用され、例えば、酸化チタン、フッ化カルシウム、酸化カルシウム、酸化珪素、酸化マグネシウム、酸化アルミニウムなどが良好に用いられる。中でも、隠蔽力の大きな酸化チタンが最も有効に使用できる。
また、機能分離型中間層を有する感光体では支持体からの電荷注入を電荷ブロッキング層にて防止するものであるから、モアレ防止層においては少なくとも感光体表面に帯電される電荷とは同極性の電荷を移動できる機能を有することが残留電位防止の観点から好ましい。このため、例えば負帯電型感光体の場合、モアレ防止層には電子伝導性を付与することが望ましく、使用する無機顔料に電子伝導性を有するものを使用するか、導電性のものを使用することが望ましい。あるいは、モアレ防止層に電子伝導性の材料(例えば、アクセプター)などを使用することは本発明の効果を一層顕著なものにするものである。
バインダー樹脂としては電荷ブロッキング層と同様のものを使用できるが、モアレ防止層の上に感光層(電荷発生層、電荷輸送層)を積層することを考慮すると、感光層(電荷発生層、電荷輸送層)の塗工溶媒に侵されないことが肝要である。
バインダー樹脂としては、熱硬化型樹脂が良好に使用される。特に、アルキッド/メラミン樹脂の混合物が最も良好に使用される。この際、アルキッド/メラミン樹脂の混合比は、モアレ防止層の構造及び特性を決定する重要な因子である。両者の比(重量比)が5/5〜8/2の範囲が良好な混合比の範囲として挙げることができる。5/5よりもメラミン樹脂がリッチであると、熱硬化の際に体積収縮が大きくなり塗膜欠陥を生じやすく、感光体の残留電位を大きくする方向にあり望ましくない。また、8/2よりもアルキッド樹脂がリッチであると、感光体の残留電位低減には効果があるものの、バルク抵抗が低くなりすぎて地汚れが悪くなる方向になり望ましくない。
モアレ防止層においては、無機顔料とバインダー樹脂の容積比が重要な特性を決定する。このため、無機顔料とバインダー樹脂の容積比が1/1乃至3/1の範囲であることが重要である。両者の容積比が1/1未満である場合には、モアレ防止能が低下するだけでなく、繰り返し使用における残留電位の上昇が大きくなる場合が存在する。一方、容積比が3/1以上の領域ではバインダー樹脂における結着能が劣るだけでなく、塗膜の表面性が悪化し、上層の感光層の成膜性に悪影響を与える場合がある。この影響は感光層が積層タイプで構成され、電荷発生層のような薄層を形成する場合に深刻な問題になり得るものである。また容積比が3/1以上の場合には、無機顔料表面をバインダー樹脂が覆い尽くせない場合が存在し、電荷発生物質と直接接触することで、熱キャリア生成の確率が大きくなり、地汚れに対して悪影響を与える場合がある。
更に、モアレ防止層には、平均粒径の異なる2種類の酸化チタンを用いることで、導電性基体に対する隠蔽力を向上させモアレを抑制することが可能となるとともに、異常画像の原因となるピンホールをなくすことができる。このためには、用いる2種の酸化チタンの平均粒径の比が一定の範囲内(0.2<D2/D1≦0.5)にあることが重要である。本発明で規定する範囲外の粒径比の場合、すなわち平均粒径の大きな酸化チタン(T1)の平均粒径に対する他方の酸化チタン(T2)の平均粒径の比が小さすぎる場合(0.2≧D2/D1)は、酸化チタン表面での活性が増加し電子写真感光体としたときの静電的安定性が著しく損なわれるようになる。また、一方の酸化チタン(T1)の平均粒径に対する他方の酸化チタン(T2)の平均粒径の比が大きすぎる場合(D2/D1>0.5)は、導電性基体に対する隠蔽力が低下し、モアレや異常画像に対する抑制力が低下する。ここで言う平均粒径は、水系で強分散を行なったときに得られる粒度分布測定から得られる。
また、粒径の小さい方の酸化チタン(T2)の平均粒径(D2)の大きさが重要な因子であり、0.05μm<D2<0.20μmであることが重要である。0.05μm以下の場合には隠蔽力が低下し、モアレを発生させる場合がある。一方、0.20μm以上の場合には、モアレ防止層の酸化チタンの充填率を低下させ、地汚れ抑制効果が十分に発揮できない。
また、2種の酸化チタンの混合比率(重量比)も重要な因子である。T2/(T1+T2)が0.2よりも小さい場合には、酸化チタンの充填率がそれほど大きくなく、地汚れ抑制効果が十分に発揮できない。一方、0.8よりも大きな場合には、隠蔽力が低下し、モアレを発生させる場合がある。従って、0.2≦T2/(T1+T2)≦0.8であることが重要である。
また、モアレ防止層の膜厚は1〜10μm、好ましくは2〜5μmとするのが適当である。膜厚が1μm未満では効果の発現性が小さく、10μmを越えると残留電位の蓄積を生じるので望ましくない。
無機顔料は溶剤と結着剤樹脂と共に常法により、例えばボールミル、サンドミル、アトライラー等により分散し、また、必要に応じて硬化(架橋)に必要な薬剤、溶剤、添加剤、硬化促進剤等を加えて、常法により、ブレード塗工、浸漬塗工法、スプレーコート、ビートコート、ノズルコート法などにより基体上に形成される。塗布後は乾燥や加熱、光等の硬化処理により乾燥あるいは硬化させる。
<感光層について>
次に、感光層について説明する。感光層は電荷発生物質と電荷輸送物質を含む単層構成の感光層(図1参照)でも構わないが、電荷発生層と電荷輸送層で構成される積層型(図2、3参照)が感度、耐久性において優れた特性を示し、良好に使用される。説明の都合上、積層構成からなる感光層について先に述べる。
<積層構成からなる感光層について>
(電荷発生層について)
電荷発生層は、電荷発生物質を主成分とする層である。電荷発生物質としては、特に限定はなく、公知の材料を用いることができる。中でも、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニンは有用に用いることができる。特に、特開2001−19871号公報に記載の結晶型、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4゜のピークの間にピークを有さないチタニルフタロシアニン結晶が良好に用いられ、更に26.3°にピークを有さない結晶は有効に使用できる。更に、上記結晶型を有し、結晶合成時あるいは分散濾過処理により、平均粒子サイズを0.25μm以下にし、粗大粒子の存在しないチタニルフタロシアン結晶(特開2004−83859号公報、特開2004−78141号公報)は最も有用に使用できる。
電荷発生層は、前記電荷発生物質を必要に応じてバインダー樹脂とともに適当な溶剤中にボールミル、アトライター、サンドミル、超音波などを用いて分散し、これを導電性支持体上に塗布し、乾燥することにより形成される。
必要に応じて電荷発生層に用いられる結着樹脂としては、ポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリスルホン、ポリ−N−ビニルカルバゾール、ポリアクリルアミド、ポリビニルベンザール、ポリエステル、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリフェニレンオキシド、ポリアミド、ポリビニルピリジン、セルロース系樹脂、カゼイン、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。結着樹脂の量は、電荷発生物質100重量部に対し0〜500重量部、好ましくは10〜300重量部が適当である。
ここで用いられる溶剤としては、例えばイソプロパノール、アセトン、メチルエチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、エチルセルソルブ、酢酸エチル、酢酸メチル、ジクロロメタン、ジクロロエタン、モノクロロベンゼン、シクロヘキサン、トルエン、キシレン、リグロイン等が挙げられる。塗布液の塗工法としては、浸漬塗工法、スプレーコート、ビートコート、ノズルコート、スピナーコート、リングコート等の方法を用いることができる。電荷発生層の膜厚は、0.01〜5μm程度が適当であり、好ましくは0.1〜2μmである。
(電荷輸送層について)
電荷輸送層は、電荷輸送物質および結着樹脂を適当な溶剤に溶解ないし分散し、これを電荷発生層上に塗布、乾燥することにより形成できる。また、必要により可塑剤、レベリング剤、酸化防止剤等を添加することもできる。
電荷輸送物質には、正孔輸送物質と電子輸送物質とがある。正孔輸送物質としては、ポリ−N−ビニルカルバゾールおよびその誘導体、ポリ−γ−カルバゾリルエチルグルタメートおよびその誘導体、ピレン−ホルムアルデヒド縮合物およびその誘導体、ポリビニルピレン、ポリビニルフェナントレン、ポリシラン、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、モノアリールアミン誘導体、ジアリールアミン誘導体、トリアリールアミン誘導体、スチルベン誘導体、α−フェニルスチルベン誘導体、ベンジジン誘導体、ジアリールメタン誘導体、トリアリールメタン誘導体、9−スチリルアントラセン誘導体、ピラゾリン誘導体、ジビニルベンゼン誘導体、ヒドラゾン誘導体、インデン誘導体、ブタジエン誘導体、ピレン誘導体等、ビススチルベン誘導体、エナミン誘導体等その他公知の材料が挙げられる。これらの電荷輸送物質は単独、または2種以上混合して用いられる。
電子輸送物質としては、例えばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、2,6,8−トリニトロ−4H−インデノ〔1,2−b〕チオフェン−4−オン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキサイド、ベンゾキノン誘導体等の電子受容性物質が挙げられる。
結着樹脂としてはポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアレート、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂等の熱可塑性または熱硬化性樹脂が挙げられる。
電荷輸送物質の量は結着樹脂100重量部に対し、20〜300重量部、好ましくは40〜150重量部が適当である。また、電荷輸送層の膜厚は5〜100μm程度とすることが好ましい。
ここで用いられる溶剤としては、テトラヒドロフラン、ジオキサン、トルエン、ジクロロメタン、モノクロロベンゼン、ジクロロエタン、シクロヘキサノン、メチルエチルケトン、アセトンなどが用いられる。中でも、環境への負荷低減等の意図から、非ハロゲン系溶媒の使用は望ましいものである。具体的には、テトラヒドロフランやジオキソラン、ジオキサン等の環状エーテルやトルエン、キシレン等の芳香族系炭化水素、及びそれらの誘導体が良好に用いられる。
また、電荷輸送層には電荷輸送物質としての機能とバインダー樹脂の機能を持った高分子電荷輸送物質も良好に使用される。これら高分子電荷輸送物質から構成される電荷輸送層は耐摩耗性に優れたものである。高分子電荷輸送物質としては、公知の材料が使用できるが、特に、トリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートが良好に用いられる。中でも、式(I)〜(X)式で表わされる高分子電荷輸送物質が良好に用いられ、これらを以下に例示し、具体例を示す。
Figure 2008112078
式中、R、R、Rはそれぞれ独立して置換もしくは無置換のアルキル基又はハロゲン原子、Rは水素原子又は置換もしくは無置換のアルキル基、R、Rは置換もしくは無置換のアリール基、o、p、qはそれぞれ独立して0〜4の整数、k、jは組成を表わし、0.1≦k≦1、0≦j≦0.9、nは繰り返し単位数を表わし5〜5000の整数である。Xは脂肪族の2価基、環状脂肪族の2価基、または下記一般式で表わされる2価基を表わす。なお、(I)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 2008112078

101、R102は各々独立して置換もしくは無置換のアルキル基、アリール基またはハロゲン原子を表わす。l、mは0〜4の整数、Yは単結合、炭素原子数1〜12の直鎖状、分岐状もしくは環状のアルキレン基、−O−、−S−、−SO−、−SO−、−CO−、−CO−O−Z−O−CO−(式中Zは脂肪族の2価基を表わす。)または、
Figure 2008112078

(aは1〜20の整数、bは1〜2000の整数、R103、R104は置換または無置換のアルキル基又はアリール基を表わす)を表わす。ここで、R101とR102、R103とR104は、それぞれ同一でも異なってもよい。)
Figure 2008112078

式中、R,Rは置換もしくは無置換のアリール基、Ar,Ar,Arは同一又は異なるアリレン基を表わす。X,k,jおよびnは、(I)式の場合と同じである。なお、(II)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 2008112078
式中、R,R10は置換もしくは無置換のアリール基、Ar,Ar,Arは同一又は異なるアリレン基を表わす。X,k,jおよびnは、(I)式の場合と同じである。なお、(III)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 2008112078

式中、R11,R12は置換もしくは無置換のアリール基、Ar,Ar,Arは同一又は異なるアリレン基、pは1〜5の整数を表わす。X,k,jおよびnは、(I)式の場合と同じである。なお、(IV)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 2008112078
式中、R13,R14は置換もしくは無置換のアリール基、Ar10,Ar11,Ar12は同一又は異なるアリレン基、X,Xは置換もしくは無置換のエチレン基、又は置換もしくは無置換のビニレン基を表わす。X,k,jおよびnは、(VI)式の場合と同じである。なお、(V)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 2008112078

式中、R15,R16,R17,R18は置換もしくは無置換のアリール基、Ar13,Ar14,Ar15,Ar16は同一又は異なるアリレン基、Y,Y,Yは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わし同一であっても異なってもよい。X,k,jおよびnは、(VI)式の場合と同じである。なお、(VI)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 2008112078

式中、R19,R20は水素原子、置換もしくは無置換のアリール基を表わし,R19とR20は環を形成していてもよい。Ar17,Ar18,Ar19は同一又は異なるアリレン基を表わす。X,k,jおよびnは、(I)式の場合と同じである。なお、(VII)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 2008112078

式中、R21は置換もしくは無置換のアリール基、Ar20,Ar21,Ar22,Ar23は同一又は異なるアリレン基を表わす。X,k,jおよびnは、(I)式の場合と同じである。なお、(VIII)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 2008112078

式中、R22,R23,R24,R25は置換もしくは無置換のアリール基、Ar24,Ar25,Ar26,Ar27,Ar28は同一又は異なるアリレン基を表わす。X,k,jおよびnは、(I)式の場合と同じである。なお、(IX)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 2008112078

式中、R26,R27は置換もしくは無置換のアリール基、Ar29,Ar30,Ar31は同一又は異なるアリレン基を表わす。X,k,jおよびnは、(I)式の場合と同じである。なお、(X)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
また、電荷輸送層に使用される高分子電荷輸送物質として、上述の高分子電荷輸送物質の他に、電荷輸送層の成膜時には電子供与性基を有するモノマーあるいはオリゴマーの状態で、成膜後に硬化反応あるいは架橋反応をさせることで、最終的に2次元あるいは3次元の架橋構造を有する重合体も含むものである。
更に電荷輸送層の構成として、架橋構造からなる電荷輸送層も有効に使用される。架橋構造の形成に関しては、1分子内に複数個の架橋性官能基を有する反応性モノマーを使用し、光や熱エネルギーを用いて架橋反応を起こさせ、3次元の網目構造を形成するものである。この網目構造がバインダー樹脂として機能し、高い耐摩耗性を発現するものである。
また、上記反応性モノマーとして、全部もしくは一部に電荷輸送能を有するモノマーを使用することは非常に有効な手段である。このようなモノマーを使用することにより、網目構造中に電荷輸送部位が形成され、電荷輸送層としての機能を十分に発現することが可能となる。電荷輸送能を有するモノマーとしては、トリアリールアミン構造を有する反応性モノマーが有効に使用される。
このような網目構造を有する電荷輸送層は、耐摩耗性が高い反面、架橋反応時に体積収縮が大きく、あまり厚膜化するとクラックなどを生じる場合がある。このような場合には、電荷輸送層を積層構造として、下層(電荷発生層側)には低分子分散ポリマーの電荷輸送層を使用し、上層(表面側)に架橋構造を有する電荷輸送層を形成しても良い。
これら電子供与性基を有する重合体から構成される電荷輸送層、あるいは架橋構造を有する重合体は耐摩耗性に優れたものである。通常、電子写真プロセスにおいては、帯電電位(未露光部電位)は一定であるため、繰り返し使用により感光体の表面層が摩耗すると、その分だけ感光体にかかる電界強度が高くなってしまう。この電界強度の上昇に伴い、地汚れの発生頻度が高くなるため、感光体の耐摩耗性が高いことは、地汚れに対して有利である。これら電子供与性基を有する重合体から構成される電荷輸送層は、自身が高分子化合物であるため成膜性に優れ、低分子分散型高分子からなる電荷輸送層に比べ、電荷輸送部位を高密度に構成することが可能で電荷輸送能に優れたものである。このため、高分子電荷輸送物質を用いた電荷輸送層を有する感光体には高速応答性が期待できる。
その他の電子供与性基を有する重合体としては、公知単量体の共重合体や、ブロック重合体、グラフト重合体、スターポリマーや、また、例えば特開平3―109406号公報、特開2000―206723号公報、特開2001―34001号公報等に開示されているような電子供与性基を有する架橋重合体などを用いることも可能である。
本発明において電荷輸送層中に可塑剤やレベリング剤を添加してもよい。可塑剤としては、ジブチルフタレート、ジオクチルフタレートなど一般の樹脂の可塑剤として使用されているものがそのまま使用でき、その使用量は、結着樹脂に対して0〜30重量%程度が適当である。レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどのシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいは、オリゴマーが使用され、その使用量は結着樹脂に対して、0〜1重量%が適当である。
<単層構成からなる感光層について>
上記は感光層が積層構成の場合について述べたが、本発明においては感光層が単層構成でも構わない。感光層を単層構成とするためには、少なくとも上述の電荷発生物質とバインダー樹脂を含有する単一層を設けることで感光層は構成され、バインダー樹脂としては電荷発生層や電荷輸送層の説明の所に記載したものが良好に使用される。また、単層感光層には電荷輸送物質を併用することで、高い光感度、高いキャリア輸送特性、低い残留電位が発現され、良好に使用できる。この際、使用する電荷輸送物質は、感光体表面に帯電させる極性に応じて、正孔輸送物質、電子輸送物質の何れかが選択される。更に、上述した高分子電荷輸送物質もバインダー樹脂と電荷輸送物質の機能を併せ持つため、単層感光層には良好に使用される。
<保護層について>
本発明の電子写真感光体には、感光層保護の目的で、保護層が感光層の上に設けられる。近年、日常的にコンピュータの使用が行なわれるようになり、プリンターによる高速出力とともに、装置の小型化も望まれている。従って、保護層を設け、耐久性を向上させることによって、本発明の電気特性の極めて安定した感光体を有用に用いることができる。
本発明で使用できる保護層としては、少なくとも電荷輸送性構造を有しないラジカル重合性モノマーを硬化することにより形成されるものが用いられる。機械的耐久性の観点からラジカル重合性官能基の数は3つ以上が好ましく用いられる。つまり3官能以上のラジカル重合性モノマーを硬化することで3次元の網目構造が発達し、架橋密度が非常に高い高硬度且つ高弾性な表面層が得られ、かつ均一で平滑性も高く、高い耐摩耗性、耐傷性が達成される。この様に感光体表面の架橋密度すなわち単位体積あたりの架橋結合数を増加させることが重要であるが、硬化反応において瞬時に多数の結合を形成させるため体積収縮による内部応力が発生する。この内部応力は架橋型保護層の膜厚が厚くなるほど増加するため保護層全層を硬化させると、クラックや膜剥がれが発生しやすくなる。この現象は初期的に現れなくても、電子写真プロセス上で繰り返し使用され帯電、現像、転写、クリーニングのハザード及び熱変動の影響を受けることにより、経時で発生しやすくなることもある。
この問題を解決する方法としては、(1)架橋層及び架橋構造に高分子成分を導入する、(2)1官能及び2官能のラジカル重合性モノマーを多量に用いる、(3)柔軟性基を有する多官能モノマーを用いる、などの硬化樹脂層を柔らかくする方向性が挙げられるが、いずれも架橋層の架橋密度が希薄となり、飛躍的な耐摩耗性が達成されない。これに対し、本発明の感光体は、電荷輸送層上に3次元の網目構造が発達した架橋密度の高い保護層を好ましくは1μm以上、15μm以下の膜厚で設けることで、上記のクラックや膜剥がれが発生せず、且つ非常に高い耐摩耗性が達成される。かかる保護層の膜厚を2μm以上、10μm以下の膜厚にすることにより、さらに上記問題に対する余裕度が向上することに加え、更なる耐摩耗性向上に繋がる高架橋密度化の材料選択が可能となる。
本発明の感光体がクラックや膜剥がれを抑制できる理由としては、保護層を薄膜化できるため内部応力が大きくならないこと、下層に感光層もしくは電荷輸送層を有するため表面の保護層の内部応力を緩和できることなどによる。このため保護層に高分子材料を多量に含有させる必要がなく、この時生ずる、高分子材料とラジカル重合性組成物(ラジカル重合性モノマーや電荷輸送性構造を有するラジカル重合性化合物)の反応より生じた硬化物との不相溶が原因の傷やトナーフィルミングも起こりにくい。さらに、一般的には保護層全層にわたる厚膜を光エネルギー照射により硬化する場合、電荷輸送性構造による吸収から内部への光透過が制限され、硬化反応が十分に進行しない現象が起こることがあるが、本発明の保護層においては硬化終了後に電荷輸送性化合物を注入することから、これによる硬化阻害が全くなく、内部まで均一に硬化反応が進行し、表面と同様に内部でも高い耐摩耗性が維持される。さらにそれと同時に電荷輸送性化合物の劣化が極めて少なく、安定した電気特性を長期間の間維持することが可能となる。また、本発明の保護層の形成においては、電荷輸送性構造を有しないラジカル重合性モノマーに加え、電荷輸送性化合物(ラジカル重合性官能基の有無は問わないが、機械的耐久性の観点からはラジカル重合性官能基を有するものの方が好ましく使用できる)を含有することも可能である。ラジカル重合性官能基を有する電荷輸送性化合物としては硬化樹脂構造の歪みや、保護層の内部応力の観点から官能基数が少ない方が好ましく、1官能の電荷輸送性化合物が良好に用いることができる。
次に、本発明の保護層塗布液の構成材料について説明する。
本発明に用いられる電荷輸送性構造を有しないラジカル重合性モノマーとは、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しておらず、且つラジカル重合性官能基を有するモノマーを指す。このラジカル重合性官能基とは、炭素−炭素2重結合を有し、ラジカル重合可能な基であれば何れでもよい。これらラジカル重合性官能基としては、例えば、下記に示す1−置換エチレン官能基、1,1−置換エチレン官能基等が挙げられる。
(1)1−置換エチレン官能基としては、例えば以下の式で表わされる官能基が挙げられる。
CH=CH−X− ・・・・式10
(ただし、式10中、Xは、置換基を有していてもよいフェニレン基、ナフチレン基等のアリーレン基、置換基を有していてもよいアルケニレン基、−CO−基、−COO−基、−CON(R10)−基(R10は、水素、メチル基、エチル基等のアルキル基、ベンジル基、ナフチルメチル基、フェネチル基等のアラルキル基、フェニル基、ナフチル基等のアリール基を表わす。)、または−S−基を表わす。)
これらの官能基を具体的に例示すると、ビニル基、スチリル基、2−メチル−1,3−ブタジエニル基、ビニルカルボニル基、アクリロイルオキシ基、アクリロイルアミド基、ビニルチオエーテル基等が挙げられる。
(2)1,1−置換エチレン官能基としては、例えば以下の式で表わされる官能基が挙げられる。
CH=C(Y)−X− ・・・・式11
(ただし、式11中、Yは、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、ハロゲン原子、シアノ基、ニトロ基、メトキシ基あるいはエトキシ基等のアルコキシ基、−COOR11基(R11は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル、フェネチル基等のアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、または−CONR1213(R12およびR13は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル基、ナフチルメチル基、あるいはフェネチル基等のアラルキル基、または置換基を有していてもよいフェニル基、ナフチル基等のアリール基を表わし、互いに同一または異なっていてもよい。)、また、Xは上記式10のXと同一の置換基及び単結合、アルキレン基を表わす。ただし、Y、Xの少なくとも何れか一方がオキシカルボニル基、シアノ基、アルケニレン基、及び芳香族環である。)
これらの官能基を具体的に例示すると、α−塩化アクリロイルオキシ基、メタクリロイルオキシ基、α−シアノエチレン基、α−シアノアクリロイルオキシ基、α−シアノフェニレン基、メタクリロイルアミノ基等が挙げられる。
なお、これらX、X、Yについての置換基にさらに置換される置換基としては、例えばハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
これらのラジカル重合性官能基の中では、特にアクリロイルオキシ基、メタクリロイルオキシ基が有用であり、アクリロイルオキシ基を有する化合物は、例えば水酸基がその分子中にある化合物とアクリル酸(塩)、アクリル酸ハライド、アクリル酸エステルを用い、エステル反応あるいはエステル交換反応させることにより得ることができる。また、メタクリロイルオキシ基を有する化合物も同様にして得ることができる。また、ラジカル重合性官能基を2個以上有する単量体中のラジカル重合性官能基は、同一でも異なっても良い。
電荷輸送性構造を有しないラジカル重合性モノマーとしては、以下のものが例示されるが、これらの化合物に限定されるものではない。
すなわち、本発明において使用する上記ラジカル重合性モノマーとしては、例えば、2−エチルヘキシルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、テトラヒドロフルフリルアクリレート、2−エチルヘキシルカルビトールアクリレート、3−メトキシブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、イソアミルアクリレート、イソブチルアクリレート、メトキシトリエチレングリコールアクリレート、フェノキシテトラエチレングリコールアクリレート、セチルアクリレート、イソステアリルアクリレート、ステアリルアクリレート、スチレンモノマー、1,3−ブタンジオールジアクリレート、1,4−ブタンジオールジアクリレート、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジアクリレート、1,6−ヘキサンジオールジメタクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ビスフェノールA−EO変性ジアクリレート、ビスフェノールF−EO変性ジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート(TMPTA)、トリメチロールプロパントリメタクリレート、トリメチロールプロパンアルキレン変性トリアクリレート、トリメチロールプロパンエチレンオキシ変性(以後EO変性)トリアクリレート、トリメチロールプロパンプロピレンオキシ変性(以後PO変性)トリアクリレート、トリメチロールプロパンカプロラクトン変性トリアクリレート、トリメチロールプロパンアルキレン変性トリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート(PETTA)、グリセロールトリアクリレート、グリセロールエピクロロヒドリン変性(以後ECH変性)トリアクリレート、グリセロールEO変性トリアクリレート、グリセロールPO変性トリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート(DPHA)、ジペンタエリスリトールカプロラクトン変性ヘキサアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、アルキル化ジペンタエリスリトールペンタアクリレート、アルキル化ジペンタエリスリトールテトラアクリレート、アルキル化ジペンタエリスリトールトリアクリレート、ジメチロールプロパンテトラアクリレート(DTMPTA)、ペンタエリスリトールエトキシテトラアクリレート、リン酸EO変性トリアクリレート、2,2,5,5,−テトラヒドロキシメチルシクロペンタノンテトラアクリレートなどが挙げられ、これらは単独又は2種類以上を併用しても差し支えない。
また、本発明に用いられる電荷輸送性構造を有しないラジカル重合性モノマーとしては、保護層中に緻密な架橋結合を形成するために、該モノマー中の官能基数に対する分子量の割合(分子量/官能基数)は250以下が望ましい。また、この割合が250より大きい場合、架橋型保護層は柔らかく耐摩耗性が幾分低下する傾向が出てくるため、上記例示したモノマー等中、EO、PO、カプロラクトン等の変性基を有するモノマーにおいては、極端に長い変性基を有するものを単独で使用することは好ましくはない。また、保護層に用いられる電荷輸送性構造を有しないラジカル重合性モノマーの成分割合は、保護層全量に対し20〜80重量%、好ましくは30〜70重量%である。モノマー成分が20重量%未満では保護層の3次元架橋結合密度が少なく、従来の熱可塑性バインダー樹脂を用いた場合に比べ飛躍的な耐摩耗性向上が望めない傾向がある。また、80重量%を超えると電荷輸送性化合物の含有量が低下し、電気特性の劣化が生じる傾向がある。使用されるプロセスによって要求される電気特性や耐摩耗性が異なり、それに伴い本感光体の保護層の膜厚も異なるため一概には言えないが、両特性のバランスを考慮すると30〜70重量%の範囲が最も好ましい。
本発明の保護層に用いられる電荷輸送性化合物にはラジカル重合性官能基を有しないもの及び有するものいずれも良好に用いることができる。また電気特性的には光硬化時には電荷輸送性化合物は含まないことが好まれるが、さらなら機械的耐久性の向上等の高機能化を目的としては、ラジカル重合性官能基を有する電荷輸送性化合物も同時に光硬化してもよい。ラジカル重合性官能基を有しない電荷輸送性化合物としては電荷輸送層の部分で記載した電荷輸送材料が良好に用いられる。またラジカル重合性官能基を有するものとしては従来から知られているもの(特開2005−107401号公報、特開2006−011014号公報、特開2006−154796号公報)が良好に用いられるが、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しており、且つラジカル重合性官能基を有する化合物を指す。このラジカル重合性官能基としては、先の電荷輸送性構造を有しないラジカル重合性モノマーで示したものが挙げられ、特にアクリロイルオキシ基、メタクリロイルオキシ基が有用である。また、電荷輸送性構造としてはトリアリールアミン構造が高い効果を有し、中でも下記一般式(1)又は(2)の構造で示される化合物を用いた場合、感度、残留電位等の電気的特性が良好に持続される。
Figure 2008112078
Figure 2008112078

{式中、Rは水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基、置換基を有してもよいアリール基、シアノ基、ニトロ基、アルコキシ基、−COOR(Rは水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基)、ハロゲン化カルボニル基若しくはCONR(R及びRは水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基を示し、互いに同一であっても異なっていてもよい)を表わし、Ar、Arは置換もしくは無置換のアリーレン基を表わし、同一であっても異なってもよい。Ar、Arは置換もしくは無置換のアリール基を表わし、同一であっても異なってもよい。Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。Zは置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレンエーテル2価基、アルキレンオキシカルボニル2価基を表わす。m、nは0〜3の整数を表わす。}
以下に、一般式(1)、(2)の具体例を示す。
前記一般式(1)、(2)において、R1の置換基中、アルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基等、アリール基としては、フェニル基、ナフチル基等が、アラルキル基としては、ベンジル基、フェネチル基、ナフチルメチル基が、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等がそれぞれ挙げられ、これらは、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等により置換されていても良い。
1の置換基のうち、特に好ましいものは水素原子、メチル基である。
Ar3、Ar4は置換もしくは無置換のアリール基を表わし、アリール基としては縮合多環式炭化水素基、非縮合環式炭化水素基及び複素環基が挙げられる。
該縮合多環式炭化水素基としては、好ましくは環を形成する炭素数が18個以下のもの、例えば、ペンタニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、as−インダセニル基、s−インダセニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレル基、ピレニル基、クリセニル基、及びナフタセニル基等が挙げられる。
該非縮合環式炭化水素基としては、ベンゼン、ジフェニルエーテル、ポリエチレンジフェニルエーテル、ジフェニルチオエーテル及びジフェニルスルホン等の単環式炭化水素化合物の1価基、あるいはビフェニル、ポリフェニル、ジフェニルアルカン、ジフェニルアルケン、ジフェニルアルキン、トリフェニルメタン、ジスチリルベンゼン、1,1−ジフェニルシクロアルカン、ポリフェニルアルカン、及びポリフェニルアルケン等の非縮合多環式炭化水素化合物の1価基、あるいは9,9−ジフェニルフルオレン等の環集合炭化水素化合物の1価基が挙げられる。
複素環基としては、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、オキサジアゾール、及びチアジアゾール等の1価基が挙げられる。
また、前記Ar3、Ar4で表わされるアリール基は例えば以下に示すような置換基を有してもよい。
(1)ハロゲン原子、シアノ基、ニトロ基等。
(2)アルキル基、好ましくは、C〜C12とりわけC〜C、さらに好ましくはC〜Cの直鎖または分岐鎖のアルキル基であり、これらのアルキル基にはさらにフッ素原子、水酸基、シアノ基、C〜Cのアルコキシ基、フェニル基又はハロゲン原子、C〜Cのアルキル基もしくはC〜Cのアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチル基、エチル基、n−ブチル基、i−プロピル基、t−ブチル基、s−ブチル基、n−プロピル基、トリフルオロメチル基、2−ヒドロキエチル基、2−エトキシエチル基、2−シアノエチル基、2−メトキシエチル基、ベンジル基、4−クロロベンジル基、4−メチルベンジル基、4−フェニルベンジル基等が挙げられる。
(3)アルコキシ基(−OR)であり、Rは(2)で定義したアルキル基を表わす。具体的には、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、t−ブトキシ基、n−ブトキシ基、s−ブトキシ基、i−ブトキシ基、2−ヒドロキシエトキシ基、ベンジルオキシ基、トリフルオロメトキシ基等が挙げられる。
(4)アリールオキシ基であり、アリール基としてはフェニル基、ナフチル基が挙げられる。これは、C〜Cのアルコキシ基、C〜Cのアルキル基またはハロゲン原子を置換基として含有してもよい。具体的には、フェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、4−メトキシフェノキシ基、4−メチルフェノキシ基等が挙げられる。
(5)アルキルメルカプト基またはアリールメルカプト基であり、具体的にはメチルチオ基、エチルチオ基、フェニルチオ基、p−メチルフェニルチオ基等が挙げられる。
(6)
Figure 2008112078

(式中、R及びRは各々独立に水素原子、前記(2)で定義したアルキル基、またはアリール基を表わす。アリール基としては、例えばフェニル基、ビフェニル基又はナフチル基が挙げられ、これらはC〜Cのアルコキシ基、C〜Cのアルキル基またはハロゲン原子を置換基として含有してもよい。R及びRは共同で環を形成してもよい)
具体的には、アミノ基、ジエチルアミノ基、N−メチル−N−フェニルアミノ基、N,N−ジフェニルアミノ基、N,N−ジ(トリール)アミノ基、ジベンジルアミノ基、ピペリジノ基、モルホリノ基、ピロリジノ基等が挙げられる。
(7)メチレンジオキシ基、又はメチレンジチオ基等のアルキレンジオキシ基又はアルキレンジチオ基等が挙げられる。
(8)置換又は無置換のスチリル基、置換又は無置換のβ−フェニルスチリル基、ジフェニルアミノフェニル基、ジトリルアミノフェニル基等。
前記Ar、Arで表わされるアリーレン基としては、前記Ar、Arで表わされるアリール基から誘導される2価基である。
前記Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。
置換もしくは無置換のアルキレン基としては、C〜C12、好ましくはC〜C、さらに好ましくはC〜Cの直鎖または分岐鎖のアルキレン基であり、これらのアルキレン基にはさらにフッ素原子、水酸基、シアノ基、C〜Cのアルコキシ基、フェニル基又はハロゲン原子、C〜Cのアルキル基もしくはC〜Cのアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチレン基、エチレン基、n−ブチレン基、i−プロピレン基、t−ブチレン基、s−ブチレン基、n−プロピレン基、トリフルオロメチレン基、2−ヒドロキエチレン基、2−エトキシエチレン基、2−シアノエチレン基、2−メトキシエチレン基、ベンジリデン基、フェニルエチレン基、4−クロロフェニルエチレン基、4−メチルフェニルエチレン基、4−ビフェニルエチレン基等が挙げられる。
置換もしくは無置換のシクロアルキレン基としては、C〜Cの環状アルキレン基であり、これらの環状アルキレン基にはフッ素原子、水酸基、C〜Cのアルキル基、C〜Cのアルコキシ基を有していても良い。具体的にはシクロヘキシリデン基、シクロへキシレン基、3,3−ジメチルシクロヘキシリデン基等が挙げられる。
置換もしくは無置換のアルキレンエーテル基としては、エチレンオキシ、プロピレンオキシ、エチレングリコール、プロピレングリコール、ジエチレングリコール、テトラエチレングリコール、トリプロピレングリコールを表わし、アルキレンエーテル基アルキレン基はヒドロキシル基、メチル基、エチル基等の置換基を有してもよい。
ビニレン基は、
Figure 2008112078

で表わされ、R5は水素、アルキル基(前記(2)で定義されるアルキル基と同じ)、アリール基(前記Ar3、Ar4で表わされるアリール基と同じ)、aは1または2、bは1〜3を表わす。
前記Zは置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレンエーテル2価基、アルキレンオキシカルボニル2価基を表わす。
置換もしくは無置換のアルキレン基としては、前記Xのアルキレン基と同様なものが挙げられる。
置換もしくは無置換のアルキレンエーテル2価基としては、前記Xのアルキレンエーテル2価基が挙げられる。
アルキレンオキシカルボニル2価基としては、カプロラクトン2価変性基が挙げられる。
また、本発明の1官能の電荷輸送性構造を有するラジカル重合性化合物として更に好ましくは、下記一般式(3)の構造の化合物が挙げられる。
Figure 2008112078

(式中、o、p、qはそれぞれ0又は1の整数、Raは水素原子、メチル基を表わし、Rb、Rcは水素原子以外の置換基で炭素数1〜6のアルキル基を表わし、複数の場合は異なっても良い。s、tは0〜3の整数を表わす。Zaは単結合、メチレン基、エチレン基、を表わす。)
Figure 2008112078
上記一般式で表わされる化合物としては、Rb、Rcの置換基として、特にメチル基、エチル基である化合物が好ましい。
本発明で用いる上記一般式(1)及び(2)特に(3)の1官能のラジカル重合性官能基を有する電荷輸送性化合物は、炭素−炭素間の二重結合が両側に開放されて重合するため、末端構造とはならず、連鎖重合体中に組み込まれ、電荷輸送性構造を有しないラジカル重合性モノマーとの重合で架橋形成された重合体中では、高分子の主鎖中に存在し、かつ主鎖−主鎖間の架橋鎖中に存在(この架橋鎖には1つの高分子と他の高分子間の分子間架橋鎖と1つの高分子内で折り畳まれた状態の主鎖のある部位と主鎖中でこれから離れた位置に重合したモノマー由来の他の部位とが架橋される分子内架橋鎖とがある)するが、主鎖中に存在する場合であってもまた架橋鎖中に存在する場合であっても、鎖部分から懸下するトリアリールアミン構造は、窒素原子から放射状方向に配置する少なくとも3つのアリール基を有し、バルキーであるが、鎖部分に直接結合しておらず鎖部分からカルボニル基等を介して懸下しているため立体的位置取りに融通性ある状態で固定されているので、これらトリアリールアミン構造は重合体中で相互に程よく隣接する空間配置が可能であるため、分子内の構造的歪みが少なく、また、電子写真感光体の表面層とされた場合に、電荷輸送経路の断絶を比較的免れた分子内構造をとりうるものと推測される。
また本発明においては下記一般式(4)で示した特定のアクリル酸エステル化合物もラジカル重合性官能基を有する電荷輸送性化合物として良好に用いることができる。
Figure 2008112078

Ar5は置換又は無置換の芳香族炭化水素骨格からなる一価基または二価基を表わす。芳香族炭化水素としては、ベンゼン、ナフタレン、フェナントレン、ビフェニル、1,2,3,4−テトラヒドロナフタレン等が挙げられる。
置換基としては、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、ベンジル基、ハロゲン原子が挙げられる。また、上記アルキル基、アルコキシ基は、さらにハロゲン原子、フェニル基を置換基として有していても良い。
Ar6は、少なくとも1個の3級アミノ基を有する芳香族炭化水素骨格からなる一価基または二価基もしくは少なくとも1個の3級アミノ基を有する複素環式化合物骨格からなる一価基または二価基を表わすが、ここで、3級アミノ基を有する芳香族炭化水素骨格とは下記一般式(A)で表わされる。
Figure 2008112078

(式中、R13、R14はアシル基、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基を表わす。Arはアリール基を表わす。wは1〜3の整数を表わす。)
13、R14のアシル基としてはアセチル基、プロピオニル基、ベンゾイル基等が挙げられる。
13、R14の置換もしくは無置換のアルキル基はArの置換基で述べたアルキル基と同様である。
13、R14の置換もしくは無置換のアリール基は、フェニル基、ナフチル基、ビフェニリル基、ターフェニリル基、ピレニル基、フルオレニル基、9,9−ジメチル−2−フルオレニル基、アズレニル基、アントリル基、トリフェニレニル基、クリセニル基に加えて下記一般式(B)で表わされる基を挙げることができる。
Figure 2008112078

[式中、Bは、−O−、−S−、−SO−、−SO−、−CO−及び以下の2価基から選ばれる。
Figure 2008112078

(ここで、R21は、水素原子、Arで定義された置換もしくは無置換のアルキル基、アルコキシ基、ハロゲン原子、R13で定義された置換もしくは無置換のアリール基、アミノ基、ニトロ基、シアノ基を表わし、R22は、水素原子、Ar定義された置換もしくは無置換のアルキル基、R13で定義された置換もしくは無置換のアリール基を表わし、iは1〜12の整数、jは1〜3の整数を表わす。)]
21のアルコキシ基の具体例としてはメトキシ基、エトキシ基、n−プロポキシ基、 i−プロポキシ基、 n−ブトキシ基、 i−ブトキシ基、 s−ブトキシ基、 t−ブトキシ基、2−ヒドロキシエトキシ基、2−シアノエトキシ基、ベンジルオキシ基、4−メチルベンジルオキシ基、トリフルオロメトキシ基等が挙げられる。
21のハロゲン原子としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
21のアミノ基としては、ジフェニルアミノ基、ジトリルアミノ基、ジベンジルアミノ基、4−メチルベンジル基等が挙げられる。
Arのアリール基としてはフェニル基、ナフチル基、ビフェニリル基、ターフェニリル基、ピレニル基、フルオレニル基、9,9−ジメチル−2−フルオレニル基、アズレニル基、アントリル基、トリフェニレニル基、クリセニル基を挙げることができる。
Ar、R13、R14は、Arで定義されたアルキル基、アルコキシ基、ハロゲン原子を置換基として有していても良い。
また、3級アミノ基を有する複素環式化合物骨格としては、ピロール、ピラゾール、イミダゾール、トリアゾール、ジオキサゾール、インドール、イソインドール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾイソキサジン、カルバゾール、フェノキサジン等のアミン構造を有する複素環化合物が挙げられる。これらは、Arで定義されたアルキル基、アルコキシ基、ハロゲン原子を置換基として有していても良い。
、Bはアクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、アクリロイルオキシ基又はメタクリロイルオキシ基又はビニル基を有するアルキル基、アクリロイルオキシ基又はメタクリロイルオキシ基又はビニル基を有するアルコキシ基を表わす。アルキル基、アルコキシ基は、Arで述べたものが同様に適用される。これら、B、とBは、どちらか一方のみが存在し、両方の存在は除外される。
一般式(4)のアクリル酸エステル化合物においてより好ましい構造として前記一般式(5)の化合物を挙げることができる。
Figure 2008112078

式中、R、Rは、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、ハロゲン原子を表わし、Ar、Arは、置換もしくは無置換のアリール基またはアリレン基、置換又は無置換のベンジル基をあらわす。アルキル基、アルコキシ基、ハロゲン原子は前記Arで述べたものが同様に適用される。
アリール基は、R13、R14で定義されたアリール基と同様である。アリレン基は、そのアリール基から誘導される二価基である。
〜Bは、一般式(4)におけるB、Bと同様であり、B〜Bの内、どれか一つだけが存在し、二つ以上の存在は除外される。uは0〜5の整数、vは0〜4の整数を表わす。
特定のアクリル酸エステル化合物は次のような特徴を有する。スチルベン型共役構造を有した三級アミン化合物であり、発達した共役系を有している。こういった共役系の発達した電荷輸送性化合物を用いることで、架橋層界面部分での電荷注入性が非常に良好となり、さらに架橋結合間に固定化された場合でも分子間相互作用が阻害されにくく、電荷移動度に関しても良好な特性を有する。また、ラジカル重合性の高いアクリロイルオキシ基、又はメタクリロイルオキシ基を分子中に1個有しており、ラジカル重合時に速やかにゲル化するとともに過度な架橋歪を生じない。分子中のスチルベン構造部の二重結合が部分的に重合に参加し、しかもアクリロイルオキシ基、又はメタクリロイルオキシ基よりも重合性が低いために架橋反応に時間差が生じることで歪みを最大に大きくする事が無く、しかも分子中の二重結合を使用するために分子量当りの架橋反応数を上げることができるために、架橋密度を高めることができ、耐摩耗性のさらなる向上が実現可能となった。また、この二重結合は、架橋条件により重合度を調整することができ、容易に最適架橋膜を作製できる。この様なラジカル重合への架橋参加は、アクリル酸エステル化合物の特異的な特徴であり、前述したようなα−フェニルスチルベン型の構造では起こらない。
以上のことから、一般式(4)特に一般式(5)に示したラジカル重合性官能基を有する電荷輸送性化合物を用いることで良好な電気特性を維持しつつ、且つ、クラック等の発生を起さずに架橋密度の極めて高い膜を形成することができ、それにより感光体の諸特性を満足し、且つシリカ微粒子等が感光体に刺さることを防止し、白斑点等の画像欠陥を減らすことができる。
以下に本発明において用いられる電荷輸送性構造を有するラジカル重合性化合物の具体例を示すが、これらの構造の化合物に限定されるものではない。これら重合性化合物自体は従来から知られ(例えば特開2006−154796号公報、特開2006−221152号公報、特開2006−221157号公報等を参照)たものである。
Figure 2008112078
Figure 2008112078
Figure 2008112078
Figure 2008112078
Figure 2008112078
Figure 2008112078
Figure 2008112078
Figure 2008112078
Figure 2008112078
Figure 2008112078
Figure 2008112078
Figure 2008112078
また、本発明に用いられるラジカル重合性官能基を有する電荷輸送性化合物は、架橋表面層の電荷輸送性能を付与するために重要で、この成分は架橋表面層全量に対し20〜80重量%、好ましくは30〜70重量%になるように塗工液成分の含有量を調整する。この成分が20重量%未満では架橋表面層の電荷輸送性能が充分に保てず、繰り返しの使用で感度低下、残留電位上昇などの電気特性の劣化が現れる。また、80重量%を超えると電荷輸送構造を有しない3官能モノマーの含有量が低下し、架橋結合密度の低下を招き高い耐摩耗性が発揮されない。使用されるプロセスによって要求される電気特性や耐摩耗性が異なるため一概には言えないが、両特性のバランスを考慮すると30〜70重量%の範囲が最も好ましい。
本発明の電子写真感光体を構成する保護層は、塗工時の粘度調整、保護層の応力緩和、低表面エネルギー化や摩擦係数低減などの機能付与の目的で機能性モノマー及びラジカル重合性オリゴマーを併用することができる。これらの機能性モノマー及びラジカル重合性オリゴマーとしては公知のものが利用できる。機能性モノマーとしては、例えば、オクタフルオロペンチルアクリレート、2−パーフルオロオクチルエチルアクリレート、2−パーフルオロオクチルエチルメタクリレート、2−パーフルオロイソノニルエチルアクリレートなどのフッ素原子を置換したもの、特公平5−60503号公報、特公平6−45770号公報記載のシロキサン繰り返し単位:20〜70のアクリロイルポリジメチルシロキサンエチル、メタクリロイルポリジメチルシロキサンエチル、アクリロイルポリジメチルシロキサンプロピル、アクリロイルポリジメチルシロキサンブチル、ジアクリロイルポリジメチルシロキサンジエチルなどのポリシロキサン基を有するビニルモノマー、アクリレート及びメタクリレートが挙げられる。ラジカル重合性オリゴマーとしては、例えば、エポキシアクリレート系、ウレタンアクリレート系、ポリエステルアクリレート系オリゴマーが挙げられる。
但し、官能基数の低い1官能及び2官能のラジカル重合性モノマーやラジカル重合性オリゴマーを多量に含有させると架橋表面保護層の3次元架橋結合密度が実質的に低下し、耐摩耗性の低下を招く。このためこれらのモノマーやオリゴマーの含有量は架橋表面層全量に対して50重量%以下、好ましくは30重量%以下である。
また、本発明の保護層は少ラジカル重合性化合物を光硬化することにより形成された後、該表面保護層に電荷輸送性化合物を含む超臨界流体及び/または亜臨界流体を接触させることで得られるが、必要に応じてこの光硬化時の反応効率向上を目的として保護層塗布液中に重合開始剤を含有させても良い。重合開始剤としては従来から知られている熱重合開始剤および光重合開始剤が良好に使用できる。
熱重合開始剤としては、2,5−ジメチルヘキサン−2,5−ジヒドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルクミルパーオキサイド、2,5−ジメチル−2,5−ジ(パーオキシベンゾイル)ヘキシン−3、ジ−t−ブチルベルオキサイド、t−ブチルヒドロベルオキサイド、クメンヒドロベルオキサイド、ラウロイルパーオキサイド、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシ)プロパンなどの過酸化物系開始剤、アゾビスイソブチルニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル、アゾビスイソブチルアミジン塩酸塩、4,4’−アゾビス−4−シアノ吉草酸などのアゾ系開始剤が挙げられる。
光重合開始剤としては、ジエトキシアセトフェノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2−メチル−2−モルフォリノ(4−メチルチオフェニル)プロパン−1−オン、1−フェニル−1,2−プロパンジオン−2−(o−エトキシカルボニル)オキシム、などのアセトフェノン系またはケタール系光重合開始剤、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、などのベンゾインエーテル系光重合開始剤、ベンゾフェノン、4−ヒドロキシベンゾフェノン、o−ベンゾイル安息香酸メチル、2−ベンゾイルナフタレン、4−ベンゾイルビフェニル、4−ベンゾイルフェニールエーテル、アクリル化ベンゾフェノン、1,4−ベンゾイルベンゼン、などのベンゾフェノン系光重合開始剤、2−イソプロピルチオキサントン、2−クロロチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジクロロチオキサントン、などのチオキサントン系光重合開始剤、その他の光重合開始剤としては、エチルアントラキノン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、2,4,6−トリメチルベンゾイルフェニルエトキシホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス(2,4−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキサイド、メチルフェニルグリオキシエステル、9,10−フェナントレン、アクリジン系化合物、トリアジン系化合物、イミダゾール系化合物、が挙げられる。また、光重合促進効果を有するものを単独または上記光重合開始剤と併用して用いることもできる。例えば、トリエタノールアミン、メチルジエタノールアミン、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミル、安息香酸(2−ジメチルアミノ)エチル、4,4’−ジメチルアミノベンゾフェノン、などが挙げられる。
これらの重合開始剤は1種又は2種以上を混合して用いてもよい。重合開始剤の含有量は、ラジカル重合性を有する総含有物100重量部に対し、0.5〜40重量部、好ましくは1〜20重量部である。
更に、本発明の保護層形成用塗工液は必要に応じて各種可塑剤(応力緩和や接着性向上の目的)、レベリング剤、ラジカル反応性を有しない低分子電荷輸送物質などの添加剤が含有できる。これらの添加剤は公知のものが使用可能であり、可塑剤としてはジブチルフタレート、ジオクチルフタレート等の一般の樹脂に使用されているものが利用可能で、その使用量は塗工液の総固形分に対し20重量%以下、好ましくは10重量%以下に抑えられる。また、レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいはオリゴマーが利用でき、その使用量は塗工液の総固形分に対し3重量%以下が適当である。
本発明の保護層は、少なくとも上記の電荷輸送性構造を有しないラジカル重合性モノマーを含有する塗工液を前述の感光層あるいは電荷輸送層上に塗布及び光硬化した後、電荷輸送性化合物を含む超臨界流体及び/または亜臨界流体を接触させることにより形成されるが、かかる塗工液はラジカル重合性モノマーが液体である場合、これに他の成分を溶解して塗布することも可能であるが、必要に応じて溶媒により希釈して塗布される。このとき用いられる溶媒としては、メタノール、エタノール、プロパノール、ブタノールなどのアルコール系、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系、酢酸エチル、酢酸ブチルなどのエステル系、テトラヒドロフラン、ジオキサン、プロピルエーテルなどのエーテル系、ジクロロメタン、ジクロロエタン、トリクロロエタン、クロロベンゼンなどのハロゲン系、ベンゼン、トルエン、キシレンなどの芳香族系、メチルセロソルブ、エチルセロソルブ、セロソルブアセテートなどのセロソルブ系などが挙げられる。これらの溶媒は単独または2種以上を混合して用いてもよい。溶媒による希釈率は組成物の溶解性、塗工法、目的とする膜厚により変わり、任意である。塗布は、浸漬塗工法やスプレーコート、ビードコート、リングコート法などを用いて行なうことができる。
本発明においては、架橋表面保護層の塗工液を塗布後、外部から光エネルギーを与え硬化させ架橋表面層を形成するものであるが、このとき用いられる光エネルギーとしては主に紫外光に発光波長をもつ高圧水銀灯やメタルハライドランプなどのUV照射光源が利用できるが、ラジカル重合性含有物や光重合開始剤の吸収波長に合わせ可視光光源の選択も可能である。照射光量は50mW/cm以上、好ましくは500mW/cm以上、より好ましくは1000mW/cm以上である。1000mW/cmより強い照射光を用いることで重合反応の進行速度が大幅に速くなり、より均一な架橋表面層を形成することが可能となる。均一な重合反応を行ない、一様な架橋表面層を構築するためには照度の範囲としては被照射物上の照度が最大となる場所での照度を100%とすると、小さくても70%以上、好ましくは80%以上、より好ましくは90%以上の範囲とすることで照度ムラが少ない、均一な特性を有する架橋表面層を実現できる。
<画像形成方法及び装置について>
次に、図面を用いて本発明の画像形成装置を詳しく説明する。
図4は、本発明の画像形成プロセスおよび画像形成装置を説明するための概略図であり、下記に示すような変形例も本発明の範疇に属するものである。
図4において、感光体(21)は導電性支持体上に少なくとも感光層と特定の保護層が設けられてなり、感光層には前記一般式(1)で表わされる電荷輸送材料を含有してなる。感光体はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであっても良い。帯電ローラ(23)、転写前チャージャ(27)、転写チャージャ(30)、分離チャージャ(31)、クリーニング前チャージャ(33)には、コロトロン、スコロトロン、固体帯電器(ソリッド・ステート・チャージャ)、帯電ローラ、転写ローラを始めとする公知の手段が用いられる。
これらの帯電方式のうち、特に接触帯電方式、あるいは非接触の近接配置方式が望ましい。接触帯電方式においては帯電効率が高くオゾン発生量が少ない、装置の小型化が可能である等のメリットを有する。ここでいう接触方式の帯電部材とは、感光体表面に帯電部材の表面が接触するタイプのものであり、帯電ローラ、帯電ブレード、帯電ブラシの形状がある。中でも帯電ローラや帯電ブラシが良好に使用される。
また、近接配置した帯電部材とは、感光体表面と帯電部材表面の間に200μm以下の空隙(ギャップ)を有するように非接触状態で近接配置したタイプのものである。空隙の距離から、コロトロン、スコロトロンに代表される公知の帯電器とは区別されるものである。本発明において使用される近接配置された帯電部材は、感光体表面との空隙を適切に制御できる機構のものであればいかなる形状のものでも良い。例えば、感光体の回転軸と帯電部材の回転軸を機械的に固定して、適正ギャップを有するような配置にすればよい。中でも、帯電ローラの形状の帯電部材を用い、帯電部材の非画像形成部両端にギャップ形成部材を配置して、この部分のみを感光体表面に当接させ、画像形成領域を非接触配置させる、あるいは感光体非画像形成部両端ギャップ形成部材を配置して、この部分のみを帯電部材表面に当接させ、画像形成領域を非接触配置させる様な方法が、簡便な方法でギャップを安定して維持できる方法である。特に特開2002−148904号公報、特開2002−148905号公報に記載された方法は良好に使用できる。帯電部材側にギャップ形成部材を配置した近接帯電機構の一例を図5に示す。前記方式を用いることで、帯電効率が高くオゾン発生量が少ない、装置の小型化が可能、さらには、トナー等による汚れが生じない、接触による機械的摩耗が発生しない等の利点を有していることから良好に使用される。さらに印加方式としては、交流重畳を用いることでより帯電ムラが生じにくい等の利点を有し、良好に使用できる。
このような接触方式の帯電部材あるいは非接触帯電方式の帯電部材を用いた場合、感光体の絶縁破壊を生じやすいという欠点を有している。しかしながら、本発明に用いられる感光体は、電荷ブロッキング層とモアレ防止層の積層構成からなる中間層を有し、更に感光層には電荷発生物質の粗大粒子が含有されていないため、感光体の耐圧性が極めて高い。このため、感光体の絶縁破壊に対する耐性が高く、上記帯電部材のメリット(帯電ムラ防止)が生かせるものである。
このような帯電部材により感光体に帯電が施されるが、通常の画像形成装置においては、感光体に起因する地汚れが発生し易いため、感光体にかかる電界強度は低めに設定される(40V/μm以下、好ましくは30V/μm以下)。これは、地汚れの発生が電界強度に依存し、電界強度が上昇すると地汚れ発生確率が上昇するためである。しかしながら、感光体にかかる電界強度を低下させることは、光キャリア発生効率を低下させ、光感度を低下させる。また、感光体表面と導電性支持体との間にかかる電界強度が低下するため、感光層で生成する光キャリアの直進性が低下し、クローン反発による拡散が大きくなり、結果として解像度の低下を生じる。一方、本発明の電子写真感光体を用いることにより、地汚れ発生確率を極端に低下させることができるため、電界強度を必要以上に低下させる必要はなくなり、40V/μm以上の電界強度下でも使用できるようになる。このため、感光体光減衰におけるゲイン量を十分に確保でき、後述の現像(ポテンシャル)に対しても大きな余裕度を生み出し、解像度も低下させることなく現像ができるようになる。
また、画像露光部(25)には、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの高輝度を確保できる光源が使用される。
除電ランプ(22)等の光源には、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの発光物全般を用いることができる。そして、所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。
これらの光源のうち、発光ダイオード、及び半導体レーザーは照射エネルギーが高く、また600〜800nmの長波長光を有するため、前述の電荷発生材料であるフタロシアニン顔料が高感度を示すことから良好に使用される。かかる光源等は、図4に示される工程の他に光照射を併用した転写工程、除電工程、クリーニング工程、あるいは前露光などの工程を設けることにより、感光体に光が照射される。
さて、現像ユニット(26)により感光体(21)上に現像されたトナーは、転写紙(29)に転写されるが、全部が転写されるわけではなく、感光体(21)上に残存するトナーも生ずる。このようなトナーは、ファーブラシ(34)およびブレード(35)により、感光体より除去される。クリーニングは、クリーニングブラシだけで行なわれることもあり、クリーニングブラシにはファーブラシ、マグファーブラシを始めとする公知のものが用いられる。
電子写真感光体に正(負)帯電を施し、画像露光を行なうと、感光体表面上には正(負)の静電潜像が形成される。これを負(正)極性のトナー(検電微粒子)で現像すれば、ポジ画像が得られ、また正(負)極性のトナーで現像すれば、ネガ画像が得られる。かかる現像手段には、公知の方法が適用されるし、また、除電手段にも公知の方法が用いられる。
図6には、本発明による電子写真プロセスの別の例を示す。感光体(61)は導電性支持体上に少なくとも感光層と特定の保護層が設けられてなり、感光層には前記一般式(1)で表わされる電荷輸送材料を含有してなる。駆動ローラ(62a),(62b)により駆動され、帯電器(63)による帯電、光源(64)による像露光、現像(図示せず)、帯電器(65)を用いる転写、光源(66)によるクリーニング前露光、ブラシ(67)によるクリーニング、光源(68)による除電が繰返し行なわれる。
以上の図示した電子写真プロセスは、本発明における実施形態を例示するものであって、もちろん他の実施形態も可能である。例えば、図6において支持体側よりクリーニング前露光を行なっているが、これは感光層側から行なってもよいし、また、除電光の照射を支持体側から行なってもよい。
一方、光照射工程は、像露光、クリーニング前露光、除電露光が図示されているが、他に転写前露光、像露光のプレ露光、およびその他公知の光照射工程を設けて、感光体に光照射を行なうこともできる。
以上に示すような画像形成手段は、複写装置、ファクシミリ、プリンター内に固定して組み込まれていてもよいが、プロセスカートリッジの形でそれら装置内に組み込まれてもよい。プロセスカートリッジとは、感光体を内蔵し、他に帯電手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段等を含んだ1つの装置(部品)である。プロセスカートリッジの形状等は多く挙げられるが、一般的な例として、図7に示すものが挙げられる。感光体(76)は導電性支持体上に少なくとも感光層と特定の保護層が設けられてなり、感光層には前記一般式(1)で表わされる電荷輸送材料を含有してなる。
図8は、本発明のタンデム方式のフルカラー電子写真装置を説明するための概略図であり、下記するような変形例も本発明の範疇に属するものである。
図8において、符号(1C),(1M),(1Y),(1K)はドラム状の感光体であり、感光体は導電性支持体上に少なくとも感光層と特定の保護層が設けられてなり、感光層には前記一般式(1)で表わされる電荷輸送材料を含有してなる。
この感光体(1C),(1M),(1Y),(1K)は図中の矢印方向に回転し、その周りに少なくとも回転順に帯電部材(2C),(2M),(2Y),(2K)、現像部材(4C),(4M),(4Y),(4K)、クリーニング部材(5C),(5M),(5Y),(5K)が配置されている。帯電部材(2C),(2M),(2Y),(2K)は、感光体表面を均一に帯電するための帯電装置を構成する帯電部材である。この帯電部材(2C),(2M),(2Y),(2K)と現像部材(4C),(4M),(4Y),(4K)の間の感光体表面側より、図示しない露光部材からのレーザー光(3C),(3M),(3Y),(3K)が照射され、感光体(1C),(1M),(1Y),(1K)に静電潜像が形成されるようになっている。そして、このような感光体(1C),(1M),(1Y),(1K)を中心とした4つの画像形成要素(6C),(6M),(6Y),(6K)が、転写材搬送手段である転写搬送ベルト(10)に沿って並置されている。転写搬送ベルト(10)は各画像形成ユニット(6C),(6M),(6Y),(6K)の現像部材(4C),(4M),(4Y),(4K)とクリーニング部材(5C),(5M),(5Y),(5K)の間で感光体(1C),(1M),(1Y),(1K)に当接しており、転写搬送ベルト(10)の感光体側の裏側に当たる面(裏面)には転写バイアスを印加するための転写ブラシ(11C),(11M),(11Y),(11K)が配置されている。各画像形成要素(6C),(6M),(6Y),(6K)は現像装置内部のトナーの色が異なることであり、その他は全て同様の構成となっている。
図8に示す構成のカラー電子写真装置において、画像形成動作は次のようにして行なわれる。まず、各画像形成要素(6C),(6M),(6Y),(6K)において、感光体(1C),(1M),(1Y),(1K)が矢印方向(感光体と連れ周り方向)に回転する帯電部材(2C),(2M),(2Y),(2K)により帯電され、次に感光体の外側に配置された露光部(図示しない)でレーザー光(3C),(3M),(3Y),(3K)により、作成する各色の画像に対応した静電潜像が形成される。次に現像部材(4C),(4M),(4Y),(4K)により潜像を現像してトナー像が形成される。現像部材(4C),(4M),(4Y),(4K)は、それぞれC(シアン),M(マゼンタ),Y(イエロー),K(ブラック)のトナーで現像を行なう現像部材で、4つの感光体(1C),(1M),(1Y),(1K)上で作られた各色のトナー像は転写紙上で重ねられる。転写紙(7)は給紙コロ(8)によりトレイから送り出され、一対のレジストローラ(9)で一旦停止し、上記感光体上への画像形成とタイミングを合わせて転写搬送ベルト(10)に送られる。転写搬送ベルト(10)上に保持された転写紙(7)は搬送されて、各感光体(1C),(1M),(1Y),(1K)との当接位置(転写部)で各色トナー像の転写が行なわれる。感光体上のトナー像は、転写ブラシ(11C),(11M),(11Y),(11K)に印加された転写バイアスと感光体(1C),(1M),(1Y),(1K)との電位差から形成される電界により、転写紙(7)上に転写される。そして4つの転写部を通過して4色のトナー像が重ねられた記録紙(7)は定着装置(12)に搬送され、トナーが定着されて、図示しない排紙部に排紙される。また、転写部で転写されずに各感光体(1C),(1M),(1Y),(1K)上に残った残留トナーは、クリーニング装置(5C),(5M),(5Y),(5K)で回収される。なお、図8の例では画像形成要素は転写紙搬送方向上流側から下流側に向けて、C(シアン),M(マゼンタ),Y(イエロー),K(ブラック)の色の順で並んでいるが、この順番に限るものでは無く、色順は任意に設定されるものである。また、黒色のみの原稿を作成する際には、黒色以外の画像形成要素(6C),(6M),(6Y)が停止するような機構を設けることは本発明に特に有効に利用できる。更に、図8において帯電部材は感光体と当接しているが、図5に示したような帯電機構にすることにより、両者の間に適当なギャップ(10−200μm程度)を設けてやることにより、両者の摩耗量が低減できると共に、帯電部材へのトナーフィルミングが少なくて済み良好に使用できる。
以上に示すような画像形成手段は、複写装置、ファクシミリ、プリンター内に固定して組み込まれていてもよいが、各々の電子写真要素はプロセスカートリッジの形でそれら装置内に組み込まれてもよい。プロセスカートリッジとは、感光体を内蔵し、他に帯電手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段等を含んだ1つの装置(部品)である。
<電荷輸送性構造を有する1官能のラジカル重合性化合物の合成例>
本発明における電荷輸送性構造を有する化合物は、例えば特許第3164426号公報記載の方法にて合成される。また、下記にこの一例を示す。
(1)ヒドロキシ基置換トリアリールアミン化合物(下記構造式B)の合成
メトキシ基置換トリアリールアミン化合物(下記構造式A)113.85g(0.3mol)と、ヨウ化ナトリウム138g(0.92mol)にスルホラン240mlを加え、窒素気流中で60℃に加温した。この液中にトリメチルクロロシラン99g(0.91mol)を1時間で滴下し、約60℃の温度で4時間半撹拌し反応を終了させた。この反応液にトルエン約1.5Lを加え室温まで冷却し、水と炭酸ナトリウム水溶液で繰り返し洗浄した。その後、このトルエン溶液から溶媒を除去し、カラムクロマト処理(吸着媒体:シリカゲル、展開溶媒:トルエン:酢酸エチル=20:1)にて精製した。得られた淡黄色オイルにシクロヘキサンを加え、結晶を析出させた。このようにして下記構造式Bの白色結晶88.1g(収率=80.4%)を得た。
融点は64.0〜66.0℃、元素分析値(%)は以下の表に示す。
Figure 2008112078
Figure 2008112078
Figure 2008112078
(2)トリアリールアミノ基置換アクリレート化合物(表1中の例示化合物No.54)の合成
上記(1)で得られたヒドロキシ基置換トリアリールアミン化合物(構造式B)82.9g(0.227mol)をテトラヒドロフラン400mlに溶解し、窒素気流中で水酸化ナトリウム水溶液(NaOH:12.4g,水:100ml)を滴下した。この溶液を5℃に冷却し、アクリル酸クロライド25.2g(0.272mol)を40分かけて滴下した。その後、5℃で3時間撹拌し反応を終了させた。この反応液を水に注ぎ、トルエンにて抽出した。この抽出液を炭酸水素ナトリウム水溶液と水で繰り返し洗浄した。その後、このトルエン溶液から溶媒を除去し、カラムクロマト処理(吸着媒体:シリカゲル、展開溶媒:トルエン)にて精製した。得られた無色のオイルにn−ヘキサンを加え、結晶を析出させた。このようにして例示化合物No.54の白色結晶80.73g(収率=84.8%)を得た。
融点は117.5〜119.0℃、元素分析値(%)は以下の表に示す。
Figure 2008112078
(3)アクリル酸エステル化合物の合成例
(2−ヒドロキシベンジルホスホン酸ジエチルの調製)
かき混ぜ装置、温度計、滴下漏斗をつけた反応容器に、2−ヒドロキシベンジルアルコール(東京化成品製)38.4g、o−キシレン80mlを入れ、窒素気流下、亜リン酸トリエチル(東京化成品製)62.8gを80℃でゆっくり滴下し、さらに同温度で1時間反応を行なった。その後、減圧蒸留により、生成したエタノール、溶媒のo−キシレン、未反応の亜リン酸トリエチルを除去し、66gの2−ヒドロキシベンジルホスホン酸ジエチルを得た。(収率90%、沸点120.0℃/1.5mmHg)
(2−ヒドロキシ−4’−(N,N−ビス(4−メチルフェニル)アミノ)スチルベンの調製)
かき混ぜ装置、温度計、滴下漏斗をつけた反応容器に、カリウム−tert−ブトキサイド14.8g、テトラヒドロフラン50mlを入れ、窒素気流下、2−ヒドロキシベンジルホスホン酸ジエチル9.90gと4−(N,N−ビス(4−メチルフェニル)アミノ)ベンズアルデヒド5.44gとをテトラヒドロフランに溶解させた溶液を室温でゆっくり滴下し、その後、同温度で2時間反応させた。その後、水冷下、水を加え、次いで2規定の塩酸水溶液を加えて酸性化したのち、テトラヒドロフランをエバポレーターにより除き、粗生成物をトルエンで抽出した。トルエン相を水、炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、硫酸マグネシウムを加えて脱水した。ろ過後、トルエンを除いてオイル状の粗収物を得、さらにシリカゲルによりカラム精製を行なった後、ヘキサン中で晶析させ、5.09gの2−ヒドロキシ−4’−(N,N−ビス(4−メチルフェニル)アミノ)スチルベンを得た。(収率72%、融点136.0〜138.0℃)
(4’−(N,N−ビス(4−メチルフェニル)アミノ)スチルベン−2−イルアクリレートの調製)
かき混ぜ装置、温度計、滴下漏斗をつけた反応容器に、2−ヒドロキシ−4’−(N,N−ビス(4−メチルフェニル)アミノ)スチルベン14.9g、テトラヒドロフラン100ml、12%濃度の水酸化ナトリウム水溶液21.5gを入れ、窒素気流下、5℃でアクリル酸クロリド5.17gを30分かけて滴下した。その後、同温度で3時間反応させた。反応液を水にあけ、トルエンで抽出した後、濃縮してシリカゲルによるカラム精製を行なった。得られた粗収物をエタノールで再結晶し、黄色針状晶の4’−(N,N−ビス(4−メチルフェニル)アミノ)スチルベン−2−イルアクリレート(例示化合物No.105)13.5gを得た。(収率79.8%、融点104.1〜105.2℃)
元素分析値(%)を以下に示す。
Figure 2008112078
以上の様に、2−ヒドロキシベンジルホスホン酸エステル誘導体と種々のアミノ置換ベンズアルデヒド誘導体を反応させることにより数多くの2−ヒドロキシスチルベン誘導体を合成し、そのアクリル化またはメタクリル化を行なうことで種々のアクリル酸エステル化合物を合成することができる。
次に、実施例によって本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、「部」は、すべて重量部を表わす。
<実施例1>
長さ340mm、φ30mmアルミニウムシリンダー(JIS1050)上に下記組成の中間層用塗工液を用いて塗布後、130℃/20分間乾燥を行ない、約3.5μmの中間層を形成した。続いて下記組成の電荷発生層用塗工液を用いて塗布後、130℃/20分間乾燥を行ない、約0.2μmの電荷発生層を形成した。さらに、下記組成の電荷輸送層用塗工液を用いて塗布後、130℃/20分間乾燥を行ない、約20μmの電荷輸送層を形成して感光体1を作製した。塗布はいずれもブレード塗工法を用いた。
(中間層用塗工液)
酸化チタンCR−EL(石原産業社製):50部
アルキッド樹脂ベッコライトM6401−50:15部
(固形分50重量%、大日本インキ化学工業社製)
メラミン樹脂L−145−60:8部
(固形分60重量%、大日本インキ化学工業社製)
2−ブタノン:120部
(電荷発生層用塗工液)
下記構造式の非対称ビスアゾ顔料:2.5部
Figure 2008112078

ポリビニルブチラール(「XYHL」UCC製):0.5部
メチルエチルケトン:110部
シクロヘキサノン:260部
(電荷輸送層用塗工液)
ポリカーボネートZポリカ(帝人化成社製):10部
下記構造式で示される電荷輸送性化合物:7部
Figure 2008112078

テトラヒドロフラン:80部
シリコーンオイル:0.002部
(KF50−100cs、信越化学工業社製)
上記のようにして得られた感光体について下記組成の架橋表面層用塗工液をウシオ製UVランプシステム(ランプシステムの構成図は図10のとおりである)を用いて、UV照射時間を120秒とし光硬化を行ない、更に130℃/5分乾燥を行ない約10μmの架橋表面架橋層を設けた。
(架橋表面層用塗工液)
トリメチロールプロパントリアクリレート:10部
(日本化薬製、KAYARAD TMPTA)
イルガキュア184(日本化薬製、分子量:204):1部
テトラヒドロフラン:50部
上記のようにして得られた感光体及び電荷輸送層用塗工液に含有した電荷輸送性化合物0.5gを内容積が700mLの耐圧容器内に入れ、超臨界流体として二酸化炭素を選択し、下記の条件にて循環方式により処理を行なった。常温、0.10MPaにて、2〜3℃/分の加温速度、0.2MPa/分の加圧速度で加温及び加圧を行ない、40℃、7MPaとした。ここで、流量を5.0L/分(標準状態換算値)として、2〜3℃/分の加温速度、10MPa/分の加圧速度で加温及び加圧を行ない、80℃、30MPaの超臨界流体とした。流量を5.0L/分(標準状態換算値)を保ったまま2時間処理を行なった。その後、流量を1.0〜3.0L/分(標準状態換算値)にして、2〜3℃/分の冷却速度、3〜5MPa/分の減圧速度で冷却減圧し、常温、0.1MPa(1気圧)まで戻した。以上のように実施例1の電子写真感光体を得た。
<実施例2>
実施例1における中間層を電荷ブロッキング層及びモアレ防止層の積層構成とし、下記組成の塗工液を用いて、0.5μmの電荷ブロッキング層、3.5μmのモアレ防止層を設け、超臨界流体を二酸化炭素とエタノ−ルの混合物とし、超臨界処理条件を以下のようにした以外は実施例1と同様に電子写真感光体を作成した。
(電荷ブロッキング層塗工液)
N−メトキシメチル化ナイロン(鉛市製、FR101):5部
メタノール:70部
n−ブタノール:30部
(モアレ防止層塗工液)
酸化チタン(石原産業社製、CR−EL):126部
アルキッド樹脂:33.6部
(大日本インキ化学工業製、ベッコライトM6401−50−S)
メラミン樹脂:18.7部
(大日本インキ化学工業製、スーパーベッカミンL−121−60)
2−ブタノン:100部
(超臨界処理条件)
エタノールの混合比:二酸化炭素に対して5重量%
超臨界温度:40℃
超臨界圧力:15MPa
処理時間:1時間
<実施例3>
実施例1における超臨界処理に用いた電荷輸送性化合物の量を0.2gとした以外は実施例1と同様に電子写真感光体を作成した。
<実施例4>
実施例1における架橋表面層塗工液を以下のように変更し、さらに超臨界処理条件を以下のように変更した以外は実施例1と同様に電子写真感光体を作成した。
(架橋表面層用塗工液)
エトキシ化ビスフェノールAジアクリレート:10部
(新中村化学製、ABE−300)
2−クロロチオキサントン(東京化成製):1部
テトラヒドロフラン:50部
(超臨界処理条件)
超臨界流体:二酸化炭素に対してメタノールを5重量%混合
超臨界温度:60℃
電荷輸送性化合物:以下構造式で示される化合物
Figure 2008112078
<実施例5>
実施例1における架橋表面層塗工液を以下のように変更し、さらに超臨界処理条件を以下のように変更した以外は実施例1と同様に電子写真感光体を作成した。
(架橋表面層用塗工液)
ウレタンアクリレート(新中村化学製、U−15HA):10部
ジベンジル(東京化成製):1部
テトラヒドロフラン:50部
酢酸ブチル:20部
(超臨界処理条件)
超臨界温度:80℃
電荷輸送性化合物:以下構造式で示される化合物
Figure 2008112078
<実施例6>
実施例1における架橋表面層塗工液を以下のように変更し、さらに超臨界処理条件を以下のように変更した以外は実施例1と同様に電子写真感光体を作成した。
(架橋表面層用塗工液)
ペンタエリスリトールテトラアクリレート:10部
(日本化薬製、SR−295)
ベンゾインイソプロピルエーテル:1部
(東京化成製)
テトラヒドロフラン:50部
(超臨界処理条件)
超臨界温度:100℃
電荷輸送性化合物:以下構造式で示される化合物
Figure 2008112078
<実施例7>
実施例1における架橋表面層塗工液を以下のように変更し、さらに超臨界処理条件を以下のように変更した以外は実施例1と同様に電子写真感光体を作成した。
(架橋表面層用塗工液)
ジペンタエリスリトールヘキサアクリレート:10部
(日本化薬製、KAYARAD DPHA)
2,4−ジエチルチオキサントン(東京化成製):1部
テトラヒドロフラン:50部
(超臨界処理条件)
超臨界温度:120℃
電荷輸送性化合物:以下の構造式で示される化合物
Figure 2008112078
<実施例8>
実施例1における架橋表面層塗工液を以下のように変更し、さらに超臨界処理条件を以下のように変更した以外は実施例1と同様に電子写真感光体を作成した。
(架橋表面層用塗工液)
カプロラクトン変性ジペンタエリスリトールヘキサアクリレート:10部
(日本化薬製、KAYARAD DPCA−120)
フェニルビス(2,4,6−トリメチルベンゾイル)ホスフィンオキサイド:1部
(東京化成製)
テトラヒドロフラン:50部
(超臨界処理条件)
超臨界温度:140℃
電荷輸送性化合物:以下の構造式で示される化合物
Figure 2008112078
<実施例9>
実施例1における架橋表面層塗工液を以下のように変更した以外は実施例1と同様に電子写真感光体を作成した。
(架橋表面層用塗工液)
トリメチロールプロパントリアクリレート:10部
(日本化薬製、KAYARAD TMPTA)
イルガキュア184(日本化薬製、分子量:204):1部
テトラヒドロフラン:50部
以下の構造式で示される電荷輸送性化合物:3部
Figure 2008112078
<実施例10>
実施例1における架橋表面層塗工液を以下のように変更した以外は実施例1と同様に電子写真感光体を作成した。
(架橋表面層用塗工液)
トリメチロールプロパントリアクリレート:10部
(日本化薬製、KAYARAD TMPTA)
イルガキュア184(日本化薬製、分子量:204):1部
テトラヒドロフラン:50部
以下の構造式で示される電荷輸送性化合物:3部
Figure 2008112078
<実施例11>
実施例1における架橋表面層塗工液を以下のように変更した以外は実施例1と同様に電子写真感光体を作成した。
(架橋表面層用塗工液)
トリメチロールプロパントリアクリレート:10部
(日本化薬製、KAYARAD TMPTA)
イルガキュア184(日本化薬製、分子量:204):1部
テトラヒドロフラン:50部
以下の構造式で示される電荷輸送性化合物:3部
Figure 2008112078
<比較例1>
実施例1において表面層を設けず、電荷輸送層の37μmとして電子写真感光体を作成した。
<比較例2>
実施例1において超臨界処理を行なわない以外は実施例1と同様にして電子写真感光体を作成した。
<比較例3>
実施例1において超臨界処理の際の電荷輸送性化合物を含有しない以外は実施例1と同様に電子写真感光体を作成した。
<比較例4>
特開2006−71856号公報の実施例1に準じて電子写真感光体を作成した。
アルミニウムシリンダー上に下記組成の下引き層塗工液、電荷発生層塗工液、および電荷輸送層塗工液を、浸漬塗工によって順次塗布、乾燥し、3.5μmの下引き層、0.2μmの電荷発生層、23μmの電荷輸送層を形成した。
◎下引き層塗工液
・アルキッド樹脂:6部
(ベッコゾール1307−60−EL、大日本インキ化学工業製)
・メラミン樹脂:4部
(スーパーベッカミン G−821−60、大日本インキ化学工業製)
・酸化チタン:40部
・メチルエチルケトン:50部
◎電荷発生層塗工液
・下記構造のビスアゾ顔料:2.5部
Figure 2008112078
・ポリビニルブチラール:0.5部(XYHL、UCC製)
・シクロヘキサノン:200部
・メチルエチルケトン:80部
◎電荷輸送層塗工液
・ビスフェノールZ型ポリカーボネート:10部
(パンライトTS−2050、帝人化成製)
・下記構造式の電荷輸送物質:7部
Figure 2008112078
・テトラヒドロフラン:100部
・1%シリコーンオイルのテトラヒドロフラン溶液:1部
(KF50−100CS、信越化学工業製)
電荷輸送層上にさらに、下記構成の架橋表面層塗工液を用いて、スプレー塗工し、メタルハライドランプ、照射強度:500mW/cm、照射時間:20秒の条件で光照射を行ない、さらに130℃で30分乾燥を加え4.0μmの架橋表面層を設け、電子写真感光体を作成した。
◎架橋表面層塗工液
・電荷輸送性構造を有しないラジカル重合性モノマー:95部
(1)アルキル変性ジペンタエリスリトールペンタアクリレート:47.5部
(KAYARAD D−310、日本化薬製)
Figure 2008112078
(式中、Rはアルキル基を示す。)
(2)エトキシ化ビスフェノールAジアクリレート:47.5部
(ABE−300、新中村化学工業製)
Figure 2008112078
・電荷輸送性構造を有する1官能のラジカル重合性化合物:95部
(例示化合物No.54)
・光重合開始剤
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン:10部
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
・テトラヒドロフラン:1200部
(NOxガス暴露評価)
先に作製した実施例1〜11及び比較例1〜4の電子写真感光体を図7に示すようなプロセスカートリッジに装着し、図8に示すようなタンデム型フルカラー画像形成装置に搭載し、画像露光光源を655nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み)、帯電部材としてローラ帯電器、転写部材として転写ベルト、除電光源として655nmLEDを用いた。試験前のプロセス条件が下記になるように設定した。評価は、感光体未露光部電位を測定した。測定方法としては、図4に示す現像部位置に、表面電位計を搭載し、感光体1が初期状態で−700Vに帯電される印加バイアスに固定し、現像部位置における未露光部表面電位を測定した。また図9に示す画像を出力し、ハーフトーン部における残像の程度を評価した。極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。これらの評価についてはNOxガス暴露前後で行なった。NOxガス暴露条件は以下に示した通りである。
・試験前プロセス条件
感光体帯電電位(未露光部電位):−700V
現像バイアス:−500V
現像部位における露光部表面電位:−100V
評価は、ダイレック製NOx暴露試験装置を用いて、一酸化窒素濃度:50ppm、二酸化窒素濃度:30ppm、温度40℃、相対湿度55%の環境で7日間NOx暴露を行ない、暴露前後において図9に示す画像を出力し、ハーフトーン部における残像の程度を評価した。残像の程度について極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。またガス暴露全後について感光体未露光部電位を測定した。測定方法としては、図4に示す現像部位置に、表面電位計を搭載し、感光体が初期状態で−700Vに帯電される印加バイアスに固定し、現像部位置における未露光部表面電位及び露光部電位を測定した。以上の結果を表5に示す。
Figure 2008112078
本発明の実施例においてガス暴露後においても残像は発生しておらず、また未露光部電位の低下も小さい。これに対して架橋表面保護層を設けていない比較例1は良好な結果を示しているが、超臨界処理を行なっていない比較例2及び超臨界処理の際に電荷輸送性化合物を含有させていない比較例3については、架橋表面層中に電荷輸送性化合物が存在しないため、光減衰特性が得られず、初期から露光部電位が著しく大きく、評価を中止した。また特開2006−71856に準じて作成した比較例4ではNOxガス暴露後において著しく程度の悪い残像画像が発生し、未露光部電位についても大幅な電位低下がわかる。
(実機加速疲労評価)
先に作製した実施例1〜11及び比較例1及び4の電子写真感光体を図7に示すようなプロセスカートリッジに装着し、図8に示すようなタンデム型フルカラー画像形成装置に搭載し、画像露光光源を655nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み)、帯電部材としてローラ帯電器、転写部材として転写ベルト、除電光源として655nmLEDを用いた。試験前のプロセス条件が下記になるように設定した。通紙条件としては書き込み率6%のチャート(A4全面に対して、画像面積として6%相当の文字が平均的に書かれている)を用い、クリーニングブレードの当接圧力及び電子写真感光体の通過電荷量が試験前プロセス条件の2倍になるように帯電部材への印加バイアス、半導体レーザーの光量を設定し連続10万枚印刷を行なった。
・試験前プロセス条件
感光体帯電電位(未露光部電位):−700V
現像バイアス:−500V
現像部位における露光部表面電位:−100V
評価は、5万枚の画像印刷前後における感光体未露光部電位を測定した。測定方法としては、図4に示す現像部位置に、表面電位計を搭載し、感光体が初期状態で−700Vに帯電される印加バイアスに固定し、現像部位置における未露光部表面電位及び露光部電位を測定した。また、全ての試験前後における膜厚の差(摩耗量)を評価した。なお、膜厚の測定は、感光体長手方向の両端5cmを除き、1cm間隔に測定し、その平均値を膜厚とした。更に、5万枚印刷後において白ベタ画像を出力し、地肌部の汚れを評価した。なお、地汚れ画像評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。また、10万枚の印刷後において、ISO/JIS−SCID画像N1(ポートレート)を出力して、カラー色の再現性について評価した。なお、色再現性評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。以上の結果を表6に示す。
Figure 2008112078
本発明の実施例において5万枚通紙後も極めて安定な電気特性を示しており、地肌汚れ及びカラーバランスといった画像特性も極めて良好である。架橋表面層の摩耗量も小さい。一方、保護層を有していない比較例1は摩耗量が大きく、膜厚の減少量が大きいことから未露光部電位の低下も著しい。比較例4は未露光部電位の低下、露光部電位の上昇の程度が大きく、実施例と比較すると電気特性の安定性に欠け、カラーバランスが実施例に比べやや劣る結果となった。
以上の結果から本発明の実施例においてはいずれも良好な結果が得られており、電気特性が極めて安定し、且つ機械的耐久性が高い高信頼性の電子写真感光体が実現されている。つまり高い耐摩耗性、良好な電気特性を長期に渡り達成した電子写真感光体が実現されている。一方、比較例1〜4ではガス暴露後での残像やカラーバランスといった画像特性等が劣化しており、信頼性の高い電子写真感光体は実現できていない。
したがって、導電性支持体上に少なくとも感光層と表面保護層を有する電子写真感光体において、該表面保護層が少なくともラジカル重合性化合物を光硬化することにより形成された後、該表面保護層に電荷輸送性化合物を含む超臨界流体及び/または亜臨界流体を接触させることにより高い耐久性を維持し、極めて安定した電気特性を有することで、信頼性の極めて高い電子写真感光体が実現され、長期間にわたって高画質画像出力を実現できる電子写真感光体を提供できることが明らかとなった。また、本発明の電子写真感光体を用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジが高性能、高信頼性を有していることが明らかとなった。
本発明の電子写真感光体の一例を示す断面図である。 本発明の電子写真感光体の他の例を示す断面図である。 本発明の電子写真感光体の他の例を示す断面図である。 本発明の画像形成プロセスおよび画像形成装置を説明するための概略図である。 近接帯電機構を示す概略図である。 本発明の画像形成プロセスを説明するための他の概略図である。 本発明のプロセスカートリッジの一例を示す概略図である。 本発明のタンデム式フルカラー電子写真装置を説明するための概略図である。 実施例で用いた評価用画像である。 実施例で用いたランプシステムの構成図である。
符号の説明
(図1〜3について)
41 導電性支持体
43 感光層
45 電荷発生層
47 電荷輸送層
48 保護層
49 中間層
(図4について)
21 感光体
22 除電ランプ
23 帯電部材
25 画像露光部
26 現像ユニット
27 転写前チャージャ
28 レジストローラ
29 転写紙
30 転写チャージャ
31 分離チャージャ
32 分離爪
33 クリーニング前チャージャ
34 ファーブラシ
35 ブレード
(図5について)
50 感光体
51 帯電ローラ
52 ギャップ形成部材
53 金属シャフト
54 画像形成領域
55 非画像形成領域
(図6について)
61 感光体
62a 駆動ローラ
62b 駆動ローラ
63 帯電チャージャ
64 像露光源
65 転写チャージャ
66 クリーニング前露光
67 クリーニングブラシ
68 除電光源
(図7について)
76 感光体
77 帯電チャージャ
78 クリーニングブラシ
79 画像露光部
80 現像ローラ
(図8について)
1C、1M、1Y、1K ドラム状感光体
2C、2M、2Y、2K 帯電部材
3C、3M、3Y、3K レーザー光
4C、4M、4Y、4K 現像部材
5C、5M、5Y、5K クリーニング部材
6C、6M、6Y、6K 画像形成要素
7 転写紙
8 給紙コロ
9 レジストローラ
10 転写搬送ベルト
11C、11M、11Y、11K 転写ブラシ
12 定着装置

Claims (17)

  1. 導電性支持体上に少なくとも感光層と表面保護層を有する電子写真感光体の製造方法において、該表面保護層が少なくともラジカル重合性化合物を光硬化することにより形成された後、該表面保護層に電荷輸送性化合物を含む超臨界流体及び/または亜臨界流体を接触させることを特徴とする電子写真感光体の製造方法。
  2. 前記超臨界流体及び/または亜臨界流体が、二酸化炭素であることを特徴とする請求項1に記載の電子写真感光体の製造方法。
  3. 前記超臨界流体及び/または亜臨界流体が、二酸化炭素と他流体との混合物であることを特徴とする請求項1又は2に記載の電子写真感光体の製造方法。
  4. 前記他流体が、メタノール、エタノールから選択される少なくとも一種であることを特徴とする請求項1乃至3のいずれかに記載の電子写真感光体の製造方法。
  5. 前記超臨界流体及び/または亜臨界流体における電荷輸送性化合物の含有量が0.5g/L以上であることを特徴とする請求項1乃至4のいずれかに記載の電子写真感光体の製造方法。
  6. 前記超臨界流体及び/または亜臨界流体の温度が30〜140℃であることを特徴する請求項1乃至5のいずれかに記載の電子写真感光体の製造方法。
  7. 前記ラジカル重合性化合物が電荷輸送性構造を有しないものであること特徴とする請求項1乃至6のいずれかに記載の電子写真感光体の製造方法。
  8. 前記ラジカル重合性化合物のラジカル重合性官能基が3つ以上であることを特徴とする請求項1乃至7のいずれかに記載の電子写真感光体の製造方法。
  9. 前記電荷輸送性化合物がラジカル重合性官能基を有していないことを特徴とする請求項1乃至8のいずれかに記載の電子写真感光体の製造方法。
  10. 前記電荷輸送性化合物がトリアリールアミン構造、ヒドラゾン構造、ピラゾリン構造およびカルバゾール構造よりなる群から選ばれた構造を有するものであることを特徴とする請求項1乃至9のいずれかに記載の電子写真感光体の製造方法。
  11. 前記電荷輸送性化合物がトリアリールアミン構造を有するものであることを特徴とする請求項1乃至10のいずれかに記載の電子写真感光体の製造方法。
  12. 導電性支持体上に少なくとも感光層と表面保護層を有する電子写真感光体において、該表面保護層が少なくともラジカル重合性化合物を光硬化することにより形成された後、該表面保護層に電荷輸送性化合物を含む超臨界流体及び/または亜臨界流体を接触させたものであることを特徴とする請求項1乃至11のいずれかに記載の製造方法で形成された電子写真感光体。
  13. 前記超臨界流体及び/または亜臨界流体が、二酸化炭素であることを特徴とする請求項12に記載の電子写真感光体。
  14. 前記感光層が電荷発生層、電荷輸送層の順に積層されたものであることを特徴とする請求項12又は13に記載の電子写真感光体。
  15. 請求項12乃至14のいずれかに記載の電子写真感光体を用いて、少なくとも電子写真感光体を帯電させる帯電プロセスと、帯電プロセスによって帯電させられた電子写真感光体表面に静電潜像を形成する潜像形成プロセスと、潜像形成プロセスによって形成された静電潜像にトナーを付着させる現像プロセスと、現像プロセスによって形成されたトナー像を被転写体に転写させる転写プロセスと、転写後に電子写真感光体表面に残留したトナーを電子写真感光体表面から除去するクリーニングプロセスとを含むことを特徴とする画像形成方法。
  16. 請求項12乃至14のいずれかに記載の電子写真感光体と、少なくとも電子写真感光体を帯電させる帯電器と、帯電器によって帯電させられた電子写真感光体表面に静電潜像を形成する潜像形成器と、潜像形成器によって形成された静電潜像にトナーを付着させる現像器と、現像器よって形成されたトナー像を被転写体に転写させる転写器と、転写後に電子写真感光体表面に残留したトナーを電子写真感光体表面から除去するクリーニング器とを有する画像形成装置。
  17. 請求項12乃至14のいずれかに記載の電子写真感光体と、少なくとも電子写真感光体を帯電させる帯電器と、帯電器によって帯電させられた電子写真感光体表面に静電潜像を形成する潜像形成器と、潜像形成器によって形成された静電潜像にトナーを付着させる現像器と、現像器よって形成されたトナー像を被転写体に転写させる転写器と、転写後に電子写真感光体表面に残留したトナーを電子写真感光体表面から除去するクリーニング器からなる群から選ばれた一つの手段を有するものであって、画像形成装置本体に着脱可能としたことを特徴とする画像形成装置用プロセスカートリッジ。
JP2006296146A 2006-10-31 2006-10-31 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ、及び電子写真感光体の製造方法 Expired - Fee Related JP4771909B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006296146A JP4771909B2 (ja) 2006-10-31 2006-10-31 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ、及び電子写真感光体の製造方法
US11/926,748 US7855040B2 (en) 2006-10-31 2007-10-29 Method for preparing photoreceptor, photoreceptor prepared by the method, and image forming method and apparatus and process cartridge using the photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296146A JP4771909B2 (ja) 2006-10-31 2006-10-31 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ、及び電子写真感光体の製造方法

Publications (2)

Publication Number Publication Date
JP2008112078A true JP2008112078A (ja) 2008-05-15
JP4771909B2 JP4771909B2 (ja) 2011-09-14

Family

ID=39330614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296146A Expired - Fee Related JP4771909B2 (ja) 2006-10-31 2006-10-31 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ、及び電子写真感光体の製造方法

Country Status (2)

Country Link
US (1) US7855040B2 (ja)
JP (1) JP4771909B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014516973A (ja) * 2011-05-25 2014-07-17 ダウ グローバル テクノロジーズ エルエルシー ハロゲン非含有着火耐性ポリマーの製造に有用なリン含有化合物
JP2015169735A (ja) * 2014-03-05 2015-09-28 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2016143021A (ja) * 2015-02-05 2016-08-08 コニカミノルタ株式会社 電子写真感光体及び画像形成装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006003479D1 (de) * 2005-07-06 2008-12-18 Ricoh Kk Elektrofotografischer Fotorezeptor und Verfahren zur Fotorezeptorherstellung, Bilderzeugungsverfahren, Bilderzeugungsvorrichtung und Prozesskartusche dafür unter Verwendung des Fotorezeptors
US8380109B2 (en) 2008-01-11 2013-02-19 Ricoh Company, Ltd. Image forming apparatus and process cartridge
JP2010235909A (ja) * 2008-07-09 2010-10-21 Ricoh Co Ltd 複合アゾ顔料の製造方法およびそれにより得られた複合アゾ顔料
JP5477683B2 (ja) 2008-12-11 2014-04-23 株式会社リコー 電子写真感光体とその製造方法及び画像形成装置
US8298672B2 (en) * 2009-10-29 2012-10-30 Xerox Corporation Intermediate transfer members containing a saline layer and a layer of glycoluril resin and acrylic resin
JP5644138B2 (ja) * 2010-03-05 2014-12-24 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ、画像形成装置、及び硬化膜
JP5741017B2 (ja) 2011-01-28 2015-07-01 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP5691578B2 (ja) 2011-02-04 2015-04-01 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
US8622881B1 (en) * 2012-09-21 2014-01-07 Canon Kabushiki Kaisha Conductive member, electrophotographic apparatus, and process cartridge
JP6218034B2 (ja) 2014-01-27 2017-10-25 株式会社リコー クリーニングブレード、画像形成装置およびプロセスカートリッジ
JP6292472B2 (ja) 2014-03-07 2018-03-14 株式会社リコー 画像形成装置およびプロセスカートリッジ
JP2015175893A (ja) 2014-03-13 2015-10-05 株式会社リコー クリーニングブレードとこれを備えた画像形成装置及びプロセスカートリッジ
KR20170046468A (ko) 2015-10-21 2017-05-02 에스프린팅솔루션 주식회사 감광층 상에 형성된 보호층을 포함하는 감광체
JP2019015776A (ja) 2017-07-04 2019-01-31 株式会社リコー 電子写真感光体、画像形成装置およびプロセスカートリッジ

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648637A (en) 1979-09-28 1981-05-01 Canon Inc Electrophotographic receptor
US4931350A (en) 1987-01-20 1990-06-05 Ricoh Company, Ltd. Electrophotographic photoconductor having an arylalkylenearylamino photoconductor
US4886846A (en) 1987-03-28 1989-12-12 Ricoh Company, Ltd. Aromatic diolefinic compounds, aromatic diethyl compounds and electrophotographic photoconductors comprising one aromatic diethyl compound
US5250377A (en) 1987-03-28 1993-10-05 Ricoh Company, Ltd. Aromatic diolefinic compounds, aromatic diethyl compounds and electrophotographic photoconductors comprising one aromatic diethyl compound
US4956440A (en) 1987-06-10 1990-09-11 Xerox Corporation Arylamine containing polyhydroxyether resins
US4898800A (en) 1987-10-20 1990-02-06 Ricoh Company, Ltd. Aminobiphenyl charge transporting materials and electrophotographic photoconductors using the same
US5233090A (en) 1988-11-11 1993-08-03 Ricoh Company, Ltd. [2,2]paracyclophane compounds for use in electrophotographic photoconductors
US5219692A (en) 1989-03-29 1993-06-15 Ricoh Company, Ltd. Electrophotographic photoconductors and tertiary amine compounds having condensed polycyclic group for use in the same
US5047590A (en) 1989-05-31 1991-09-10 Ricoh Company, Ltd. Dinitro compounds, diamino compounds and triamine compounds and preparation methods thereof
US5356742A (en) 1991-03-01 1994-10-18 Ricoh Company, Ltd. Dipyrenylamine derivatives and electrophotographic photoconductor comprising the same
JP3286711B2 (ja) 1991-03-08 2002-05-27 株式会社リコー 電子写真用感光体
US5334470A (en) 1991-09-02 1994-08-02 Ricoh Company, Ltd. Electrophotographic element with M-phenylenediamine derivatives therein
US5459275A (en) 1991-12-28 1995-10-17 Ricoh Company, Ltd. Pyrenylamine derivatives
US5344985A (en) 1991-12-28 1994-09-06 Ricoh Company, Ltd. Aldehyde intermediates for the preparation of pyrenylamine derivatives having unsaturated bond
US5457232A (en) 1991-12-28 1995-10-10 Ricoh Company, Ltd. Pyrenylamine derivatives having unsaturated bond
JP3194392B2 (ja) 1992-01-31 2001-07-30 株式会社リコー 電子写真感光体
US6027846A (en) 1995-06-30 2000-02-22 Ricoh Company, Ltd. Electrophotographic photoconductor and aromatic polycarbonate resin for use therein
JP3262488B2 (ja) 1996-02-19 2002-03-04 キヤノン株式会社 電子写真感光体、それを用いた電子写真装置および装置ユニット
US5976746A (en) 1997-06-11 1999-11-02 Ricoh Company, Ltd. Electrophotographic photoconductor and aromatic polycarbonate resin for use therein
US6448384B1 (en) 1998-04-08 2002-09-10 Ricoh Company, Ltd. Bisazo compound and electrophotographic photoconductor using the same
US6132914A (en) 1998-04-08 2000-10-17 Ricoh Company, Ltd. Bisazo compound and electrophotographic photoconductor using the same
DE69928725T2 (de) 1998-06-12 2006-07-20 Canon K.K. Elektrophotographisches, lichtempfindliches Element, Verfahrenskassette und elektrophotographischer Apparat, sowie Verfahren zur Herstellung des lichtempfindlichen Elementes
JP3637030B2 (ja) 2002-04-03 2005-04-06 株式会社リコー 電子写真感光体、電子写真装置および電子写真用カートリッジ
JP4030895B2 (ja) 2003-02-26 2008-01-09 株式会社リコー 電子写真感光体、及び画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ
US7179573B2 (en) 2003-03-20 2007-02-20 Ricoh Company, Ltd. Electrophotographic photoconductor, and image forming process, image forming apparatus and process cartridge for an image forming apparatus using the same
US7175957B2 (en) 2003-03-20 2007-02-13 Ricoh Company, Ltd. Electrophotographic photoconductor, and image forming process, image forming apparatus and process cartridge for an image forming apparatus using the same
JP4281461B2 (ja) 2003-08-08 2009-06-17 株式会社吉野工業所 二重容器及び二重容器の成形方法
JP4194973B2 (ja) 2003-08-29 2008-12-10 株式会社リコー 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP4216228B2 (ja) 2003-09-09 2009-01-28 株式会社リコー 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
US7556903B2 (en) 2003-09-19 2009-07-07 Ricoh Company Limited Electrophotographic photoreceptor, and image forming method, apparatus and process cartridge therefor using the photoreceptor
JP4255401B2 (ja) 2003-09-19 2009-04-15 株式会社リコー 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
EP1521126B1 (en) * 2003-09-30 2006-11-02 Ricoh Company, Ltd. Electrophotographic photoreceptor, method for manufacturing the electrophotographic photoreceptor, and image forming apparatus and process cartridge using the electrophotographic photoreceptor
JP4070700B2 (ja) 2003-10-01 2008-04-02 株式会社リコー 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ
JP4249679B2 (ja) 2003-10-30 2009-04-02 株式会社リコー 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ
JP4229808B2 (ja) 2003-11-04 2009-02-25 株式会社リコー 電子写真感光体、プロセスカートリッジ、電子写真装置
JP4098221B2 (ja) 2003-11-25 2008-06-11 株式会社リコー 電子写真装置及びプロセスカートリッジ
JP2005157026A (ja) 2003-11-27 2005-06-16 Ricoh Co Ltd 画像形成方法、画像形成装置及びプロセスカートリッジ
WO2005054957A1 (ja) 2003-12-01 2005-06-16 Ricoh Company, Ltd. 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ
US7416823B2 (en) 2004-01-15 2008-08-26 Ricoh Company, Ltd. Electrophotographic photoconductor, and image formation method, image formation apparatus, and process cartridge for image formation apparatus using the same
JP4502316B2 (ja) 2004-03-02 2010-07-14 株式会社リコー 画像形成装置及び画像形成装置用プロセスカートリッジ
US7473504B2 (en) 2004-05-25 2009-01-06 Ricoh Company, Ltd. Electrophotographic photoreceptor, and image forming method, apparatus and process cartridge therefor using the photoreceptor
JP4335100B2 (ja) 2004-09-01 2009-09-30 株式会社リコー 電子写真感光体及びそれを用いた画像形成方法
US20060093955A1 (en) 2004-11-01 2006-05-04 Kohichi Ohshima Image forming method, and image forming apparatus and process cartridge using the image forming method
JP4597837B2 (ja) 2004-11-01 2010-12-15 株式会社リコー 画像形成方法、画像形成装置及び電子写真用カートリッジ
JP4608438B2 (ja) 2005-01-14 2011-01-12 株式会社リコー 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ
JP2006221157A (ja) 2005-01-14 2006-08-24 Ricoh Co Ltd 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ
US7507511B2 (en) 2005-01-14 2009-03-24 Ricoh Company Ltd. Electrophotographic photoreceptor, and image forming apparatus and process cartridge therefor using the electrophotographic photoreceptor
DE602006003479D1 (de) 2005-07-06 2008-12-18 Ricoh Kk Elektrofotografischer Fotorezeptor und Verfahren zur Fotorezeptorherstellung, Bilderzeugungsverfahren, Bilderzeugungsvorrichtung und Prozesskartusche dafür unter Verwendung des Fotorezeptors
US20070031746A1 (en) 2005-08-08 2007-02-08 Tetsuya Toshine Electrophotographic photoconductor, process cartridge, and image forming method
US20070054207A1 (en) 2005-08-23 2007-03-08 Michio Kimura Electrophotographic photoreceptor, image forming apparatus, and process cartridge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014516973A (ja) * 2011-05-25 2014-07-17 ダウ グローバル テクノロジーズ エルエルシー ハロゲン非含有着火耐性ポリマーの製造に有用なリン含有化合物
JP2015169735A (ja) * 2014-03-05 2015-09-28 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジ、及び画像形成装置
JP2016143021A (ja) * 2015-02-05 2016-08-08 コニカミノルタ株式会社 電子写真感光体及び画像形成装置

Also Published As

Publication number Publication date
US7855040B2 (en) 2010-12-21
JP4771909B2 (ja) 2011-09-14
US20080102391A1 (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP4771909B2 (ja) 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ、及び電子写真感光体の製造方法
JP2008261971A (ja) 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP5151485B2 (ja) 電子写真感光体とその製造方法、及び画像形成装置、プロセスカートリッジ、画像形成方法
JP4608438B2 (ja) 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ
JP4741413B2 (ja) 感光体、画像形成装置及びプロセスカートリッジ
JP4911708B2 (ja) 電子写真感光体の製造方法および電子写真感光体、それを用いた画像形成装置、画像形成方法および画像形成装置用プロセスカートリッジ
JP4886483B2 (ja) 静電潜像担持体、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP5532731B2 (ja) 電子写真感光体、並びに画像形成方法、画像形成装置及びプロセスカートリッジ
JP2005189828A (ja) 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ
JP5435396B2 (ja) 画像形成装置および画像形成装置用プロセスカートリッジ
JP5025028B2 (ja) 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ
JP4549208B2 (ja) 画像形成装置
JP2006343654A (ja) 画像形成装置
JP4938292B2 (ja) 画像形成装置
JP4568659B2 (ja) 画像形成装置及び画像形成方法
JP4530874B2 (ja) 画像形成装置
JP4523511B2 (ja) 画像形成装置及び画像形成方法
JP2010191212A (ja) 画像形成装置および画像形成装置用プロセスカートリッジ
JP5380923B2 (ja) 電子写真感光体の製造方法、電子写真感光体、これを用いた画像形成方法、画像形成装置及びプロセスカートリッジ
JP4699832B2 (ja) 画像形成装置及び画像形成方法
JP2006215336A (ja) 画像形成装置
JP2006337911A (ja) 画像形成装置
JP2006106483A (ja) 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP2006113314A (ja) 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
JP2007047564A (ja) 画像形成装置及び画像形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees