JP4249679B2 - 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ - Google Patents

電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ Download PDF

Info

Publication number
JP4249679B2
JP4249679B2 JP2004256032A JP2004256032A JP4249679B2 JP 4249679 B2 JP4249679 B2 JP 4249679B2 JP 2004256032 A JP2004256032 A JP 2004256032A JP 2004256032 A JP2004256032 A JP 2004256032A JP 4249679 B2 JP4249679 B2 JP 4249679B2
Authority
JP
Japan
Prior art keywords
group
charge transport
photosensitive member
electrophotographic photosensitive
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004256032A
Other languages
English (en)
Other versions
JP2005157297A (ja
Inventor
望 田元
達也 新美
哲郎 鈴木
勝一 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004256032A priority Critical patent/JP4249679B2/ja
Priority to US10/974,814 priority patent/US7371490B2/en
Priority to EP04256688A priority patent/EP1530098B8/en
Priority to DE602004020306T priority patent/DE602004020306D1/de
Publication of JP2005157297A publication Critical patent/JP2005157297A/ja
Application granted granted Critical
Publication of JP4249679B2 publication Critical patent/JP4249679B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0592Macromolecular compounds characterised by their structure or by their chemical properties, e.g. block polymers, reticulated polymers, molecular weight, acidity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0532Macromolecular bonding materials obtained by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0546Polymers comprising at least one carboxyl radical, e.g. polyacrylic acid, polycrotonic acid, polymaleic acid; Derivatives thereof, e.g. their esters, salts, anhydrides, nitriles, amides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0589Macromolecular compounds characterised by specific side-chain substituents or end groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • G03G5/071Polymeric photoconductive materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/072Polymeric photoconductive materials obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising pending monoamine groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • G03G5/071Polymeric photoconductive materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/072Polymeric photoconductive materials obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising pending monoamine groups
    • G03G5/0732Polymeric photoconductive materials obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising pending monoamine groups comprising pending alkenylarylamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • G03G5/071Polymeric photoconductive materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/074Polymeric photoconductive materials obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising pending diamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • G03G5/071Polymeric photoconductive materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/0745Polymeric photoconductive materials obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising pending hydrazone

Description

本発明は、感光層に少なくとも平均粒子サイズが0.25μm以下である特定の結晶型を有するチタニルフタロシアニン結晶を含有する電荷発生層と電荷輸送層、さらに架橋型電荷輸送層を順に積層してなる電子写真感光体、これを用いた画像形成方法、画像形成装置ならびに画像形成装置用プロセスカートリッジに関する。
近年、電子写真方式を用いた情報処理システム機の発展は目覚ましく、特に情報をデジタル信号に変換して光によって情報記録を行なうレーザープリンタやデジタル複写機は、そのプリント品質、信頼性において向上が著しい。急速に普及しているこれらのレーザープリンタやデジタル複写機は、今後高画質化と同時にさらなる高速化あるいは小型化が要求されている。
さらに、最近ではフルカラープリントが可能なフルカラーレーザープリンタやフルカラーデジタル複写機の需要も急激に高くなっている。フルカラープリントを行なう場合には、少なくとも4色のトナー画像を重ね合わせる必要があることから、特に装置の高速化並びに小型化がより一層重要な課題とされている。装置の高速化及び小型化を実現するためには、それらに用いられる電子写真感光体の感度を向上させるとともに感光体の小径化が必要となる。
しかし、その場合感光体は、より過酷な状況で使用されることになるため、従来の感光体ではその交換速度が大幅に早まることになる。従って、装置の高速化並びに小型化を実現するためには、同時に用いられる感光体の高耐久化あるいは高安定化が必要不可欠である。
感光体の耐久性は、画像品質によって決定され、特に反転現像によるレーザープリンタやデジタル複写機では、白地に無数の黒点が印字される地肌汚れが寿命を決める最大の要因とされている。
従って、装置の高速化及び小型化を実現するためには、感光体の高感度化と同時に地肌汚れの発生を抑制し、感光体の高寿命化を実現する必要がある。
装置の高速化に対応するために必要な感光体の高感度化に対しては、量子効率の大きな電荷発生材料が必要不可欠である。
有機系高感度感光体としては、電荷発生材料にXRD(CuKα線(波長1.542Å)におけるブラッグ角2θの回折ピーク(±0.2゜)が、少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニンが広く用いられており、非常に有効である。
しかし、上記チタニルフタロシアニンを用いた感光体は、顔料の凝集や疲労による帯電低下等によって地肌汚れが顕著に発生する懸念があった。特に、地肌汚れは前述のとおり感光体の寿命を決定する大きな要因であり、上記チタニルフタロシアニンを用いた感光体は装置の高速化が可能となっても地肌汚れの影響が大きくなるために、画質安定性に乏しく、高速化と高寿命化の両立が実現されていなかった(例えば、特許文献1参照)。
そのため、上記チタニルフタロシアニンを用いた従来の感光体は、高速機に用いると感光体の交換頻度が早くなり、安定した画像を長期に渡って提供することが実現できていなかった。
一方、電子写真感光体の高寿命化に対しては、感光体表面に保護層を形成し耐摩耗性を高める方法が知られている。感光体の寿命を決める地肌汚れは、繰り返し使用による感光体の疲労あるいは摩耗によって促進される。感光体表面に保護層を形成することによって、繰り返し使用による感光体の摩耗を抑制することは、それによって起こる電界強度の増加を抑制できることから地肌汚れの発生を軽減することが可能であり、高寿命化に対し非常に有効な手段である。
感光層の耐摩耗性を改良する技術としては、(i)架橋型電荷輸送層に硬化性バインダーを用いたもの(例えば、特許文献2参照)、(ii)高分子型電荷輸送物質を用いたもの(例えば、特許文献3参照)、(iii)架橋型電荷輸送層に無機フィラーを分散させたもの(例えば、特許文献4参照)等が挙げられる。これらの技術の内、(i)の硬化性バインダーを用いたものは、電荷輸送物質との相溶性が悪いためや重合開始剤、未反応残基などの不純物により残留電位が上昇し画像濃度低下が発生し易い傾向がある。また、(ii)の高分子型電荷輸送物質を用いたものは、ある程度の耐摩耗性向上が可能であるものの、有機感光体に求められている耐久性を十二分に満足させるまでには至っていない。また、高分子型電荷輸送物質は材料の重合、精製が難しく高純度なものが得にくいため材料間の電気的特性が安定しにくい。更に塗工液が高粘度となる等の製造上の問題を起こす場合もある。(iii)の無機フィラーを分散させたものは、通常の低分子電荷輸送物質を不活性高分子に分散させた感光体に比べ高い耐摩耗性が発揮されるが、無機フィラー表面に存在する電荷トラップにより残留電位が上昇し、画像濃度低下が発生し易い傾向にある。また、感光体表面の無機フィラーとバインター樹脂の凹凸が大きい場合には、クリーニング不良が発生し、トナーフィルミングや画像流れの原因となることがある。これら(i)、(ii)、(iii)の技術では、有機感光体に求められる電気的な耐久性、機械的な耐久性をも含めた総合的な耐久性を十二分に満足するには至っていない。
更に、(i)の耐摩耗性と耐傷性を改良するために多官能のアクリレートモノマー硬化物を含有させた感光体も知られている(特許文献5参照)。しかし、この感光体においては、感光層上に設けた保護層にこの多官能のアクリレートモノマー硬化物を含有させる旨の記載があるものの、この保護層においては電荷輸送物質を含有せしめてもよいことが記載されているのみで具体的な記載はなく、しかも、単に架橋型電荷輸送層に低分子の電荷輸送物質を含有させた場合には、上記硬化物との相溶性の問題があり、これにより、低分子電荷輸送物質の析出、白濁現象が起こり、露光部電位の上昇により画像濃度が低下するばかりでなく機械強度も低下してしまうことがあった。
さらに、この感光体は、具体的には高分子バインダーを含有した状態でモノマーを反応させるため、3次元網目構造が充分に進行せず、架橋結合密度が希薄となるため飛躍的な耐摩耗性を発揮できるまでには至っていない。
これらに換わる感光層の耐摩耗技術として、炭素−炭素二重結合を有するモノマーと、炭素−炭素二重結合を有する電荷輸送物質及びバインダー樹脂からなる塗工液を用いて形成した電荷輸送層を設けることが知られている(例えば、特許文献6参照)。このバインダー樹脂は電荷発生層と架橋型電荷輸送層の接着性を向上させ、さらに厚膜硬化時の膜の内部応力を緩和させる役割を果たしていると考えられ、炭素−炭素二重結合を有し、上記電荷輸送物質に対して反応性を有するものと、上記二重結合を有せず反応性を有しないものに大別される。この感光体は耐摩耗性と良好な電気的特性を両立しており注目されるが、バインダー樹脂として反応性を有しないものを使用した場合においては、バインダー樹脂と、上記モノマーと電荷輸送物質との反応により生成した硬化物との相溶性が悪く、架橋型電荷輸送層中で層分離が生じ、傷やトナー中の外添剤及び紙粉の固着の原因となることがある。また、上記したように、3次元網目構造が充分に進行せず、架橋結合密度が希薄となるため飛躍的な耐摩耗性を発揮できるまでには至っていない。加えて、この感光体において使用される上記モノマーとして具体的に記載されているものは2官能性のものであり、これらの点で耐摩耗性の点では未だ満足するには至らなかった。また、反応性を有するバインダーを使用した場合においても、硬化物の分子量は増大するものの分子間架橋結合数は少なく、上記電荷輸送物質の結合量と架橋密度との両立は難しく、電気特性及び耐摩耗性も充分とはいえないものであった。
また、同一分子内に二つ以上の連鎖重合性官能基を有する正孔輸送性化合物を硬化した化合物を含有する感光層も知られている(例えば、特許文献7参照)。この感光層は架橋結合密度を高められるため高い硬度を有するが、嵩高い正孔輸送性化合物が二つ以上の連鎖重合性官能基を有するため硬化物中に歪みが発生し内部応力が高くなり、架橋表面層が長期間の使用においてクラックや剥がれが発生しやすい場合がある。
これら従来技術における電荷輸送性構造を化学結合させた架橋感光層を有する感光体においても、現状では充分な総合特性を有しているとは言えない。
このように、電荷発生層に高感度を有する上記チタニルフタロシアニンを含む感光体を用いることによって、装置の高速化に対応できたとしても、地肌汚れの発生により画質低下が見られ感光体を頻繁に交換する必要が生じたり、保護層を形成して耐摩耗性の向上が可能となっても、残留電位上昇やクリーニング不良による画質劣化等の影響が増大したりして、高速機やカラー機に要求される感光体の高感度化と高寿命化の両立が実現できていなかった。従って、近年のレーザープリンタやデジタル複写機における高速化あるいはカラー化の要求に対し、安定した画像を長期に渡って出力可能な電子写真感光体並びに画像形成装置が強く求められていた。
特開2001−19871号公報 特開昭56−48637号公報 特開昭64−1728号公報 特開平4−281461号公報 特許第3262488号公報 特許第3194392号公報 特開2000−66425号公報 特開平6−293769号公報
本発明の目的は、装置の高速化、カラー化あるいは小型化に対応するため、高感度を有しかつ繰り返し使用しても画質安定性が高く、高寿命を有する電子写真感光体、並びにそれを用いた画像形成装置及び画像形成装置用プロセスカートリッジを提供することにある。
本発明者らは、高速対応が可能であり、かつ繰り返し使用に対しても画質安定性が高く、さらに高寿命を有する電子写真感光体を得るために鋭意検討を行なった結果、以下の構成を満たすことにより達成可能であることを見い出し、本発明を完成するに至った。
上記課題は、本発明の(1)「少なくとも導電性支持体上に電荷発生層、電荷輸送層及び架橋型電荷輸送層を順次積層した電子写真感光体において、該電荷発生層中にCuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4°のピークの間にピークを有さず、更に26.3°にピークを有さず、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶粒子を含み、該架橋型電荷輸送層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより形成され、該架橋型電荷輸送層の膜厚が1μm以上、10μm以下であることを特徴とする電子写真感光体」、(2)「前記チタニルフタロシアニン結晶粒子の体積平均粒径が0.3μm以下で、その標準偏差が0.2μm以下になるまで分散を行い、その後有効孔径が3μm以下のフィルターにて濾過を行なった分散液を使用し、感光層あるいは電荷発生層を塗工したことを特徴とする前記第(1)項に記載の電子写真感光体」、(3)「前記チタニルフタロシアニン結晶粒子が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有し、その回折ピークの半値巾が1゜以上である一次粒子の平均粒子サイズが0.1μm以下の不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンを水の存在下で有機溶媒により結晶変換を行い、結晶変換後の一次粒子の平均粒子サイズが0.25μmより大きく成長する前に、有機溶媒より結晶変換後のチタニルフタロシアニンを分別、濾過されたものであることを特徴とする前記第(1)項又は第(2)項に記載の電子写真感光体」、(4)「前記チタニルフタロシアニン結晶が、ハロゲン化物を含まない原材料を使用して合成されたものであることを特徴とする前記第(1)項乃至第(3)項のいずれかに記載の電子写真感光体」、(5)「前記チタニルフタロシアニン結晶の結晶変換に際して、使用される不定形チタニルフタロシアニンがアシッドペースト法により作製され、充分にイオン交換水で洗浄され、洗浄後のイオン交換水のpHが6〜8の間及び/又はイオン交換水の比伝導度が8以下であることを特徴とする前記第(1)項乃至第(4)項のいずれかに記載の電子写真感光体」、(6)「前記チタニルフタロシアニン結晶の結晶変換に際して、使用される有機溶媒量が不定形チタニルフタロシアニンの30倍(重量比)以上であることを特徴とする前記第(1)項乃至第(5)項のいずれかに記載の電子写真感光体」、(7)「前記架橋型電荷輸送層が有機溶剤に対し不溶性であることを特徴とする前記第(1)項乃至第(6)項のいずれかに記載の電子写真感光体」、(8)「前記架橋型電荷輸送層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの官能基が、アクリロイルオキシ基及び/又はメタクリロイルオキシ基であることを特徴とする前記第(1)項乃至第(7)項のいずれかに記載の電子写真感光体」、(9)「前記架橋型電荷輸送層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーにおける官能基数に対する分子量の割合(分子量/官能基数)が、250以下であることを特徴とする前記第(1)項乃至第(8)項のいずれかに記載の電子写真感光体」、(10)「前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の官能基が、アクリロイルオキシ基又はメタクリロイルオキシ基であることを特徴とする前記第(1)項乃至第(9)項のいずれかに記載の電子写真感光体」、(11)「前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の電荷輸送構造が、トリアリールアミン構造であることを特徴とする前記第(1)項乃至第(10)項のいずれかに記載の電子写真感光体」、(12)「前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物が、下記一般式(1)又は(2)で表わされる化合物の少なくとも一種以上であることを特徴とする前記第(1)項乃至第(11)項のいずれかに記載の電子写真感光体;
Figure 0004249679
Figure 0004249679

(式中、Rは水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基、置換基を有してもよいアリール基、シアノ基、ニトロ基、アルコキシ基、−COOR(Rは水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基)、ハロゲン化カルボニル基若しくはCONR(R及びRは水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基を示し、互いに同一であっても異なっていてもよい)を表わし、Ar、Arは置換基を有してもよいアリーレン基を表わし、同一であっても異なってもよい。Ar、Arは置換基を有してもよいアリール基を表わし、同一であっても異なってもよい。Xは単結合、置換基を有してもよいアルキレン基、置換基を有してもよいシクロアルキレン基、置換基を有してもよいアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。Zは置換基を有してもよいアルキレン基、置換基を有してもよいアルキレンエーテル2価基、アルキレンオキシカルボニル2価基を表わす。m、nは0〜3の整数を表わす。)」、(13)「前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物が、下記一般式(3)で表わされる化合物の少なくとも一種以上であることを特徴とする前記第(1)項乃至第(12)項のいずれかに記載の電子写真感光体;
Figure 0004249679
(式中、o、p、qはそれぞれ0又は1の整数、Raは水素原子、メチル基を表わし、Rb、Rcは水素原子以外の置換基で炭素数1〜6のアルキル基を表わし、複数の場合は異なっても良い。s、tは0〜3の整数を表わす。Zaは単結合、メチレン基、エチレン基、
Figure 0004249679
を表わす。)」、(14)「前記架橋型電荷輸送層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの成分割合が、架橋型電荷輸送層全量に対し30〜70重量%であることを特徴とする前記第(1)項乃至第(13)項のいずれかに記載の電子写真感光体」、(15)「前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の成分割合が、架橋型電荷輸送層全量に対し30〜70重量%であることを特徴とする前記第(1)項乃至第(14)項のいずれかに記載の電子写真感光体」、(16)「前記架橋型電荷輸送層の硬化手段が加熱又は光エネルギー照射手段であることを特徴とする前記第(1)項乃至第(15)項のいずれかに記載の電子写真感光体」、(17)「前記電荷輸送層に、高分子電荷輸送物質が含有されていることを特徴とする前記第(1)項乃至第(16)項のいずれかに記載の電子写真感光体」(18)「前記高分子電荷輸送物質が、トリアリールアミン構造を主鎖又は側鎖に有するポリカーボネートであることを特徴とする前記第(17)項に記載の電子写真感光体」、によって解決される。
また、上記課題は、本発明の(19)「前記第(1)項乃至第(18)項のいずれかに記載の電子写真感光体を用いて、少なくとも帯電、画像露光、現像、転写を繰り返し行うことを特徴とする画像形成方法」によって解決される。
さらに、上記課題は、本発明の(20)「少なくとも帯電手段、露光手段、現像手段、転写手段及び電子写真感光体を具備してなる画像形成装置において、該電子写真感光体が前記第(1)項乃至第(18)項の何れかに記載のものであることを特徴とする画像形成装置」、(21)「少なくとも帯電手段、露光手段、現像手段、転写手段及び電子写真感光体からなる画像形成要素が複数配列され、該電子写真感光体が前記第(1)項乃至第(18)項の何れかに記載の電子写真感光体であることを特徴とする画像形成装置」、(22)「電子写真感光体と帯電手段、露光手段、現像手段及びクリーニング手段から選ばれる少なくとも1つの手段とが一体となったカートリッジを搭載し、かつ該カートリッジが装置本体に対し着脱自在であることを特徴とする前記第(20)項又は第(21)項に記載の画像形成装置」によって解決される。
また、上記課題は、本発明の(23)「少なくとも帯電手段、露光手段、現像手段及びクリーニング手段から選ばれる1つの手段と、電子写真感光体とが一体となった画像形成装置用プロセスカートリッジにおいて、該電子写真感光体が前記第(1)項乃至第(18)項の何れかに記載の電子写真感光体であることを特徴とする画像形成装置用プロセスカートリッジ」によって解決される。
本発明は、高速機やカラー機に要求される画質安定化及び高寿命化に対し、本発明によれば長期に渡って繰り返し使用しても高い耐摩耗性を有し、かつクリーニング不良、、クラック、傷、膜剥がれ等による異常画像の発生なしに、地肌汚れを抑制し、かつ電位安定性を高め、その結果高画質画像を長期に渡って安定に提供できる電子写真感光体が得られる。これにより電子写真感光体はもとより、それを用いた画像形成装置用プロセスカートリッジ並びに画像形成装置の高寿命化並びに高安定化を実現できる。
以下、本発明に用いられる電子写真感光体について詳しく説明する。
本発明の電子写真感光体は、少なくとも導電性支持体上に電荷発生層、電荷輸送層及び架橋型電荷輸送層を順次積層した電子写真感光体において、該電荷発生層中にCuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3゜のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さず、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶粒子を含み、該架橋型電荷輸送層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより形成され、該架橋型電荷輸送層の膜厚が1μm以上、10μm以下であることを特徴とするものである。
上記チタニルフタロシアニン結晶は、前記特許文献1に記載されており、さらに本発明で使用される電荷発生物質およびこれを用いた感光体、画像形成装置などが開示されている。
このチタニルフタロシアニン結晶を用いることによって、高感度化を実現し、さらに繰り返し使用によっても帯電低下の少ない安定な電子写真感光体を得ることができ、これにより地肌汚れの低減が実現された。しかし、これだけでは地肌汚れの要因を完全に抑制することはできず、充分な抑制効果が得られていなかった。
本発明においては、さらにチタニルフタロシアニン結晶の微細化もしくは凝集物の排除が地肌汚れの低減に非常に有効であることを見い出し、それを実現したことにより、地肌汚れのさらなる低減化を実現した。
しかし、電荷発生層に上記チタニルフタロシアニン結晶を用いることにより、高感度化と地肌汚れの抑制が可能な感光体を得ることができても、感光体の繰り返し使用による摩耗によって電界強度が増加すると地肌汚れの抑制効果が急激に低下し、高寿命化を達成するに至っていなかった。
特に、高速機やカラー機に用いる場合、感光体の使用環境は過酷さを増し、摩耗の影響は著しく増大するため、地肌汚れが発生しやすい状況にあった。感光体の耐摩耗性を高める従来の方法では、耐摩耗性は向上できても、急激な残留電位上昇を引き起こしたり、クリーニング不良によって画像欠陥や画像ボケの発生を引き起こし、地肌汚れ以前にそれらの影響によって感光体の交換を余儀なくされていたため、高寿命化は実現できていなかった。
本発明においては、電荷発生層に上記チタニルフタロシアニン結晶を含有することによって高感度化を達成し、さらに顔料の微細化もしくは凝集物を減少させることによって地肌汚れの影響を軽減し、加えて耐摩耗性を高めると同時に静電的に安定で、かつ耐傷性に優れ、膜剥がれやクラックの発生がない上記架橋型電荷輸送層と組み合わせることによって、長期繰り返し使用による地肌汚れの抑制を実現し、静電安定性並びに画質安定性を両立することが可能となり、それによって高速機やカラー機に用いても安定した画質を長期に渡って提供することが可能となった。
以下に、本発明の構成要素のうち、電荷発生層に含有されるチタニルフタロシアニン結晶の製造方法について詳細に説明する。
始めに、上記チタニルフタロシアニン結晶の合成方法について記述する。合成方法としては、特許文献8に記載されているように、ハロゲン化チタンを原料に用いない方法が良好に用いられる。この方法により、ハロゲン化フリーのチタニルフタロシアニン結晶を合成することが可能となる。
チタニルフタロシアニン結晶に不純物としてハロゲン化チタニルフタロシアニン結晶が含まれると、これを用いた感光体の静電特性において光感度の低下や、帯電性の低下といった悪影響を及ぼす場合が多い(Japan Hardcopy 89論文集p.103 1989年)。
本発明において、地肌汚れの発生を抑制し、高感度化と高耐久化の両立を実現するためには、前記特許文献1に記載されているようなハロゲン化フリーのチタニルフタロシアニン結晶を主に対象にしているものであり、これらの材料が有効に使用される。
本発明で用いられる特定の結晶型を有するチタニルフタロシアニン結晶の合成方法について述べる。
フタロシアニン類の合成方法は古くから知られており、Moser等による「Phthalocyanine Compounds」(1963年)、「The Phthalocyanines」(1983年)、特開平6−293769号公報等に記載されている。
例えば、第1の方法として、無水フタル酸類、金属あるいはハロゲン化金属及び尿素の混合物を高沸点溶媒の存在下あるいは不存在下において加熱する方法である。この場合、必要に応じてモリブデン酸アンモニウム等の触媒が併用される。
第2の方法としては、フタロニトリル類とハロゲン化金属を高沸点溶媒の存在下あるいは不存在下において加熱する方法である。この方法は、第1の方法で製造できないフタロシアニン類、例えば、アルミニウムフタロシアニン類、インジウムフタロシアニン類、オキソバナジウムフタロシアニン類、オキソチタニウムフタロシアニン類、ジルコニウムフタロシアニン類等に用いられる。
第3の方法は、無水フタル酸あるいはフタロニトリル類とアンモニアを先ず反応させて、例えば1,3−ジイミノイソインドリン類等の中間体を製造し、次いでハロゲン化金属と高沸点溶媒中で反応させる方法である。
第4の方法は、尿素等存在下で、フタロニトリル類と金属アルコキシドを反応させる方法である。特に、第4の方法はベンゼン環への塩素化(ハロゲン化)が起こらず、電子写真用材料の合成法としては、極めて有用な方法であり、本発明においては有効に使用することができる。
次に、不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)の合成法について述べる。
この方法は、フタロシアニン類を硫酸に溶解した後、水で希釈し、再析出させる方法であり、アシッド・ペースト法あるいはアシッド・スラリー法と呼ばれるものが使用できる。
具体的な方法としては、上記の合成粗品を10〜50倍量の濃硫酸に溶解し、必要に応じて不溶物を濾過等により除去し、これを硫酸の10〜50倍量の充分に冷却した水もしくは氷水にゆっくりと投入し、チタニルフタロシアニンを再析出させる。
析出したチタニルフタロシアニンを濾過した後、イオン交換水で洗浄・濾過を行ない、濾液が中性になるまで充分にこの操作を繰り返す。最終的に、イオン交換水で洗浄した後濾過を行い、固形分濃度で5〜15wt%程度の水ペーストを得る。
この際、イオン交換水で充分に洗浄し、可能な限り濃硫酸を残さないことが重要である。具体的には、洗浄後のイオン交換水が以下のような物性値を示すことが好ましい。即ち、硫酸の残存量を定量的に表わせば、洗浄後のイオン交換水のpHや比伝導度で表わすことができる。pHで表わす場合には、pHが6〜8の範囲であることが望ましい。この範囲であることにより、感光体特性に影響を与えない硫酸残存量であると判断できる。このpH値は市販のpHメーターで簡便的に測定することができる。また比伝導度で表わせば、8以下であることが望ましい。この範囲であれば、感光体特性に影響を与えない硫酸残存量であると判断できる。この比伝導度は市販の電気伝導率計で測定することが可能である。比伝導度の下限値は、洗浄に使用するイオン交換水の比伝導度ということになる。いずれの測定においても、上記範囲を逸脱する範囲では、硫酸の残存量が多く、感光体の帯電性が低下したり、光感度が悪化したりするので望ましくない。
本発明に用いられる不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)は、以上の方法によって作製される。この際、この不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有するものであることが好ましい。特に、その回折ピークの半値巾が1゜以上であることがより好ましい。更に、一次粒子の平均粒子サイズが0.1μm以下であることが好ましい。
次に、結晶変換方法について述べる。
結晶変換は、前記不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)を、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、かつ26.3゜にピークを有さないチタニルフタロシアニン結晶に変換する工程である。
具体的な方法としては、前記不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)を乾燥せずに、水の存在下で有機溶媒と共に混合・撹拌することによって、前記結晶型を得るものである。
この際、使用される有機溶媒は、所望の結晶型を得られるものであれば、いかなる有機溶媒も使用できるが、特にテトラヒドロフラン、トルエン、塩化メチレン、二硫化炭素、オルトジクロロベンゼン、1,1,2−トリクロロエタンの中から選ばれる1種を選択すると、良好な結果が得られる。これら有機溶媒は単独で用いることが好ましいが、これらの有機溶媒を2種以上混合する、あるいは他の溶媒と混合して用いることも可能である。
結晶変換に使用される前記有機溶媒の量は、不定形チタニルフタロシアニンの重量の10倍以上、好ましくは30倍以上の重量であることが望ましい。これは、結晶変換を素早く充分に起こさせると共に、不定形チタニルフタロシアニンに含まれる不純物を充分に取り除く効果が発現されるからである。なお、ここで使用する不定形チタニルフタロシアニンは、アシッド・ペースト法により作製するものであるが、上述のように硫酸を充分に洗浄したものを使用することが望ましい。硫酸が残存するような条件で結晶変換を行うと、結晶粒子中に硫酸イオンが残存し、出来上がった結晶を水洗処理のような操作をしても完全には取り除くことができない。硫酸イオンが残存した場合には、感光体の感度低下、帯電性低下を引き起こすなど、好ましい結果を得られない。例えば、特開平8−110649号公報(比較例)には、硫酸に溶解したチタニルフタロシアニンをイオン交換水と共に有機溶媒に投入し結晶変換を行なう方法が記載されている。この際、本発明で得られるチタニルフタロシアニン結晶のX線回折スペクトルに類似した結晶を得ることができるが、チタニルフタロシアニン中の硫酸イオン濃度が高く、光減衰特性(光感度)が悪いものであるため、本発明のチタニルフタロシアニンの製造方法としては良好なものではない。
以上の結晶変換方法は、前記特許文献1に準じた結晶変換方法である。本発明の画像形成装置に用いられる感光体に含有される電荷発生物質においては、チタニルフタロシアニン結晶の粒子サイズをより細かくすることにより、地汚れ抑制効果が高くなり、画質安定性並びに高寿命化に対し有効となる。
感光層に含有されるチタニルフタロシアニン結晶の粒子サイズをコントロールするための方法は、大きく2つの方法が挙げられる。1つはチタニルフタロシアン結晶粒子を合成する際に、0.25μmより大きい粒子を含まない結晶を合成する方法であり、いま1つはチタニルフタロシアニン結晶を分散した後、0.25μmより大きい粗大粒子を取り除いてしまう方法である。勿論、両者を併用して用いることはより大きな効果を併せ持つものである。
先に、微粒子チタニルフタロシアニン結晶の合成方法を述べる。
チタニルフタロシアニン結晶の粒子サイズをより細かくするために、本発明者らが観察したところによれば、前述の不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)は、一次粒径が0.1μm以下(そのほとんどが0.01〜0.05μm程度)であるが(図1参照、なお図中のスケールバーは0.2μmを示す)、結晶変換に際しては、結晶成長と共に結晶変換されることが分かった。
通常、この種の結晶変換においては、原料の残存をおそれて充分な結晶変換時間を確保し、結晶変換が十二分に行なわれた後に、濾過を行ない、所望の結晶型を有するチタニルフタロシアニン結晶を得るものである。このため、原料として充分に小さな一次粒子を有する原料を用いているにもかかわらず、結晶変換後の結晶としては一次粒子の大きな結晶(概ね0.3〜0.5μm)が得られていた(図2参照、なお図中のスケールバーは0.2μmを示す)。
このように作製されたチタニルフタロシアニン結晶を分散するにあたっては、分散後の粒子サイズを小さなもの(0.25μm以下、好ましくは0.20μm以下)にするため、強いシェアを与えて分散を行い、さらには必要に応じて一次粒子を粉砕する強いエネルギーを与えて分散を行なっている。この結果、前述の如き、粒子の一部が所望の結晶型でない結晶型へと転移してしまうことがあった。
一方、本発明においては、結晶変換に際して結晶成長がほとんど起こらない範囲(図1に観察される不定形チタニルフタロシアニン粒子のサイズが、結晶変換後において遜色ない小ささ、概ね0.2μm以下に保たれる範囲)で、結晶変換が完了した時点を見極めることによって、可能な限り一次粒子サイズの小さなチタニルフタロシアニン結晶を得ようというものである。
結晶変換後の粒子サイズは、結晶変換時間に比例して大きくなる。このため前述のように、結晶変換の効率を高くし、短時間で完了させることが重要である。このためには、いくつかの重要なポイントが挙げられる。
1つは、結晶変換溶媒を前述のように適正なものを選択し、結晶変換効率を高めることである。
もう1つは、結晶変換を短時間に完了させるために、溶媒とチタニルフタロシアニン水ペースト(前述の如き作製した原料:不定形チタニルフタロシアニン)を充分に接触させるために強い撹拌を用いるものである。具体的には、撹拌力の非常に強いプロペラを用いた撹拌、ホモジナイザー(ホモミキサー)のような強烈な撹拌(分散)手段を用いるなどの手法によって、短時間での結晶変換を実現させるものである。
これらの条件によって、原料が残存することなく、結晶変換が充分に行なわれ、かつ結晶成長が起こらない状態のチタニルフタロシアニン結晶を得ることができる。この場合にも、結晶変換に使用する有機溶媒量の適正化が有効な手段である。具体的には、不定形チタニルフタロシアニンの固形分に対して、10倍以上、好ましくは30倍以上の有機溶媒を使用することが望ましい。これにより、短時間での結晶変換を確実なものとすると共に、不定形チタニルフタロシアニン中に含まれる不純物を確実に取り除くことができる。
また、上述のように結晶粒子サイズと結晶変換時間は比例関係にあるため、所定の反応(結晶変換)が完了したら、反応を直ちに停止させる方法も有効な手段である。
上述のように結晶変換を行なった後、直ちに結晶変換の起こりにくい溶媒を大量に添加することが前記手段として挙げられる。結晶変換の起こりにくい溶媒としては、アルコール系、エステル系などの溶媒が挙げられる。これらの溶媒を結晶変換溶媒に対して、10倍程度加えることにより、結晶変換を停止することができる。
このようにして作製される結晶は、一次粒径がより小さく、地汚れの抑制に有利となるが、顔料作製にかかる次工程(顔料の濾過工程)、分散液での分散安定性を考慮すると、あまり小さすぎても副作用が出る場合がある。
即ち、一次粒子が非常に細かい場合には、これを濾過する工程において濾過時間が非常に長くなってしまうという問題が発生する。また、一次粒子が小さすぎる場合には、分散液中での顔料粒子の表面積が大きくなるため、粒子の再凝集の可能性が高くなり、逆に地汚れの発生を促進させる恐れが出てくる。
したがって、適切な顔料粒子の粒子サイズは、およそ0.05μm〜0.2μm程度の範囲である。
図3には、短時間で結晶変換を行なった場合のチタニルフタロシアニン結晶のTEM像を示す。なお、図中のスケールバーは0.2μmを示す。図2の場合とは異なり、粒子サイズが小さく、ほぼ均一であり、図2に観察されるような粗大粒子は全く認められない。
このように作製されたチタニルフタロシアニン結晶を分散するにあたっては、合成後のチタニルフタロシアニンの一次粒子は充分に小さいため、図2に示すような粗大粒子を含むチタニルフタロシアニンを分散する際に必要となる強いシェアを与えずとも、所望の平均粒子サイズ(0.25μm以下、好ましくは0.2μm以下)を得ることが可能となる。この結果、過度の分散によって粒子の一部が所望の結晶型とは異なる結晶型に転移してしまう不具合を抑制することが可能となる。
ここでいう平均粒子サイズとは、体積平均粒径として、超遠心式自動粒度分布測定装置:CAPA−700(堀場製作所製)により求めたものであり、この際、累積分布の50%に相当する粒子径(Median系)として算出されたものである。
しかしながら、この方法では微量の粗大粒子を検出できない場合があるため、より詳細に求めるには、チタニルフタロシアニン結晶粉末、あるいは分散液を直接、電子顕微鏡にて観察し、その大きさを求めることが重要である。
分散液をさらに観察して微小欠陥について検討した結果、上記現象は次のように説明される。
通常、平均粒子サイズを測定する方法において、極端に大きな粒子が数%以上も存在するような場合には、その存在が検出できるが、全体の1%以下程度のような微量になってくると、その測定は検出限界以下になってしまう。その結果、平均粒子サイズの測定だけでは粗大粒子の存在が検出されずに、上述のような微小欠陥に関する解釈を困難にしていた。
図4及び図5に、分散条件を固定して分散時間だけを変更した2種類の分散液の状態を観察した写真を示す。
同一条件における分散時間の短い分散液の写真を図4に示すが、分散時間の長い図5と比較して、図4中の黒い粒として観察される粗大粒子が多く残っている様子が観測される。
この2種類の分散液の平均粒径並びに粒度分布を公知の方法に従って、市販の粒度分布測定装置(堀場製作所製:超遠心式自動粒度分布測定装置、CAPA700)によって測定した。その結果を図6に示す。
図6における「A」が図4に示す分散液に対応し、「B」が図5に示す分散液に対応する。両者を比較すると、粒度分布に関してはほとんど差が認められない。また、両者の平均粒径値は、「A」が0.29μm、「B」が0.28μmと求められ、測定誤差を加味した上では、両者に明らかな差があるとは判断できない。
したがって、公知の平均粒径(粒子サイズ)の規定だけでは、微量な粗大粒子の残存量を検出することはできず、地肌汚れとの関係を明確にすることは難しい。この微量な粗大粒子の存在は、塗工液を顕微鏡等で観察することにより、初めて認識されるものであり、これによって地肌汚れとの関係を明らかにすることが可能となった。
このような結果から、凝集を抑制しつつ、結晶変換時に作製される一次粒子をできる限り小さくするために、結晶変換溶媒を前述のように適正なものを選択し、結晶変換効率を高めつつ、結晶変換を短時間に完了させるために、溶媒とチタニルフタロシアニン水ペースト(前述の如き作製した原料)を充分に接触させるために強い撹拌を用いるような手法は有効であることがわかる。
このような結晶変換方法を採用することにより、一次粒子サイズの小さな(0.25μm以下、好ましくは0.2μm以下)チタニルフタロシアニン結晶を得ることができる。前記特許文献1に記載された技術に加えて、必要に応じて上述のような技術(微細なチタニルフタロシアニン結晶を得るための結晶変換方法)を併用することは、本発明の効果を高めるために有効な手段である。
続いて、結晶変換されたチタニルフタロシアニン結晶は直ちに濾過されることにより、結晶変換溶媒と分別される。この濾過に際しては、適当なサイズのフィルターを用いることにより行なわれる。この際、減圧濾過を用いることが最も適当である。
その後、分別されたチタニルフタロシアニン結晶は、必要に応じて加熱乾燥される。加熱乾燥に使用する乾燥機は、公知のものがいずれも使用可能であるが、大気下で行なう場合には送風型の乾燥機が好ましい。更に、乾燥速度を早め、本発明の効果をより顕著に発現させるために減圧下の乾燥も非常に有効な手段である。特に、高温で分解する、あるいは結晶型が変化するような材料に対しては有効な手段である。特に10mmHgよりも真空度が高い状態で乾燥することが有効である。
このように得られた特定の結晶型を有するチタニルフタロシアニン結晶は、電子写真感光体用電荷発生物質として極めて有用である。しかしながら、先述のように結晶型が不安定であり、分散液を作製する際に結晶型が転移し易いという欠点を有していた。 しかしながら、本発明のように一次粒子を限りなく小さくした結晶を合成することによって、分散液作製時に過剰なシェアを与えることなく、平均粒径の小さな分散液を作製することができ、結晶型も極めて安定に(合成した結晶型を変えることなく)作製することが可能となる。
分散液の作製に関しては一般的な方法が用いられ、前記チタニルフタロシアニン結晶を必要に応じてバインダー樹脂とともに適当な溶剤中にボールミル、アトライター、サンドミル、ビーズミル、超音波などを用いて分散することで得られるものである。
この際、バインダー樹脂は感光体の静電特性などにより、また溶媒は顔料へのぬれ性、顔料の分散性などによって選択すればよい。
既に述べたように、CuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニン結晶は、熱エネルギー・機械的シェア等のストレスにより他の結晶型に容易に結晶転移をすることが知られている。本発明で用いるチタニルフタロシアニン結晶もこの傾向は変わらない。
すなわち、微細な粒子を含む分散液を作製するためには、分散方法の工夫も必要であるが、結晶型の安定性と微粒子化はトレード・オフの関係になりがちである。分散条件を最適化することによってこれを回避する方法はあるが、いずれも製造条件を極めて狭くしてしまうものであり、より簡便な方法が望まれている。この問題を解決するために、以下のような方法も有効な手段である。
すなわち、結晶転移が起こらない範囲でできる限り粒子を微細にした分散液を作製後、適当なフィルターで濾過を行ない、粗大粒子を取り除く方法である。この方法では、残存する目視では観察できない(あるいは粒径測定では検出できない)微量な粗大粒子をも取り除くことができ、また粒度分布を揃えるという点からも非常に有効な手段である。
具体的には、上述のように作製した分散液を、有効孔径が3μm以下のフィルター、より好ましくは1μm以下のフィルターにて濾過する操作を行ない、分散液を完成させるというものである。
この方法によっても、粒子サイズの小さな(0.25μm以下、好ましくは0.2μm以下)チタニルフタロシアニン結晶のみを含む分散液を作製することができ、これを用いて作製した感光体を画像形成装置に搭載することによって、地汚れに対する余裕度を高めることが可能となり、感光体の高耐久化に対し有効となる。
この際、濾過される分散液の粒子サイズが大きすぎたり、粒度分布が広すぎたりする場合には、濾過によるロスが大きくなったり、濾過の目詰まりを生じて濾過が不可能になったりする場合がある。このため、濾過前の分散液においては、平均粒子サイズが0.3μm以下で、その標準偏差が0.2μm以下に到達するまで分散を行った方が望ましい。平均粒子サイズが0.3μm以上である場合には濾過によるロスが大きくなり、標準偏差が0.2μm以上である場合には濾過時間が非常に長くなったりする不具合が生じる場合がある。
分散液を濾過するフィルターに関しては、除去したい粗大粒子のサイズによって異なるものであるが、本発明者等の検討によれば、600dpi程度の解像度を必要とする画像形成装置で使用される感光体としては、最低でも3μm以上の粗大粒子の存在は画像に対して影響を及ぼす。
したがって、有効孔径が3μm以下のフィルターを使用すべきである。より好ましくは1μm以下の有効孔径を有するフィルターを使用することである。
この有効孔径に関しては、細かいほど粗大粒子の除去に効果があるものであるが、あまり細かすぎると、必要な顔料粒子そのものも濾過されてしまったり、また、濾過に時間がかかる、フィルターが目詰まりを起こす、ポンプ等を使用して送液する場合には負荷がかかりすぎる等の問題を生じるため、適切な有効孔径を有するフィルターを選択する必要がある。
なお、ここで使用されるフィルターの材質は、当然のことながら濾過する分散液に使用される溶媒に対して耐性のあるものが使用される。
このような分散液の濾過操作を加えることによっても、粗大粒子を取り除くことが可能になり、ひいては分散液を使用した感光体で発生する地汚れを低減化することができる。
上述のように、より細かいフィルターを使用するほど、その効果は大きなもの(確実なもの)になるが、場合によっては顔料粒子そのものが濾過されてしまう不具合が生じる恐れがある。
このような場合には、先に述べた一次粒子を微細化したチタニルフタロシアニンの合成技術と併用することによって、それらの不具合を解消することが可能となり、得られる効果は非常に大きくなる。
即ち、(1)微細化チタニルフタロシアニンを合成し、これを使用することにより、分散時間の短縮化・分散ストレスの低減化が図れ、分散における結晶転移の可能性が小さくなる。(2)分散によって残存する粗大粒子サイズが、微細化しない場合よりも小さいため、より小さなフィルターを使用することが可能になり、粗大粒子の除去効果がより確実なものとなる。また、除去されるチタニルフタロシアニン粒子量が低減し、濾過前後における分散液組成の変化が少なく、安定した製造が可能になる。(3)その結果、製造される感光体は安定して地汚れ耐性の高い電子写真感光体が製造されることになる。
次に、本発明の電子写真感光体における構成要素の1つの架橋型電荷輸送層について説明する。
架橋型電荷輸送層は、電子写真感光体の繰り返し使用によって起こる摩耗の影響を軽減し、電界強度の増加によって増加する地汚れの経時安定性を高め、さらに静電安定性や画質安定性を高めることによって経時安定性と耐久性を両立させることを目的として形成されるものである。
電子写真感光体表面に形成される傷や表面に付着する異物(トナー、トナーの外添剤、キャリア、紙粉等)は、電子写真感光体のクリーニング性を低下させ、画質安定性を顕著に低下させる。
したがって、電子写真感光体の高耐久化を実現させるためには、耐摩耗性を高めるだけでなく、電子写真感光体表面の傷やフィルミングの影響を最小限にすることが重要であり、そのためには高硬度、高弾性でかつ平滑な表面層を形成させることが好ましい。
本発明の電子写真感光体の表面層を形成する架橋型電荷輸送層は、3官能以上のラジカル重合性モノマーを硬化した架橋構造を有するため3次元の網目構造が発達し、架橋密度が非常に高い高硬度且つ高弾性な表面層が得られ、かつ均一で平滑性も高く、高い耐摩耗性、耐傷性が達成される。
このように電子写真感光体の表面の架橋密度すなわち単位体積あたりの架橋結合数を増加させることが重要であるが、硬化反応において瞬時に多数の結合を形成させるため体積収縮による内部応力が発生する。この内部応力は、架橋型電荷輸送層の膜厚が厚くなるほど増加するため電荷輸送層全層を硬化させると、クラックや膜剥がれが発生しやすくなる。
この現象は、初期的に現れなくても、電子写真プロセス上で繰り返し使用され帯電、現像、転写、クリーニングのハザード及び熱変動の影響を受けることにより、経時で発生しやすくなることもある。
この問題を解決する方法としては、(1)架橋層及び架橋構造に高分子成分を導入する、(2)1官能及び2官能のラジカル重合性モノマーを多量に用いる、(3)柔軟性基を有する多官能モノマーを用いる、などの硬化樹脂層を柔らかくする方向性が挙げられるが、いずれも架橋層の架橋密度が希薄となり、飛躍的な耐摩耗性が達成されないことを確認した。
これに対し、本発明の電子写真感光体においては、電荷輸送層上に3次元の網目構造が発達した架橋密度の高い架橋型電荷輸送層が1μm以上、10μm以下の膜厚で設けたものとすることによって、上記のクラックや膜剥がれを発生させず、且つ非常に高い耐摩耗性を達成することができたものである。
かかる架橋型電荷輸送層の膜厚を2μm以上、8μm以下の膜厚にすることによって、さらに上記問題に対する余裕度が向上することに加え、更なる耐摩耗性向上に繋がる高架橋密度化の材料選択が可能となる。
本発明の電子写真感光体がクラックや膜剥がれを抑制できる理由としては、架橋型電荷輸送層を薄膜化できるため内部応力が大きくならないこと、下層に電荷輸送層を有するため表面の架橋型電荷輸送層の内部応力を緩和できることなどによるものと考えられる。
このために、架橋型電荷輸送層に高分子材料を多量に含有させる必要がなく、この時生ずる、高分子材料とラジカル重合性組成物(ラジカル重合性モノマーや電荷輸送性構造を有するラジカル重合性化合物)の反応によって生じた硬化物との不相溶が原因で発生する傷やトナーフィルミングも起こりにくい。
さらに、電荷輸送層全層にわたる厚膜を光エネルギー照射によって硬化する場合、電荷輸送性構造による吸収から内部への光透過が制限され、硬化反応が充分に進行しない現象が起こることがある。
本発明の電子写真感光体の架橋型電荷輸送層が、10μm以下の薄膜であるために、内部まで均一に硬化反応が進行し、表面と同様に内部でも高い耐摩耗性が維持される。
また、本発明における該架橋型電荷輸送層の形成においては、上記3官能性ラジカル重合性モノマーに加え、さらに1官能の電荷輸送性構造を有するラジカル重合性化合物を含有させており、これが上記3官能以上のラジカル重合性モノマー硬化時に架橋結合中に取り込まれる。
これに対し、官能基を有しない低分子電荷輸送物質を架橋表面層中に含有させた場合には、その相溶性の低さから低分子電荷輸送物質の析出や白濁現象が起こり、架橋表面層の機械的強度も低下する。
一方、2官能以上の電荷輸送性化合物を主成分として用いた場合には、複数の結合で架橋構造中に固定され架橋密度はより高まるが、電荷輸送性構造が非常に嵩高いため硬化樹脂構造の歪みが非常に大きくなり、架橋型電荷輸送層の内部応力が高まる原因となる。
さらに、本発明の電子写真感光体は、良好な電気的特性を有し、このため繰り返し安定性に優れており、高耐久化並びに高安定化が実現される。
これは、架橋型電荷輸送層の構成材料として1官能の電荷輸送性構造を有するラジカル重合性化合物を用い、架橋結合間にペンダント状に固定化したことに起因するためである。
上記のように、官能基を有しない電荷輸送物質の場合には、析出、白濁現象が起こり、感度の低下、残留電位の上昇等繰り返し使用における電気的特性の劣化が著しい。2官能以上の電荷輸送性化合物を主成分として用いた場合には、複数の結合で架橋構造中に固定されるため、電荷輸送時の中間体構造(カチオンラジカル)が安定して保てず、電荷のトラップによる感度の低下、残留電位の上昇が起こりやすい。
これらの電気的特性の劣化は、画像濃度低下、文字細り等の画像として現れる。さらに、本発明の電子写真感光体においては、下層の電荷輸送層として従来感光体の電荷トラップの少ない高移動度な設計が適応可能で、架橋型電荷輸送層の電気的副作用を最小限に抑えることができる。
また、本発明における上記架橋型電荷輸送層形成において、架橋型電荷輸送層が有機溶剤に対し不溶性にすることによって、特にその飛躍的な耐摩耗性が発揮される。
該架橋型電荷輸送層は、電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより形成され、層全体としては3次元の網目構造が発達し高い架橋密度を有するが、上記成分以外の含有物(例えば、1または2官能モノマー、高分子バインダー、酸化防止剤、レベリング剤、可塑剤などの添加剤及び下層からの溶解混入成分)や硬化条件により、局部的に架橋密度が希薄になったり、高密度に架橋した微小な硬化物の集合体として形成されることがある。
このような架橋型電荷輸送層は、硬化物間の結合力は弱く有機溶剤に対し溶解性を示し、且つ電子写真プロセス中で繰り返し使用されるなかで、局部的な摩耗や微小な硬化物単位での脱離が発生しやすくなる。
本発明のように架橋型電荷輸送層を有機溶剤に対し不溶性にせしめることによって、本来の3次元の網目構造が発達し高い架橋度を有することに加え、連鎖反応が広い範囲で進行し硬化物が高分子量化するため、飛躍的な耐摩耗性の向上が達成される。
次に、本発明の架橋型電荷輸送層塗布液の構成材料について説明する。
本発明に用いられる電荷輸送性を有しない3官能以上のラジカル重合性モノマーとは、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しておらず、且つラジカル重合性官能基を3個以上有するモノマーを指す。
このラジカル重合性官能基とは、炭素−炭素2重結合を有するものであり、ラジカル重合可能な基であれば何れでもよい。これらラジカル重合性官能基としては、例えば、下記に示す1−置換エチレン官能基、1,1−置換エチレン官能基等が挙げられる。
(1)1−置換エチレン官能基としては、例えば以下の式で表される官能基が挙げられる。
Figure 0004249679
(ただし、式中、Xは、置換基を有していてもよいフェニレン基、ナフチレン基等のアリーレン基、置換基を有していてもよいアルケニレン基、−CO−基、−COO−基、−CON(R10)−基(R10は、水素、メチル基、エチル基等のアルキル基、ベンジル基、ナフチルメチル基、フェネチル基等のアラルキル基、フェニル基、ナフチル基等のアリール基を表わす。)、または−S−基を表わす。)
これらの置換基を具体的に例示すると、ビニル基、スチリル基、2−メチル−1,3−ブタジエニル基、ビニルカルボニル基、アクリロイルオキシ基、アクリロイルアミド基、ビニルチオエーテル基等が挙げられる。
(2)1,1−置換エチレン官能基としては、例えば以下の式で表される官能基が挙げられる。
Figure 0004249679
(ただし、式中、Yは、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、ハロゲン原子、シアノ基、ニトロ基、メトキシ基あるいはエトキシ基等のアルコキシ基、−COOR11基(R11は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル、フェネチル基等のアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、または−CONR1213(R12およびR13は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル基、ナフチルメチル基、あるいはフェネチル基等のアラルキル基、または置換基を有していてもよいフェニル基、ナフチル基等のアリール基を表し、互いに同一または異なっていてもよい。)、また、Xは上記式10のXと同一の置換基及び単結合、アルキレン基を表わす。ただし、Y,Xの少なくとも何れか一方がオキシカルボニル基、シアノ基、アルケニレン基、及び芳香族環である。)
これらの置換基を具体的に例示すると、α−塩化アクリロイルオキシ基、メタクリロイルオキシ基、α−シアノエチレン基、α−シアノアクリロイルオキシ基、α−シアノフェニレン基、メタクリロイルアミノ基等が挙げられる。
なお、これらX、Yについての置換基にさらに置換される置換基としては、例えばハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
これらのラジカル重合性官能基の中では、特にアクリロイルオキシ基、メタクリロイルオキシ基が有用であり、3個以上のアクリロイルオキシ基を有する化合物は、例えば水酸基がその分子中に3個以上ある化合物とアクリル酸(塩)、アクリル酸ハライド、アクリル酸エステルを用い、エステル反応あるいはエステル交換反応させることにより得ることができる。
また、3個以上のメタクリロイルオキシ基を有する化合物も同様にして得ることができる。また、ラジカル重合性官能基を3個以上有する単量体中のラジカル重合性官能基は、同一でも異なっても良い。
電荷輸送性構造を有しない3官能以上の具体的なラジカル重合性モノマーとしては、以下のものが例示されるが、これらの化合物に限定されるものではない。
すなわち、本発明において使用する上記ラジカル重合性モノマーとしては、例えば、トリメチロールプロパントリアクリレート(TMPTA)、トリメチロールプロパントリメタクリレート、トリメチロールプロパンアルキレン変性トリアクリレート、トリメチロールプロパンエチレンオキシ変性(以後EO変性)トリアクリレート、トリメチロールプロパンプロピレンオキシ変性(以後PO変性)トリアクリレート、トリメチロールプロパンカプロラクトン変性トリアクリレート、トリメチロールプロパンアルキレン変性トリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート(PETTA)、グリセロールトリアクリレート、グリセロールエピクロロヒドリン変性(以後ECH変性)トリアクリレート、グリセロールEO変性トリアクリレート、グリセロールPO変性トリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート(DPHA)、ジペンタエリスリトールカプロラクトン変性ヘキサアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、アルキル化ジペンタエリスリトールペンタアクリレート、アルキル化ジペンタエリスリトールテトラアクリレート、アルキル化ジペンタエリスリトールトリアクリレート、ジメチロールプロパンテトラアクリレート(DTMPTA)、ペンタエリスリトールエトキシテトラアクリレート、リン酸EO変性トリアクリレート、2,2,5,5,−テトラヒドロキシメチルシクロペンタノンテトラアクリレートなどが挙げられ、これらは、単独又は2種類以上を併用しても差し支えない。
また、本発明に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーとしては、架橋型電荷輸送層中に緻密な架橋結合を形成するために、該モノマー中の官能基数に対する分子量の割合(分子量/官能基数)は250以下が望ましい。
この割合が250を越える場合、架橋型電荷輸送層は柔らかく耐摩耗性が幾分低下する傾向が出てくるため、上記例示したモノマー等中、EO、PO、カプロラクトン等の変性基を有するモノマーにおいては、極端に長い変性基を有するものを単独で使用することは好ましくはない。
また、架橋型電荷輸送層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの成分割合は、架橋型電荷輸送層全量に対し20〜80重量%、好ましくは30〜70重量%である。
モノマー成分が20重量%未満では、架橋型電荷輸送層の3次元架橋結合密度が少なく、従来の熱可塑性バインダー樹脂を用いた場合に比べ飛躍的な耐摩耗性向上が達成されにくくなる傾向がある。また、80重量%を越える場合には電荷輸送性化合物の含有量が低下して、電気的特性の劣化が生じる傾向がある。
使用されるプロセスによって要求される電気特性や耐摩耗性が異なり、それに伴い本感光体の架橋型電荷輸送層の膜厚も異なるため一概には言えないが、両特性のバランスを考慮すると30〜70重量%の範囲が最も好ましい。
本発明の架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物とは、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しており、且つ1個のラジカル重合性官能基を有する化合物を指す。
このラジカル重合性官能基としては、先のラジカル重合性モノマーで示したものが挙げられ、特にアクリロイルオキシ基、メタクリロイルオキシ基が有用である。また、電荷輸送性構造としてはトリアリールアミン構造が高い効果を有し、中でも下記一般式(1)又は(2)の構造で示される化合物を用いた場合、感度、残留電位等の電気的特性が良好に持続される。
Figure 0004249679
Figure 0004249679
(式中、Rは水素原子、ハロゲン原子、置換又は無置換のアルキル基、置換又は無置換のアラルキル基、置換又は無置換のアリール基、シアノ基、ニトロ基、アルコキシ基、−COOR(Rは水素原子、置換又は無置換のアルキル基、置換又は無置換のアラルキル基又は置換又は無置換のアリール基)、ハロゲン化カルボニル基若しくはCONR(R及びRは水素原子、ハロゲン原子、置換又は無置換のアルキル基、置換又は無置換のアラルキル基又は置換又は無置換のアリール基を示し、互いに同一であっても異なっていてもよい)を表わし、Ar、Arは置換もしくは無置換のアリーレン基を表わし、同一であっても異なってもよい。Ar、Arは置換もしくは無置換のアリール基を表わし、同一であっても異なってもよい。Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。Zは置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレンエーテル2価基、アルキレンオキシカルボニル2価基を表わす。m、nは0〜3の整数を表わす。)
以下に、一般式(1)、(2)の具体例を示す。
前記一般式(1)、(2)において、Rの置換基中、アルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基等、アリール基としては、フェニル基、ナフチル基等が、アラルキル基としては、ベンジル基、フェネチル基、ナフチルメチル基が、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等がそれぞれ挙げられ、これらは、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等により置換されていても良い。
の置換基のうち、特に好ましいものは水素原子、メチル基である。
置換もしくは未置換のAr、Arはアリール基であり、アリール基としては縮合多環式炭化水素基、非縮合環式炭化水素基及び複素環基が挙げられる。
該縮合多環式炭化水素基としては、好ましくは環を形成する炭素数が18個以下のもの、例えば、ペンタニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、as−インダセニル基、s−インダセニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレル基、ピレニル基、クリセニル基、及びナフタセニル基等が挙げられる。
該非縮合環式炭化水素基としては、ベンゼン、ジフェニルエーテル、ポリエチレンジフェニルエーテル、ジフェニルチオエーテル及びジフェニルスルホン等の単環式炭化水素化合物の1価基、あるいはビフェニル、ポリフェニル、ジフェニルアルカン、ジフェニルアルケン、ジフェニルアルキン、トリフェニルメタン、ジスチリルベンゼン、1,1−ジフェニルシクロアルカン、ポリフェニルアルカン、及びポリフェニルアルケン等の非縮合多環式炭化水素化合物の1価基、あるいは9,9−ジフェニルフルオレン等の環集合炭化水素化合物の1価基が挙げられる。
複素環基としては、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、オキサジアゾール、及びチアジアゾール等の1価基が挙げられる。
また、前記Ar、Arで表わされるアリール基は例えば以下に示すような置換基を有してもよい。
(1)ハロゲン原子、シアノ基、ニトロ基等。
(2)アルキル基、好ましくは、C〜C12とりわけC〜C、さらに好ましくはC〜Cの直鎖または分岐鎖のアルキル基であり、これらのアルキル基にはさらにフッ素原子、水酸基、シアノ基、C〜Cのアルコキシ基、フェニル基又はハロゲン原子、C〜Cのアルキル基もしくはC〜Cのアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチル基、エチル基、n−ブチル基、i−プロピル基、t−ブチル基、s−ブチル基、n−プロピル基、トリフルオロメチル基、2−ヒドロキエチル基、2−エトキシエチル基、2−シアノエチル基、2−メトキシエチル基、ベンジル基、4−クロロベンジル基、4−メチルベンジル基、4−フェニルベンジル基等が挙げられる。
(3)アルコキシ基(−OR)であり、Rは(2)で定義したアルキル基を表わす。
具体的には、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、t−ブトキシ基、n−ブトキシ基、s−ブトキシ基、i−ブトキシ基、2−ヒドロキシエトキシ基、ベンジルオキシ基、トリフルオロメトキシ基等が挙げられる。
(4)アリールオキシ基であり、アリール基としてはフェニル基、ナフチル基が挙げられる。これは、C〜Cのアルコキシ基、C〜Cのアルキル基またはハロゲン原子を置換基として含有してもよい。具体的には、フェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、4−メトキシフェノキシ基、4−メチルフェノキシ基等が挙げられる。
(5)アルキルメルカプト基またはアリールメルカプト基であり、具体的にはメチルチオ基、エチルチオ基、フェニルチオ基、p−メチルフェニルチオ基等が挙げられる。
(6)
Figure 0004249679
(式中、R及びRは各々独立に水素原子、前記(2)で定義したアルキル基、またはアリール基を表わす。アリール基としては、例えばフェニル基、ビフェニル基又はナフチル基が挙げられ、これらはC〜Cのアルコキシ基、C〜Cのアルキル基またはハロゲン原子を置換基として含有してもよい。R及びRは共同で環を形成してもよい)
具体的には、アミノ基、ジエチルアミノ基、N−メチル−N−フェニルアミノ基、N,N−ジフェニルアミノ基、N,N−ジ(トリール)アミノ基、ジベンジルアミノ基、ピペリジノ基、モルホリノ基、ピロリジノ基等が挙げられる。
(7)メチレンジオキシ基、又はメチレンジチオ基等のアルキレンジオキシ基又はアルキレンジチオ基等が挙げられる。
(8)置換又は無置換のスチリル基、置換又は無置換のβ−フェニルスチリル基、ジフェニルアミノフェニル基、ジトリルアミノフェニル基等。
前記Ar、Arで表わされるアリーレン基としては、前記Ar、Arで表されるアリール基から誘導される2価基である。
前記Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。
置換もしくは無置換のアルキレン基としては、C〜C12、好ましくはC〜C、さらに好ましくはC〜Cの直鎖または分岐鎖のアルキレン基であり、これらのアルキレン基にはさらにフッ素原子、水酸基、シアノ基、C〜Cのアルコキシ基、フェニル基又はハロゲン原子、C〜Cのアルキル基もしくはC〜Cのアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチレン基、エチレン基、n−ブチレン基、i−プロピレン基、t−ブチレン基、s−ブチレン基、n−プロピレン基、トリフルオロメチレン基、2−ヒドロキエチレン基、2−エトキシエチレン基、2−シアノエチレン基、2−メトキシエチレン基、ベンジリデン基、フェニルエチレン基、4−クロロフェニルエチレン基、4−メチルフェニルエチレン基、4−ビフェニルエチレン基等が挙げられる。
置換もしくは無置換のシクロアルキレン基としては、C〜Cの環状アルキレン基であり、これらの環状アルキレン基にはフッ素原子、水酸基、C〜Cのアルキル基、C〜Cのアルコキシ基を有していても良い。具体的にはシクロヘキシリデン基、シクロへキシレン基、3,3−ジメチルシクロヘキシリデン基等が挙げられる。
置換もしくは無置換のアルキレンエーテル基としては、エチレンオキシ、プロピレンオキシ、エチレングリコール、プロピレングリコール、ジエチレングリコール、テトラエチレングリコール、トリプロピレングリコールを表わし、アルキレンエーテル基アルキレン基はヒドロキシル基、メチル基、エチル基等の置換基を有してもよい。
ビニレン基は、
Figure 0004249679
で表わされ、Rは水素、アルキル基(前記(2)で定義されるアルキル基と同じ)、アリール基(前記Ar、Arで表わされるアリール基と同じ)、aは1または2、bは1〜3を表わす。
前記Zは置換もしくは未置換のアルキレン基、置換もしくは無置換のアルキレンエーテル2価基、アルキレンオキシカルボニル2価基を表わす。
置換もしくは未置換のアルキレン基としては、前記Xのアルキレン基と同様なものが挙げられる。
置換もしくは無置換のアルキレンエーテル2価基としては、前記Xのアルキレンエーテル基の2価基が挙げられる。
アルキレンオキシカルボニル2価基としては、カプロラクトン変性2価基が挙げられる。
また、本発明の1官能の電荷輸送構造を有するラジカル重合性化合物としてさらに好ましくは、下記一般式(3)の構造の化合物が挙げられる。
Figure 0004249679
(式中、o、p、qはそれぞれ0又は1の整数、Raは水素原子、メチル基を表わし、Rb、Rcは水素原子以外の置換基で炭素数1〜6のアルキル基を表わし、同一又は異なっても良い。s、tは0〜3の整数を表わす。Zaは単結合、メチレン基、エチレン基、
Figure 0004249679
を表わす。)
上記一般式で表わされる化合物としては、Rb、Rcの置換基として、特にメチル基、エチル基である化合物が好ましい。
本発明で用いる上記一般式(1)及び(2)特に(3)の1官能性の電荷輸送構造を有するラジカル重合性化合物は、炭素−炭素間の二重結合が両側に開放されて重合するため、末端構造とはならず、連鎖重合体中に組み込まれ、3官能以上のラジカル重合性モノマーとの重合で架橋形成された重合体中では、高分子の主鎖中に存在し、かつ主鎖−主鎖間の架橋鎖中に存在(この架橋鎖には1つの高分子と他の高分子間の分子間架橋鎖と、1つの高分子内で折り畳まれた状態の主鎖のある部位と主鎖中でこれから離れた位置に重合したモノマー由来の他の部位とが架橋される分子内架橋鎖とがある)する。
主鎖中に存在する場合であってもまた架橋鎖中に存在する場合であっても、鎖部分から懸下するトリアリールアミン構造は、窒素原子から放射状方向に配置する少なくとも3つのアリール基を有し、バルキーであるが、鎖部分に直接結合しておらず、鎖部分からカルボニル基等を介して懸下しているため、立体的位置取りに融通性ある状態で固定されているので、これらトリアリールアミン構造は重合体中で相互に程よく隣接する空間配置が可能であるため、分子内の構造的歪みが少なく、また、電子写真感光体の表面層とされた場合に、電荷輸送経路の断絶を比較的免れた分子内構造を採りうるものと推測される。
本発明に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物について、その具体例を以下に示すが、これらの構造の化合物に限定されるものではない。
Figure 0004249679
Figure 0004249679
Figure 0004249679
Figure 0004249679
Figure 0004249679
Figure 0004249679
Figure 0004249679
Figure 0004249679











Figure 0004249679










Figure 0004249679







Figure 0004249679





Figure 0004249679
また、本発明に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物は、架橋型電荷輸送層の電荷輸送性能を付与するために重要で、この成分は架橋型電荷輸送層に対し20〜80重量%、好ましくは30〜70重量%である。
この成分が20重量%未満の場合には、架橋型電荷輸送層の電荷輸送性能が充分に保てず、繰り返しの使用で感度低下、残留電位上昇などの電気特性の劣化が現れる傾向がある。また、80重量%を越える場合には、電荷輸送構造を有しない3官能モノマーの含有量が低下し、架橋結合密度の低下を招き高い耐摩耗性が発揮しにくい傾向がある。
使用されるプロセスによって要求される電気特性や耐摩耗性が異なり、それに伴い本発明の電子写真感光体の架橋型電荷輸送層の膜厚も異なるため一概には言えないが、両特性のバランスを考慮すると30〜70重量%の範囲が最も好ましい。
本発明の電子写真感光体を構成する架橋型電荷輸送層は、少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化したものであるが、これ以外に塗工時の粘度調整、架橋型電荷輸送層の応力緩和、低表面エネルギー化や摩擦係数低減などの機能付与の目的で、1官能及び2官能のラジカル重合性モノマー及びラジカル重合性オリゴマーを併用することができる。
これらのラジカル重合性モノマー、オリゴマーとしては、公知のものが利用できる。
1官能のラジカルモノマーとしては、例えば、2−エチルヘキシルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、テトラヒドロフルフリルアクリレート、2−エチルヘキシルカルビトールアクリレート、3−メトキシブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、イソアミルアクリレート、イソブチルアクリレート、メトキシトリエチレングリコールアクリレート、フェノキシテトラエチレングリコールアクリレート、セチルアクリレート、イソステアリルアクリレート、ステアリルアクリレート、スチレンモノマーなどが挙げられる。
2官能のラジカル重合性モノマーとしては、例えば、1,3−ブタンジオールジアクリレート、1,4−ブタンジオールジアクリレート、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジアクリレート、1,6−ヘキサンジオールジメタクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ビスフェノールA−EO変性ジアクリレート、ビスフェノールF−EO変性ジアクリレート、ネオペンチルグリコールジアクリレートなどが挙げられる。
機能性モノマーとしては、例えば、オクタフルオロペンチルアクリレート、2−パーフルオロオクチルエチルアクリレート、2−パーフルオロオクチルエチルメタクリレート、2−パーフルオロイソノニルエチルアクリレートなどのフッ素原子を置換したもの、特公平5−60503号公報、特公平6−45770号公報記載のシロキサン繰り返し単位:20〜70のアクリロイルポリジメチルシロキサンエチル、メタクリロイルポリジメチルシロキサンエチル、アクリロイルポリジメチルシロキサンプロピル、アクリロイルポリジメチルシロキサンブチル、ジアクリロイルポリジメチルシロキサンジエチルなどのポリシロキサン基を有するビニルモノマー、アクリレート及びメタクリレートが挙げられる。
ラジカル重合性オリゴマーとしては、例えば、エポキシアクリレート系、ウレタンアクリレート系、ポリエステルアクリレート系オリゴマーが挙げられる。但し、1官能及び2官能のラジカル重合性モノマーやラジカル重合性オリゴマーを多量に含有させると、架橋型電荷輸送層の3次元架橋結合密度が実質的に低下し、耐摩耗性の低下を招く。
このような理由で、これらのモノマーやオリゴマーの含有量は、3官能以上のラジカル重合性モノマー100重量部に対し50重量部以下が好ましく、特に30重量部以下であればより好ましい。
また、本発明における架橋型電荷輸送層は、少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化したものであるが、この硬化反応を効率よく進行させるために、必要に応じて架橋型電荷輸送層塗布液中に、熱重合開始剤あるいは光重合開始剤のような重合開始剤を含有させても良い。
熱重合開始剤としては、2,5−ジメチルヘキサン−2,5−ジヒドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルクミルパーオキサイド、2,5−ジメチル−2,5−ジ(パーオキシベンゾイル)ヘキシン−3、ジ−t−ブチルベルオキサイド、t−ブチルヒドロベルオキサイド、クメンヒドロベルオキサイド、ラウロイルパーオキサイド、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシ)プロパンなどの過酸化物系開始剤、アゾビスイソブチルニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル、アゾビスイソブチルアミジン塩酸塩、4,4’−アゾビス−4−シアノ吉草酸などのアゾ系開始剤が挙げられる。
光重合開始剤としては、ジエトキシアセトフェノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2−メチル−2−モルフォリノ(4−メチルチオフェニル)プロパン−1−オン、1−フェニル−1,2−プロパンジオン−2−(o−エトキシカルボニル)オキシム、などのアセトフェノン系またはケタール系光重合開始剤、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、などのベンゾインエーテル系光重合開始剤、ベンゾフェノン、4−ヒドロキシベンゾフェノン、o−ベンゾイル安息香酸メチル、2−ベンゾイルナフタレン、4−ベンゾイルビフェニル、4−ベンゾイルフェニールエーテル、アクリル化ベンゾフェノン、1,4−ベンゾイルベンゼン、などのベンゾフェノン系光重合開始剤、2−イソプロピルチオキサントン、2−クロロチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジクロロチオキサントン、などのチオキサントン系光重合開始剤、その他の光重合開始剤としては、エチルアントラキノン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、2,4,6−トリメチルベンゾイルフェニルエトキシホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス(2,4−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキサイド、メチルフェニルグリオキシエステル、9,10−フェナントレン、アクリジン系化合物、トリアジン系化合物、イミダゾール系化合物、が挙げられる。また、光重合促進効果を有するものを単独または上記光重合開始剤と併用して用いることもできる。例えば、トリエタノールアミン、メチルジエタノールアミン、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミル、安息香酸(2−ジメチルアミノ)エチル、4,4’−ジメチルアミノベンゾフェノン、などが挙げられる。
これらの重合開始剤は、1種又は2種以上を混合して用いてもよい。重合開始剤の含有量は、ラジカル重合性を有する総含有物100重量部に対し、0.5〜40重量部、好ましくは1〜20重量部である。
さらに、本発明における架橋型電荷輸送層形成用塗工液には、必要に応じて各種可塑剤(応力緩和や接着性向上の目的)、レベリング剤、ラジカル反応性を有しない低分子電荷輸送物質などの添加剤が含有できる。
これらの添加剤は、公知のものが使用可能であり、可塑剤としてはジブチルフタレート、ジオクチルフタレート等の一般の樹脂に使用されているものが利用可能で、その使用量は塗工液の総固形分に対し20重量%以下、好ましくは10%以下に抑えられる。
また、レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいはオリゴマーが利用でき、その使用量は塗工液の総固形分に対し3重量%以下が適当である。
本発明における架橋型電荷輸送層は、少なくとも上記の電荷輸送構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を含有する塗工液を、後述する電荷輸送層上に塗布、硬化することにより形成される。
かかる塗工液は、ラジカル重合性モノマーが液体である場合、これに他の成分を溶解して塗布することも可能であるが、必要に応じて溶媒により希釈して塗布される。
この際に用いられる溶媒としては、メタノール、エタノール、プロパノール、ブタノールなどのアルコール系、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系、酢酸エチル、酢酸ブチルなどのエステル系、テトラヒドロフラン、ジオキサン、プロピルエーテルなどのエーテル系、ジクロロメタン、ジクロロエタン、トリクロロエタン、クロロベンゼンなどのハロゲン系、ベンゼン、トルエン、キシレンなどの芳香族系、メチルセロソルブ、エチルセロソルブ、セロソルブアセテートなどのセロソルブ系などが挙げられる。
これらの溶媒は単独または2種以上を混合して用いてもよい。溶媒による希釈率は組成物の溶解性、塗工法、目的とする膜厚により変わり、任意である。
塗布は、浸漬塗工法やスプレーコート、ビードコート、リングコート法などを用いて行なうことができる。
本発明においては、かかる架橋型電荷輸送層塗工液を塗布後、外部からエネルギーを与え硬化させ、架橋型電荷輸送層を形成するものであるが、このとき用いられる外部エネルギーとしては熱、光、放射線がある。
熱のエネルギーを加える方法としては、空気、窒素などの気体、蒸気、あるいは各種熱媒体、赤外線、電磁波を用い塗工表面側あるいは支持体側から加熱することによって行なわれる。
加熱温度は、100℃以上、170℃以下が好ましく、100℃未満では反応速度が遅く、完全に硬化反応が終了しない傾向がある。
170℃を越える高温では、硬化反応が不均一に進行し架橋型電荷輸送層中に大きな歪みや多数の未反応残基、反応停止末端が発生する。
硬化反応を均一に進めるために、100℃未満の比較的低温で加熱後、さらに100℃以上に加温し反応を完結させる方法も有効である。
光のエネルギーとしては、主に紫外光領域に発光波長をもつ高圧水銀灯やメタルハライドランプなどのUV照射光源が利用できるが、ラジカル重合性含有物や光重合開始剤の吸収波長に合わせ可視光光源の選択も可能である。
照射光量は、50mW/cm以上、1000mW/cm以下が好ましく、50mW/cm未満では硬化反応に時間を要する。1000mW/cmより強いと反応の進行が不均一となり、架橋型電荷輸送層表面に局部的な皺が発生したり、多数の未反応残基、反応停止末端が生ずる。また、急激な架橋により内部応力が大きくなり、クラックや膜剥がれの原因となる。放射線のエネルギーとしては電子線を用いるものが挙げられる。これらのエネルギーの中で、反応速度制御の容易さ、装置の簡便さから熱及び光のエネルギーを用いたものが有用である。
本発明の架橋型電荷輸送層の膜厚は、1μm以上、10μm以下、さらに好ましくは2μm以上、8μm以下である。10μmを越えて厚い場合、前述のようにクラックや膜剥がれが発生しやすくなり、8μm以下ではその余裕度がさらに向上するため架橋密度を高くすることが可能で、さらに耐摩耗性を高める材料選択や硬化条件の設定が可能となる。
一方、ラジカル重合反応は酸素阻害を受けやすく、すなわち大気に接した表面では酸素によるラジカルトラップの影響で架橋が進まなかったり、不均一になりやすい。
この影響が顕著に現れるのは膜厚が1μm未満の場合で、この膜厚以下の架橋型電荷輸送層は、耐摩耗性の低下や不均一な摩耗が起こりやすい。
また、架橋型電荷輸送層を形成する際の塗工時において、下層の電荷輸送層成分の混入が生じ、特に、架橋型電荷輸送層の塗布膜厚が薄いと層全体に混入物が拡がり、硬化反応の阻害や架橋密度の低下をもたらす。
これらの理由から、本発明の架橋型電荷輸送層は1μm以上の膜厚で良好な耐摩耗性、耐傷性を有するが、繰り返しの使用において局部的に下層の電荷輸送層まで削れた部分ができるとその部分の摩耗が増加し、帯電性や感度変動から中間調画像の濃度むらが発生しやすい。従って、より長寿命、高画質化のためには架橋型電荷輸送層の膜厚を、2μm以上にすることが望ましい。
本発明の電子写真感光体の、電荷発生層、電荷輸送層及び架橋型電荷輸送層を順次積層した構成において、最表面の架橋型電荷輸送層が有機溶剤に対し不溶性である場合には、耐摩耗性、耐傷性が飛躍的に向上する。
この有機溶剤に対する溶解性の確認は、電子写真感光体表面層上に高分子物質に対する溶解性の高い有機溶剤、例えば、テトラヒドロフラン、ジクロロメタン等を1滴滴下し、自然乾燥後に電子写真感光体表面形状の変化を実体顕微鏡で観察することによって判定することができる
溶解性が高い電子写真感光体は、液滴の中心部分が凹状になり周囲が逆に盛り上がる現象、電荷輸送物質が析出し結晶化による白濁やくもり生ずる現象、表面が膨潤しその後収縮することで皺が発生する現象などの変化がみられる。それに対し、不溶性の電子写真感光体は上記のような現象がみられず、滴下前と全く変化が現れない。
本発明の構成において、架橋型電荷輸送層を有機溶剤に対し不溶性にするには、(1)架橋型電荷輸送層塗工液の組成物、それらの含有割合の調整、(2)架橋型電荷輸送層塗工液の希釈溶媒、固形分濃度の調整、(3)架橋型電荷輸送層の塗工方法の選択、(4)架橋型電荷輸送層の硬化条件の制御、(5)下層の電荷輸送層の難溶解性化など、これらをコントロールすることが重要であるが、一つの因子で達成される訳ではない。
架橋型電荷輸送層形成用の塗工液の構成材料として、前述した電荷輸送性構造を有しない3官能以上のラジカル重合性モノマー及び1官能の電荷輸送性構造を有するラジカル重合性化合物以外に、ラジカル重合性官能基を有しないバインダー樹脂、酸化防止剤、可塑剤等の添加剤を多量に含有させると、架橋密度の低下、反応により生じた硬化物と上記添加物との相分離が生じ、有機溶剤に対し可溶性となる傾向が高い。
したがって、具体的には、塗工液の総固形分に対し上記総含有量を20重量%以下に抑えることが重要である。
また、架橋密度を希薄にさせないために、1官能または2官能のラジカル重合性モノマー、反応性オリゴマー、反応性ポリマーにおいても、総含有量を3官能ラジカル重合性モノマーに対し20重量%以下とすることが望ましい。
さらに、2官能以上の電荷輸送性構造を有するラジカル重合性化合物を多量に含有させると、嵩高い構造体が複数の結合により架橋構造中に固定されるため歪みを生じやすく、微小な硬化物の集合体となりやすく、これが原因で有機溶剤に対し可溶性となることがある。
化合物構造によって異なるが、2官能以上の電荷輸送性構造を有するラジカル重合性化合物の含有量は、1官能の電荷輸送性構造を有するラジカル重合性化合物に対して10重量%以下にすることが好ましい。
架橋型電荷輸送層形成用の塗工液の希釈溶媒に関しては、蒸発速度の遅い溶剤を用いた場合、残留する溶媒が硬化の妨げとなったり、下層成分の混入量を増加させることがあり、不均一硬化や硬化密度低下をもたらす。
このため有機溶剤に対し、可溶性となりやすい。具体的には、テトラヒドロフラン、テトラヒドロフランとメタノール混合溶媒、酢酸エチル、メチルエチルケトン、エチルセロソルブなどが有用であるが、塗工法と合わせて選択される。
また、固形分濃度に関しては、同様な理由で低すぎる場合、有機溶剤に対し可溶性となりやすい。逆に膜厚、塗工液粘度の制限から上限濃度の制約をうける。具体的には、10〜50重量%の範囲で用いることが望ましい。
架橋型電荷輸送層を形成するための塗工方法としては、同様な理由で塗工膜形成時の溶媒含有量、溶媒との接触時間を少なくする方法が好ましく、具体的にはスプレーコート法、塗工液量を規制したリングコート法が好ましい。
また、下層成分の混入量を抑えるためには、電荷輸送層として高分子電荷輸送物質を用いること、架橋型電荷輸送層用塗工液の溶媒に対し不溶性の中間層を設けることも有効である。
架橋型電荷輸送層の硬化条件としては、加熱または光照射のエネルギーが低いと硬化が完全に終了せず、有機溶剤に対し溶解性があがる。逆に非常に高いエネルギーにより硬化させた場合、硬化反応が不均一となり未架橋部やラジカル停止部の増加や微小な硬化物の集合体となりやすい。このため有機溶剤に対し溶解性となることがある。
有機溶剤に対し不溶性化するには、熱による硬化の条件として100〜170℃、10分〜3時間が好ましく、UV光照射による硬化条件としては50〜1000mW/cm、5秒〜5分で且つ温度上昇を50℃以下に制御し、不均一な硬化反応を抑えることが望ましい。
本発明の電子写真感光体を構成する架橋型電荷輸送層を、有機溶剤に対し不溶性にする手法について例示すると、例えば、塗工液として、3つのアクリロイルオキシ基を有するアクリレートモノマーと、一つのアクリロイルオキシ基を有するトリアリールアミン化合物を使用する場合、これらの使用割合は7:3から3:7であり、また、重合開始剤をこれらアクリレート化合物全量に対し3〜20重量%添加し、さらに溶媒を加えて塗工液を調製する。例えば、架橋型電荷輸送層の下層となる電荷輸送層において、電荷輸送物質としてトリアリールアミン系ドナー、及びバインダー樹脂として、ポリカーボネートを使用し、表面層をスプレー塗工により形成する場合、上記塗工液の溶媒としては、テトラヒドロフラン、2−ブタノン、酢酸エチル等が好ましく、その使用割合は、アクリレート化合物全量に対し3倍量〜10倍量である。
次いで、例えば、アルミシリンダー等の支持体上に、下引き層、電荷発生層及び上記電荷輸送層を順次塗工して得られたものの電荷輸送層上に、上記調製した塗工液をスプレー等により塗布する。その後、自然乾燥又は比較的低温で短時間乾燥し(25〜80℃、1〜10分間)、UV照射あるいは加熱して硬化させる。
UV照射の場合、メタルハライドランプ等を用いるが、照度は50mW/cm以上、1000mW/cm以下、時間としては5秒から5分程度が好ましく、ドラム温度は50℃を越えないように制御する。
熱硬化の場合、加熱温度は100〜170℃が好ましく、例えば加熱手段として送風型オーブンを用い、加熱温度を150℃に設定した場合、加熱時間は20分〜3時間である。
硬化終了後は、さらに残留溶媒低減のため100〜150℃で10分〜30分加熱して、本発明の感光体を得る。
続いて、本発明の電子写真感光体について、図面を用いて詳しく説明する。
図7は、本発明の電子写真感光体の構成例を示す断面図であり、導電性支持体(31)上に、特定結晶型を有し特定平均粒子サイズ以下のチタニルフタロシアニン結晶を主成分とする電荷発生層(35)と、電荷輸送材料を主成分とする電荷輸送層(37)とが積層され、さらに感光体の最表面には架橋型電荷輸送層が積層された構成となっている。なお、架橋型電荷輸送層と電荷輸送層との間に中間層、導電性支持体(31)と電荷発生層(35)の間に下引き層を積層してもよく、感光体の高耐久化や画質安定化に有効である。
導電性支持体(31)としては、体積抵抗1010Ω・cm以下の導電性を示すもの、例えば、アルミニウム、ニッケル、クロム、ニクロム、銅、金、銀、白金などの金属、酸化スズ、酸化インジウムなどの金属酸化物を、蒸着またはスパッタリングにより、フィルム状もしくは円筒状のプラスチック、紙に被覆したもの、あるいは、アルミニウム、アルミニウム合金、ニッケル、ステンレスなどの板およびそれらを、押し出し、引き抜きなどの工法で素管化後、切削、超仕上げ、研摩などの表面処理した管などを使用することができる。また、エンドレスニッケルベルト、エンドレスステンレスベルトも導電性支持体(31)として用いることができる。
また、これらの中でも陽極酸化皮膜処理を簡便に行なうことのできるアルミニウムからなる円筒状支持体が最も良好に使用できる。
ここでいうアルミニウムとは、純アルミ系あるいはアルミニウム合金のいずれも含まれる。具体的には、JIS1000番台、3000番台、6000番台のアルミニウムあるいはアルミニウム合金が最も適している。
陽極酸化皮膜は、各種金属、各種合金を電解質溶液中において陽極酸化処理したものであるが、中でもアルミニウムもしくはアルミニウム合金を電解質溶液中で陽極酸化処理を行なったアルマイトと呼ばれる被膜が、本発明の電子写真感光体には最も適している。
特に、反転現像(ネガ・ポジ現像)に用いた際に発生する点欠陥(黒ポチ、地肌汚れ)を防止する点で優れている。
陽極酸化処理は、クロム酸、硫酸、蓚酸、リン酸、硼酸、スルファミン酸などの酸性浴中において行なわれる。このうち、硫酸浴による処理が最も適している。一例を挙げると、硫酸濃度:10−20%、浴温:5−25℃、電流密度:1−4A/dm、電解電圧:5−30V、処理時間:5−60分程度の範囲で処理が行なわれるが、これに限定するものではない。
このように作製される陽極酸化皮膜は、多孔質であり、また、絶縁性が高いため、表面が非常に不安定な状況である。このため、作製後に経時変化が発生して、陽極酸化皮膜の物性値が変化しやすくなり、これを回避するため、陽極酸化皮膜を更に封孔処理することが望ましい。
封孔処理には、フッ化ニッケルや酢酸ニッケルを含有する水溶液に陽極酸化皮膜を浸漬する方法、陽極酸化皮膜を沸騰水に浸漬する方法、加圧水蒸気により処理する方法などがある。このうち、酢酸ニッケルを含有する水溶液に浸漬する方法が最も好ましい。
封孔処理に引き続き、陽極酸化皮膜の洗浄処理が行なわれる。これは、封孔処理により付着した金属塩等の過剰なものを除去することが主たる目的である。
これが支持体(陽極酸化皮膜)表面に過剰に残存すると、この上に形成する塗膜の品質に悪影響を与えるだけでなく、一般的に低抵抗成分が残ってしまうため、逆に地汚れの発生原因にもなってしまう。洗浄は純水1回の洗浄でも構わないが、通常は多段階の洗浄を行なう。この際、最終の洗浄液が可能な限りきれい(脱イオンされた)ものであることが好ましい。また、多段階の洗浄工程のうち1工程に接触部材による物理的なこすり洗浄を施すことが望ましい。
以上のようにして形成される陽極酸化皮膜の膜厚は、5〜15μm程度が望ましい。これ未満の薄すぎる場合には、陽極酸化皮膜としてのバリア性の効果が充分でなく、これより厚すぎる場合には、電極としての時定数が大きくなりすぎて、残留電位の発生や感光体のレスポンスが低下することがある。
この他、上記支持体上に導電性粉体を適当な結着樹脂に分散して塗工したものも、本発明の導電性支持体(31)として用いることができる。
この導電性粉体としては、カーボンブラック、アセチレンブラック、またアルミニウム、ニッケル、鉄、ニクロム、銅、亜鉛、銀などの金属粉、あるいは導電性酸化スズ、ITOなどの金属酸化物粉体などが挙げられる。
また、同時に用いられる結着樹脂には、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂などの熱可塑性、熱硬化性樹脂または光硬化性樹脂が挙げられる。
このような導電性層は、これらの導電性粉体と結着樹脂を適当な溶剤、例えば、テトラヒドロフラン、ジクロロメタン、メチルエチルケトン、トルエンなどに分散して塗布することにより設けることができる。
さらに、適当な円筒基体上に、ポリ塩化ビニル、ポリプロピレン、ポリエステル、ポリスチレン、ポリ塩化ビニリデン、ポリエチレン、塩化ゴム及びテフロン(登録商標)などの素材に、前記導電性粉体を含有させた熱収縮チューブによって導電性層を設けたものも、本発明の導電性支持体(31)として良好に用いることができる。
次に感光層について説明する。感光層は前述のように、電荷発生層(35)と電荷輸送層(37)で構成される積層型が感度、耐久性において優れた特性を示し、良好に使用される。
電荷発生層(35)は、電荷発生物質として、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4゜のピークの間にピークを有さないチタニルフタロシアニン結晶が良好に用いられ、更に26.3°にピークを有さず、結晶合成時あるいは分散濾過処理により、平均粒子サイズを0.25μm以下にし、粗大粒子の存在しないチタニルフタロシアン結晶を主成分とする層である。
電荷発生層(35)は、前記顔料を、必要に応じてバインダー樹脂と共に、適当な溶剤中にボールミル、アトライター、サンドミル、超音波などを用いて分散し、これを導電性支持体上に塗布し、乾燥することにより形成される。
必要に応じて電荷発生層(35)に用いられる結着樹脂としては、ポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリスルホン、ポリ−N−ビニルカルバゾール、ポリアクリルアミド、ポリビニルベンザール、ポリエステル、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリフェニレンオキシド、ポリアミド、ポリビニルピリジン、セルロース系樹脂、カゼイン、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。 結着樹脂の量は、電荷発生物質100重量部に対し0〜500重量部、好ましくは10〜300重量部が適当である。
ここで用いられる溶剤としては、例えばイソプロパノール、アセトン、メチルエチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、エチルセルソルブ、酢酸エチル、酢酸メチル、ジクロロメタン、ジクロロエタン、モノクロロベンゼン、シクロヘキサン、トルエン、キシレン、リグロイン等が挙げられる。塗布液の塗工法としては、浸漬塗工法、スプレーコート、ビートコート、ノズルコート、スピナーコート、リングコート等の方法を用いることができる。
電荷発生層35の膜厚は、0.01〜5μm程度が適当であり、好ましくは0.1〜2μmである。
電荷輸送層(37)は、電荷輸送物質および結着樹脂を適当な溶剤に溶解ないし分散し、これを電荷発生層上に塗布、乾燥することにより形成できる。また、必要により可塑剤、レベリング剤、酸化防止剤等を添加することもできる。
電荷輸送物質には、電子輸送物質と正孔輸送物質とがある。
電子輸送物質としては、例えばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、2,6,8−トリニトロ−4H−インデノ〔1,2−b〕チオフェン−4−オン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキサイド、ベンゾキノン誘導体等の電子受容性物質が挙げられる。
正孔輸送物質としては、ポリ−N−ビニルカルバゾールおよびその誘導体、ポリ−γ−カルバゾリルエチルグルタメートおよびその誘導体、ピレン−ホルムアルデヒド縮合物およびその誘導体、ポリビニルピレン、ポリビニルフェナントレン、ポリシラン、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、モノアリールアミン誘導体、ジアリールアミン誘導体、トリアリールアミン誘導体、スチルベン誘導体、α−フェニルスチルベン誘導体、ベンジジン誘導体、ジアリールメタン誘導体、トリアリールメタン誘導体、9−スチリルアントラセン誘導体、ピラゾリン誘導体、ジビニルベンゼン誘導体、ヒドラゾン誘導体、インデン誘導体、ブタジェン誘導体、ピレン誘導体等、ビススチルベン誘導体、エナミン誘導体等その他公知の材料が挙げられる。これらの電荷輸送物質は単独、または2種以上混合して用いられる。
結着樹脂としては、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアレート、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂等の熱可塑性または熱硬化性樹脂が挙げられる。
また、電荷輸送層には、電荷輸送物質としての機能とバインダー樹脂の機能を持った高分子電荷輸送物質も良好に使用される。
これら高分子電荷輸送物質から構成される電荷輸送層は、架橋型電荷輸送層を形成する際の塗工時における下層の溶解性を低減できることからとりわけ有用である。高分子電荷輸送物質としては、公知の材料が使用できるが、特に、トリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートが良好に用いられる。
中でも、式(I)〜(X)式で表わされる高分子電荷輸送物質が良好に用いられ、これらを以下に例示し、具体例を示す。
Figure 0004249679
式中、R,R,Rはそれぞれ独立して置換もしくは無置換のアルキル基又はハロゲン原子、Rは水素原子又は置換もしくは無置換のアルキル基、R,Rは置換もしくは無置換のアリール基、o,p,qはそれぞれ独立して0〜4の整数、k,jは組成を表わし、0.1≦k≦1、0≦j≦0.9、nは繰り返し単位数を表わし5〜5000の整数である。Xは脂肪族の2価基、環状脂肪族の2価基、または下記一般式で表わされる2価基を表わす。なお、(I)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 0004249679
式中、R101,R102は各々独立して置換もしくは無置換のアルキル基、アリール基またはハロゲン原子を表わす。l、mは0〜4の整数、Yは単結合、炭素原子数1〜12の直鎖状、分岐状もしくは環状のアルキレン基、−O−,−S−,−SO−,−SO−,−CO−,−CO−O−Z−O−CO−(式中Zは脂肪族の2価基を表わす。)または、
Figure 0004249679
(式中、aは1〜20の整数、bは1〜2000の整数、R103、R104は置換または無置換のアルキル基又はアリール基を表わす。)を表わす。ここで、R101とR102,R103とR104は、それぞれ同一でも異なってもよい。
Figure 0004249679
式中、R,Rは置換もしくは無置換のアリール基、Ar,Ar,Arは同一あるいは異なるアリレン基を表わす。X,k,jおよびnは、(I)式の場合と同じである。なお、(II)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 0004249679
式中、R,R10は置換もしくは無置換のアリール基、Ar,Ar,Arは同一あるいは異なるアリレン基を表わす。X,k,jおよびnは、(I)式の場合と同じである。なお、(III)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 0004249679
式中、R11,R12は置換もしくは無置換のアリール基、Ar,Ar,Arは同一あるいは異なるアリレン基、pは1〜5の整数を表わす。X,k,jおよびnは、(I)式の場合と同じである。なお、(IV)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 0004249679
式中、R13,R14は置換もしくは無置換のアリール基、Ar10,Ar11,Ar12は同一あるいは異なるアリレン基、X,Xは置換もしくは無置換のエチレン基、又は置換もしくは無置換のビニレン基を表わす。X,k,jおよびnは、(I)式の場合と同じである。なお、(V)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 0004249679
式中、R15,R16,R17,R18は置換もしくは無置換のアリール基、Ar13,Ar14,Ar15,Ar16は同一あるいは異なるアリレン基、Y,Y,Yは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わし同一であっても異なってもよい。X,k,jおよびnは、(I)式の場合と同じである。なお、(VI)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 0004249679
式中、R19,R20は水素原子、置換もしくは無置換のアリール基を表わし,R19とR20は環を形成していてもよい。Ar17,Ar18,Ar19は同一あるいは異なるアリレン基を表わす。X,k,jおよびnは、(I)式の場合と同じである。なお、(VII)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 0004249679
式中、R21は置換もしくは無置換のアリール基、Ar20,Ar21,Ar22,Ar23は同一あるいは異なるアリレン基を表わす。X,k,jおよびnは、(I)式の場合と同じである。なお、(VIII)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 0004249679
式中、R22,R23,R24,R25は置換もしくは無置換のアリール基、Ar24,Ar25,Ar26,Ar27,Ar28は同一あるいは又は異なるアリレン基を表わす。X,k,jおよびnは、(I)式の場合と同じである。なお、(IX)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
Figure 0004249679
式中、R26,R27は置換もしくは無置換のアリール基、Ar29,Ar30,Ar31は同一あるいは異なるアリレン基を表わす。X,k,jおよびnは、(I)式の場合と同じである。なお、(X)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
電荷輸送物質の量は、結着樹脂100重量部に対し、20〜300重量部、好ましくは40〜150重量部が適当である。
ここで用いられる溶剤としては、テトラヒドロフラン、ジオキサン、トルエン、ジクロロメタン、モノクロロベンゼン、ジクロロエタン、シクロヘキサノン、メチルエチルケトン、アセトンなどが用いられる。中でも、環境への負荷低減等の意図から、非ハロゲン系溶媒の使用は望ましいものである。具体的には、テトラヒドロフランやジオキソラン、ジオキサン等の環状エーテルやトルエン、キシレン等の芳香族系炭化水素、及びそれらの誘導体が良好に用いられる。
本発明においては、電荷輸送層(37)中に可塑剤やレベリング剤を添加してもよい。
可塑剤としては、ジブチルフタレート、ジオクチルフタレートなど一般の樹脂の可塑剤として使用されているものがそのまま使用でき、その使用量は、結着樹脂に対して0〜30重量%程度が適当である。
また、レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどのシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいは、オリゴマーが使用され、その使用量は結着樹脂に対して、0〜1重量%が適当である。
電荷輸送層の膜厚は、5〜40μm程度が適当であり、好ましくは10〜30μm程度が適当である。このようにして形成された電荷輸送層上に、前述の架橋型電荷輸送層塗工液を塗布、必要に応じて乾燥後、熱や光照射の外部エネルギーにより硬化反応を開始させ、架橋型電荷輸送層が形成される。
本発明の電子写真感光体においては、電荷輸送層と架橋型電荷輸送層の間に、架橋型電荷輸送層への電荷輸送層成分混入を抑える又は両層間の接着性を改善する目的で中間層を設けることが可能である。
このため、中間層としては、架橋型電荷輸送層形成用塗工液に対し不溶性または難溶性であるものが適しており、一般にバインダー樹脂を主成分として用いる。
これら樹脂としては、ポリアミド、アルコール可溶性ナイロン、水溶性ポリビニルブチラール、ポリビニルブチラール、ポリビニルアルコールなどが挙げられる。
中間層の形成法としては、前述のごとく一般に用いられる塗工法が採用される。なお、中間層の厚さは0.05〜2μm程度が適当である。
本発明の電子写真感光体においては、導電性支持体(31)と感光層との間に下引き層を設けることができる。
該下引き層は一般には樹脂を主成分とするが、これらの樹脂はその上に感光層を溶媒で塗布することを考えると、一般の有機溶剤に対して耐溶剤性の高い樹脂であることが望ましい。
このような樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウム等の水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロン等のアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、フェノール樹脂、アルキッド−メラミン樹脂、エポキシ樹脂等、三次元網目構造を形成する硬化型樹脂等が挙げられる。これらの樹脂の中でも、硬化型樹脂は、硬化されていることによって下引き層の上に感光層が塗工される際に有機溶剤による溶出の影響が極めて少ないことから、最も好ましく用いられる。但し、主剤と硬化剤の比率が適当でないと、熱硬化による体積収縮が大きくなり、塗膜欠陥が発生しやすくなったり、残留電位が上昇したりする恐れがある。特に、下引き層の塗膜欠陥は、黒斑点や地肌汚れの発生を促すことから、注意が必要である。例えば、下引き層の樹脂としてアルキッドメラミンを用いた場合には、アルキッドとメラミンの含有比率は重量比で5/5〜8/2が好ましい。
また、下引き層にはモアレ防止、残留電位の低減等のために酸化チタン、シリカ、アルミナ、酸化ジルコニウム、酸化スズ、酸化インジウム等で例示できる金属酸化物の微粉末顔料を加えてよく、有効かつ有用である。これらの中でも、酸化チタンが残留電位低減、モアレ防止、地肌汚れ抑制の点で最も好ましい。また、残留電位上昇を抑制するために、高純度の金属酸化物を用いることが好ましい。これらの金属酸化物の平均一次粒径としては、0.01μm〜0.8μmが好ましく、0.05μm〜0.5μmがより好ましい。但し、平均一次粒径が0.1μm以下の金属酸化物のみを用いた場合には、地肌汚れの低減に対し有効であるが、モアレ防止効果が低下する傾向があり、一方、平均一次粒径が0.4μmよりも大きな金属酸化物のみを用いた場合には、モアレ防止効果に優れるものの、地肌汚れの抑制効果がやや低減する傾向が見られる。この場合、異なる平均一次粒径を有する金属酸化物を混合して用いることによって、地肌汚れの低減とモアレの低減を両立できる場合があり、また残留電位の低減にも効果が見られる場合があり有効である。
また、これらの金属酸化物の含有量としては、金属酸化物とバインダー樹脂の容積比として、1/1乃至3/1の範囲であることが好ましい。容積比が1/1未満の場合には、モアレ防止効果が低下するだけでなく、残留電位上昇が顕著に発生する恐れがある。一方、容積比が3/1を越えると膜剥がれが発生したり、地肌汚れの抑制効果が大幅に低下する恐れがあり好ましくない。
これらの下引き層は前述の感光層の如く適当な溶媒、塗工法を用いて形成することができる。更に本発明の下引き層として、シランカップリング剤、チタンカップリング剤、クロムカップリング剤等を使用することもできる。この他、本発明の下引き層には、Alを陽極酸化にて設けたものや、ポリパラキシリレン(パリレン)等の有機物やSiO、SnO、TiO、ITO、CeO等の無機物を真空薄膜作成法にて設けたものも良好に使用できる。このほかにも公知のものを用いることができる。下引き層の膜厚は0.5〜20μm、好ましくは2〜10μmが適当である。膜厚が、0.5μm未満の場合には、地肌汚れの影響が増加する恐れがあり、10μmを越えると残留電位上昇の影響が増加する恐れがある。但し、下引き層の膜厚は、含有されている金属酸化物の比抵抗や含有率によって影響され、金属酸化物の比抵抗が低い場合や含有率が非常に高い場合には厚膜化も可能である。金属酸化物として酸化チタンを用いた場合には、2〜7μmが適当である。
下引き層に用いられる前記金属酸化物は、有機溶剤や、必要に応じてバインダー樹脂とともに分散を行ない、塗工液を得ることができる。分散方法としては、ボールミル、サンドミル、アトライター等、従来公知の方法を用いることができる。用いられる有機溶剤としては、テトラヒドロフラン、メチルエチルケトン、アセトン、シクロヘキサノン、トルエン、アルコール類が挙げられる。また、下引き層の塗工方法としては、ブレード塗工、浸積塗工、スプレー塗工、リング塗工、ビート塗工等、従来公知の方法を用いることができる。
本発明においては、耐環境性の改善のため、とりわけ、感度低下及び残留電位の上昇を防止する目的で、架橋型電荷輸送層、電荷輸送層、電荷発生層、下引き層及び中間層等の各層に、酸化防止剤を添加することができる。
このような酸化防止剤の具体例として、以下のものを挙げることができる。(フェノール系化合物)
2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−4−エチルフェノール、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2’−メチレン−ビス−(4−メチル−6−t−ブチルフェノール)、2,2’−メチレン−ビス−(4−エチル−6−t−ブチルフェノール)、4,4’−チオビス−(3−メチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス−(3−メチル−6−t−ブチルフェノール)、1,1,3−トリス−(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス−[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’−ビス(4’−ヒドロキシ−3’−t−ブチルフェニル)ブチリックアッシド]クリコ−ルエステル、トコフェロール類など。(パラフェニレンジアミン類)
N−フェニル−N’−イソプロピル−p−フェニレンジアミン、N,N’−ジ−sec−ブチル−p−フェニレンジアミン、N−フェニル−N−sec−ブチル−p−フェニレンジアミン、N,N’−ジ−イソプロピル−p−フェニレンジアミン、N,N’−ジメチル−N,N’−ジ−t−ブチル−p−フェニレンジアミンなど。
(ハイドロキノン類)
2,5−ジ−t−オクチルハイドロキノン、2,6−ジドデシルハイドロキノン、2−ドデシルハイドロキノン、2−ドデシル−5−クロロハイドロキノン、2−t−オクチル−5−メチルハイドロキノン、2−(2−オクタデセニル)−5−メチルハイドロキノンなど。
(有機硫黄化合物類)
ジラウリル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネート、ジテトラデシル−3,3’−チオジプロピオネートなど。
(有機燐化合物類)
トリフェニルホスフィン、トリ(ノニルフェニル)ホスフィン、トリ(ジノニルフェニル)ホスフィン、トリクレジルホスフィン、トリ(2,4−ジブチルフェノキシ)ホスフィンなど。
これら化合物は、ゴム、プラスチック、油脂類などの酸化防止剤として知られており、市販品を容易に入手できる。本発明における酸化防止剤の添加量は、添加する層の総重量に対して0.01〜10重量%である。
次に、図面を用いて本発明の電子写真画像形成装置について詳しく説明する。
本発明の画像形成方法及び画像形成装置とは、本発明の電子写真感光体を用いることを特徴とするものであり、すなわち、少なくとも導電性支持体上に電荷発生層、電荷輸送層及び架橋型電荷輸送層が順次積層され、該電荷発生層中にCuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3゜のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さず、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶粒子を含み、該架橋型電荷輸送層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより形成され、該架橋型電荷輸送層の膜厚が1μm以上、10μm以下である電子写真感光体を用い、例えば少なくとも感光体に帯電、画像露光、現像の過程を経た後、画像保持体(転写紙)へのトナー画像の転写、定着及び感光体表面のクリーニングというプロセスよりなる画像形成方法ならびに画像形成装置である。
場合により、静電潜像を直接転写体に転写し現像する画像形成方法等では、電子写真感光体に配した上記プロセスを必ずしも有するものではない。
図8は、画像形成装置の一例を示す概略図である。
電子写真感光体を平均的に帯電させる手段として、帯電チャージャ(53)が用いられる。この帯電手段としては、コロトロンデバイス、スコロトロンデバイス、固体放電素子、針電極デバイス、ローラー帯電デバイス、導電性ブラシデバイス等が用いられ、公知の方式が使用可能である。
特に本発明の画像形成装置の構成は、接触帯電方式又は非接触近接配置帯電方式のような帯電手段からの近接放電により感光体組成物が分解する様な帯電手段を用いた場合に特に有効である。
ここで言う接触帯電方式とは、電子写真感光体に帯電ローラ、帯電ブラシ及び帯電ブレード等が直接接触する帯電方式である。
一方の近接帯電方式とは、例えば帯電ローラが感光体表面と帯電手段との間に200μm以下の空隙を有するように非接触状態で近接配置したタイプのものである。
この空隙が大きすぎると、帯電が不安定になりやすく、また、小さすぎると、電子写真感光体に残留したトナーが存在する場合に、帯電部材表面が汚染されてしまう可能性がある。したがって、空隙は10〜200μm、好ましくは10〜100μmの範囲が適当である。
次に、均一に帯電された電子写真感光体(51)上に静電潜像を形成するために画像露光部(55)について説明する。
この光源としては、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの発光物全般を用いることができる。
そして、所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。
これらの光源のうち、発光ダイオード、及び半導体レーザーは照射エネルギーが高く、また600〜800nmの長波長光を有するため、前述の電荷発生材料であるチタニルフタロシアニン顔料が高感度を示すものであるため、良好に使用される。
次に、感光体(51)上に形成された静電潜像を可視化するために現像ユニット(56)について説明する。
現像方式としては、乾式トナーを用いた一成分現像法、二成分現像法、湿式トナーを用いた湿式現像法がある。電子写真感光体に正(負)帯電を施し、画像露光を行なうと、表面上には正(負)の静電潜像が形成される。これを負(正)極性のトナー(検電微粒子)で現像すれば、ポジ画像が得られるし、また正(負)極性のトナーで現像すれば、ネガ画像が得られる。
また、電子写真感光体上で可視化されたトナー像を転写体(59)上に転写するために転写チャージャ(60)が用いられる。また、転写をより良好に行なうために転写前チャージャ(57)を用いてもよい。
これらの転写手段としては、転写チャージャ、バイアスローラーを用いる静電転写方式、粘着転写法、圧力転写法等の機械転写方式、磁気転写方式が利用可能である。静電転写方式としては、前記帯電手段が利用可能である。
さらに、転写体(59)を電子写真感光体(51)から分離する手段として、分離チャージャ(61)、分離爪(62)が用いられる。その他分離手段としては、静電吸着誘導分離、側端ベルト分離、先端グリップ搬送、曲率分離等が用いられる。分離チャージャ(61)としては、前記帯電手段が利用可能である。
次に、転写後感光体上に残されたトナーをクリーニングするためにファーブラシ(64)、クリーニングブレード(65)が用いられる。また、クリーニングをより効率的に行なうためにクリーニング前チャージャ(63)を用いてもよい。その他クリーニング手段としては、ウェブ方式、マグネットブラシ方式等があるが、それぞれ単独又は複数の方式を一緒に用いてもよい。
また、必要に応じて電子写真感光体上の潜像を取り除く目的で除電手段が用いられる。
除電手段としては、除電ランプ(52)及び除電チャージャが用いられ、それぞれ前記露光光源、帯電手段が利用できる。
その他、電子写真感光体に近接していない原稿読み取り、給紙、定着、排紙等のプロセスは公知のものが使用できる。
本発明は、このような画像形成手段に本発明に係る電子写真感光体を用いる画像形成方法及び画像形成装置である。
この画像形成手段は、複写装置、ファクシミリ、プリンタ内に固定して組み込まれていてもよいが、プロセスカートリッジの形態でそれら装置内に組み込まれ、着脱自在としたものであってもよい。プロセスカートリッジの一例を図9に示す。
画像形成装置用プロセスカートリッジとは、電子写真感光体(101)を内蔵し、他に帯電手段(102)、現像手段(104)、転写手段(106)、クリーニング手段(107)、除電手段(図示せず)の少なくとも一つを具備し、画像形成装置本体に着脱可能とした装置(部品)である。
図9に例示されるプロセスカートリッジによる画像形成プロセスについて示すと、電子写真感光体(101)は、矢印方向に回転しながら、帯電手段(102)による帯電、露光手段(103)による露光により、その表面に露光像に対応する静電潜像が形成され、この静電潜像は、現像手段(104)でトナー現像され、該トナー現像は転写手段(106)により、転写体(105)に転写され、プリントアウトされる。
次いで、像転写後の電子写真感光体表面は、クリーニング手段(107)によってクリーニングされ、さらに除電手段(図示せず)によって除電されて、再び以上の操作を繰り返すものである。
以上の説明から明らかなように、本発明の電子写真感光体は、電子写真複写機に利用するのみならず、レーザービームプリンター、CRTプリンター、LEDプリンター、液晶プリンター及びレーザー製版等の電子写真応用分野にも広く用いることができるものである。
図10は、本発明のタンデム方式のフルカラー画像形成装置を説明するための概略図であり、下記するような変形例も本発明の範疇に属するものである。
タンデム方式の画像形成装置は、フルカラープリントの高速化を実現する上で非常に有効な方式であり、高感度、高耐久並びに高安定性を有する本発明の電子写真感光体を用いることによって、有効性はさらに高くなる。
図10において、符号(1C),(1M),(1Y),(1K)はドラム状の電子写真感光体であり、該電子写真感光体(1)は少なくとも導電性支持体上に電荷発生層、電荷輸送層及び架橋型電荷輸送層を順次積層した電子写真感光体において、該電荷発生層中にCuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さず、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶粒子を含み、該架橋型電荷輸送層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより形成され、該架橋型電荷輸送層の膜厚が1μm以上、10μm以下である。
この電子写真感光体(1C),(1M),(1Y),(1K)は、図中の矢印方向に回転し、その周りに少なくとも回転順に帯電部材(2C),(2M),(2Y),(2K)、現像部材(4C),(4M),(4Y),(4K)、クリーニング部材(5C),(5M),(5Y),(5K)が配置されている。
帯電部材(2C),(2M),(2Y),(2K)は、電子写真感光体表面を均一に帯電するための帯電装置を構成する帯電部材である。
この帯電部材(2C),(2M),(2Y),(2K)と現像部材(4C),(4M),(4Y),(4K)の間の電子写真感光体表面側から、図示しない露光部材からのレーザー光(3C),(3M),(3Y),(3K)が照射され、電子写真感光体(1C),(1M),(1Y),(1K)に静電潜像が形成されるようになっている。
この場合、レーザー光の照射は、最大5erg/cm以下の露光量(露光エネルギー)にて使用される。
そして、このような電子写真感光体(1C),(1M),(1Y),(1K)を中心とした4つの画像形成要素(6C),(6M),(6Y),(6K)が、転写材搬送手段である転写搬送ベルト(10)に沿って並置されている。
転写搬送ベルト(10)は、各画像形成ユニット(6C),(6M),(6Y),(6K)の現像部材(4C),(4M),(4Y),(4K)とクリーニング部材(5C),(5M),(5Y),(5K)の間で、電子写真感光体(1C),(1M),(1Y),(1K)に当接しており、転写搬送ベルト(10)の電子写真感光体側の裏側に当たる面(裏面)には、転写バイアスを印加するための転写ブラシ(11C),(11M),(11Y),(11K)が配置されている。
各画像形成要素(6C),(6M),(6Y),(6K)は、現像装置内部のトナーの色が異なることであり、その他は全て同様の構成となっている。
図10に示す構成のカラー電子写真画像形成装置において、画像形成動作は次のようにして行なわれる。
まず、各画像形成要素(6C),(6M),(6Y),(6K)において、電子写真感光体(1C),(1M),(1Y),(1K)が矢印方向(感光体と連れ周り方向)に回転する帯電部材(2C),(2M),(2Y),(2K)によって帯電され、次に電子写真感光体の外側に配置された露光部(図示しない)でレーザー光(3C),(3M),(3Y),(3K)により、作成する各色の画像に対応した静電潜像が形成される。
次に、現像部材(4C),(4M),(4Y),(4K)によって、潜像を現像してトナー像が形成される。現像部材(4C),(4M),(4Y),(4K)は、それぞれC(シアン),M(マゼンタ),Y(イエロー),K(ブラック)のトナーで現像を行なう現像部材で、4つの電子写真感光体(1C),(1M),(1Y),(1K)上で作られた各色のトナー像は転写紙上で重ねられる。
転写紙7は、給紙コロ(8)によってトレイから送り出され、一対のレジストローラ(9)で一旦停止し、上記電子写真感光体上への画像形成とタイミングを合わせて転写搬送ベルト(10)に送られる。
転写搬送ベルト(10)上に保持された転写紙(7)は搬送されて、各電子写真感光体(1C),(1M),(1Y),(1K)との当接位置(転写部)で各色トナー像の転写が行なわれる。
電子写真感光体上のトナー像は、転写ブラシ(11C),(11M),(11Y),(11K)に印加された転写バイアスと、電子写真感光体(1C),(1M),(1Y),(1K)との電位差から形成される電界によって、転写紙7上に転写される。
そして4つの転写部を通過することによって4色のトナー像が重ねられた記録紙(7)は、定着装置(12)に搬送され、トナーが定着されて、図示しない排紙部に排紙される。
また、転写部で転写されずに各電子写真感光体(1C),(1M),(1Y),(1K)上に残った残留トナーは、クリーニング装置(5C),(5M),(5Y),(5K)で回収される。
なお、図10の例では画像形成要素は転写紙搬送方向上流側から下流側に向けて、C(シアン),M(マゼンタ),Y(イエロー),K(ブラック)の色の順で並んでいるが、この順番に限るものではなく、色順は任意に設定されるものである。
また、黒色のみの原稿を作成する際には、黒色以外の画像形成要素(6C),(6M),(6Y)が停止するような機構を設けることは本発明に特に有効に利用できる。
さらに、図10においては、帯電部材が電子写真感光体と当接しているが、両者の間に適当なギャップ(10〜200μm程度)を設けることによって、両者の摩耗量が低減できると共に、帯電部材へのトナーフィルミングが少なくて済み良好に使用できる。
以上に示すような画像形成手段は、複写装置、ファクシミリ、プリンター内に固定して組み込まれていてもよいが、各々の電子写真要素はプロセスカートリッジの形でそれら装置内に組み込まれてもよい。プロセスカートリッジとは、感光体を内蔵し、他に帯電手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段等を含んだ1つの装置(部品)である。
以下、実施例によって本発明を更に詳細に説明するが、本発明がこれらの実施例により制約を受けるものではない。なお、実施例中において使用される「部」はすべて重量部を表わす。
まず、本発明において電荷発生層に用いられる電荷発生材料の合成例について述べる。
(電荷発生材料の比較合成例1)
特許文献1に準じて、顔料を作製した。即ち、1,3−ジイミノイソインドリン29.2部とスルホラン200部を混合し、窒素気流下でチタニウムテトラブトキシド20.4部を滴下する。
滴下終了後、徐々に180℃まで昇温し、反応温度を170℃〜180℃の間に保ちながら5時間撹拌して反応を行なった。
反応終了後、放冷した後析出物を濾過し、クロロホルムで粉体が青色になるまで洗浄し、つぎにメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後乾燥し、粗チタニルフタロシアニンを得た。
粗チタニルフタロシアニンを20倍量の濃硫酸に溶解し、100倍量の氷水に撹拌しながら滴下し、析出した結晶をろ過、ついで洗浄液が中性になるまで水洗いを繰り返し(洗浄後のイオン交換水のpH値は6.8であった)、チタニルフタロシアニン顔料のウェットケーキ(水ペースト)を得た。
得られたこのウェットケーキ(水ペースト)40部をテトラヒドロフラン200部に投入し、4時間攪拌を行なった後、濾過を行い、乾燥して、チタニルフタロシアニン粉末を得た。これを顔料1とする。上記ウェットケーキの固形分濃度は、15wt%であった。結晶変換溶媒のウェットケーキに対する重量比は33倍である。なお、比較合成例1の原材料には、ハロゲン化物を使用していない。
得られたチタニルフタロシアニン粉末を、下記の条件によりX線回折スペクトル測定したところ、Cu−Kα線(波長1.542Å)に対するブラッグ角2θが27.2±0.2°に最大ピークと最低角7.3±0.2°にピークを有し、かつ7.3°のピークと9.4°のピークの間にピークを有さず、かつ26.3°にピークを有さないチタニルフタロシアニン粉末を得られた。その結果を図11に示す。
また、比較合成例1で得られた水ペーストの一部を80℃の減圧下(5mmHg)で、2日間乾燥して、低結晶性チタニルフタロシアニン粉末を得た。水ペーストの乾燥粉末のX線回折スペクトルを図12に示す。
(X線回折スペクトル測定条件)
X線管球:Cu
電圧:50kV
電流:30mA
走査速度:2°/分
走査範囲:3°〜40°
時定数:2秒
(電荷発生材料の比較合成例2)
特開平1−299874号(特許第2512081号)公報、合成例1に記載の方法に準じて、顔料を作製した。すなわち、先の比較合成例1で作製したウェットケーキを乾燥し、乾燥物1部をポリエチレングリコール50部に加え、100部のガラスビーズと共に、サンドミルを行なった。
結晶転移後、希硫酸、水酸化アンモニウム水溶液で順次洗浄し、乾燥して顔料を得た。これを顔料2とする。比較合成例2の原材料には、ハロゲン化物を使用していない。
(電荷発生材料の比較合成例3)
特開平3−269064号(特許第2584682号)公報、合成例1に記載の方法に準じて、顔料を作製した。すなわち、先の比較合成例1で作製したウェットケーキを乾燥し、乾燥物1部をイオン交換水10部とモノクロルベンゼン1部の混合溶媒中で1時間撹拌(50℃)した後、メタノールとイオン交換水で洗浄し、乾燥して顔料を得た。これを顔料3とする。比較合成例3の原材料には、ハロゲン化物を使用していない。
(電荷発生材料の比較合成例4)
特開平2−8256号(特公平7−91486号)公報の製造例に記載の方法に準じて、顔料を作製した。すなわち、フタロジニトリル9.8部と1−クロロナフタレン75部を撹拌混合し、窒素気流下で四塩化チタン2.2部を滴下する。滴下終了後、徐々に200℃まで昇温し、反応温度を200℃〜220℃の間に保ちながら3時間撹拌して反応を行なった。
反応終了後、放冷し130℃になったところ熱時ろ過し、次いで1−クロロナフタレンで粉体が青色になるまで洗浄、次にメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後、乾燥し顔料を得た。これを顔料4とする。比較合成例4の原材料には、ハロゲン化物を使用している。
(電荷発生材料の比較合成例5)
特開昭64−17066号(特公平7−97221号)公報、合成例1に記載の方法に準じて、顔料を作製した。すなわち、α型TiOPc5部を食塩10部およびアセトフェノン5部と共にサンドグラインダーにて100℃にて10時間結晶変換処理を行なった。
これをイオン交換水及びメタノールで洗浄し、希硫酸水溶液で精製し、イオン交換水で酸分がなくなるまで洗浄した後、乾燥して顔料を得た。これを顔料5とする。比較合成例5の原材料には、ハロゲン化物を使用している。
(電荷発生材料の比較合成例6)
特開平11−5919号(特許第3003664号)公報、合成例1に記載の方法に準じて、顔料を作製した。すなわち、O−フタロジニトリル20.4部、四塩化チタン7.6部をキノリン50部中で200℃にて2時間加熱反応後、水蒸気蒸留で溶媒を除き、2%塩化水溶液、続いて2%水酸化ナトリウム水溶液で精製し、メタノール、N,N−ジメチルホルムアミドで洗浄後、乾燥し、チタニルフタロシアニンを得た。このチタニルフタロシアニン2部を5℃の98%硫酸40部の中に少しずつ溶解し、その混合物を約1時間、5℃以下の温度を保ちながら攪拌する。
続いて、硫酸溶液を高速攪拌した400部の氷水中に、ゆっくりと注入し、析出した結晶を濾過する。結晶を酸が残量しなくなるまで蒸留水で洗浄し、ウェットケーキを得る。
そのケーキをTHF100部中で約5時間攪拌を行い、ろ過、THFによる洗浄を行い乾燥後、顔料を得た。これを顔料6とする。比較合成例6の原材料には、ハロゲン化物を使用している。
(電荷発生材料の比較合成例7)
特開平3−255456号(特許第3005052号)公報、合成例1に記載の方法に準じて、顔料を作製した。すなわち、先の比較合成例1で作製したウェットケーキ10部を塩化ナトリウム15部とジエチレングリコール7部に混合し、80℃の加熱下で自動乳鉢により60時間ミリング処理を行なった。
次に、この処理品に含まれる塩化ナトリウムとジエチレングリコールを完全に除去するために充分な水洗を行なった。
これを減圧乾燥した後に、シクロヘキサノン200部と直径1mmのガラスビーズを加えて、30分間サンドミルにより処理を行ない、顔料を得た。これを顔料7とする。比較合成例7の原材料には、ハロゲン化物を使用していない。
(電荷発生材料の比較合成例8)
特開昭52−36016号公報に記載のチタニルフタロシアニン結晶体の製造方法に準じて、顔料を作製した。即ち、1,3−ジイミノイソインドリン58部、テトラブトキシチタン51部をα−クロロナフタレン300部中で210℃にて5時間反応後、α−クロロナフタレン、ジメチルホルムアミド(DMF)の順で洗浄した。その後、熱DMF、熱水、メタノールで洗浄、乾燥して50部のチタニルフタロシアニンを得た。チタニルフタロシアニン4部を0℃に冷却した硫酸400部中に加え、引き続き0℃、1時間撹拌した。フタロシアニンが完全に溶解したことを確認した後、0℃に冷却した水800部/トルエン800部混合液中に添加した。室温で2時間撹拌後、析出したフタロシアニン結晶体を混合液より濾別し、メタノール、水の順で洗浄した。洗浄水の中性を確認した後、洗浄水よりフタロシアニン結晶体を濾別し、乾燥して、2.9部のチタニルフタロシアニン結晶体を得た。これを顔料8とする。比較合成例8の原材料には、ハロゲン化物を使用していない。
(電荷発生材料の合成例1)
比較合成例1の方法に従って、チタニルフタロシアニン顔料の水ペーストを合成し、次のように結晶変換を行ない、比較合成例1よりも一次粒子の小さなフタロシアニン結晶を得た。
比較合成例1で得られた結晶変換前の水ペースト60部にテトラヒドロフラン400部を加え、室温下でホモミキサー(ケニス、MARKIIfモデル)により強烈に撹拌(2000rpm)し、ペーストの濃紺色の色が淡い青色に変化したら(撹拌開始後20分)、撹拌を停止し、直ちに減圧濾過を行なった。濾過装置上で得られた結晶をテトラヒドロフランで洗浄し、顔料のウェットケーキを得た。
これを、減圧下(5mmHg)70℃で2日間乾燥して、本発明のチタニルフタロシアニン結晶8.5部を得た。これを顔料9とする。合成例1の原材料には、ハロゲン化物を使用していない。上記ウェットケーキの固形分濃度は、15wt%であった。結晶変換溶媒のウェットケーキに対する重量比は44倍である。
比較合成例1で作製された結晶変換前チタニルフタロシアニン(水ペースト)の一部をイオン交換水でおよそ1重量%になるように希釈し、表面を導電性処理した銅製のネットですくい取り、チタニルフタロシアニンの粒子サイズを透過型電子顕微鏡(TEM、日立:H−9000NAR)にて、75000倍の倍率で観察を行なった。平均粒子サイズとして、以下のように求めた。
上述のように観察されたTEM像をTEM写真として撮影し、映し出されたチタニルフタロシアニン粒子(針状に近い形)を30個任意に選び出し、それぞれの長径の大きさを測定する。
測定した30個体の長径の算術平均を求めて、平均粒子サイズとした。
以上の方法により求められた比較合成例1における水ペースト中の平均粒子サイズは、0.06μmであった。
また、比較合成例1及び合成例1における濾過直前の結晶変換後チタニルフタロシアニン結晶を、テトラヒドロフランでおよそ1重量%になるように希釈し、上の方法と同様に観察を行なった。
先述のようにして求めた平均粒子サイズを表2に示す。
なお、比較合成例1及び合成例1で作製されたチタニルフタロシアニン結晶は、必ずしも全ての結晶の形が同一ではなかった(三角形に近い形、四角形に近い形など)。このため、結晶の最も大きな対角線の長さを長径として、計算を行なった。
表2から、比較合成例1で作製された顔料1は、平均粒子サイズが大きいだけでなく、粗大粒子を含んでいる。これに対し、合成例1で作製された顔料9は、平均粒子サイズが小さいだけでなく、個々の1次粒子の大きさもほぼ揃っていることが分かる。
Figure 0004249679
以上の比較合成例2〜8で作製した顔料は、先程と同様の方法でX線回折スペクトルを測定し、それぞれの公報に記載のスペクトルと同様であることを確認した。
また、合成例1で作製した顔料のX線回折スペクトルは、比較合成例1で作製した顔料のスペクトルと一致した。
表3に、それぞれのX線回折スペクトルと比較合成例1で得られた顔料におけるX線回折スペクトルのピーク位置の特徴を示す。
Figure 0004249679
次に、架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有する化合物の合成例について述べる。
(1官能の電荷輸送性構造を有する化合物の合成例)
本発明における1官能の電荷輸送性構造を有する化合物は、例えば特許第3164426号公報記載の方法にて合成される。また、下記にこの一例を示す。
(1)ヒドロキシ基置換トリアリールアミン化合物(下記構造式B)の合成
メトキシ基置換トリアリールアミン化合物(下記構造式A)113.85部(0.3mol)と、ヨウ化ナトリウム138部(0.92mol)にスルホラン240部を加え、窒素気流中で60℃に加温した。この液中にトリメチルクロロシラン99部(0.91mol)を1時間かけて滴下し、約60℃の温度で4時間半撹拌し反応を終了させた。
この反応液にトルエン約1500部を加え室温まで冷却し、水と炭酸ナトリウム水溶液で繰り返し洗浄した。
その後、このトルエン溶液から溶媒を除去し、カラムクロマトグラフィー処理(吸着媒体:シリカゲル、展開溶媒:トルエン:酢酸エチル=20:1)にて精製した。
得られた淡黄色オイルにシクロヘキサンを加え、結晶を析出させた。
この様にして下記構造式Bの白色結晶88.1部(収率=80.4%)を得た。
融点:64.0〜66.0℃
Figure 0004249679
Figure 0004249679
Figure 0004249679
(2)トリアリールアミノ基置換アクリレート化合物の合成例(表1中の例示化合物No.54)
上記(1)で得られたヒドロキシ基置換トリアリールアミン化合物(構造式B)82.9部(0.227mol)をテトラヒドロフラン400部に溶解し、窒素気流中で水酸化ナトリウム水溶液(NaOH:12.4部,水:100部)を滴下した。
この溶液を5℃に冷却し、アクリル酸クロライド25.2部(0.272mol)を40分かけて滴下した。その後、5℃で3時間撹拌し反応を終了させた。
この反応液を水に注ぎ、トルエンにて抽出した。この抽出液を炭酸水素ナトリウム水溶液と水で繰り返し洗浄した。その後、このトルエン溶液から溶媒を除去し、カラムクロマトグラフィー処理(吸着媒体:シリカゲル、展開溶媒:トルエン)にて精製した。得られた無色のオイルにn−ヘキサンを加え、結晶を析出させた。
この様にして例示化合物No.54の白色結晶80.73部(収率=84.8%)を得た。
融点:117.5〜119.0℃
Figure 0004249679
(分散液作製例1)
比較合成例1で作製した顔料1を下記組成の処方にて、下記に示す条件にて分散を行い電荷発生層用塗工液として、分散液を作製した。
チタニルフタロシアニン顔料(顔料1) 15部
ポリビニルブチラール(積水化学製:BX−1) 10部
2−ブタノン 280部
市販のビーズミル分散機に直径0.5mmのPSZボールを用い、ポリビニルブチラールを溶解した2−ブタノンおよび顔料を全て投入し、ローター回転数1200r.p.m.にて30分間分散を行ない、分散液を作製した(分散液1とする)。
(分散液作製例2〜9)
分散液作製例1で使用した顔料1に変えて、それぞれ比較合成例2〜8及び合成例1で作製した顔料2〜9を使用して、分散液作製例1と同じ条件にて分散液を作製した(顔料番号に対応して、それぞれ分散液2〜9とする)。
(分散液作製例10)
分散液作製例1で作製した分散液1を、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−1−CS(有効孔径1μm)を用いて、濾過を行なった。濾過に際しては、ポンプを使用し、加圧状態で濾過を行なった(分散液10とする)。
(分散液作製例11)
分散液作製例10で使用したフィルターを、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−3−CS(有効孔径3μm)に変えた以外は、分散液作製例10と同様に加圧濾過を行い分散液を作製した(分散液11とする)。
(分散液作製例12)
分散液作製例10で使用したフィルターを、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−5−CS(有効孔径5μm)に変えた以外は、分散液作製例10と同様に加圧濾過を行い分散液を作製した(分散液12とする)。
(分散液作製例13)
分散液作製例1における分散条件を下記の通り変更して、分散を行った(分散液13とする)。
ローター回転数:1000r.p.m.にて20分間分散を行なった。
(分散液作製例14)
分散液作製例13で作製した分散液をアドバンテック社製、コットンワインドカートリッジフィルター、TCW−1−CS(有効孔径1μm)を用いて、濾過を行なった。濾過に際しては、ポンプを使用し、加圧状態で濾過を行なった。濾過の途中でフィルターが目詰まりを起こして、全ての分散液を濾過することができなかった。このため以下の評価は未実施。
以上のように作製した分散液中の顔料粒子の粒度分布を、堀場製作所:CAPA−700にて測定した。結果を表6に示す。
Figure 0004249679
(比較例1)
直径30mmのアルミニウムシリンダー(JIS1050)に、下記組成の下引き層塗工液、電荷発生層塗工液、および電荷輸送層塗工液を、順次塗布・乾燥し、3.5μmの下引き層、電荷発生層、18μmの電荷輸送層を形成した。なお、電荷発生層の膜厚は、780nmにおける電荷発生層の透過率が20%になるように調整した。
電荷発生層の透過率は、下記組成の電荷発生層塗工液を、ポリエチレンテレフタレートフィルムを巻き付けたアルミシリンダーに感光体作製と同じ条件で塗工を行ない、市販の分光光度計(島津:UV−3100)にて、780nmの透過率を評価した。
次に、電荷輸送層上に下記組成の架橋型電荷輸送層用塗工液をスプレー塗工し、20分間自然乾燥した後、メタルハライドランプ:160W/cm、照射強度:500mW/cm、照射時間:60秒の条件で光照射を行なうことによって塗布膜を硬化させた。
さらに、130℃で20分間の乾燥工程を加え6.0μmの架橋型電荷輸送層用を設け、本発明の電子写真感光体1を得た。
[下引き層用塗工液]
酸化チタン(CR−EL:石原産業社製) 70部
アルキッド樹脂 15部
(ベッコライトM6401−50−S(固形分50%、大日本インキ化学工業製)
メラミン樹脂 10部
(スーパーベッカミンL−121−60
(固形分60%、大日本インキ化学工業製)
2−ブタノン 100部
[電荷発生層用塗工液]
先に作製した分散液1を用いた。
[電荷輸送層用塗工液]
下記構造式の電荷輸送物質 7部
Figure 0004249679
ポリカーボネート(TS2050:帝人化成社製) 10部
塩化メチレン 80部
1%シリコーンオイルの塩化メチレン溶液 0.2部
(KF50−100cs:信越化学工業製)
[架橋型電荷輸送層形成用塗工液]
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部
トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製)
分子量:296、官能基数:3官能、分子量/官能基数=99
1官能の電荷輸送性構造を有するラジカル重合性化合物 10部
(例示化合物No.54)
光重合開始剤 1部
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
テトラヒドロフラン 100部
(比較例2〜8及び実施例1〜3)
比較例1で使用した電荷発生層塗工液(分散液1)をそれぞれ、分散液2〜13に変更した以外は、比較例1と同様に感光体を作製した。なお、電荷発生層の膜厚は、比較例1と同様に、すべての塗工液を用いた場合に780nmの透過率が20%になるように調整した。実施例と使用した分散液との対応は、表7にまとめて示した。
(実施例4)
実施例1の架橋型電荷輸送層の膜厚を2.0μmにした以外は、実施例1と同様にして、電子写真感光体14を作製した。
(実施例5)
実施例1の架橋型電荷輸送層の膜厚を7.9μmにした以外は、実施例1と同様に電子写真感光体15を作製した。
(実施例6)
実施例1の架橋型電荷輸送層形成用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記のモノマーに換え、1官能の電荷輸送性構造を有するラジカル重合性化合物を例示化合物No.138、10部に換え、架橋型電荷輸送層の膜厚を5.0μmにした以外は、実施例1と同様にして、電子写真感光体16を作製した。
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部
ペンタエリスリトールテトラアクリレート
(SR−295,化薬サートマー製)
分子量:352、官能基数:4官能、分子量/官能基数=88
(実施例7)
実施例1の架橋型電荷輸送層形成用用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記のモノマーに換え、光重合開始剤を下記の化合物1部に換え、架橋型電荷輸送層の膜厚を4.8μmにした以外は、実施例1と同様にして、電子写真感光体17を作製した。
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部
カプロラクトン変性ジペンタエリスリトールヘキサアクリレート
(KAYARAD DPCA−60、日本化薬製)
分子量:1263、官能基数:6官能、分子量/官能基数=211
光重合開始剤 1部
2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン
(イルガキュア651、チバ・スペシャルティ・ケミカルズ製)
(実施例8)
実施例1の架橋型電荷輸送層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記のモノマーに換え、架橋型電荷輸送層の膜厚を9.4μmにした以外は、実施例1と同様にして、電子写真感光体18を作製した。
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部
カプロラクトン変性ジペンタエリスリトールヘキサアクリレート
(KAYARAD DPCA−120、日本化薬製)
分子量:1947、官能基数:6官能、分子量/官能基数=325
(実施例9)
実施例3の架橋型電荷輸送層用塗工液を下記組成にし、架橋型電荷輸送層の膜厚を6.5μmにした以外は、実施例3と同様にして、電子写真感光体19を作製した。
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 9部
トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製)
分子量:296、官能基数:3官能、分子量/官能基数=99
1官能の電荷輸送性構造を有するラジカル重合性化合物 10部
(例示化合物No.54)
光重合開始剤 1部
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
ビスフェノールZポリカーボネート 1部
(パンライトTS−2050、帝人化成製)
テトラヒドロフラン 100部
実施例10)
実施例3の架橋型電荷輸送層用塗工液に含有される電荷輸送性構造を有するラジカル重合性化合物を1官能性の例示化合物No.54、9部と下記構造の2官能性化合物1部とし、架橋型電荷輸送層の膜厚を5.1μmにした以外は、実施例3と同様にして、電子写真感光体20を作製した。
1官能の電荷輸送性構造を有するラジカル重合性化合物 9部
(例示化合物No.54)
下記構造式の2官能の電荷輸送性構造を有するラジカル重合性化合物 1部
Figure 0004249679
(実施例11)
実施例3の架橋型電荷輸送層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー量を6部、1官能の電荷輸送性構造を有するラジカル重合性化合物量を14部に換え、架橋型電荷輸送層の膜厚を6.5μmにした以外は、実施例3と同様にして電子写真感光体21を作製した。
(実施例12)
実施例3の架橋型電荷輸送層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー量を14部、1官能の電荷輸送性構造を有するラジカル重合性化合物量を6部に換え、架橋型電荷輸送層の膜厚を6.5μmにした以外は、実施例3と同様にして電子写真感光体22を作製した。
(実施例13)
実施例2の電荷輸送層塗工液を下記組成の電荷輸送層用塗工液に変更し、架橋型電荷輸送層用塗工液に含有される1官能の電荷輸送性構造を有するラジカル重合性化合物を例示化合物No.144、10部に換え、架橋型電荷輸送層の膜厚を4.5μmにした以外は、実施例2と同様にして電子写真感光体23を作製した。
[電荷輸送層用塗工液]
下記構造式の電荷輸送物質 7部
Figure 0004249679
ポリカーボネート(TS2050:帝人化成社製) 10部
塩化メチレン 80部
1%シリコーンオイルの塩化メチレン溶液 0.2部
(KF50−100cs:信越化学工業製)
(実施例14)
実施例2の架橋表面層用塗工液に含有される光重合開始剤を下記熱重合開始剤に換えた以外は、実施例2と同様な組成の塗工液を用い、電荷輸送層上に同様に塗布、自然乾燥後、送風型オーブンを用い70℃で30分加熱、更に150℃で1時間加熱し、4.1μmの膜厚の架橋型電荷輸送層を設け電子写真感光体24を作製した。
熱重合開始剤 1部
2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシ)プロパン
(パーカドックス 12−EB20、化薬アクゾ製)
(実施例15)
実施例2の電荷輸送層用塗工液として下記組成の高分子電荷輸送物質(PD−1)を含有した液を用い、同様な電荷発生層上に塗布、乾燥して18μmの電荷輸送層を形成した。
この電荷輸送層上に、実施例2と同様にして、3.5μmの膜厚の架橋型電荷輸送層を設け電子写真感光体25を作製した。
〔電荷輸送層用塗工液〕
下記構造式の高分子電荷輸送物質(PD−1) 15部
Figure 0004249679

テトラヒドロフラン 100部
1%シリコーンオイルのテトラヒドロフラン溶液 0.3部
(KF50−100CS、信越化学工業製)
(比較例11)
実施例1の架橋型電荷輸送層用塗工液に含有させた電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記構造式の電荷輸送性構造を有さない2官能のラジカル重合性モノマー10部に換え、架橋型電荷輸送層の膜厚を6.0μmにした以外は、実施例1と同様にして電子写真感光体26を作製した。
電荷輸送性構造を有さない2官能のラジカル重合性モノマー 10部
1,6−ヘキサンジオールジアクリレート(和光純薬製)
分子量:226、官能基数:2官能、分子量/官能基数=113
(比較例12)
実施例1の架橋型電荷輸送層用塗工液に含有させた1官能の電荷輸送性構造を有するラジカル重合性化合物を、実施例10の2官能の電荷輸送性構造を有するラジカル重合性化合物10部に換え、架橋型電荷輸送層の膜厚を7.5μmにした以外は、実施例1と同様にして電子写真感光体27を作製した。
(比較例13)
実施例1の架橋型電荷輸送層用塗工液の組成物である電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを含有させず、1官能の電荷輸送性構造を有するラジカル重合性化合物量を20部に換え、架橋型電荷輸送層の膜厚を5.3μmにした以外は、実施例1と同様にして電子写真感光体28を作製した。
(比較例14)
実施例1の架橋型電荷輸送層用塗工液の組成物である1官能の電荷輸送性構造を有するラジカル重合性化合物を含有させず、電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー量を20部に換え、架橋型電荷輸送層の膜厚を5.5μmにした以外は、実施例1と同様にして電子写真感光体29を作製した。
(比較例15)
実施例1の架橋型電荷輸送層用塗工液の組成物である1官能の電荷輸送性構造を有するラジカル重合性化合物を含有させず、この換わりに電荷輸送層用塗工液に用いられている低分子電荷輸送物質10部を含有させ、架橋型電荷輸送層の膜厚を6.0μmにした以外は、実施例1と同様にして電子写真感光体30を作製した。
(比較例16)
実施例3の架橋型電荷輸送層の膜厚を0.9μmにした以外は、実施例3と同様にして電子写真感光体31を作製した。
(比較例17)
実施例3の架橋型電荷輸送層の膜厚を10.3μmにした以外は、実施例3と同様にして電子写真感光体32を作製した。
(比較例18)
実施例2の電荷輸送層を設けず、その代わりに下記架橋型電荷輸送層塗工液を電荷発生層上に同様に塗布、硬化し、19.0μmの架橋型電荷輸送層を設けた以外は、実施例2と同様にして電子写真感光体33を作製した。
〔架橋型電荷輸送層用塗工液〕
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 8部
ペンタエリスリトールテトラアクリレート
(SR−295,化薬サートマー製)
分子量:352、官能基数:4官能、分子量/官能基数=88
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 2部
カプロラクトン変性ジペンタエリスリトールヘキサアクリレート
(KAYARAD DPCA−60、日本化薬製)
1官能の電荷輸送性構造を有するラジカル重合性化合物 10部
(例示化合物No.54)
光重合開始剤 1部
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
テトラヒドロフラン 100部
(比較例19)
実施例2の電荷輸送層を設けず、その代わりに下記架橋型電荷輸送層塗工液を電荷発生層上に同様に塗布、硬化し、15.0μmの架橋型電荷輸送層を設けた以外は、実施例2と同様にして電子写真感光体34を作製した。
〔架橋型電荷輸送層用塗工液〕
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 8部
トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製)
分子量:296、官能基数:3官能、分子量/官能基数=99
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 2部
カプロラクトン変性ジペンタエリスリトールヘキサアクリレート
(KAYARAD DPCA−60、日本化薬製)
1官能の電荷輸送性構造を有するラジカル重合性化合物 10部
(例示化合物No.54)
光重合開始剤 1部
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
テトラヒドロフラン 100部
(比較例20)
実施例2の架橋型電荷輸送層を設けず、電荷輸送層の膜厚を24μmとした以外は、実施例2と同様にして電子写真感光体35を作製した。
(比較例21)
実施例2の架橋型電荷輸送層を設けず、その代わりに下記組成の5.2μmの保護層を設けた以外は、すべて実施例2と同様にして電子写真感光体36を作製した。
〔保護層用塗工液〕
α−アルミナフィラー 5部
(スミコランダムAA−03、平均一次粒径:0.3μm、住友化学工業製)
不飽和ポリカルボン酸ポリマー溶液 0.1部
(BYK−P104、酸価180mgKOH/g、不揮発分50%、BYKケミー製)
下記式で示される構造単位を有するポリカーボネート樹脂 10部
Figure 0004249679
下記式の電荷輸送物質 7部
Figure 0004249679
テトラヒドロフラン 500部
シクロヘキサノン 150部
(比較例22)
比較例21の保護層用塗工液を下記組成の保護層用塗工液に変更した以外は、すべて比較例21と同様にして電子写真感光体37を作製した。
〔保護層用塗工液〕
シリカ 6部
(KMP−X100、平均一次粒径:0.1μm、信越化学工業製)
下記式で示される構造単位を有するポリカーボネート樹脂 10部
Figure 0004249679
下記式の電荷輸送物質 8部
Figure 0004249679
テトラヒドロフラン 500部
シクロヘキサノン 150部
以上のように作製した電子写真感光体1〜37について、外観を目視で観察し、クラック、膜剥がれの有無を判別した。
次に、有機溶剤に対する溶解性試験として、テトラヒドロフラン(以後THFと略す)、及びジクロロメタンを1滴滴下し、自然乾燥後の表面形状の変化を観察した。
その結果を表7に示す。
Figure 0004249679
表7に示されている結果から、実施例1〜15に代表される厚さが1〜10μmの架橋型電荷輸送層を有する本発明の電子写真感光体は、架橋型電荷輸送層形成時において、クラック、膜剥がれが発生せず、外観上良好なものであることがわかる。
一方、比較例12の架橋型電荷輸送層成分として2官能の電荷輸送性構造を有するラジカル重合性化合物を用いた電子写真感光体、並びに、比較例17の架橋型電荷輸送層の膜厚が10μmより厚い電子写真感光体は、架橋型電荷輸送層形成時においてクラックが発生した。また、比較例18、19のように電荷輸送層を形成せずに10μm以上の架橋型電荷輸送層を形成した電子写真感光体は、架橋型電荷輸送層形成時もしくは後述する通り通紙試験途中で膜剥がれが発生した。
また、実施例1〜15の電子写真感光体は、有機溶剤に対し僅かに可溶性又は不溶性を示し、架橋密度が高い架橋型電荷輸送層が得られている。この有機溶剤に対する不溶性化は、架橋型電荷輸送層の膜厚が2μm以上になると、さらに良好となった。
一方、比較例13、15の電子写真感光体は、架橋型電荷輸送層成分の影響によって、また比較例16の電子写真感光体は、架橋型電荷輸送層の膜厚が1μmより薄いために、電荷輸送層成分が架橋型電荷輸送層全体に拡がり、いずれも有機溶剤に対し可溶性となった。
次に、初期表面観察の結果が良好でかつ溶解性試験の結果は不溶性を示した電子写真感光体について、A4サイズ10万枚の通紙試験を実施した。
まず、先に作製した電子写真感光体を画像形成装置用プロセスカートリッジに装着し、画像露光光源として780nmの半導体レーザーを用いたリコー製imagio Neo 270改造機によって、電子写真感光体の初期時における露光部電位(VL)測定及び出力画像の評価を行なった。この際、暗部電位(VD)が−650Vになるように印加電圧を設定し、現像バイアスは−400Vに設定した。
その後通紙試験を開始し、10万枚複写後に再度VDが−650Vになるように印加電圧を設定しVL測定を行なった。さらに、VDが−650V及び−950Vになるように印加電圧を設定し、現像バイアスはそれぞれ−400V及び−700Vになるように設定して画像を出力し画像評価を行なった。
また、初期と10万枚複写後の全層膜厚を測定し、その差から摩耗量を算出した。さらに、10万枚複写後における感光体の表面状態について観察を行なった。
さらに、画像評価は4段階にレベルを分割し、画像欠陥の種類と以下の判断基準によってそのレベルを評価して行なった。
◎:極めて良好なレベル、
○:初期に比べて画質は若干低下したが問題ないレベル、
△:画質劣化が明らかに認められるレベル、
×:画質劣化が顕著に見られるレベル
それらの結果を表8に示す。
Figure 0004249679
以上の通紙試験結果から、実施例1〜15で示される本発明の電子写真感光体は、耐摩耗性の向上と同時に長期に渡り安定な電位特性を示し、さらに電子写真感光体の寿命を決める地肌汚れの影響を抑制し、その結果長期に渡り安定した高画質画像を提供できるものであることが判明した。
特に、本発明に示されたチタニルフタロシアニン結晶を用い、さらに顔料粒子の微細化あるいは凝集粒子の排除によって電荷発生層に起因する地肌汚れの発生を抑制し、本発明の電子写真感光体が、厚さ1〜10μmの架橋型電荷輸送層を設けた構成とすることによって、露光部電位上昇や各種画像欠陥の副作用なしに耐摩耗性の向上を実現し、その結果、長期使用による疲労あるいは膜削れに起因する地肌汚れの発生を抑制し、結果として電子写真感光体の高寿命化を実現することができた。
一方、CuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として9.4°あるいは9.6°にピークがなかったり、最も低角側の回折ピークが7.3°になかったり、7.3゜のピークと9.4゜のピークの間にピークが認められるチタニルフタロシアニン結晶は、主に帯電低下に起因する地肌汚れや露光部電位上昇の影響が増加する傾向が見られた。
また、チタニルフタロシアニン結晶粒子の平均一次粒径が、0.25μmより大きくなると明らかに凝集物に起因する地肌汚れの影響が増大する傾向が見られた。
さらに、架橋型電荷輸送層成分として2官能のモノマーや官能基を有しない低分子電荷輸送物質を用いたものは、架橋密度が低いことや硬化反応の不均一性から、耐摩耗性が低く画像劣化が著しい。
加えて、架橋型電荷輸送層の膜厚が1μmに達しない電子写真感光体は、電荷輸送層に含まれる電荷輸送物質が架橋型電荷輸送層へ拡散し、架橋阻害から偏摩耗や異常摩耗を引き起こし、その結果中間調濃度ムラやクリーニング不良による地肌汚れが発生した。
電荷輸送層全体を架橋型電荷輸送層に置き換えた電子写真感光体は、大きな内部応力から、7000枚の複写時に膜剥がれが発生した。
また、架橋型電荷輸送層を設けず、電荷輸送層に従来の熱可塑性バインダー樹脂を用いた電子写真感光体は、本発明の電子写真感光体に比べて、耐摩耗性が低く、耐久性が劣る。
また、本発明の電子写真感光体における架橋型電荷輸送層の代わりに、フィラーを含有した保護層を設けた場合には、長期に渡る繰り返し使用により露光部電位上昇の影響が大きく、またクリーニング不良による画像欠陥が多発した。また、フィラー種によっては画像ボケの影響が著しく増大した。
したがって、本発明の支持体上に電荷発生層、電荷輸送層及び架橋型電荷輸送層を順次積層してなる電子写真感光体が、電荷発生層として、CuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4°のピークの間にピークを有さず、更に26.3°にピークを有さず、一次粒子の粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶粒子を用いることによって、地肌汚れの余裕度向上と静電安定化を実現でき、また、架橋型電荷輸送層として、電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより形成し、さらにその膜厚を1μm以上、10μmにすることによって、クラックや膜剥がれが発生せず、且つ高い耐摩耗性と耐傷性を得ることができ、これらを組み合わせることによって初めて、画像欠陥の副作用なしに初期のみならず長期繰り返し使用においても地肌汚れの発生を抑制し、高画質画像を長期に渡り安定に提供できることが判明した。
また併せて、本発明の電子写真感光体を用いた画像形成プロセス、画像形成装置及び画像形成装置用プロセスカートリッジが高性能、高信頼性を有し、かつ装置の寿命をも向上できることが明らかとなった。
最後に、本発明で使用するチタニルフタロシアニン結晶の特徴であるブラッグ角θの最低角ピークである7.3°について、公知材料の最低角7.5°と同一であるか否かについて検証する。
(比較合成例9)
比較合成例1における結晶変換溶媒を塩化メチレンから2−ブタノンに変更した以外は、比較合成例1と同様に処理を行ない、チタニルフタロシアニン結晶を得た。
比較合成例1の場合と同様に、比較合成例9で作製したチタニルフタロシアニン結晶のXDスペクトルを測定した。これを図13に示す。
図13から、比較合成例9で作製されたチタニルフタロシアニン結晶のXDスペクトルにおける最低角は、比較合成例1で作製されたチタニルフタロシアニンの最低角(7.3
°)とは異なり、7.5°に存在することが判る。
(測定例1)
比較合成例1で得られた顔料(最低角7.3°)に特開昭61−239248号公報に記載の顔料(最大回折ピークを7.5°に有する)と同様に作製したものを3重量%添加し、乳鉢で混合して、先程と同様にX線回折スペクトルを測定した。測定例1のX線回折スペクトルを図14に示す。
(測定例2)
比較合成例9で得られた顔料(最低角7.5°)に特開昭61−239248号公報に記載の顔料(最大回折ピークを7.5°に有する)と同様に作製したものを3重量%添加し、乳鉢で混合して、先程と同様にX線回折スペクトルを測定した。測定例2のX線回折スペクトルを図15に示す。
図14のスペクトルにおいては、低角側に7.3°と7.5°の2つの独立したピークが存在し、少なくとも7.3°と7.5°のピークは異なるものであることが判る。
一方、図15のスペクトルにおいては、低角側のピークは7.5°のみに存在し、図14のスペクトルとは明らかに異なっている。
以上のことから、本発明の電子写真感光体に用いられる、チタニルフタロシアニン結晶における最低角ピークである7.3°は、公知のチタニルフタロシアニン結晶における7.5°のピークとは異なるものであることが判る。
本発明の好ましい不定形チタニルフタロシアニンの粒子状態を表わす電子顕微鏡写真である。 公知の方法による結晶変換後のチタニルフタロシアニンの電子顕微鏡写真である。 本発明の結晶変換後のチタニルフタロシアニンの他の電子顕微鏡写真である。 分散液の状態を観察した写真である。 分散液の状態を観察した他の写真である。 分散液の平均粒径並びに粒度分布を表わす図である。 本発明に用いられる電子写真感光体の構成例を示す断面図である。 本発明の画像形成装置の一例を示す概略図である。 本発明のプロセスカートリッジの一例を示す図である。 本発明のタンデム方式のフルカラー画像形成装置を説明するための概略図である。 比較合成例1で得られたチタニルフタロシアニン粉末のX線回折スペクトルを示す図である。 比較合成例1で得られた水ペーストの乾燥粉末のX線回折スペクトルを示す図である。 比較合成例9で得られたチタニルフタロシアニン結晶のXDスペクトルを示す図である。 測定例1で得られたチタニルフタロシアニン結晶のX線回折スペクトルを示す図である。 測定例2で得られたチタニルフタロシアニン結晶のX線回折スペクトルを示す図である。
符号の説明
1C、1M、1Y、1K 感光体
2C、2M、2Y、2K 帯電部材
3C、3M、3Y、3K レーザー光
4C、4M、4Y、4K 現像部材
5C、5M、5Y、5K クリーニング部材
6C、6M、6Y、6K 画像形成要素
7 転写紙
8 給紙コロ
9 レジストローラ
10 転写搬送ベルト
11C、11M、11Y、11K 転写ブラシ
12 定着装置
31 導電性支持体
35 電荷発生層
37 電荷輸送層
39 保護層
51 感光体
52 除電ランプ
53 帯電チャージャ
54 イレーサ
55 画像露光部
56 現像ユニット
57 転写前チャージャ
58 レジストローラ
59 転写紙
60 転写チャージャ
61 分離チャージャ
62 分離爪
63 クリーニング前チャージャ
44 ファーブラシ
65 クリーニングブレード
101 感光ドラム
102 帯電装置
103 露光
104 現像装置
105 転写体
106 転写装置
107 クリーニングブレード

Claims (23)

  1. 少なくとも導電性支持体上に電荷発生層、電荷輸送層及び架橋型電荷輸送層を順次積層した電子写真感光体において、該電荷発生層中にCuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4°のピークの間にピークを有さず、更に26.3°にピークを有さず、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶粒子を含み、該架橋型電荷輸送層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより形成され、該架橋型電荷輸送層の膜厚が1μm以上、10μm以下であることを特徴とする電子写真感光体。
  2. 前記チタニルフタロシアニン結晶粒子の体積平均粒径が0.3μm以下で、その標準偏差が0.2μm以下になるまで分散を行い、その後有効孔径が3μm以下のフィルターにて濾過を行なった分散液を使用し、感光層あるいは電荷発生層を塗工したことを特徴とする請求項1に記載の電子写真感光体。
  3. 前記チタニルフタロシアニン結晶粒子が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有し、その回折ピークの半値巾が1゜以上である一次粒子の平均粒子サイズが0.1μm以下の不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンを水の存在下で有機溶媒により結晶変換を行い、結晶変換後の一次粒子の平均粒子サイズが0.25μmより大きく成長する前に、有機溶媒より結晶変換後のチタニルフタロシアニンを分別、濾過されたものであることを特徴とする請求項1又は2に記載の電子写真感光体。
  4. 前記チタニルフタロシアニン結晶が、ハロゲン化物を含まない原材料を使用して合成されたものであることを特徴とする請求項1乃至3のいずれかに記載の電子写真感光体。
  5. 前記チタニルフタロシアニン結晶の結晶変換に際して、使用される不定形チタニルフタロシアニンがアシッドペースト法により作製され、充分にイオン交換水で洗浄され、洗浄後のイオン交換水のpHが6〜8の間及び/又はイオン交換水の比伝導度が8以下であることを特徴とする請求項1乃至4のいずれかに記載の電子写真感光体。
  6. 前記チタニルフタロシアニン結晶の結晶変換に際して、使用される有機溶媒量が不定形チタニルフタロシアニンの30倍(重量比)以上であることを特徴とする請求項1乃至5のいずれかに記載の電子写真感光体。
  7. 前記架橋型電荷輸送層が有機溶剤に対し不溶性であることを特徴とする請求項1乃至6のいずれかに記載の電子写真感光体。
  8. 前記架橋型電荷輸送層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの官能基が、アクリロイルオキシ基及び/又はメタクリロイルオキシ基であることを特徴とする請求項1乃至7のいずれかに記載の電子写真感光体。
  9. 前記架橋型電荷輸送層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーにおける官能基数に対する分子量の割合(分子量/官能基数)が、250以下であることを特徴とする請求項1乃至8のいずれかに記載の電子写真感光体。
  10. 前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の官能基が、アクリロイルオキシ基又はメタクリロイルオキシ基であることを特徴とする請求項1乃至9のいずれかに記載の電子写真感光体。
  11. 前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の電荷輸送構造が、トリアリールアミン構造であることを特徴とする請求項1乃至10のいずれかに記載の電子写真感光体。
  12. 前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物が、下記一般式(1)又は(2)で表わされる化合物の少なくとも一種以上であることを特徴とする請求項1乃至11のいずれかに記載の電子写真感光体。
    Figure 0004249679

    Figure 0004249679

    (式中、Rは水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基、置換基を有してもよいアリール基、シアノ基、ニトロ基、アルコキシ基、−COOR(Rは水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基)、ハロゲン化カルボニル基若しくはCONR(R及びRは水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基を示し、互いに同一であっても異なっていてもよい)を表わし、Ar、Arは置換基を有してもよいアリーレン基を表わし、同一であっても異なってもよい。Ar、Arは置換基を有してもよいアリール基を表わし、同一であっても異なってもよい。Xは単結合、置換基を有してもよいアルキレン基、置換基を有してもよいシクロアルキレン基、置換基を有してもよいアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。Zは置換基を有してもよいアルキレン基、置換基を有してもよいアルキレンエーテル2価基、アルキレンオキシカルボニル2価基を表わす。m、nは0〜3の整数を表わす。)
  13. 前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物が、下記一般式(3)で表わされる化合物の少なくとも一種以上であることを特徴とする請求項1乃至12のいずれかに記載の電子写真感光体。
    Figure 0004249679

    (式中、o、p、qはそれぞれ0又は1の整数、Raは水素原子、メチル基を表わし、Rb、Rcは水素原子以外の置換基で炭素数1〜6のアルキル基を表わし、複数の場合は異なっても良い。s、tは0〜3の整数を表わす。Zaは単結合、メチレン基、エチレン基、
    Figure 0004249679

    を表わす。)
  14. 前記架橋型電荷輸送層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの成分割合が、架橋型電荷輸送層全量に対し30〜70重量%であることを特徴とする請求項1乃至13のいずれかに記載の電子写真感光体。
  15. 前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の成分割合が、架橋型電荷輸送層全量に対し30〜70重量%であることを特徴とする請求項1乃至14のいずれかに記載の電子写真感光体。
  16. 前記架橋型電荷輸送層の硬化手段が加熱又は光エネルギー照射手段であることを特徴とする請求項1乃至15のいずれかに記載の電子写真感光体。
  17. 前記電荷輸送層に、高分子電荷輸送物質が含有されていることを特徴とする請求項1乃至16のいずれかに記載の電子写真感光体。
  18. 前記高分子電荷輸送物質が、トリアリールアミン構造を主鎖又は側鎖に有するポリカーボネートであることを特徴とする請求項17に記載の電子写真感光体。
  19. 請求項1乃至18のいずれかに記載の電子写真感光体を用いて、少なくとも帯電、画像露光、現像、転写を繰り返し行うことを特徴とする画像形成方法。
  20. 少なくとも帯電手段、露光手段、現像手段、転写手段及び電子写真感光体を具備してなる画像形成装置において、該電子写真感光体が請求項1乃至18の何れかに記載のものであることを特徴とする画像形成装置。
  21. 少なくとも帯電手段、露光手段、現像手段、転写手段及び電子写真感光体からなる画像形成要素が複数配列され、該電子写真感光体が請求項1乃至18の何れかに記載の電子写真感光体であることを特徴とする画像形成装置。
  22. 電子写真感光体と帯電手段、露光手段、現像手段及びクリーニング手段から選ばれる少なくとも1つの手段とが一体となったカートリッジを搭載し、かつ該カートリッジが装置本体に対し着脱自在であることを特徴とする請求項20又は21に記載の画像形成装置。
  23. 少なくとも帯電手段、露光手段、現像手段及びクリーニング手段から選ばれる1つの手段と、電子写真感光体とが一体となった画像形成装置用プロセスカートリッジにおいて、該電子写真感光体が請求項1乃至18の何れかに記載の電子写真感光体であることを特徴とする画像形成装置用プロセスカートリッジ。

JP2004256032A 2003-10-30 2004-09-02 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ Expired - Fee Related JP4249679B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004256032A JP4249679B2 (ja) 2003-10-30 2004-09-02 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ
US10/974,814 US7371490B2 (en) 2003-10-30 2004-10-28 Photoconductor, image forming apparatus, image forming process, and process cartridge
EP04256688A EP1530098B8 (en) 2003-10-30 2004-10-29 Photoconductor, image forming apparatus, image forming process, and process cartridge
DE602004020306T DE602004020306D1 (de) 2003-10-30 2004-10-29 Photoleitfähiger bildherstellender Apparat, Bildherstellungsverfahren und Prozesskartusche

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003369854 2003-10-30
JP2004256032A JP4249679B2 (ja) 2003-10-30 2004-09-02 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ

Publications (2)

Publication Number Publication Date
JP2005157297A JP2005157297A (ja) 2005-06-16
JP4249679B2 true JP4249679B2 (ja) 2009-04-02

Family

ID=34436947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004256032A Expired - Fee Related JP4249679B2 (ja) 2003-10-30 2004-09-02 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ

Country Status (4)

Country Link
US (1) US7371490B2 (ja)
EP (1) EP1530098B8 (ja)
JP (1) JP4249679B2 (ja)
DE (1) DE602004020306D1 (ja)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179573B2 (en) * 2003-03-20 2007-02-20 Ricoh Company, Ltd. Electrophotographic photoconductor, and image forming process, image forming apparatus and process cartridge for an image forming apparatus using the same
US7175957B2 (en) * 2003-03-20 2007-02-13 Ricoh Company, Ltd. Electrophotographic photoconductor, and image forming process, image forming apparatus and process cartridge for an image forming apparatus using the same
JP4267504B2 (ja) 2004-04-21 2009-05-27 株式会社リコー プロセスカートリッジ、画像形成装置及び画像形成方法
JP4440073B2 (ja) * 2004-09-03 2010-03-24 株式会社リコー 静電潜像担持体及びプロセスカートリッジ、並びに、画像形成装置及び画像形成方法
JP4249681B2 (ja) * 2004-09-06 2009-04-02 株式会社リコー 画像形成装置及びプロセスカートリッジ
JP2006078614A (ja) * 2004-09-08 2006-03-23 Ricoh Co Ltd 電子写真感光体中間層用塗工液、それを用いた電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ
JP2006091117A (ja) * 2004-09-21 2006-04-06 Ricoh Co Ltd 画像形成方法及び画像形成装置
US7507509B2 (en) * 2004-10-07 2009-03-24 Ricoh Company, Ltd. Electrophotographic photoreceptor, and image forming method, image forming apparatus and process cartridge using the electrophotographic photoreceptor
US20060093955A1 (en) * 2004-11-01 2006-05-04 Kohichi Ohshima Image forming method, and image forming apparatus and process cartridge using the image forming method
JP4248483B2 (ja) 2004-11-19 2009-04-02 株式会社リコー 電子写真感光体、その製造方法、それを使用した画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ
US7824830B2 (en) * 2004-12-20 2010-11-02 Ricoh Company Limited Coating liquid and electrophotographic photoreceptor prepared using the coating liquid
EP1674940B1 (en) * 2004-12-24 2008-11-26 Ricoh Company, Ltd. Electrophotographic photoreceptor, and image forming method, image forming apparatus and process cartridge therefor using the electrophotographic photoreceptor
US7507511B2 (en) * 2005-01-14 2009-03-24 Ricoh Company Ltd. Electrophotographic photoreceptor, and image forming apparatus and process cartridge therefor using the electrophotographic photoreceptor
JP4793913B2 (ja) * 2005-03-04 2011-10-12 株式会社リコー 画像形成装置
JP2006243417A (ja) * 2005-03-04 2006-09-14 Ricoh Co Ltd 画像形成装置及び画像形成方法
US20060240248A1 (en) * 2005-04-26 2006-10-26 Canon Kabushiki Kaisha Electrophotographic belt, electrophotographic apparatus, process for producing the electrophotographic belt, and intermediate transfer belt
JP4719617B2 (ja) * 2005-06-23 2011-07-06 株式会社リコー 画像形成装置
US7764906B2 (en) * 2005-06-24 2010-07-27 Ricoh Company, Ltd. Image forming apparatus and image forming method
JP4440175B2 (ja) * 2005-07-06 2010-03-24 株式会社リコー 静電潜像担持体及びその製造方法、並びに画像形成装置、画像形成方法及びプロセスカートリッジ
DE602006003479D1 (de) * 2005-07-06 2008-12-18 Ricoh Kk Elektrofotografischer Fotorezeptor und Verfahren zur Fotorezeptorherstellung, Bilderzeugungsverfahren, Bilderzeugungsvorrichtung und Prozesskartusche dafür unter Verwendung des Fotorezeptors
JP4523503B2 (ja) * 2005-07-12 2010-08-11 株式会社リコー 画像形成装置及び画像形成方法
JP4523507B2 (ja) * 2005-07-25 2010-08-11 株式会社リコー 画像形成装置及び画像形成方法
JP4567545B2 (ja) * 2005-07-27 2010-10-20 株式会社リコー 画像形成装置及び画像形成方法
JP4523510B2 (ja) * 2005-07-29 2010-08-11 株式会社リコー 画像形成装置及び画像形成方法
JP4523511B2 (ja) * 2005-07-29 2010-08-11 株式会社リコー 画像形成装置及び画像形成方法
US20070031746A1 (en) * 2005-08-08 2007-02-08 Tetsuya Toshine Electrophotographic photoconductor, process cartridge, and image forming method
JP4568658B2 (ja) * 2005-08-11 2010-10-27 株式会社リコー 画像形成装置及び画像形成方法
JP4568659B2 (ja) * 2005-08-16 2010-10-27 株式会社リコー 画像形成装置及び画像形成方法
US7914959B2 (en) * 2005-11-28 2011-03-29 Ricoh Company, Limited Image bearing member, image forming method, and image forming apparatus
JP2007156123A (ja) * 2005-12-06 2007-06-21 Ricoh Co Ltd 画像形成装置及び画像形成方法
JP4807848B2 (ja) * 2005-12-15 2011-11-02 株式会社リコー 画像形成装置及び画像形成方法
JP4579151B2 (ja) * 2005-12-27 2010-11-10 株式会社リコー 感光体及びその製造方法
US8197997B2 (en) 2006-03-01 2012-06-12 Ricoh Company, Ltd. Electrophotographic photoconductor, production method thereof, image forming method and image forming apparatus using photoconductor, and process cartridge
KR100863760B1 (ko) * 2006-03-10 2008-10-16 가부시키가이샤 리코 전자 사진 감광체, 그것을 이용한 화상 형성 장치용 프로세스 카트리지, 및 화상 형성 장치
JP2007241140A (ja) * 2006-03-10 2007-09-20 Ricoh Co Ltd 像担持体及びそれを用いた画像形成方法、並びに画像形成装置、プロセスカートリッジ
US7838188B2 (en) * 2006-03-29 2010-11-23 Ricoh Company, Ltd. Electrophotographic photoconductor, image forming method, image forming apparatus, and process cartridge
JP2007310040A (ja) * 2006-05-17 2007-11-29 Ricoh Co Ltd 画像形成装置及び画像形成方法
JP4657150B2 (ja) * 2006-05-30 2011-03-23 京セラミタ株式会社 積層型電子写真感光体及び画像形成装置
EP1862858A1 (en) * 2006-05-30 2007-12-05 Ricoh Company, Ltd. Image bearing member, and process cartridge and image forming apparatus using the same
US7582399B1 (en) 2006-06-22 2009-09-01 Xerox Corporation Imaging member having nano polymeric gel particles in various layers
US7851119B2 (en) * 2006-09-07 2010-12-14 Ricoh Company, Ltd. Electrophotographic photoconductor, method for producing the same, image forming process, image forming apparatus and process cartridge
JP4838208B2 (ja) * 2006-09-11 2011-12-14 株式会社リコー 電子写真感光体、及びその製造方法、画像形成装置、並びに、プロセスカートリッジ
JP4800157B2 (ja) * 2006-09-15 2011-10-26 株式会社リコー 電子写真感光体並びに電子写真装置
US7714882B2 (en) * 2006-09-15 2010-05-11 Ricoh Company, Ltd. Image forming apparatus and image forming process
JP4771909B2 (ja) 2006-10-31 2011-09-14 株式会社リコー 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ、及び電子写真感光体の製造方法
US8043773B2 (en) * 2006-11-16 2011-10-25 Ricoh Company, Limited Image bearing member, image forming apparatus and process cartridge
US8669030B2 (en) * 2006-12-11 2014-03-11 Ricoh Company, Limited Electrophotographic photoreceptor, and image forming method and apparatus using the same
JP5102646B2 (ja) * 2007-02-21 2012-12-19 株式会社リコー 電子写真感光体とこれを搭載する電子写真用プロセスカートリッジ及び画像形成装置
US8084170B2 (en) 2007-03-13 2011-12-27 Ricoh Company, Ltd. Electrophotographic photoconductor, electrophotographic process cartridge containing the same and electrophotographic apparatus containing the same
JP5294045B2 (ja) * 2007-06-13 2013-09-18 株式会社リコー 電子写真感光体とこれを搭載するプロセスカートリッジないし電子写真装置
JP5382404B2 (ja) * 2007-07-02 2014-01-08 株式会社リコー 電子写真感光体、該電子写真感光体を有するプロセスカートリッジ及び電子写真装置
JP5477683B2 (ja) 2008-12-11 2014-04-23 株式会社リコー 電子写真感光体とその製造方法及び画像形成装置
JP5477625B2 (ja) * 2009-09-10 2014-04-23 株式会社リコー 電子写真感光体、画像形成装置及びプロセスカートリッジ
JP6481324B2 (ja) 2013-12-13 2019-03-13 株式会社リコー 電子写真感光体、電子写真方法、電子写真装置及びプロセスカートリッジ
CN112138722B (zh) * 2020-09-24 2022-11-01 福建师范大学 一种三苯胺基树枝配体取代硅酞菁负载SiO2光催化剂的制备方法
CN112126199B (zh) * 2020-09-24 2022-10-11 福建师范大学 一种具有光催化效果的PETG/TPA-SiPc@SiO2复合线材及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW347485B (en) * 1993-11-29 1998-12-11 Canon Kk Electrophotographic photosensitive member
EP0740216A3 (en) 1995-04-24 1997-10-22 Canon Kk Polymer, electrophotographic photosensitive member and electroluminescent device employing this polymer, process cassette and electrophotographic apparatus using the electrophotographic photosensitive member
DE69927534T2 (de) 1998-01-07 2006-07-06 Canon K.K. Elektrophotographisches lichtempfindliches Element, Verfahren zu dessen Herstellung, Verfahrenscassette und elektrophotographischer Apparat die dieses Element eingebaut haben
JP4132571B2 (ja) 1999-05-06 2008-08-13 株式会社リコー 電子写真感光体及び電子写真方法、電子写真装置ならびに電子写真装置用プロセスカートリッジ
US7419751B2 (en) * 2002-06-13 2008-09-02 Ricoh Company, Ltd. Titanylphthalocyanine crystal and method of producing the titanylphthalocyanine crystal, and electrophotographic photoreceptor, method, apparatus and process cartridge using the titanylphthalocyanine crystal
US7179573B2 (en) * 2003-03-20 2007-02-20 Ricoh Company, Ltd. Electrophotographic photoconductor, and image forming process, image forming apparatus and process cartridge for an image forming apparatus using the same
US7175957B2 (en) * 2003-03-20 2007-02-13 Ricoh Company, Ltd. Electrophotographic photoconductor, and image forming process, image forming apparatus and process cartridge for an image forming apparatus using the same

Also Published As

Publication number Publication date
US7371490B2 (en) 2008-05-13
US20050175911A1 (en) 2005-08-11
EP1530098A3 (en) 2007-09-26
EP1530098A8 (en) 2005-07-20
JP2005157297A (ja) 2005-06-16
EP1530098B1 (en) 2009-04-01
EP1530098A2 (en) 2005-05-11
EP1530098B8 (en) 2009-08-19
DE602004020306D1 (de) 2009-05-14

Similar Documents

Publication Publication Date Title
JP4249679B2 (ja) 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ
JP4793913B2 (ja) 画像形成装置
JP4570045B2 (ja) 電子写真感光体、電子写真装置及び電子写真装置用プロセスカートリッジ
JP2006078614A (ja) 電子写真感光体中間層用塗工液、それを用いた電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ
JP4070700B2 (ja) 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ
JP2005189821A (ja) 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ
JP4484727B2 (ja) 電子写真感光体、電子写真装置、電子写真装置用プロセスカートリッジおよび導電性支持体の再生方法
JP2006047454A (ja) 電子写真感光体中間層用塗工液、それを用いた電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ
JP4424668B2 (ja) 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ
JP4554409B2 (ja) 画像形成装置
JP4414350B2 (ja) 電子写真感光体およびそれを用いた画像形成装置及び画像形成装置用プロセスカートリッジ
JP4563843B2 (ja) 画像形成方法、画像形成装置及びプロセスカートリッジ
JP4541195B2 (ja) 画像形成装置
JP4319643B2 (ja) 電子写真感光体、電子写真装置及び電子写真装置用プロセスカートリッジ
JP4719617B2 (ja) 画像形成装置
JP4322776B2 (ja) 電子写真感光体及び画像形成装置
JP5578396B2 (ja) 電子写真感光体、電子写真感光体を有するプロセスカートリッジ、及び電子写真装置
JP4322777B2 (ja) 電子写真感光体中間層用塗工液の保存方法、電子写真感光体の製造方法、電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ
JP2006220819A (ja) 画像形成装置
JP4541177B2 (ja) 画像形成装置
JP2006259018A (ja) 画像形成装置及び画像形成方法
JP4554408B2 (ja) 画像形成装置
JP4434962B2 (ja) 電子写真感光体中間層用塗工液の再生方法
JP4711689B2 (ja) 電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ
JP2006220812A (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4249679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees