JP4424668B2 - 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ - Google Patents

電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ Download PDF

Info

Publication number
JP4424668B2
JP4424668B2 JP2004339878A JP2004339878A JP4424668B2 JP 4424668 B2 JP4424668 B2 JP 4424668B2 JP 2004339878 A JP2004339878 A JP 2004339878A JP 2004339878 A JP2004339878 A JP 2004339878A JP 4424668 B2 JP4424668 B2 JP 4424668B2
Authority
JP
Japan
Prior art keywords
group
photosensitive member
layer
electrophotographic photosensitive
charge transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004339878A
Other languages
English (en)
Other versions
JP2005189835A (ja
Inventor
望 田元
達也 新美
哲郎 鈴木
勝一 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004339878A priority Critical patent/JP4424668B2/ja
Publication of JP2005189835A publication Critical patent/JP2005189835A/ja
Application granted granted Critical
Publication of JP4424668B2 publication Critical patent/JP4424668B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

本発明は、少なくとも複数の下引き層、一次粒子の平均粒子サイズが0.25μm以下の特定の結晶型を有するチタニルフタロシアニンを含有する感光層、及び電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することによる架橋型電荷輸送層が積層してなる電子写真感光体、これを用いた画像形成方法、画像形成装置ならびに画像形成装置用プロセスカートリッジに関する。
近年、電子写真方式を用いた情報処理システム機の発展は目覚ましく、特に情報をデジタル信号に変換して光によって情報記録を行うレーザープリンタやデジタル複写機は、そのプリント品質、信頼性において向上が著しい。急速に普及しているこれらのレーザープリンタやデジタル複写機は、今後高画質化と同時にさらなる高速化あるいは小型化が要求されている。さらに、最近ではフルカラープリントが可能なフルカラーレーザープリンタやフルカラーデジタル複写機の需要も急激に高くなっている。フルカラープリントを行う場合には少なくとも4色のトナー画像を重ね合わせる必要があることから、特に装置の高速化並びに小型化がより一層重要な課題とされている。装置の高速化及び小型化を実現するためには、それらに用いられる電子写真感光体の感度を向上させるとともに感光体の小径化が必要となる。特に、フルカラー化と高速化を両立させる上で有効なタンデム方式の場合には、少なくとも4本の感光体が装置に内包されるため、感光体の小径化の要求度は非常に高い。しかし、感光体の小径化が進むに従い、感光体はより過酷な状況で使用されることになるため、従来の感光体ではその交換速度が大幅に早まることになり、特に高速機においてはより一層深刻な問題となる。従って、装置の高速化並びに小型化を実現するためには、同時に用いられる感光体の高感度化だけでなく、大幅な高耐久化が必要不可欠である。
装置の高速化に対応するために必要な感光体の高感度化に対しては、量子効率の大きな電荷発生材料が必要不可欠である。有機系高感度感光体としては、電荷発生材料にXRD(CuKα線(波長1.542Å)におけるブラッグ角2θの回折ピーク(±0.2゜)が、少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニンが広く用いられており、非常に有効である。しかし、上記チタニルフタロシアニンを用いた感光体は、顔料の凝集や疲労による帯電低下等によって地汚れが顕著に発生する懸念があった。地汚れとは、本来画像を印字しない白地領域に印字され、小さい黒点が無数に発生する現象であり、初期状態においては問題にならなくても繰り返し使用によってその影響が増大するのが特徴である。このように、地汚れは感光体の寿命を決定する大きな要因となっており、上記チタニルフタロシアニンを用いた感光体によって装置の高速化が可能となっても地汚れの影響が大きくなるために、画質安定性に乏しく、高速化と高耐久化の両立が実現されていなかった。又、上記チタニルフタロシアニンは、環境依存性が大きい傾向にあり、特に低湿環境では感度低下を引き起こす傾向が見られていた。そのために、画像品質に環境依存性が認められ、画像安定性が低下する不具合が見られていた。これらのことから、上記チタニルフタロシアニンを用いた従来の感光体は、高速機に用いると感光体の交換頻度が著しく早くなってしまい、安定した画像を長期に渡って提供することが実現できていなかった。
感光体の高耐久化に対しては、画像品質の安定性を高め、特に上記の地汚れの発生を抑制させる必要がある。地汚れ発生のメカニズムとしては、感光体に帯電を施した際に、導電性支持体側に誘起されるそれとは逆極性の電荷が局所的にリークし、感光層さらには感光体の表面へ注入され、その部分が現像されやすくなることに起因すると考えられる。感光体の繰り返し使用において画像品質に影響を与える二大要因としては、感光体の静電疲労と感光体の摩耗が挙げられる。前者は、画像形成において帯電や露光が繰り返し行われることにより感光体の疲労が進行し、それによって引き起こされる帯電電位の低下もしくは露光部電位(残留電位と同意)の上昇が画像品質の低下を引き起こす。特に、帯電電位の低下は導電性支持体からの電荷のリークによる影響をさらに増大し、地汚れを顕在化しやすくさせる。後者においては、感光体の表面層がクリーニング部材などの摺察により摩耗され、それにより感光体表面層の膜厚が減少すると、電界強度の上昇や感光体表面の傷の増加等により画像品質の低下を引き起こす。特に、膜厚減少によって電界強度が上昇すると地汚れの発生を顕著に増加させる。
このように、画像形成装置の高速化、小型化、高寿命化を実現するためには、それに用いられる電子写真感光体の高感度化、小径化、高耐久化が必要であることは明白であるが、それらを実現する上で最も大きな課題とされるのは、上記の通り地汚れの抑制にある。この地汚れの要因は、上記の通り、導電性支持体からの電荷の注入に起因するものと、電荷発生層における電荷発生材料の凝集や粗大粒子あるいは結晶型に起因するものと、電荷輸送層あるいは感光体の最表面に形成される層の摩耗による電界強度の増加に起因するものとが挙げられる。すなわち、導電性支持体からの電荷の注入を抑制できる下引き層、凝集や粗大粒子がなく帯電性に安定した結晶型を有するチタニルフタロシアニンを含む電荷発生層及び耐摩耗性や静電安定性に優れた電荷輸送層もしくは保護層を同時に積層することによってはじめて長期に渡る地汚れの抑制が可能となるのであって、このうちどれか一つ欠けるだけでも地汚れ耐久性の飛躍的な向上は達成されない。
地汚れの発生原因の一つである導電性支持体からの電荷の注入に関する従来技術としては、導電性支持体と感光層の間に下引き層や中間層を設ける技術が提案されてきた。
例えば、特許文献1には硝酸セルロース系樹脂中間層が、特許文献2にはナイロン系樹脂中間層が、特許文献3にはマレイン酸系樹脂中間層が、特許文献4にはポリビニルアルコール樹脂中間層がそれぞれ開示されている。しかしながら、これらの単層かつ樹脂単独の中間層は電気抵抗が高いため、残留電位の上昇を引き起こし、ネガ・ポジ現像においては画像濃度低下を生じる。また、不純物等に起因するイオン伝導性を示すことから、低温低湿下では中間層の電気抵抗が特に高くなるため、残留電位が著しく上昇し、高温高湿下では中間層の電気抵抗が低下し、地汚れが発生しやすくなる傾向が見られていた。このため、残留電位を低減させるために、中間層を薄膜化する必要があり、十分な地汚れの抑制が実現されていないのが実情であった。
これらの問題点を解消するため、中間層の電気抵抗を制御する技術として、導電性添加物を中間層バルクに添加する方法が提案された。例えば、特許文献5にはカーボン又はカルコゲン系物質を硬化性樹脂に分散した中間層が、特許文献6には四級アンモニウム塩を添加してイソシアネート系硬化剤を用いた熱重合体中間層が、特許文献7には抵抗調節剤を添加した樹脂中間層が、特許文献8には有機金属化合物を添加した樹脂中間層が開示されている。しかしながら、これら樹脂中間層単体では、残留電位の低減が実現されても地汚れが増加する傾向が見られる上、近年のレーザー光のようなコヒーレント光を使用した画像形成装置においては、モアレ画像を生じるという問題点を有している。
更にはモアレ防止と中間層の電気抵抗を同時に制御する目的で、中間層にフィラーを含有した感光体が提案された。例えば、特許文献9にはアルミニウム又はスズの酸化物を分散した樹脂中間層が、特許文献10には導電性粒子を分散した樹脂中間層が、特許文献11にはマグネタイトを分散した中間層が、特許文献12には酸化チタンと酸化スズを分散した樹脂中間層が、特許文献13、特許文献14、特許文献15、特許文献16、特許文献17、特許文献18には、カルシウム、マグネシウム、アルミニウム等のホウ化物、窒化物、フッ化物、酸化物の粉体を分散した樹脂の中間層が開示されている。これらのようなフィラーを分散させた中間層は、残留電位の低減に対してはフィラー量を増加した方が、地汚れを抑制するためにはフィラー量を減少させた方が好ましく、それらを両立することは困難であった。また、樹脂の含有量が少なくなると導電性支持体との接着性が低下し、剥離が生じやすくなる問題も有しており、特に導電性支持体がフレキシブルなベルト状の感光体では、その影響は致命的なものであった。
このような問題点を解決するために、中間層を積層化する考え方が提案された。積層化の構成は2つのタイプに大別され、1つは導電性支持体上にフィラー分散した樹脂層およびフィラーを含有しない樹脂層を順に積層したものであり(図1参照)、もう1つは導電性支持体上にフィラーを含有しない樹脂層およびフィラーを分散した樹脂層を順に設けたものである(図2参照)。
前者の構成を詳しく述べると、上述したような支持体の欠陥を隠蔽するため、導電性支持体上に抵抗の低いフィラーを分散した導電性のフィラー分散層を設け、その上に前記樹脂層を設けたものである。これらは例えば特許文献19、特許文献20、特許文献21、特許文献22、特許文献23、特許文献24、特許文献25、特許文献26、特許文献27等に記載されている。この構成は、導電性フィラーを含有するフィラー分散層によって、モアレの発生を防止することは可能であり、その上に樹脂層を有しているために地汚れ抑制効果も得ることができるが、導電性支持体からのキャリア注入を抑制しているのは、樹脂層のみであるため、前述の樹脂層を単独で用いた場合と同様に、厚膜化すれば著しい残留電位上昇が、薄膜化すれば地汚れの増加が引き起こされることになり、それらの両立を実現する上で十分に満足されるものではなかった。また、フィラー分散層上に絶縁性の樹脂層が積層されている上、フィラー分散層は導電性支持体の欠陥を隠蔽するために膜厚を厚くする(10μm以上)必要があるため、フィラー分散層に含有されるフィラーの抵抗を高めて地汚れを抑制しようとしても、残留電位の影響が顕著に大きくなるため難しい。
また、特許文献28、特許文献29、特許文献30には、導電層と中間層、およびチタニルフタロシアニン結晶を含有する感光層を積層した感光体が開示されている。しかしながら、導電層と中間層を積層しただけでは、地汚れの影響を十分に抑制することは難しい。それは、上記の理由に加え、感光層に用いられるチタニルフタロシアニンにも地汚れの要因が含まれているためである。これについては、後に説明する。
一方、後者の構成としては、導電性支持体上にキャリア注入を抑制する樹脂層を設け、その上にフィラーを含有したフィラー分散層を設けたもので、例えば、特許文献31、特許文献32等に記載されている。この構成においては、樹脂層によってキャリア注入を抑制できるが、その上に積層されるフィラーを含有したフィラー分散層は特に導電性のフィラーを含有しなくても残留電位に与える影響が少ないため、キャリア注入の抑制効果も高まり、残留電位と地汚れを両立させる上では、前者の構成よりも有効性が高い。
このように、複数の下引き層を積層させ機能分離させた構成は、モアレ防止や地汚れ抑制、さらに残留電位低減を両立させる上で高い有効性を示すものの、樹脂層を薄膜化させて用いる必要があり、それに用いられる樹脂によっては、地汚れや残留電位の湿度依存性が大きかったり、膜厚依存性が大きくなる傾向が見られ、必ずしも高い安定性を有していなかった。
下引き層に用いられる樹脂についても、多くの検討がなされており、ポリアミドが比較的多く用いられている。その中でもN−アルコキシ(メトキシ)メチル化ナイロンを含有させた下引き層あるいは中間層を用いた方法が数多く開示されており、例えば、特許文献33には下引き層にアルコキシメチル化度が5〜30%のアルコキシメチル化共重合ナイロンを含有させる方法が、特許文献34には、中間層に無機顔料と結着樹脂として架橋したN−アルコキシメチル化ポリアミドを含有させる方法が、特許文献35には下引き層がN−アルコキシメチル化ナイロン樹脂よりなり、樹脂中に含有される不純物Na、Ca及びP原子の元素濃度が各々10ppm以下とする方法が、特許文献36には中間層にλ−アミノ−n−ラウリン酸を主成分とするN−アルコキシメチル化ポリアミド共重合体を含有させる方法が、特許文献37には中間層にある構造を有する単位成分を有するポリアミド樹脂を含有させる方法が開示されている。このように、これらのN−アルコキシメチル化ナイロンを下引き層もしくは中間層に含有させる方法は公知であり、導電性支持体からの電荷の注入性を抑制し地汚れ抑制効果を高めることに対しては有効な方法であることが知られている。
しかしながら、上記のように複数の下引き層を積層したり、N−アルコキシメチル化ナイロンを下引き層もしくは中間層に含有させるだけでは、導電性支持体への電荷注入による地汚れ抑制には有効ではあっても、残留電位、モアレ、地汚れや残留電位の環境依存性等に与える影響は少なくない。さらに、下引き層はその上に塗工される際、その溶媒に不溶であることが必要であり、塗膜欠陥も地汚れに影響することから、高い塗膜品質と薄層でも膜厚偏差の少ない高い塗工性が要求される。
さらに、地汚れ発生の原因は導電性支持体から感光層への電荷(正孔)注入によるものだけではなく、前述のとおり感光層における影響も無視できない。特に、従来のチタニルフタロシアニンは凝集性が強く、それを電荷発生層に用いた場合には、下引き層からの電荷の注入を抑制したとしても、凝集物や粗大粒子の存在する局所部分において帯電低下や暗減衰の増加が起こり、地汚れとして顕在化されることになる。また、チタニルフタロシアニンの純度も大きく影響し、不純物の含有により帯電低下を顕著に引き起こしたり、疲労による暗減衰の増加を引き起こしたりすることによって地汚れ耐久性は著しく低下する。従って、電荷発生層に使用するチタニルフタロシアニン結晶の分散性や結晶型を制御することによって、地汚れの要因を排除する必要がある。
しかし、従来技術においては、地汚れを抑制させると残留電位上昇や環境依存性が著しく増大したり、残留電位上昇を抑制させると地汚れ抑制効果が不十分となるなど、それらの両立が実現されていなかった。このように、地汚れは、導電性支持体からの電荷注入による影響だけでなく、感光層もしくは電荷発生層に含有されるチタニルフタロシアニンの粗大粒子や不純物等の影響等、多くの要因を含んでいるが、これ以外に地汚れに大きな影響を及ぼす因子として重要なのは、感光体の膜厚減少による電界強度の増加である。
そのため、感光体の最表面に形成される電荷輸送層あるいは保護層は、耐摩耗性を高める工夫がされてきた。感光層の耐摩耗性を改良する技術としては、(i)架橋型電荷輸送層に硬化性バインダーを用いたもの(例えば、特許文献38参照)、(ii)高分子型電荷輸送物質を用いたもの(例えば、特許文献39参照)、(iii)架橋型電荷輸送層に無機フィラーを分散させたもの(例えば、特許文献40参照)等が挙げられる。このように、感光体の耐摩耗性を高めることにより電界強度の経時変動を少なくできることから、地汚れの抑制に対しては高い効果が得られる。
しかし、これらの技術の中で、(i)の硬化性バインダーを用いたものは、電荷輸送物質との相溶性が悪いためや重合開始剤、未反応残基などの不純物により残留電位が上昇し画像濃度低下が発生し易い傾向がある。また、(ii)の高分子型電荷輸送物質を用いたものは、ある程度の耐摩耗性向上が可能であるものの、有機感光体に求められている耐久性を十二分に満足させるまでには至っていない。また、高分子型電荷輸送物質は材料の重合、精製が難しく高純度なものが得にくいため材料間の電気的特性が安定しにくい。更に塗工液が高粘度となる等の製造上の問題を起こす場合もある。(iii)の無機フィラーを分散させたものは、通常の低分子電荷輸送物質を不活性高分子に分散させた感光体に比べ高い耐摩耗性が発揮されるが、無機フィラー表面に存在する電荷トラップにより残留電位が上昇し、画像濃度低下が発生し易い傾向にある。また、感光体表面の無機フィラーとバインター樹脂の凹凸が大きい場合には、クリーニング不良が発生し、トナーフィルミングや画像流れの原因となることがある。これら(i)、(ii)、(iii)の技術では、地汚れ抑制に有効な場合があっても、残留電位やクリーニング性等に不具合があり、それによって生じる画像欠陥の影響から、耐久性を十二分に満足するには至っていない。
更に、(i)の耐摩耗性と耐傷性を改良するために多官能のアクリレートモノマー硬化物を含有させた感光体も知られている(特許文献41参照)。しかし、この感光体においては、感光層上に設けた保護層にこの多官能のアクリレートモノマー硬化物を含有させる旨の記載があるものの、この保護層においては電荷輸送物質を含有せしめてもよいことが記載されているのみで具体的な記載はなく、しかも、単に架橋型電荷輸送層に低分子の電荷輸送物質を含有させた場合には、上記硬化物との相溶性の問題があり、これにより、低分子電荷輸送物質の析出、白濁現象が起こり、露光部電位の上昇により画像濃度が低下するばかりでなく機械強度も低下してしまうことがあった。さらに、この感光体は、具体的には高分子バインダーを含有した状態でモノマーを反応させるため、3次元網目構造が充分に進行せず、架橋結合密度が希薄となるため飛躍的な耐摩耗性を発揮できるまでには至っていない。
これらに関わる感光層の耐摩耗技術として、炭素−炭素二重結合を有するモノマーと、炭素−炭素二重結合を有する電荷輸送物質及びバインダー樹脂からなる塗工液を用いて形成した電荷輸送層を設けることが知られている(例えば、特許文献42参照)。このバインダー樹脂は電荷発生層と硬化型電荷輸送層の接着性を向上させ、さらに厚膜硬化時の膜の内部応力を緩和させる役割を果たしていると考えられ、炭素−炭素二重結合を有し、上記電荷輸送物質に対して反応性を有するものと、上記二重結合を有せず反応性を有しないものに大別される。この感光体は耐摩耗性と良好な電気的特性を両立しており注目されるが、バインダー樹脂として反応性を有しないものを使用した場合においては、バインダー樹脂と、上記モノマーと電荷輸送物質との反応により生成した硬化物との相溶性が悪く、架橋型電荷輸送層中で層分離が生じ、傷やトナー中の外添剤及び紙粉の固着の原因となることがある。また、上記したように、3次元網目構造が充分に進行せず、架橋結合密度が希薄となるため飛躍的な耐摩耗性を発揮できるまでには至っていない。加えて、この感光体において使用される上記モノマーとして具体的に記載されているものは2官能性のものであり、これらの点で耐摩耗性の点では未だ満足するには至らなかった。また、反応性を有するバインダーを使用した場合においても、硬化物の分子量は増大するものの分子間架橋結合数は少なく、上記電荷輸送物質の結合量と架橋密度との両立は難しく、電気特性及び耐摩耗性も充分とはいえないものであった。
また、同一分子内に二つ以上の連鎖重合性官能基を有する正孔輸送性化合物を硬化した化合物を含有する感光層も知られている(例えば、特許文献43参照)。この感光層は架橋結合密度を高められるため高い硬度を有するが、嵩高い正孔輸送性化合物が二つ以上の連鎖重合性官能基を有するため硬化物中に歪みが発生し内部応力が高くなり、架橋表面層が長期間の使用においてクラックや剥がれが発生しやすい場合がある。これら従来技術における電荷輸送性構造を化学結合させた架橋感光層を有する感光体においても、現状では充分な総合特性を有しているとは言えない。
このように、地汚れは、下引き層だけでなく、電荷発生層及び電荷輸送層もしくは保護層の各層に影響されるものであるため、それらを同時に改善させなければ地汚れを完全に抑制することはできず、感光体の高耐久化を実現することは難しい。しかし、従来技術においては、感光体を構成するそれらすべての層に地汚れを抑制させた例は少なく、またそれらすべての層を同時に改善しようとすると残留電位上昇が顕著に見られたり、帯電性や残留電位の湿度依存性が増加したり、フィルミングや画像ボケの影響を増加したり、感光体表面の傷により画像欠陥が生じやすくなるなど、地汚れ以外の画質劣化要因が顕著に増加し、それにより感光体の高耐久化の実現はなされていなかった。
特開昭47−6341号公報 特開昭60−66258号公報 特開昭52−10138号公報 特開昭58−105155号公報 特開昭51−65942号公報 特開昭52―82238号公報 特開昭55―1130451号公報 特開昭58―93062号公報 特開昭58―58556号公報 特開昭60−111255号公報 特開昭59―17557号公報 特開昭60―32054号公報 特開昭64―68762号公報 特開昭64―68763号公報 特開昭64―73352号公報 特開昭64―73353号公報 特開平1−118848号公報 特開平1−118849号公報 特開昭58−95351号公報 特開昭59―93453号公報 特開平4―170552号公報 特開平6―208238号公報 特開平6―222600号公報 特開平8―184979号公報 特開平9―43886号公報 特開平9−190005号公報 特開平9−288367号公報 特開平5−100461号公報 特開平5−210260号公報 特開平7−271072号公報 特開平5−80572号公報 特開平6−19174号公報 特開平9−265202号公報 特開2002−107984号公報 特許第2718044号公報 特許第3086965号公報 特許第3226110号公報 特開昭56−48637号公報 特開昭64−1728号公報 特開平4−281461号公報 特許第3262488号公報 特許第3194392号公報 特開2000−66425号公報
本発明の目的は、繰り返し使用しても画質安定性に優れ、高耐久化を実現できる電子写真感光体を提供することにある。具体的には、多くの要因によって発生する地汚れを同時に抑制し、長期繰り返し使用においても地汚れの発生を抑えるだけでなく、残留電位の上昇や帯電低下、また環境依存性への副作用を最小限に抑えたことによって飛躍的な高耐久性及び高安定性を有する電子写真感光体を提供することにある。
また、上記感光体を用い、繰り返し画像形成(出力)を行っても地汚れ等の異常画像発生が少なく安定かつ高耐久な画像形成装置を提供することにある。具体的には、繰り返し使用によって起こる地汚れや濃度低下といったネガ・ポジ現像システムにおける最大の課題を解決し、高耐久かつ高安定な高速の画像形成装置を提供することにある。更には、上記感光体を用い、高耐久、高安定でかつ取扱いが良好な画像形成装置用プロセスカートリッジを提供することにある。
本発明者らは、上記課題に対し鋭意検討を行った結果、導電性支持体上に複数の下引き層、0.25μm以下の平均粒子サイズを有する特定の結晶型を有するチタニルフタロシアニンを含有した感光層、少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化した架橋型電荷輸送層を積層することにより、残留電位上昇や環境依存性への副作用が少なく、地汚れ耐久性を飛躍的に向上できることを見いだし、本発明を完成させるに至った。
すなわち、本発明は以下の構成により達成される。
(1)導電性支持体上に、少なくとも無機顔料が含有されておらずN−メトキシメチル化ナイロンを含有する下引き層が直接形成され、その上に無機顔料が含有されている下引き層が形成されている複数の下引き層、感光層及び架橋型電荷輸送層を順次積層した電子写真感光体において、該感光層にCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3゜のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有する結晶型で、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含み、前記チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有し、その回折ピークの半値巾が1゜以上である一次粒子の平均粒子サイズが0.1μm以下の不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンを、水の存在下で有機溶媒により結晶変換を行い、結晶変換後の一次粒子の平均粒子サイズが0.25μmより大きく成長する前に、結晶変換後のチタニルフタロシアニンを有機溶媒より分別、濾過したものを用いて得られたものであり、かつ該架橋型電荷輸送層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより形成されることを特徴とする電子写真感光体。
これにより、残留電位や環境依存性等の副作用なしに導電性支持体からの電荷の注入を抑制でき、高感度を維持しつつ感光層における凝集粒子を低減でき、かつ繰り返し使用してもフィルミングや傷による画質劣化なしに耐摩耗性を飛躍的に向上でき、その結果地汚れを長期的に抑制することが可能となる。さらに、残留電位や帯電性の安定性も高く、環境依存性の低減をも可能とし、高画質画像を安定に供給できる電子写真感光体を得ることができる。
無機顔料が含有されていない下引き層と無機顔料が含有されている下引き層の少なくとも二層を積層させることによって、下引き層に要求される機能を分離することが可能となり、残留電位や帯電性、モアレ、接着性等への副作用なしに、地汚れ耐久性を大幅に高めることが可能となる。
前記無機顔料が含有されていない下引き層が、N−メトキシメチル化ナイロンを含有することが、残留電位の上昇や環境依存性を低減し、かつ地汚れ抑制効果を高める上で非常に有効である。
無機顔料が含有されていない下引き層上に無機顔料が含有されている下引き層が積層されていることにより、地汚れ抑制効果が高く、初期及び繰り返し使用による残留電位の上昇を抑制することが可能となり、地汚れ向上と残留電位低減の両立が可能となる。さらに、疲労による暗減衰の抑制、感光層の接着性、導電性支持体の欠陥や汚れの隠蔽性において更なる効果が得られる。
このチタニルフタロシアニンを結晶を得る方法により、結晶成長過程において含有される粗大粒子を排除することができ、一次粒子の平均粒子サイズが0.25μm以下のチタニルフタロシアニンを含む感光層を形成することが可能となり、地汚れの抑制に有効となる。
(2)前記チタニルフタロシアニン結晶において、26.3°のピーク強度が最大回折ピーク27.2°のピーク強度に対して0.1〜5%の範囲であることを特徴とする前記(1)に記載の電子写真感光体。
これにより、高速機に使用することができる上に、従来課題とされた帯電低下や環境依存性の影響を低減することが可能となり、高速化、高安定化、高耐久化を同時に実現可能な電子写真感光体を提供することができる。
(3)前記感光層が、電荷発生層と電荷輸送層とを順次積層した積層構成からなることを特徴とする前記(1)又は(2)に記載の電子写真感光体。
感光層を積層構成とすることにより、導電性支持体から注入された電荷の表面への移動を抑制する上で効果があり、また電荷発生物質の分散安定性を維持しやすく、地汚れ抑制に更なる効果が得られる。
(4)前記結晶型のチタニルフタロシアニンを、平均粒子サイズが0.3μm以下で、その標準偏差が0.2μm以下になるまで分散を行い、その後有効孔径が3μm以下のフィルターにて濾過を行い、一次粒子の平均粒子サイズを0.25μm以下とした分散液を使用し、感光層あるいは電荷発生層を塗工したことを特徴とする前記(1)乃至(3)のいずれかに記載の電子写真感光体。
この方法により、チタニルフタロシアニンの凝集物を排除し、一次粒子の平均粒子サイズが0.25μm以下のチタニルフタロシアニンを含む感光層あるいは電荷発生層を形成することが可能となり、地汚れの抑制に有効となる。
)前記チタニルフタロシアニン結晶が、ハロゲン化物を含まない原材料を使用して合成されたものであることを特徴とする前記(1)乃至()のいずれかに記載の電子写真感光体。
この方法により、感光体の静電特性において、光感度の低下や帯電性の低下の影響を低
減することが可能となり、地汚れ抑制の上でも有効である。
)前記チタニルフタロシアニン結晶が不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンを、水の存在下で有機溶媒により結晶変換を行ったものを用いて得られたものであり、前記チタニルフタロシアニン結晶の結晶変換に際して、使用される不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンがアシッド・ペースト法により作製され、十分にイオン交換水で洗浄され、洗浄後のイオン交換水のpHが6〜8の間及び/又はイオン交換水の比伝導度が8以下であることを特徴とする前記(1)乃至()のいずれかに記載の電子写真感光体。
この方法により、硫酸の残存量を感光体特性に影響しないレベルに低減することが可能となり、帯電低下や感度劣化を抑制する上で有効であり、結果として地汚れの抑制に対しても有効となる。
)前記チタニルフタロシアニン結晶が不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンを、水の存在下で有機溶媒により結晶変換を行ったものを用いて得られたものであり、前記チタニルフタロシアニン結晶の結晶変換に際して、使用される有機溶媒量が不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンの30倍(重量比)以上であることを特徴とする前記(1)乃至()のいずれかに記載の電子写真感光体。
この方法により、短時間での結晶変換を確実に行うことができ、不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニン中に含まれる不純物を取り除くことが可能となり、その結果感度劣化や帯電低下が抑制され、地汚れ耐久性を向上させる上でも有効である。
)前記架橋型電荷輸送層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの官能基が、アクリロイルオキシ基及び/又はメタクリロイルオキシ基であることを特徴とする前記(1)乃至()のいずれかに記載の電子写真感光体。
これにより、高い硬度が得られ、耐摩耗性の向上に寄与するとともに、残留電位の影響が少なく、画質安定化に高い効果を有する。
)前記架橋型電荷輸送層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーにおける官能基数に対する分子量の割合(分子量/官能基数)が、250以下であることを特徴とする前記(1)乃至()のいずれかに記載の電子写真感光体。
これにより、高い硬度が得られ、耐摩耗性並びに耐傷性の向上に寄与し、高耐久化に対し非常に有効である。
10)前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の官能基が、アクリロイルオキシ基又はメタクリロイルオキシ基であることを特徴とする前記(1)乃至()のいずれかに記載の電子写真感光体。
これにより、耐摩耗性と電荷輸送性を両立することができ、高耐久化並びに静電安定化に対し非常に有効である。
11)前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の電荷輸送性構造が、トリアリールアミン構造であることを特徴とする前記(1)乃至(10)のいずれかに記載の電子写真感光体。
これにより、電荷の移動度が向上し感光体の高感度化や残留電位の低減に更なる効果が得られる。
12)前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物が、下記一般式(1)又は(2)の少なくとも一種以上であることを特徴とする前記(1)乃至(11)のいずれかに記載の電子写真感光体。
{式中、R1は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基、置換基を有してもよいアリール基、シアノ基、ニトロ基、アルコキシ基、−COOR7(R7は水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基)、ハロゲン化カルボニル基若しくはCONR89(R8及びR9は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基を示し、互いに同一であっても異なっていてもよい)を表わし、Ar1、Ar2は置換もしくは無置換のアリーレン基を表わし、同一であっても異なってもよい。Ar3、Ar4は置換もしくは無置換のアリール基を表わし、同一であっても異なってもよい。Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。Zは置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレンエーテル2価基、アルキレンオキシカルボニル2価基を表わす。m、nは0〜3の整数を表わす。}
これにより、感光体の高感度化並びに残留電位の低減に更なる効果を得ることができ、
高画質画像の高安定出力を実現する。
13)前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物が、下記一般式(3)の少なくとも一種以上であることを特徴とする前記(1)乃至(12)のいずれかに記載の電子写真感光体。
(式中、o、p、qはそれぞれ0又は1の整数、Raは水素原子、メチル基を表わし、Rb、Rcは水素原子以外の置換基で炭素数1〜6のアルキル基を表わし、複数の場合は異なっても良い。s、tは0〜3の整数を表わす。Zaは単結合、メチレン基、エチレン基、
を表わす。)
これにより、感光体の高感度化並びに残留電位の低減に更なる効果を得ることができ、
高画質画像の高安定出力を実現する。
14)前記架橋型電荷輸送層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの成分割合が、架橋型電荷輸送層全量に対し30〜70重量%であることを特徴とする前記(1)乃至(13)のいずれかに記載の電子写真感光体。
これにより、感光体の耐摩耗性と残留電位や感度との両立が可能となり、高速機に用いる上で非常に有効である。
15)前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の成分割合が、架橋型電荷輸送層全量に対し30〜70重量%であることを特徴とする前記(1)乃至(14)のいずれかに記載の電子写真感光体。
これにより、感光体の耐摩耗性と残留電位や感度との両立が可能となり、高速機に用いる上で非常に有効である。
16)前記架橋型電荷輸送層の硬化手段が加熱又は光エネルギー照射手段であることを特徴とする前記(1)乃至(15)のいずれかに記載の電子写真感光体。
これにより、硬化反応が十分に進行し、高い耐摩耗性を長期に渡って維持でき、高耐久化及び高安定化に有効となる。
17)前記感光層あるいは電荷輸送層に、高分子電荷輸送物質が含有されていることを特徴とする前記(1)乃至(16)のいずれかに記載の電子写真感光体。
これにより、感光層(積層型の場合は電荷輸送層)上に架橋型電荷輸送層を形成する際に、感光層あるいは電荷輸送層に含有される電荷輸送物質が、架橋型電荷輸送層に浸み込むことによって起こる架橋阻害を皆無にすることが可能となり、高耐久化及び画質安定化に対し有効である。
18)前記N−メトキシメチル化ナイロンが加熱により架橋されていることを特徴とする前記(1)乃至(17)のいずれかに記載の電子写真感光体。
この層の上にさらに下引き層あるいは電荷発生層などを塗工するとき塗膜が溶出することなく、安定した膜形成が可能となり、それによって地汚れ抑制効果が十分に発揮される。
19)前記無機顔料が含有されていない下引き層の膜厚が、2.0μm未満であることを特徴とする前記()乃至(18)のいずれかに記載の電子写真感光体。
これにより、繰り返し使用における残留電位上昇の副作用を軽減させることが可能となり、画質安定性の向上に有効となる。
20)前記無機顔料が含有されている下引き層には、無機顔料として金属酸化物が含有されていることを特徴とする前記()乃至(19)のいずれかに記載の電子写真感光体。
これにより、残留電位上昇や疲労による帯電劣化の影響が少なくなり、モアレを抑制する上でも高い効果を得ることができる。
21)前記金属酸化物が、酸化チタンであることを特徴とする前記(20)に記載の電子写真感光体。
これにより、残留電位に与える影響を最小限に、地汚れ抑制効果を高める上で有効である。
22)前記無機顔料が、平均一次粒径の異なる2種以上の無機顔料の混合物であり、最も大きな平均一次粒径を有する無機顔料の平均一次粒径をD1、最も小さな平均一次粒径を有する無機顔料の平均一次粒径をD2としたとき、0.2<(D2/D1)≦0.5の関係を満たすことを特徴とする前記()乃至(21)のいずれかに記載の電子写真感光体。
これにより、モアレ防止効果を維持しつつ、地汚れ抑制効果を顕著に高めることが可能となる。また、同時に残留電位低減効果を得ることができる。
23)前記D2が、0.2μm未満であることを特徴とする前記(22)に記載の電子写真感光体。
これにより、地汚れ抑制効果をさらに高めることが可能となる。
24)前記平均一次粒径の異なる2種以上の無機顔料の混合比が、最も大きな平均一次粒径を有する無機顔料の含有量をT1、最も小さな平均一次粒径を有する無機顔料の含有量をT2としたとき、重量比で0.2≦T2/(T1+T2)≦0.8の関係を満たすことを特徴とする前記(22)又は(23)に記載の電子写真感光体。
これにより、モアレ防止効果を維持しつつ、地汚れ抑制効果を顕著に高めることが可能となる。また、同時に残留電位低減効果を得ることができる。
25)前記無機顔料が含有されている下引き層には、バインダー樹脂として熱硬化型樹脂が含まれていることを特徴とする前記()乃至(24)のいずれかに記載の電子写真感光体。
これにより、上層を積層する場合に樹脂の溶け出しがなくなり、塗工液の安定性を高めることが可能となり、画質安定性の高い感光体を安定に製造することができる。
26)前記熱硬化型樹脂が、アルキッド樹脂及びメラミン樹脂からなることを特徴とする前記(25)に記載の電子写真感光体。
これにより、残留電位上昇に与える影響が少なく、環境依存性も低減され、高安定化が実現される。
27)前記アルキッド樹脂とメラミン樹脂との重量比が、1/1乃至4/1の範囲内であることを特徴とする前記(26)に記載の電子写真感光体。
これにより、残留電位上昇を抑制できるとともに、塗膜欠陥の発生も低減でき、地汚れ抑制にも有効である。
28)前記無機顔料が含有されている下引き層に含まれる無機顔料とバインダー樹脂との容積比が、1/1乃至3/1の範囲内であることを特徴とする前記()乃至(27)のいずれかに記載の電子写真感光体。
これにより、地汚れ抑制と残留電位低減の両立が可能となる。
29)前記無機顔料が含有されている下引き層の膜厚が、無機顔料が含有されていない下引き層の膜厚よりも大きいことを特徴とする前記()乃至(28)のいずれかに記載の電子写真感光体。
これにより、疲労による帯電劣化の影響を軽減し、かつ無機顔料及びバインダー樹脂を含む下引き層の塗膜品質や膜厚均一性が高まり、モアレ防止効果も十分に得ることが可能となり、画質安定性に対し有効となる。
30)前記(1)乃至(29)のいずれかに記載の電子写真感光体を用いて、少なくとも帯電、画像露光、現像、転写を繰り返し行うことを特徴とする画像形成方法。
これにより、感光体に起因する地汚れの発生をほぼ完全に抑制し、超高耐久化が可能な画像形成方法が提供される。
31)少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体を具備してなる画像形成装置において、該電子写真感光体が前記(1)乃至(29)のいずれかに記載の電子写真感光体であることを特徴とする画像形成装置。
これにより、露光部電位上昇や環境依存性などの副作用を低減しつつ、地汚れ耐久性の飛躍的な向上を実現し、長期に渡って安定した高画質を提供することができる画像形成装置が得られる。
32)少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体からなる画像形成要素を複数配列したことを特徴とする前記(31)に記載の画像形成装置。
少なくとも4色のトナー画像を重ね合わせるタンデム方式の画像形成装置において、高感度、高安定性、高耐久性を有する本発明の感光体を用いることにより、装置の小型化、印刷速度の面で特に大きなメリットが得られる。
33)前記画像形成装置に用いられる帯電手段に、交流重畳電圧を印加することを特徴とする前記(31)又は(32)に記載の画像形成装置。
これにより、帯電ムラを軽減することが可能となり、地汚れの低減に有効となる。
34)少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体を具備してなる画像形成装置において、画像形成時における感光体の線速が300mm/sec以上であることを特徴とする前記(31)乃至(33)のいずれかに記載の画像形成装置。
高感度を有し、同時に長期繰り返し使用においても地汚れの抑制が実現され、高耐久化並びに画質安定化が可能となったことから、高速の画像形成装置に用いても感光体の交換頻度が大幅に低減し、特に大きなメリットが得られる。
35)前記画像形成装置が、少なくとも電子写真感光体と、帯電手段、露光手段、現像手段、クリーニング手段から選ばれる少なくとも1つの手段とが一体となった画像形成装置用プロセスカートリッジを搭載し、該画像形成装置用プロセスカートリッジが装置本体と着脱自在であることを特徴とする前記(31)乃至(34)のいずれかに記載の画像形成装置。
高耐久性を有する感光体を用いているため、画像形成装置用プロセスカートリッジについても長寿命化することが可能となり省資源化に対応できる。また、画像形成装置の長期使用において最も不具合が発生しやすい感光体廻りをプロセスカートリッジ化することにより、その部分だけを容易に交換することが可能であるため、画像形成装置全体としても省資源化に対応できると同時に、長寿命化が可能となる。
36)少なくとも電子写真感光体を備える画像形成装置用プロセスカートリッジにおいて、該電子写真感光体が前記(1)乃至(29)のいずれかに記載の電子写真感光体であることを特徴とする画像形成装置用プロセスカートリッジ。
高耐久性を有する感光体を用いても、感光体廻りの各種部材の寿命が低ければ画質安定性の向上は実現できない。プロセスカートリッジ化することによりそれらの交換やメンテナンスが容易となり、画像形成装置として更なる長寿命化が実現される。
本発明の電子写真感光体は、前述のとおり導電性支持体上に少なくとも複数の下引き層、感光層及び架橋型電荷輸送層を順次積層した電子写真感光体において、該感光層にCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3゜のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有する結晶型で、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含み、かつ該架橋型電荷輸送層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより形成されることが特徴となっている。
ここに示された結晶型のチタニルフタロシアニンは、特開2001−19871号公報に記載されているものであり、本発明で使用される電荷発生物質と同じ結晶型の電荷発生物質及びこれを用いた感光体、画像形成装置が開示されている。このチタニルフタロシアニン結晶を用いることで、高感度を失うことなく繰り返し使用によっても帯電性の低下が少ない高安定な電子写真感光体を得ることができる。しかしながら、非常に長期間繰り返し使用される場合においては、地汚れの増加を引き起こし、感光体の寿命としては満足されるものではなかった。これは、電荷発生層に起因する地汚れ要因は改善されても、導電性支持体より注入される電荷によって引き起こされる地汚れ要因に対しては対処していないことがその原因であると考えられる。
一方、導電性支持体と感光層の間に、複数の下引き層もしくは中間層を積層した構成は、前述のように特許文献31等に記載されている技術であるが、高感度を有する感光層との組み合わせにおいては、感光層における熱キャリアの発生の影響が大きく、必ずしも地汚れを完全に防止できるものではなかった。この傾向は、本発明で用いるようなチタニルフタロシアニンに代表される長波長に吸収を有する電荷発生物質を用いた場合には顕著な問題となるものであった。
このように、電荷発生層あるいは下引き層において、各々地汚れを抑制させる方法は開示されているものの、地汚れ要因は複数存在しており、それらを同時に抑制させないと長期間繰り返し使用される状況下に耐えることは不可能である。それは、非常に小さな地汚れ要因であり、初期状態では問題にならなくても、繰り返し使用されることによって感光体が疲労したり、構成材料の劣化が進行するに伴い、地汚れ要因は成長するためである。従って、地汚れの要因は極力はじめから排除するとともに、繰り返し使用における感光体の疲労に対しても安定性を高めることが必要である。しかし、それらを同時に解決し、飛躍的な高耐久化を可能とする方法は開示されていなかった。
本発明は、残留電位や環境依存性への副作用を低減しつつ、下引き層、電荷発生層、表面層のすべての層について地汚れ要因を徹底的に排除し、画質の安定化について検討を行った結果、飛躍的に地汚れを抑制することが可能となり、高耐久化並びに高安定化、さらには高速化、小型化を実現できることを見いだし、本発明を完成させるに至った。
まず、本発明で用いられる特定の結晶型を有するチタニルフタロシアニン結晶の合成方法について説明する。
初めにチタニルフタロシアニン結晶の合成粗品の合成法について述べる。フタロシアニン類の合成方法は古くから知られており、Moser等による「Phthalocyanine Compounds」(1963年)、「The Phthalocyanines」(1983年)、特開平6−293769号公報等に記載されている。
例えば、第1の方法として、無水フタル酸類、金属あるいはハロゲン化金属及び尿素の混合物を高沸点溶媒の存在下あるいは不存在下において加熱する方法である。この場合、必要に応じてモリブデン酸アンモニウム等の触媒が併用される。第2の方法としては、フタロニトリル類とハロゲン化金属を高沸点溶媒の存在下あるいは不存在下において加熱する方法である。この方法は、第1の方法で製造できないフタロシアニン類、例えば、アルミニウムフタロシアニン類、インジウムフタロシアニン類、オキソバナジウムフタロシアニン類、オキソチタニウムフタロシアニン類、ジルコニウムフタロシアニン類等に用いられる。第3の方法は、無水フタル酸あるいはフタロニトリル類とアンモニアを先ず反応させて、例えば1,3−ジイミノイソインドリン類等の中間体を製造し、次いでハロゲン化金属と高沸点溶媒中で反応させる方法である。第4の方法は、尿素等存在下で、フタロニトリル類と金属アルコキシドを反応させる方法である。特に、第4の方法はベンゼン環への塩素化(ハロゲン化)が起こらず、電子写真用材料の合成法としては、極めて有用な方法であり、本発明においては極めて有効に使用される。
このように本発明で用いられるチタニルフタロシアニン結晶の合成方法としては、特開平6−293769号公報に記載されているように、ハロゲン化チタンを原料に用いない方法が良好に用いられるものである。この方法の最大のメリットは、合成されたチタニルフタロシアニン結晶がハロゲン化フリーであることである。チタニルフタロシアニン結晶は不純物としてのハロゲン化チタニルフタロシアニン結晶を含むと、これを用いた感光体の静電特性において光感度の低下や、帯電性の低下といった悪影響を及ぼす場合が多い(Japan Hardcopy '89論文集p.103、1989年)。本発明においても、特開2001−19871号公報に記載されているようなハロゲン化フリーチタニルフタロシアニン結晶をメインに対象にしているものであり、これらの材料が有効に使用される。
次に、不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)の合成法について述べる。この方法は、フタロシアニン類を硫酸に溶解した後、水で希釈し、再析出させる方法であり、アシッド・ペースト法あるいはアシッド・スラリー法と呼ばれるものが使用できる。
具体的な方法としては、上記の合成粗品を10〜50倍量の濃硫酸に溶解し、必要に応じて不溶物を濾過等により除去し、これを硫酸の10〜50倍量の充分に冷却した水もしくは氷水にゆっくりと投入し、チタニルフタロシアニンを再析出させる。析出したチタニルフタロシアニンを濾過した後、イオン交換水で洗浄・濾過を行い、濾液が中性になるまで充分にこの操作を繰り返す。最終的に、綺麗なイオン交換水で洗浄した後、濾過を行い、固形分濃度で5〜15wt%程度の水ペーストを得る。
この際、イオン交換水で十分に洗浄し、可能な限り濃硫酸を残さないことが重要である。具体的には、洗浄後のイオン交換水が以下のような物性値を示すことが好ましい。即ち、硫酸の残存量を定量的に表せば、洗浄後のイオン交換水のpHや比伝導度で表すことが出来る。pHで表す場合には、pHが6〜8の範囲であることが望ましい。この範囲であることにより、感光体特性に影響を与えない硫酸残存量であると判断出来る。このpH値は市販のpHメーターで簡便的に測定することが出来る。また比伝導度で表せば、8以下であることが望ましい。この範囲であれば、感光体特性に影響を与えない硫酸残存量であると判断出来る。この比伝導度は市販の電気伝導率計で測定することが可能である。比伝導度の下限値は、洗浄に使用するイオン交換水の比伝導度ということになる。いずれの測定においても、上記範囲を逸脱する範囲では、硫酸の残存量が多く、感光体の帯電性が低下したり、光感度が悪化したりするので望ましくない。
このように作製したものが本発明に用いる不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)である。この際、この不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有するものであることが好ましい。特に、その回折ピークの半値巾が1゜以上であることがより好ましい。更に、一次粒子の平均粒子サイズが0.1μm以下であることが好ましい。
次に、結晶変換方法について述べる。
先ず、1回目の結晶変換方法について述べる。1回目の結晶変換は、前記不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)を、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、かつ26.3゜にピークを有さないチタニルフタロシアニン結晶に変換する工程である。
具体的な方法としては、前記不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)を乾燥せずに、水の存在下で有機溶媒と共に混合・撹拌することにより、前記結晶型を得るものである。
この際、使用される有機溶媒は、所望の結晶型を得られるものであれば、いかなる有機溶媒も使用できるが、特にテトラヒドロフラン、トルエン、塩化メチレン、二硫化炭素、オルトジクロロベンゼン、1,1,2−トリクロロエタンの中から選ばれる1種を選択すると、良好な結果が得られる。これら有機溶媒は単独で用いることが好ましいが、これらの有機溶媒を2種以上混合する、あるいは他の溶媒と混合して用いることも可能である。結晶変換に使用される前記有機溶媒の量は、不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)の重量の10倍以上、好ましくは30倍以上の重量であることが望ましい。これは、結晶変換を素早く十分に起こさせると共に、不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)に含まれる不純物を十分に取り除く効果が発現されるからである。尚、ここで使用する不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)は、アシッド・ペースト法により作製するものであるが、上述のように硫酸を十分に洗浄したものを使用することが望ましい。硫酸が残存するような条件で結晶変換を行うと、結晶粒子中に硫酸イオンが残存し、出来上がった結晶を水洗処理のような操作をしても完全には取り除くことが出来ない。硫酸イオンが残存した場合には、感光体の感度低下、帯電性低下を引き起こすなど、好ましい結果を得られない。例えば、特開平8−110649号公報(比較例)には、硫酸に溶解したチタニルフタロシアニンをイオン交換水と共に有機溶媒に投入し結晶変換を行う方法が記載されている。この際、本発明で得られるチタニルフタロシアニン結晶のX線回折スペクトルに類似した結晶を得ることが出来るが、チタニルフタロシアニン中の硫酸イオン濃度が高く、光減衰特性(光感度)が悪いものであるため、本発明のチタニルフタロシアニンの製造方法としては良好なものではない。以上の結晶変換方法は特開2001−19871号公報に準じた結晶変換方法である。
本発明の電子写真感光体に含有される電荷発生物質においては、チタニルフタロシアニン結晶の粒子サイズをより細かくすることにより、地汚れ抑制効果が高くなり、画質安定性並びに高寿命化に対し有効となる。以下にその作製方法を示す。
感光層に含有されるチタニルフタロシアニン結晶の粒子サイズをコントロールするための方法は、大きく2つの方法が挙げられる。1つはチタニルフタロシアン結晶粒子を合成する際に、0.25μmより大きい粒子を含まない結晶を合成する方法であり、いま1つはチタニルフタロシアニン結晶を分散した後、0.25μmより大きい粗大粒子を取り除いてしまう方法である。勿論、両者を併用して用いることはより大きな効果を併せ持つものである。
先に、微粒子チタニルフタロシアニン結晶の合成方法を述べる。
チタニルフタロシアニン結晶の粒子サイズをより細かくするために、本発明者らが観察したところによれば、前述の不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)は、一次粒径が0.1μm以下(そのほとんどが0.01〜0.05μm程度)であるが(図3参照、スケール・バーは0.2μmである)、結晶変換に際しては、結晶成長と共に結晶が変換されることが分かった。通常、この種の結晶変換においては、原料の残存をおそれて充分な結晶変換時間を確保し、結晶変換が十二分に行われた後に、濾過を行い、所望の結晶型を有するチタニルフタロシアニン結晶を得るものである。このため、原料として充分に小さな一次粒子を有する原料を用いているにもかかわらず、結晶変換後の結晶としては一次粒子の大きな結晶(概ね0.3〜0.5μm)を得ているものである(図4参照、スケール・バーは0.2μmである)。
このように作製されたチタニルフタロシアニン結晶を分散するにあたっては、分散後の粒子サイズを小さなもの(0.25μm以下、好ましくは0.2μm以下)にするため、強いシェアを与えることで分散を行い、更には必要に応じて一次粒子を粉砕する強いエネルギーを与えて分散を行っている。この結果、前述の如き、粒子の一部が所望の結晶型でない結晶型へと転移してしまうものである。
一方、本発明においては、結晶変換に際して結晶成長がほとんど起こらない範囲(図3に観察される不定形チタニルフタロシアニン粒子のサイズが、結晶変換後において遜色ない小ささ、概ね0.25μm以下に保たれる範囲)で、結晶変換が完了した時点を見極めることで、可能な限り一次粒子サイズの小さなチタニルフタロシアニン結晶を得ようというものである。結晶変換後の粒子サイズは、結晶変換時間に比例して大きくなる。このため前述のように、結晶変換の効率を高くし、短時間で完了させることが重要である。このためには、いくつかの重要なポイントが挙げられる。
1つは、結晶変換溶媒を前述のように適正なものを選択し、結晶変換効率を高めることである。もう1つは、結晶変換を短時間に完了させるために、溶媒とチタニルフタロシアニン水ペースト(前述の如く作製した原料:不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン))を充分に接触させるために強い撹拌を用いるものである。具体的には、撹拌力の非常に強いプロペラを用いた撹拌、ホモジナイザー(ホモミキサー)のような強烈な撹拌(分散)手段を用いるなどの手法により、短時間での結晶変換を実現させるものである。これらの条件により、原料が残存することなく、結晶変換が充分に行われ、かつ結晶成長が起こらない状態のチタニルフタロシアニン結晶を得ることができる。この場合にも、結晶変換に使用する有機溶媒量の適正化が有効な手段である。具体的には、不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)の固形分に対して、10倍以上、好ましくは30倍(重量比)以上の有機溶媒を使用することが望ましい。これにより、短時間での結晶変換を確実なものとすると共に、不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)中に含まれる不純物を確実に取り除くことが出来る。
また、上述のように結晶粒子サイズと結晶変換時間は比例関係にあるため、所定の反応(結晶変換)が完了したら、反応を直ちに停止させる方法も有効な手段である。上述のように結晶変換を行った後、直ちに結晶変換の起こりにくい溶媒を大量に添加することが前記手段として挙げられる。結晶変換の起こりにくい溶媒としては、アルコール系、エステル系などの溶媒が挙げられる。これらの溶媒を結晶変換溶媒に対して、10倍程度加えることにより、結晶変換を停止することができる。
このようにして作製される結晶は、一次粒径がより小さく、地汚れの抑制に有利となるが、チタニルフタロシアニン顔料作製にかかる次工程(顔料の濾過工程)、分散液での分散安定性を考慮すると、あまり小さすぎても副作用がでる場合がある。即ち、一次粒子が非常に細かい場合には、これを濾過する工程において濾過時間が非常に長くなってしまうという問題が発生する。また、一次粒子が細かすぎる場合には、分散液中での顔料粒子の表面積が大きくなるため、粒子の再凝集の可能性が高くなり、地汚れの発生を促進させる恐れが出てくる。したがって、適切な顔料粒子の粒子サイズは、およそ0.05μm〜0.2μm程度の範囲がより好ましい。
図5には、短時間で結晶変換を行った場合のチタニルフタロシアニン結晶のTEM像を示す(図中のスケール・バーは0.2μmである)。図4の場合とは異なり、粒子サイズが小さく、ほぼ均一であり、図4に観察されるような粗大粒子は全く認められない。
このように作製されたチタニルフタロシアニン結晶を分散するにあたっては、合成後のチタニルフタロシアニンの一次粒子は十分に小さいため、図4に示すような粗大粒子を含むチタニルフタロシアニンを分散する際に必要となる強いシェアを与えずとも、所望の平均粒子サイズ(0.25μm以下、好ましくは0.2μm以下)を得ることが可能となる。この結果、過度の分散によって粒子の一部が所望の結晶型とは異なる結晶型に転移してしまう不具合を抑制することが可能となる。
ここでいう平均粒子サイズとは、体積平均粒径であり、超遠心式自動粒度分布測定装置:CAPA−700(堀場製作所製)により求めたものである。この際、累積分布の50%に相当する粒子径(Median系)として算出されたものである。しかしながら、この方法では微量の粗大粒子を検出できない場合があるため、より詳細に求めるには、チタニルフタロシアニン結晶粉末、あるいは分散液を直接、電子顕微鏡にて観察し、その大きさを求めることが重要である。
分散液をさらに観察して微小欠陥について検討した結果、上記現象は次のように説明される。通常、平均粒子サイズを測定する方法において、極端に大きな粒子が数%以上も存在するような場合には、その存在が検出できるが、全体の1%以下程度のような微量になってくると、その測定は検出限界以下になってしまう。その結果、平均粒子サイズの測定だけでは粗大粒子の存在が検出されずに、上述のような微小欠陥に関する解釈を困難にしていた。
図6及び図7に、分散条件を固定して分散時間だけを変更した2種類の分散液の状態を観察した写真を示す。同一条件における分散時間の短い分散液の写真を図6に示すが、分散時間の長い図7と比較して、図6中の黒い粒として観察される粗大粒子が多く残っている様子が観測される。
この2種類の分散液の平均粒径並びに粒度分布を公知の方法に従って、市販の粒度分布測定装置(堀場製作所製:超遠心式自動粒度分布測定装置、CAPA700)により測定した。その結果を図8に示す。図8における「A」が図6に示す分散液に対応し、「B」が図7に示す分散液に対応する。両者を比較すると、粒度分布に関してはほとんど差が認められない。また、両者の平均粒径値は、「A」が0.29μm、「B」が0.28μmと求められ、測定誤差を加味した上では、明らかな差があるとは判断できない。
従って、公知の平均粒径(平均粒子サイズ)の規定だけでは、微量な粗大粒子の残存を検出することはできず、地汚れとの関係を明確にすることは難しい。この微量な粗大粒子の存在は、塗工液を顕微鏡レベルで観察することにより、初めて認識されるものであり、これによって地汚れとの関係を明らかにすることが可能となった。
このような結果から、凝集を抑制しつつ、結晶変換時に作製される一次粒子をできる限り小さくするために、結晶変換溶媒を前述のように適正なものを選択し、結晶変換効率を高めつつ、結晶変換を短時間に完了させるために、溶媒とチタニルフタロシアニン水ペースト(前述の如き作製した原料)を充分に接触させるために強い撹拌を用いるような手法は有効であることがわかる。
このような結晶変換方法を採用することにより、一次平均粒子サイズの小さな(0.25μm以下、好ましくは0.2μm以下)チタニルフタロシアニン結晶を得ることができる。特開2001−19871号公報に記載された技術に加えて、必要に応じて上述のような技術(微細なチタニルフタロシアニン結晶を得るための結晶変換方法)を併用することは、本発明の効果を高めるために有効な手段である。
続いて、結晶変換されたチタニルフタロシアニン結晶は直ちに濾過されることにより、結晶変換溶媒と分別される。この濾過に際しては、適当なサイズのフィルターを用いることにより行われる。この際、減圧濾過を用いることが最も適当である。
その後、分別されたチタニルフタロシアニン結晶は、必要に応じて加熱乾燥される。加熱乾燥に使用する乾燥機は、公知のものがいずれも使用可能であるが、大気下で行う場合には送風型の乾燥機が好ましい。更に、乾燥速度を早め、本発明の効果をより顕著に発現させるために減圧下の乾燥も非常に有効な手段である。特に、高温で分解する、あるいは結晶型が変化するような材料に対しては有効な手段である。特に10mmHgよりも真空度が高い状態で乾燥することが有効である。
このように得られた特定の結晶型を有するチタニルフタロシアニン結晶は、電子写真感光体用電荷発生物質として極めて有用である。しかしながら、先述のように結晶型が不安定であり、分散液を作製する際に結晶型が転移し易いという欠点を有しているものであった。しかしながら、本発明のように一次粒子を限りなく小さなものに合成することにより、分散液作製時に過剰なシェアを与えることなく、平均粒径の小さな分散液を作製することができ、結晶型も極めて安定に(合成した結晶型を変えることなく)作製することができるものである。
次に、2回目の結晶変換方法について述べる。2回目の結晶変換は、1回目の結晶変換で作製したチタニルフタロシアニン結晶(乾燥粉末)を用いて、更に結晶変換を行う工程である。具体的な方法としては、2種類の方法が挙げられる。
1つは、先に作製したチタニルフタロシアニン結晶を有機溶媒中で処理する方法である。使用される有機溶媒としては、27.2゜に最大回折ピークを有し、26.3°にピークを有さない結晶型を、26.3゜にピークを有する結晶型に変換できる溶媒であればいかなるものも使用できるが、トルエン、キシレンなどの芳香族炭化水素、アセトン、2−ブタノン等のケトン類、塩化メチレン、クロロホルムなどのハロゲン化炭化水素、テトラヒドロフランなどの環状エーテル類が良好に用いられる。有機溶媒の処理に関しては、前記チタニルフタロシアニン結晶を有機溶媒中にそのまま浸漬させておくだけでも構わないが、撹拌、超音波印加などの補助手段を併用することにより、処理時間を短縮することができ、有効である。有機溶媒による処理を行った後、濾過分別して、再び乾燥を行うことにより、目的とするチタニルフタロシアニン結晶を得ることができる。
もう1つの方法としては、先に作製したチタニルフタロシアニン結晶に、機械的剪断力を与えることにより結晶変換を行う方法である。この際、有機溶媒を併用しても構わないが、併用せずに乾式状態で処理を行うことが望ましい。使用される方法としては、ボールミル、アトライター、振動ミル、ニーダーなどによる乾式ミリング、簡便的にはミキサーによる乾式ミリングも効果的である。また、乾式ミリングの際に、食塩等の無機塩を助剤として用いても良い。助剤を用いた場合には、結晶変換処理の後に、無機塩を除去する洗浄工程が必要である。このようにして、目的とするチタニルフタロシアニン結晶を得ることができる。
いずれの方法を用いる場合にも、26.3゜のピーク強度が最大回折ピーク27.2゜のピーク強度に対して0.1〜5%の範囲であることが重要である。溶媒中での処理時間あるいは機械的剪断力を与える処理時間により26.3゜のピーク強度が決定されるが、使用する原料(1回目の結晶変換により作製したチタニルフタロシアニン結晶)の状態(例えば、粉末の大きさ、固さ等)によっても異なるため、予備的な実験により、処理時間を決定することが望ましい。
このように得られた特定の結晶型を有するチタニルフタロシアニン結晶は、電子写真感光体用電荷発生物質として極めて有用である。しかしながら、先述のように結晶型が不安定であり、分散液を作製する際に結晶型が転移し易いという欠点を有しているものであった。しかしながら、本発明のように一次粒子を限りなく小さなものに合成することにより、分散液作製時に過剰なシェアを与えることなく、平均粒径の小さな分散液を作製することができ、結晶型も極めて安定に(合成した結晶型を変えることなく)作製することができるものである。
分散液の作製に関しては一般的な方法が用いられ、前記チタニルフタロシアニン結晶を必要に応じてバインダー樹脂とともに適当な溶剤中にボールミル、アトライター、サンドミル、ビーズミル、超音波などを用いて分散することで得られるものである。この際、バインダー樹脂は感光体の静電特性などにより、また溶剤はチタニルフタロシアニン結晶へのぬれ性、チタニルフタロシアニン結晶の分散性などにより選択すればよい。
既に述べたように、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニン結晶は、熱エネルギー・機械的シェア等のストレスにより他の結晶型に容易に結晶転移をすることが知られている。本発明で用いるチタニルフタロシアニン結晶もこの傾向は変わらない。すなわち、微細な粒子を含む分散液を作製するためには、分散方法の工夫も必要であるが、結晶型の安定性と微粒子化はトレード・オフの関係になりがちである。分散条件を最適化することによりこれを回避する方法はあるが、いずれも製造条件を極めて狭くしてしまうものであり、より簡便な方法が望まれている。この問題を解決するために、以下に示すような方法も有効な手段である。
すなわち、結晶転移が起こらない範囲でできる限り粒子を微細にした分散液を作製後、適当なフィルターで濾過を行い、粗大粒子を取り除く方法である。この方法では、残存する目視では観察できない(あるいは粒径測定では検出できない)微量な粗大粒子をも取り除くことができ、また粒度分布を揃えるという点からも非常に有効な手段である。具体的には、上述のように作製した分散液を有効孔径が3μm以下のフィルター、より好ましくは1μm以下のフィルターにて濾過する操作を行い、分散液を完成させるというものである。この方法によっても、粒子サイズの小さな(0.25μm以下、好ましくは0.2μm以下)チタニルフタロシアニン結晶のみを含む分散液を作製することができ、これを用いて作製した感光体を画像形成装置に搭載することによって、地汚れに対する余裕度を高めることが可能となり、感光体の高耐久化に対し有効となる。
この際、濾過される分散液の粒子サイズが大きすぎたり、粒度分布が広すぎたりする場合には、濾過によるロスが大きくなったり、濾過の目詰まりを生じて濾過が不可能になったりする場合がある。このため、濾過前の分散液においては、平均粒子サイズが0.30μm以下で、その標準偏差が0.2μm以下に到達するまで分散を行った方が望ましい。平均粒子サイズが0.30μmを超える場合には濾過によるロスが大きくなり、標準偏差が0.2μmを超える場合には濾過時間が非常に長くなったりする不具合点を生じる場合がある。
分散液を濾過するフィルターに関しては、除去したい粗大粒子のサイズによって異なるものであるが、本発明者等の検討によれば、600dpi程度の解像度を必要とする画像形成装置で使用される感光体としては、最低でも3μm以上の粗大粒子の存在は画像に対して影響を及ぼす。したがって、有効孔径が3μm以下のフィルターを使用すべきである。より好ましくは1μm以下の有効孔径を有するフィルターを使用することである。有効孔径に関しては、細かいほど粗大粒子の除去に効果があるものであるが、あまり細かすぎると、必要な顔料粒子そのものも濾過されてしまったり、また、濾過に時間がかかる、フィルターが目詰まりを起こす、ポンプ等を使用して送液する場合には負荷がかかりすぎる等の問題を生じるため、適切な有効孔径を有するフィルターを選択する必要がある。なお、ここで使用されるフィルターの材質は、当然のことながら濾過する分散液に使用される溶媒に対して耐性のあるものが使用される。
このような分散液の濾過操作を加えることによっても、粗大粒子を取り除くことが可能になり、ひいては分散液を使用した感光体で発生する地汚れを低減化することが出来る。上述のように、より細かいフィルターを使用するほど、その効果は大きなもの(確実なもの)になるが、場合によっては顔料粒子そのものが濾過されてしまう不具合が生じる恐れがある。このような場合には、先に述べた一次粒子を微細化したチタニルフタロシアニンの合成技術と併用することによって、それらの不具合を解消することが可能となり、得られる効果は非常に大きくなる。
即ち、i)微細化チタニルフタロシアニンを合成し、これを使用することにより、分散時間の短縮化・分散ストレスの低減化が図れ、分散における結晶転移の可能性が小さくなる。ii)分散によって残存する粗大粒子サイズが、微細化しない場合よりも小さいため、より小さなフィルターを使用することが可能になり、粗大粒子の除去効果がより確実なものとなる。また、除去されるチタニルフタロシアニン粒子量が低減し、濾過前後における分散液組成の変化が少なく、安定した製造が可能になる。iii)その結果、製造される感光体は安定して地汚れ耐性の高い電子写真感光体が製造されることになる。
本発明におけるチタニルフタロシアニン結晶における26.3゜のピーク強度の27.2゜のピーク強度に対する強度比について説明する。
使用するチタニルフタロシアニン結晶を粉末状態で、一般的なX線回折装置にて、X線回折スペクトルを測定する。得られたスペクトルに対して、ベースライン補正を行った後、26.3±0.2゜のピーク強度、および27.2±0.2゜のピーク強度を求める。その値を用いて、26.3±0.2゜のピーク強度を27.2±0.2゜のピーク強度で割った値が、本発明で言うところのピーク強度比である。
ピーク強度比(%)=
(26.3±0.2゜のピーク強度/27.2±0.2゜のピーク強度)×100
なお、ピーク強度比が1%以下になるような場合には、広い範囲での測定ではベースラインの補正が難しい場合がある。その場合には、測定範囲を狭めて(例えば、25〜30゜の範囲で測定する等)、再測定を行うことにより、より正確に強度比を求めることができる。
続いて、本発明に用いられる電子写真感光体について、図面を用いて詳しく説明する。
図9は、本発明に用いられる電子写真感光体の構成例を示す断面図であり、導電性支持体上に、複数の下引き層、特定の結晶型を有し、一次粒子の平均粒子サイズが0.25μm以下のチタニルフタロシアニン結晶を含有する感光層が順に積層され、さらに架橋型電荷輸送層が積層された構成をとっている。
図10は、本発明に用いられる電子写真感光体の別の構成例を示す断面図であり、導電性支持体上に、複数の下引き層、特定の結晶型を有し、一次粒子の平均粒子サイズが0.25μm以下のチタニルフタロシアニン結晶を含有する電荷発生層、電荷輸送物質を主成分とする電荷輸送層、さらに架橋型電荷輸送層が順に積層された構成をとっている。
導電性支持体としては、体積抵抗1010Ω・cm以下の導電性を示すもの、例えば、アルミニウム、ニッケル、クロム、ニクロム、銅、金、銀、白金などの金属、酸化スズ、酸化インジウムなどの金属酸化物を、蒸着またはスパッタリングにより、フィルム状もしくは円筒状のプラスチック、紙に被覆したもの、あるいは、アルミニウム、アルミニウム合金、ニッケル、ステンレスなどの板およびそれらを、押し出し、引き抜きなどの工法で素管化後、切削、超仕上げ、研摩などの表面処理した管などを使用することができる。また、特開昭52−36016号公報に開示されたエンドレスニッケルベルト、エンドレスステンレスベルトも導電性支持体として用いることができる。
この他、上記支持体上に導電性粉体を適当な結着樹脂に分散して塗工したものも、本発明の導電性支持体として用いることができる。この導電性粉体としては、カーボンブラック、アセチレンブラック、またアルミニウム、ニッケル、鉄、ニクロム、銅、亜鉛、銀などの金属粉、あるいは導電性酸化スズ、ITOなどの金属酸化物粉体などがあげられる。また、同時に用いられる結着樹脂には、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂などの熱可塑性、熱硬化性樹脂または光硬化性樹脂があげられる。このような導電性層は、これらの導電性粉体と結着樹脂を適当な溶剤、例えば、テトラヒドロフラン、ジクロロメタン、メチルエチルケトン、トルエンなどに分散して塗布することにより設けることができる。
更に、適当な円筒基体上にポリ塩化ビニル、ポリプロピレン、ポリエステル、ポリスチレン、ポリ塩化ビニリデン、ポリエチレン、塩化ゴム、テフロン(登録商標)などの素材に前記導電性粉体を含有させた熱収縮チューブによって導電性層を設けてなるものも、本発明の導電性支持体として良好に用いることができる。
次に、下引き層について述べる。本発明における下引き層は、少なくとも二層の下引き層が積層された構成となっている。
下引き層の役割は、感光体の帯電時に導電性支持体に誘起される逆極性の電荷の注入を抑制したり、モアレを防止したり、素管の欠陥を隠蔽したり、感光層の接着性を維持するなど多くの役割を有している。通常の下引き層が一層の場合には、導電性支持体からの電荷注入を抑制すると残留電位が上昇する傾向を示し、逆に残留電位を低減させようとすると地汚れは悪化する。このようなトレード・オフの関係を複数の下引き層を形成することによって機能分離した結果、残留電位に大きな影響を与えずに地汚れ抑制効果が顕著に向上できる。本発明においては、複数の下引き層を積層することによって効果が発揮されるものであるが、特に無機顔料が含有されない下引き層と無機顔料が含有される下引き層の少なくとも二層が積層されることで、残留電位への影響が少なく、地汚れ抑制効果を大幅に高めることが可能となり、モアレや接着性に対する副作用もなく、感光体の高耐久化に対して非常に大きな効果を得ることが可能となる。
最初に、導電性支持体からの電荷注入の抑制を主目的とする下引き層について説明する。この下引き層は、前述のとおり、主に感光体の帯電時に導電性支持体に誘起される逆極性の電荷が、導電性支持体から感光層に注入されるのを防止する機能を有する層で、主に地汚れを抑制させることを目的とした層である。また、素管の欠陥に対する隠蔽性を高める効果も有しており、地汚れ抑制効果を高めるものである。したがって、これらの目的を達成するためには電荷の移動を抑えることが要求されることから、無機顔料を含有させずに絶縁性の高い樹脂のみで構成されることが好ましい。本発明においては、無機顔料が含有されない下引き層に該当する。
電荷の注入を抑制する層としては、酸化アルミ層に代表される陽極酸化被膜、SiOに代表される無機系の絶縁層、特開平3−191361号公報に記載されるような金属酸化物のガラス質ネットワークから形成される層、特開平3−141363号公報に記載されるようなポリフォスファゼンからなる層、特開平3−101737号公報に記載されるようなアミノシラン反応生成物からなる層、この他には絶縁性のバインダー樹脂からなる層、硬化性のバインダー樹脂からなる層等が挙げられる。中でも湿式塗工法で形成可能な絶縁性のバインダー樹脂あるいは硬化性のバインダー樹脂から構成される層が良好に使用できる。さらに、これらの下引き層は、その上に無機顔料及びバインダー樹脂を含有する下引き層あるいは感光層等が積層されるため、これらを湿式塗工法で設ける場合には、塗工溶媒に対し不溶性を有し塗膜が侵されない材料あるいは構成からなることが肝要である。
主に地汚れの抑制を目的とした無機顔料が含有されない上記下引き層としては、電荷の注入を抑制させる必要があるため、特に絶縁性を有するバインダー樹脂が用いられる。バインダー樹脂の一例としては、ポリアミド、ポリエステル、塩化ビニル−酢酸ビニル共重合体等の熱可塑性樹脂や熱硬化性樹脂例えば、活性水素(−OH基、−NH2基、−NH基等の水素)を複数個含有する化合物とイソシアネート基を複数個含有する化合物及び/又はエポキシ基を複数個含有する化合物とを熱重合させた熱硬化性樹脂等も使用できる。この場合活性水素を複数個含有する化合物としては、例えばポリビニルブチラール、フェノキシ樹脂、フェノール樹脂、ポリアミド、ポリエステル、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、ヒドロキシエチルメタアクリレート基等の活性水素を含有するアクリル系樹脂等があげられる。イソシアネート基を複数個含有する化合物としては、たとえば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメタンジイソシアネート等とこれらのプレポリマー等があげられ、エポキシ基を複数有する化合物としては、ビスフェノールA型エポキシ樹脂等があげられる。また、オイルフリーアルキド樹脂とアミノ樹脂例えば、ブチル化メラミン樹脂等を熱重合させた熱硬化性樹脂、さらにまた、不飽和結合を有するポリウレタン、不飽和ポリエステル等の不飽和結合を有する樹脂と、チオキサントン系化合物、メチルベンジルフォルメート等の光重合開始剤との組合せ等の光硬化性樹脂もバインダー樹脂として使用できる。このような、アルコール可溶性樹脂や熱硬化性樹脂は、絶縁性が高い上に、上層に塗工される液にはケトン系溶剤が多く用いられているために、塗工時に膜が溶出することもなく、均一な膜が維持されるため、地汚れ抑制効果の安定性並びに均一性に優れる。
本発明においては、これらの樹脂の中でもポリアミドが好ましく、その中でもN−メトキシメチル化ナイロンが最も好ましい。ポリアミド樹脂は、電荷の注入を抑制する効果が高い上に残留電位に与える影響が少ない。また、これらのポリアミド樹脂は、アルコール可溶性の樹脂であって、ケトン系溶媒には不溶性を示し、また浸積塗工においても均一な薄膜を形成することができ、塗工性に優れている。特に、この下引き層は残留電位上昇の影響を最小限にするために薄膜にする必要がある上、膜厚の均一性が要求されるため、塗工性は画質安定性において重要な意味を持っている。
一般にアルコール可溶性樹脂は湿度依存性が大きく、それにより低湿環境下では抵抗が高くなり残留電位上昇が、高湿環境下では抵抗が低くなり、帯電低下が引き起こされ、環境依存性が大きいことが大きな課題であった。しかし、ポリアミド樹脂の中でもN−メトキシメチル化ナイロンは、高い絶縁性を示し、導電性支持体から注入される電荷のブロッキング性に非常に優れている上、残留電位に与える影響が少なく、さらに環境依存性が大幅に低減され、画像形成装置の使用環境が変化しても常に安定した画質を維持することが可能であるため、下引き層を積層した場合に最も好適に用いられる。加えて、N−メトキシメチル化ナイロンを用いた場合には残留電位の膜厚依存性が小さく、そのため残留電位への影響を低減し、かつ高い地汚れ抑制効果を得ることが可能となる。
N−メトキシメチル化ナイロンにおけるメトキシメチル基の置換率は、特に限定されるものではないが、15mol%以上であることが好ましい。N−メトキシメチル化ナイロンを用いたことによる上記効果は、メトキシメチル化度によって影響され、メトキシメチル基の置換率がこれより低い場合には、湿度依存性が増加したり、アルコール溶液とした場合に白濁したりする傾向が見られ、塗工液の経時安定性がやや低下する場合がある。
本発明においては、N−メトキシメチル化ナイロンを単独で使用することも可能であるが、場合によっては架橋剤や酸触媒を添加することも可能である。架橋剤としては従来公知のメラミン樹脂、イソシアネート樹脂等市販されている材料を、触媒としては、酸性触媒が用いられ、酒石酸等の汎用触媒を用いることが可能である。但し、酸触媒の添加によって下引き層の絶縁性が低下し、地汚れ抑制効果が低減される恐れがあるため、添加量はごく微量にする必要がある。樹脂に対して5wt%以下が好ましい。また、場合によっては他のバインダー樹脂を混合させることも可能である。混合可能なバインダー樹脂としては、アルコール可溶性を示すポリアミド樹脂が用いられ、液の経時安定性が高まる場合がある。
また、導電性高分子や、帯電極性に合わせてアクセプター(ドナー)性の樹脂あるいは低分子化合物、その他各種添加剤を加えることも可能であり、残留電位の低減に対し有効となる場合がある。但し、上層を浸漬塗工によって積層させる場合には、それらの添加剤が溶け出す恐れがあるため、添加量は最小限に留める必要がある。
塗工溶媒としては、N−メトキシメチル化ナイロンはアルコール可溶性を示すため、アルコール系溶媒、例えばメタノール、エタノール、プロパノール、ブタノール等もしくはそれらの混合溶媒が用いられる。
N−メトキシメチル化ナイロンを含有する下引き層は、従来公知の浸漬塗工法、スプレーコート、リングコート、ビートコート、ノズルコート法などにより塗布される。塗布後は、加熱乾燥することによって膜形成が完了されるが、硬化させる場合には必要に応じて加熱あるいは光照射等の硬化処理を行うこともできる。
上記無機顔料が含有されない下引き層の膜厚は、0.1μm以上、2.0μm未満、好ましくは0.3μm以上、1.0μm以下が適当である。この下引き層の膜厚がそれ以上に厚くなると、帯電と露光の繰返しによって、残留電位の上昇が発生しやすくなり、また、膜厚が薄すぎると地汚れ抑制効果が乏しくなる。
次に、モアレ防止、感光層の接着性を高めることを主目的とし、疲労による帯電低下や残留電位を低減させる上でも有効な下引き層について説明する。この下引き層は、地汚れを抑制する効果も併せ持つが、モアレ防止あるいは感光層の接着性を高める機能が要求される。したがって、下引き層の表面粗さを増加させることが好ましく、無機顔料を分散することで達成される。本発明においては、無機顔料が含有される下引き層に該当する。
無機顔料を含有する下引き層は、前述のとおり含有される無機顔料によってモアレが抑制され、疲労による残留電位や暗減衰の低減が可能となり、さらに感光層との接着性を高める機能をも有する。
前述のモアレとは、レーザー光のようなコヒーレント光による書き込みを行う際に感光層内部での光干渉によってモアレと呼ばれる干渉縞が画像に形成される画像欠陥の一種である。基本的に、入射されたレーザー光をこの下引き層によって光散乱させることによりモアレ発生を防止するため、屈折率の大きな材料を含有させる必要がある。モアレを防止する上では、バインダー樹脂に無機顔料を分散させた構成が最も有効である。使用される無機顔料としては、白色の顔料が有効に使用され、金属酸化物、例えば、酸化チタン、フッ化カルシウム、酸化カルシウム、酸化珪素、酸化マグネシウム、酸化アルミニウム、酸化錫などが良好に用いられる。
また、下引き層には、感光体表面に帯電される電荷と同極性の電荷を、感光層から導電性支持体側へ移動できる機能を有することが残留電位低減の観点から好ましく、無機顔料はその役割をも果たしている。例えば、負帯電型の感光体の場合、下引き層は電子伝導性を有することによって残留電位を大幅に低減できる。これらの無機顔料としては、前述の金属酸化物が有効に用いられるが、抵抗の低い金属酸化物を用いたり、バインダー樹脂に対する金属酸化物の添加比率を必要以上に増加させたりすることによって残留電位を低減させる効果が高くなる反面、地汚れ抑制効果が低下する恐れもある。従って、感光体における下引き層の層構成や膜厚によってそれらを使い分けたり、添加量を調整したりすることによって、地汚れ抑制と残留電位低減の両立を図ることが必要である。
本発明に用いられる無機顔料としては、前述の金属酸化物が好適に用いられるが、導電性金属酸化物を用いた場合には、残留電位を低減させる上では有効であるが、地汚れが増加する恐れがあり、抵抗の高い金属酸化物を用いた場合には、地汚れの抑制には有効であるが、残留電位が上昇しやすくなる傾向が見られる。本発明においては、複数の下引き層が形成され機能分離されていることにより、無機顔料はより広範囲に選択することが可能ではあるが、無機顔料を含有しない下引き層を有していたとしても、無機顔料を含有する下引き層に含まれる無機顔料の抵抗は、少なからず地汚れや残留電位に影響する。したがって、地汚れを抑制する上では、導電性の金属酸化物よりも抵抗の高い金属酸化物を用いることが好ましく、上記金属酸化物の中でも酸化チタンを用いることが画質安定性の面から最も好ましい。用いる酸化チタンとしては、残留電位上昇を軽減する上で、高純度の方がより好ましい。純度としては99.0%以上が好ましく、99.5%以上がより好ましい。
本発明の無機顔料の平均一次粒径としては、0.01μm〜0.8μmが好ましく、0.05μm〜0.5μmがより好ましい。但し、平均一次粒径が0.1μm以下の無機顔料のみを用いた場合には、地汚れの低減に対し有効であるが、モアレ防止効果が低下する傾向があり、一方、平均一次粒径が0.4μmよりも大きな金属酸化物のみを用いた場合には、モアレ防止効果に優れるものの、地汚れの抑制効果がやや低減する傾向が見られる。この場合、異なる平均一次粒径を有する無機顔料を混合して用いることによって、地汚れの低減とモアレの低減を両立できる場合があり、また残留電位の低減にも効果が見られる場合があり有効である。
本発明においては、平均一次粒径の異なる2種以上の無機顔料を混合させる場合、最も大きな平均一次粒径を有する無機顔料の平均一次粒径をD1、最も小さな平均一次粒径を有する無機顔料の平均一次粒径をD2としたとき、0.2<(D2/D1)≦0.5の関係を満たすことが好ましい。これにより、モアレ防止効果と地汚れ抑制効果を両立することが可能となる。また、この場合、最も小さな平均一次粒径を有する無機顔料の平均一次粒径D2は、0.2μm未満であることが好ましい。これにより、地汚れ抑制効果が十分に発揮される。
また、これらの平均一次粒径が異なる2種以上の無機顔料の混合比は、最も大きな平均一次粒径を有する無機顔料の含有量をT1、最も小さな平均一次粒径を有する無機顔料の含有量をT2としたとき、重量で0.2≦T2/(T1+T2)≦0.8の関係を満たすことが好ましい。これよりも小さい場合には、地汚れ抑制効果が低下する恐れがあり、これよりも大きいとモアレ防止効果が低下する恐れがある。
これらの無機顔料を含有する下引き層に用いられるバインダー樹脂としては、従来下引き層に用いられてきた汎用樹脂を使用することができるが、この下引き層の上層に積層される際に用いられる溶媒に不溶性を示すバインダー樹脂が適している。これらのバインダー樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウム等の水溶性樹脂、ポリアミド、共重合ナイロン、メトキシメチル化ナイロン等のアルコール可溶性樹脂、ポリウレタン、フェノール樹脂、アルキッド−メラミン樹脂、エポキシ樹脂等、三次元網目構造を形成する硬化型樹脂等が挙げられる。これらの樹脂の中でも、硬化型樹脂は、硬化されていることによって下引き層の上に感光層が塗工される際に有機溶剤による溶出の影響が極めて少ないことから、最も好ましく用いられる。上記硬化型樹脂の中でも、残留電位や環境安定性の面から、アルキッド−メラミン樹脂が好適である。
但し、この場合、主剤と硬化剤の比率が適当でないと、熱硬化による体積収縮が大きくなり、塗膜欠陥が発生しやすくなったり、残留電位が上昇したりする恐れがある。特に、下引き層の塗膜欠陥は、電荷のリークを引き起こし、黒斑点や地汚れの発生を促すことから、注意が必要である。また、硬化剤の含有比率が増加するに伴い、残留電位上昇が大きくなる傾向が見られる。本発明において、下引き層の樹脂としてアルキッド−メラミン樹脂を用いた場合には、アルキッド樹脂とメラミン樹脂の含有比率は重量比で1/1乃至4/1の範囲内であることが好ましい。これにより、塗膜欠陥の発生もなく、また残留電位上昇の影響を軽減することが可能となる。
無機顔料とバインダー樹脂の含有比率は、用いる無機顔料種や層構成、また無機顔料を含有しない下引き層の膜厚によって調整する必要があるが、地汚れと残留電位の両立を図る上で、無機顔料とバインダー樹脂の容積比として1/1乃至3/1の範囲が好ましい。両者の容積比が1/1未満である場合には、モアレ防止能が低下するだけでなく、繰り返し使用における残留電位の上昇が増大する恐れがある。一方、容積比が3/1を超える領域ではバインダー樹脂における結着能が低下するだけでなく、塗膜表面性が悪化し、上層の成膜性に悪影響を与える場合がある。この影響は感光層が積層タイプで構成され、上層に電荷発生層のような薄層を形成する場合には、電荷発生層の膜厚の均一性が低下することにより局所的な帯電低下が起こり、地汚れ抑制効果が低下する恐れがある。更に、両者の容積比が3/1を超える場合には、無機顔料表面のバインダー樹脂による被覆率が低下し、電荷発生物質と直接接触することで、地汚れに対して悪影響を与える場合がある。
無機顔料を含有する下引き層の膜厚は、用いる無機顔料種や層構成、無機顔料を含有しない下引き層の膜厚によって調整する必要があるが、無機顔料に酸化チタンを用いた場合には地汚れと残留電位との両立を図る上で、1〜10μm、好ましくは2〜6μmが適当である。膜厚が1μm未満ではモアレ防止効果が低下したり、疲労による帯電低下が増加する場合があり、必要以上に厚くなると残留電位の上昇を引き起こす恐れがある。また、無機顔料に導電性の金属酸化物を用いた場合には、膜厚を厚くしても残留電位の影響は少なく、3〜20μm、好ましくは5〜15μmが適当である。また、本発明においては、無機顔料を含有する下引き層の膜厚は、無機顔料を含有しない下引き層よりも厚いことが好ましい。これにより、疲労による帯電低下の抑制が可能となり地汚れ抑制に有効となる。また、モアレ防止効果を高める上でも有効となる。
無機顔料は、溶剤及びバインダー樹脂と共に従来公知の方法、例えばボールミル、サンドミル、アトライラー等により分散することにより塗工液を得ることができる。バインダー樹脂は分散前に添加しても分散後に樹脂溶液として添加しても良い。また、必要に応じて硬化(架橋)に必要な薬剤、溶剤、添加剤、硬化促進剤等を加えることも可能であり有効である。これらの塗工液を用い、従来公知の方法、例えば浸漬塗工法、スプレーコート、リングコート、ビートコート、ノズルコート法などを用いて導電性基体上に形成される。塗布後は乾燥や加熱、必要に応じて光照射等の硬化処理により乾燥あるいは硬化させることにより作製できる。
本発明においては、地汚れ抑制、疲労による残留電位及び暗減衰の低減、モアレ防止、感光層の接着性等を両立するために、下引き層を機能分離し少なくとも二層を積層した構成を採用した。この場合、無機顔料を含む下引き層が、無機顔料を含まない下引き層の上層に形成されるか下層に形成されるかによって二つの層構成が考えられる。
前者の無機顔料を含む下引き層が、導電性支持体上に形成された無機顔料を含まない下引き層と感光層との間に形成される層構成では、高い地汚れ抑制効果を発揮しつつ、残留電位上昇や疲労による帯電劣化の影響が非常に少なく、静電安定性に優れている。また、感光層との接着性も向上し、感光体の高耐久化において有効性が高い。この場合、特に導電性の金属酸化物を用いなくても残留電位に与える影響が少なく、無機顔料としては前述の金属酸化物の中でも酸化チタンが有効に使用できる。これにより、残留電位に与える影響を軽減しつつ、高い地汚れ抑制効果を得ることが可能となる。
一方、後者の無機顔料を含む下引き層が、導電性支持体と無機顔料を含まない下引き層との間に形成される場合には、地汚れの抑制効果は十分に得られるが、疲労による残留電位上昇や帯電劣化の影響が増加する。それを抑制するためには、無機顔料のバインダー樹脂に対する添加比率を大幅に高めるか、抵抗の低い無機顔料を添加することによって導電性を高めることによって可能となる。これに用いられる無機顔料としては、残留電位の点から酸化錫等の導電性顔料が好ましい。本発明においては、地汚れ抑制に対し大きな効果を有し、かつ疲労による残留電位や帯電性の経時安定性を両立でき、さらに導電性支持体の欠陥の隠蔽性や感光層の接着性に優れていることから、前者の構成が適しており、これにより本発明の効果をより高めることが可能となる。
次に感光層について説明する。
感光層は電荷発生物質と電荷輸送物質を含む単層構成の感光層でも構わないが、前述のように電荷発生層と電荷輸送層で構成される積層型の方が感度、耐久性、地汚れ抑制において優れた特性を示し、本発明においては良好に使用される。
本発明における電荷発生層には、電荷発生物質として、CuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3゜のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有するチタニルフタロシアニン結晶が用いられる。さらに、この特定の結晶型を有するチタニルフタロシアンを結晶合成時あるいは分散濾過処理により、一次粒子の平均粒子サイズを0.25μm以下にすることによって達成される。上記のとおり、下引き層を複数化したり、N−メトキシメチル化ナイロンを含有する下引き層を積層させることにより地汚れの抑制効果は顕著に高まるが、これらの効果は導電性支持体からの電荷の注入を抑制したことによるものであり、その上に形成される電荷発生層の凝集や純度の低下によって引き起こされる地汚れに対しては別な対策が必要である。本発明は、下引き層と電荷発生層における双方の地汚れ要因を抑制できたことにより、飛躍的な高耐久化が実現されたものである。更に、感光体の帯電低下は地汚れ発生を助長させるが、本発明においては、電荷発生層に用いられるチタニルフタロシアニンの結晶型及び平均粒子サイズを特定化することにより、帯電低下を軽減させることができ、更に地汚れ抑制効果を高めることが可能となった。また、同時に湿度依存性を低減することが可能となったことにより、画質の使用環境依存性が低減され、画質安定化を更に高めることが可能となり、高耐久化と高安定化の飛躍的な向上が実現された。
上記チタニルフタロシアニンの製造方法並びに一次粒子の平均粒子サイズを0.25μm以下にする方法は前述のとおりである。
電荷発生層は、前記チタニルフタロシアニンを必要に応じてバインダー樹脂とともに適当な溶剤中にボールミル、アトライター、サンドミル、超音波などを用いて分散し、これを導電性支持体上に塗布し、乾燥することにより形成される。
必要に応じて電荷発生層に用いられるバインダー樹脂としては、ポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコーン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリスルホン、ポリ−N−ビニルカルバゾール、ポリアクリルアミド、ポリビニルベンザール、ポリエステル、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリフェニレンオキシド、ポリアミド、ポリビニルピリジン、セルロース系樹脂、カゼイン、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。これらの中でも、ポリビニルブチラールが最も好ましく用いられる。バインダー樹脂の含有量は、電荷発生物質100重量部に対し0〜500重量部、好ましくは10〜300重量部が適当である。
電荷発生層の形成に用いられる溶剤としては、例えばイソプロパノール、アセトン、メチルエチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、エチルセルソルブ、酢酸エチル、酢酸メチル、ジクロロメタン、ジクロロエタン、モノクロロベンゼン、シクロヘキサン、トルエン、キシレン、リグロイン等が挙げられる。但し、電荷発生層を未架橋の下引き層の上に積層する場合には、下引き層表面を溶解させる場合があるため、アルコール以外の溶媒を用いた方が好ましい。これらの中で安定に使用できる溶剤としては、メチルエチルケトンやアセトン等のケトン系溶剤が好ましい。
電荷発生層用塗布液の塗工法としては、浸漬塗工法、スプレーコート、ビートコート、ノズルコート、スピナーコート、リングコート等の方法を用いることができる。電荷発生層の膜厚は、0.01〜5μm程度が適当であり、好ましくは0.1〜2μmである。
また、電荷発生層には他の電荷発生物質や増感剤、分散剤、シリコーンオイル等の添加剤を混合させることも可能である。
電荷輸送層は、電荷輸送物質およびバインダー樹脂を適当な溶剤に溶解ないし分散し、これを電荷発生層上に塗布、乾燥することにより形成できる。また、必要により可塑剤、レベリング剤、酸化防止剤等を添加することもできる。
電荷輸送物質には、正孔輸送物質と電子輸送物質とがある。電子輸送物質としては、例えばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、2,6,8−トリニトロ−4H−インデノ〔1,2−b〕チオフェン−4−オン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキサイド、ベンゾキノン誘導体等の電子受容性物質が挙げられる。
正孔輸送物質としては、ポリ−N−ビニルカルバゾールおよびその誘導体、ポリ−γ−カルバゾリルエチルグルタメートおよびその誘導体、ピレン−ホルムアルデヒド縮合物およびその誘導体、ポリビニルピレン、ポリビニルフェナントレン、ポリシラン、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、モノアリールアミン誘導体、ジアリールアミン誘導体、トリアリールアミン誘導体、スチルベン誘導体、α−フェニルスチルベン誘導体、ベンジジン誘導体、ジアリールメタン誘導体、トリアリールメタン誘導体、9−スチリルアントラセン誘導体、ピラゾリン誘導体、ジビニルベンゼン誘導体、ヒドラゾン誘導体、インデン誘導体、ブタジェン誘導体、ピレン誘導体等、ビススチルベン誘導体、エナミン誘導体等その他公知の材料が挙げられる。これらの電荷輸送物質は単独、または2種以上混合して用いられる。
バインダー樹脂としては、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂等の熱可塑性または熱硬化性樹脂が挙げられる。
また、電荷輸送層には電荷輸送物質としての機能とバインダー樹脂の機能を併せ持った高分子電荷輸送物質も良好に使用される。これら高分子電荷輸送物質から構成される電荷輸送層は耐摩耗性に優れたものである。高分子電荷輸送物質としては、公知の材料が使用できるが、特に、トリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートが良好に用いられる。中でも、(I)〜(X)式で表わされる高分子電荷輸送物質が良好に用いられ、これらを以下に例示し、具体例を示す。
(I)式中、R1、R2、R3はそれぞれ独立して置換もしくは無置換のアルキル基又はハロゲン原子、R4は水素原子又は置換もしくは無置換のアルキル基、R5、R6は置換もしくは無置換のアリール基、o、p、qはそれぞれ独立して0〜4の整数、k、jは組成を表し、0.1≦k≦1、0≦j≦0.9、nは繰り返し単位数を表し5〜5000の整数である。Xは脂肪族の2価基、環状脂肪族の2価基、または下記一般式で表される2価基を表す。尚、(I)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
101、R102は各々独立して置換もしくは無置換のアルキル基、アリール基またはハロゲン原子を表す。l、mは0〜4の整数、Yは単結合、炭素原子数1〜12の直鎖状、分岐状もしくは環状のアルキレン基、−O−、−S−、−SO−、−SO2−、−CO−、−CO−O−Z−O−CO−(式中Zは脂肪族の2価基を表す。)または、
(aは1〜20の整数、bは1〜2000の整数、R103、R104は置換または無置換のアルキル基又はアリール基を表す)を表す。ここで、R101とR102、R103とR104は、それぞれ同一でも異なってもよい。
(II)式中、R7、R8は置換もしくは無置換のアリール基、Ar1、Ar2、Ar3は同一又は異なるアリレン基を表す。X、k、jおよびnは、(I)式の場合と同じである。尚、(II)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
(III)式中、R9、R10は置換もしくは無置換のアリール基、Ar4、Ar5、Ar6は同一又は異なるアリレン基を表す。X、k、jおよびnは、(I)式の場合と同じである。尚、(III)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
(IV)式中、R11、R12は置換もしくは無置換のアリール基、Ar7、Ar8、Ar9は同一又は異なるアリレン基、pは1〜5の整数を表す。X、k、jおよびnは、(I)式の場合と同じである。尚、(IV)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
(V)式中、R13、R14は置換もしくは無置換のアリール基、Ar10、Ar11、Ar12は同一又は異なるアリレン基、X1、X2は置換もしくは無置換のエチレン基、又は置換もしくは無置換のビニレン基を表す。X、k、jおよびnは、(I)式の場合と同じである。尚、(V)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
(VI)式中、R15、R16、R17、R18は置換もしくは無置換のアリール基、Ar13、Ar14、Ar15、Ar16は同一又は異なるアリレン基、Y1、Y2、Y3は単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表し、同一であっても異なってもよい。X、k、jおよびnは、(I)式の場合と同じである。尚、(VI)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
(VII)式中、R19、R20は水素原子、置換もしくは無置換のアリール基を表し、R19とR20は環を形成していてもよい。Ar17、Ar18、Ar19は同一又は異なるアリレン基を表す。X、k、jおよびnは、(I)式の場合と同じである。尚、(VII)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
(VIII)式中、R21は置換もしくは無置換のアリール基、Ar20、Ar21、Ar22、Ar23は同一又は異なるアリレン基を表す。X、k、jおよびnは、(I)式の場合と同じである。尚、(VIII)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
(IX)式中、R22、R23、R24、R25は置換もしくは無置換のアリール基、Ar24、Ar25、Ar26、Ar27、Ar28は同一又は異なるアリレン基を表す。X、k、jおよびnは、(I)式の場合と同じである。尚、(IX)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
(X)式中、R26、R27は置換もしくは無置換のアリール基、Ar29、Ar30、Ar31は同一又は異なるアリレン基を表す。X、k、jおよびnは、(I)式の場合と同じである。尚、(X)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
電荷輸送物質の量はバインダー樹脂100重量部に対し、20〜300重量部、好ましくは40〜150重量部が適当である。また、電荷輸送層の膜厚は5〜100μmが好ましく、10〜40μm程度とすることがより好ましい。
ここで用いられる溶剤としては、テトラヒドロフラン、ジオキサン、トルエン、ジクロロメタン、モノクロロベンゼン、ジクロロエタン、シクロヘキサノン、メチルエチルケトン、アセトンなどが用いられる。中でも、環境への負荷低減等の意図から、非ハロゲン系溶媒の使用は望ましく、具体的にはテトラヒドロフランやジオキソラン、ジオキサン等の環状エーテルやトルエン、キシレン等の芳香族系炭化水素、及びそれらの誘導体が地汚れ抑制効果の面でも良好に用いられる。
本発明において電荷輸送層中に可塑剤やレベリング剤を添加してもよい。可塑剤としては、ジブチルフタレート、ジオクチルフタレートなど一般の樹脂の可塑剤として使用されているものがそのまま使用でき、その使用量は、バインダー樹脂に対して0〜30重量%程度が適当である。レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどのシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいは、オリゴマーが使用され、その使用量はバインダー樹脂に対して、0〜1重量%が適当である。
これまでは、感光層が積層構成の場合について述べたが、本発明においては感光層が単層構成でも構わない。感光層を単層構成とするためには、少なくとも上述の電荷発生物質とバインダー樹脂を含有する単一層を設けることで感光層は構成され、バインダー樹脂としては電荷発生層や電荷輸送層の説明に挙げられた材料が良好に使用される。また、単層感光層には電荷輸送物質を併用することで、高い光感度、高い電荷輸送性、低い残留電位が発現され、良好に使用できる。この際、使用する電荷輸送物質は、感光体表面に帯電させる極性に応じて、正孔輸送物質、電子輸送物質の何れかが選択される。更に、上述した高分子電荷輸送物質もバインダー樹脂と電荷輸送物質の機能を併せ持つため、単層感光層には良好に使用される。
本発明の電子写真感光体には、感光体の耐摩耗性を高めることを主目的とした架橋型電荷輸送層が感光体の最表面に積層される。これにより、繰り返し使用による電界強度の増加を抑制することが可能となり、地汚れの抑制に有効となる。また、感光体表面の耐傷性も高く、フィルミング等も発生しにくいことから画像欠陥の発生を低減させる効果も有しており、高耐久化を実現する上で有効かつ有用である。
架橋型電荷輸送層は、感光体の繰り返し使用によって起こる摩耗の影響を軽減し、地汚れの経時安定性を高め、さらに静電安定性や画質安定性を高めることによって経時安定性と耐久性を両立させることを目的として形成されるものである。
感光体表面に形成される傷や表面に付着する異物(トナー、トナーの外添剤、キャリア、紙粉等)は、感光体のクリーニング性を低下させ、画質安定性を顕著に低下させる。したがって、感光体の高耐久化を実現させるためには、耐摩耗性を高めるだけでなく、感光体表面の傷やフィルミングの影響を最小限にすることが重要であり、そのためには高硬度、高弾性でかつ平滑な表面層を形成させることが好ましい。
本発明の表面に形成される架橋型電荷輸送層は、3官能以上のラジカル重合性モノマーを硬化した架橋構造を有するため3次元の網目構造が発達し、架橋密度が非常に高い高硬度且つ高弾性な表面層が得られ、かつ均一で平滑性も高く、高い耐摩耗性、耐傷性が達成される。この様に感光体表面の架橋密度すなわち単位体積あたりの架橋結合数を増加させることが重要であるが、硬化反応において瞬時に多数の結合を形成させるため体積収縮による内部応力が発生する。この内部応力は架橋型電荷輸送層の膜厚が厚くなるほど増加するため電荷輸送層全層を硬化させると、クラックや膜剥がれが発生しやすくなる。この現象は初期的に現れなくても、電子写真プロセス上で繰り返し使用され帯電、現像、転写、クリーニングのハザード及び熱変動の影響を受けることにより、経時で発生しやすくなることもある。
この問題を解決する方法としては、(1)架橋層及び架橋構造に高分子成分を導入する、(2)1官能及び2官能のラジカル重合性モノマーを多量に用いる、(3)柔軟性基を有する多官能モノマーを用いる、などの硬化樹脂層を柔らかくする方向性が挙げられるが、いずれも架橋層の架橋密度が希薄となり、飛躍的な耐摩耗性が達成されない。これに対し、本発明の感光体は、電荷輸送層上に3次元の網目構造が発達した架橋密度の高い架橋型電荷輸送層を好ましくは1μm以上、10μm以下の膜厚で設けることで、上記のクラックや膜剥がれが発生せず、且つ非常に高い耐摩耗性が達成される。かかる架橋型電荷輸送層の膜厚を2μm以上、8μm以下の膜厚にすることにより、さらに上記問題に対する余裕度が向上することに加え、更なる耐摩耗性向上に繋がる高架橋密度化の材料選択が可能となる。
本発明の感光体がクラックや膜剥がれを抑制できる理由としては、架橋型電荷輸送層を薄膜化できるため内部応力が大きくならないこと、下層に電荷輸送層を有するため表面の架橋型電荷輸送層の内部応力を緩和できることなどによる。このため架橋型電荷輸送層に高分子材料を多量に含有させる必要がなく、この時生ずる、高分子材料とラジカル重合性組成物(ラジカル重合性モノマーや電荷輸送性構造を有するラジカル重合性化合物)の反応より生じた硬化物との不相溶が原因の傷やトナーフィルミングも起こりにくい。さらに、電荷輸送層全層にわたる厚膜を光エネルギー照射により硬化する場合、電荷輸送性構造による吸収から内部への光透過が制限され、硬化反応が十分に進行しない現象が起こることがある。本発明の架橋型電荷輸送層においては、好ましくは10μm以下の薄膜とすることにより内部まで均一に硬化反応が進行し、表面と同様に内部でも高い耐摩耗性が維持される。また、本発明の架橋型電荷輸送層の形成においては、上記3官能性ラジカル重合性モノマーに加え、さらに1官能の電荷輸送性構造を有するラジカル重合性化合物を含有しており、これが上記3官能以上のラジカル重合性モノマー硬化時に架橋結合中に取り込まれる。これに対し、官能基を有しない低分子電荷輸送物質を架橋表面層中に含有させた場合、その相溶性の低さから低分子電荷輸送物質の析出や白濁現象が起こり、架橋表面層の機械的強度も低下する。一方、2官能以上の電荷輸送性化合物を主成分として用いた場合は複数の結合で架橋構造中に固定され架橋密度はより高まるが、電荷輸送性構造が非常に嵩高いため硬化樹脂構造の歪みが非常に大きくなり、架橋型電荷輸送層の内部応力が高まる原因となる。
更に、本発明の感光体は良好な電気的特性を有し、このため繰り返し安定性に優れており高耐久化並びに高安定化が実現される。これは架橋型電荷輸送層の構成材料として1官能の電荷輸送性構造を有するラジカル重合性化合物を用い、架橋結合間にペンダント状に固定化したことに起因する。上記のように官能基を有しない電荷輸送物質は析出、白濁現象が起こり、感度の低下、残留電位の上昇等繰り返し使用における電気的特性の劣化が著しい。2官能以上の電荷輸送性化合物を主成分として用いた場合は複数の結合で架橋構造中に固定されるため、電荷輸送時の中間体構造(カチオンラジカル)が安定して保てず、電荷のトラップによる感度の低下、残留電位の上昇が起こりやすい。これらの電気的特性の劣化は、画像濃度低下、文字細り等の画像として現れる。さらに、本発明の感光体においては、下層の電荷輸送層として従来感光体の電荷トラップの少ない高移動度な設計が適応可能で、架橋型電荷輸送層の電気的副作用を最小限に抑えることができる。
更に、本発明の上記架橋型電荷輸送層形成において、架橋型電荷輸送層が有機溶剤に対し不溶性にすることにより、特にその飛躍的な耐摩耗性が発揮される。本発明の架橋型電荷輸送層は電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより形成され、層全体としては3次元の網目構造が発達し高い架橋密度を有するが、上記成分以外の含有物(例えば、1または2官能モノマー、高分子バインダー、酸化防止剤、レベリング剤、可塑剤などの添加剤及び下層からの溶解混入成分)や硬化条件により、局部的に架橋密度が希薄になったり、高密度に架橋した微小な硬化物の集合体として形成されることがある。このような架橋型電荷輸送層は、硬化物間の結合力は弱く有機溶剤に対し溶解性を示し、且つ電子写真プロセス中で繰り返し使用されるなかで、局部的な摩耗や微小な硬化物単位での脱離が発生しやすくなる。本発明のように架橋型電荷輸送層を有機溶剤に対し不溶性にせしめることにより、本来の3次元の網目構造が発達し高い架橋度を有することに加え、連鎖反応が広い範囲で進行し硬化物が高分子量化するため、飛躍的な耐摩耗性の向上が達成される。
次に、本発明の架橋型電荷輸送層塗布液の構成材料について説明する。
本発明に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーとは、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しておらず、且つラジカル重合性官能基を3個以上有するモノマーを指す。このラジカル重合性官能基とは、炭素−炭素2重結合を有し、ラジカル重合可能な基であれば何れでもよい。これらラジカル重合性官能基としては、例えば、下記に示す1−置換エチレン官能基、1,1−置換エチレン官能基等が挙げられる。
(1)1−置換エチレン官能基としては、例えば以下の式で表される官能基が挙げられる。
CH2=CH−X1− ・・・・式10
(ただし、式10中、X1は、置換基を有していてもよいフェニレン基、ナフチレン基等のアリーレン基、置換基を有していてもよいアルケニレン基、−CO−基、−COO−基、−CON(R10)−基(R10は、水素、メチル基、エチル基等のアルキル基、ベンジル基、ナフチルメチル基、フェネチル基等のアラルキル基、フェニル基、ナフチル基等のアリール基を表す。)、または−S−基を表す。)
これらの官能基を具体的に例示すると、ビニル基、スチリル基、2−メチル−1,3−ブタジエニル基、ビニルカルボニル基、アクリロイルオキシ基、アクリロイルアミド基、ビニルチオエーテル基等が挙げられる。
(2)1,1−置換エチレン官能基としては、例えば以下の式で表される官能基が挙げられる。
CH2=C(Y)−X2− ・・・・式11
(ただし、式11中、Yは、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、ハロゲン原子、シアノ基、ニトロ基、メトキシ基あるいはエトキシ基等のアルコキシ基、−COOR11基(R11は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル、フェネチル基等のアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、または−CONR1213(R12およびR13は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル基、ナフチルメチル基、あるいはフェネチル基等のアラルキル基、または置換基を有していてもよいフェニル基、ナフチル基等のアリール基を表し、互いに同一または異なっていてもよい。)、また、X2は上記式10のX1と同一の置換基及び単結合、アルキレン基を表す。ただし、Y、X2の少なくとも何れか一方がオキシカルボニル基、シアノ基、アルケニレン基、及び芳香族環である。)
これらの官能基を具体的に例示すると、α−塩化アクリロイルオキシ基、メタクリロイルオキシ基、α−シアノエチレン基、α−シアノアクリロイルオキシ基、α−シアノフェニレン基、メタクリロイルアミノ基等が挙げられる。
なお、これらX、X、Yについての置換基にさらに置換される置換基としては、例えばハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
これらのラジカル重合性官能基の中では、特にアクリロイルオキシ基、メタクリロイルオキシ基が有用であり、3個以上のアクリロイルオキシ基を有する化合物は、例えば水酸基がその分子中に3個以上ある化合物とアクリル酸(塩)、アクリル酸ハライド、アクリル酸エステルを用い、エステル反応あるいはエステル交換反応させることにより得ることができる。また、3個以上のメタクリロイルオキシ基を有する化合物も同様にして得ることができる。また、ラジカル重合性官能基を3個以上有する単量体中のラジカル重合性官能基は、同一でも異なっても良い。
電荷輸送性構造を有しない3官能以上の具体的なラジカル重合性モノマーとしては、以下のものが例示されるが、これらの化合物に限定されるものではない。
すなわち、本発明において使用する上記ラジカル重合性モノマーとしては、例えば、トリメチロールプロパントリアクリレート(TMPTA)、トリメチロールプロパントリメタクリレート、トリメチロールプロパンアルキレン変性トリアクリレート、トリメチロールプロパンエチレンオキシ変性(以後EO変性)トリアクリレート、トリメチロールプロパンプロピレンオキシ変性(以後PO変性)トリアクリレート、トリメチロールプロパンカプロラクトン変性トリアクリレート、トリメチロールプロパンアルキレン変性トリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート(PETTA)、グリセロールトリアクリレート、グリセロールエピクロロヒドリン変性(以後ECH変性)トリアクリレート、グリセロールEO変性トリアクリレート、グリセロールPO変性トリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート(DPHA)、ジペンタエリスリトールカプロラクトン変性ヘキサアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、アルキル化ジペンタエリスリトールペンタアクリレート、アルキル化ジペンタエリスリトールテトラアクリレート、アルキル化ジペンタエリスリトールトリアクリレート、ジメチロールプロパンテトラアクリレート(DTMPTA)、ペンタエリスリトールエトキシテトラアクリレート、リン酸EO変性トリアクリレート、2,2,5,5,−テトラヒドロキシメチルシクロペンタノンテトラアクリレートなどが挙げられ、これらは、単独又は2種類以上を併用しても差し支えない。
また、本発明に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーとしては、架橋型電荷輸送層中に緻密な架橋結合を形成するために、該モノマー中の官能基数に対する分子量の割合(分子量/官能基数)は250以下が望ましい。また、この割合が250より大きい場合、架橋型電荷輸送層は柔らかく耐摩耗性が幾分低下する傾向が出てくるため、上記例示したモノマー等中、EO、PO、カプロラクトン等の変性基を有するモノマーにおいては、極端に長い変性基を有するものを単独で使用することは好ましくはない。また、架橋型電荷輸送層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの成分割合は、架橋型電荷輸送層全量に対し20〜80重量%、好ましくは30〜70重量%である。モノマー成分が20重量%未満では架橋型電荷輸送層の3次元架橋結合密度が少なく、従来の熱可塑性バインダー樹脂を用いた場合に比べ飛躍的な耐摩耗性向上が達成にくくなる傾向がある。また、80重量%を超えると電荷輸送性化合物の含有量が低下し、電気的特性の劣化が生じる傾向がある。使用されるプロセスによって要求される電気特性や耐摩耗性が異なり、それに伴い本感光体の架橋型電荷輸送層の膜厚も異なるため一概には言えないが、両特性のバランスを考慮すると30〜70重量%の範囲が最も好ましい。
本発明の架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物とは、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しており、且つ1個のラジカル重合性官能基を有する化合物を指す。このラジカル重合性官能基としては、先のラジカル重合性モノマーで示したものが挙げられ、特にアクリロイルオキシ基、メタクリロイルオキシ基が有用である。また、電荷輸送性構造としてはトリアリールアミン構造が高い効果を有し、中でも下記一般式(1)又は(2)の構造で示される化合物を用いた場合、感度、残留電位等の電気的特性が良好に持続される。
{式中、R1は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基、置換基を有してもよいアリール基、シアノ基、ニトロ基、アルコキシ基、−COOR7(R7は水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基)、ハロゲン化カルボニル基若しくはCONR89(R8及びR9は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基を示し、互いに同一であっても異なっていてもよい)を表わし、Ar1、Ar2は置換もしくは無置換のアリーレン基を表わし、同一であっても異なってもよい。Ar3、Ar4は置換もしくは無置換のアリール基を表わし、同一であっても異なってもよい。Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。Zは置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレンエーテル2価基、アルキレンオキシカルボニル2価基を表わす。m、nは0〜3の整数を表わす。}
以下に、一般式(1)、(2)の具体例を示す。
前記一般式(1)、(2)において、R1の置換基中、アルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基等、アリール基としては、フェニル基、ナフチル基等が、アラルキル基としては、ベンジル基、フェネチル基、ナフチルメチル基が、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等がそれぞれ挙げられ、これらは、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等により置換されていても良い。
1の置換基のうち、特に好ましいものは水素原子、メチル基である。
Ar3、Ar4は置換もしくは無置換のアリール基を表わし、アリール基としては縮合多環式炭化水素基、非縮合環式炭化水素基及び複素環基が挙げられる。
該縮合多環式炭化水素基としては、好ましくは環を形成する炭素数が18個以下のもの、例えば、ペンタニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、as−インダセニル基、s−インダセニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレル基、ピレニル基、クリセニル基、及びナフタセニル基等が挙げられる。
該非縮合環式炭化水素基としては、ベンゼン、ジフェニルエーテル、ポリエチレンジフェニルエーテル、ジフェニルチオエーテル及びジフェニルスルホン等の単環式炭化水素化合物の1価基、あるいはビフェニル、ポリフェニル、ジフェニルアルカン、ジフェニルアルケン、ジフェニルアルキン、トリフェニルメタン、ジスチリルベンゼン、1,1−ジフェニルシクロアルカン、ポリフェニルアルカン、及びポリフェニルアルケン等の非縮合多環式炭化水素化合物の1価基、あるいは9,9−ジフェニルフルオレン等の環集合炭化水素化合物の1価基が挙げられる。
複素環基としては、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、オキサジアゾール、及びチアジアゾール等の1価基が挙げられる。
また、前記Ar3、Ar4で表わされるアリール基は例えば以下に示すような置換基を有してもよい。
(1)ハロゲン原子、シアノ基、ニトロ基等。
(2)アルキル基、好ましくは、C1〜C12とりわけC1〜C8、さらに好ましくはC1〜C4の直鎖または分岐鎖のアルキル基であり、これらのアルキル基にはさらにフッ素原子、水酸基、シアノ基、C1〜C4のアルコキシ基、フェニル基又はハロゲン原子、C1〜C4のアルキル基もしくはC1〜C4のアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチル基、エチル基、n−ブチル基、i−プロピル基、t−ブチル基、s−ブチル基、n−プロピル基、トリフルオロメチル基、2−ヒドロキエチル基、2−エトキシエチル基、2−シアノエチル基、2−メトキシエチル基、ベンジル基、4−クロロベンジル基、4−メチルベンジル基、4−フェニルベンジル基等が挙げられる。
(3)アルコキシ基(−OR2)であり、R2は(2)で定義したアルキル基を表わす。具体的には、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、t−ブトキシ基、n−ブトキシ基、s−ブトキシ基、i−ブトキシ基、2−ヒドロキシエトキシ基、ベンジルオキシ基、トリフルオロメトキシ基等が挙げられる。
(4)アリールオキシ基であり、アリール基としてはフェニル基、ナフチル基が挙げられる。これは、C1〜C4のアルコキシ基、C1〜C4のアルキル基またはハロゲン原子を置換基として含有してもよい。具体的には、フェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、4−メトキシフェノキシ基、4−メチルフェノキシ基等が挙げられる。
(5)アルキルメルカプト基またはアリールメルカプト基であり、具体的にはメチルチオ基、エチルチオ基、フェニルチオ基、p−メチルフェニルチオ基等が挙げられる。
(6)
(式中、R3及びR4は各々独立に水素原子、前記(2)で定義したアルキル基、またはアリール基を表わす。アリール基としては、例えばフェニル基、ビフェニル基又はナフチル基が挙げられ、これらはC1〜C4のアルコキシ基、C1〜C4のアルキル基またはハロゲン原子を置換基として含有してもよい。R3及びR4は共同で環を形成してもよい)
具体的には、アミノ基、ジエチルアミノ基、N−メチル−N−フェニルアミノ基、N,N−ジフェニルアミノ基、N,N−ジ(トリール)アミノ基、ジベンジルアミノ基、ピペリジノ基、モルホリノ基、ピロリジノ基等が挙げられる。
(7)メチレンジオキシ基、又はメチレンジチオ基等のアルキレンジオキシ基又はアルキレンジチオ基等が挙げられる。
(8)置換又は無置換のスチリル基、置換又は無置換のβ−フェニルスチリル基、ジフェニルアミノフェニル基、ジトリルアミノフェニル基等。
前記Ar1、Ar2で表わされるアリーレン基としては、前記Ar3、Ar4で表されるアリール基から誘導される2価基である。
前記Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。
置換もしくは無置換のアルキレン基としては、C1〜C12、好ましくはC1〜C8、さらに好ましくはC1〜C4の直鎖または分岐鎖のアルキレン基であり、これらのアルキレン基にはさらにフッ素原子、水酸基、シアノ基、C1〜C4のアルコキシ基、フェニル基又はハロゲン原子、C1〜C4のアルキル基もしくはC1〜C4のアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチレン基、エチレン基、n−ブチレン基、i−プロピレン基、t−ブチレン基、s−ブチレン基、n−プロピレン基、トリフルオロメチレン基、2−ヒドロキエチレン基、2−エトキシエチレン基、2−シアノエチレン基、2−メトキシエチレン基、ベンジリデン基、フェニルエチレン基、4−クロロフェニルエチレン基、4−メチルフェニルエチレン基、4−ビフェニルエチレン基等が挙げられる。
置換もしくは無置換のシクロアルキレン基としては、C5〜C7の環状アルキレン基であり、これらの環状アルキレン基にはフッ素原子、水酸基、C1〜C4のアルキル基、C1〜C4のアルコキシ基を有していても良い。具体的にはシクロヘキシリデン基、シクロへキシレン基、3,3−ジメチルシクロヘキシリデン基等が挙げられる。
置換もしくは無置換のアルキレンエーテル基としては、エチレンオキシ、プロピレンオキシ、エチレングリコール、プロピレングリコール、ジエチレングリコール、テトラエチレングリコール、トリプロピレングリコールを表わし、アルキレンエーテル基アルキレン基はヒドロキシル基、メチル基、エチル基等の置換基を有してもよい。
ビニレン基は、
で表わされ、R5は水素、アルキル基(前記(2)で定義されるアルキル基と同じ)、アリール基(前記Ar3、Ar4で表わされるアリール基と同じ)、aは1または2、bは1〜3を表わす。
前記Zは置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレンエーテル2価基、アルキレンオキシカルボニル2価基を表わす。
置換もしくは無置換のアルキレン基としては、前記Xのアルキレン基と同様なものが挙げられる。
置換もしくは無置換のアルキレンエーテル2価基としては、前記Xのアルキレンエーテル2価基が挙げられる。
アルキレンオキシカルボニル2価基としては、カプロラクトン2価変性基が挙げられる。
また、本発明の1官能の電荷輸送性構造を有するラジカル重合性化合物として更に好ましくは、下記一般式(3)の構造の化合物が挙げられる。
(式中、o、p、qはそれぞれ0又は1の整数、Raは水素原子、メチル基を表わし、Rb、Rcは水素原子以外の置換基で炭素数1〜6のアルキル基を表わし、複数の場合は異なっても良い。s、tは0〜3の整数を表わす。Zaは単結合、メチレン基、エチレン基、
を表わす。)
上記一般式で表わされる化合物としては、Rb、Rcの置換基として、特にメチル基、エチル基である化合物が好ましい。
本発明で用いる上記一般式(1)及び(2)特に(3)の1官能性の電荷輸送性構造を有するラジカル重合性化合物は、炭素−炭素間の二重結合が両側に開放されて重合するため、末端構造とはならず、連鎖重合体中に組み込まれ、3官能以上のラジカル重合性モノマーとの重合で架橋形成された重合体中では、高分子の主鎖中に存在し、かつ主鎖−主鎖間の架橋鎖中に存在(この架橋鎖には1つの高分子と他の高分子間の分子間架橋鎖と、1つの高分子内で折り畳まれた状態の主鎖のある部位と主鎖中でこれから離れた位置に重合したモノマー由来の他の部位とが架橋される分子内架橋鎖とがある)するが、主鎖中に存在する場合であってもまた架橋鎖中に存在する場合であっても、鎖部分から懸下するトリアリールアミン構造は、窒素原子から放射状方向に配置する少なくとも3つのアリール基を有し、バルキーであるが、鎖部分に直接結合しておらず鎖部分からカルボニル基等を介して懸下しているため立体的位置取りに融通性ある状態で固定されているので、これらトリアリールアミン構造は重合体中で相互に程よく隣接する空間配置が可能であるため、分子内の構造的歪みが少なく、また、電子写真感光体の表面層とされた場合に、電荷輸送経路の断絶を比較的免れた分子内構造を採りうるものと推測される。
本発明の1官能の電荷輸送性構造を有するラジカル重合性化合物の具体例を以下に示すが、これらの構造の化合物に限定されるものではない。
また、本発明に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物は、架橋型電荷輸送層の電荷輸送性能を付与するために重要で、この成分は架橋型電荷輸送層に対し20〜80重量%、好ましくは30〜70重量%である。この成分が20重量%未満では架橋型電荷輸送層の電荷輸送性能が充分に保てず、繰り返しの使用で感度低下、残留電位上昇などの電気特性の劣化が現れる傾向がある。また、80重量%を超えると電荷輸送性構造を有しない3官能モノマーの含有量が低下し、架橋結合密度の低下を招き高い耐摩耗性が発揮しにくい傾向がある。使用されるプロセスによって要求される電気特性や耐摩耗性が異なり、それに伴い本発明の感光体の架橋型電荷輸送層の膜厚も異なるため一概には言えないが、両特性のバランスを考慮すると30〜70重量%の範囲が最も好ましい。
本発明の電子写真感光体を構成する架橋型電荷輸送層は、少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化したものであるが、これ以外に塗工時の粘度調整、架橋型電荷輸送層の応力緩和、低表面エネルギー化や摩擦係数低減などの機能付与の目的で1官能及び2官能のラジカル重合性モノマー、機能性モノマー及びラジカル重合性オリゴマーを併用することができる。これらのラジカル重合性モノマー、オリゴマーとしては、公知のものが利用できる。
1官能のラジカルモノマーとしては、例えば、2−エチルヘキシルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、テトラヒドロフルフリルアクリレート、2−エチルヘキシルカルビトールアクリレート、3−メトキシブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、イソアミルアクリレート、イソブチルアクリレート、メトキシトリエチレングリコールアクリレート、フェノキシテトラエチレングリコールアクリレート、セチルアクリレート、イソステアリルアクリレート、ステアリルアクリレート、スチレンモノマーなどが挙げられる。
2官能のラジカル重合性モノマーとしては、例えば、1,3−ブタンジオールジアクリレート、1,4−ブタンジオールジアクリレート、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジアクリレート、1,6−ヘキサンジオールジメタクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ビスフェノールA−EO変性ジアクリレート、ビスフェノールF−EO変性ジアクリレート、ネオペンチルグリコールジアクリレートなどが挙げられる。
機能性モノマーとしては、例えば、オクタフルオロペンチルアクリレート、2−パーフルオロオクチルエチルアクリレート、2−パーフルオロオクチルエチルメタクリレート、2−パーフルオロイソノニルエチルアクリレートなどのフッ素原子を置換したもの、特公平5−60503号公報、特公平6−45770号公報記載のシロキサン繰り返し単位:20〜70のアクリロイルポリジメチルシロキサンエチル、メタクリロイルポリジメチルシロキサンエチル、アクリロイルポリジメチルシロキサンプロピル、アクリロイルポリジメチルシロキサンブチル、ジアクリロイルポリジメチルシロキサンジエチルなどのポリシロキサン基を有するビニルモノマー、アクリレート及びメタクリレートが挙げられる。
ラジカル重合性オリゴマーとしては、例えば、エポキシアクリレート系、ウレタンアクリレート系、ポリエステルアクリレート系オリゴマーが挙げられる。
但し、1官能及び2官能のラジカル重合性モノマーやラジカル重合性オリゴマーを多量に含有させると架橋型電荷輸送層の3次元架橋結合密度が実質的に低下し、耐摩耗性の低下を招く。このためこれらのモノマーやオリゴマーの含有量は、3官能以上のラジカル重合性モノマー100重量部に対し50重量部以下、好ましくは30重量部以下であればより好ましい。
また、本発明の架橋型電荷輸送層は少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化したものであるが、必要に応じてこの硬化反応を効率よく進行させるために架橋型電荷輸送層塗布液中に重合開始剤を含有させても良い。
熱重合開始剤としては、2,5−ジメチルヘキサン−2,5−ジヒドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルクミルパーオキサイド、2,5−ジメチル−2,5−ジ(パーオキシベンゾイル)ヘキシン−3、ジ−t−ブチルベルオキサイド、t−ブチルヒドロベルオキサイド、クメンヒドロベルオキサイド、ラウロイルパーオキサイド、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシ)プロパンなどの過酸化物系開始剤、アゾビスイソブチルニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル、アゾビスイソブチルアミジン塩酸塩、4,4’−アゾビス−4−シアノ吉草酸などのアゾ系開始剤が挙げられる。
光重合開始剤としては、ジエトキシアセトフェノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2−メチル−2−モルフォリノ(4−メチルチオフェニル)プロパン−1−オン、1−フェニル−1,2−プロパンジオン−2−(o−エトキシカルボニル)オキシム、などのアセトフェノン系またはケタール系光重合開始剤、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、などのベンゾインエーテル系光重合開始剤、ベンゾフェノン、4−ヒドロキシベンゾフェノン、o−ベンゾイル安息香酸メチル、2−ベンゾイルナフタレン、4−ベンゾイルビフェニル、4−ベンゾイルフェニールエーテル、アクリル化ベンゾフェノン、1,4−ベンゾイルベンゼン、などのベンゾフェノン系光重合開始剤、2−イソプロピルチオキサントン、2−クロロチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジクロロチオキサントン、などのチオキサントン系光重合開始剤、その他の光重合開始剤としては、エチルアントラキノン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、2,4,6−トリメチルベンゾイルフェニルエトキシホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス(2,4−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキサイド、メチルフェニルグリオキシエステル、9,10−フェナントレン、アクリジン系化合物、トリアジン系化合物、イミダゾール系化合物、が挙げられる。また、光重合促進効果を有するものを単独または上記光重合開始剤と併用して用いることもできる。例えば、トリエタノールアミン、メチルジエタノールアミン、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミル、安息香酸(2−ジメチルアミノ)エチル、4,4’−ジメチルアミノベンゾフェノン、などが挙げられる。
これらの重合開始剤は1種又は2種以上を混合して用いてもよい。重合開始剤の含有量は、ラジカル重合性を有する総含有物100重量部に対し、0.5〜40重量部、好ましくは1〜20重量部である。
更に、本発明の架橋型電荷輸送層形成用塗工液は必要に応じて各種可塑剤(応力緩和や接着性向上の目的)、レベリング剤、ラジカル反応性を有しない低分子電荷輸送物質などの添加剤が含有できる。これらの添加剤は公知のものが使用可能であり、可塑剤としてはジブチルフタレート、ジオクチルフタレート等の一般の樹脂に使用されているものが利用可能で、その使用量は塗工液の総固形分に対し20重量%以下、好ましくは10重量%以下に抑えられる。また、レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいはオリゴマーが利用でき、その使用量は塗工液の総固形分に対し3重量%以下が適当である。
本発明の架橋型電荷輸送層は、少なくとも上記の電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を含有する塗工液を前述の感光層あるいは電荷輸送層上に塗布、硬化することにより形成される。かかる塗工液はラジカル重合性モノマーが液体である場合、これに他の成分を溶解して塗布することも可能であるが、必要に応じて溶媒により希釈して塗布される。このとき用いられる溶媒としては、メタノール、エタノール、プロパノール、ブタノールなどのアルコール系、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系、酢酸エチル、酢酸ブチルなどのエステル系、テトラヒドロフラン、ジオキサン、プロピルエーテルなどのエーテル系、ジクロロメタン、ジクロロエタン、トリクロロエタン、クロロベンゼンなどのハロゲン系、ベンゼン、トルエン、キシレンなどの芳香族系、メチルセロソルブ、エチルセロソルブ、セロソルブアセテートなどのセロソルブ系などが挙げられる。これらの溶媒は単独または2種以上を混合して用いてもよい。溶媒による希釈率は組成物の溶解性、塗工法、目的とする膜厚により変わり、任意である。塗布は、浸漬塗工法やスプレーコート、ビードコート、リングコート法などを用いて行うことができる。
本発明においては、かかる架橋型電荷輸送層塗工液を塗布後、外部からエネルギーを与え硬化させ、架橋型電荷輸送層を形成するものであるが、このとき用いられる外部エネルギーとしては熱、光、放射線がある。熱のエネルギーを加える方法としては、空気、窒素などの気体、蒸気、あるいは各種熱媒体、赤外線、電磁波を用い塗工表面側あるいは支持体側から加熱することによって行われる。加熱温度は100℃以上、170℃以下が好ましく、100℃未満では反応速度が遅く、完全に硬化反応が終了しない傾向がある。170℃を超える高温では硬化反応が不均一に進行し架橋型電荷輸送層中に大きな歪みや多数の未反応残基、反応停止末端が発生する。硬化反応を均一に進めるために、100℃未満の比較的低温で加熱後、更に100℃以上に加温し反応を完結させる方法も有効である。光のエネルギーとしては主に紫外光領域に発光波長をもつ高圧水銀灯やメタルハライドランプなどのUV照射光源が利用できるが、ラジカル重合性含有物や光重合開始剤の吸収波長に合わせ可視光光源の選択も可能である。照射光量は50mW/cm2以上、1000mW/cm2以下が好ましく、50mW/cm2未満では硬化反応に時間を要する。1000mW/cm2より強いと反応の進行が不均一となり、架橋型電荷輸送層表面に局部的な皺が発生したり、多数の未反応残基、反応停止末端が生ずる。また、急激な架橋により内部応力が大きくなり、クラックや膜剥がれの原因となる。放射線のエネルギーとしては電子線を用いるものが挙げられる。これらのエネルギーの中で、反応速度制御の容易さ、装置の簡便さから熱及び光のエネルギーを用いたものが有用である。
本発明の架橋型電荷輸送層の膜厚は、好ましくは1μm以上、10μm以下、さらに好ましくは2μm以上、8μm以下である。10μmより厚い場合、前述のようにクラックや膜剥がれが発生しやすくなり、8μm以下ではその余裕度がさらに向上するため架橋密度を高くすることが可能で、さらに耐摩耗性を高める材料選択や硬化条件の設定が可能となる。一方、ラジカル重合反応は酸素阻害を受けやすく、すなわち大気に接した表面では酸素によるラジカルトラップの影響で架橋が進まなかったり、不均一になりやすい。この影響が顕著に現れるのは表層1μm未満の場合で、この膜厚以下の架橋型電荷輸送層は耐摩耗性の低下や不均一な摩耗が起こりやすい。また、架橋型電荷輸送層塗工時において下層の電荷輸送層成分の混入が生じ、特に、架橋型電荷輸送層の塗布膜厚が薄いと層全体に混入物が拡がり、硬化反応の阻害や架橋密度の低下をもたらす。これらの理由から、本発明の架橋型電荷輸送層は1μm以上の膜厚で良好な耐摩耗性、耐傷性を有するが、繰り返しの使用において局部的に下層の電荷輸送層まで削れた部分できるとその部分の摩耗が増加し、帯電性や感度変動から中間調画像の濃度むらが発生しやすい。従って、より長寿命、高画質化のためには架橋型電荷輸送層の膜厚を2μm以上にすることが望ましい。
本発明の電子写真感光体の電荷発生層、電荷輸送層、架橋型電荷輸送層を順次積層した構成において、最表面の架橋型電荷輸送層が有機溶剤に対し不溶性である場合、飛躍的な耐摩耗性、耐傷性が達成されることを特徴としている。この有機溶剤に対する溶解性を試験する方法としては、感光体表面層上に高分子物質に対する溶解性の高い有機溶剤、例えば、テトラヒドロフラン、ジクロロメタン等を1滴滴下し、自然乾燥後に感光体表面形状の変化を実体顕微鏡で観察することで判定できる。溶解性が高い感光体は液滴の中心部分が凹状になり周囲が逆に盛り上がる現象、電荷輸送物質が析出し結晶化による白濁やくもり生ずる現象、表面が膨潤しその後収縮することで皺が発生する現象などの変化がみられる。それに対し、不溶性の感光体は上記のような現象がみられず、滴下前と全く変化が現れない。
本発明の構成において、架橋型電荷輸送層を有機溶剤に対し不溶性にするには、(1)架橋型電荷輸送層塗工液の組成物、それらの含有割合の調整、(2)架橋型電荷輸送層塗工液の希釈溶媒、固形分濃度の調整、(3)架橋型電荷輸送層の塗工方法の選択、(4)架橋型電荷輸送層の硬化条件の制御、(5)下層の電荷輸送層の難溶解性化など、これらをコントロールすることが重要であるが、一つの因子で達成される訳ではない。
架橋型電荷輸送層塗工液の組成物としては、前述した電荷輸送性構造を有しない3官能以上のラジカル重合性モノマー及び1官能の電荷輸送性構造を有するラジカル重合性化合物以外に、ラジカル重合性官能基を有しないバインダー樹脂、酸化防止剤、可塑剤等の添加剤を多量に含有させると、架橋密度の低下、反応により生じた硬化物と上記添加物との相分離が生じ、有機溶剤に対し可溶性となる傾向が高い。具体的には塗工液の総固形分に対し上記総含有量を20重量%以下に抑えることが重要である。また、架橋密度を希薄にさせないために、1官能または2官能のラジカル重合性モノマー、反応性オリゴマー、反応性ポリマーにおいても、総含有量を3官能ラジカル重合性モノマーに対し20重量%以下とすることが望ましい。さらに、2官能以上の電荷輸送性構造を有するラジカル重合性化合物を多量に含有させると、嵩高い構造体が複数の結合により架橋構造中に固定されるため歪みを生じやすく、微小な硬化物の集合体となりやすい。このことが原因で有機溶剤に対し可溶性となることがある。化合物構造によって異なるが、2官能以上の電荷輸送性構造を有するラジカル重合性化合物の含有量は1官能の電荷輸送性構造を有するラジカル重合性化合物に対し10重量%以下にすることが好ましい。
架橋型電荷輸送層塗工液の希釈溶媒に関しては、蒸発速度の遅い溶剤を用いた場合、残留する溶媒が硬化の妨げとなったり、下層成分の混入量を増加させることがあり、不均一硬化や硬化密度低下をもたらす。このため有機溶剤に対し、可溶性となりやすい。具体的には、テトラヒドロフラン、テトラヒドロフランとメタノール混合溶媒、酢酸エチル、メチルエチルケトン、エチルセロソルブなどが有用であるが、塗工法と合わせて選択される。また、固形分濃度に関しては、同様な理由で低すぎる場合、有機溶剤に対し可溶性となりやすい。逆に膜厚、塗工液粘度の制限から上限濃度の制約をうける。具体的には、10〜50重量%の範囲で用いることが望ましい。架橋型電荷輸送層の塗工方法としては、同様な理由で塗工膜形成時の溶媒含有量、溶媒との接触時間を少なくする方法が好ましく、具体的にはスプレーコート法、塗工液量を規制したリングコート法が好ましい。また、下層成分の混入量を抑えるためには、電荷輸送層として高分子電荷輸送物質を用いること、架橋型電荷輸送層の塗工溶媒に対し不溶性の中間層を設けることも有効である。
架橋型電荷輸送層の硬化条件としては、加熱または光照射のエネルギーが低いと硬化が完全に終了せず、有機溶剤に対し溶解性があがる。逆に非常に高いエネルギーにより硬化させた場合、硬化反応が不均一となり未架橋部やラジカル停止部の増加や微小な硬化物の集合体となりやすい。このため有機溶剤に対し溶解性となることがある。有機溶剤に対し不溶性化するには、熱硬化の条件としては100〜170℃、10分〜3時間が好ましく、UV光照射による硬化条件としては50〜1000mW/cm2、5秒〜5分で且つ温度上昇を50℃以下に制御し、不均一な硬化反応を抑えることが望ましい。
本発明の電子写真感光体を構成する架橋型電荷輸送層を有機溶剤に対し不溶性にする手法について例示すると、例えば、塗工液として、3つのアクリロイルオキシ基を有するアクリレートモノマーと、一つのアクリロイルオキシ基を有するトリアリールアミン化合物を使用する場合、これらの使用割合は7:3〜3:7であり、また、重合開始剤をこれらアクリレート化合物全量に対し3〜20重量%添加し、さらに溶媒を加えて塗工液を調製する。例えば、架橋型電荷輸送層の下層となる電荷輸送層において、電荷輸送物質としてトリアリールアミン系ドナー、及びバインダー樹脂として、ポリカーボネートを使用し、表面層をスプレー塗工により形成する場合、上記塗工液の溶媒としては、テトラヒドロフラン、2−ブタノン、酢酸エチル等が好ましく、その使用割合は、アクリレート化合物全量に対し3倍量〜10倍量である。
次いで、例えば、アルミシリンダー等の支持体上に、下引き層、電荷発生層、上記電荷輸送層を順次積層した感光体上に、上記調製した塗工液をスプレー等により塗布する。その後、自然乾燥又は比較的低温で短時間乾燥し(25〜80℃、1〜10分間)、UV照射あるいは加熱して硬化させる。
UV照射の場合、メタルハライドランプ等を用いるが、照度は50mW/cm2以上、1000mW/cm2以下、時間としては5秒から5分程度が好ましく、ドラム温度は50℃を越えないように制御する。
熱硬化の場合、加熱温度は100〜170℃が好ましく、例えば加熱手段として送風型オーブンを用い、加熱温度を150℃に設定した場合、加熱時間は20分〜3時間である。
硬化終了後は、さらに残留溶媒低減のため100〜150℃で10分〜30分加熱して、本発明の感光体を得る。
本発明においては、耐環境性の改善のため、とりわけ、感度低下、残留電位の上昇を防止する目的で、架橋型電荷輸送層、電荷輸送層、電荷発生層、下引き層等の各層に酸化防止剤を添加することができる。
本発明に用いることができる酸化防止剤として、下記のものが挙げられる。
(フェノール系化合物)
2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−4−エチルフェノール、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2'−メチレン−ビス−(4−メチル−6−t−ブチルフェノール)、2,2'−メチレン−ビス−(4−エチル−6−t−ブチルフェノール)、4,4'−チオビス−(3−メチル−6−t−ブチルフェノール)、4,4'−ブチリデンビス−(3−メチル−6−t−ブチルフェノール)、1,1,3−トリス−(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス−[メチレン−3−(3',5'−ジ−t−ブチル−4'−ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3'−ビス(4'−ヒドロキシ−3'−t−ブチルフェニル)ブチリックアシッド]クリコ−ルエステル、トコフェロール類など。
(パラフェニレンジアミン類)
N−フェニル−N'−イソプロピル−p−フェニレンジアミン、N,N'−ジ−sec−ブチル−p−フェニレンジアミン、N−フェニル−N−sec−ブチル−p−フェニレンジアミン、N,N'−ジ−イソプロピル−p−フェニレンジアミン、N,N'−ジメチル−N,N'−ジ−t−ブチル−p−フェニレンジアミンなど。
(ハイドロキノン類)
2,5−ジ−t−オクチルハイドロキノン、2,6−ジドデシルハイドロキノン、2−ドデシルハイドロキノン、2−ドデシル−5−クロロハイドロキノン、2−t−オクチル−5−メチルハイドロキノン、2−(2−オクタデセニル)−5−メチルハイドロキノンなど。
(有機硫黄化合物類)
ジラウリル−3,3'−チオジプロピオネート、ジステアリル−3,3'−チオジプロピオネート、ジテトラデシル−3,3'−チオジプロピオネートなど。
(有機燐化合物類)
トリフェニルホスフィン、トリ(ノニルフェニル)ホスフィン、トリ(ジノニルフェニル)ホスフィン、トリクレジルホスフィン、トリ(2,4−ジブチルフェノキシ)ホスフィンなど。
これら化合物は、ゴム、プラスチック、油脂類などの酸化防止剤として知られており、市販品を容易に入手できる。本発明における酸化防止剤の添加量は、添加する層の総重量に対して0.01〜10重量%である。
続いて、本発明の画像形成装置を図面を用いて詳しく説明する。
図11は、本発明の画像形成方法および画像形成装置を説明するための概略図であり、下記に示すような変形例も本発明の範疇に属するものである。
図11において、感光体1は導電性支持体上に少なくとも複数の下引き層、感光層、及び架橋型電荷輸送層を有し、かつ感光層にはCuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有する平均一次粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含有し、該架橋型電荷輸送層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより形成されてなる。感光体1はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであっても良い。帯電ローラ2、転写前チャージャ13、転写チャージャ11、分離チャージャ14、クリーニング前チャージャ16には、コロトロン、スコロトロン、固体帯電器(ソリッド・ステート・チャージャー)、帯電ローラ、転写ローラを始めとする公知の手段が用いられる。
帯電方式としては、従来公知のスコロトロンに代表されるコロナ放電方式、帯電ローラーや帯電ブラシを感光体に接触させることによる接触帯電方式、画像形成領域において感光体と帯電部材とが200μm以下の空隙(ギャップ)を有するようにした近接配置方式(図12参照)が好適に用いられる。図12において、21はギャップ形成部材であり、22は金属シャフトであり、23は画像形成領域であり、24は非画像形成領域である。この空隙は、大きすぎた場合には帯電が不安定になりやすく、また、小さすぎた場合には、感光体に残留したトナーが存在する場合に、帯電部材表面が汚染されてしまう可能性がある。したがって、空隙は10〜200μm、好ましくは30〜100μmの範囲である。このような帯電方式は、高電圧を印加するため感光体の絶縁破壊を生じやすいという欠点を有しているが、本発明に用いられる感光体は、下引き層を複数有し、更に感光層には電荷発生物質の粗大粒子が含有されていないため、感光体の耐圧性が極めて高い。このため、感光体の絶縁破壊に対する耐性が高く、絶縁破壊による画質劣化を抑制し、感光体の更なる高寿命化が実現される。また、電圧印加時、直流電圧に交流電圧を重畳させることも可能であり、帯電ムラの抑制に有効となる。
このような帯電部材により感光体に帯電が施されるが、通常の画像形成装置においては、感光体に起因する地汚れが発生し易いため、感光体にかかる電界強度は低めに設定される(40V/μm以下、好ましくは30V/μm以下)。これは、地汚れの発生が電界強度に依存し、電界強度が上昇すると地汚れ発生確率が上昇するためである。しかしながら、感光体にかかる電界強度を低下させることは、光キャリア発生効率を低下させ、光感度を低下させる。また、感光体表面と導電性支持体との間にかかる電界強度が低下するため、感光層で生成する光キャリアの直進性が低下し、クローン反発による拡散が大きくなり、結果として解像度の低下を生じる。一方、本発明の電子写真感光体を用いることにより、地汚れ発生確率を極端に低下させることが出来るため、電界強度を必要以上に低下させる必要はなくなり、40V/μm以上の電界強度下でも使用できるようになる。このため、感光体光減衰におけるゲイン量を十分に確保でき、後述の現像(ポテンシャル)に対しても大きな余裕度を生み出し、解像度も低下させることなく現像が出来るようになる。
均一に帯電された感光体1上に静電潜像を形成するために画像露光部3が用いられる。画像露光部3には、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの高輝度を確保できる光源が使用される。
除電ランプ19等の光源には、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの発光物全般を用いることができる。そして、所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。これらの光源のうち、発光ダイオード、及び半導体レーザーは照射エネルギーが高く、また600〜800nmの長波長光を有するため、前述の電荷発生材料であるフタロシアニン顔料が高感度を示すことから良好に使用される。かかる光源等は、図11に示される工程の他に光照射を併用した転写工程、除電工程、クリーニング工程、あるいは前露光などの工程を設けることにより、感光体に光が照射される。
次に、感光体1上に形成された静電潜像を可視化するために現像ユニット4が用いられる。現像方式としては、乾式トナーを用いた一成分現像法、二成分現像法、湿式トナーを用いた湿式現像法がある。感光体に正(負)帯電を施し、画像露光を行うと、感光体表面上には正(負)の静電潜像が形成される。これを負(正)極性のトナー(検電微粒子)で現像すれば、ポジ画像が得られるし、また正(負)極性のトナーで現像すれば、ネガ画像が得られる。
次に、感光体上で可視化されたトナー像を転写体7上に転写するために転写チャージャ11が用いられる。また、転写をより良好に行うために転写前チャージャ13を用いてもよい。これらの転写手段としては、転写チャージャ、バイアスローラーを用いる静電転写方式、粘着転写法、圧力転写法等の機械転写方式、磁気転写方式が利用可能である。静電転写方式としては、前記帯電手段が利用可能である。
次に、転写体7を感光体1より分離する手段として分離チャージャ14、分離爪15が用いられる。その他分離手段としては、静電吸着誘導分離、側端ベルト分離、先端グリップ搬送、曲率分離等が用いられる。分離チャージャ14としては、前記帯電手段が利用可能である。
次に、転写後感光体上に残されたトナーをクリーニングするためにファーブラシ17、クリーニングブレード18が用いられる。また、クリーニングをより効率的に行うためにクリーニング前チャージャ16を用いてもよい。その他クリーニング手段としては、ウェブ方式、マグネットブラシ方式等があるが、それぞれ単独又は複数の方式を一緒に用いてもよい。
次に、必要に応じて感光体上の潜像を取り除く目的で除電手段が用いられる。除電手段としては除電ランプ19、除電チャージャが用いられ、それぞれ前記露光光源、帯電手段が利用できる。
その他、感光体に近接していない原稿読み取り、給紙、定着、排紙等のプロセスは公知のものが使用できる。
以上の図示した電子写真プロセスは、本発明における実施形態を例示するものであって、もちろん他の実施形態も可能である。
以上に示すような画像形成手段は、複写装置、ファクシミリ、プリンター内に固定して組み込まれていてもよいが、プロセスカートリッジの形でそれら装置内に組み込まれてもよい。プロセスカートリッジとは、感光体を内蔵し、他に帯電手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段等を含んだ1つの装置(部品)である。プロセスカートリッジの形状等は多く挙げられるが、一般的な例として、図13に示すものが挙げられる。感光体101は導電性支持体上に少なくとも複数の下引き層、感光層、及び架橋型電荷輸送層が形成され、感光層にはCuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有する平均一次粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含有し、該架橋型電荷輸送層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより形成されてなる。
図14は、本発明のタンデム方式のフルカラー電子写真装置を説明するための概略図であり、下記するような変形例も本発明の範疇に属するものである。
図14において、符号1C、1M、1Y、1Kはドラム状の感光体であり、感光体は導電性支持体上に少なくとも複数の下引き層、感光層、及び架橋型電荷輸送層が形成され、感光層にはCuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有する平均一次粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含有し、該架橋型電荷輸送層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより形成されてなる。
この感光体1C、1M、1Y、1Kは図中の矢印方向に回転し、その周りに少なくとも回転順に帯電部材2C、2M、2Y、2K、現像部材4C、4M、4Y、4K、クリーニング部材5C、5M、5Y、5Kが配置されている。帯電部材2C、2M、2Y、2Kは、感光体表面を均一に帯電するための帯電装置を構成する帯電部材である。この帯電部材2C、2M、2Y、2Kと現像部材4C、4M、4Y、4Kの間の感光体の外側より、図示しない露光部材からのレーザー光3C、3M、3Y、3Kが照射され、感光体1C、1M、1Y、1Kに静電潜像が形成されるようになっている。そして、このような感光体1C、1M、1Y、1Kを中心とした4つの画像形成要素6C、6M、6Y、6Kが、転写材搬送手段である転写搬送ベルト10に沿って並置されている。転写搬送ベルト10は各画像形成ユニット6C、6M、6Y、6Kの現像部材4C、4M、4Y、4Kとクリーニング部材5C、5M、5Y、5Kの間で感光体1C、1M、1Y、1Kに当接しており、転写搬送ベルト10の感光体側の裏側に当たる面(裏面)には転写バイアスを印加するための転写ブラシ11C、11M、11Y、11Kが配置されている。各画像形成要素6C、6M、6Y、6Kは現像装置内部のトナーの色が異なることであり、その他は全て同様の構成となっている。
図14に示す構成のカラー電子写真装置において、画像形成動作は次のようにして行われる。まず、各画像形成要素6C、6M、6Y、6Kにおいて、感光体1C、1M、1Y、1Kが矢印方向(感光体と連れ周り方向)に回転する帯電部材2C、2M、2Y、2Kにより帯電され、次に感光体の外側に配置された露光部(図示しない)でレーザー光3C、3M、3Y、3Kにより、作成する各色の画像に対応した静電潜像が形成される。次に現像部材4C、4M、4Y、4Kにより潜像を現像してトナー像が形成される。現像部材4C、4M、4Y、4Kは、それぞれC(シアン)、M(マゼンタ)、Y(イエロー)、K(ブラック)のトナーで現像を行う現像部材で、4つの感光体1C、1M、1Y、1K上で作られた各色のトナー像は転写紙上で重ねられる。転写紙7は給紙コロ8によりトレイから送り出され、一対のレジストローラ9で一旦停止し、上記感光体上への画像形成とタイミングを合わせて転写搬送ベルト10に送られる。転写搬送ベルト10上に保持された転写紙7は搬送されて、各感光体1C、1M、1Y、1Kとの当接位置(転写部)で各色トナー像の転写が行われる。感光体上のトナー像は、転写ブラシ11C、11M、11Y、11Kに印加された転写バイアスと感光体1C、1M、1Y、1Kとの電位差から形成される電界により、転写紙7上に転写される。そして4つの転写部を通過して4色のトナー像が重ねられた記録紙7は定着装置12に搬送され、トナーが定着されて、図示しない排紙部に排紙される。また、転写部で転写されずに各感光体1C、1M、1Y、1K上に残った残留トナーは、クリーニング装置5C、5M、5Y、5Kで回収される。尚、図14の例では画像形成要素は転写紙搬送方向上流側から下流側に向けて、C(シアン)、M(マゼンタ)、Y(イエロー)、K(ブラック)の色の順で並んでいるが、この順番に限るものでは無く、色順は任意に設定されるものである。また、黒色のみの原稿を作成する際には、黒色以外の画像形成要素(6C、6M、6Y)が停止するような機構を設けることは本発明に特に有効に利用できる。更に、図14において帯電部材は感光体と当接しているが、図12に示したような帯電機構にすることにより、両者の間に適当なギャップ(10〜200μm程度)を設けてやることにより、両者の摩耗量が低減できると共に、帯電部材へのトナーフィルミングが少なくて済み良好に使用できる。
以上に示すような画像形成手段は、複写装置、ファクシミリ、プリンター内に固定して組み込まれていてもよいが、各々の電子写真要素はプロセスカートリッジの形でそれら装置内に組み込まれてもよい。プロセスカートリッジとは、感光体を内蔵し、他に帯電手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段等を含んだ1つの装置(部品)である。
以上、本発明によれば、地汚れ等の異常画像の発生が少なく、また下引き層及び感光層の双方における帯電性あるいは残留電位の環境依存性を低減させたことにより、異なる環境においても暗部電位や露光部電位が安定しており、高画質画像を如何なる環境においても安定に出力することが可能となる。また、長期繰り返し使用においても地汚れ抑制効果が維持され、高耐久性を有しかつ高安定な電子写真感光体を提供することが実現された。さらに、高感度を有するため高速機でも使用することが可能であり、これを用いることによって、高速化、高耐久化、高安定化並びに小型化を実現する画像形成装置を提供することができる。更には、上記感光体を用い、高耐久で取扱いが良好な画像形成装置用プロセスカートリッジが提供される。
以下、本発明を実施例を挙げて説明するが、本発明が実施例により制約を受けるものではない。なお、部はすべて重量部である。
まず、本発明に用いた電荷発生物質の比較合成例及び本発明の合成例について述べる。
(比較合成例1)
特開2001―187794号公報に準じて、チタニルフタロシアニンを作製した。すなわち、1,3−ジイミノイソインドリン292部とスルホラン2000部を混合し、窒素気流下でチタニウムテトラブトキシド204部を滴下する。滴下終了後、徐々に180℃まで昇温し、反応温度を170℃〜180℃の間に保ちながら5時間撹拌して反応を行った。反応終了後、放冷した後析出物を濾過し、クロロホルムで粉体が青色になるまで洗浄し、つぎにメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後乾燥し、粗チタニルフタロシアニンを得た。粗チタニルフタロシアニンを20倍量の濃硫酸に溶解し、100倍量の氷水に撹拌しながら滴下し、析出した結晶を濾過、ついで洗浄液が中性になるまで水洗いを繰り返し(洗浄後のイオン交換水のpH値は6.8であった)、チタニルフタロシアニン顔料のウェットケーキ(水ペースト)を得た。得られたこのウェットケーキ(水ペースト)400部をテトラヒドロフラン2000部に投入し、4時間攪拌を行った後、濾過を行い、乾燥して、チタニルフタロシアニン粉末を得た。
更に、このチタニルフタロシアニン結晶30部をテトラヒドロフラン300部に浸漬し、2回目の結晶変換を行った。12時間浸漬放置した後、濾過分別し、上記と同じ条件で減圧乾燥を行い、本発明で用いるチタニルフタロシアニン結晶を得た。これを顔料1とする。
上記ウェットケーキの固形分濃度は、15wt%であった。結晶変換溶媒のウェットケーキに対する重量比は33倍である。尚、比較合成例1の原材料には、ハロゲン化物を使用していない。
(合成例1)
比較合成例1の方法に従って、チタニルフタロシアニン顔料の水ペーストを合成し、次のように結晶変換を行い、比較合成例1よりも一次粒子の小さなフタロシアニン結晶を得た。
比較合成例1で得られた結晶変換前の水ペースト600部にテトラヒドロフラン4000部を加え、室温下でホモミキサー(ケニス、MARKIIfモデル)により強烈に撹拌(2000rpm)し、ペーストの濃紺色の色が淡い青色に変化したら(撹拌開始後20分)、撹拌を停止し、直ちに減圧濾過を行った。濾過装置上で得られた結晶をテトラヒドロフランで洗浄し、顔料のウェットケーキを得た。これを減圧下(5mmHg)、70℃で2日間乾燥して、チタニルフタロシアニン結晶88部を得た。
更に、このチタニルフタロシアニン結晶30部をテトラヒドロフラン300部に浸漬し、2回目の結晶変換を行った。12時間浸漬放置した後、濾過分別し、上記と同じ条件で減圧乾燥を行い、チタニルフタロシアニン結晶を得た。これを顔料2とする。
合成例1の原材料には、ハロゲン化物を使用していない。上記ウェットケーキの固形分濃度は、15wt%であった。結晶変換溶媒のウェットケーキに対する重量比は44倍である。
(合成例2)
合成例1における2回目の結晶変換操作を下記の通りの条件に変更した以外は、合成例1と同様に処理を行い、本発明のチタニルフタロシアニン結晶を得た。これを顔料3とする。
(2回目の結晶変換処理)
1回目の結晶変換処理を行ったチタニルフタロシアニン結晶30部を、市販のミキサーにより機械的剪断力を5分間与えた後、粉末を取り出した。
(合成例3)
合成例1における2回目の結晶変換操作を下記の通りの条件に変更した以外は、合成例1と同様に処理を行い、チタニルフタロシアニン結晶を得た。これを顔料4とする。
(2回目の結晶変換処理)
1回目の結晶変換処理を行ったチタニルフタロシアニン結晶30部を、2000部のφ6mmのジルコニアボールと共に、φ90mmのガラスポットに投入し、乾式ミリングを10分間行った後、粉末を取り出した。
(比較合成例2)
比較合成例1における2回目の結晶変換溶媒をテトラヒドロフランからメタノールに変更した以外は、比較合成例1と同様に処理を行い、チタニルフタロシアニン結晶を得た。これを顔料5とする。
(比較合成例3)
比較合成例1において、1回目の結晶変換溶媒として、テトラヒドロフランの代わりに2−ブタノンを用い、2回目の結晶変換を行わない以外は、比較合成例1と同様に処理を行い、チタニルフタロシアニン結晶を得た。これを顔料6とする。
比較合成例1で得られた水ペーストの一部を80℃の減圧下(5mmHg)で、2日間乾燥して、低結晶性チタニルフタロシアニン粉末を得た。
上述のように得られた水ペーストの乾燥粉末と、合成例1〜3および比較合成例1〜3で得られたチタニルフタロシアニン結晶についてのX線回折スペクトルを以下に示す条件で測定した。
X線管球:Cu
電圧:40kV
電流:20mA
走査速度:1°/分
走査範囲:3°〜40°
時定数:2秒
比較合成例1および合成例1〜3については、26.3°のピーク強度が異なる以外は、いずれの場合にも同様のX線回折スペクトルを示したため、代表例として合成例2で得られたチタニルフタロシアニン結晶のX線回折スペクトルを図15に示す(図中の矢印が、26.3°のピークであり、ピーク強度比は8%である。)。
水ペーストの乾燥粉末のX線回折スペクトルを図16に示す。
比較合成例2で得られたチタニルフタロシアニン結晶のX線回折スペクトルを図17に示すが、26.3°にピークを示さないものであった。
比較合成例3で得られたチタニルフタロシアニン結晶のX線回折スペクトルを図18に示すが、最低角が7.5°に存在するものであった。
(比較合成例4)
特開平1―299874号(特許第2512081号)公報の実施例1に記載の方法に準じて、チタニルフタロシアニンを作製した。すなわち、先の比較合成例1で作製したウェットケーキを乾燥し、乾燥物1部をポリエチレングリコール50部に加え、100部のガラスビーズと共に、サンドミルを行った。結晶転移後、希硫酸、水酸化アンモニウム水溶液で順次洗浄し、乾燥してチタニルフタロシアニン結晶を得た。これを顔料7とする。
(比較合成例5)
特開平3―269064号(特許第2584682号)公報の製造例1に記載の方法に準じて、チタニルフタロシアニンを作製した。すなわち、先の比較合成例1で作製したウェットケーキを乾燥し、乾燥物1部をイオン交換水10部とモノクロルベンゼン1部の混合溶媒中で1時間撹拌(50℃)した後、メタノールとイオン交換水で洗浄し、乾燥してチタニルフタロシアニン結晶を得た。これを顔料8とする。
(比較合成例6)
特開平2―8256号(特公平7―91486号)公報の製造例に記載の方法に準じて、チタニルフタロシアニンを作製した。すなわち、フタロジニトリル9.8部と1−クロロナフタレン75部を撹拌混合し、窒素気流下で四塩化チタン2.2部を滴下する。滴下終了後、徐々に200℃まで昇温し、反応温度を200℃〜220℃の間に保ちながら3時間撹拌して反応を行った。反応終了後、放冷し130℃になったところ熱時濾過し、次いで1−クロロナフタレンで粉体が青色になるまで洗浄、次にメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後、乾燥しチタニルフタロシアニン結晶を得た。これを顔料9とする。
(比較合成例7)
特開昭64―17066号(特公平7―97221号)公報の合成例1に記載の方法に準じて、チタニルフタロシアニンを作製した。すなわち、α型TiOPc5部を食塩10部およびアセトフェノン5部と共にサンドグラインダーにて100℃にて10時間結晶変換処理を行った。これをイオン交換水及びメタノールで洗浄し、希硫酸水溶液で精製し、イオン交換水で酸分がなくなるまで洗浄した後、乾燥してチタニルフタロシアニン結晶を得た。これを顔料10とする。
(比較合成例8)
特開平11―5919号(特許第3003664号)公報の実施例1に記載の方法に準じて、チタニルフタロシアニンを作製した。すなわち、O−フタロジニトリル20.4部、四塩化チタン7.6部をキノリン50部中で200℃にて2時間加熱反応後、水蒸気蒸留で溶媒を除き、2%塩酸、続いて2%水酸化ナトリウム水溶液で精製し、メタノール、N,N−ジメチルホルムアミドで洗浄後、乾燥し、チタニルフタロシアニンを得た。このチタニルフタロシアニン2部を5℃の98%硫酸40部の中に少しずつ溶解し、その混合物を約1時間、5℃以下の温度を保ちながら攪拌する。続いて硫酸溶液を高速攪拌した400部の氷水中に、ゆっくりと注入し、析出した結晶を濾過する。結晶を酸が残量しなくなるまで蒸留水で洗浄し、ウェットケーキを得る。そのケーキをTHF100部中で約5時間攪拌を行い、濾過、THFによる洗浄を行い乾燥後、チタニルフタロシアニン結晶を得た。これを顔料11とする。
(比較合成例9)
特開平3―255456号(特許第3005052号)公報の合成例2に記載の方法に準じて、チタニルフタロシアニンを作製した。すなわち、先の比較合成例1で作製したウェットケーキ10部を塩化ナトリウム15部とジエチレングリコール7部に混合し、80℃の加熱下で自動乳鉢により60時間ミリング処理を行った。次に、この処理品に含まれる塩化ナトリウムとジエチレングリコールを完全に除去するために充分な水洗を行った。これを減圧乾燥した後にシクロヘキサノン200部と直径1mmのガラスビーズを加えて、30分間サンドミルにより処理を行い、チタニルフタロシアニン結晶を得た。これを顔料12とする。
(比較合成例10)
特開平11―5919号(特許第3003664号)公報の実施例4に記載の方法に準じて、チタニルフタロシアニンを作製した。すなわち、先の比較合成例7で得られたウェットケーキを5%の塩酸で洗浄し、中性になるまで水洗・濾過を行い、乾燥した。更にこれをTHFと共にボールミルで10時間分散し、濾過・乾燥してチタニルフタロシアニン粉末を得た。これを顔料13とする。
(比較合成例11)
特開平5―134437号(特許第3196260号)公報の製造例1及び製造例2に記載の方法に準じて、チタニルフタロシアニンを作製した。
すなわち、フタロジニトリル97.5部をα−クロロナフタレン750部中に加え、次に窒素雰囲気下で四塩化チタン22部を滴下する。滴下後昇温し、撹拌しながら200〜220℃で3時間反応させた後、放冷し、100〜130℃で熱時濾過し、100℃に加熱したα−クロロナフタレン200部で洗浄した。更に200部のN−メチルピロリドンで熱懸洗処理(100℃、1時間)を3回行った。続いてメタノール300部で室温にて懸洗しさらにメタノール500部で1時間熱懸洗を3回行った。これをフタロシアニン1とする。
次いで、フタロシアニン1をサンドグラインドミルにて20時間磨砕処理しを行い、続いて水400部、o−ジクロロベンゼン40部の懸濁液中に入れ、60℃で1時間加熱処理を行った。これをフタロシアニン2とする。
更に、特開平5―134437号(特許第3196260号)公報の実施例1に準じて、フタロシアニン1およびフタロシアニン2をそれぞれ6部および4部混合し、n−プロパノール200部を加え、サンドグラインドミルで10時間粉砕、微粒化分散処理を行った。これを乾燥して、フタロシアニン粉末を得た。これを顔料14とする。
(比較合成例12)
特開平8―110649号公報のチタニルフタロシアニン結晶体の製造方法に準じて、チタニルフタロシアニンを作製した。即ち、1,3−ジイミノイソインドリン58部、テトラブトキシチタン51部をα−クロロナフタレン300部中で210℃にて5時間反応後、α−クロロナフタレン、ジメチルホルムアミド(DMF)の順で洗浄した。その後、熱DMF、熱水、メタノールで洗浄、乾燥して50部のチタニルフタロシアニンを得た。チタニルフタロシアニン4部を0℃に冷却した濃硫酸400部中に加え、引き続き0℃、1時間撹拌した。フタロシアニンが完全に溶解したことを確認した後、0℃に冷却した水800部/トルエン800部混合液中に添加した。室温で2時間撹拌後、析出したフタロシアニン結晶体を混合液より濾別し、メタノール、水の順で洗浄した。洗浄水の中性を確認した後、洗浄水よりフタロシアニン結晶体を濾別し、乾燥して、2.9部のチタニルフタロシアニン結晶体を得た。これを顔料15とする。
比較合成例1で作製された結晶変換前チタニルフタロシアニン(水ペースト)の一部をイオン交換水でおよそ1重量%になるように希釈し、表面を導電性処理した銅製のネットですくい取り、チタニルフタロシアニンの粒子サイズを透過型電子顕微鏡(TEM、日立:H−9000NAR)にて、75000倍の倍率で観察を行った。平均粒子サイズとして、以下のように求めた。
上述のように観察されたTEM像をTEM写真として撮影し、映し出されたチタニルフタロシアニン粒子(針状に近い形)を30個任意に選び出し、それぞれの長径の大きさを測定する。測定した30個体の長径の算術平均を求めて、一次粒子の平均粒子サイズとした。
以上の方法により求められた比較合成例1における水ペースト中の平均粒子サイズは、0.06μmであった。
また、比較合成例1及び合成例1における濾過直前の結晶変換後チタニルフタロシアニン結晶を、テトラヒドロフランでおよそ1重量%になるように希釈し、上の方法と同様に観察を行った。上記のようにして求めた平均粒子サイズを表1に示す。なお、比較合成例1及び合成例1で作製されたチタニルフタロシアニン結晶は、必ずしも全ての結晶の形が同一ではなかった(三角形に近い形、四角形に近い形など)。このため、結晶の最も大きな対角線の長さを長径として、計算を行った。
表1から、比較合成例1で作製された顔料1は、平均粒子サイズが大きいだけでなく、粗大粒子を含んでいる。これに対し、合成例1で作製された顔料2は、平均粒子サイズが小さいだけでなく、個々の1次粒子の大きさもほぼ揃っていることが分かる。
また、以上の比較合成例4〜12で作製した顔料は、先程と同様の方法でX線回折スペクトルを測定し、それぞれの公報に記載のスペクトルと同様であることを確認した。表2にそれぞれのX線回折スペクトルと比較合成例1〜3及び合成例1〜3で得られた顔料のX線回折スペクトルのピーク位置の特徴を示す。
なお、表2中の26.3°のピーク強度比とは、前述の通り、26.3°のピーク強度の27.2°のピーク強度の比である。この計算に際して、図18のように26.3°のピークが明確に観測されない場合には、ピーク強度=0として計算を行った。
次に、架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有する化合物の合成例について述べる。
(1官能の電荷輸送性構造を有する化合物の合成例)
本発明における1官能の電荷輸送性構造を有する化合物は、例えば特許第3164426号公報記載の方法にて合成される。また、下記にこの一例を示す。
(1)ヒドロキシ基置換トリアリールアミン化合物(下記構造式B)の合成
メトキシ基置換トリアリールアミン化合物(下記構造式A)113.85部(0.3mol)と、ヨウ化ナトリウム138部(0.92mol)にスルホラン240部を加え、窒素気流中で60℃に加温した。この液中にトリメチルクロロシラン99部(0.91mol)を1時間かけて滴下し、約60℃の温度で4時間半撹拌し反応を終了させた。
この反応液にトルエン約1500部を加え室温まで冷却し、水と炭酸ナトリウム水溶液で繰り返し洗浄した。
その後、このトルエン溶液から溶媒を除去し、カラムクロマトグラフィー処理(吸着媒体:シリカゲル、展開溶媒:トルエン:酢酸エチル=20:1)にて精製した。
得られた淡黄色オイルにシクロヘキサンを加え、結晶を析出させた。
この様にして下記構造式Bの白色結晶88.1部(収率=80.4%)を得た。
融点:64.0〜66.0℃
(2)トリアリールアミノ基置換アクリレート化合物の合成例(例示化合物No.54)
上記(1)で得られたヒドロキシ基置換トリアリールアミン化合物(構造式B)82.9部(0.227mol)をテトラヒドロフラン400部に溶解し、窒素気流中で水酸化ナトリウム水溶液(NaOH:12.4部,水:100部)を滴下した。
この溶液を5℃に冷却し、アクリル酸クロライド25.2部(0.272mol)を40分かけて滴下した。その後、5℃で3時間撹拌し反応を終了させた。
この反応液を水に注ぎ、トルエンにて抽出した。この抽出液を炭酸水素ナトリウム水溶液と水で繰り返し洗浄した。その後、このトルエン溶液から溶媒を除去し、カラムクロマトグラフィー処理(吸着媒体:シリカゲル、展開溶媒:トルエン)にて精製した。得られた無色のオイルにn−ヘキサンを加え、結晶を析出させた。
この様にして例示化合物No.54の白色結晶80.73部(収率=84.8%)を得た。
融点:117.5〜119.0℃
次に、前述のようにして合成した電荷発生物質を用いた電荷発生層塗工液用の分散液の作製方法について説明する。
(分散液作製例1)
比較合成例1で作製した顔料1を下記組成の処方にて、下記に示す条件にて分散を行い電荷発生層用塗工液として、分散液を作製した。
チタニルフタロシアニン顔料(顔料1) 15部
ポリビニルブチラール(積水化学製:BX−1) 10部
2−ブタノン 280部
市販のビーズミル分散機に直径0.5mmのPSZボールを用い、ポリビニルブチラールを溶解した2−ブタノンおよび顔料を全て投入し、ローター回転数1200r.p.m.にて30分間分散を行い、分散液を作製した(分散液1とする)。
(分散液作製例2〜15)
分散液作製例1で使用した顔料1に変えて、それぞれ合成例1〜3及び比較合成例2〜12で作製した顔料2〜15を使用して、分散液作製例1と同じ条件にて分散液を作製した(顔料番号に対応して、それぞれ分散液2〜15とする)。
(分散液作製例16)
分散液作製例1で作製した分散液1を、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−1−CS(有効孔径1μm)を用いて、濾過を行った。濾過に際しては、ポンプを使用し、加圧状態で濾過を行った(分散液16とする)。
(分散液作製例17)
分散液作製例16で使用したフィルターを、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−3−CS(有効孔径3μm)に変えた以外は、分散液作製例16と同様に加圧濾過を行い分散液を作製した(分散液17とする)。
(分散液作製例18)
分散液作製例16で使用したフィルターを、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−5−CS(有効孔径5μm)に変えた以外は、分散液作製例16と同様に加圧濾過を行い分散液を作製した(分散液18とする)。
(分散液作製例19)
分散液作製例1における分散条件を下記の通り変更して、分散を行った(分散液19とする)。
ローター回転数:1000r.p.m.にて20分間分散を行った。
(分散液作製例20)
分散液作製例19で作製した分散液をアドバンテック社製、コットンワインドカートリッジフィルター、TCW−1−CS(有効孔径1μm)を用いて、濾過を行った。濾過に際しては、ポンプを使用し、加圧状態で濾過を行った(分散液20とする)。
以上のように作製した分散液中の顔料粒子の粒度分布を、堀場製作所:CAPA−700にて測定した。結果を表5に示す。
なお、分散液20は、濾過の途中でフィルターが目詰まりを起こして、全ての分散液を濾過することが出来なかった。このため評価は実施できなかった。
続いて、前述の電荷発生層塗工液分散液を用いた電子写真感光体の作製方法について説明する。
比較例1
直径100mmのアルミニウムシリンダー(JIS1050)に、下記組成の下引き層1用塗工液、下引き層2用塗工液、電荷発生層塗工液、電荷輸送層塗工液及び架橋型電荷輸送層塗工液を、順次塗布・乾燥し、膜厚0.6μmの下引き層1、3.5μmの下引き層2、電荷発生層、19μmの電荷輸送層、及び5μmの架橋型電荷輸送層を積層し、電子写真感光体を作製した。これを電子写真感光体1とする。架橋型電荷輸送層は、スプレー塗工してから20分間自然乾燥した後、メタルハライドランプ:160W/cm、照射強度:500mW/cm2、照射時間:60秒の条件で光照射を行うことによって塗布膜を硬化させた。なお、各層の塗工後に指触乾燥を行った後、下引き層1は130℃、下引き層2は135℃、電荷発生層は90℃、電荷輸送層は135℃、架橋型電荷輸送層は130℃で20分間加熱乾燥を行った。また、電荷発生層の膜厚は、780nmにおける電荷発生層の透過率が20%になるように調整した。電荷発生層の透過率は、下記組成の電荷発生層塗工液を、ポリエチレンテレフタレートフィルムを巻き付けたアルミシリンダーに感光体作製と同じ条件で塗工を行い、電荷発生層を塗工していないポリエチレンテレフタレートフィルムを比較対照とし、市販の分光光度計(島津:UV−3100)にて、780nmの透過率を評価した。
◎下引き層1用塗工液
N−メトキシメチル化ナイロン(FR101:鉛市製) 5部
メタノール 70部
n−ブタノール 30部
◎下引き層2用塗工液
酸化チタン(CR−EL:石原産業社製、平均一次粒径0.25μm)70部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 14部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 8部
2−ブタノン 80部
無機顔料とバインダー樹脂の容積比は、約2/1である。アルキッド樹脂とメラミン樹脂の重量比は、約1.5/1である。
◎電荷発生層塗工液
前述の分散液1を用いた。
◎電荷輸送層塗工液
ポリカーボネート(TS2050:帝人化成社製) 10部
下記構造式の電荷輸送物質 7部
テトラヒドロフラン 80部
シリコーンオイルのテトラヒドロフラン溶液(KF−50(100cs):
信越化学工業製) 0.2部
◎架橋型電荷輸送層用塗工液
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部
{トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製)
分子量:296、官能基数:3官能、分子量/官能基数=99}
1官能の電荷輸送性構造を有するラジカル重合性化合物 10部
(例示化合物No.54)
光重合開始剤 1部
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
テトラヒドロフラン 100部
実施例1〜参考例1〜2及び比較例2〜14
比較例1で使用した電荷発生層塗工液である分散液1をそれぞれ、表6に記載したように分散液2〜19に変更した以外は、すべて比較例1と同様にして電子写真感光体2〜19を作製した。
比較例15
実施例1において、下引き層1を設けない以外は、すべて実施例1と同様にして電子写真感光体20を作製した。
比較例16
実施例1において、下引き層2を設けない以外は、すべて実施例1と同様にして電子写真感光体21を作製した。
実施例6
実施例1において、下引き層1の膜厚を1.3μmとした以外は、実施例1と同様にして電子写真感光体22を作製した。
実施例7
実施例1において、下引き層1の膜厚を2.0μmとした以外は、実施例1と同様にして電子写真感光体23を作製した。
実施例8
実施例1において、下引き層2を下記組成のものに変更した以外は、実施例1と同様にして電子写真感光体24を作製した。
◎下引き層2用塗工液
酸化チタン(CR−EL:石原産業社製、平均一次粒径0.25μm) 90部
アルキッド樹脂(ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製) 14部
メラミン樹脂(スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製) 10部
2−ブタノン 100部
無機顔料とバインダー樹脂の容積比は、約2.3/1である。アルキッド樹脂とメラミン樹脂の重量比は、約1.2/1である。
実施例9
実施例1において、下引き層2の塗工液を下記組成のものに変更した以外は、実施例1と同様にして電子写真感光体25を作製した。
◎下引き層2用塗工液
酸化錫(S−1、三菱金属工業製、平均一次粒径0.02μm) 60部
アルキッド樹脂(ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製) 14部
メラミン樹脂(スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製) 10部
2−ブタノン 80部
無機顔料とバインダー樹脂の容積比は、約1.5/1である。アルキッド樹脂とメラミン樹脂の重量比は、約1.2/1である。
参考例3
実施例9において、導電性支持体上に下引き層2を形成し、その上に下引き層1を積層し、下引き層1の膜厚を0.4μmにした以外はすべて実施例9と同様にして電子写真感光体26を作製した。
参考例4
参考例3において、下引き層2用塗工液を下記組成のものに変更した以外は、参考例3と同様に電子写真感光体27を作製した。
◎下引き層2用塗工液
酸化チタン(CR−EL:石原産業社製、平均一次粒径0.25μm)100部
アルキッド樹脂(ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製) 12部
メラミン樹脂(スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製) 8部
2−ブタノン 130部
無機顔料とバインダー樹脂の容積比は、約3.1/1である。アルキッド樹脂とメラミン樹脂の重量比は、約1.3/1である。
実施例12
実施例1において、下引き層2の塗工液を下記組成に変更した以外は、すべて実施例1と同様にして電子写真感光体28を作製した。
◎下引き層2用塗工液
酸化チタン(CR−EL:石原産業社製、平均一次粒径:約0.25μm)50部
酸化チタン(PT−401M:石原産業社製、平均一次粒径:約0.07μm)
30部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 16部
メラミン樹脂[スーパーベッカミンL−145−60(固形分60%)、
大日本インキ化学工業製] 9部
2−ブタノン 80部
無機顔料とバインダー樹脂の容積比は、約2/1である。また、アルキッド樹脂とメラミン樹脂の重量比は、約1.5/1である。D2/D1は0.28、無機顔料の混合比は約0.38である。
実施例13
実施例1において、下引き層2の塗工液を下記組成に変更した以外は、すべて実施例1と同様にして電子写真感光体29を作製した。
◎下引き層2用塗工液
酸化チタン(CR−EL:石原産業社製、平均一次粒径:約0.25μm) 40部
酸化チタン(TTO−F1:石原産業社製、平均一次粒径:約0.04μm)40部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 16部
メラミン樹脂[スーパーベッカミンL−145−60(固形分60%)、
大日本インキ化学工業製] 9部
2−ブタノン 80部
無機顔料とバインダー樹脂の容積比は、約2/1である。また、アルキッド樹脂とメラミン樹脂の重量比は、約1.5/1である。D2/D1は0.16、無機顔料の混合比は約0.5である。
実施例14
実施例1において、下引き層1用塗工液を下記組成のものに変更した以外は、すべて実施例1と同様にして電子写真感光体30を作製した。
◎下引き層1用塗工液
N−メトキシメチル化ナイロン(FR101:鉛市製) 5部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 8部
酒石酸のメタノール溶液(固形分10%) 2部
メタノール 120部
n−ブタノール 50部
参考例5
実施例1において、下引き層1用塗工液を下記組成のものに変更した以外は、すべて実施例1と同様にして電子写真感光体31を作製した。
◎下引き層1用塗工液
共重合ナイロン(アミランCM8000:東レ製) 5部
メタノール 70部
n−ブタノール 30部
参考例6
参考例5において、下引き層1の膜厚を1.0μmに変更した以外はすべて参考例5と同様にして電子写真感光体32を作製した。
参考例7
実施例1において、下引き層1用塗工液を下記組成のものに変更し、膜厚を0.5μmにした以外は、すべて実施例1と同様にして電子写真感光体33を作製した。
◎下引き層1用塗工液
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 14部
メラミン樹脂[スーパーベッカミンG−821−60(固形分60%)、
大日本インキ化学工業製] 10部
2−ブタノン 100部
参考例8
参考例6において、下引き層2用塗工液を下記組成のものに変更した以外は、すべて参考例6と同様にして電子写真感光体34を作製した。
◎下引き層2用塗工液
酸化チタン(CR−EL:石原産業社製、平均一次粒径:約0.25μm)90部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 14部
メラミン樹脂[スーパーベッカミンG−821−60(固形分60%)、
大日本インキ化学工業製] 10部
2−ブタノン 100部
無機顔料とバインダー樹脂の容積比は、約2.3/1である。また、アルキッド樹脂とメラミン樹脂の重量比は、約1.2/1である。
参考例9
参考例5において、導電性支持体上に下記組成の下引き層2を10μm形成し、その上に下引き層1を0.5μm積層した以外はすべて参考例5と同様にして電子写真感光体35を作製した。
◎下引き層2用塗工液
酸化錫(S−1、三菱金属工業製、平均一次粒径0.02μm) 80部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 18部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 6部
2−ブタノン 80部
無機顔料とバインダー樹脂の容積比は、約2.1/1である。また、アルキッド樹脂とメラミン樹脂の重量比は、約2.5/1である。
実施例20
実施例1における電荷輸送層塗工液を以下の組成のものに変更した以外は、すべて実施例1と同様にして電子写真感光体36を作製した。
◎電荷輸送層塗工液
下記組成の高分子電荷輸送物質(重量平均分子量:約135000) 10部
塩化メチレン 100部
比較例17
実施例1において、架橋型電荷輸送層を形成させずに、電荷輸送層の膜厚を24μmに変更した以外は、すべて実施例1と同様にして電子写真感光体37を作製した。
比較例18
実施例1における電荷輸送層の膜厚を20μmとし、電荷輸送層上に下記組成の無機顔料含有電荷輸送層塗工液をスプレー塗工法によって塗布並びに乾燥し、4μmの無機顔料含有電荷輸送層を設けた以外はすべて実施例1と同様にして電子写真感光体38を作製した。
◎無機顔料含有電荷輸送層塗工液
アルミナ
(平均一次粒径:0.4μm、スミコランダムAA−03:住友化学工業製)
2部
湿潤分散剤(固形分50%、BYK−P104:BYKケミー製) 0.025部
ポリカーボネート(TS2050:帝人化成社製、粘度平均分子量:5万)
10部
下記構造式の電荷輸送物質 7部
シクロヘキサノン 500部
テトラヒドロフラン 150部
比較例19
実施例1において、電荷発生層用塗工液を下記組成の塗工液に変更した以外は、すべて実施例1と同様にして電子写真感光体39を作製した。
◎電荷発生層用塗工液
下記構造のフルオレノン系ビスアゾ顔料 12部
ポリビニルブチラール 5部
2−ブタノン 200部
シクロヘキサノン 400部
実施例21
実施例1において、架橋型電荷輸送層塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記のラジカル重合性モノマーに変更した以外は、すべて実施例1と同様にして電子写真感光体40を作製した。
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部
(ペンタエリスリトールテトラアクリレート(SR−295、化薬サートマー製)
分子量:352、官能基数:4官能、分子量/官能基数=88)
比較例20
実施例1の架橋型電荷輸送層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記の電荷輸送性構造を有さない2官能のラジカル重合性モノマー10部に換え、架橋型電荷輸送層の膜厚を5.5μmにした以外は、すべて実施例1と同様にして電子写真感光体41を作製した。
電荷輸送性構造を有さない2官能のラジカル重合性モノマー 10部
(1,6−ヘキサンジオールジアクリレート(和光純薬製)
分子量:226、官能基数:2官能、分子量/官能基数=113)
実施例22
実施例1において、架橋型電荷輸送層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記のラジカル重合性モノマーに換え、架橋型電荷輸送層の膜厚を6.0μmにした以外は、すべて実施例1と同様にして電子写真感光体42を作製した。
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部
(カプロラクトン変性ジペンタエリスリトールヘキサアクリレート
(KAYARAD DPCA−120、日本化薬製)
分子量:1947、官能基数:6官能、分子量/官能基数=325)
比較例21
実施例1の架橋型電荷輸送層用塗工液に含有される1官能の電荷輸送性構造を有するラジカル重合性化合物を下記構造式に示される2官能の電荷輸送性構造を有するラジカル重合性化合物10部に換え、架橋型電荷輸送層の膜厚を6.0μmにした以外は実施例1と同様に電子写真感光体43を作製した。
比較例22
実施例1において、架橋型電荷輸送層用塗工液の組成物である1官能の電荷輸送性構造を有するラジカル重合性化合物を含有させず、電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー量を20部に換え、架橋型電荷輸送層の膜厚を4.5μmにした以外は、実施例1と同様にして電子写真感光体44を作製した。
比較例23
実施例1の架橋型電荷輸送層用塗工液の組成物である電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを含有させず、1官能の電荷輸送性構造を有するラジカル重合性化合物量を20部に換え、架橋型電荷輸送層の膜厚を5.5μmにした以外は実施例1と同様にして電子写真感光体45を作製した。
比較例24
実施例1において、架橋型電荷輸送層用塗工液の組成物である1官能の電荷輸送性構造を有するラジカル重合性化合物を含有させず、この換わりに電荷輸送層用塗工液に用いられている低分子電荷輸送物質10部を含有させ、架橋型電荷輸送層の膜厚を4.5μmにした以外は、実施例1と同様にして電子写真感光体46を作製した。
比較例25
実施例1において、電荷輸送層上に下記組成の保護層塗工液を塗布乾燥し、5μmの保護層を設けた以外は実施例1と同様に電子写真感光体47を作製した。
◎保護層塗工液
メチルトリメトキシシラン 100部
3%酢酸 20部
下記構造の電荷輸送性化合物 35部
比較例26
実施例1において、架橋型電荷輸送層用塗工液を下記保護層塗工液に変更し、膜厚を6.0μmにした以外は、すべて実施例1と同様にして電子写真感光体48を作製した。
◎保護層塗工液
下記組成の高分子電荷輸送物質(重量平均分子量:約135000) 10部
テトラヒドロフラン 100部
以上のように作製した電子写真感光体1〜48について、外観を目視で観察し、クラック、膜剥がれの有無を判別した。次に、有機溶剤に対する溶解性試験として、テトラヒドロフラン(以後THFと略す)、及びジクロロメタンを1滴滴下し、自然乾燥後の表面形状の変化を観察した。
その結果を表6に示す。
本発明の架橋型電荷輸送層を有する電子写真感光体は、架橋型電荷輸送層形成時において、クラック、膜剥がれが発生せず、外観上良好なものであることがわかる。また、溶解性試験においても不溶性を示すことが確認された。一方、架橋型電荷輸送層成分として2官能の電荷輸送性構造を有するラジカル重合性化合物を用いた電子写真感光体はクラックが発生した。また、電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを含有させないと硬化不十分で粘着性が認められ、溶解性試験では可溶性を示した。また、1官能の電荷輸送性構造を有するラジカル重合性化合物を含有させず、低分子電荷輸送物質を含有させると、くもりが発生し、溶解性試験では可溶性を示した。
以上のように作製した電子写真感光体1〜48を図11に示す画像形成装置に搭載した。但し、画像露光光源には780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み)、帯電部材にはスコロトロンを用いた。本画像形成装置における感光体の線速は、362mm/secであった。この画像形成装置を用いて、10℃15%RH、30℃90%RH及び23℃55%RHの三環境下で暗部電位(VD)が900(−V、電界強度約35〜40V/μm)になるように印加電圧を調整し、現像バイアスは650(−V)として、その際出力した画像の評価を行った。なお、画像評価のレベルは、以下の4段階で表した。◎:非常に良好なレベル、○:若干画質劣化が見られるが問題ないレベル、△:明らかに画像欠陥が認められるレベル、×:画像欠陥の影響が大きく画像品質が非常に悪いレベル。これらの結果を表7に示す。また、上記の条件下でさらに各々10万枚の画像出力を繰り返し行い、その後同様に画像評価を実施した。また、23℃55%RH環境においては試験前後の膜厚差から摩耗量を算出した。これらの結果を表8に示す。
これらの結果から、複数の下引き層を積層し、本発明の結晶型を有し、さらにその一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニンを電荷発生層に用い、さらに本発明の架橋型電荷輸送層を積層することにより、あらゆる環境下においても安定した画像を得ることが可能となった。特に、複数の下引き層の一層にはN−メトキシメチル化ナイロンを含有させたことにより、高温高湿、低温低湿、常温常湿の三環境において地汚れが少なく、安定した画像を得ることができ、さらに10万枚印刷を行ってもその効果が維持されていることがわかった。一方、チタニルフタロシアニンの結晶型が本発明と異なっていたり、0.25μmより大きな平均粒子サイズを有している場合には、特に高湿になるほど帯電低下の影響が増加し、地汚れが増加する傾向が見られていた。また、26.3°のピーク強度比が5%を超えると感度劣化の影響が急激に増加し画像濃度の低下を引き起こした。下引き層はどちらか一方のみではモアレの発生、地汚れの増加、露光部電位の上昇、繰り返し使用後の暗減衰の増加を引き起こし、高耐久化は実現されなかった。無機顔料を含有しない下引き層にN−メトキシメチル化ナイロンの代わりに同じポリアミド系の共重合ナイロンを含有させると、地汚れ抑制効果が低下する上に、露光部電位の環境依存性及び膜厚依存性が増加し、安定性が若干低下する傾向を示した。感光体の表面に無機顔料を含有する電荷輸送層を積層した場合には、耐摩耗性は向上しているにも関わらず、フィルミングが起こりやすく、高耐久化は満足されなかった。また、本発明に示された結晶型以外のチタニルフタロシアニンを用いたり、0.25μmよりも大きな平均粒子サイズを有するチタニルフタロシアニンを用いた場合にも地汚れ耐久性は大幅に低下する傾向を示し、さらに下引き層を複数積層しなかった場合にはモアレが発生したり、露光部電位上昇により画像濃度低下を引き起こしたり、明らかに地汚れ抑制効果が低減し、高耐久化は実現されなかった。
最後に、本発明で使用するチタニルフタロシアニン結晶の特徴であるブラッグ角θの最低角ピークである7.3°について、公知材料の最低角7.5°と同一であるか否かについて検証する。
(測定例1)
比較合成例2で得られた顔料(最低角7.3°)に特開昭61―239248号公報に記載の顔料(最大回折ピークを7.5°に有する)と同様に作製したものを3重量%添加し、乳鉢で混合して、先程と同様にX線回折スペクトルを測定した。測定例1のX線回折スペクトルを図19に示す。
(測定例2)
比較合成例3で得られた顔料(最低角7.5°)に特開昭61―239248号公報に記載の顔料(最大回折ピークを7.5°に有する)と同様に作製したものを3重量%添加し、乳鉢で混合して、先程と同様にX線回折スペクトルを測定した。測定例2のX線回折スペクトルを図20に示す。
図19のスペクトルにおいては、低角側に7.3°と7.5°の2つの独立したピークが存在し、少なくとも7.3°と7.5°のピークは異なるものであることが判る。一方、図20のスペクトルにおいては、低角側のピークは7.5°のみに存在し、図19のスペクトルとは明らかに異なっている。
以上のことから、本願発明のチタニルフタロシアニン結晶における最低角ピークである7.3°は、公知のチタニルフタロシアニン結晶における7.5°のピークとは異なるものであることが判る。
積層感光体の構成例の説明図である。 他の積層感光体の構成例の説明図である。 不定形チタニルフタロシアニンのTEM像を示す。 結晶チタニルフタロシアニンのTEM像を示す。 短時間で結晶変換を行った場合の結晶チタニルフタロシアニンのTEM像を示す。 分散時間の短い結晶チタニルフタロシアニン分散液の写真を示す。 分散時間の長い結晶チタニルフタロシアニン分散液の写真を示す。 図6と図7の結果をグラフ化したものである。 本発明に用いられる電子写真感光体の構成例の説明図である。 本発明に用いられる電子写真感光体の別の構成例の説明図である。 本発明の画像形成方法及び画像形成装置の説明図である。 感光体と帯電部材を近接配置方式とした例の説明図である。 プロセスカートリッジの一例の説明図である。 本発明のタンデム方式のフルカラー電子写真装置の説明図である。 合成例2で得られたチタニルフタロシアニン粉末のX線回折スペクトル図である。 比較合成例1で得られた水ペーストの乾燥粉末のX線回折スペクトル図である。 比較合成例2で得られたチタニルフタロシアニン結晶のXDスペクトル図である。 比較合成例3で得られたチタニルフタロシアニン結晶のXDスペクトル図である。 測定例1のX線回折スペクトル図である。 測定例2のX線回折スペクトル図である。
符号の説明
1 感光体
1C、1M、1Y、1K 感光体
2C、2M、2Y、2K 帯電部材
3C、3M、3Y、3K レーザー光
4C、4M、4Y、4K 現像部材
5C、5M、5Y、5K クリーニング部材
6C、6M、6Y、6K 画像形成要素
7 転写紙(転写体)
10 転写搬送ベルト
11C、11M、11Y、11K 転写ブラシ
12 定着装置
21 ギャップ形成部材
22 金属シャフト
23 画像形成領域
24 非画像形成領域
101 感光体
102 帯電手段
103 露光手段
104 現像手段
105 クリーニング手段
107 転写体
110 転写手段

Claims (36)

  1. 導電性支持体上に、少なくとも無機顔料が含有されておらずN−メトキシメチル化ナイロンを含有する下引き層が直接形成され、その上に無機顔料が含有されている下引き層が形成されている複数の下引き層、感光層及び架橋型電荷輸送層を順次積層した電子写真感光体において、該感光層にCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3゜のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有する結晶型で、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含み、前記チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有し、その回折ピークの半値巾が1゜以上である一次粒子の平均粒子サイズが0.1μm以下の不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンを、水の存在下で有機溶媒により結晶変換を行い、結晶変換後の一次粒子の平均粒子サイズが0.25μmより大きく成長する前に、結晶変換後のチタニルフタロシアニンを有機溶媒より分別、濾過したものを用いて得られたものであり、かつ該架橋型電荷輸送層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより形成されることを特徴とする電子写真感光体。
  2. 前記チタニルフタロシアニン結晶において、26.3°のピーク強度が最大回折ピーク27.2°のピーク強度に対して0.1〜5%の範囲であることを特徴とする請求項1に記載の電子写真感光体。
  3. 前記感光層が、電荷発生層と電荷輸送層とを順次積層した積層構成からなることを特徴とする請求項1又は2に記載の電子写真感光体。
  4. 前記結晶型のチタニルフタロシアニンを、平均粒子サイズが0.3μm以下で、その標準偏差が0.2μm以下になるまで分散を行い、その後有効孔径が3μm以下のフィルターにて濾過を行い、一次粒子の平均粒子サイズを0.25μm以下とした分散液を使用し、感光層あるいは電荷発生層を塗工したことを特徴とする請求項1乃至3のいずれかに記載の電子写真感光体。
  5. 前記チタニルフタロシアニン結晶が、ハロゲン化物を含まない原材料を使用して合成されたものであることを特徴とする請求項1乃至のいずれかに記載の電子写真感光体。
  6. 前記チタニルフタロシアニン結晶が不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンを、水の存在下で有機溶媒により結晶変換を行ったものを用いて得られたものであり、前記チタニルフタロシアニン結晶の結晶変換に際して、使用される不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンがアシッド・ペースト法により作製され、十分にイオン交換水で洗浄され、洗浄後のイオン交換水のpHが6〜8の間及び/又はイオン交換水の比伝導度が8以下であることを特徴とする請求項1乃至のいずれかに記載の電子写真感光体。
  7. 前記チタニルフタロシアニン結晶が不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンを、水の存在下で有機溶媒により結晶変換を行ったものを用いて得られたものであり、前記チタニルフタロシアニン結晶の結晶変換に際して、使用される有機溶媒量が不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンの30倍(重量比)以上であることを特徴とする請求項1乃至のいずれかに記載の電子写真感光体。
  8. 前記架橋型電荷輸送層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの官能基が、アクリロイルオキシ基及び/又はメタクリロイルオキシ基であることを特徴とする請求項1乃至のいずれかに記載の電子写真感光体。
  9. 前記架橋型電荷輸送層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーにおける官能基数に対する分子量の割合(分子量/官能基数)が、250以下であることを特徴とする請求項1乃至のいずれかに記載の電子写真感光体。
  10. 前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の官能基が、アクリロイルオキシ基又はメタクリロイルオキシ基であることを特徴とする請求項1乃至のいずれかに記載の電子写真感光体。
  11. 前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の電荷輸送性構造が、トリアリールアミン構造であることを特徴とする請求項1乃至10のいずれかに記載の電子写真感光体。
  12. 前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物が、下記一般式(1)又は(2)の少なくとも一種以上であることを特徴とする請求項1乃至11のいずれかに記載の電子写真感光体。
    {式中、R1は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基、置換基を有してもよいアリール基、シアノ基、ニトロ基、アルコキシ基、−COOR7(R7は水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基)、ハロゲン化カルボニル基若しくはCONR89(R8及びR9は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基を示し、互いに同一であっても異なっていてもよい)を表わし、Ar1、Ar2は置換もしくは無置換のアリーレン基を表わし、同一であっても異なってもよい。Ar3、Ar4は置換もしくは無置換のアリール基を表わし、同一であっても異なってもよい。Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。Zは置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレンエーテル2価基、アルキレンオキシカルボニル2価基を表わす。m、nは0〜3の整数を表わす。}
  13. 前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物が、下記一般式(3)の少なくとも一種以上であることを特徴とする請求項1乃至12のいずれかに記載の電子写真感光体。
    (式中、o、p、qはそれぞれ0又は1の整数、Raは水素原子、メチル基を表わし、Rb、Rcは水素原子以外の置換基で炭素数1〜6のアルキル基を表わし、複数の場合は異なっても良い。s、tは0〜3の整数を表わす。Zaは単結合、メチレン基、エチレン基、
    を表わす。)
  14. 前記架橋型電荷輸送層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの成分割合が、架橋型電荷輸送層全量に対し30〜70重量%であることを特徴とする請求項1乃至13のいずれかに記載の電子写真感光体。
  15. 前記架橋型電荷輸送層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の成分割合が、架橋型電荷輸送層全量に対し30〜70重量%であることを特徴とする請求項1乃至14のいずれかに記載の電子写真感光体。
  16. 前記架橋型電荷輸送層の硬化手段が加熱又は光エネルギー照射手段であることを特徴とする請求項1乃至15のいずれかに記載の電子写真感光体。
  17. 前記感光層あるいは電荷輸送層に、高分子電荷輸送物質が含有されていることを特徴とする請求項1乃至16のいずれかに記載の電子写真感光体。
  18. 前記N−メトキシメチル化ナイロンが加熱により架橋されていることを特徴とする請求項1乃至17のいずれかに記載の電子写真感光体。
  19. 前記無機顔料が含有されていない下引き層の膜厚が、2.0μm未満であることを特徴とする請求項乃至18のいずれかに記載の電子写真感光体。
  20. 前記無機顔料が含有されている下引き層には、無機顔料として金属酸化物が含有されていることを特徴とする請求項乃至19のいずれかに記載の電子写真感光体。
  21. 前記金属酸化物が、酸化チタンであることを特徴とする請求項20に記載の電子写真感光体。
  22. 前記無機顔料が、平均一次粒径の異なる2種以上の無機顔料の混合物であり、最も大きな平均一次粒径を有する無機顔料の平均一次粒径をD1、最も小さな平均一次粒径を有する無機顔料の平均一次粒径をD2としたとき、0.2<(D2/D1)≦0.5の関係を満たすことを特徴とする請求項乃至21のいずれかに記載の電子写真感光体。
  23. 前記D2が、0.2μm未満であることを特徴とする請求項22に記載の電子写真感光体。
  24. 前記平均一次粒径の異なる2種以上の無機顔料の混合比が、最も大きな平均一次粒径を有する無機顔料の含有量をT1、最も小さな平均一次粒径を有する無機顔料の含有量をT2としたとき、重量比で0.2≦T2/(T1+T2)≦0.8の関係を満たすことを特徴とする請求項22又は23に記載の電子写真感光体。
  25. 前記無機顔料が含有されている下引き層には、バインダー樹脂として熱硬化型樹脂が含まれていることを特徴とする請求項乃至24のいずれかに記載の電子写真感光体。
  26. 前記熱硬化型樹脂が、アルキッド樹脂及びメラミン樹脂からなることを特徴とする請求項25に記載の電子写真感光体。
  27. 前記アルキッド樹脂とメラミン樹脂との重量比が、1/1乃至4/1の範囲内であることを特徴とする請求項26に記載の電子写真感光体。
  28. 前記無機顔料が含有されている下引き層に含まれる無機顔料とバインダー樹脂との容積比が、1/1乃至3/1の範囲内であることを特徴とする請求項乃至27のいずれかに記載の電子写真感光体。
  29. 前記無機顔料が含有されている下引き層の膜厚が、無機顔料が含有されていない下引き層の膜厚よりも大きいことを特徴とする請求項乃至28のいずれかに記載の電子写真感光体。
  30. 請求項1乃至29のいずれかに記載の電子写真感光体を用いて、少なくとも帯電、画像露光、現像、転写を繰り返し行うことを特徴とする画像形成方法。
  31. 少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体を具備してなる画像形成装置において、該電子写真感光体が請求項1乃至29のいずれかに記載の電子写真感光体であることを特徴とする画像形成装置。
  32. 少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体からなる画像形成要素を複数配列したことを特徴とする請求項31に記載の画像形成装置。
  33. 前記画像形成装置に用いられる帯電手段に、交流重畳電圧を印加することを特徴とする請求項31又は32に記載の画像形成装置。
  34. 少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体を具備してなる画像形成装置において、画像形成時における感光体の線速が300mm/sec以上であることを特徴とする請求項31乃至33のいずれかに記載の画像形成装置。
  35. 前記画像形成装置が、少なくとも電子写真感光体と、帯電手段、露光手段、現像手段、クリーニング手段から選ばれる少なくとも1つの手段とが一体となった画像形成装置用プロセスカートリッジを搭載し、該画像形成装置用プロセスカートリッジが装置本体と着脱自在であることを特徴とする請求項31乃至34のいずれかに記載の画像形成装置。
  36. 少なくとも電子写真感光体を備えた画像形成装置用プロセスカートリッジにおいて、該電子写真感光体が請求項1乃至29のいずれかに記載の電子写真感光体であることを特徴とする画像形成装置用プロセスカートリッジ。
JP2004339878A 2003-12-01 2004-11-25 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ Expired - Fee Related JP4424668B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004339878A JP4424668B2 (ja) 2003-12-01 2004-11-25 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003401344 2003-12-01
JP2004339878A JP4424668B2 (ja) 2003-12-01 2004-11-25 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ

Publications (2)

Publication Number Publication Date
JP2005189835A JP2005189835A (ja) 2005-07-14
JP4424668B2 true JP4424668B2 (ja) 2010-03-03

Family

ID=34797454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004339878A Expired - Fee Related JP4424668B2 (ja) 2003-12-01 2004-11-25 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ

Country Status (1)

Country Link
JP (1) JP4424668B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649321B2 (ja) * 2005-11-30 2011-03-09 キヤノン株式会社 電子写真感光体、プロセスカートリッジ及び電子写真装置
AU2007221629B2 (en) 2006-03-01 2011-01-27 Ricoh Company, Ltd. Electrophotographic photoconductor, production method thereof, image forming method and image forming apparatus using photoconductor, and process cartridge
JP2009186984A (ja) * 2008-01-10 2009-08-20 Ricoh Co Ltd 電子写真感光体及び画像形成装置、画像形成装置用プロセスカートリッジ

Also Published As

Publication number Publication date
JP2005189835A (ja) 2005-07-14

Similar Documents

Publication Publication Date Title
JP4249679B2 (ja) 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ
JP4793913B2 (ja) 画像形成装置
JP4570045B2 (ja) 電子写真感光体、電子写真装置及び電子写真装置用プロセスカートリッジ
EP1698943B1 (en) Electrophotographic photoreceptor, method of image formation, image formation apparatus and process cartridge for image formation apparatus
JP2006078614A (ja) 電子写真感光体中間層用塗工液、それを用いた電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ
JP2006201744A (ja) 塗工液、電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ
JP4070700B2 (ja) 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ
JP2005189821A (ja) 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ
JP4424668B2 (ja) 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ
JP4554409B2 (ja) 画像形成装置
JP2006047454A (ja) 電子写真感光体中間層用塗工液、それを用いた電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ
JP4563843B2 (ja) 画像形成方法、画像形成装置及びプロセスカートリッジ
JP4414350B2 (ja) 電子写真感光体およびそれを用いた画像形成装置及び画像形成装置用プロセスカートリッジ
JP4761911B2 (ja) 塗工液、電子写真感光体、画像形成装置並びに画像形成装置用プロセスカートリッジ
JP4541195B2 (ja) 画像形成装置
JP2006220819A (ja) 画像形成装置
JP4319643B2 (ja) 電子写真感光体、電子写真装置及び電子写真装置用プロセスカートリッジ
JP5578396B2 (ja) 電子写真感光体、電子写真感光体を有するプロセスカートリッジ、及び電子写真装置
JP4719617B2 (ja) 画像形成装置
JP4322776B2 (ja) 電子写真感光体及び画像形成装置
JP4711689B2 (ja) 電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ
JP4541177B2 (ja) 画像形成装置
JP4554408B2 (ja) 画像形成装置
JP2006220812A (ja) 画像形成装置
JP4541932B2 (ja) 画像形成方法、画像形成装置及びプロセスカートリッジ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees