近年、電子写真方式を用いた情報処理システム機の発展は目覚ましいものがある。特に情報をデジタル信号に変換して光によって情報記録を行なう光プリンタは、そのプリント品質、信頼性において向上が著しい。このデジタル記録技術はプリンタのみならず通常の複写機にも応用され、所謂デジタル複写機が開発されている。また、従来からあるアナログ複写機にこのデジタル記録技術を搭載した複写機は、種々様々な情報処理機能が付加されるため今後その需要が益々高まっていくと予想される。さらに、パーソナルコンピュータの普及及び性能の向上にともない、画像及びドキュメントのカラー出力を行なうためのデジタルカラープリンタの進歩も急激に進んでいる。
又、上記プリンターや複写機は装置の高速化、高画質化が要望されているが、それには2つの大きな流れがある。一方は小型化を推し進めながら可能な範囲で高速化する方法であり、他方は大口径の感光体を用い感光体線速(プロセス線速)を非常に大きなものにする方法である。
前者は感光体口径をそれほど大きなものにしないで、装置の小型化を優先的に設計するため、高速化には限界があり、また感光体の寿命にも限界がある。後者は、プリント速度で100枚/分程度の高速化を実現するために、大口径の感光体を使用し、かつ感光体線速を可能な限り大きくし、感光体の寿命もプリント1枚あたりの感光体回転数を実質的に少なくすることにより、高耐久化を図っている。
このような高線速でかつ大口径の感光体を使用するシステムにおける帯電方式としては、金属製のワイヤーを使用したコロトロンあるいはスコロトロン方式と呼ばれる方式が使用される。
コロトロン帯電器は、一般に50〜100μm径の金属製ワイヤーを開口部を有した金属性シールドケースで囲み、開口部を感光体表面に対向させた状態でワイヤーに5−10KVの高電圧を印加し、これによって発生した正又は、負イオンを感光体表面に移動させて帯電させる帯電部材である。 コロトロン帯電器は、限られた帯電時間内で、一定量のコロナ電荷を供給する帯電部材である。
一方スコロトロン帯電器はコロトロン帯電器の開口部にシールド電極とは絶縁して数本のワイヤーあるいは金属製メッシュをグリッド電極として配置した構成の帯電部材であり、グリッド電極に印加されるグリッド電圧によって感光体の帯電電位が一定に制御される帯電部材である。
後述の如く有機感光体(OPC)は画像形成時に種々のハザードを受け、感光層が摩耗したり、表面に傷が付いたりし、全体的に又は一部局部的に感光体の帯電能が低下し、コロトロン方式では帯電の安定性が得られ難い。 特に線速で300mm/sec以上の高線速領域ではコロトロン方式は帯電電位の安定性で問題が発生する。
このように特に、有機感光体(OPC)を用いた装置においては、通常負帯電が施されるため、帯電安定性の点からグリッドを有するスコロトロン方式が用いられる。このようなワイヤー方式の帯電部材は、帯電部材と感光体間の距離が大きいため、印加バイアスを大きくしなければならず、ローラー形状であり感光体と接触する形態を有する接触方式の帯電部材に比べて使用電力が大きく、またオゾンやNOxといった酸化性ガスの発生量が大きいといった問題点を有していることは事実である。しかしながら、ローラー方式の帯電部材では高速帯電を行った際に帯電性が追従出来ない、またローラーの寿命が短くシステムとしての信頼性を確保出来ないなどの問題がある。このため、感光体(プロセス)線速が300mm/sec以上の高速で動作させる画像形成装置においては、スコロトロン方式の帯電部材を使いこなす必要がある。
このようなデジタル方式の画像形成装置は、年々その機能を向上させ、高耐久・高安定は勿論のこと更にその高画質化が同時に求められている。更に、高速カラー化のためには1本の感光体に対して帯電、露光、現像、クリーニング、除電などの画像形成に必要な部材を1つずつ取り付けた画像形成要素を複数用いたタンデム方式のカラー画像形成装置が現在の主流である。これは通常イエロー、マゼンタ、シアン、ブラック用の画像形成要素を搭載し、各々のトナー像を4つの画像形成要素で並列に作製し、転写体(転写紙)もしくは中間転写体上で重なり合わせることで、高速にカラー画像を作製するものである。
このため、感光体及びその周りの部材をコンパクトにしないと画像形成装置が非常に大きなものになってしまうため、画像形成要素の中心に配置される感光体を小径化することがまずは必須である。感光体を小径化することにより、画像形成装置がコンパクトになったとしても、大口径の場合よりも極端にその寿命が短くなる場合には、小径化したメリットが存在しない。このため、従来の感光体よりも感光体の寿命を延ばす(長寿命化する)ことがこの技術の課題となる。
感光体の寿命には2つの律速過程が存在し、1つは静電疲労であり、いま1つは表面層の摩耗である。いずれも現在の主流である有機系感光体にとっては大きな課題である。前者は帯電・露光といった画像形成における繰り返し使用における感光体の表面電位(帯電電位と露光部電位)の変化であり、概ね有機系材料を用いた場合には帯電電位の低下もしくは露光部電位の上昇(残留電位と呼ぶ場合がある)が問題となる。後者においては、感光体を構成する最表面に位置する層がクリーニング部材などの摺擦により機械的に摩耗を生ずる現象である。この摩耗により感光体表面層の膜厚が減少すると、表面に生じる傷、感光層膜厚減少による電界強度の上昇、静電疲労の促進などを生じることになり、感光体の寿命を著しく低減する要因となる。従って、感光体の寿命を向上するためには、上記2つの課題を同時に解消しなくてはならない。
また、現在では電子写真方式の画像形成装置も高速化の実現により、印刷分野に進出しつつあり、印刷物並みの高画質および高安定化が求められている。前者に関しては画像書き込みにおける解像度として600dpiが最低品質の状況になり、解像度が非常に向上してきた。後者においては原稿情報を直接印字できるという電子写真の特長を生かして、多量印刷が得意な分野の出力原稿の一部に様々な1枚ずつ異なるという情報も追加できるようになり、同じ原稿を非常に大量に処理すると同時に、1枚1枚わずかに異なる情報も入力するという多種多様の書き込み、現像が行われることになりシステムとしての安定性が非常に求められるようになった。これらに対しては、画像形成要素の繰り返し使用における安定性は当然求められることとして、更に異常画像が発生しないということも極めて重要なことである。
このような画像形成装置の寿命および安定性は、画像形成の中心であり、画像形成動作中にその他の部材と常に関連動作を行う感光体が最も重要な鍵を握ることになる。ここまでの感光体のあらゆる精力的な開発によって、感光体の静電特性および表面の摩耗に関しては、幾つかの技術が完成されつつある。例えば、静電特性の改良に関しては、光キャリア発生効率の大きな電荷発生物質の開発および移動度の大きな電荷輸送物質の開発が挙げられる。これらを組み合わせることによって、光減衰における大きなゲインとレスポンスを得ることができ、システム全体として、帯電電位の低減化、書き込み光量の低減化、現像バイアスの低減化、転写バイアスの低減化、除電プロセスの不要性などを生み出し、システム設計に余裕度を生み出すことになる。これらは全て感光体に印加されるハザードの低減化につながり、感光体自身にも余裕度が生まれることになる。
また、上述のようにアナログ方式の画像形成装置や、モノクロ方式の画像形成装置での感光体の使用方法が、高速フルカラー機の出現によって一変し、多種多様な光書き込みなどの使われ方がなされるようになった。このような場合、異常画像の発生の原因は感光体であることが最も大きな問題となる。異常画像の発生は様々なケースがあるが、大きく2つに大別できる。1つは感光体表面に発生する傷などに起因した異常画像であり、いま1つは感光体の静電疲労により発生する異常画像である。前者に関しては、感光体表面層の改良(例えば保護層の使用)や感光体当接部材の改良によりかなりの場合対応が可能である。後者に関しては、感光体そのものの劣化に起因するものであるが、現在最も大きな課題となっているものはネガ・ポジ現像における地汚れ(画像上の地肌部に黒点、黒ポチが発生する現象)である。
地汚れの発生原因としては、導電性支持体の汚れ・欠陥、感光層の電気的な絶縁破壊、支持体からのキャリア(電荷)注入、感光体の暗減衰増大、感光層における熱キャリア生成などが挙げられる。このうち、支持体の汚れや欠陥に関しては、感光層を塗布する前にそのような支持体を排除することで対応が可能であり、ある意味においてはエラーによって生じるものであり、発生原因の本質ではない。従って、感光体の耐電圧性、支持体からの電荷注入性、静電的疲労の低下を改良することが、この問題の根本的な解決方法であると考えられる。
地汚れの発生原因の一つである導電性支持体からの電荷の注入に関する従来技術としては、導電性支持体と感光層の間に下引き層や中間層を設ける技術が提案されてきた。
例えば、特許文献1には硝酸セルロース系樹脂中間層が、特許文献2にはナイロン系樹脂中間層が、特許文献3にはマレイン酸系樹脂中間層が、特許文献4にはポリビニルアルコール樹脂中間層がそれぞれ開示されている。しかしながら、これらの単層かつ樹脂単独の中間層は電気抵抗が高いため、残留電位の上昇を引き起こし、感光体への帯電と同じ極性に荷電されたトナーを感光体の露光部位に付着させて現像するネガ・ポジ現像(又は反転現像)においては画像濃度低下を生じる。また、不純物等に起因するイオン伝導性を示すことから、低温低湿環境下では中間層の電気抵抗が特に高くなるため、残留電位が著しく上昇し、高温高湿環境下では中間層の電気抵抗が低下し、地汚れが発生しやすくなる傾向が見られていた。このため、残留電位を低減させるために、中間層を薄膜化する必要があり、十分な地汚れの抑制が実現されていないのが実情であった。
これらの問題点を解消するため、中間層の電気抵抗を制御する技術として、導電性添加物を中間層バルクに添加する方法が提案された。例えば、特許文献5にはカーボン又はカルコゲン系物質を硬化性樹脂に分散した中間層が、特許文献6には四級アンモニウム塩を添加してイソシアネート系硬化剤を用いた熱重合体中間層が、特許文献7には抵抗調節剤を添加した樹脂中間層が、特許文献8には有機金属化合物を添加した樹脂中間層が開示されている。しかしながら、これら樹脂中間層単体では、残留電位の低減が実現されても地汚れが増加する傾向が見られる上、近年のレーザー光のようなコヒーレント光を使用した画像形成装置においては、モアレ画像を生じるという問題点を有している。
更にはモアレ防止と中間層の電気抵抗を同時に制御する目的で、中間層にフィラーを含有した感光体が提案された。例えば、特許文献9にはアルミニウム又はスズの酸化物を分散した樹脂中間層が、特許文献10には導電性粒子を分散した樹脂中間層が、特許文献11にはマグネタイトを分散した中間層が、特許文献12には酸化チタンと酸化スズを分散した樹脂中間層が、特許文献13〜18には、カルシウム、マグネシウム、アルミニウム等のホウ化物、窒化物、フッ化物、酸化物の粉体を分散した樹脂の中間層が開示されている。
これらのようなフィラーを分散させた中間層は、残留電位の低減に対してはフィラー量を増加した方が、地汚れを抑制するためにはフィラー量を減少させた方が好ましく、それらを両立することは困難であった。また、樹脂の含有量が少なくなると導電性支持体との接着性が低下し、剥離が生じやすくなる問題も有しており、特に導電性支持体がフレキシブルなベルト状の感光体では、その影響は致命的なものであった。
このような問題点を解決するために、中間層を積層化する考え方が提案された。積層化の構成は2つのタイプに大別され、1つは導電性支持体201上にフィラー分散した樹脂層202およびフィラーを分散しない樹脂層203および感光層204を順に積層したものであり(図1参照)、もう1つは導電性支持体201上にフィラーを分散しない樹脂層203およびフィラーを分散した樹脂層202および感光層204を順に設けたものである(図2参照)。
前者の構成を詳しく述べると、上述したような支持体の欠陥を隠蔽するため、導電性支持体201上に抵抗の低いフィラーを分散した導電性のフィラー分散層202を設け、その上に前記樹脂層203を設けたものである。これらは例えば特許文献19〜27等に記載されている。この構成は、導電性フィラーを含有するフィラー分散層によって、モアレの発生を防止することは可能であり、その上に樹脂層を有しているために地汚れ抑制効果も得ることができるが、導電性支持体からのキャリア注入を抑制しているのは、樹脂層のみであるため、前述の樹脂層を単独で用いた場合と同様に、厚膜化すれば著しい残留電位上昇が、薄膜化すれば地汚れの増加が引き起こされることになり、それらの両立を実現する上で十分に満足されるものではなかった。
また、フィラー分散層上に絶縁性の樹脂層が積層されている上、フィラー分散層は導電性支持体の欠陥を隠蔽するために膜厚を厚くする(10μm以上)必要があるため、フィラー分散層に含有されるフィラーの抵抗を高めて地汚れを抑制しようとしても、残留電位の影響が顕著に大きくなるため難しい。
また、特許文献28〜30には、導電層と中間層、およびチタニルフタロシアニン結晶を含有する感光層を積層した感光体が開示されている。しかしながら、導電層と中間層を積層しただけでは、地汚れの影響を十分に抑制することは難しい。それは、上記の理由に加え、感光層における熱キャリア発生が、地汚れ発生要因になる場合が存在しているためである。
一方、後者の構成としては、導電性支持体201上にキャリア注入を抑制する樹脂層203を設け、その上にフィラーを含有したフィラー分散層202を設けたもので、例えば、特許文献31、32等に記載されている。この構成においては、樹脂層によってキャリア注入を抑制できるが、その上に積層されるフィラーを含有したフィラー分散層は特に導電性のフィラーを含有しなくても残留電位に与える影響が少ないため、キャリア注入の抑制効果も高まり、残留電位と地汚れを両立させる上では、前者の構成よりも有効性が高い。
このように、複数の下引き層を積層させ機能分離させた構成は、モアレ防止や地汚れ抑制、さらに残留電位低減を両立させる上で高い有効性を示すものの、樹脂層を薄膜化させて用いる必要があり、それに用いられる樹脂によっては、地汚れや残留電位の湿度依存性が大きかったり、膜厚依存性が大きくなったりする傾向が見られ、必ずしも高い安定性を有していなかった。
また、下引き層にN−アルコキシ(メトキシ)メチル化ナイロンを含有させた下引き層あるいは中間層を用いた方法が開示されている。例えば、特許文献33には下引き層にアルコキシメチル化度が5〜30%のアルコキシメチル化共重合ナイロンを含有させる方法が、特許文献34には、中間層に無機顔料とバインダー樹脂として架橋したN−アルコキシメチル化ポリアミドを含有させる方法が、特許文献35には下引き層がN−アルコキシメチル化ナイロン樹脂よりなり、樹脂中に含有される不純物Na、Ca及びP原子の元素濃度が各々10ppm以下とする方法が、特許文献36には中間層にλ−アミノ−n−ラウリン酸を主成分とするN−アルコキシメチル化ポリアミド共重合体を含有させる方法が、特許文献37には中間層にある構造を有する単位成分を有するポリアミド樹脂を含有させる方法が開示されている。
このように、下引き層もしくは中間層を積層したり、N−アルコキシメチル化ナイロンを下引き層もしくは中間層に含有させる方法は公知であり、導電性支持体からの電荷の注入を抑制し地汚れ抑制効果を高める手段としては有効である。しかしながら、感光体の摩耗が進むに伴い電界強度が増加すると地汚れは顕著に増加し、高電界強度においても下引き層もしくは中間層の電荷ブロック機能を高めようとすると、著しい残留電位上昇が引き起こされ、下引き層もしくは中間層により導電性支持体からの電荷の注入を抑制するだけでは、感光体の繰り返し使用における地汚れの抑制効果は十分ではなく、感光体の高耐久化は実現されていなかった。
また、画像を出力する頻度が大幅に増加していることから、装置の高画質化も重要な課題となっている。高画質化を達成するためには、(i)帯電手段、露光手段によって形成される感光体上の静電潜像を高密度な画像で形成すること、(ii)それに続く現像手段にて静電潜像に忠実にトナー像を形成すること、(iii)最後に感光体上のトナー像を正確に転写紙に転写することの3つの課題が挙げられる。
これらの課題解決のための手段として、上記(i)の課題に対しては、露光手段に小径ビームを用いた高密度書き込みにより静電潜像を形成する方法が挙げられるが、感光体にかかる電界強度が小さいと感光層中で発生した光キャリアがクーロン反発により広がってしまい、ビーム径に対応した大きさのドットが形成されなくなってしまう。
また、上記(ii)の課題に対しては、現像手段においてトナー粒径を小粒径化することによって静電潜像に忠実なトナー像を感光体上に形成する方法が挙げられるが、感光体表面電位が低いと現像効率の低下や集約化が行われず、静電潜像のドットに対して散ったドットが形成されてしまう。
更に上記(iii)の課題に対しては、転写手段において空隙電界強度を高くすることで転写効率を上げ感光体上のトナー像を忠実に転写紙に転写する方法が挙げられるが、転写電界強度を大きくすると逆に放電を生じて転写チリを生じたり、感光体の電気特性の疲労を促進してしまう場合がある。
図3には、感光体に印加される電界強度(感光体表面電位/感光層膜厚)に対するドット形成の様子を示す(書き込みは1200dpiで行っている)。図3に示されるように、小径ドットを忠実に再現するためには電界強度を高めに設定する必要がある。図4には、電界強度に対する地汚れランクの変化を示す。ここで言う地汚れランクとは、地汚れの程度を示すものであり、数値が大きいほど地汚れの程度が良好(地汚れ発生頻度が低い)であることを表すものである。図3と図4から分かるように両者の間には電界強度に関してトレード・オフの関係がある。地汚れを回避するためには、通常、感光体の電界強度を30V/μm以下で使用し、小径ドットの再現を多少犠牲にしているシステムが使用されていた。例えば、特許文献38では、地汚れと細線の再現性を両立させるために、感光体の電界強度を12〜40V/μmで使用する旨の記載がある。
しかしながら、書き込み光の解像度を高くしていった場合には、この下限値をより高めに設定しない限り、書き込みドットを再現良く現像することが出来ない。また、感光体の地汚れに関しても感光体を構成する材料(主に電荷発生材料)により、電界強度の上限値が異なってくる。このような問題は、低い解像度(400dpi以下)の書き込み光では、それほど問題にならない現象であったが、昨今の高解像度書き込み(600dpi以上、より精細な書き込みは1200dpi以上)において顕著に現れる問題である。
従来技術においては、地汚れを抑制させると残留電位上昇や環境依存性が著しく増大したり、残留電位上昇を抑制させると地汚れ抑制効果が不十分となるなど、それらの両立が実現されていなかった。このように、地汚れは、導電性支持体からの電荷注入による影響だけでなく、感光層もしくは電荷発生層に含有される電荷発生物質の粗大粒子や不純物等の影響等、多くの要因を含んでいるが、これ以外に地汚れに大きな影響を及ぼす因子として重要なのは、感光体の膜厚減少による電界強度の増加である。
又、従来高速機に用いられている有機感光体(OPC)は画像形成プロセスで帯電工程と露光工程が繰り返されることによって、感光体の帯電性が低下したりや残留電位が上昇する所謂静電疲労が発生するが、感光層の膜厚が薄くなると、静電的疲労による帯電性低下が更に促進される。このため、感光体の膜厚減少は地汚れの程度を更に劣化させる要因となる。
そのため、感光体の最表面に形成される電荷輸送層あるいは保護層は、耐摩耗性を高める工夫がされてきた。感光層の耐摩耗性を改良する技術としては、(i)架橋型電荷輸送層に硬化性バインダーを用いたもの(例えば、特許文献39参照)、(ii)高分子型電荷輸送物質を用いたもの(例えば、特許文献40参照)、(iii)架橋型電荷輸送層に無機フィラーを分散させたもの(例えば、特許文献41参照)等が挙げられる。このように、感光体の耐摩耗性を高めることにより電界強度の経時変動を少なくでき、更には繰り返し使用による帯電電位の低下が押さえられることから、地汚れの抑制に対しては高い効果が得られる。
しかし、これらの技術の中で、(i)の硬化性バインダーを用いたものは、電荷輸送物質との相溶性が悪いためや重合開始剤、未反応残基などの不純物により残留電位が上昇し画像濃度低下が発生し易い傾向がある。また、(ii)の高分子型電荷輸送物質を用いたものは、ある程度の耐摩耗性向上が可能であるものの、有機感光体に求められている耐久性を十二分に満足させるまでには至っていない。また、高分子型電荷輸送物質は材料の重合、精製が難しく高純度なものが得にくいため材料間の電気的特性が安定しにくい。更に塗工液が高粘度となる等の製造上の問題を起こす場合もある。(iii)の無機フィラーを分散させたものは、通常の低分子電荷輸送物質を不活性高分子に分散させた感光体に比べ高い耐摩耗性が発揮されるが、無機フィラー表面に存在する電荷トラップにより残留電位が上昇し、画像濃度低下が発生し易い傾向にある。また、感光体表面の無機フィラーとバインター樹脂の凹凸が大きい場合には、クリーニング不良が発生し、トナーフィルミングや画像流れの原因となることがある。これら(i)、(ii)、(iii)の技術では、地汚れ抑制に有効な場合があっても、残留電位やクリーニング性等に不具合があり、それによって生じる画像欠陥の影響から、耐久性を十二分に満足するには至っていない。
特に、近年では、高画質化のためにトナー粒径の小さな小粒径トナーや、粒径分布が揃い、形状が球形に近い球形トナーが使用され始めている。このようなトナーは、従来の画像形成装置で用いられているブレードクリーニング法によるクリーニングが難しく、トナーのブレードすり抜け等のクリーニング不良を起こしやすい。また、トナーに対しては高機能化のために各種添加剤が添加されているが、これに基づくフィルミング等も発生しやすくなっている。
このような不具合は、感光体表面層の耐摩耗性が向上した場合に顕著に現れやすい。これはブレードクリーニングが感光体表面層を摩耗(削り取る)しながらトナーをクリーニングしてきたことに起因するものであると推察され、表面層の摩耗量が低減したことによって、この効果が発現しにくくなったことに起因すると考えられる。
この点に関しては、感光体未使用状態から繰り返し使用後における感光体表面層の表面性の変化が大きな原因になっている。即ち、感光体表面層の摩耗量を低減する技術が提示されているものの、摩耗量そのものが表面層の平均値のような形で表されているからであり、実際には微細領域での表面凹凸のようなもの(例えば、非常に細かいスジ、フィラー添加による微細凹凸等)が存在し、ブレードとの接触状態が繰り返し使用後には大きく変化していることに起因していると考えられる。このため、上述のような表面層の耐摩耗性向上の際には、摩耗量低減に加えて、表面形状の変化は小さいことが求められる(勿論、初期状態において、表面が非常に平滑であることは必須である)。しかしながら、ここまでの表面層の開発においては、そこまでの技術が提示されていない。
更に、(i)の耐摩耗性と耐傷性を改良するために多官能のアクリレートモノマー硬化物を含有させた感光体も知られている(特許文献42参照)。しかし、この感光体においては、感光層上に設けた保護層にこの多官能のアクリレートモノマー硬化物を含有させる旨の記載があるものの、この保護層においては電荷輸送物質を含有せしめてもよいことが記載されているのみで具体的な記載はなく、しかも、単に架橋型電荷輸送層に低分子の電荷輸送物質を含有させた場合には、上記硬化物との相溶性の問題があり、これにより、低分子電荷輸送物質の析出、白濁現象が起こり、露光部電位の上昇により画像濃度が低下するばかりでなく機械強度も低下してしまうことがあった。さらに、この感光体は、具体的には高分子バインダーを含有した状態でモノマーを反応させるため、3次元網目構造が充分に進行せず、架橋結合密度が希薄となるため飛躍的な耐摩耗性を発揮できるまでには至っていない。
これらに関わる感光層の耐摩耗技術として、炭素−炭素二重結合を有するモノマーと、炭素−炭素二重結合を有する電荷輸送物質及びバインダー樹脂からなる塗工液を用いて形成した電荷輸送層を設けることが知られている(例えば、特許文献43参照)。このバインダー樹脂は電荷発生層と硬化型電荷輸送層の接着性を向上させ、さらに厚膜硬化時の膜の内部応力を緩和させる役割を果たしていると考えられ、炭素−炭素二重結合を有し、上記電荷輸送物質に対して反応性を有するものと、上記二重結合を有せず反応性を有しないものに大別される。
この感光体は耐摩耗性と良好な電気的特性を両立しており注目されるが、バインダー樹脂として反応性を有しないものを使用した場合においては、バインダー樹脂と、上記モノマーと電荷輸送物質との反応により生成した硬化物との相溶性が悪く、架橋型電荷輸送層中で層分離が生じ、傷やトナー中の外添剤及び紙粉の固着の原因となることがある。また、上記したように、3次元網目構造が充分に進行せず、架橋結合密度が希薄となるため飛躍的な耐摩耗性を発揮できるまでには至っていない。
加えて、この感光体において使用される上記モノマーとして具体的に記載されているものは2官能性のものであり、これらの点で耐摩耗性の点では未だ満足するには至らなかった。また、反応性を有するバインダーを使用した場合においても、硬化物の分子量は増大するものの分子間架橋結合数は少なく、上記電荷輸送物質の結合量と架橋密度との両立は難しく、電気特性及び耐摩耗性も充分とはいえないものであった。
また、同一分子内に二つ以上の連鎖重合性官能基を有する正孔輸送性化合物を硬化した化合物を含有する感光層も知られている(例えば、特許文献44参照)。この感光層は架橋結合密度を高められるため高い硬度を有するが、嵩高い正孔輸送性化合物が二つ以上の連鎖重合性官能基を有するため硬化物中に歪みが発生し内部応力が高くなり、架橋表面層が長期間の使用においてクラックや剥がれが発生しやすい場合がある。これら従来技術における電荷輸送性構造を化学結合させた架橋感光層を有する感光体においても、現状では充分な総合特性を有しているとは言えない。
このように、地汚れは、下引き層だけでなく、電荷発生層及び電荷輸送層もしくは保護層の各層に影響されるものであるため、それらを同時に改善させなければ地汚れを完全に抑制することはできず、感光体の高耐久化を実現することは難しい。しかし、従来技術においては、感光体を構成するそれらすべての層に地汚れを抑制させた例は少なく、またそれらすべての層を同時に改善しようとすると残留電位上昇が顕著に見られたり、帯電性や残留電位の湿度依存性が増加したり、フィルミングや画像ボケの影響を増加したり、感光体表面の傷により画像欠陥が生じやすくなるなど、地汚れ以外の画質劣化要因が顕著に増加し、それにより感光体の高耐久化の実現はなされていなかった。
特開昭47−6341号公報
特開昭60−66258号公報
特開昭52−10138号公報
特開昭58−105155号公報
特開昭51−65942号公報
特開昭52−82238号公報
特開昭55−113045号公報
特開昭58−93062号公報
特開昭58−58556号公報
特開昭60−111255号公報
特開昭59−17557号公報
特開昭60−32054号公報
特開昭64−68762号公報
特開昭64−68763号公報
特開昭64−73352号公報
特開昭64−73353号公報
特開平1−118848号公報
特開平1−118849号公報
特開昭58−95351号公報
特開昭59−93453号公報
特開平4−170552号公報
特開平6−208238号公報
特開平6−222600号公報
特開平8−184979号公報
特開平9−43886号公報
特開平9−190005号公報
特開平9−288367号公報
特開平5−100461号公報
特開平5−210260号公報
特開平7−271072号公報
特開平5−80572号公報
特開平6−19174号公報
特開平9−265202号公報
特開2002−107984号公報
特許第2718044号公報
特許第3086965号公報
特許第3226110号公報
特開2001−154379号公報
特開昭56−48637号公報
特開昭64−1728号公報
特開平4−281461号公報
特許第3262488号公報
特許第3194392号公報
特開2000−66425号公報
初めに図面を用いて本発明の画像形成装置を詳しく説明する。
図5は、本発明の画像形成装置を説明するための概略図であり、後に示すような変形例も本発明の範疇に属するものである。
図5において、感光体(1)は導電性支持体上に少なくとも電荷ブロッキング層、モアレ防止層、感光層、及び保護層が設けられてなり、該保護層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物とを硬化することにより形成されてなる。感光体(1)はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであっても良い。
帯電部材(3)には、感光体にスコロトロン方式の帯電部材が良好に使用される。この帯電部材により、感光体には30V/μm以上の電界強度が印加される。感光体に印加される電界強度は高いほどドット再現性が良好になるものの、感光体の絶縁破壊や現像時のキャリア付着の問題を生み出す可能性があり、上限値は概ね60V/μm以下、より好ましくは50V/μm以下である。
上記帯電部材に用いられる放電ワイヤーとしては、直径が80μm未満30μm以上のものが有効に使用出来る。直径が80μm以上のワイヤーは表面積が大きくなり過ぎ、放電むらが生じやすく、長期にわたり均一に感光体を帯電させることが困難である。また、直径が30μm未満の放電ワイヤーを用いた帯電器では感光体への帯電が均一で、且つオゾン等の活性気体により酸化されにくいため、長期にわたり安定した帯電が可能になるが、他方線径が小さいため放電電流が少なくなり、近年強い要請のある複写機等の高速化に対応出来ない場合が存在する。
また、1つの帯電部材の中に複数の放電ワイヤーを併用することは、高速機における帯電に関しては非常に有利である。
このような放電ワイヤーは次のように構成される。材質的にはタングステン系でW、W−Mo合金、其のほかモリブデン、ステンレス鋼等、あるいはチタン及び其の合金類等がある。又、これらの放電ワイヤーには厚さ0.1〜5μmの金、銀、白金、ニッケル、ガラス、カーボン等の被覆を施しても良い。
また、放電ワイヤーは使用時にテンションをかけて使用するため、引っ張り強度として、150kg/mm2以上のものが好ましく使用される。
また、画像露光部(5)には、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの高輝度が確保でき、600dpi以上の解像度で書き込むことの出来る光源が使用される。光源(書き込み光)の解像度により、形成される静電潜像ひいてはトナー像の解像度が決定され、解像度が高いほど鮮明な画像が得られる。しかしながら、解像度を高くして書き込みを行うとそれだけ書き込みに時間がかかることになるため、書き込み光源が1つであると書き込みがドラム線速(プロセス速度)の律速になってしまう。従って、書き込み光源が1つの場合には1200dpi程度の解像度が上限となる。書き込み光源が複数の場合には、それぞれが書き込み領域を負担すれば良く、実質的には「1200dpi×書き込み光源個数」が上限となる。ここで言う書き込み光源とは、LD素子1つ、あるいはLED素子1つを示すものであり、例えばアレイ状に配置されたLED等は、複数の光源として取り扱うものである。
これらの光源のうち、発光ダイオード、及び半導体レーザーは照射エネルギーが高く、また600〜800nmの長波長光を有するため、本発明で用いられる電荷発生材料である特定結晶型のフタロシアニン顔料が高感度を示すことから良好に使用される。
現像ユニット(6)は、使用するトナーの帯電極性により、正規現像にも反転現像にも対応可能である。感光体の帯電極性と逆極性のトナーを使用した場合には正規現像が使用され、同極性のトナーを用いた場合には反転現像によって、静電潜像が現像される。先の画像露光部に使用する光源によっても異なるが、近年使用するデジタル光源の場合には、一般的に画像面積率が低いことに対応して、書込部分にトナー現像を行なう反転現像方式が光源の寿命等を考慮すると有利である。また、トナーのみで現像を行なう1成分方式と、トナーおよびキャリアからなる2成分現像剤を使用した2成分方式の2通りの方法があるが、いずれの場合にも良好に使用できる。
また、感光体上の形成されたトナー像は、転写紙に転写されることで転写紙上の画像となるものであるが、この際、2つの方法がある。1つは図5に示すような感光体表面に現像されたトナー像を転写紙に直接転写する方法と、もう1つはいったん感光体から中間転写体にトナー像が転写され、これを転写紙に転写する方法である。いずれの場合にも本発明において用いることができる。特に、感光体表面に形成されたトナー像を被転写体(出力する紙など)に直接転写する直接転写方式が良好に用いられる。
また、図5には転写手段として転写チャージャー(10)を用いているが、オゾン発生量の少ない転写ベルトや転写ローラを用いることも可能である。なお、転写時の電圧/電流印加方式としては、定電圧方式、定電流方式のいずれの方式も用いることが可能であるが、転写電荷量を一定に保つことができ、安定性に優れた定電流方式がより望ましい。このような転写部材は、構成上、本発明の構成を満足できるものであれば、公知のものを使用することができる。
この際、転写後の感光体表面電位が繰り返し使用における感光体の静電疲労に大きな影響を及ぼす。即ち、感光体の静電疲労は感光体の通過電荷量により大きく左右される。この通過電荷量とは、感光体の膜厚方向を流れる電荷量に相当する。感光体の画像形成装置中の動作として、メイン帯電器により所望の帯電電位に帯電され(ほとんどの場合負帯電される)、原稿に応じた入力信号に基づき光書き込みが行われる。この際、書き込みが行われた部分は光キャリアが発生し、表面電荷を中和する(電位減衰する)。この時、光キャリア発生量に依存した電荷量が感光体膜厚方向に流れる。
一方、光書き込みが行われない領域(非書き込み部)は、現像工程・転写工程を経て、除電工程に進む(必要に応じて、その前にクリーニング工程が施される)。 除電手段としては通常光除電がよく用いられるが、ここで、感光体の表面電位がメイン帯電により施された電位に近い状態(暗減衰分は除く)であると、光書き込みが行われた領域とほぼ同じ量の電荷量が光除電によって感光体膜厚方向に流れることになる。一般的に、現在の原稿は書き込み率が低いため、この方式であると、繰り返し使用における感光体の通過電荷量は除電工程で流れる電流がほとんどと言うことになる(書き込み率が10%であるとすると、除電工程で流れる電流は、全体の9割を占めることになる)。
この通過電荷は、感光体を構成する材料の劣化を引き起こす等、感光体静電特性に大きく影響を及ぼす。その結果、通過電荷量に依存して、特に感光体の残留電位を上昇させる。感光体の残留電位が上昇すると、本発明で使用されるネガ・ポジ現像では、画像濃度が低下することになり、大きな問題となる。従って、画像形成装置内での感光体の長寿命化(高耐久化)を狙うためには、如何に感光体の通過電荷量を小さくするかという課題が存在する。
これに対して、光除電を行わないという考え方もあるが、メイン帯電器の帯電器能力が大きくないと、帯電の安定化が図れず、残像のような問題を生じる場合がある。
感光体の通過電荷は、光照射で発生した光キャリアが感光体表面に帯電された電位(これにより生じた電界)で移動することにより生じる。従って、感光体表面電位を光以外の手段で減衰させることが出来れば、感光体1回転(画像形成1サイクル)あたりの通過電荷量を低減することが出来る。
このためには、転写工程において転写バイアスを調整することにより、感光体通過電荷量を調整することが有効である。即ち、メイン帯電により帯電され、書き込みが行われない非書き込み部は、暗減衰量を除き、帯電された電位に近い状態で転写工程に突入する。この際、メイン帯電器により帯電された極性側の絶対値として100V以下まで低減することにより、引き続く除電工程に突入しても光キャリア発生がほとんど行われず、通過電荷が生じない。この値は、0Vにより近いほど望ましい。
更には、転写バイアスの調整により、メイン帯電により施される帯電極性とは逆極性に感光体表面電位が帯電するように転写バイアスを印加させることにより、光キャリアが絶対に発生しないため、より望ましい。但し、逆極性にまで帯電するような転写条件では、場合により転写チリを多く発生させたり、次の画像形成プロセス(サイクル)のメイン帯電が追いつかない場合が出てくる。その場合には、残像のような不具合が発生する場合があるため、逆極性の絶対値として100V以下であることが望ましい。
除電ランプ(2)等の光源には、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの発光物全般を用いることができる。そして、所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。
かかる光源等は、図5に示される工程の他に光照射を併用した転写工程、除電工程、クリーニング工程、あるいは前露光などの工程を設けることにより、感光体に光が照射される。
先の帯電方式においてAC成分を重畳して使用する場合や、感光体の残留電位が小さい場合等は、この除電機構を省略することもできる。また、光学的な除電ではなく静電的な除電機構(例えば、逆バイアスを印加したあるいはアース接地した除電ブラシなど)を用いることもできる。前述のように書き込み率の小さな原稿では、光除電の影響は大きく、次の画像形成サイクルにおいて残像などの影響がない限り、光除電を用いない方が好ましい。
図中、9はレジストローラ、12は分離爪、13はクリーニング前チャージャである。
また、現像ユニット(6)により感光体(1)上に現像されたトナーは、転写紙(7)に転写されるが、感光体(1)上に残存するトナーが生じた場合、ファーブラシ(14)およびブレード(15)により、感光体より除去される。クリーニングは、クリーニングブラシだけで行なわれることもあり、クリーニングブラシにはファーブラシ、マグファーブラシを始めとする公知のものが用いられる。
図6は、本発明のタンデム方式のフルカラー画像形成装置を説明するための概略図であり、下記するような変形例も本発明の範疇に属するものである。
図6において、符号(1C)、(1M)、(1Y)、(1K)はドラム状の感光体であり、感光体は導電性支持体上に少なくとも電荷ブロッキング層、モアレ防止層、感光層、及び保護層が設けられてなり、該保護層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物とを硬化することにより形成されてなる。
この感光体(1C)、(1M)、(1Y)、(1K)は図中の矢印方向に回転し、その周りに少なくとも回転順にスコロトロン方式の帯電部材(2C)、(2M)、(2Y)、(2K)、現像部材(4C)、(4M)、(4Y)、(4K)、クリーニング部材(5C)、(5M)、(5Y)、(5K)が配置されている。 帯電部材(2C)、(2M)、(2Y)、(2K)は、感光体表面を均一に帯電するための帯電装置を構成する帯電部材である。この帯電部材(2C)、(2M)、(2Y)、(2K)と現像部材(4C)、(4M)、(4Y)、(4K)の間の感光体表面側より、図示しない露光部材からのレーザー光(3C)、(3M)、(3Y)、(3K)が照射され、感光体(1C)、(1M)、(1Y)、(1K)に静電潜像が形成されるようになっている。そして、このような感光体(1C)、(1M)、(1Y)、(1K)を中心とした4つの画像形成要素(6C)、(6M)、(6Y)、(6K)が、転写材搬送手段である転写搬送ベルト(16)に沿って並置されている。転写搬送ベルト(16)は各画像形成ユニット(6C)、(6M)、(6Y)、(6K)の現像部材(4C)、(4M)、(4Y)、(4K)とクリーニング部材(5C)、(5M)、(5Y)、(5K)の間で感光体(1C)、(1M)、(1Y)、(1K)に当接しており、転写搬送ベルト(16)の感光体側の裏側に当たる面(裏面)には転写バイアスを印加するための転写ブラシ(11C)、(11M)、(11Y)、(11K)が配置されている。各画像形成要素(6C)、(6M)、(6Y)、(6K)は現像装置内部のトナーの色が異なることであり、その他は全て同様の構成となっている。
図6に示す構成のフルカラー画像形成装置において、画像形成動作は次のようにして行なわれる。まず、各画像形成要素(6C)、(6M)、(6Y)、(6K)において、感光体(1C)、(1M)、(1Y)、(1K)が感光体表面の線速で300mm/sec以上の速度で回転し、スコロトロン方式の帯電部材(2C)、(2M)、(2Y)、(2K)により、感光体の電界強度が30V/μm以上(60Vμm以下、好ましくは50V/μm以下)になるように帯電される。次に感光体の外側に配置された露光部(図示しない)でレーザー光(3C)、(3M)、(3Y)、(3K)により、600dpi以上の解像度で書き込みが行われ、作成する各色の画像に対応した静電潜像が形成される。この場合にも書き込み光源1つに対して1200dpiの書き込みが概ね上限となる。
次に現像部材(4C)、(4M)、(4Y)、(4K)により潜像を現像してトナー像が形成される。現像部材(4C)、(4M)、(4Y)、(4K)は、それぞれC(シアン)、M(マゼンタ)、Y(イエロー)、K(ブラック)のトナーで現像を行なう現像部材で、4つの感光体(1C)、(1M)、(1Y)、(1K)上で作られた各色のトナー像は転写紙上で重ねられる。転写紙(7)はトレイから送り出され、一対のレジストローラ(9)で一旦停止し、上記感光体上への画像形成とタイミングを合わせて転写搬送ベルト(16)に送られる。転写搬送ベルト(16)上に保持された転写紙(9)は搬送されて、各感光体(1C)、(1M)、(1Y)、(1K)との当接位置(転写部)で各色トナー像の転写が行なわれる。
感光体上のトナー像は、転写ブラシ(11C)、(11M)、(11Y)、(11K)に印加された転写バイアスと感光体(1C)、(1M)、(1Y)、(1K)との電位差から形成される電界により、転写紙(9)上に転写される。そして4つの転写部を通過して4色のトナー像が重ねられた記録紙(9)は定着装置(18)に搬送され、トナーが定着されて、図示しない排紙部に排紙される。また、転写部で転写されずに各感光体(1C)、(1M)、(1Y)、(1K)上に残った残留トナーは、クリーニング装置(5C)、(5M)、(5Y)、(5K)で回収される。
なお、図6の例では画像形成要素は転写紙搬送方向上流側から下流側に向けて、C(シアン)、M(マゼンタ)、Y(イエロー)、K(ブラック)の色の順で並んでいるが、この順番に限るものではなく、色順は任意に設定されるものである。また、黒色のみの原稿を作成する際には、黒色以外の画像形成要素((6C)、(6M)、(6Y))が停止するような機構を設けることは本発明に特に有効に利用できる。
この場合にも また、先に述べたように転写後の感光体表面電位が、メイン帯電極性側100V以下、好ましくは逆極性、更に好ましくは逆極性側100V以下に制御することにより、感光体の繰り返し使用における残留電位の上昇を低減化することが出来、有効である。
以上に示すような画像形成手段は、複写装置、ファクシミリ、プリンタ内に固定して組み込まれていてもよいが、各々の電子写真要素はプロセスカートリッジの形でそれら装置内に組み込まれてもよい。プロセスカートリッジとは、感光体を内蔵し、他に帯電手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段等を含んだ1つの装置(部品)である。
プロセスカートリッジの形状等は多く挙げられるが、一般的な例として、図7に示すものが挙げられる。感光体(101)は導電性支持体上に少なくとも電荷ブロッキング層、モアレ防止層、感光層、及び保護層が設けられてなり、該保護層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物とを硬化することにより形成されてなる。
画像露光部(103)には、前述のように600dpi以上の解像度で書き込みが行うことの出来る光源が用いられ、帯電ローラ(102)には、前述のようにスコロトロン方式の帯電部材が用いられ、感光体に対して30V/μm以上(60V/μm以下、好ましくは50V/μm以下)の電界強度を印加するものである。図7中、104は現像手段、105は転写体、106は転写手段、107はクリ−ニング手段である。
以下、本発明の画像形成装置に用いられる電子写真感光体について詳しく説明する。
導電性支持体上に少なくとも電荷ブロッキング層、モアレ防止層、感光層、及び保護層が設けられてなる電子写真感光体であって、該保護層が少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物とを硬化することにより形成されてなるものである。
導電性支持体と感光層の間に、電荷ブロッキング層、モアレ防止層の順に積層した中間層の構成は、前述のように特許文献28等に記載されている技術であるが、高感度を達成できる感光層との組み合わせにおいては、感光層における熱キャリアの発生の影響が大きい場合が存在し、必ずしも地汚れを完全に防止できるものではなかった。この傾向は、例えば、チタニルフタロシアニン結晶に代表される長波長に吸収を有する電荷発生物質を用いた場合には顕著な問題となるものであった。
また、感光層の上層に保護層を設ける技術が、特許文献35〜37等に記載されている。これらの技術によって、感光体の繰り返し使用における摩耗量の低減が図られ、感光体使用における電界強度の上昇は低減できる。これによりある程度地汚れの低減は図られるものの、長期間の繰り返し使用に基づく感光層の静電疲労による帯電性の低下に起因する地汚れの発生は抑制できない。更に、保護層を設けるような耐摩耗性向上を図った場合には、前述のような残留電位の上昇やクリーニング不良の問題を引き起こす場合があり、必ずしも満足のいくものではなかった。
このように、下引き層あるいは保護層において、各々地汚れを抑制させる方法は開示されているものの、地汚れ要因は複数存在しており、それらを同時に抑制させないと長期間繰り返し使用される状況下に耐えることは不可能である。それは、非常に小さな地汚れ要因であり、初期状態では問題にならなくても、繰り返し使用されることによって感光体が疲労したり、構成材料の劣化が進行するに伴い、地汚れ要因は成長するためである。従って、地汚れの要因は極力排除するとともに、繰り返し使用における感光体の疲労に対しても安定性を高めることが必要である。しかし、それらを同時に解決し、飛躍的な高耐久化を可能とする方法は開示されていなかった。
続いて、本発明に用いられる電子写真感光体について、図面を用いて詳しく説明する。
図8は、本発明に用いられる電子写真感光体の構成例を示す断面図であり、導電性支持体201上に、電荷ブロッキング層205、モアレ防止層206、感光層204、及び、少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物とを硬化することにより形成されてなる保護層209が順に積層された構成をとっている。
図9は、本発明に用いられる電子写真感光体の別の構成例を示す断面図であり、導電性支持体201上に、電荷ブロッキング層205、モアレ防止層206、電荷発生材料を主成分とする電荷発生層207、電荷輸送材料を主成分とする電荷輸送層208、及び、少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物とを硬化することにより形成されてなる保護層209が順に積層された構成をとっている。
導電性支持体201としては、体積抵抗1010Ω・cm以下の導電性を示すもの、例えば、アルミニウム、ニッケル、クロム、ニクロム、銅、金、銀、白金などの金属、酸化スズ、酸化インジウムなどの金属酸化物を、蒸着またはスパッタリングにより、フィルム状もしくは円筒状のプラスチック、紙に被覆したもの、あるいは、アルミニウム、アルミニウム合金、ニッケル、ステンレスなどの板およびそれらを、押し出し、引き抜きなどの工法で素管化後、切削、超仕上げ、研摩などの表面処理した管などを使用することができる。また、エンドレスニッケルベルト、エンドレスステンレスベルトも導電性支持体として用いることができる。
この他、上記支持体上に導電性粉体を適当な結着樹脂に分散して塗工したものも、本発明の導電性支持体として用いることができる。この導電性粉体としては、カーボンブラック、アセチレンブラック、またアルミニウム、ニッケル、鉄、ニクロム、銅、亜鉛、銀などの金属粉、あるいは導電性酸化スズ、ITOなどの金属酸化物粉体などがあげられる。また、同時に用いられる結着樹脂には、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂などの熱可塑性、熱硬化性樹脂または光硬化性樹脂があげられる。このような導電性層は、これらの導電性粉体と結着樹脂を適当な溶剤、例えば、テトラヒドロフラン、ジクロロメタン、メチルエチルケトン、トルエンなどに分散して塗布することにより設けることができる。
更に、適当な円筒基体上にポリ塩化ビニル、ポリプロピレン、ポリエステル、ポリスチレン、ポリ塩化ビニリデン、ポリエチレン、塩化ゴム、テフロン(登録商標)などの素材に前記導電性粉体を含有させた熱収縮チューブによって導電性層を設けてなるものも、本発明の導電性支持体として良好に用いることができる。
次に、電荷ブロッキング層205とモアレ防止層206を説明する。このような下引き層の役割は、感光体の帯電時に導電性支持体201に誘起される逆極性の電荷の注入を抑制したり、モアレを防止したり、素管の欠陥を隠蔽したり、感光層の接着性を維持するなど多くの役割を有している。通常の様に下引き層が一層の場合には、導電性支持体からの電荷注入を抑制すると残留電位が上昇する傾向を示し、逆に残留電位を低減させようとすると地汚れは悪化する。このようなトレード・オフの関係を複数の下引き層を形成することによって機能分離した結果、残留電位に大きな影響を与えずに地汚れ抑制効果が顕著に向上できる。本発明においては、複数の下引き層を積層することによって効果が発揮されるものであるが、特に無機顔料が含有されない下引き層(電荷ブロッキング層)と無機顔料が含有される下引き層(モアレ防止層)がこの順に、少なくとも二層が積層されることで、残留電位への影響が少なく、地汚れ抑制効果を大幅に高めることが可能となり、モアレや接着性に対する副作用もなく、感光体の高耐久化に対して非常に大きな効果を得ることが可能となる。
先に、導電性支持体201からの電荷注入の抑制を主目的とする電荷ブロッキング層205について述べる。
電荷ブロッキング層205は、感光体帯電時に電極(導電性支持体)に誘起される逆極性の電荷が、導電性支持体201から感光層に注入するのを防止する機能を有する層で、主に地汚れを抑制させることを目的とした層である。負帯電の場合には正孔注入防止、正帯電の場合には電子注入防止の機能を有する。また、素管の欠陥に対する隠蔽性を高める効果も有しており、地汚れ抑制効果を高めるものである。したがって、これらの目的を達成するためには電荷の移動を抑えることが要求されることから、無機顔料を含有させずに絶縁性の高い樹脂のみで構成されることが好ましい。
電荷ブロッキング層205としては、酸化アルミ層に代表される陽極酸化被膜、SiOに代表される無機系の絶縁層、特開平3−191361号公報に記載されるような金属酸化物のガラス質ネットワークから形成される層、特開平3−141363号公報に記載されるようなポリフォスファゼンからなる層、特開平3−101737号公報に記載されるようなアミノシラン反応生成物からなる層、この他には絶縁性の結着剤樹脂からなる層、硬化性の結着剤樹脂からなる層等が挙げられる。中でも湿式塗工法で形成可能な絶縁性の結着樹脂あるいは硬化性の結着樹脂から構成される層が良好に使用できる。電荷ブロッキング層は、その上にモアレ防止層や感光層を積層するものであるから、これらを湿式塗工法で設ける場合には、これらの塗工溶媒により塗膜が侵されない材料あるいは構成からなることが肝要である。
使用できる結着剤樹脂としては、ポリアミド、ポリエステル、塩化ビニル−酢酸ビニル共重合体等の熱可塑性樹脂や熱硬化性樹脂例えば、活性水素(−OH基、−NH2基、−NH基等の水素)を複数個含有する化合物とイソシアネート基を複数個含有する化合物及び/又はエポキシ基を複数個含有する化合物とを熱重合させた熱硬化性樹脂等も使用できる。
この場合活性水素を複数個含有する化合物としては、例えばポリビニルブチラール、フェノキシ樹脂、フェノール樹脂、ポリアミド、ポリエステル、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、ヒドロキシエチルメタアクリレート基等の活性水素を含有するアクリル系樹脂等があげられる。イソシアネート基を複数個含有する化合物としては、たとえば、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメタンジイソシアネート等とこれらのプレポリマー等があげられ、エポキシ基を複数有する化合物としては、ビスフェノールA型エポキシ樹脂等があげられる。 また、オイルフリーアルキド樹脂とアミノ樹脂例えば、ブチル化メラミン樹脂等を熱重合させた熱硬化性樹脂、さらにまた、不飽和結合を有するポリウレタン、不飽和ポリエステル等の不飽和結合を有する樹脂と、チオキサントン系化合物、メチルベンジルフォルメート等の光重合開始剤との組合せ等の光硬化性樹脂もバインダー樹脂として使用できる。このような、アルコール可溶性樹脂や熱硬化性樹脂は、絶縁性が高い上に、上層に塗工される液にはケトン系溶剤が多く用いられているために、塗工時に膜が溶出することもなく、均一な膜が維持されるため、地汚れ抑制効果の安定性並びに均一性に優れる。
本発明においては、これらの樹脂の中でもポリアミドが好ましく、その中でもN−メトキシメチル化ナイロンが最も好ましい。ポリアミド樹脂は、電荷の注入を抑制する効果が高い上に残留電位に与える影響が少ない。また、これらのポリアミド樹脂は、アルコール可溶性の樹脂であって、これ以外の溶媒には不溶性を示し、また浸積塗工においても均一な薄膜を形成することができ、塗工性に優れている。特に、この下引き層は残留電位上昇の影響を最小限にするために薄膜にする必要がある上、膜厚の均一性が要求されるため、塗工性は画質安定性において重要な意味を持っている。
一般にアルコール可溶性樹脂は湿度依存性が大きく、それにより低湿環境下では抵抗が高くなり残留電位上昇が、高湿環境下では抵抗が低くなり、帯電低下が引き起こされ、環境依存性が大きいことが大きな課題であった。しかし、ポリアミド樹脂の中でもN−メトキシメチル化ナイロンは、高い絶縁性を示し、導電性支持体から注入される電荷のブロッキング性に非常に優れている上、残留電位に与える影響が少なく、さらに環境依存性が大幅に低減され、画像形成装置の使用環境が変化しても常に安定した画質を維持することが可能であるため、この上にモアレ防止層を積層した場合に最も好適に用いられる。加えて、N−メトキシメチル化ナイロンを用いた場合には残留電位の膜厚依存性が小さく、そのため残留電位への影響を低減し、かつ高い地汚れ抑制効果を得ることが可能となる。
N−メトキシメチル化ナイロンにおけるメトキシメチル基の置換率は、特に限定されるものではないが、15mol%以上であることが好ましい。N−メトキシメチル化ナイロンを用いたことによる上記効果は、メトキシメチル化度によって影響され、メトキシメチル基の置換率がこれより低い場合には、湿度依存性が増加したり、アルコール溶液とした場合に白濁したりする傾向が見られ、塗工液の経時安定性がやや低下する場合がある。
本発明においては、N−メトキシメチル化ナイロンを単独で使用することも可能であるが、場合によっては架橋剤や酸触媒を添加することも可能である。架橋剤としては従来公知のメラミン樹脂、イソシアネート樹脂等市販されている材料を、触媒としては、酸性触媒が用いられ、酒石酸等の汎用触媒を用いることが可能である。但し、酸触媒の添加によって下引き層の絶縁性が低下し、地汚れ抑制効果が低減される恐れがあるため、添加量はごく微量にする必要がある。樹脂に対して5wt%以下が好ましい。また、場合によっては他のバインダー樹脂を混合させることも可能である。混合可能なバインダー樹脂としては、アルコール可溶性を示すポリアミド樹脂が用いられ、液の経時安定性が高まる場合がある。
また、導電性高分子や、帯電極性に合わせてアクセプター(ドナー)性の樹脂あるいは低分子化合物、その他各種添加剤を加えることも可能であり、残留電位の低減に対し有効となる場合がある。但し、上層を浸漬塗工によって積層させる場合には、それらの添加剤が溶け出す恐れがあるため、添加量は最小限に留める必要がある。
また、電荷ブロッキング層の膜厚は0.1μm以上2.0μm未満、好ましくは0.3μm以上1.0μm以下程度が適当である。電荷ブロッキング層が厚くなると、帯電と露光の繰返しによって、特に低温低湿で残留電位の上昇が著しく、また、膜厚が薄すぎるとブロッキング性の効果が小さくなる、また電荷ブロッキング層には、必要に応じて硬化(架橋)に必要な薬剤、溶剤、添加剤、硬化促進材等を加えて、常法により、ブレード塗工、浸漬塗工法、スプレーコート、ビートコート、ノズルコート法などにより基体上に形成される。塗布後は乾燥や加熱、光等の硬化処理により乾燥あるいは硬化させる。
次にモアレ防止、感光層の接着性を高めることを主目的とし、疲労による帯電低下や残留電位を低減させる上でも有効なモアレ防止層206について述べる。このモアレ防止層は、地汚れを抑制する効果も併せ持つが、モアレ防止あるいは感光層の接着性を高める機能が要求される。したがって、モアレ防止層の表面粗さを増加させることが好ましく、無機顔料を分散することで達成される。 モアレ防止層は、前述のとおり含有される無機顔料によってモアレが抑制され、疲労による残留電位や暗減衰の低減が可能となり、さらに感光層との接着性を高める機能をも有する。
前述のモアレとは、レーザー光のようなコヒーレント光による書き込みを行う際に感光層内部での光干渉によってモアレと呼ばれる干渉縞が画像に形成される画像欠陥の一種である。基本的に、入射されたレーザー光をこの下引き層によって光散乱させることによりモアレ発生を防止するため、屈折率の大きな材料を含有させる必要がある。モアレを防止する上では、バインダー樹脂に無機顔料を分散させた構成が最も有効である。特に、無機顔料の中でも白色の顔料が有効に使用され、例えば、酸化チタン、フッ化カルシウム、酸化カルシウム、酸化珪素、酸化マグネシウム、酸化アルミニウムなどが良好に用いられる。中でも、隠蔽力の大きな酸化チタンが最も有効に使用出来る。
また、モアレ防止層には、感光体表面に帯電される電荷と同極性の電荷を、感光層から導電性支持体側へ移動できる機能を有することが残留電位低減の観点から好ましく、無機顔料はその役割をも果たしている。例えば、負帯電型の感光体の場合、下引き層は電子伝導性を有することによって残留電位を大幅に低減できる。これらの無機顔料としては、前述の金属酸化物が有効に用いられるが、抵抗の低い金属酸化物を用いたり、バインダー樹脂に対する金属酸化物の添加比率を必要以上に増加させたりすることによって残留電位を低減させる効果が高くなる反面、地汚れ抑制効果が低下する恐れもある。従って、感光体における下引き層の層構成や膜厚によってそれらを使い分けたり、添加量を調整したりすることによって、地汚れ抑制と残留電位低減の両立を図ることが必要である。また、モアレ防止層に電子伝導性の材料(例えば、アクセプター)などを使用することは本発明の効果を一層顕著なものにするものである。
本発明に用いられる無機顔料としては、前述の金属酸化物が好適に用いられるが、導電性金属酸化物を用いた場合には、残留電位を低減させる上では有効であるが、地汚れが増加するおそれがあり、抵抗の高い金属酸化物を用いた場合には、地汚れの抑制には有効であるが、残留電位が上昇しやすくなる傾向が見られる。本発明においては、電荷ブロッキング層とモアレ防止層からなる複数の下引き層が形成され機能分離されていることにより、無機顔料はより広範囲に選択することが可能ではあるが、無機顔料を含有しない下引き層を有していたとしても、無機顔料を含有する下引き層に含まれる無機顔料の抵抗は、少なからず地汚れや残留電位に影響する。したがって、地汚れを抑制する上では、導電性の金属酸化物よりも抵抗の高い金属酸化物を用いることが好ましく、上記金属酸化物の中でも酸化チタンを用いることが画質安定性の面から最も好ましい。用いる酸化チタンとしては、残留電位上昇を軽減する上で、高純度の方がより好ましい。純度としては99.0%以上が好ましく、99.5%以上がより好ましい。
本発明の無機顔料の平均一次粒径としては、0.01μm〜0.8μmが好ましく、0.05μm〜0.5μmがより好ましい。但し、平均一次粒径が0.1μm以下の無機顔料のみを用いた場合には、地汚れの低減に対し有効であるが、モアレ防止効果が低下する傾向があり、一方、平均一次粒径が0.4μmよりも大きな金属酸化物のみを用いた場合には、モアレ防止効果に優れるものの、地汚れの抑制効果がやや低減する傾向が見られる。この場合、異なる平均一次粒径を有する無機顔料を混合して用いることによって、地汚れの低減とモアレの低減を両立できる場合があり、また残留電位の低減にも効果が見られる場合があり有効である。
バインダー樹脂としては電荷ブロッキング層と同様のものを使用できるが、モアレ防止層の上に感光層を積層することを考慮すると、感光層の塗工溶媒に不溶性を示すバインダー樹脂が適している。これらのバインダー樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウム等の水溶性樹脂、ポリアミド、共重合ナイロン、メトキシメチル化ナイロン等のアルコール可溶性樹脂、ポリウレタン、フェノール樹脂、アルキッド−メラミン樹脂、エポキシ樹脂等、三次元網目構造を形成する硬化型樹脂等が挙げられる。これらの樹脂の中でも、硬化型樹脂は、硬化されていることによって下引き層の上に感光層が塗工される際に有機溶剤による溶出の影響が極めて少ないことから、最も好ましく用いられる。上記硬化型樹脂の中でも、残留電位や環境安定性の面から、アルキッド/メラミン樹脂の混合物が最も良好に使用される。
この際、アルキッド/メラミン樹脂の混合比は、モアレ防止層の構造及び特性を決定する重要な因子である。両者の比(重量比)が5/5〜8/2の範囲が良好な混合比の範囲として挙げることが出来る。5/5よりもメラミン樹脂がリッチであると、熱硬化の際に体積収縮が大きくなり塗膜欠陥を生じやすくなったり、感光体の残留電位を大きくする方向にあり望ましくない。また、8/2よりもアルキッド樹脂がリッチであると、感光体の残留電位低減には効果があるものの、バルク抵抗が低くなりすぎて地汚れが悪くなる方向になり望ましくない。
モアレ防止層においては、無機顔料とバインダー樹脂の容積比が重要な特性を決定する。このため、無機顔料とバインダー樹脂の容積比が1/1乃至3/1の範囲であることが重要である。両者の容積比が1/1未満である場合には、モアレ防止能が低下するだけでなく、繰り返し使用における残留電位の上昇が大きくなる場合が存在する。一方、容積比が3/1以上の領域ではバインダー樹脂における結着能が劣るだけでなく、塗膜の表面性が悪化し、上層の感光層の成膜性に悪影響を与える場合がある。この影響は感光層が積層タイプで構成され、電荷発生層のような薄層を形成する場合に深刻な問題になり得るものである。また容積比が3/1以上の場合には、無機顔料表面をバインダー樹脂が覆い尽くせない場合が存在し、電荷発生物質と直接接触することで、熱キャリア生成の確率が大きくなり、地汚れに対して悪影響を与える場合がある。
更に、モアレ防止層には、平均粒径の異なる2種類の酸化チタンを用いることで、導電性基体に対する隠蔽力を向上させモアレを抑制することが可能となるとともに、異常画像の原因となるピンホールをなくすことができる。このためには、用いる2種の酸化チタンの平均粒径の比が一定の範囲内(0.2≦D2/D1≦0.5)にあることが重要である。
本発明で規定する範囲外の粒径比の場合、すなわち一方の酸化チタン(T1)の平均粒径に対する他方の酸化チタン(T2)の平均粒径の比が小さすぎる場合(0.2>D2/D1)は、酸化チタン表面での活性が増加し電子写真感光体としたときの静電的安定性が著しく損なわれるようになる。また、一方の酸化チタン(T1)の平均粒径に対する他方の酸化チタン(T2)の平均粒径の比が大きすぎる場合(D2/D1>0.5)は、導電性基体に対する隠蔽力が低下し、モアレや異常画像に対する抑制力が低下する。ここで言う平均粒径は、水系で強分散を行なったときに得られる粒度分布測定から得られる。
また、粒径の小さい方の酸化チタン(T2)の平均粒径(D2)の大きさが重要な因子であり、 0.05μm≦D2≦0.20μmであることが重要である。0.05μmよりも小さい場合には隠蔽力が低下し、モアレを発生させる場合がある。一方、0.20μmよりも大きな場合には、モアレ防止層の酸化チタンの充填率を低下させ、地汚れ抑制効果が十分に発揮出来ない。
また、2種の酸化チタンの混合比率(重量比)も重要な因子である。T2/(T1+T2)が0.2よりも小さい場合には、酸化チタンの充填率がそれほど大きくなく、地汚れ抑制効果が十分に発揮出来ない。一方、0.8よりも大きな場合には、隠蔽力が低下し、モアレを発生させる場合がある。従って、0.2≦T2/(T1+T2)≦0.8であることが重要である。
また、モアレ防止層の膜厚は1〜10μm、好ましくは2〜5μmとするのが適当である。膜厚が1μm未満では効果の発現性が小さく、10μmを超えると残留電位の蓄積を生じるので望ましくない。
無機顔料は溶剤と結着剤樹脂と共に常法により、例えばボールミル、サンドミル、アトライラー等により分散し、また、必要に応じて硬化(架橋)に必要な薬剤、溶剤、添加剤、硬化促進剤等を加えて、常法により、ブレード塗工、浸漬塗工法、スプレーコート、ビートコート、ノズルコート法などにより基体上に形成される。塗布後は乾燥や加熱、光等の硬化処理により乾燥あるいは硬化させる。
次に感光層について説明する。感光層は電荷発生物質と電荷輸送物質を含む単層構成の感光層でも構わないが、前述のように電荷発生層と電荷輸送層で構成される積層型が感度、耐久性において優れた特性を示し、良好に使用される。
電荷発生層は、電荷発生物質を主成分とする層である。
電荷発生層には、公知の電荷発生物質を用いることが可能であり、その代表として、モノアゾ顔料、ジスアゾ顔料、トリスアゾ顔料、ペリレン系顔料、ペリノン系顔料、キナクリドン系顔料、キノン系縮合多環化合物、スクアリック酸系染料、他のフタロシアニン系顔料、ナフタロシアニン系顔料、アズレニウム塩系染料等が挙げられ用いられる。これら電荷発生物質は単独でも、2種以上混合してもかまわない。
特に下記(XI)式で表わされるアゾ顔料や特定の結晶型を有する(CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有する)チタニルフタロシアニンは高感度で耐久性が高く、特に光疲労に強いため、本発明のフルカラー画像形成装置には有効に用いることができる。
式中、Cp1,Cp2はカップラー残基を表す。 R201,R202はそれぞれ、水素原子、ハロゲン原子、炭素鎖数1〜4のアルキル基、アルコキシ基、シアノ基のいずれかを表し、同一でも異なっていても良い。またCp1,Cp2は下記(XII)式で表される。
式中、R203は、水素原子、メチル基、エチル基などのアルキル基、フェニル基などのアリール基を表す。R204,R205,R206,R207,R208はそれぞれ、水素原子、ニトロ基、シアノ基、フッ素、塩素、臭素、ヨウ素などのハロゲン原子、トリフルオロメチル基、メチル基、エチル基などのアルキル基、メトキシ基、エトキシ基などのアルコキシ基、ジアルキルアミノ基、水酸基を表し、Zは置換もしくは無置換の芳香族炭素環または置換もしくは無置換の芳香族複素環を構成するのに必要な原子群を表す。
また、前記(XI)式において、Cp1とCp2が異なるものは前記(XI)式で表される材料の中でも特に高感度を示し、本発明に使用される感光体の電荷発生物質として良好に使用される。
また、27.2゜に最大回折ピークを有するチタニルフタロシアニンの中でも、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4°のピークの間にピークを有さず、更に26.3゜にピークを有さない結晶型のチタニルフタロシアニン結晶は、特に高感度を示し、また感光体繰り返し使用における帯電性の低下も小さく、本発明に使用される感光体の電荷発生物質として良好に使用できる。
上記のとおり、電荷ブロッキング層とモアレ防止層を積層させることにより地汚れの抑制効果は顕著に高まるが、これらの効果は導電性支持体からの電荷の注入を抑制したことによるものであり、その上に形成される電荷発生層の凝集や純度の低下によって引き起こされる地汚れに対しては別な対策が必要である。このため、これら電荷発生物質の粒子サイズを微小なものにコントロールすることは、地汚れ抑制に効果がある。これら電荷発生物質を合成する際に、一次粒子径を小さく合成したり、分散後、分散液を濾過することにより粗大粒子を取り除くことにより、粒子径のコントロールが可能である。
電荷発生層は、前記顔料を必要に応じてバインダー樹脂とともに適当な溶剤中にボールミル、アトライター、サンドミル、超音波などを用いて分散し、これを導電性支持体上に塗布し、乾燥することにより形成される。
必要に応じて電荷発生層に用いられる結着樹脂としては、必要に応じて電荷発生層に用いられる結着樹脂としては、ポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリスルホン、ポリ−N−ビニルカルバゾール、ポリアクリルアミド、ポリビニルベンザール、ポリエステル、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリフェニレンオキシド、ポリアミド、ポリビニルピリジン、セルロース系樹脂、カゼイン、ポリビニルアルコール、ポリビニルピロリドン等があげられる。結着樹脂の量は、電荷発生物質100重量部に対し0〜500重量部、好ましくは10〜300重量部が適当である。
ここで用いられる溶剤としては、例えばイソプロパノール、アセトン、メチルエチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、エチルセルソルブ、酢酸エチル、酢酸メチル、ジクロロメタン、ジクロロエタン、モノクロロベンゼン、シクロヘキサン、トルエン、キシレン、リグロイン等が挙げられる。塗布液の塗工法としては、浸漬塗工法、スプレーコート、ビートコート、ノズルコート、スピナーコート、リングコート等の方法を用いることができる。電荷発生層の膜厚は、0.01〜5μm程度が適当であり、好ましくは0.1〜2μmである。
電荷輸送層は、電荷輸送物質および結着樹脂を適当な溶剤に溶解ないし分散し、これを電荷発生層上に塗布、乾燥することにより形成できる。また、必要により可塑剤、レベリング剤、酸化防止剤等を添加することもできる。
電荷輸送物質には、正孔輸送物質と電子輸送物質とがある。正孔輸送物質としては、ポリ−N−ビニルカルバゾールおよびその誘導体、ポリ−γ−カルバゾリルエチルグルタメートおよびその誘導体、ピレン−ホルムアルデヒド縮合物およびその誘導体、ポリビニルピレン、ポリビニルフェナントレン、ポリシラン、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、モノアリールアミン誘導体、ジアリールアミン誘導体、トリアリールアミン誘導体、スチルベン誘導体、α−フェニルスチルベン誘導体、ベンジジン誘導体、ジアリールメタン誘導体、トリアリールメタン誘導体、9−スチリルアントラセン誘導体、ピラゾリン誘導体、ジビニルベンゼン誘導体、ヒドラゾン誘導体、インデン誘導体、ブタジエン誘導体、ピレン誘導体等、ビススチルベン誘導体、エナミン誘導体等その他公知の材料が挙げられる。これらの電荷輸送物質は単独、または2種以上混合して用いられる。
電子輸送物質としては、例えばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、2,6,8−トリニトロ−4H−インデノ〔1,2−b〕チオフェン−4−オン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキサイド、ベンゾキノン誘導体等の電子受容性物質が挙げられる。
結着樹脂としてはポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアレート、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂等の熱可塑性または熱硬化性樹脂が挙げられる。
電荷輸送物質の量は結着樹脂100重量部に対し、20〜300重量部、好ましくは40〜150重量部が適当である。また、電荷輸送層の膜厚は5〜100μm程度とすることが好ましい。
ここで用いられる溶剤としては、テトラヒドロフラン、ジオキサン、トルエン、ジクロロメタン、モノクロロベンゼン、ジクロロエタン、シクロヘキサノン、メチルエチルケトン、アセトンなどが用いられる。中でも、環境への負荷低減等の意図から、非ハロゲン系溶媒の使用は望ましいものである。具体的には、テトラヒドロフランやジオキソラン、ジオキサン等の環状エーテルやトルエン、キシレン等の芳香族系炭化水素、及びそれらの誘導体が良好に用いられる。
また、電荷輸送層には電荷輸送物質としての機能とバインダー樹脂の機能を持った高分子電荷輸送物質も良好に使用される。これら高分子電荷輸送物質から構成される電荷輸送層は、後述の保護層を積層する際に、溶け出しがないために、保護層の機能をより一層顕著なものとする。高分子電荷輸送物質としては、公知の材料が使用できるが、特に、トリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートが良好に用いられる。中でも、式(I)〜(X)式で表わされる高分子電荷輸送物質が良好に用いられ、これらを以下に例示し、具体例を示す。
式中、R1、R2、R3はそれぞれ独立して置換もしくは無置換のアルキル基又はハロゲン原子、R4は水素原子又は置換もしくは無置換のアルキル基、R5、R6は置換もしくは無置換のアリール基、o、p、qはそれぞれ独立して0〜4の整数、k、jは組成を表し、0.1≦k≦1、0≦j≦0.9、nは繰り返し単位数を表し5〜5000の整数である。Xは脂肪族の2価基、環状脂肪族の2価基、または下記一般式で表される2価基を表す。尚、(I)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
R101、R102は各々独立して置換もしくは無置換のアルキル基、アリール基またはハロゲン原子を表す。l、mは0〜4の整数、Yは単結合、炭素原子数1〜12の直鎖状、分岐状もしくは環状のアルキレン基、−O−、−S−、−SO−、−SO2−、−CO−、−CO−O−Z−O−CO−(式中Zは脂肪族の2価基を表す。)または、
(aは1〜20の整数、bは1〜2000の整数、R103、R104は置換または無置換のアルキル基又はアリール基を表す)を表す。ここで、R101とR102、R103とR104は、それぞれ同一でも異なってもよい。)
式中、R7、R8は置換もしくは無置換のアリール基、Ar1、Ar2、Ar3は同一又は異なるアリレン基を表す。X、k、jおよびnは、(I)式の場合と同じである。尚、(II)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
式中、R9、R10は置換もしくは無置換のアリール基、Ar4、Ar5、Ar6は同一又は異なるアリレン基を表す。X、k、jおよびnは、(I)式の場合と同じである。尚、(III)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
式中、R11、R12は置換もしくは無置換のアリール基、Ar7、Ar8、Ar9は同一又は異なるアリレン基、pは1〜5の整数を表す。X、k、jおよびnは、(I)式の場合と同じである。尚、(IV)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
式中、R13、R14は置換もしくは無置換のアリール基、Ar10、Ar11、Ar12は同一又は異なるアリレン基、X1、X2は置換もしくは無置換のエチレン基、又は置換もしくは無置換のビニレン基を表す。X、k、jおよびnは、(I)式の場合と同じである。尚、(V)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
式中、R15、R16、R17、R18は置換もしくは無置換のアリール基、Ar13、Ar14、Ar15、Ar16は同一又は異なるアリレン基、Y1、Y2、Y3は単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表し同一であっても異なってもよい。X、k、jおよびnは、(I)式の場合と同じである。尚、(VI)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
式中、R19、R20は水素原子、置換もしくは無置換のアリール基を表し、R19とR20は環を形成していてもよい。Ar17、Ar18、Ar19は同一又は異なるアリレン基を表す。X、k、jおよびnは、(I)式の場合と同じである。尚、(VII)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
式中、R21は置換もしくは無置換のアリール基、Ar20、Ar21、Ar22、Ar23は同一又は異なるアリレン基を表す。X、k、jおよびnは、(I)式の場合と同じである。尚、(VIII)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
式中、R22、R23、R24、R25は置換もしくは無置換のアリール基、Ar24、Ar25、Ar26、Ar27、Ar28は同一又は異なるアリレン基を表す。X、k、jおよびnは、(I)式の場合と同じである。尚、(IX)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
式中、R26、R27は置換もしくは無置換のアリール基、Ar29、Ar30、Ar31は同一又は異なるアリレン基を表す。X、k、jおよびnは、(I)式の場合と同じである。尚、(X)式は2つの共重合種が交互共重合体の形で記載されているが、ランダム共重合体でも構わない。
また、電荷輸送層に使用される高分子電荷輸送物質として、上述の高分子電荷輸送物質の他に、電荷輸送層の成膜時には電子供与性基を有するモノマーあるいはオリゴマーの状態で、成膜後に硬化反応あるいは架橋反応をさせることで、最終的に2次元あるいは3次元の架橋構造を有する重合体も含むことができる。
これら電子供与性基を有する重合体から構成される電荷輸送層は、自身が高分子化合物であるため成膜性に優れ、低分子分散型高分子からなる電荷輸送層に比べ、電荷輸送部位を高密度に構成することが可能で電荷輸送能に優れたものである。このため、高分子電荷輸送物質を用いた電荷輸送層を有する感光体には高速応答性が期待できる。
その他の電子供与性基を有する重合体としては、公知単量体の共重合体や、ブロック重合体、グラフト重合体、スターポリマーや、また、例えば特開平3−109460号公報、特開2000−206723号公報、特開2001−34001号公報等に開示されているような電子供与性基を有する架橋重合体などを用いることも可能である。
本発明において電荷輸送層中に可塑剤やレベリング剤を添加してもよい。可塑剤としては、ジブチルフタレート、ジオクチルフタレートなど一般の樹脂の可塑剤として使用されているものがそのまま使用でき、その使用量は、結着樹脂に対して0〜30重量%程度が適当である。レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどのシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいは、オリゴマーが使用され、その使用量は結着樹脂に対して、0〜1重量%が適当である。
これまでは、感光層が積層構成の場合について述べたが、本発明においては感光層が単層構成でも構わない。感光層を単層構成とするためには、少なくとも上述の電荷発生物質(特定の結晶型を有し、特定の粒子サイズであるチタニルフタロシアニン結晶)とバインダー樹脂を含有する単一層を設けることで感光層は構成され、バインダー樹脂としては電荷発生層や電荷輸送層の説明に挙げられた材料が良好に使用される。また、単層感光層には電荷輸送物質を併用することで、高い光感度、高い電荷輸送性、低い残留電位が発現され、良好に使用できる。この際、使用する電荷輸送物質は、感光体表面に帯電させる極性に応じて、正孔輸送物質、電子輸送物質の何れかが選択される。更に、上述した高分子電荷輸送物質もバインダー樹脂と電荷輸送物質の機能を併せ持つため、単層感光層には良好に使用される。
次に、本発明で用いられる保護層について説明する。
本発明で使用される電子写真感光体には、感光体の繰り返し使用によって起こる摩耗の影響を軽減し、地汚れの経時安定性を高め、さらに静電安定性や画質安定性を高めることによって経時安定性と耐久性を両立させることを目的として、少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物とを硬化することにより形成される保護層が感光層の上に設けられる。
この保護層は、感光体の耐摩耗性を高めることを主目的とするが、これにより繰り返し使用による電界強度の増加を抑制し、且つ感光層の薄膜化に伴う静電疲労の増加をも低減することが可能となり、地汚れの抑制に有効となる。また、残留電位上昇が少なく、感光体表面の耐傷性も高く、フィルミング等も発生しにくいことから画像欠陥の発生を低減させる効果も有しており、高耐久化を実現する上で有効かつ有用である。
感光体表面に形成される傷や表面に付着する異物(トナー、トナーの外添剤、キャリア、紙粉等)は、感光体のクリーニング性を低下させ、画質安定性を顕著に低下させる。したがって、感光体の高耐久化を実現させるためには、耐摩耗性を高めるだけでなく、感光体表面の傷やフィルミングの影響を最小限にすることが重要であり、そのためには高硬度、高弾性でかつ平滑な表面層を形成させることが好ましい。
本発明に使用される保護層は、少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物とを硬化することにより形成される。
この保護層は、3官能以上のラジカル重合性モノマーを硬化した架橋構造を有するため3次元の網目構造が発達し、架橋密度が非常に高い高硬度且つ高弾性な表面層が得られ、かつ均一で平滑性も高く、高い耐摩耗性、耐傷性が達成される。
この様に感光体表面の架橋密度すなわち単位体積あたりの架橋結合数を増加させることが重要であるが、硬化反応において瞬時に多数の結合を形成させるため体積収縮による内部応力が発生する。この内部応力は保護層の膜厚が厚くなるほど増加するため保護層全層を硬化させると、クラックや膜剥がれが発生しやすくなる。この現象は初期的に現れなくても、電子写真プロセス上で繰り返し使用され帯電、現像、転写、クリーニングのハザード及び熱変動の影響を受けることにより、経時で発生しやすくなることもある。
この問題を解決する方法としては、(1)保護層及び架橋構造に高分子成分を導入する、(2)1官能及び2官能のラジカル重合性モノマーを多量に用いる、(3)柔軟性基を有する多官能モノマーを用いる、などの保護層を柔らかくする方向性が挙げられるが、いずれも保護層の架橋密度が希薄となり、飛躍的な耐摩耗性が達成されない。これに対し、本発明の感光体は、電荷輸送層上に3次元の網目構造が発達した架橋密度の高い保護層を好ましくは1μm以上、10μm以下の膜厚で設けることで、上記のクラックや膜剥がれが発生せず、且つ非常に高い耐摩耗性が達成される。かかる保護層の膜厚を2μm以上、8μm以下の膜厚にすることにより、さらに上記問題に対する余裕度が向上することに加え、更なる耐摩耗性向上に繋がる高架橋密度化の材料選択が可能となる。
本発明で使用される感光体がクラックや膜剥がれを抑制できる理由としては、保護層を薄膜化できるため内部応力が大きくならないこと、下層に感光層もしくは電荷輸送層を有するため表面の保護層の内部応力を緩和できることなどによる。このため保護層に高分子材料を多量に含有させる必要がなく、この時生ずる、高分子材料とラジカル重合性組成物(ラジカル重合性モノマーや電荷輸送性構造を有するラジカル重合性化合物)の反応より生じた硬化物との不相溶が原因の傷やトナーフィルミングも起こりにくい。さらに、保護層全層にわたる厚膜を光エネルギー照射により硬化する場合、電荷輸送性構造による吸収から内部への光透過が制限され、硬化反応が十分に進行しない現象が起こることがある。
本発明の保護層においては、好ましくは10μm以下の薄膜とすることにより内部まで均一に硬化反応が進行し、表面と同様に内部でも高い耐摩耗性が維持される。また、本発明の保護層の形成においては、上記3官能性ラジカル重合性モノマーに加え、さらに1官能の電荷輸送性構造を有するラジカル重合性化合物を含有しており、これが上記3官能以上のラジカル重合性モノマー硬化時に架橋結合中に取り込まれる。これに対し、官能基を有しない低分子電荷輸送物質を保護層中に含有させた場合、その相溶性の低さから低分子電荷輸送物質の析出や白濁現象が起こり、保護層の機械的強度も低下する。 一方、2官能以上の電荷輸送性化合物を主成分として用いた場合は複数の結合で架橋構造中に固定され架橋密度はより高まるが、電荷輸送性構造が非常に嵩高いため硬化樹脂構造の歪みが非常に大きくなり、保護層の内部応力が高まる原因となる。
更に、本発明で使用される感光体は良好な電気的特性を有し、このため繰り返し安定性に優れており高耐久化並びに高安定化が実現される。これは保護層の構成材料として1官能の電荷輸送性構造を有するラジカル重合性化合物を用い、架橋結合間にペンダント状に固定化したことに起因する。上記のように官能基を有しない電荷輸送物質は析出、白濁現象が起こり、感度の低下、残留電位の上昇等繰り返し使用における電気的特性の劣化が著しい。2官能以上の電荷輸送性化合物を主成分として用いた場合は複数の結合で架橋構造中に固定されるため、電荷輸送時の中間体構造(カチオンラジカル)が安定して保てず、電荷のトラップによる感度の低下、残留電位の上昇が起こりやすい。これらの電気的特性の劣化は、画像濃度低下、文字細り等の画像として現れる。さらに、本発明の感光体においては、下層の電荷輸送層として従来感光体の電荷トラップの少ない高移動度な設計が適応可能で、保護層の電気的副作用を最小限に抑えることができる。
更に、本発明の上記保護層形成において、保護層が有機溶剤に対し不溶性にすることにより、特にその飛躍的な耐摩耗性が発揮される。本発明の保護層は電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化することにより形成され、層全体としては3次元の網目構造が発達し高い架橋密度を有するが、上記成分以外の含有物(例えば、1または2官能モノマー、高分子バインダー、酸化防止剤、レベリング剤、可塑剤などの添加剤及び下層からの溶解混入成分)や硬化条件により、局部的に架橋密度が希薄になったり、高密度に架橋した微小な硬化物の集合体として形成されることがある。
このような保護層は、硬化物間の結合力は弱く有機溶剤に対し溶解性を示し、且つ電子写真プロセス中で繰り返し使用されるなかで、局部的な摩耗や微小な硬化物単位での脱離が発生しやすくなる。本発明のように保護層を有機溶剤に対し不溶性にせしめることにより、本来の3次元の網目構造が発達し高い架橋度を有することに加え、連鎖反応が広い範囲で進行し硬化物が高分子量化するため、飛躍的な耐摩耗性の向上が達成される。
次に、本発明の保護層塗布液の構成材料について説明する。
本発明に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーとは、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しておらず、且つラジカル重合性官能基を3個以上有するモノマーを指す。このラジカル重合性官能基とは、炭素−炭素2重結合を有し、ラジカル重合可能な基であれば何れでもよい。これらラジカル重合性官能基としては、例えば、下記に示す1−置換エチレン官能基、1,1−置換エチレン官能基等が挙げられる。
(1)1−置換エチレン官能基
1−置換エチレン官能基としては、例えば以下の式10で表される官能基が挙げられる。
CH2=CH−X1− ・・・・式10
(ただし、式10中、X1は、置換基を有していてもよいフェニレン基、ナフチレン基等のアリーレン基、置換基を有していてもよいアルケニレン基、−CO−基、−COO−基、−CON(R10)−基(R10は、水素、メチル基、エチル基等のアルキル基、ベンジル基、ナフチルメチル基、フェネチル基等のアラルキル基、フェニル基、ナフチル基等のアリール基を表す。)、または−S−基を表す。)
これらの官能基を具体的に例示すると、ビニル基、スチリル基、2−メチル−1,3−ブタジエニル基、ビニルカルボニル基、アクリロイルオキシ基、アクリロイルアミド基、ビニルチオエーテル基等が挙げられる。
(2)1,1−置換エチレン官能基
1,1−置換エチレン官能基としては、例えば以下の式11で表される官能基が挙げられる。
CH2=C(Y)−X2− ・・・・式11
(ただし、式11中、Yは、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、ハロゲン原子、シアノ基、ニトロ基、メトキシ基あるいはエトキシ基等のアルコキシ基、−COOR11基(R11は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル、フェネチル基等のアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、または−CONR12R13(R12およびR13は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル基、ナフチルメチル基、あるいはフェネチル基等のアラルキル基、または置換基を有していてもよいフェニル基、ナフチル基等のアリール基を表し、互いに同一または異なっていてもよい。)、また、X2は上記式10のX1と同一の置換基及び単結合、アルキレン基を表す。ただし、Y、X2の少なくとも何れか一方がオキシカルボニル基、シアノ基、アルケニレン基、及び芳香族環である。)
これらの官能基を具体的に例示すると、α−塩化アクリロイルオキシ基、メタクリロイルオキシ基、α−シアノエチレン基、α−シアノアクリロイルオキシ基、α−シアノフェニレン基、メタクリロイルアミノ基等が挙げられる。
なお、これらX1、X2、Yについての置換基にさらに置換される置換基としては、例えばハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
これらのラジカル重合性官能基の中では、特にアクリロイルオキシ基、メタクリロイルオキシ基が有用であり、3個以上のアクリロイルオキシ基を有する化合物は、例えば水酸基がその分子中に3個以上ある化合物とアクリル酸(塩)、アクリル酸ハライド、アクリル酸エステルを用い、エステル反応あるいはエステル交換反応させることにより得ることができる。また、3個以上のメタクリロイルオキシ基を有する化合物も同様にして得ることができる。また、ラジカル重合性官能基を3個以上有する単量体中のラジカル重合性官能基は、同一でも異なっても良い。
電荷輸送性構造を有しない3官能以上の具体的なラジカル重合性モノマーとしては、以下のものが例示されるが、これらの化合物に限定されるものではない。
すなわち、本発明において使用する上記ラジカル重合性モノマーとしては、例えば、トリメチロールプロパントリアクリレート(TMPTA)、トリメチロールプロパントリメタクリレート、トリメチロールプロパンアルキレン変性トリアクリレート、トリメチロールプロパンエチレンオキシ変性(以後EO変性)トリアクリレート、トリメチロールプロパンプロピレンオキシ変性(以後PO変性)トリアクリレート、トリメチロールプロパンカプロラクトン変性トリアクリレート、トリメチロールプロパンアルキレン変性トリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート(PETTA)、グリセロールトリアクリレート、グリセロールエピクロロヒドリン変性(以後ECH変性)トリアクリレート、グリセロールEO変性トリアクリレート、グリセロールPO変性トリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート(DPHA)、ジペンタエリスリトールカプロラクトン変性ヘキサアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、アルキル化ジペンタエリスリトールペンタアクリレート、アルキル化ジペンタエリスリトールテトラアクリレート、アルキル化ジペンタエリスリトールトリアクリレート、ジメチロールプロパンテトラアクリレート(DTMPTA)、ペンタエリスリトールエトキシテトラアクリレート、リン酸EO変性トリアクリレート、2,2,5,5,−テトラヒドロキシメチルシクロペンタノンテトラアクリレートなどが挙げられ、これらは、単独又は2種類以上を併用しても差し支えない。
また、本発明に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーとしては、保護層中に緻密な架橋結合を形成するために、該モノマー中の官能基数に対する分子量の割合(分子量/官能基数)は250以下が望ましい。また、この割合が250より大きい場合、保護層は柔らかく耐摩耗性が幾分低下する傾向が出てくるため、上記例示したモノマー等中、EO、PO、カプロラクトン等の変性基を有するモノマーにおいては、極端に長い変性基を有するものを単独で使用することは好ましくはない。また、保護層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの成分割合は、保護層全量に対し20〜80重量%、好ましくは30〜70重量%である。モノマー成分が20重量%未満では保護層の3次元架橋結合密度が少なく、従来の熱可塑性バインダー樹脂を用いた場合に比べ飛躍的な耐摩耗性向上が達成にくくなる傾向がある。また、80重量%を超えると電荷輸送性化合物の含有量が低下し、電気的特性の劣化が生じる傾向がある。使用されるプロセスによって要求される電気特性や耐摩耗性が異なり、それに伴い本感光体の保護層の膜厚も異なるため一概には言えないが、両特性のバランスを考慮すると30〜70重量%の範囲が最も好ましい。
本発明の保護層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物とは、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しており、且つ1個のラジカル重合性官能基を有する化合物を指す。このラジカル重合性官能基としては、先のラジカル重合性モノマーで示したものが挙げられ、特にアクリロイルオキシ基、メタクリロイルオキシ基が有用である。また、電荷輸送性構造としてはトリアリールアミン構造が高い効果を有し、中でも下記一般式(1)又は(2)の構造で示される化合物を用いた場合、感度、残留電位等の電気的特性が良好に持続される。
{式中、R1は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基、置換基を有してもよいアリール基、シアノ基、ニトロ基、アルコキシ基、−COOR7(R7は水素原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基)、ハロゲン化カルボニル基若しくはCONR8R9(R8及びR9は水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアラルキル基又は置換基を有してもよいアリール基を示し、互いに同一であっても異なっていてもよい)を表わし、Ar1、Ar2は置換もしくは無置換のアリーレン基を表わし、同一であっても異なってもよい。Ar3、Ar4は置換もしくは無置換のアリール基を表わし、同一であっても異なってもよい。Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。Zは置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレンエーテル2価基、アルキレンオキシカルボニル2価基を表わす。m、nは0〜3の整数を表わす。}
以下に、一般式(1)、(2)の具体例を示す。
前記一般式(1)、(2)において、R1の置換基中、アルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基等、アリール基としては、フェニル基、ナフチル基等が、アラルキル基としては、ベンジル基、フェネチル基、ナフチルメチル基が、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等がそれぞれ挙げられ、これらは、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等により置換されていても良い。
R1の置換基のうち、特に好ましいものは水素原子、メチル基である。
Ar3、Ar4は置換もしくは無置換のアリール基を表わし、アリール基としては縮合多環式炭化水素基、非縮合環式炭化水素基及び複素環基が挙げられる。
該縮合多環式炭化水素基としては、好ましくは環を形成する炭素数が18個以下のもの、例えば、ペンタニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、as−インダセニル基、s−インダセニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレル基、ピレニル基、クリセニル基、及びナフタセニル基等が挙げられる。
該非縮合環式炭化水素基としては、ベンゼン、ジフェニルエーテル、ポリエチレンジフェニルエーテル、ジフェニルチオエーテル及びジフェニルスルホン等の単環式炭化水素化合物の1価基、あるいはビフェニル、ポリフェニル、ジフェニルアルカン、ジフェニルアルケン、ジフェニルアルキン、トリフェニルメタン、ジスチリルベンゼン、1,1−ジフェニルシクロアルカン、ポリフェニルアルカン、及びポリフェニルアルケン等の非縮合多環式炭化水素化合物の1価基、あるいは9,9−ジフェニルフルオレン等の環集合炭化水素化合物の1価基が挙げられる。
複素環基としては、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、オキサジアゾール、及びチアジアゾール等の1価基が挙げられる。
また、前記Ar3、Ar4で表わされるアリール基は例えば以下に示すような置換基を有してもよい。
(1)ハロゲン原子、シアノ基、ニトロ基等。
(2)アルキル基、好ましくは、C1〜C12とりわけC1〜C8、さらに好ましくはC1〜C4の直鎖または分岐鎖のアルキル基であり、これらのアルキル基にはさらにフッ素原子、水酸基、シアノ基、C1〜C4のアルコキシ基、フェニル基又はハロゲン原子、C1〜C4のアルキル基もしくはC1〜C4のアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチル基、エチル基、n−ブチル基、i−プロピル基、t−ブチル基、s−ブチル基、n−プロピル基、トリフルオロメチル基、2−ヒドロキエチル基、2−エトキシエチル基、2−シアノエチル基、2−メトキシエチル基、ベンジル基、4−クロロベンジル基、4−メチルベンジル基、4−フェニルベンジル基等が挙げられる。
(3)アルコキシ基(−OR2)であり、R2は(2)で定義したアルキル基を表わす。具体的には、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、t−ブトキシ基、n−ブトキシ基、s−ブトキシ基、i−ブトキシ基、2−ヒドロキシエトキシ基、ベンジルオキシ基、トリフルオロメトキシ基等が挙げられる。
(4)アリールオキシ基であり、アリール基としてはフェニル基、ナフチル基が挙げられる。これは、C1〜C4のアルコキシ基、C1〜C4のアルキル基またはハロゲン原子を置換基として含有してもよい。具体的には、フェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、4−メトキシフェノキシ基、4−メチルフェノキシ基等が挙げられる。
(5)アルキルメルカプト基またはアリールメルカプト基であり、具体的にはメチルチオ基、エチルチオ基、フェニルチオ基、p−メチルフェニルチオ基等が挙げられる。
(式中、R3及びR4は各々独立に水素原子、前記(2)で定義したアルキル基、またはアリール基を表わす。アリール基としては、例えばフェニル基、ビフェニル基又はナフチル基が挙げられ、これらはC1〜C4のアルコキシ基、C1〜C4のアルキル基またはハロゲン原子を置換基として含有してもよい。R3及びR4は共同で環を形成してもよい)
具体的には、アミノ基、ジエチルアミノ基、N−メチル−N−フェニルアミノ基、N,N−ジフェニルアミノ基、N,N−ジ(トリール)アミノ基、ジベンジルアミノ基、ピペリジノ基、モルホリノ基、ピロリジノ基等が挙げられる。
(7)メチレンジオキシ基、又はメチレンジチオ基等のアルキレンジオキシ基又はアルキレンジチオ基等が挙げられる。
(8)置換又は無置換のスチリル基、置換又は無置換のβ−フェニルスチリル基、ジフェニルアミノフェニル基、ジトリルアミノフェニル基等。
前記Ar1、Ar2で表わされるアリーレン基としては、前記Ar3、Ar4で表されるアリール基から誘導される2価基である。
前記Xは単結合、置換もしくは無置換のアルキレン基、置換もしくは無置換のシクロアルキレン基、置換もしくは無置換のアルキレンエーテル基、酸素原子、硫黄原子、ビニレン基を表わす。
置換もしくは無置換のアルキレン基としては、C1〜C12、好ましくはC1〜C8、さらに好ましくはC1〜C4の直鎖または分岐鎖のアルキレン基であり、これらのアルキレン基にはさらにフッ素原子、水酸基、シアノ基、C1〜C4のアルコキシ基、フェニル基又はハロゲン原子、C1〜C4のアルキル基もしくはC1〜C4のアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチレン基、エチレン基、n−ブチレン基、i−プロピレン基、t−ブチレン基、s−ブチレン基、n−プロピレン基、トリフルオロメチレン基、2−ヒドロキエチレン基、2−エトキシエチレン基、2−シアノエチレン基、2−メトキシエチレン基、ベンジリデン基、フェニルエチレン基、4−クロロフェニルエチレン基、4−メチルフェニルエチレン基、4−ビフェニルエチレン基等が挙げられる。
置換もしくは無置換のシクロアルキレン基としては、C5〜C7の環状アルキレン基であり、これらの環状アルキレン基にはフッ素原子、水酸基、C1〜C4のアルキル基、C1〜C4のアルコキシ基を有していても良い。具体的にはシクロヘキシリデン基、シクロへキシレン基、3,3−ジメチルシクロヘキシリデン基等が挙げられる。
置換もしくは無置換のアルキレンエーテル基としては、エチレンオキシ、プロピレンオキシ、エチレングリコール、プロピレングリコール、ジエチレングリコール、テトラエチレングリコール、トリプロピレングリコールを表わし、アルキレンエーテル基アルキレン基はヒドロキシル基、メチル基、エチル基等の置換基を有してもよい。
ビニレン基は、
で表わされ、R5は水素、アルキル基(前記(2)で定義されるアルキル基と同じ)、アリール基(前記Ar3、Ar4で表わされるアリール基と同じ)、aは1または2、bは1〜3を表わす。
前記Zは置換もしくは無置換のアルキレン基、置換もしくは無置換のアルキレンエーテル2価基、アルキレンオキシカルボニル2価基を表わす。
置換もしくは無置換のアルキレン基としては、前記Xのアルキレン基と同様なものが挙げられる。
置換もしくは無置換のアルキレンエーテル2価基としては、前記Xのアルキレンエーテル2価基が挙げられる。
アルキレンオキシカルボニル2価基としては、カプロラクトン2価変性基が挙げられる。
また、本発明の1官能の電荷輸送性構造を有するラジカル重合性化合物として更に好ましくは、下記一般式(3)の構造の化合物が挙げられる。
(式中、o、p、qはそれぞれ0又は1の整数、Raは水素原子、メチル基を表わし、Rb、Rcは水素原子以外の置換基で炭素数1〜6のアルキル基を表わし、複数の場合は異なっても良い。s、tは0〜3の整数を表わす。Zaは単結合、メチレン基、エチレン基、を表わす。)
上記一般式で表わされる化合物としては、Rb、Rcの置換基として、特にメチル基、エチル基である化合物が好ましい。
本発明で用いる上記一般式(1)及び(2)特に(3)の1官能性の電荷輸送性構造を有するラジカル重合性化合物は、炭素−炭素間の二重結合が両側に開放されて重合するため、末端構造とはならず、連鎖重合体中に組み込まれ、3官能以上のラジカル重合性モノマーとの重合で架橋形成された重合体中では、高分子の主鎖中に存在し、かつ主鎖−主鎖間の架橋鎖中に存在(この架橋鎖には1つの高分子と他の高分子間の分子間架橋鎖と、1つの高分子内で折り畳まれた状態の主鎖のある部位と主鎖中でこれから離れた位置に重合したモノマー由来の他の部位とが架橋される分子内架橋鎖とがある)するが、主鎖中に存在する場合であってもまた架橋鎖中に存在する場合であっても、鎖部分から懸下するトリアリールアミン構造は、窒素原子から放射状方向に配置する少なくとも3つのアリール基を有し、バルキーであるが、鎖部分に直接結合しておらず鎖部分からカルボニル基等を介して懸下しているため立体的位置取りに融通性ある状態で固定されているので、これらトリアリールアミン構造は重合体中で相互に程よく隣接する空間配置が可能であるため、分子内の構造的歪みが少なく、また、電子写真感光体の表面層とされた場合に、電荷輸送経路の断絶を比較的免れた分子内構造を採りうるものと推測される。
本発明の1官能の電荷輸送性構造を有するラジカル重合性化合物の具体例を以下に示すが、これらの構造の化合物に限定されるものではない。
また、本発明に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物は、保護層の電荷輸送性能を付与するために重要で、この成分は保護層に対し20〜80重量%、好ましくは30〜70重量%である。この成分が20重量%未満では保護層の電荷輸送性能が充分に保てず、繰り返しの使用で感度低下、残留電位上昇などの電気特性の劣化が現れる傾向がある。また、80重量%を超えると電荷輸送性構造を有しない3官能モノマーの含有量が低下し、架橋結合密度の低下を招き高い耐摩耗性が発揮しにくい傾向がある。使用されるプロセスによって要求される電気特性や耐摩耗性が異なり、それに伴い本発明の感光体の保護層の膜厚も異なるため一概には言えないが、両特性のバランスを考慮すると30〜70重量%の範囲が最も好ましい。
本発明の電子写真感光体を構成する保護層は、少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化したものであるが、これ以外に塗工時の粘度調整、保護層の応力緩和、低表面エネルギー化や摩擦係数低減などの機能付与の目的で1官能及び2官能のラジカル重合性モノマー、機能性モノマー及びラジカル重合性オリゴマーを併用することができる。これらのラジカル重合性モノマー、オリゴマーとしては、公知のものが利用できる。
1官能のラジカルモノマーとしては、例えば、2−エチルヘキシルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、テトラヒドロフルフリルアクリレート、2−エチルヘキシルカルビトールアクリレート、3−メトキシブチルアクリレト、ベンジルアクリレート、シクロヘキシルアクリレート、イソアミルアクリレート、イソブチルアクリレート、メトキシトリエチレングリコールアクリレート、フェノキシテトラエチレングリコールアクリレート、セチルアクリレート、イソステアリルアクリレート、ステアリルアクリレート、スチレンモノマーなどが挙げられる。
2官能のラジカル重合性モノマーとしては、例えば、1,3−ブタンジオールジアクリレート、1,4−ブタンジオールジアクリレート、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジアクリレート、1,6−ヘキサンジオールジメタクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ビスフェノールA−EO変性ジアクリレート、ビスフェノールF−EO変性ジアクリレート、ネオペンチルグリコールジアクリレートなどが挙げられる。
機能性モノマーとしては、例えば、オクタフルオロペンチルアクリレート、2−パーフルオロオクチルエチルアクリレート、2−パーフルオロオクチルエチルメタクリレート、2−パーフルオロイソノニルエチルアクリレートなどのフッ素原子を置換したもの、特公平5−60503号公報、特公平6−45770号公報記載のシロキサン繰り返し単位:20〜70のアクリロイルポリジメチルシロキサンエチル、メタクリロイルポリジメチルシロキサンエチル、アクリロイルポリジメチルシロキサンプロピル、アクリロイルポリジメチルシロキサンブチル、ジアクリロイルポリジメチルシロキサンジエチルなどのポリシロキサン基を有するビニルモノマー、アクリレート及びメタクリレートが挙げられる。
ラジカル重合性オリゴマーとしては、例えば、エポキシアクリレート系、ウレタンアクリレート系、ポリエステルアクリレート系オリゴマーが挙げられる。
但し、1官能及び2官能のラジカル重合性モノマーやラジカル重合性オリゴマーを多量に含有させると架橋型保護層の3次元架橋結合密度が実質的に低下し、耐摩耗性の低下を招く。このためこれらのモノマーやオリゴマーの含有量は、3官能以上のラジカル重合性モノマー100重量部に対し50重量部以下、好ましくは30重量部以下であればより好ましい。
また、本発明の保護層は少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を硬化したものであるが、必要に応じてこの硬化反応を効率よく進行させるために保護層塗布液中に重合開始剤を含有させても良い。
熱重合開始剤としては、2,5−ジメチルヘキサン−2,5−ジヒドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルクミルパーオキサイド、2,5−ジメチル−2,5−ジ(パーオキシベンゾイル)ヘキシン−3、ジ−t−ブチルベルオキサイド、t−ブチルヒドロベルオキサイド、クメンヒドロベルオキサイド、ラウロイルパーオキサイド、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシ)プロパンなどの過酸化物系開始剤、アゾビスイソブチルニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル、アゾビスイソブチルアミジン塩酸塩、4,4’−アゾビス−4−シアノ吉草酸などのアゾ系開始剤が挙げられる。
光重合開始剤としては、ジエトキシアセトフェノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2−メチル−2−モルフォリノ(4−メチルチオフェニル)プロパン−1−オン、1−フェニル−1,2−プロパンジオン−2−(o−エトキシカルボニル)オキシム、などのアセトフェノン系またはケタール系光重合開始剤、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、などのベンゾインエーテル系光重合開始剤、ベンゾフェノン、4−ヒドロキシベンゾフェノン、o−ベンゾイル安息香酸メチル、2−ベンゾイルナフタレン、4−ベンゾイルビフェニル、4−ベンゾイルフェニールエーテル、アクリル化ベンゾフェノン、1,4−ベンゾイルベンゼン、などのベンゾフェノン系光重合開始剤、2−イソプロピルチオキサントン、2−クロロチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジクロロチオキサントン、などのチオキサントン系光重合開始剤、その他の光重合開始剤としては、エチルアントラキノン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、2,4,6−トリメチルベンゾイルフェニルエトキシホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス(2,4−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキサイド、メチルフェニルグリオキシエステル、9,10−フェナントレン、アクリジン系化合物、トリアジン系化合物、イミダゾール系化合物、が挙げられる。また、光重合促進効果を有するものを単独または上記光重合開始剤と併用して用いることもできる。例えば、トリエタノールアミン、メチルジエタノールアミン、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミル、安息香酸(2−ジメチルアミノ)エチル、4,4’−ジメチルアミノベンゾフェノン、などが挙げられる。
これらの重合開始剤は1種又は2種以上を混合して用いてもよい。重合開始剤の含有量は、ラジカル重合性を有する総含有物100重量部に対し、0.5〜40重量部、好ましくは1〜20重量部である。
更に、本発明の保護層形成用塗工液は必要に応じて各種可塑剤(応力緩和や接着性向上の目的)、レベリング剤、ラジカル反応性を有しない低分子電荷輸送物質などの添加剤が含有できる。これらの添加剤は公知のものが使用可能であり、可塑剤としてはジブチルフタレート、ジオクチルフタレート等の一般の樹脂に使用されているものが利用可能で、その使用量は塗工液の総固形分に対し20重量%以下、好ましくは10重量%以下に抑えられる。また、レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいはオリゴマーが利用でき、その使用量は塗工液の総固形分に対し3重量%以下が適当である。
本発明の保護層は、少なくとも上記の電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物を含有する塗工液を前述の感光層あるいは電荷輸送層上に塗布、硬化することにより形成される。かかる塗工液はラジカル重合性モノマーが液体である場合、これに他の成分を溶解して塗布することも可能であるが、必要に応じて溶媒により希釈して塗布される。このとき用いられる溶媒としては、メタノール、エタノール、プロパノール、ブタノールなどのアルコール系、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系、酢酸エチル、酢酸ブチルなどのエステル系、テトラヒドロフラン、ジオキサン、プロピルエーテルなどのエーテル系、ジクロロメタン、ジクロロエタン、トリクロロエタン、クロロベンゼンなどのハロゲン系、ベンゼン、トルエン、キシレンなどの芳香族系、メチルセロソルブ、エチルセロソルブ、セロソルブアセテートなどのセロソルブ系などが挙げられる。これらの溶媒は単独または2種以上を混合して用いてもよい。溶媒による希釈率は組成物の溶解性、塗工法、目的とする膜厚により変わり、任意である。塗布は、浸漬塗工法やスプレーコート、ビードコート、リングコート法などを用いて行うことができる。
本発明においては、かかる保護層塗工液を塗布後、外部からエネルギーを与え硬化させ、保護層を形成するものであるが、このとき用いられる外部エネルギーとしては熱、光、放射線がある。熱のエネルギーを加える方法としては、空気、窒素などの気体、蒸気、あるいは各種熱媒体、赤外線、電磁波を用い塗工表面側あるいは支持体側から加熱することによって行われる。加熱温度は100℃以上、170℃以下が好ましく、100℃未満では反応速度が遅く、完全に硬化反応が終了しない傾向がある。170℃を超える高温では硬化反応が不均一に進行し、保護層中に大きな歪みや多数の未反応残基、反応停止末端が発生する。硬化反応を均一に進めるために、100℃未満の比較的低温で加熱後、更に100℃以上に加温し反応を完結させる方法も有効である。
光のエネルギーとしては主に紫外光領域に発光波長をもつ高圧水銀灯やメタルハライドランプなどのUV照射光源が利用できるが、ラジカル重合性含有物や光重合開始剤の吸収波長に合わせ可視光光源の選択も可能である。照射光量は50mW/cm2以上、1000mW/cm2以下が好ましく、50mW/cm2未満では硬化反応に時間を要する。1000mW/cm2より強いと反応の進行が不均一となり、保護層表面に局部的な皺が発生したり、多数の未反応残基、反応停止末端が生ずる。また、急激な架橋により内部応力が大きくなり、クラックや膜剥がれの原因となる。放射線のエネルギーとしては電子線を用いるものが挙げられる。これらのエネルギーの中で、反応速度制御の容易さ、装置の簡便さから熱及び光のエネルギーを用いたものが有用である。
本発明の保護層の膜厚は、好ましくは1μm以上、10μm以下、さらに好ましくは2μm以上、8μm以下である。10μmより厚い場合、前述のようにクラックや膜剥がれが発生しやすくなり、8μm以下ではその余裕度がさらに向上するため架橋密度を高くすることが可能で、さらに耐摩耗性を高める材料選択や硬化条件の設定が可能となる。一方、ラジカル重合反応は酸素阻害を受けやすく、すなわち大気に接した表面では酸素によるラジカルトラップの影響で架橋が進まなかったり、不均一になりやすい。
この影響が顕著に現れるのは表層1μm未満の場合で、この膜厚以下の保護層は耐摩耗性の低下や不均一な摩耗が起こりやすい。また、保護層塗工時において下層の電荷輸送層成分の混入が生じ、特に、保護層の塗布膜厚が薄いと層全体に混入物が拡がり、硬化反応の阻害や架橋密度の低下をもたらす。これらの理由から、本発明の保護層は1μm以上の膜厚で良好な耐摩耗性、耐傷性を有するが、繰り返しの使用において局部的に下層の電荷輸送層まで削れた部分できるとその部分の摩耗が増加し、帯電性や感度変動から中間調画像の濃度むらが発生しやすい。従って、より長寿命、高画質化のためには保護層の膜厚を2μm以上にすることが望ましい。
本発明の電子写真感光体の電荷ブロッキング層、モアレ防止層、感光層(電荷発生層、電荷輸送層)、保護層を順次積層した構成において、最表面の保護層が有機溶剤に対し不溶性である場合、飛躍的な耐摩耗性、耐傷性が達成されることを特徴としている。この有機溶剤に対する溶解性を試験する方法としては、感光体表面層上に高分子物質に対する溶解性の高い有機溶剤、例えば、テトラヒドロフラン、ジクロロメタン等を1滴滴下し、自然乾燥後に感光体表面形状の変化を実体顕微鏡で観察することで判定できる。溶解性が高い感光体は液滴の中心部分が凹状になり周囲が逆に盛り上がる現象、電荷輸送物質が析出し結晶化による白濁やくもり生ずる現象、表面が膨潤しその後収縮することで皺が発生する現象などの変化がみられる。それに対し、不溶性の感光体は上記のような現象がみられず、滴下前と全く変化が現れない。
本発明の構成において、保護層を有機溶剤に対し不溶性にするには、(1)保護層塗工液の組成物、それらの含有割合の調整、(2)保護層塗工液の希釈溶媒、固形分濃度の調整、(3)保護層の塗工方法の選択、(4)保護層の硬化条件の制御、(5)下層の電荷輸送層の難溶解性化など、これらをコントロールすることが重要であるが、一つの因子で達成される訳ではない。
保護層塗工液の組成物としては、前述した電荷輸送性構造を有しない3官能以上のラジカル重合性モノマー及び1官能の電荷輸送性構造を有するラジカル重合性化合物以外に、ラジカル重合性官能基を有しないバインダー樹脂、酸化防止剤、可塑剤等の添加剤を多量に含有させると、架橋密度の低下、反応により生じた硬化物と上記添加物との相分離が生じ、有機溶剤に対し可溶性となる傾向が高い。具体的には塗工液の総固形分に対し上記総含有量を20重量%以下に抑えることが重要である。また、架橋密度を希薄にさせないために、1官能または2官能のラジカル重合性モノマー、反応性オリゴマー、反応性ポリマーにおいても、総含有量を3官能ラジカル重合性モノマーに対し20重量%以下とすることが望ましい。
さらに、2官能以上の電荷輸送性構造を有するラジカル重合性化合物を多量に含有させると、嵩高い構造体が複数の結合により架橋構造中に固定されるため歪みを生じやすく、微小な硬化物の集合体となりやすい。このことが原因で有機溶剤に対し可溶性となることがある。化合物構造によって異なるが、2官能以上の電荷輸送性構造を有するラジカル重合性化合物の含有量は1官能の電荷輸送性構造を有するラジカル重合性化合物に対し10重量%以下にすることが好ましい。
保護層塗工液の希釈溶媒に関しては、蒸発速度の遅い溶剤を用いた場合、残留する溶媒が硬化の妨げとなったり、下層成分の混入量を増加させることがあり、不均一硬化や硬化密度低下をもたらす。このため有機溶剤に対し、可溶性となりやすい。具体的には、テトラヒドロフラン、テトラヒドロフランとメタノール混合溶媒、酢酸エチル、メチルエチルケトン、エチルセロソルブなどが有用であるが、塗工法と合わせて選択される。また、固形分濃度に関しては、同様な理由で低すぎる場合、有機溶剤に対し可溶性となりやすい。逆に膜厚、塗工液粘度の制限から上限濃度の制約をうける。具体的には、10〜50重量%の範囲で用いることが望ましい。
保護層の塗工方法としては、同様な理由で塗工膜形成時の溶媒含有量、溶媒との接触時間を少なくする方法が好ましく、具体的にはスプレーコート法、塗工液量を規制したリングコート法が好ましい。また、下層成分の混入量を抑えるためには、電荷輸送層として高分子電荷輸送物質を用いること、感光層(もしくは電荷輸送層)と保護層の間に、保護層の塗工溶媒に対し不溶性の中間層を設けることも有効である。
保護層の硬化条件としては、加熱または光照射のエネルギーが低いと硬化が完全に終了せず、有機溶剤に対し溶解性があがる。逆に非常に高いエネルギーにより硬化させた場合、硬化反応が不均一となり未架橋部やラジカル停止部の増加や微小な硬化物の集合体となりやすい。このため有機溶剤に対し溶解性となることがある。有機溶剤に対し不溶性化するには、熱硬化の条件としては100〜170℃、10分〜3時間が好ましく、UV光照射による硬化条件としては50〜1000mW/cm2、5秒〜5分で且つ温度上昇を50℃以下に制御し、不均一な硬化反応を抑えることが望ましい。
本発明の電子写真感光体を構成する保護層を有機溶剤に対し不溶性にする手法について例示すると、例えば、塗工液として、3つのアクリロイルオキシ基を有するアクリレートモノマーと、一つのアクリロイルオキシ基を有するトリアリールアミン化合物を使用する場合、これらの使用割合は7:3〜3:7であり、また、重合開始剤をこれらアクリレート化合物全量に対し3〜20重量%添加し、さらに溶媒を加えて塗工液を調製する。例えば、保護層の下層となる電荷輸送層において、電荷輸送物質としてトリアリールアミン系ドナー、及びバインダー樹脂として、ポリカーボネートを使用し、表面層をスプレー塗工により形成する場合、上記塗工液の溶媒としては、テトラヒドロフラン、2−ブタノン、酢酸エチル等が好ましく、その使用割合は、アクリレート化合物全量に対し3倍量〜10倍量である。
次いで、例えば、アルミシリンダー等の支持体上に、下引き層、電荷発生層、上記電荷輸送層を順次積層した感光体上に、上記調製した塗工液をスプレー等により塗布する。その後、自然乾燥又は比較的低温で短時間乾燥し(25〜80℃、1〜10分間)、UV照射あるいは加熱して硬化させる。
UV照射の場合、メタルハライドランプ等を用いるが、照度は50mW/cm2以上、1000mW/cm2以下、時間としては5秒から5分程度が好ましく、ドラム温度は50℃を超えないように制御する。
熱硬化の場合、加熱温度は100〜170℃が好ましく、例えば加熱手段として送風型オーブンを用い、加熱温度を150℃に設定した場合、加熱時間は20分〜3時間である。
硬化終了後は、さらに残留溶媒低減のため100〜150℃で10分〜30分加熱して、本発明の感光体を得る。
上述したように、感光層(電荷輸送層)に高分子電荷輸送物質を使用したり、あるいは感光体の表面に保護層を設けることは、各々の感光体の耐久性(耐摩耗性)を高めるだけでなく、後述のようなタンデム型フルカラー画像形成装置中で使用される場合には、モノクロ画像形成装置にはない新たな効果をも生み出すものである。
本発明においては、耐環境性の改善のため、とりわけ、感度低下、残留電位の上昇を防止する目的で、保護層、電荷輸送層、電荷発生層、電荷ブロッキング層、モアレ防止層等の各層に酸化防止剤を添加することができる。
(フェノール系化合物)
2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−4−エチルフェノール、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2'−メチレン−ビス−(4−メチル−6−t−ブチルフェノール)、2,2'−メチレン−ビス−(4−エチル−6−t−ブチルフェノール)、4,4'−チオビス−(3−メチル−6−t−ブチルフェノール)、4,4'−ブチリデンビス−(3−メチル−6−t−ブチルフェノール)、1,1,3−トリス−(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス−[メチレン−3−(3',5'−ジ−t−ブチル−4'−ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3'−ビス(4'−ヒドロキシ−3'−t−ブチルフェニル)ブチリックアシッド]クリコ−ルエステル、トコフェロール類など。
(パラフェニレンジアミン類)
N−フェニル−N'−イソプロピル−p−フェニレンジアミン、N,N'−ジ−sec−ブチル−p−フェニレンジアミン、N−フェニル−N−sec−ブチル−p−フェニレンジアミン、N,N'−ジ−イソプロピル−p−フェニレンジアミン、N,N'−ジメチル−N,N'−ジ−t−ブチル−p−フェニレンジアミンなど。
(ハイドロキノン類)
2,5−ジ−t−オクチルハイドロキノン、2,6−ジドデシルハイドロキノン、2−ドデシルハイドロキノン、2−ドデシル−5−クロロハイドロキノン、2−t−オクチル−5−メチルハイドロキノン、2−(2−オクタデセニル)−5−メチルハイドロキノンなど。
(有機硫黄化合物類)
ジラウリル−3,3'−チオジプロピオネート、ジステアリル−3,3'−チオジプロピオネート、ジテトラデシル−3,3'−チオジプロピオネートなど。
(有機燐化合物類)
トリフェニルホスフィン、トリ(ノニルフェニル)ホスフィン、トリ(ジノニルフェニル)ホスフィン、トリクレジルホスフィン、トリ(2,4−ジブチルフェノキシ)ホスフィンなど。
これら化合物は、ゴム、プラスチック、油脂類などの酸化防止剤として知られており、市販品を容易に入手できる。本発明における酸化防止剤の添加量は、添加する層の総重量に対して0.01〜10重量%である。
フルカラーの画像の場合、様々な形態の画像が入力されるが、逆に定型的な画像も入力される場合がある。例えば、日本語の文書等における検印の存在などである。検印のようなものは通常、画像領域の端のほうに位置され、また使用される色も限定される。ランダムな画像が常に書き込まれているような状態においては、画像形成要素中の感光体には、平均的に画像書き込み、現像、転写が行なわれることになるが、上述のように特定の部分に数多くの画像形成が繰り返されたり、特定の画像形成要素ばかり使用された場合には、その耐久性のバランスを欠くことにつながる。このような状態で表面の耐久性(物理的・化学的・機械的)の小さな感光体が使用された場合には、この差が顕著になり、画像上の問題になりやすい。一方、感光体を高耐久化した場合には、このような局所的な変化量が小さく、結果的に画像上の欠陥として現われにくくなるため、高耐久化を実現すると共に、出力画像の安定性をも増すことになり、非常に有効である。
以下、本発明を実施例を挙げて説明するが、本発明が実施例により制約を受けるものではない。なお、部はすべて重量部である。
(合成例1)
特開2004−83859号公報の実施例1に準じてチタニルフタロシアニン結晶を合成した。即ち、1,3−ジイミノイソインドリン292部とスルホラン1800部を混合し、窒素気流下でチタニウムテトラブトキシド204部を滴下する。滴下終了後、徐々に180℃まで昇温し、反応温度を170℃〜180℃の間に保ちながら5時間撹拌して反応を行なった。反応終了後、放冷した後析出物を濾過し、クロロホルムで粉体が青色になるまで洗浄し、つぎにメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後乾燥し、粗チタニルフタロシアニンを得た。
得られた熱水洗浄処理した粗チタニルフタロシアニン顔料のうち60部を96%硫酸1000部に3〜5℃下撹拌、溶解し、ろ過した。得られた硫酸溶液を氷水35000部中に撹拌しながら滴下し、析出した結晶を濾過、ついで洗浄液が中性になるまで水洗を繰り返し、チタニルフタロシアニン顔料の水ペーストを得た。
この水ペーストにテトラヒドロフラン1500部を加え、室温下でホモミキサー(ケニス、MARKIIfモデル)により強烈に撹拌(2000rpm)し、ペーストの濃紺色の色が淡い青色に変化したら(撹拌開始後20分)、撹拌を停止し、直ちに減圧濾過を行なった。濾過装置上で得られた結晶をテトラヒドロフランで洗浄し、顔料のウェットケーキ98部を得た。これを減圧下(5mmHg)、70℃で2日間乾燥して、チタニルフタロシアニン結晶78部を得た。
得られたチタニルフタロシアニン粉末を、下記の条件によりX線回折スペクトル測定したところ、Cu−Kα特性X線(波長1.542Å)に対するブラッグ角2θが27.2±0.2°に最大ピークと最低角7.3±0.2°にピークを有し、かつ7.3°のピークと9.4°のピークの間にピークを有さず、更に26.3°にピークを有さないチタニルフタロシアニン粉末を得られた。その結果を図10に示す。
(X線回折スペクトル測定条件)
X線管球:Cu
電圧:50kV
電流:30mA
走査速度:2°/分
走査範囲:3°〜40°
時定数:2秒
合成例1で作製されたチタニルフタロシアニン結晶の一部をテトラヒドロフランでおよそ1重量%になるように希釈し、表面を導電性処理した銅製のネットですくい取り、チタニルフタロシアニンの粒子サイズを透過型電子顕微鏡(TEM、日立:H−9000NAR)にて、75000倍の倍率で観察を行なった。平均粒子サイズとして、以下のように求めた。
上述のように観察されたTEM像をTEM写真として撮影し、映し出されたチタニルフタロシアニン粒子(針状に近い形)を30個任意に選び出し、それぞれの長径の大きさを測定する。測定した30個体の長径の算術平均を求めて、平均粒子サイズとした。
以上の方法により求められた合成例1における水ペースト中の平均粒子サイズは、0.12μmであった。
次に、後述する感光体作製例の保護層に用いられる1官能の電荷輸送性構造を有する化合物の合成例について述べる。
(1官能の電荷輸送性構造を有するラジカル重合性化合物の合成例)
本発明における1官能の電荷輸送性構造を有するラジカル重合性化合物は、例えば特許第3164426号公報記載の方法にて合成される。また、下記にこの一例を示す。
(1)ヒドロキシ基置換トリアリールアミン化合物(下記構造式B)の合成
メトキシ基置換トリアリールアミン化合物(下記構造式A)113.85部(0.3mol)と、ヨウ化ナトリウム138部(0.92mol)にスルホラン240部を加え、窒素気流中で60℃に加温した。この液中にトリメチルクロロシラン99部(0.91mol)を1時間かけて滴下し、約60℃の温度で4時間半撹拌し反応を終了させた。
この反応液にトルエン約1500部を加え室温まで冷却し、水と炭酸ナトリウム水溶液で繰り返し洗浄した。
その後、このトルエン溶液から溶媒を除去し、カラムクロマトグラフィー処理(吸着媒体:シリカゲル、展開溶媒:トルエン:酢酸エチル=20:1)にて精製した。
得られた淡黄色オイルにシクロヘキサンを加え、結晶を析出させた。
この様にして下記構造式Bの白色結晶88.1部(収率=80.4%)を得た。
融点:64.0〜66.0℃
(2)トリアリールアミノ基置換アクリレート化合物の合成例(例示化合物No.54)
上記(1)で得られたヒドロキシ基置換トリアリールアミン化合物(構造式B)82.9部(0.227mol)をテトラヒドロフラン400部に溶解し、窒素気流中で水酸化ナトリウム水溶液(NaOH:12.4部,水:100部)を滴下した。
この溶液を5℃に冷却し、アクリル酸クロライド25.2部(0.272mol)を40分かけて滴下した。その後、5℃で3時間撹拌し反応を終了させた。
この反応液を水に注ぎ、トルエンにて抽出した。この抽出液を炭酸水素ナトリウム水溶液と水で繰り返し洗浄した。その後、このトルエン溶液から溶媒を除去し、カラムクロマトグラフィー処理(吸着媒体:シリカゲル、展開溶媒:トルエン)にて精製した。得られた無色のオイルにn−ヘキサンを加え、結晶を析出させた。
この様にして例示化合物No.54の白色結晶80.73部(収率=84.8%)を得た。
融点:117.5〜119.0℃
(分散液作製例1)
合成例1で作製したチタニルフタロシアニン結晶を下記組成の処方にて、下記に示す条件にて分散を行い、電荷発生層用塗工液として、分散液を作製した。
チタニルフタロシアニン結晶 15部
ポリビニルブチラール(積水化学製:BX−1) 10部
2−ブタノン 280部
市販のビーズミル分散機に直径0.5mmのPSZボールを用い、ポリビニルブチラールを溶解した2−ブタノンおよび顔料を全て投入し、ローター回転数1200r.p.m.にて30分間分散を行ない、分散液を作製した([分散液1]とする)。
(分散液作製例2)
下記構造のジスアゾ顔料 5部
ポリビニルブチラール(UCC製:XYHL) 1部
2−ブタノン 100部
シクロヘキサノン 200部
ボールミルポットに、直径10mmのPSZボールを用い、ポリビニルブチラールを溶解した溶媒およびジスアゾ顔料を全て投入し、5日間ボールミル分散を行った。ここに2−ブタノン100部、シクロヘキサノン200部を追加投入し、更に1日間ボールミル分散を行い、分散液を作製した([分散液2]とする)。
(感光体作製例1)
直径100mmのアルミニウムシリンダー(JIS1050)に、下記組成の電荷ブロッキング層塗工液、モアレ防止層塗工液、電荷発生層塗工液、電荷輸送層塗工液、保護層塗工液を、順次塗布・乾燥し、1.0μmの電荷ブロッキング層、3.5μmのモアレ防止層、電荷発生層、23μmの電荷輸送層、5μmの保護層を形成し、積層感光体を作製した([感光体1]とする)。
なお、電荷発生層の膜厚は、780nmにおける電荷発生層の透過率が25%になるように調整した。電荷発生層の透過率は、下記組成の電荷発生層塗工液を、ポリエチレンテレフタレートフィルムを巻き付けたアルミシリンダーに感光体作製と同じ条件で塗工を行ない、電荷発生層を塗工していないポリエチレンテレフタレートフィルムを比較対照とし、市販の分光光度計(島津:UV−3100)にて、780nmの透過率を評価した。
◎電荷ブロッキング層塗工液
N−メトキシメチル化ナイロン(鉛市:ファインレジンFR−101) 4部
メタノール 70部
n−ブタノール 30部
◎モアレ防止層塗工液
酸化チタン(CR-EL:石原産業社製、平均粒径:0.25μm) 126部
アルキッド樹脂 33.6部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 18.7部
[スーパーベッカミンL-121-60(固形分60%)大日本インキ化学工業製]
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
◎電荷発生層塗工液
先に作製した分散液1を用いた。
◎電荷輸送層塗工液
ポリカーボネート(TS2050:帝人化成社製) 10部
塩化メチレン 80部
下記構造式の電荷輸送物質 7部
◎保護層塗工液
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部
{トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製)
分子量:296、官能基数:3官能、分子量/官能基数=99}
下記構造の1官能の電荷輸送性構造を有するラジカル重合性化合物 10部
(例示化合物No.54)
光重合開始剤 1部
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
テトラヒドロフラン 100部
保護層は、スプレー塗工してから20分間自然乾燥した後、メタルハライドランプ:160W/cm、照射強度:500mW/cm2、照射時間:60秒の条件で光照射を行うことによって塗布膜を硬化させた。
(感光体作製例2)
感光体作製例1において、電荷ブロッキング層を設けない以外は、感光体作製例1と同様に感光体を作製した([感光体2]とする)。
(感光体作製例3)
感光体作製例1において、モアレ防止層を設けない以外は、感光体作製例1と同様に感光体を作製した([感光体3]とする)。
(感光体作製例4)
感光体作製例1において、電荷ブロッキング層とモアレ防止層の塗工順序を入れ替えた以外は、感光体作製例1と同様に感光体を作製した([感光体4]とする)。
(感光体作製例5)
感光体作製例1において、電荷ブロッキング層の膜厚を0.1μmとした以外は、感光体作製例1と同様に感光体を作製した([感光体5]とする)。
(感光体作製例6)
感光体作製例1において、電荷ブロッキング層の膜厚を0.3μmとした以外は、感光体作製例1と同様に感光体を作製した(感光体6とする)。
(感光体作製例7)
感光体作製例1において、電荷ブロッキング層の膜厚を0.6μmとした以外は、感光体作製例1と同様に感光体を作製した([感光体7]とする)。
(感光体作製例8)
感光体作製例1において、電荷ブロッキング層の膜厚を1.8μmとした以外は、感光体作製例1と同様に感光体を作製した([感光体8]とする)。
(感光体作製例9)
感光体作製例1において、電荷ブロッキング層の膜厚を2.3μmとした以外は、感光体作製例1と同様に感光体を作製した([感光体9]とする)。
(感光体作製例10)
感光体作製例1において、電荷ブロッキング層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体10]とする)。
◎電荷ブロッキング層塗工液
アルコール可溶性ナイロン(東レ:アミランCM8000) 4部
メタノール 70部
n−ブタノール 30部
(感光体作製例11)
感光体作製例1において、電荷ブロッキング層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体11]とする)。
◎電荷ブロッキング層塗工液
アルキッド樹脂 33.6部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 18.7部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 400部
(感光体作製例12)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体12]とする)。
◎モアレ防止層塗工液
酸化チタン(CR-EL:石原産業社製、平均粒径:0.25μm) 168部
アルキッド樹脂 33.6部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 18.7部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、2/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
(感光体作製例13)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体13]とする)。
◎モアレ防止層塗工液
酸化チタン(CR-EL:石原産業社製、平均粒径:0.25μm) 252部
アルキッド樹脂 33.6部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 18.7部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、3/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
(感光体作製例14)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体14]とする)。
◎モアレ防止層塗工液
酸化チタン(CR-EL:石原産業社製、平均粒径:0.25μm) 84部
アルキッド樹脂3 3.6部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 18.7部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
(感光体作製例15)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体15]とする)。
◎モアレ防止層塗工液
酸化チタン(CR-EL:石原産業社製、平均粒径:0.25μm) 42部
アルキッド樹脂 33.6部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 18.7部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、0.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
(感光体作製例16)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体16]とする)。
◎モアレ防止層塗工液
酸化チタン(CR-EL:石原産業社製、平均粒径:0.25μm) 336部
アルキッド樹脂 33.6部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 18.7部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、4/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
(感光体作製例17)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体17]とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 126部
N−メトキシメチル化ナイロン(鉛市:ファインレジンFR-101) 27.5部
酒石酸(硬化触媒) 1部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
(感光体作製例18)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体18]とする)。
◎モアレ防止層塗工液
酸化チタン(CR-EL:石原産業社製、平均粒径:0.25μm) 126部
アルキッド樹脂 22.4部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 28部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、4/6重量比である。
(感光体作製例19)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した(感光体19とする)。
◎モアレ防止層塗工液
酸化チタン(CR-EL:石原産業社製、平均粒径:0.25μm) 126部
アルキッド樹脂 28部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 23.3部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、5/5重量比である。
(感光体作製例20)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体20]とする)。
◎モアレ防止層塗工液
酸化チタン(CR-EL:石原産業社製、平均粒径:0.25μm) 126部
アルキッド樹脂 39.2部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 14部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、7/3重量比である。
(感光体作製例21)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体21]とする)。
◎モアレ防止層塗工液
酸化チタン(CR-EL:石原産業社製、平均粒径:0.25μm) 126部
アルキッド樹脂 44.8部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 9.3部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 100部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、8/2重量比である。
(感光体作製例22)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体22]とする)。
◎モアレ防止層塗工液
酸化チタン(CR-EL:石原産業社製、平均粒径:0.25μm) 126部
アルキッド樹脂 50.4部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 4.7部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、9/1重量比である。
(感光体作製例23)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体23]とする)。
◎モアレ防止層塗工液
酸化亜鉛(SAZEX4000:堺化学製) 165部
アルキッド樹脂 33.6部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 18.7部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 120部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
(感光体作製例24)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体24]とする)。
◎モアレ防止層塗工液
酸化チタン(CR-EL:石原産業社製、平均粒径:0.25μm) 63部
酸化チタン(PT-401M:石原産業社製、平均粒径:0.07μm) 63部
アルキッド樹脂 33.6部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 18.7部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
平均粒径の比は0.28、両者の混合比は0.5である。
(感光体作製例25)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した(感光体25とする)。
◎モアレ防止層塗工液
酸化チタン(CR-EL:石原産業社製、平均粒径:0.25μm) 113.4部
酸化チタン(PT-401M:石原産業社製、平均粒径:0.07μm) 12.6部
アルキッド樹脂 33.6部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 18.7部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
平均粒径の比は0.28、両者の混合比は0.1である。
(感光体作製例26)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体26]とする)。
◎モアレ防止層塗工液
酸化チタン(CR-EL:石原産業社製、平均粒径:0.25μm) 12.6部
酸化チタン(PT-401M:石原産業社製、平均粒径:0.07μm) 113.4部
アルキッド樹脂 33.6部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 18.7部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
平均粒径の比は0.28、両者の混合比は0.9である。
(感光体作製例27)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体27]とする)。
◎モアレ防止層塗工液
酸化チタン(CR-EL:石原産業社製、平均粒径:0.25μm) 63部
酸化チタン(TTO-F1:石原産業社製、平均粒径:0.04μm) 63部
アルキッド樹脂 33.6部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 18.7部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
平均粒径の比は0.16、両者の混合比は0.5である。
(感光体作製例28)
感光体作製例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体28]とする)。
◎モアレ防止層塗工液
酸化チタン(CR-EL:石原産業社製、平均粒径:0.25μm) 63部
酸化チタン(A-100:石原産業社製、平均粒径:0.15μm) 63部
アルキッド樹脂 33.6部
[ベッコライトM6401-50-S(固形分50%)、大日本インキ化学工業製]
メラミン樹脂 18.7部
[スーパーベッカミンL-121-60(固形分60%)、大日本インキ化学工業製]
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
平均粒径の比は0.6、両者の混合比は0.5である。
(感光体作製例29)
感光体作製例1における電荷輸送層塗工液を以下の組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した([感光体29]とする)。
◎電荷輸送層塗工液
下記組成の高分子電荷輸送物質(重量平均分子量:約135000) 10部
下記構造の添加剤 0.5部
塩化メチレン 100部
(感光体作製例30)
感光体作製例1における保護層塗工液を以下の組成のものに変更し、塗布乾燥した(紫外線照射は行っていない)以外は感光体作製例1と同様に感光体を作製した([感光体30]とする)。
◎保護層塗工液
ポリカーボネート(TS2050:帝人化成社製、粘度平均分子量:5万) 10部
下記構造式の電荷輸送物質 7部
アルミナ微粒子 4部
(比抵抗:2.5×1012Ω・cm、平均一次粒径:0.4μm)
シクロヘキサノン 500部
テトラヒドロフラン 150部
(感光体作製例31)
感光体作製例30における保護層塗工液を以下のものに変更した以外は、感光体作製例30と同様に感光体を作製した([感光体31]とする)。
◎保護層塗工液
下記組成の高分子電荷輸送物質(重量平均分子量:約135000) 10部
アルミナ微粒子 4部
(比抵抗:2.5×1012Ω・cm、平均一次粒径:0.4μm)
シクロヘキサノン 500部
テトラヒドロフラン 150部
(感光体作製例32)
感光体作製例30における保護層塗工液中を以下のものに変更した以外は、感光体作製例30と同様に感光体を作製した([感光体32]とする)。
◎保護層塗工液
メチルトリメトキシシラン 100部
3%酢酸 20部
下記構造の電荷輸送性化合物 35部
酸化防止剤(サノール LS2626:三共化学社製) 1部
硬化剤(ジブチル錫アセテート) 1部
2−プロパノール 200部
(感光体作製例33)
感光体作製例1において、保護層塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記のラジカル重合性モノマーに変更した以外は、すべて感光体作製例1と同様にして電子写真感光体を作製した([感光体33」とする)。
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部
(ペンタエリスリトールテトラアクリレート(SR−295、化薬サートマー製)
分子量:352、官能基数:4官能、分子量/官能基数=88)
(感光体作製例34)
感光体作製例1の保護層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記の電荷輸送性構造を有さない2官能のラジカル重合性モノマー10部に換えた以外は、すべて感光体作製例1と同様にして電子写真感光体を作製した([感光体34]とする)。
電荷輸送性構造を有さない2官能のラジカル重合性モノマー 10部
(1,6−ヘキサンジオールジアクリレート(和光純薬製)
分子量:226、官能基数:2官能、分子量/官能基数=113)
(感光体作製例35)
感光体作製例1において、架橋型電荷輸送層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記のラジカル重合性モノマーに換え、光重合開始剤を下記の化合物1部に換えた以外は、すべて感光体作製例1と同様にして電子写真感光体を作製した([感光体35]とする)。
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部
(カプロラクトン変性ジペンタエリスリトールヘキサアクリレート
(KAYARAD DPCA−120、日本化薬製)
分子量:1947、官能基数:6官能、分子量/官能基数=325)
(感光体作製例36)
感光体作製例1の保護層用塗工液に含有される1官能の電荷輸送性構造を有するラジカル重合性化合物を下記構造式に示される2官能の電荷輸送性構造を有するラジカル重合性化合物10部に換えた以外は感光体作製例1と同様に電子写真感光体を作製した([感光体36]とする)。
(感光体作製例37)
感光体作製例1において、保護層用塗工液を下記組成に換えた以外は、感光体作製例1と同様にして電子写真感光体を作製した([感光体37]とする)。
◎保護層塗工液
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 6部
{トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製)
分子量:296、官能基数:3官能、分子量/官能基数=99}
下記構造の1官能の電荷輸送性構造を有するラジカル重合性化合物 14部
(例示化合物No.54)
光重合開始剤 1部
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
テトラヒドロフラン 100部
(感光体作製例38)
感光体作製例1において、保護層用塗工液を下記組成に換えた以外は、感光体作製例1と同様にして電子写真感光体を作製した([感光体38]とする)。
◎保護層塗工液
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 14部
{トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製)
分子量:296、官能基数:3官能、分子量/官能基数=99}
下記構造の1官能の電荷輸送性構造を有するラジカル重合性化合物 6部
(例示化合物No.54)
光重合開始剤 1部
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
テトラヒドロフラン 100部
(感光体作製例39)
感光体作製例1において、保護層用塗工液を下記組成に換えた以外は、感光体作製例1と同様にして電子写真感光体を作製した([感光体39]とする)。
◎保護層塗工液
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 2部
{トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製)
分子量:296、官能基数:3官能、分子量/官能基数=99}
下記構造の1官能の電荷輸送性構造を有するラジカル重合性化合物 18部
(例示化合物No.54)
光重合開始剤 1部
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
テトラヒドロフラン 100部
(感光体作製例40)
感光体作製例1において、保護層用塗工液を下記組成に換えた以外は、感光体作製例1と同様にして電子写真感光体を作製した([感光体40]とする)。
◎保護層塗工液
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 18部
{トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製)
分子量:296、官能基数:3官能、分子量/官能基数=99}
下記構造の1官能の電荷輸送性構造を有するラジカル重合性化合物 2部
(例示化合物No.54)
光重合開始剤 1部
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
テトラヒドロフラン 100部
(感光体作製例41)
感光体作製例1において、保護層を設けずに、電荷輸送層を28μmとした以外は、感光体作製例1と同様に電子写真感光体を作製した([感光体41]とする)。
以上のように作製した電子写真感光体1〜41について、外観を目視で観察し、クラック、膜剥がれの有無を判別した。次に、有機溶剤に対する溶解性試験として、テトラヒドロフラン(以後THFと略す)、及びジクロロメタンを1滴滴下し、自然乾燥後の表面形状の変化を観察した。結果を表3に示す。
(感光体作製例42)
感光体作製例1に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更し、電荷発生層塗工液として分散液2を用いた以外は、感光体作製例1と同様に電子写真感光体を作製した([感光体42]する)。
(感光体作製例43)
感光体作製例2に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更し、電荷発生層塗工液として分散液2を用いた以外は、感光体作製例2と同様に電子写真感光体を作製した([感光体43]とする)。
(感光体作製例44)
感光体作製例3に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更し、電荷発生層塗工液として分散液2を用いた以外は、感光体作製例3と同様に電子写真感光体を作製した([感光体44]とする)。
(感光体作製例45)
感光体作製例4に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更し、電荷発生層塗工液として分散液2を用いた以外は、感光体作製例4と同様に電子写真感光体を作製した([感光体45]とする)。
(感光体作製例46)
感光体作製例30に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更し、電荷発生層塗工液として分散液2を用いた以外は、感光体作製例30と同様に電子写真感光体を作製した([感光体46]とする)。
(感光体作製例47)
感光体作製例32に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更し、電荷発生層塗工液として分散液2を用いた以外は、感光体作製例32と同様に電子写真感光体を作製した([感光体47]とする)。
(感光体作製例48)
感光体作製例34に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更し、電荷発生層塗工液として分散液2を用いた以外は、感光体作製例34と同様に電子写真感光体を作製した([感光体48]とする)。
(感光体作製例49)
感光体作製例36に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更し、電荷発生層塗工液として分散液2を用いた以外は、感光体作製例36と同様に電子写真感光体を作製した([感光体49]とする)。
(感光体作製例50)
感光体作製例41に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更し、電荷発生層塗工液として分散液2を用いた以外は、感光体作製例41と同様に電子写真感光体を作製した([感光体50]とする)。
[実施例1〜32および比較例1〜50]
以上のように作製した感光体作製例1〜41の電子写真感光体(感光体1〜41)を、図7に示すような画像形成装置用プロセスカートリッジに装着し、図5に示す様な画像形成装置(感光体線速は320mm/sec)に搭載し、帯電部材としてスコロトロン方式の帯電部材(放電ワイヤーは直径50μmの金メッキを施したタングステン−モリブデン合金)を用いて下記の帯電条件で帯電し、画像露光光源として780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み、解像度600dpi)、現像は黒色トナーを用いた2成分現像を行い、転写部材として転写ベルトを用い、下記の帯電条件にて、書き込み率6%のチャートを用い、連続70万枚印刷を行った(試験環境は、22℃−55%RHである)。
(帯電条件1)
ワイヤーへの印加電圧:−6.0KV
グリッド電圧:−920V(感光体の未露光部電位は−900V)
(帯電条件2)
ワイヤーへの印加電圧:−5.8KV
グリッド電圧:−780V(感光体の未露光部電位は−750V)
なお、画像評価は初期及び70万枚印刷後に、下記の評価を実施した。
(i)地汚れの評価:白ベタ画像を出力し、地肌部に発生する黒点の数、大きさからランク評価を実施した。
(ii)ドット形成状態の評価:直径60μmの1ドット画像を形成し、ドット形成状態を150倍の顕微鏡にて観察し、ランク評価を実施した。
ランク評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。
(iii)その他の項目として、画像濃度の評価:黒ベタ画像を出力し、ベタ部の画像濃度を評価した。また、ハーフトーン画像を出力し、モアレ発生有無の評価を実施した。(iii)の項目に関しては、不具合点が発生した場合のみ表4に記載した。
また、70万枚印刷前後において、感光体の膜厚を測定し、摩耗量を評価した。
以上の結果を表4に示す。
[実施例33〜35および比較例51〜55]
保護層の異なる感光体1、30〜36に関しては、先の通紙ラン試験(実施例1、27、28及び比較例4〜8)を実施した後、低温低湿環境下(10℃、15%RH)で、図11に示すようなテストチャートを用い、実施例1と同じ条件下で、黒ベタ部から白ベタ部の方向で画像出力し、連続50枚の印刷を実施し、クリーニング性の評価を実施した。
この際、50枚目の白ベタ部の画像を目視にて評価した。結果を表5に示す。
[実施例36〜38および比較例56〜60]
保護層の異なる感光体1、30〜36に関しては、先のクリーニング性試験(実施例33〜35および比較例9〜13)に引き続き、高温高湿環境(30℃−90%RH)にて、更に1000枚の通紙試験を行い、画像評価を実施した。結果を表6に示す。
なお、評価は1000枚印刷後に、下記3つの評価を実施した。
(i)地汚れの評価:白ベタ画像を出力し、地肌部に発生する黒点の数、大きさからランク評価を実施した。ランク評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。
(ii)画像濃度の評価:黒ベタ画像を出力し、ベタ部の画像濃度を評価した。
(iii)1ドット画像を出力し、ドット輪郭の明確さをランク評価した。ランク評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。
[実施例39〜44および比較例61〜62]
上記感光体作製例1で作製した感光体1を用いて、前記実施例1と同じ画像形成装置を用い、帯電条件を変え、感光体に印加される電界強度を表7のように変えた状態で、地汚れとドット形成状態の変化を確認した。
[実施例45]
実施例1において、帯電部材の放電ワイヤーの直径を90μm(材質は同じ)のものに変更し、10万枚の画像形成を行った以外は、実施例1と同様に評価を行った。
(結果)
初期的には良好な画像を形成出来たが、10万枚後の画像においては、帯電ムラによる画像ムラが発生した(1ドットがうまく形成出来ない箇所があった)。
[実施例46]
実施例45において、帯電部材の放電ワイヤーの直径を25μm(材質は同じ)のものに変更した以外は、実施例36と同様に評価を行った。
(結果)
初期的には良好な画像を形成出来たが、10万枚後の画像出力時にはグリッド電圧をかなり大きくしなければならなかった(画像はそれほど悪くなかった)。また、ワイヤーとグリッドの損傷が、実施例1の場合に比べて悪かった。
[実施例47]
実施例1において、通紙試験に使用したチャートを書き込み率1%のチャートに変更し、連続 50万枚の印刷を行った。この際、図5に示す画像形成装置の現像部位における感光体表面電位と、転写直後の感光体表面電位を計測するため、表面電位計をセット出来るように改造を行った。
通紙試験前と通紙試験後において、現像部位における感光体露光部の電位を測定した。この際、露光部の表面電位を計測するために、光書き込みは感光体全面のベタ書き込みを行った。
通紙試験に際しては、転写バイアスを調整することにより、転写後の感光体非書き込み部の電位が−150Vになるように調整した。この測定の際には、光書き込みを行わず、感光体の転写後の電位を測定した。結果を表8に示す。
[実施例48]
実施例47において、転写後の感光体非書き込み部の電位が−80Vになるように調整した以外は、実施例47と同様に試験を行った。結果を表8に示す。
[実施例49]
実施例47において、転写後の感光体非書き込み部の電位が0Vになるように調整した以外は、実施例47と同様に試験を行った。結果を表8に示す。
[実施例50]
実施例47において、転写後の感光体非書き込み部の電位が+70Vになるように調整した以外は、実施例47と同様に試験を行った。結果を表8に示す。
[実施例51]
実施例47において、転写後の感光体非書き込み部の電位が+150Vになるように調整した以外は、実施例47と同様に試験を行った。結果を表8に示す。
[実施例52]
実施例47において、除電部材を除電ランプから、導電性ブラシ(アースに接続)に変更した以外は、実施例47と同様に試験を行った。結果を表8に示す。
[実施例53および比較例63〜79]
以上のように作製した感光体作製例42〜50の感光体を、帯電部材と共に図7に示すような1つの画像形成装置用プロセスカートリッジに装着し、更に図6に示すフルカラー画像形成装置に搭載した。4つの画像形成要素では画像露光光源を655nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み、解像度1200dpi)、帯電部材としてスコロトロン方式の帯電部材(放電ワイヤーとして直径50μmの金メッキを施したタングステン−モリブデン合金を使用)、現像は2成分現像剤(体積平均粒径が6.5μmの球形トナー)を用いて行い、転写部材として転写ベルトを用い、下記の帯電条件にて、書き込み率6%のチャートを用い、連続15万枚印刷を行った(試験環境は、22℃−55%RHである)。
(帯電条件1)
ワイヤーへの印加電圧:−6.0KV
グリッド電圧:−920V(感光体の未露光部電位は−900V)
(帯電条件2)
ワイヤーへの印加電圧:−5.8KV
グリッド電圧:−780V(感光体の未露光部電位は−750V)
なお、画像評価は15万枚印刷後に、下記3つの評価を実施した。
(i)地汚れの評価:白ベタ画像を出力し、地肌部に発生する黒点の数、大きさからランク評価を実施した。
(ii)ドット形成状態の評価:直径60μmの1ドット画像を形成し、ドット形成状態を150倍の顕微鏡にて観察し、ランク評価を実施した。
(iii)色再現性の評価:感光体初期状態と15万枚ランニング後に、同じフルカラー画像を出力し、色再現性の評価を試みた。
何れの場合にもランク評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。以上の結果を表9に示す。
(iv)その他の項目として、画像濃度の評価:黒ベタ画像を出力し、ベタ部の画像濃度を評価した。また、ハーフトーン画像を出力し、モアレ発生有無の評価を実施した。(iv)の項目に関しては、不具合点が発生した場合のみ表9に記載した。
[実施例54および比較例80〜78]
感光体42〜50に関しては、先の通紙ラン試験(実施例52および比較例63〜70)を実施した後、低温低湿環境下(10℃、15%RH)で、図11に示すようなテストチャートを用い、実施例39と同じ条件下で、黒ベタ部から白ベタ部の方向で画像出力し、連続50枚の印刷を実施し、クリーニング性の評価を実施した(クリーニング試験は、黒ステーションのみを動作させて実施した)。
この際、50枚目の白ベタ部の画像を目視にて評価した。結果を表10に示す。