JP2007257791A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2007257791A
JP2007257791A JP2006083335A JP2006083335A JP2007257791A JP 2007257791 A JP2007257791 A JP 2007257791A JP 2006083335 A JP2006083335 A JP 2006083335A JP 2006083335 A JP2006083335 A JP 2006083335A JP 2007257791 A JP2007257791 A JP 2007257791A
Authority
JP
Japan
Prior art keywords
data
memory
bit
bits
ecc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006083335A
Other languages
English (en)
Inventor
Satoshi Eto
聡 江渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006083335A priority Critical patent/JP2007257791A/ja
Priority to US11/451,299 priority patent/US20070255981A1/en
Priority to TW095120964A priority patent/TWI301273B/zh
Priority to EP06115596A priority patent/EP1837881A1/en
Priority to CNA2006100864362A priority patent/CN101042938A/zh
Priority to KR1020060055898A priority patent/KR20070096731A/ko
Publication of JP2007257791A publication Critical patent/JP2007257791A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • G06F11/1008Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/38Response verification devices
    • G11C29/42Response verification devices using error correcting codes [ECC] or parity check
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/84Masking faults in memories by using spares or by reconfiguring using programmable devices with improved access time or stability
    • G11C29/846Masking faults in memories by using spares or by reconfiguring using programmable devices with improved access time or stability by choosing redundant lines at an output stage

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • For Increasing The Reliability Of Semiconductor Memories (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)

Abstract

【課題】本発明は、ECCメモリから最小限の変更で構成可能な冗長機能付き半導体記憶装置を提供することを目的とする。
【解決手段】半導体記憶装置は、2の冪乗である所定ビット数のデータの一部又は全部である第1のデータと該所定ビット数のデータをエラー訂正するに必要なビット数の第2のデータとを並列に入出力するメモリと、メモリに供給されるアドレス信号に応じて冗長切換情報を出力する冗長切換情報提供手段と、該第1のデータのビット数と同数の入出力端とメモリとの間に設けられ、入出力端のあるビットをメモリの第1のデータの対応ビットに結合する第1の経路と入出力端の該ビットをメモリの第2のデータの所定のビットに結合する第2の経路とを有し、冗長切換情報に応じて該第1の経路と第2の経路との何れかを選択的に提供する冗長コントロール手段を含むことを特徴とする。
【選択図】図1

Description

本発明は、一般に半導体記憶装置に関し、詳しくは冗長機能を有した半導体記憶装置に関する。
半導体記憶装置において、エラーを救済する方式としては、予備のメモリセルを利用した冗長方式とエラー訂正コード(ECC:Error Correcting Code)を利用したデータ訂正方式とがある。
冗長機能付きの半導体記憶装置においては、欠陥メモリセルが存在する場合には、それを予備のメモリセルである冗長メモリセルで置き換え、欠陥メモリセルのアドレスに対するアクセスを冗長メモリセルに振り替えることで、欠陥メモリセルのアドレスを救済する処理が行われる。欠陥のあるメモリセルを冗長メモリセルで置き換える為には、欠陥のあるメモリセルのアドレスを記憶しなければならない。一般的な冗長システムではフューズを設け、フューズの状態(切断/非切断)により欠陥アドレスを記憶する。
ECCによるデータ訂正機能を有したECCメモリ(Error Check and Correct Memory)においては、書き込み対象であるデータからエラー訂正用の冗長ビットを計算し、計算された冗長ビットを書き込み対象であるデータとともにメモリコアに格納する。読み出し時には、読み出したデータ及び冗長ビットにより、データ(及び冗長ビット)にエラーがあるか否かを検出し、エラーがある場合にはエラー訂正を行う。例えばハミング符号を用いてエラー訂正を実現する場合には、符号中に1ビットの誤りが発生した場合にエラー訂正が可能であり、2ビットの誤りが発生した場合にエラー検出が可能である。
ハミング符号を使用する場合、データが8ビット幅なら4ビットが冗長ビットとして必要であり、更にデータが16ビット幅なら5ビット、データが32ビット幅なら6ビット、データが64ビット幅なら7ビットが冗長ビットとして必要となる。データビットのビット数に対するエラー訂正ビットのビット数の比率が小さい方が、メモリ使用効率は高くなる。これを考慮して、例えば外部との書き込み/読み出し動作のデータビット幅が32ビットの場合でも、メモリコアに対しては64ビットのデータビット幅でデータ書き込み/読み出しを行う場合がある。
ECCメモリは、コード(データ+冗長ビット)が自己整合するようにコード中に発生した欠陥を救済することが可能であるが、欠陥救済のための演算時間が必要なうえに、上記のようにメモリコアの入出力データビット幅を外部との入出力データビット幅よりも大きく設定した構成では、以下に説明するように、データアクセス時間やサイクル時間にペナルティがある。
読み出し動作時はコード(64ビットのデータ+7ビットの冗長ビット)を読み出し、このコードに対してECC演算してエラー訂正を行う。その後、読み出した64ビットデータのうちで、読み出しアドレスに対応する部分の32ビットのデータを出力する。
書き込み動作時は、外部から32ビットの書き込みデータが入力されるが、これだけでエラー訂正用の冗長ビットを生成することは不可能である。そこで32ビットデータをメモリコアから読み出し、書き込みデータとマージして64ビットのデータを用意する。この64ビットのデータから7ビットの冗長ビットを生成し、コード(64ビットデータ+7ビットの冗長ビット)をメモリコアに書き込む。
このようにECCメモリの書き込み動作では、まず読み出し動作を実行してその後に書き込み動作を行う必要がある。これにより動作速度が遅くなるという問題が生じるとともに、余計な電力を消費するという問題もある。
SOC(System on Chip)では、メモリモジュールが他のモジュールとともに1つのチップ内部に組み込まれているため、フューズを切る必要がある冗長機能をメモリに使用することが難しく、ECCメモリを使用することが多い。しかしユーザによっては、動作速度が遅くなるECC機能ではなく、高速動作の可能な冗長機能を欠陥救済機能として使用した高速なメモリ動作を希望する場合がある。しかしこのような場合に、既にシステムに組み込まれているECCメモリを冗長機能付きメモリに設計し直していたのでは、膨大な設計工数及び設計時間が必要となる。従って、ECCメモリを最小限の変更で冗長機能付きメモリに変更することが必要となる。
特開平10−326497号公報 特開昭61−264599号公報 特開昭61−50293号公報
以上を鑑みて、本発明は、ECCメモリから最小限の変更で構成可能な冗長機能付き半導体記憶装置を提供することを目的とする。
半導体記憶装置は、2の冪乗である所定ビット数のデータの一部又は全部である第1のデータと該所定ビット数のデータをエラー訂正するに必要なビット数の第2のデータとを並列に入出力するメモリと、該メモリに供給されるアドレス信号に応じて冗長切換情報を出力する冗長切換情報提供手段と、該第1のデータのビット数と同数の入出力端と該メモリとの間に設けられ、該入出力端のあるビットを該メモリの該第1のデータの対応ビットに結合する第1の経路と該入出力端の該ビットを該メモリの該第2のデータの所定のビットに結合する第2の経路とを有し、該冗長切換情報に応じて該第1の経路と第2の経路との何れかを選択的に提供する冗長コントロール手段を含むことを特徴とする。
本発明の少なくとも1つの実施例によれば、第1のデータ(読み書き対象データ)と第2のデータ(エラー訂正用の冗長ビット)とを並列に入出力可能なようにECCメモリを変更し更にエラー訂正機能をオフにするだけの僅かな設計変更で、第2のデータ部分に対応するメモリセルを、通常のデータの格納用に用いることができる。このように変更したECCメモリにおいて、エラー訂正用の冗長ビットに対応するメモリセルを冗長セルとして用い、不良セルを冗長セルで置換える構成をメモリのデータ入出力部分に付加すれば、冗長処理によるデータ救済が可能となる。即ち、ECCメモリから最小限の変更で構成可能な冗長機能付き半導体記憶装置を提供することができる。
以下に、本発明の実施例を添付の図面を用いて詳細に説明する。
図1は、本発明による冗長機能付き半導体記憶装置の構成を示すブロック図である。図1の冗長機能付き半導体記憶装置は、ECCメモリ10、冗長切換情報提供手段11、冗長コントロール手段12を含む。
ECCメモリ10は、例えばハミング符号、拡大ハミング符号、又は垂直水平パリティー符号等を利用したエラー訂正機能を有するメモリブロックである。ECCメモリ10は、コマンド及びアドレスを入力する端子、データ及びエラー訂正用のエラー訂正用の冗長ビットを入出力する端子、及びECC機能のオン/オフを指定するECCオン/オフ信号を入力する端子を備える。
冗長コントロール手段12は、ECCメモリ10にデータを読み書きするホスト側(例えばCPU等)とECCメモリ10との間に設けられる。冗長コントロール手段12は、ホスト側からコマンド及びアドレス信号を受け取り、これらコマンド及びアドレス信号をECCメモリ10に供給する。コマンド信号は、例えば読み出しコマンドや書き込みコマンドである。冗長コントロール手段12は、通常のメモリ動作において、ECCメモリ10に対するECCオン/オフ信号をオフにする。即ち、ECCメモリ10のECC機能を停止させる。
書き込み動作の場合、冗長コントロール手段12は、ホスト側から受け取ったデータをECCメモリ10に供給する。読み出し動作の場合、冗長コントロール手段12は、ECCメモリ10から読み出されたデータを、ホスト側に供給する。
冗長切換情報提供手段11は、フューズやROM等の不揮発に情報を記憶する手段を含み、不良アドレス情報とその不良アドレス情報に対応付けられたデータ位置情報とが格納される。不良アドレス情報は、予めECCメモリ10を試験することにより検出された不良メモリセルのアドレスである。またデータ位置情報は、ECCメモリ10に対して入出力するデータ中の不良ビット位置である。即ち、入出力データをnビットデータD1、D2、D3、・・・Dnとしたときに不良ビットがDxであれば、データ位置情報はxを指し示す。
冗長切換情報提供手段11には、ホスト側から冗長コントロール手段12に供給されるアドレス信号が供給される。冗長切換情報提供手段11は、供給されたアドレス信号の示すアドレス値と記憶手段に格納された不良アドレス情報の示すアドレス値とを比較し、一致/不一致の比較結果を示す一致/不一致信号を冗長コントロール手段12に供給する。また冗長切換情報提供手段11は、この比較結果がアドレス一致を示す場合には、一致するアドレスに対応するデータ位置情報を一致/不一致信号とともに冗長コントロール手段12に供給する。
冗長コントロール手段12は、冗長切換情報提供手段11からの一致/不一致信号がアドレス一致を示す場合、ホスト側とやり取りするデータ中の不良ビット位置に対応する1つのデータビットを、ECCメモリ10とやり取りする冗長ビット中の1ビットに割り当てる。即ち、ECCメモリ10とやり取りするデータ中の不良ビット位置に対応する1つのデータビットを、ECCメモリ10とやり取りする冗長ビット中の1ビットで置き換える。複数の不良ビットを検出可能な場合には、複数の不良ビットを冗長ビット中の複数のビットで置換えてよい。
ECCメモリ10に対するECCオン/オフ信号をオフにすることで、ECCメモリ10のECC機能は停止しているので、冗長ビットは読み出し/書き込みデータとは無関係な独立したデータとなる。即ち、エラー訂正用の冗長ビットを格納するためのメモリセルを、通常のデータの格納用に用いることができる。本発明では、この冗長ビットを格納するためのメモリセルを、通常のデータのうちで不良ビット(欠陥メモリセルのビット)を救済するための冗長メモリセルとして使用する。
図2は、ECCメモリ10の第1の実施例の構成を示すブロック図である。ECCメモリ10は従来のECCメモリと殆ど同一であるが、通常の読み書き動作時において、エラー訂正用の冗長ビット部分のデータの入出力が可能なように構成されることが、従来のECCメモリとは異なる。比較参照のために、図3は、従来のECCメモリの構成を示す。
図2の本発明によるECCメモリ10は、メモリセル配列&制御回路21とECCロジック22とを含む。図3の従来のECCメモリは、メモリセル配列&制御回路21、ECCロジック22、及びセレクタ23を含む。従来のECCメモリと本発明のECCメモリ10とで、メモリセル配列&制御回路21及びECCロジック22はそれぞれ同一の構成である。またこの例において、入出力データは64ビットであり、エラー訂正用の冗長ビットは7ビットである。
まず図3の従来のECCメモリについて説明する。メモリセル配列&制御回路21は、メモリセルの配列からなるメモリコア回路と、メモリへの読み書きを制御する制御回路とを含む。メモリコア回路は、縦横に配置された複数のメモリセルと、メモリセルの行を選択するワード線、コラムを選択するコラム選択線、データを読み出すビット線、読み出しデータを増幅するセンスアンプ等を含む。制御回路は、コマンドラッチ、コマンドデコーダ、アドレスラッチ、ローデコーダ、コラムデコーダ、及びタイミング信号生成回路等を含む。
メモリセル配列&制御回路21に読み出しコマンドが入力されると、入力アドレスに対応するメモリセルから64ビットのデータ及び7ビットの冗長ビットが読み出される。メモリセル配列&制御回路21に書き込みコマンドが入力されると、入力アドレスに対応するメモリセルに64ビットのデータ及び7ビットの冗長ビットが書き込まれる。
ECCロジック22は、外部から供給されるECCオン/オフ信号がECC機能オンを指示する場合に、エラー訂正用の冗長ビットの生成、エラーチェック、及びエラー訂正を実行する。即ち、書き込み動作の場合には、外部からセレクタ23を介して供給される64ビットのデータに基づいて7ビットの冗長ビットを生成し、64ビットのデータと7ビットの冗長ビットとをメモリセル配列&制御回路21に供給する。読み出し動作の場合には、メモリセル配列&制御回路21から読み出された64ビットのデータと7ビットの冗長ビットとに基づいてエラーチェック及びエラー訂正を行う。エラー訂正後の64ビットのデータはセレクタ23を介して外部に出力される。
ECCロジック22は、外部から供給されるECCオン/オフ信号がECC機能オフを指示する場合には、64ビットのデータを素通りさせる。即ち、外部から供給された64ビットのデータをそのままメモリセル配列&制御回路21に供給し、メモリセル配列&制御回路21から読み出されたデータをそのまま外部に供給する。
セレクタ23は、通常動作時には、ECCメモリの64ビットの外部入出力データ端子をECCロジック22に結合する。これにより、上記のようにECCロジック22を介したメモリセル配列&制御回路21から外部への64ビットのデータ読み出し、ECCロジック22を介した外部からメモリセル配列&制御回路21への64ビットのデータ書き込みが可能となる。
セレクタ23は、外部からのテスト信号がテスト動作を示すテスト動作時には、メモリセル配列&制御回路21から出力される7ビットの冗長ビットを、ECCメモリの64ビットの外部入出力データ端子の一部に割り当てて、外部から冗長ビットを確認できるように構成される。これによりECCメモリの動作をテストする際に、ECC機能が正常に動作しているか否かを検査することができる。
図2に示す本発明によるECCメモリ10においては、セレクタ23が取り除かれている。ECCメモリ10の64ビットの外部入出力データ端子が、直接にECCロジック22に接続されている。またECCメモリ10には64ビットの外部入出力データ端子とは別に7ビットの冗長ビット入出力端子が設けられており、この冗長ビット入出力端子が直接にメモリセル配列&制御回路21に接続されている。
このように本発明のECCメモリ10は、従来のECCメモリからセレクタ23を取り除き、64ビットのデータと7ビットの冗長ビットとを外部から入出力可能とするようデータ経路を変更しただけである。これだけの僅かな設計変更で、従来のECCメモリから本願のECCメモリ10を生成することができる。
本願のECCメモリ10は、ECCオン/オフ信号をオンにしてECC機能を動作させれば、従来同様にECCメモリとして動作する。またECCオン/オフ信号をオフにしてECC機能を停止させれば、7ビットの冗長ビットに対応するメモリセルを、通常のデータの格納用に用いることができる。この構成を利用して本発明では、7ビットのエラー訂正用の冗長ビットに対応するメモリセルを、冗長メモリセルとして使用している。
なおメモリセル配列&制御回路21とECCロジック22とは、1つのマクロであってもよいし、同一のチップ上の別のマクロであってもよい。また1つのシリコン基板上に設けられてもよいし、別のシリコン基板上に設けられてもよい。
図4は、冗長コントロール手段12の第1の実施例の構成を示す図である。冗長コントロール手段12は、デコーダ30及びスイッチ31−0乃至31−nを含む。
デコーダ30は、冗長切換情報提供手段11から一致/不一致信号とデータ位置情報とを受け取る。スイッチ31−0乃至31−nは、ホスト側(CPU側)とECCメモリ10との間で送受されるn+1ビットのデータD[0]乃至D[n]に一対一に対応して設けられる。スイッチ31−0乃至31−nは、デコーダ30からの信号によりそのスイッチ位置が制御される。
任意のスイッチ31−x(x:0からnの範囲にある任意の数)が通常のスイッチ位置にある場合、ホスト側のデータD[x]の信号線が、ECCメモリ10側のデータD[x]の信号線に接続される。任意のスイッチ31−xが冗長スイッチ位置にある場合、ホスト側のデータD[x]の信号線が、冗長ビットの信号線32に接続される。この冗長ビットの信号線32は、ECCメモリ10の冗長ビットのうちの1ビットに結合されている。
デコーダ30が冗長切換情報提供手段11から受け取った一致/不一致信号が不一致を示す場合、現在のアクセス先のアドレスに欠陥メモリセルはないので、デコーダ30は全てのスイッチ31−0乃至31−nを通常のスイッチ位置に設定する。また一致/不一致信号が一致を示す場合、デコーダ30は、冗長切換情報提供手段11から受け取ったデータ位置情報が示す1つのスイッチを冗長スイッチ位置に設定する。これにより、データ位置情報が示すECCメモリ10の不良ビットにアクセスするのではなく、冗長先である冗長ビットの1ビットにアクセスすることになる。
上記説明では、1ビットのみを冗長する構成となっているが、複数ビットを訂正可能なエラー訂正符号を用いた場合には、複数の不良ビットを冗長先である冗長ビットの複数ビットに置換えるように構成してよい。例えば、拡張ハミング符号を用いた場合には、このような複数の不良ビットの訂正が可能になる。
なお図1の構成では冗長コントロール手段12はコマンド信号及びアドレス信号をホスト側とECCメモリ10との間で仲介するように示されるが、これらの信号についてはそのまま通過させる構成でよい。またECCオン/オフ信号については、外部からのコマンド信号により1ビットのレジスタ(図示せず)にECCオン/オフを示すデータを設定し、このデータ内容に応じたレジスタ出力をECCオン/オフ信号としてECCメモリ10に供給する構成でよい。これらのコマンド信号、アドレス信号、及びECCオン/オフ信号の流れは冗長コントロール手段12の冗長処理動作と直接には関係がなく、図4において図示を省略してある。
外部からECC機能のオン/オフを制御できる構成では、通常動作時において、信頼性を重視する場合などにはECC機能をオンにしてもよい。この場合、スイッチ31−0乃至31−nの切り換えはなしにして、ホスト側(CPU側)のデータD[x]の信号線が、常にECCメモリ10側のデータD[x]の信号線に接続されるようにすればよい。また信頼性よりも高速動作性を重視する場合には、前述のようにECC機能をオフにして、冗長処理によるデータ救済手法を用いればよい。このようにすることで、全く同一のシステムで、異なる2つの要求に応えることが可能となる。
またECC機能のオン/オフの選択は、外部から制御可能な構成とするのではなく、固定的に設定するように構成してもよい。例えば配線層等の作りかえ(マスクオプション)で選択する方法、パッケージ封止時のボンディング方法で選択する方法、レーザフューズで選択する方法などが可能である。
図5は、冗長切換情報提供手段11の構成の一例を示す図である。図5の冗長切換情報提供手段11は、複数の比較器41、複数の不良アドレス情報格納部42、及び複数のデータ位置情報格納部43を含む。
1つの比較器41、1つの不良アドレス情報格納部42、及び1つのデータ位置情報格納部43がそれぞれ対応付けられて設けられている。各比較器41は、ホスト側から供給されたアドレスを、対応する不良アドレス情報格納部42に格納されるアドレスと比較する。1つの不良アドレス情報格納部42には、ECCメモリ10の欠陥メモリセルに対応するアドレスである1つの不良アドレスが格納されている。m個の不良アドレスが存在すれば、m個の不良アドレスがm個の不良アドレス情報格納部42に格納されていることになる。
比較器41による比較結果が一致を示す場合、比較器41は一致を示す一致/不一致信号を出力する。比較結果が不一致を示す場合、比較器41は不一致を示す一致/不一致信号を出力する。複数の比較器41の出力する複数の一致/不一致信号は、例えば論理和ゲート(図示せず)等によりマージされて、1つの一致/不一致信号出力として冗長コントロール手段12に供給される。即ち、複数の一致/不一致信号の内の1つでも一致を示す場合には、冗長コントロール手段12へは一致を示す一致/不一致信号が供給され、複数の一致/不一致信号の内の全てが不一致を示す場合には、冗長コントロール手段12へは不一致を示す一致/不一致信号が供給される。
データ位置情報格納部43は、対応する比較器41の出力する一致/不一致信号が不一致を示す場合、何も出力しない。対応する比較器41の出力する一致/不一致信号が一致を示す場合、データ位置情報格納部43は、格納しているデータ位置情報を出力する。このデータ位置情報は、冗長切換情報提供手段11から冗長コントロール手段12に供給される。
図6は、ECCメモリの第2の実施例の構成を示す図である。図6において、図2と同一の構成要素は同一の番号で参照し、その説明は省略する。
図6に示すECCメモリ10Aでは、ECCロジック22Aからエラー検出の有無を示すエラー検出信号と、エラービットの読み出しデータ中のビット位置を示すエラーデータ位置信号を出力する。それ以外の構成は、図2に示すECCメモリ10と図6に示すECCメモリ10Aとは同一である。
図2に示すECCメモリ10のECCロジック22においては、ECCオン/オフ信号がオンを示す場合、前述の説明のように、読み出しデータに対するエラー検出処理とエラー訂正処理とが実行される。ECCメモリ10の71ビットのデータが、例えば符号間距離が3以上であるハミング符号となるように、エラー訂正コード用の冗長ビットを生成する場合を考える。この場合、ECCメモリ10から読み出した71ビットのデータがハミング符号として存在し得るビットパターンか否かを判定することで、エラーの有無を検出できる。エラーが1ビットの場合には、この71ビットのデータに最もハミング距離が近いハミング符号とこの71ビットのデータとの差分を検出すれば、何れの1ビットが誤っているかが分かるとともにエラー訂正することができる。ハミング符号の符号間距離が3であるので、エラーが2ビットの場合には、エラーの存在は分かるが何れのハミング符号が正しいコードであるかまでは判別できない。なお実際には、ハミング符号のシンドローム情報を計算すれば、シンドローム情報がエラーの有無及びエラー位置を一意に示すことになる。
図6に示すECCメモリ10AのECCロジック22Aにおいては、上記のようにしてエラーの有無を判定した際のエラーの有無を示すエラー検出信号を外部に出力するとともに、エラー訂正の際に検出された誤りのビット位置を示すエラーデータ位置信号を外部に出力するように構成される。例えば、ECCロジック22Aは、ハミング符号のシンドローム情報を出力すればよい。これらの信号を外部に出力するように構成される以外、ECCロジック22とECCロジック22Aとは同一の構成でよい。
図7は、図6の第2の実施例のECCメモリ10Aを用いた場合の冗長機能付き半導体記憶装置の構成を示すブロック図である。図7において、図1と同一の構成要素は同一の番号で参照し、その説明は省略する。
図7の構成においては、図1の構成と比較して、ECCメモリ10Aから上記のエラー検出信号とエラーデータ位置信号とが供給されることが異なる。また冗長切換情報提供手段11Aは、供給されるエラー検出信号とエラーデータ位置信号とに基づいて、データ位置情報格納部43の格納データを設定する。
具体的には、ECCメモリ10Aのテストを実行するテストモード時に、ECCメモリ10AのECC機能をオンにする。テストモードにおいて、ECCメモリ10Aにデータを書き込み更に当該データを読み出すという書き込み/読み出し動作を、アドレスを順次増加(或いは減少)させながら各アドレスに対して実行する。このように各アドレスに対して読み出し動作を実行したときに、冗長切換情報提供手段11Aには、アクセス対象のアドレスを示すアドレス信号がホスト側から供給されるとともに、上記エラー検出信号とエラーデータ位置信号とがECCメモリ10Aから供給される。
冗長切換情報提供手段11Aでは、エラー検出信号がエラーの存在を示す場合に、供給されるアドレス信号の示すアドレスを不良アドレス情報格納部に格納するとともに、供給されるエラーデータ位置信号が示すデータ位置情報をデータ位置情報格納部に格納する。これは、図5に示される冗長切換情報提供手段の構成において、不良アドレス情報格納部42及びデータ位置情報格納部43にラッチ指示信号としてエラー検出信号を供給するとともに、外部からのアドレス信号及びエラーデータ位置信号をそれぞれ不良アドレス情報格納部42及びデータ位置情報格納部43に入力データとして供給するように構成すればよい。
この場合の不良アドレス情報格納部42及びデータ位置情報格納部43としては、電気的に書き込みが可能な不揮発性メモリ(EEPROM)を使用すればよい。このようにEEPROMを用いる構成とすれば、ECC機能をオンにしてECCメモリのテストを行うだけで、自動的に冗長切換情報提供手段11Aに冗長処理に必要な情報を設定・格納することができる。
また不良アドレス情報格納部42及びデータ位置情報格納部43としてフューズの切断/非切断によりデータを記憶するような構成の場合には、図7のようにエラー検出信号とエラーデータ位置信号とを冗長切換情報提供手段に供給するのではなく、外部のテスタ装置等に出力するように構成してもよい。外部においては、アクセス先のアドレス、エラー検出信号、及びエラーデータ位置信号をモニタすることで、不良アドレスと不良データ位置とを特定する。これらの不良アドレスと不良データ位置とを記憶させるように、レーザビームを用いてフューズを切断すればよい。
図8は、第2の実施例のECCメモリ10Aを用いた場合の冗長機能付き半導体記憶装置の構成の変形例を示すブロック図である。図8の構成では、冗長切換情報提供手段11がコントローラ11−1とROM11−2とから構成される。
この構成では、不良アドレス情報及びデータ位置情報を不揮発データとして記憶する格納部が、独立したROM11−2として設けられる。このような独立したROM11−2としては、例えばフラッシュメモリやFRAM(Ferroelectric Random Access Memory)マクロ等の単体で入手可能なものを使用してよい。コントローラ11−1は、ECCメモリ10Aからのエラー検出信号に応じて、不良アドレスと不良データ位置とをROM11−2に書き込めばよい。このようにして書き込まれた不揮発データは、例えば半導体記憶装置の電源投入時にROM11−2からコントローラ11−1内部のラッチに読み込まれるように構成してよい。
図9は、冗長コントロール手段の第2の実施例の構成を示す図である。図9において図4と同一の構成要素は同一の番号で参照し、その説明は省略する。
図9の冗長コントロール手段12Aは、図4の冗長コントロール手段12に加え、多数決手段50を設けた構成となっている。多数決手段50は、冗長コントロール手段12の冗長ビットの信号線32(図4参照)に接続されるとともに、ECCメモリ10に対して入出力される冗長ビットP[0]乃至P[k]の信号線に接続される。
例えば図2のECCメモリ10を用いた場合、冗長ビットP[0]乃至P[k]は7ビット(即ちk=6)である。図4の冗長コントロール手段12では、1ビットの不良ビットを1ビットの冗長ビットに置き換えるだけであるので、例えば冗長ビットが7ビット存在する場合、6ビットが無駄になってしまう。
本実施例の構成では、多数決手段50を設けることで、多数決論理により冗長対象ビットの信頼性を向上する。多数決手段50は、冗長コントロール手段12AからECCメモリ10へデータ(書き込みデータの不良ビット位置の1ビット)を供給するときには、冗長ビットの信号線32上のデータを全ての出力ビットP[0]乃至P[k]にそのまま送出する。これにより、書き込みデータの不良ビット位置の1ビットが、冗長ビットP[0]乃至P[k]に対応するk+1個のメモリセルに重複して格納される。ECCメモリ10から冗長対象ビットを読み出す際には、冗長ビットP[0]乃至P[k]に対応するk+1個のメモリセルから読み出したk+1ビットで多数決をとり、k+1ビットの内で"0"又は"1"の何れか数が多い方の論理値を冗長ビットの信号線32に送出する。
このような構成とすることで、冗長対象ビットの信頼性を大幅に向上することができる。本来は、冗長セル(冗長先であるk+1ビット)の試験を通常のセル同様に行い、スペアとして正常に機能するかどうかの試験を行う必要がある。しかし上記のように冗長対象ビットに多数決方式を採用すれば、通常のメモリセルのデータに比較して冗長対象ビットのデータを各段に信頼性の高いものとすることができる。従って、冗長先であるk+1ビットのメモリセルについては、試験を行うことが必要では無くなる。また試験の結果、冗長先であるk+1ビットに不良セルが含まれていても、或いはまたその後の経時的変化で不良セルが新たに発生してしまった場合でも、例えば7ビットの多数決の場合には不良ビットの数が3ビットまでであれば、正常な冗長処理を実現することができる。
因みに、例えば1ビットエラーを訂正可能なECCを用いている場合、ECC機能をオンにして試験して正常に動作すれば、ECCメモリ内の何れのエラー訂正コードにも1ビット以下のエラーしかないと言える。冗長が必要な場合はデータ側(冗長ビット側ではない)にエラーがある場合なので、1ビットしかないエラーがデータ側に存在するということは、冗長ビット側にエラーが存在しないことが必然的に分かる。
図10は、本発明による冗長機能付き半導体記憶装置の変形例の構成を示すブロック図である。図10の半導体記憶装置は、メモリ10B、冗長切換情報提供手段11A、冗長コントロール手段12、及びメモリBIST15を含む。冗長切換情報提供手段11Aは、図7で説明したのと同様の冗長切換情報提供手段である。メモリBIST(Built-in Self TEST)15は、SOC等のシステム内部のメモリを自動的に試験するモジュールである。メモリ10Bは、ECCメモリ10からECCロジック22を取り除いたメモリである。
図11は、図10のメモリ10Bの構成を示す図である。図11において、図2と同一の構成要素は同一の番号で参照し、その説明は省略する。図11に示されるように、メモリ10Bは、図2のECCメモリ10からECCロジック22を取り除き、メモリセル配列&制御回路21のデータ入出力と冗長ビット入出力とをそのまま外部と接続した構成となっている。即ち、メモリ10Bは、2の冪乗である通常のデータビット幅に加え、冗長ビット分のビット数のデータ記憶が可能なメモリである。
図10に戻り、メモリBIST15はECCロジックを含む。テスト動作時に、メモリBIST15はエラー訂正用の冗長ビットを自動的に生成し、これをテスト用のデータとともにメモリ10Bに書き込む。その後書き込んだコード(データ+冗長ビット)を読み出し、読み出したコードからシンドローム(訂正情報)を生成する。誤りが検出された場合(且つ誤りが冗長ビット中ではない場合)は、シンドロームの情報を冗長切換情報提供手段11A中の不揮発性メモリに書き込む。また読み出したコードを誤り訂正し、訂正後のコードのデータと期待値(書き込んだ誤りの無いデータ)とを比較し、全てのアドレスについて両者が一致すれば、テスト結果としてPass信号を出力する。1つでも両者が一致しないアドレスがあれば、テスト結果としてFailを出力する。Failを出力した半導体記憶装置は、不良品として破棄することになる。
このように図10の半導体記憶装置においては、メモリ10BにはECC機能が設けられていない代わりに、メモリBIST15にECC機能が設けられている。特に複数のメモリが設けられている場合には、個々のメモリに1つずつECC機能を設けるのではなく、メモリBISTにECC機能を集約すれば、効率的な回路構成とすることができる。
図12は、本発明による冗長機能付き半導体記憶装置の別の変形例の構成を示すブロック図である。図12において、図10と同一の構成要素は同一の番号で参照し、その説明は省略する。
図12の半導体記憶装置は、メモリ10B、冗長切換情報提供手段11A、冗長コントロール手段12、及びメモリBIST15Aを含む。冗長切換情報提供手段11Aは、図7で説明したのと同様の冗長切換情報提供手段である。メモリBIST15Aは、SOC等のシステム内部のメモリを自動的に試験するモジュールであり、図10のメモリBIST15と異なりECC機能は設けられていない。メモリ10Bは、ECCメモリ10からECCロジック22を取り除いたメモリである。
テスト動作時に、メモリBIST15Aはテストデータを自動的に生成し、これをメモリ10Bに書き込む。その後メモリBIST15Aは、書き込んだデータを読み出し、読み出したデータと期待値(書き込んだ誤りの無いデータ)とを比較する。この比較により、メモリBIST15Aは、テストしたアドレスについて不良が存在するか否か、また不良が存在するのであればその誤り位置を検出することができる。
メモリBIST15Aは、テストした各アドレスについて、当該アドレスを示すアドレス信号と、不良が存在するか否かを示すエラー検出信号と、データ中のエラービット位置を示すエラーデータ位置信号とを出力する。これらの信号は、半導体記憶装置外部のテスタ装置等により検出される。外部においては、出力されたアドレス、エラー検出信号、及びエラーデータ位置信号をモニタすることで、不良アドレスと不良データ位置とを特定する。これらの不良アドレスと不良データ位置とを記憶させるように、外部から冗長切換情報提供手段11Aに設定用の信号を供給すればよい。また冗長切換情報提供手段11がフューズで不揮発データを記憶する構成の場合には、上記不良アドレスと不良データ位置とを記憶させるように、レーザビームを用いてフューズを切断すればよい。
図13は、冗長切換情報提供手段11内部の不揮発に情報を記憶する手段の一例を示す図である。図13に示す例では、シリコン基板60の拡散層にソース領域61及びドレイン領域62を形成し、ソース領域61とドレイン領域62との間のシリコン基板60上にフローティングゲート64及びコントロールゲート63を形成することにより1ビット分の不揮発情報記憶手段を構成する。この構成では、コントロールゲート63に電圧を印加したときにソース領域61及びドレイン領域62間に流れる電流が、フローティングゲート64中に注入された電荷の有無に応じて変化する。この電荷の有無により、データの"1"/"0"を表現する。データを書き込む場合は、ソース領域61及びドレイン領域62間に電流を流して発生したホットキャリアを利用して、フローティングゲート64に電荷を注入する等の方法がある。
図14は、冗長切換情報提供手段11内部の不揮発に情報を記憶する手段の別の一例を示す図である。図14に示す例では、シリコン基板70の拡散層にソース領域71及びドレイン領域72を形成し、ソース領域71とドレイン領域72との間のシリコン基板70上にゲート酸化膜74及びゲート73を形成することにより1ビット分の不揮発情報記憶手段を構成する。ゲート酸化膜(或いは配線層間膜)74の絶縁破壊75の有無により、データを記録することができる。データを書き込む場合は、ゲート酸化膜74が破壊するような電圧をゲート73に印可すればよい。
図15は、冗長切換情報提供手段11内部の不揮発に情報を記憶する手段の別の一例を示す図である。図15に示す例では、シリコン基板80の上に設けた配線層にフューズ配線81を形成することにより1ビット分の不揮発情報記憶手段を構成する。データを書き込む場合は、レーザビーム82によってフューズ配線81を切断すればよい。データの読み出しは、フューズ配線81に電流が流れるか否かで行うことが可能である。またフューズ配線81をレーザで切断するのではなく、過電流を流して溶断する方法もある。
以下に、本発明の半導体記憶装置のチップとしての実施形態について説明する。本発明の半導体記憶装置は、SOCである1つのチップに、ECCメモリ10、冗長切換情報提供手段11、共有接続用信号線13を含める構成でよいし、或いは以下に示すように、複数の別個のチップで構成してもよい。
図16は、本発明による半導体記憶装置のチップ構成の一例を示す図である。図16の構成では、チップ90がチップ91上にフェイスダウンで積載され、両チップは接続バンプ92を介して互いに電気的に接続されている。チップ90が例えばECCメモリ10を内蔵しており、チップ91が例えば冗長切換情報提供手段11及び冗長コントロール手段12を内蔵している。このように異なるチップ(異なる半導体基板)にECCメモリ10とそれ以外とが形成されていてよい。
図17は、本発明による半導体記憶装置のチップ構成の別の一例を示す図である。図17の構成では、チップ100及び102がチップ101上に回路構成面が同一方向(この場合は上)を向くように積載され、チップ間はボンディングワイヤ105により電気的に接続されている。チップ100乃至102はパッケージ104内に封止され、パッケージ104外部とはリードフレーム103により電気的に接続される。チップ100が例えばECCメモリ10を内蔵しており、チップ101が例えば冗長コントロール手段12及びコントローラ11−1を内蔵し、チップ102が例えばROM11−2を内蔵している(図8参照)。このようにECCメモリ10とROM部分はそれぞれ独自のチップとし、それ以外の部分は更に別のチップに形成されていてよい。
図18は、本発明による半導体記憶装置のチップ構成の更に別の一例を示す図である。図18の構成では、封止済チップ111と封止済チップ112とがプリント基板110上に設けられ、プリント基板110上の配線を介して互いに電気的に接続される。この構成では、例えば封止済チップ111がROM11−2を内蔵し、封止済チップ112がそれ以外の部分を内蔵してよい。
以上、本発明を実施例に基づいて説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載の範囲内で様々な変形が可能である。
なお本発明は以下の内容を含むものである。
(付記1)
2の冪乗である所定ビット数のデータの一部又は全部である第1のデータと該所定ビット数のデータをエラー訂正するに必要なビット数の第2のデータとを並列に入出力するメモリと、
該メモリに供給されるアドレス信号に応じて冗長切換情報を出力する冗長切換情報提供手段と、
該第1のデータのビット数と同数の入出力端と該メモリとの間に設けられ、該入出力端のあるビットを該メモリの該第1のデータの対応ビットに結合する第1の経路と該入出力端の該ビットを該メモリの該第2のデータの所定のビットに結合する第2の経路とを有し、該冗長切換情報に応じて該第1の経路と第2の経路との何れかを選択的に提供する冗長コントロール手段
を含むことを特徴とする半導体記憶装置。
(付記2)
該メモリは該第1のデータを少なくとも該第1及び該第2のデータに基づいてエラー訂正するECCロジック部を含み、該ECCロジック部のエラー訂正機能をオフに設定可能であることを特徴とする付記1記載の半導体記憶装置。
(付記3)
該入出力端の該ビットは該冗長切換情報により指定されるビットであることを特徴とする付記1記載の半導体記憶装置。
(付記4)
冗長切換情報提供手段は該アドレス信号が示すアドレスに不良ビットが有るか否かを示す情報と該不良ビットの位置を示す情報とを該冗長切換情報として出力するように構成されることを特徴とする付記1記載の半導体記憶装置。
(付記5)
該メモリに対する書き込み処理を実行する際に該第2の経路を選択した場合には、該入出力端の該ビットを該メモリの該第2のデータの複数のビットに重複して書き込むとともに、該メモリに対する読み出し処理を実行する際に該第2の経路を選択した場合には、該メモリの該第2のデータの該複数のビットの多数決により決定した値を該入出力端の該ビットに供給するように冗長コントロール手段が構成されることを特徴とする付記1記載の半導体記憶装置。
(付記6)
該冗長切換情報提供手段は、
該メモリの不良アドレスを格納する不良アドレス情報格納部と、
該不良アドレスの不良ビット位置を格納するデータ位置情報格納部と、
該アドレス信号の示すアドレスと該不良アドレス情報格納部に格納される該不良アドレスとを比較する比較部
を含むことを特徴とする付記1記載の半導体記憶装置。
(付記7)
該メモリは該第1のデータ中のエラーの有無と該エラーのビット位置とを示すエラー情報を出力するECCロジック部を含み、該冗長切換情報提供手段は該ECCロジック部に結合され該エラー情報に基づいて該不良アドレス情報格納部及び該データ位置情報格納部にそれぞれ該不良アドレス及び該不良ビット位置を格納するよう構成されることを特徴とする付記6記載の半導体記憶装置。
(付記8)
該メモリのテストを自動的に実行するように構成されたメモリBISTを更に含み、該メモリBISTは該第1のデータを該第1及び該第2のデータに基づいてエラー訂正するECCロジック部を含むことを特徴とする付記1記載の半導体記憶装置。
(付記9)
該ECCロジック部は外部からの信号により該エラー訂正機能のオン/オフを設定可能に構成されることを特徴とする付記2記載の半導体記憶装置。
(付記10)
該ECCロジック部は該エラー訂正機能が固定的にオフに設定されていることを特徴とする付記2記載の半導体記憶装置。
(付記11)
該冗長切換情報提供手段は、該メモリの不良アドレスと該不良アドレスの不良ビット位置とを格納する電気的に読み書き可能なROMを含むことを特徴とする付記1記載の半導体記憶装置。
(付記12)
該ROMはフローティングゲート構造を有したメモリセルであることを特徴とする付記11記載の半導体記憶装置。
(付記13)
該ROMはMOSトランジスタのゲート酸化膜の破壊/非破壊を利用するメモリセルであることを特徴とする付記11記載の半導体記憶装置。
(付記14)
該ROMは過電流により溶断可能なフューズ配線であることを特徴とする付記11記載の半導体記憶装置。
(付記15)
該冗長切換情報提供手段は、該メモリの不良アドレスと該不良アドレスの不良ビット位置とを格納するために切断/非切断可能なフューズ配線を含むことを特徴とする付記1記載の半導体記憶装置。
(付記16)
該メモリを含む第1の半導体チップと、
該冗長切換情報提供手段及び該冗長コントロール手段を含む第2の半導体チップ
を含むことを特徴とする付記1記載の半導体記憶装置。
(付記17)
該第2の半導体チップは該冗長切換情報提供手段を更に含むことを特徴とする付記16記載の半導体記憶装置。
(付記18)
該冗長切換情報提供手段を含む第3の半導体チップを更に含むことを特徴とする付記16記載の半導体記憶装置。
(付記19)
該第1の半導体チップ及び該第2の半導体チップは、一方がフェイスダウンで他方の上に配置されることを特徴とする付記16記載の半導体記憶装置。
(付記20)
該第1の半導体チップ及び該第2の半導体チップは、回路構成面が互いに対向しないように一方が他方の上に配置されることを特徴とする付記16記載の半導体記憶装置。
(付記21)
該第1の半導体チップ及び該第2の半導体チップはプリント基板上に実装されることを特徴とする付記16記載の半導体記憶装置。
(付記22)
該エラー訂正機能はハミング符号に基づくものであることを特徴とする付記2記載の半導体記憶装置。
(付記23)
該エラー訂正機能は拡大ハミング符号に基づくものであることを特徴とする付記2記載の半導体記憶装置。
(付記24)
該エラー訂正機能は垂直水平パリティー符号に基づくものであることを特徴とする付記2記載の半導体記憶装置。
(付記25)
該エラー訂正ECC機能のオフの選択はマスクオプションで固定的になされていることを特徴とする付記2記載の半導体記憶装置。
(付記26)
該エラー訂正ECC機能のオフの選択はボンディングで固定的になされていることを特徴とする付記2記載の半導体記憶装置。
(付記27)
該エラー訂正ECC機能のオフの選択はレーザフューズで固定的になされていることを特徴とする付記2記載の半導体記憶装置。
本発明による冗長機能付き半導体記憶装置の構成を示すブロック図である。 ECCメモリの第1の実施例の構成を示すブロック図である。 従来のECCメモリの構成を示す図である。 冗長コントロール手段の第1の実施例の構成を示す図である。 冗長切換情報提供手段の構成の一例を示す図である。 ECCメモリの第2の実施例の構成を示す図である。 図6の第2の実施例のECCメモリを用いた場合の冗長機能付き半導体記憶装置の構成を示すブロック図である。 第2の実施例のECCメモリを用いた場合の冗長機能付き半導体記憶装置の構成の変形例を示すブロック図である。 冗長コントロール手段の第2の実施例の構成を示す図である。 本発明による冗長機能付き半導体記憶装置の変形例の構成を示すブロック図である。 図10のメモリの構成を示す図である。 本発明による冗長機能付き半導体記憶装置の別の変形例の構成を示すブロック図である。 冗長切換情報提供手段内部の不揮発に情報を記憶する手段の一例を示す図である。 冗長切換情報提供手段内部の不揮発に情報を記憶する手段の別の一例を示す図である。 冗長切換情報提供手段内部の不揮発に情報を記憶する手段の別の一例を示す図である。 本発明による半導体記憶装置のチップ構成の一例を示す図である。 本発明による半導体記憶装置のチップ構成の別の一例を示す図である。 本発明による半導体記憶装置のチップ構成の更に別の一例を示す図である。
符号の説明
10 ECCメモリ
11 冗長切換情報提供手段
12 冗長コントロール手段
21 メモリセル配列&制御回路
22 ECCロジック
30 デコーダ
31−0乃至31−n スイッチ
32 冗長ビットの信号線
41 比較器
42 不良アドレス情報格納部
43 データ位置情報格納部

Claims (10)

  1. 2の冪乗である所定ビット数のデータの一部又は全部である第1のデータと該所定ビット数のデータをエラー訂正するに必要なビット数の第2のデータとを並列に入出力するメモリと、
    該メモリに供給されるアドレス信号に応じて冗長切換情報を出力する冗長切換情報提供手段と、
    該第1のデータのビット数と同数の入出力端と該メモリとの間に設けられ、該入出力端のあるビットを該メモリの該第1のデータの対応ビットに結合する第1の経路と該入出力端の該ビットを該メモリの該第2のデータの所定のビットに結合する第2の経路とを有し、該冗長切換情報に応じて該第1の経路と第2の経路との何れかを選択的に提供する冗長コントロール手段
    を含むことを特徴とする半導体記憶装置。
  2. 該メモリは該第1のデータを少なくとも該第1及び該第2のデータに基づいてエラー訂正するECCロジック部を含み、該ECCロジック部のエラー訂正機能をオフに設定可能であることを特徴とする請求項1記載の半導体記憶装置。
  3. 該入出力端の該ビットは該冗長切換情報により指定されるビットであることを特徴とする請求項1記載の半導体記憶装置。
  4. 冗長切換情報提供手段は該アドレス信号が示すアドレスに不良ビットが有るか否かを示す情報と該不良ビットの位置を示す情報とを該冗長切換情報として出力するように構成されることを特徴とする請求項1記載の半導体記憶装置。
  5. 該メモリに対する書き込み処理を実行する際に該第2の経路を選択した場合には、該入出力端の該ビットを該メモリの該第2のデータの複数のビットに重複して書き込むとともに、該メモリに対する読み出し処理を実行する際に該第2の経路を選択した場合には、該メモリの該第2のデータの該複数のビットの多数決により決定した値を該入出力端の該ビットに供給するように冗長コントロール手段が構成されることを特徴とする請求項1記載の半導体記憶装置。
  6. 該冗長切換情報提供手段は、
    該メモリの不良アドレスを格納する不良アドレス情報格納部と、
    該不良アドレスの不良ビット位置を格納するデータ位置情報格納部と、
    該アドレス信号の示すアドレスと該不良アドレス情報格納部に格納される該不良アドレスとを比較する比較部
    を含むことを特徴とする請求項1記載の半導体記憶装置。
  7. 該メモリは該第1のデータ中のエラーの有無と該エラーのビット位置とを示すエラー情報を出力するECCロジック部を含み、該冗長切換情報提供手段は該ECCロジック部に結合され該エラー情報に基づいて該不良アドレス情報格納部及び該データ位置情報格納部にそれぞれ該不良アドレス及び該不良ビット位置を格納するよう構成されることを特徴とする請求項6記載の半導体記憶装置。
  8. 該メモリのテストを自動的に実行するように構成されたメモリBISTを更に含み、該メモリBISTは該第1のデータを該第1及び該第2のデータに基づいてエラー訂正するECCロジック部を含むことを特徴とする請求項1記載の半導体記憶装置。
  9. 該ECCロジック部は外部からの信号により該エラー訂正機能のオン/オフを設定可能に構成されることを特徴とする請求項2記載の半導体記憶装置。
  10. 該ECCロジック部は該エラー訂正機能が固定的にオフに設定されていることを特徴とする請求項2記載の半導体記憶装置。
JP2006083335A 2006-03-24 2006-03-24 半導体記憶装置 Withdrawn JP2007257791A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006083335A JP2007257791A (ja) 2006-03-24 2006-03-24 半導体記憶装置
US11/451,299 US20070255981A1 (en) 2006-03-24 2006-06-13 Redundancy-function-equipped semiconductor memory device made from ECC memory
TW095120964A TWI301273B (en) 2006-03-24 2006-06-13 Redundancy-function-equipped semiconductor memory device made from ecc memory
EP06115596A EP1837881A1 (en) 2006-03-24 2006-06-16 Redundancy-function-equipped semiconductor memory device from ECC memory
CNA2006100864362A CN101042938A (zh) 2006-03-24 2006-06-21 以纠错码存储器构成的具有冗余功能的半导体存储器设备
KR1020060055898A KR20070096731A (ko) 2006-03-24 2006-06-21 반도체 기억 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006083335A JP2007257791A (ja) 2006-03-24 2006-03-24 半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2007257791A true JP2007257791A (ja) 2007-10-04

Family

ID=37808052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083335A Withdrawn JP2007257791A (ja) 2006-03-24 2006-03-24 半導体記憶装置

Country Status (6)

Country Link
US (1) US20070255981A1 (ja)
EP (1) EP1837881A1 (ja)
JP (1) JP2007257791A (ja)
KR (1) KR20070096731A (ja)
CN (1) CN101042938A (ja)
TW (1) TWI301273B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8656259B2 (en) 2010-11-05 2014-02-18 Nec Corporation Data transmission
US9424953B2 (en) 2013-06-20 2016-08-23 Samsung Electronics Co., Ltd. Semiconductor memory device including repair circuit
US9798600B2 (en) 2014-09-29 2017-10-24 Renesas Electronics Corporation Semiconductor memory device
US10109337B2 (en) 2016-06-06 2018-10-23 Renesas Electronics Corporation Memory macro and semiconductor integrated circuit device
JP2019526845A (ja) * 2016-06-29 2019-09-19 マイクロン テクノロジー,インク. 誤り訂正符号イベント検出

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080282120A1 (en) * 2007-05-11 2008-11-13 Macronix International Co., Ltd. Memory structure, repair system and method for testing the same
CN101533677B (zh) * 2008-03-13 2012-06-13 群联电子股份有限公司 存储器的设置方法、控制器以及非易失性存储器系统
CN101309300B (zh) * 2008-06-26 2012-04-25 成都市华为赛门铁克科技有限公司 一种多路径存储系统中的路径倒换控制方法和系统
KR101042197B1 (ko) * 2008-12-30 2011-06-20 (주)인디링스 메모리 컨트롤러 및 메모리 관리 방법
US8423837B2 (en) * 2009-02-13 2013-04-16 Texas Instruments Incorporated High reliability and low power redundancy for memory
US8578084B2 (en) * 2009-04-08 2013-11-05 Google Inc. Data storage device having multiple removable memory boards
US20100262979A1 (en) * 2009-04-08 2010-10-14 Google Inc. Circular command queues for communication between a host and a data storage device
US8595572B2 (en) 2009-04-08 2013-11-26 Google Inc. Data storage device with metadata command
US9787501B2 (en) 2009-12-23 2017-10-10 Pismo Labs Technology Limited Methods and systems for transmitting packets through aggregated end-to-end connection
US10218467B2 (en) 2009-12-23 2019-02-26 Pismo Labs Technology Limited Methods and systems for managing error correction mode
US8739010B2 (en) * 2010-11-19 2014-05-27 Altera Corporation Memory array with redundant bits and memory element voting circuits
US9065749B2 (en) * 2011-11-21 2015-06-23 Qualcomm Incorporated Hybrid networking path selection and load balancing
CN103186100B (zh) * 2011-12-31 2016-03-02 北京圣涛平试验工程技术研究院有限责任公司 冗余防护系统及方法
JP5987319B2 (ja) * 2012-01-06 2016-09-07 富士ゼロックス株式会社 送受信システム及びプログラム
US9953725B2 (en) * 2012-02-29 2018-04-24 Samsung Electronics Co., Ltd. Semiconductor memory devices and methods of operating the same
US9087613B2 (en) * 2012-02-29 2015-07-21 Samsung Electronics Co., Ltd. Device and method for repairing memory cell and memory system including the device
US9135099B2 (en) * 2012-03-29 2015-09-15 Taiwan Semiconductor Manufacturing Company, Ltd. Memory error correction
CN102708927A (zh) * 2012-05-09 2012-10-03 上海宏力半导体制造有限公司 提高存储器可靠性的方法以及闪存操作方法
US9202532B2 (en) * 2012-09-13 2015-12-01 Winbond Electronics Corp. Burst sequence control and multi-valued fuse scheme in memory device
KR102002925B1 (ko) 2012-11-01 2019-07-23 삼성전자주식회사 메모리 모듈, 그것을 포함하는 메모리 시스템, 그것의 구동 방법
US9224503B2 (en) 2012-11-21 2015-12-29 International Business Machines Corporation Memory test with in-line error correction code logic
US9472302B2 (en) * 2013-03-07 2016-10-18 Intel Corporation Redundant fuse coding
KR101862379B1 (ko) * 2013-04-19 2018-07-05 삼성전자주식회사 Ecc 동작과 리던던시 리페어 동작을 공유하는 메모리 장치
US9430324B2 (en) 2013-05-24 2016-08-30 Rambus Inc. Memory repair method and apparatus based on error code tracking
CN103279401B (zh) * 2013-05-31 2016-01-27 华为技术有限公司 一种访问存储器的方法及装置
CN104681096B (zh) * 2013-11-27 2017-11-21 北京兆易创新科技股份有限公司 一种非易失性存储器的修复方法
TWI550627B (zh) * 2013-11-28 2016-09-21 旺宏電子股份有限公司 儲存裝置及其操作方法
US9484113B2 (en) * 2014-04-15 2016-11-01 Advanced Micro Devices, Inc. Error-correction coding for hot-swapping semiconductor devices
KR102189780B1 (ko) 2014-08-11 2020-12-11 삼성전자주식회사 반도체 메모리 장치 및 이를 포함하는 메모리 시스템
KR102210327B1 (ko) * 2014-08-21 2021-02-01 삼성전자주식회사 에러 알림 기능이 있는 메모리 장치
US10248521B2 (en) * 2015-04-02 2019-04-02 Microchip Technology Incorporated Run time ECC error injection scheme for hardware validation
US9865362B1 (en) * 2016-02-09 2018-01-09 Cadence Design Systems, Inc. Method and apparatus for testing error correction code (ECC) logic and physical memory onboard a manufactured integrated circuit (IC)
KR20180012009A (ko) 2016-07-26 2018-02-05 에스케이하이닉스 주식회사 데이터 맵핑을 수행하는 반도체 장치 및 시스템
US9904595B1 (en) * 2016-08-23 2018-02-27 Texas Instruments Incorporated Error correction hardware with fault detection
JP6841698B2 (ja) * 2017-03-21 2021-03-10 ルネサスエレクトロニクス株式会社 半導体装置
US10389379B2 (en) * 2017-05-12 2019-08-20 Qualcomm Incorporated Error correcting code testing
JP2019164472A (ja) * 2018-03-19 2019-09-26 株式会社東芝 半導体装置
JP2019164095A (ja) * 2018-03-20 2019-09-26 株式会社東芝 半導体集積回路
JP2019168316A (ja) * 2018-03-23 2019-10-03 株式会社東芝 半導体集積回路
CN110033813A (zh) * 2018-08-31 2019-07-19 济南德欧雅安全技术有限公司 一种翻译器设备
US10795767B2 (en) * 2018-12-26 2020-10-06 M31 Technology Corporation Error correcting system shared by multiple memory devices
CN111383701B (zh) * 2020-04-29 2023-08-01 中国电子科技集团公司第五十八研究所 一种otp的冗余纠错结构
US11728003B2 (en) * 2020-05-12 2023-08-15 Qualcomm Incorporated System and memory with configurable error-correction code (ECC) data protection and related methods
US11586495B2 (en) * 2020-07-15 2023-02-21 Micron Technology, Inc. Fuse logic to perform selectively enabled ECC decoding
CN113076219B (zh) * 2021-04-27 2022-07-12 中国人民解放军国防科技大学 一种高能效的片上存储器错误检测与纠错电路及实现方法
CN115602237B (zh) * 2022-11-25 2023-03-10 成都利普芯微电子有限公司 一种芯片修调电路、方法及驱动芯片

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051749B2 (ja) * 1979-08-31 1985-11-15 富士通株式会社 エラ−訂正方式
JPS57150197A (en) * 1981-03-11 1982-09-16 Nippon Telegr & Teleph Corp <Ntt> Storage circuit
US4450559A (en) * 1981-12-24 1984-05-22 International Business Machines Corporation Memory system with selective assignment of spare locations
US4471472A (en) * 1982-02-05 1984-09-11 Advanced Micro Devices, Inc. Semiconductor memory utilizing an improved redundant circuitry configuration
JPS59144098A (ja) * 1983-02-08 1984-08-17 Fujitsu Ltd 半導体記憶装置
US4584682A (en) * 1983-09-02 1986-04-22 International Business Machines Corporation Reconfigurable memory using both address permutation and spare memory elements
JPS6150293A (ja) * 1984-08-17 1986-03-12 Fujitsu Ltd 半導体記憶装置
JPS61264599A (ja) * 1985-05-16 1986-11-22 Fujitsu Ltd 半導体記憶装置
US4888773A (en) * 1988-06-15 1989-12-19 International Business Machines Corporation Smart memory card architecture and interface
JP2617026B2 (ja) * 1989-12-22 1997-06-04 インターナショナル・ビジネス・マシーンズ・コーポレーション 障害余裕性メモリ・システム
US5134616A (en) * 1990-02-13 1992-07-28 International Business Machines Corporation Dynamic ram with on-chip ecc and optimized bit and word redundancy
US5199033A (en) * 1990-05-10 1993-03-30 Quantum Corporation Solid state memory array using address block bit substitution to compensate for non-functional storage cells
US5274593A (en) * 1990-09-28 1993-12-28 Intergraph Corporation High speed redundant rows and columns for semiconductor memories
JPH07334999A (ja) * 1994-06-07 1995-12-22 Hitachi Ltd 不揮発性半導体記憶装置及びデータプロセッサ
US5896404A (en) * 1997-04-04 1999-04-20 International Business Machines Corporation Programmable burst length DRAM
JPH117761A (ja) * 1997-06-13 1999-01-12 Toshiba Corp 画像用メモリ
US6567950B1 (en) * 1999-04-30 2003-05-20 International Business Machines Corporation Dynamically replacing a failed chip
US6469945B2 (en) * 2000-05-25 2002-10-22 Tachyon Semiconductor Corp. Dynamically configurated storage array with improved data access
JP3680725B2 (ja) * 2000-10-26 2005-08-10 松下電器産業株式会社 半導体記憶装置
US6542973B2 (en) * 2001-07-03 2003-04-01 Ibm Corporation Integrated redundancy architecture system for an embedded DRAM
US7219271B2 (en) * 2001-12-14 2007-05-15 Sandisk 3D Llc Memory device and method for redundancy/self-repair
US7076686B2 (en) * 2002-02-20 2006-07-11 Hewlett-Packard Development Company, L.P. Hot swapping memory method and system
US6621746B1 (en) * 2002-02-27 2003-09-16 Microsoft Corporation Monitoring entropic conditions of a flash memory device as an indicator for invoking erasure operations
JP4111762B2 (ja) * 2002-07-03 2008-07-02 株式会社ルネサステクノロジ 半導体記憶装置
KR100481175B1 (ko) * 2002-08-08 2005-04-07 삼성전자주식회사 시프트 리던던시 회로들을 가지는 반도체 메모리 장치
US7117400B2 (en) * 2002-11-13 2006-10-03 International Business Machines Corporation Memory device with data line steering and bitline redundancy
KR100492773B1 (ko) * 2002-12-02 2005-06-07 주식회사 하이닉스반도체 확장 메모리 부를 구비한 강유전체 메모리 장치
US6906961B2 (en) * 2003-06-24 2005-06-14 Micron Technology, Inc. Erase block data splitting
US6870749B1 (en) * 2003-07-15 2005-03-22 Integrated Device Technology, Inc. Content addressable memory (CAM) devices with dual-function check bit cells that support column redundancy and check bit cells with reduced susceptibility to soft errors
KR100546348B1 (ko) * 2003-07-23 2006-01-26 삼성전자주식회사 플래시 메모리 시스템 및 그 데이터 저장 방법
JP3984209B2 (ja) 2003-07-31 2007-10-03 株式会社東芝 半導体記憶装置
JP4492218B2 (ja) * 2004-06-07 2010-06-30 ソニー株式会社 半導体記憶装置
KR100632946B1 (ko) * 2004-07-13 2006-10-12 삼성전자주식회사 불 휘발성 메모리 장치 및 그것의 프로그램 방법
EP1624463A1 (en) * 2004-07-14 2006-02-08 STMicroelectronics S.r.l. A Programmable memory device with an improved redundancy structure
US7539800B2 (en) * 2004-07-30 2009-05-26 International Business Machines Corporation System, method and storage medium for providing segment level sparing
US7467323B2 (en) * 2005-02-10 2008-12-16 International Business Machines Corporation Data processing system and method for efficient storage of metadata in a system memory
US7346815B2 (en) * 2005-03-31 2008-03-18 Intel Corporation Mechanism for implementing redundancy to mask failing SRAM
US7227797B2 (en) * 2005-08-30 2007-06-05 Hewlett-Packard Development Company, L.P. Hierarchical memory correction system and method
US7292950B1 (en) * 2006-05-08 2007-11-06 Cray Inc. Multiple error management mode memory module
US7548459B2 (en) * 2006-08-29 2009-06-16 Micron Technology, Inc. Method, apparatus, and system providing adjustable memory page configuration

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8656259B2 (en) 2010-11-05 2014-02-18 Nec Corporation Data transmission
US9424953B2 (en) 2013-06-20 2016-08-23 Samsung Electronics Co., Ltd. Semiconductor memory device including repair circuit
US9798600B2 (en) 2014-09-29 2017-10-24 Renesas Electronics Corporation Semiconductor memory device
US10120741B2 (en) 2014-09-29 2018-11-06 Renesas Electronics Corporation Semiconductor memory device
US10360091B2 (en) 2014-09-29 2019-07-23 Renesas Electronics Corporation Semiconductor memory device
US10109337B2 (en) 2016-06-06 2018-10-23 Renesas Electronics Corporation Memory macro and semiconductor integrated circuit device
JP2019526845A (ja) * 2016-06-29 2019-09-19 マイクロン テクノロジー,インク. 誤り訂正符号イベント検出
US10949300B2 (en) 2016-06-29 2021-03-16 Micron Technology, Inc. Error correction code event detection

Also Published As

Publication number Publication date
KR20070096731A (ko) 2007-10-02
EP1837881A1 (en) 2007-09-26
CN101042938A (zh) 2007-09-26
TWI301273B (en) 2008-09-21
TW200737217A (en) 2007-10-01
US20070255981A1 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP2007257791A (ja) 半導体記憶装置
US10839933B2 (en) Memory devices having a read function of data stored in a plurality of reference cells
US6851081B2 (en) Semiconductor memory device having ECC type error recovery circuit
US7768831B2 (en) Flash memory device and method of controlling flash memory device
US5764577A (en) Fusleless memory repair system and method of operation
JP4284154B2 (ja) マルチチップパッケージ型メモリシステム
CN111312321A (zh) 一种存储器装置及其故障修复方法
JP5127737B2 (ja) 半導体装置
US20120075943A1 (en) Method and Apparatus for Memory Repair With Redundant Columns
JPH11219598A (ja) 半導体記憶装置
US7808848B2 (en) Semiconductor memory
JP2009181425A (ja) メモリモジュール
TWI655637B (zh) 記憶體裝置
JP4351649B2 (ja) 半導体記憶装置
WO2007110927A1 (ja) 半導体メモリ
US6934203B2 (en) Semiconductor memory device for improving redundancy efficiency
JP2005285281A (ja) 半導体記憶装置及び半導体記憶装置の製造方法
JP2005050442A (ja) 冗長メモリ回路
US7079430B2 (en) Memory device with built-in error-correction capabilities
KR100924579B1 (ko) 리던던시 메모리 셀 억세스 회로, 이를 포함하는 반도체메모리 장치, 및 반도체 메모리 장치의 테스트 방법
US10553303B2 (en) Semiconductor device and operating method thereof
KR20030058256A (ko) 플래시 메모리 소자 및 그의 리페어 방법
JPH0831190A (ja) 不揮発性半導体メモリ装置
JP2005346822A (ja) 半導体記憶装置
KR19990024776A (ko) 오류 점검/정정 회로의 디세이블 회로를 갖는 반도체 장치

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081212

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090423