JP2007207935A - 炭化珪素半導体素子の製造方法 - Google Patents

炭化珪素半導体素子の製造方法 Download PDF

Info

Publication number
JP2007207935A
JP2007207935A JP2006023585A JP2006023585A JP2007207935A JP 2007207935 A JP2007207935 A JP 2007207935A JP 2006023585 A JP2006023585 A JP 2006023585A JP 2006023585 A JP2006023585 A JP 2006023585A JP 2007207935 A JP2007207935 A JP 2007207935A
Authority
JP
Japan
Prior art keywords
trench
film
sio
sic
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006023585A
Other languages
English (en)
Other versions
JP4957005B2 (ja
Inventor
Takashi Tsuji
崇 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2006023585A priority Critical patent/JP4957005B2/ja
Publication of JP2007207935A publication Critical patent/JP2007207935A/ja
Application granted granted Critical
Publication of JP4957005B2 publication Critical patent/JP4957005B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】種々のポリタイプの種々の面方位の面を主面とするSiCウェハーを用いて、理論耐圧を有するトレンチゲート型の半導体素子を作製すること。
【解決手段】SiC基板21にトレンチを形成し、このトレンチの底にSiO2膜29を埋め込む。トレンチ底のSiO2膜29の厚さをtox[μm]とし、素子の絶縁耐圧をBV[kV]とすると、4H−SiC(0001)Si面を主面とするSiC基板を用いる場合には、toxが[−0.04BV2+0.4476BV+0.3996]よりも大きくなるようにする。SiC基板のポリタイプおよび主面の面方位に応じて、所定の関係式から導かれる値よりもtoxを大きくする。
【選択図】図6

Description

この発明は、半導体材料として炭化珪素(SiC)を用いた炭化珪素半導体素子の製造方法に関する。
SiCは、シリコン半導体と比較して大きなバンドギャップを有し、それゆえ高い絶縁破壊電界強度を有する。半導体素子のオン状態における抵抗、すなわちオン抵抗は、その絶縁破壊電界強度の3乗に逆比例するので、例えば広く用いられている4H型のSiC(4H−SiC)のオン抵抗は、シリコン(Si)半導体の数百分の1程度になる。また、SiCは、大きな熱伝導度を有し、放熱特性に優れる。このような特性を有するため、SiCは、次世代の低損失な電力用半導体素子として期待されている。
近年、SiCウェハーの品質が向上し、またウェハー径も大きくなってきている。そのため、シリコン半導体素子の特性を大きく上回る金属−酸化物−半導体電界効果型トランジスタ(以下、MOSFETとする)やバイポーラトランジスタや接合型電界効果トランジスタ(JFET)などの開発が盛んに行われている。
特に、MOSFETには、様々な長所がある。例えば、MOSFETは電圧駆動型素子であるので、電流駆動型素子に対してゲート駆動回路が低コストで済む。また、オン状態での電流が電子電流または正孔電流のみであるので、バイポーラ素子のように素子内への過剰なキャリアの蓄積がない。従って、ターンオフ時間が短くなり、またターンオフ時の電流が小さくなる。つまり、スイッチングの高速化と低損失化が図れる。このような理由から、MOSFETは、広く使用されている。
図15に、従来のトレンチゲート構造を有するMOSFET(UMOSFET)の1セルピッチの断面構造を示す。従来のUMOSFETの製造プロセスは、次の通りである。n型低抵抗基板1上に、高抵抗n型ドリフト層2、p型ベース層3を順次エピタキシャル成長させる。その後、イオン注入法により、p型ベース層3にn型ソース領域4を選択的に形成する。このようにしてできたSiCウェハーに、ゲートトレンチ5を形成する。そして、ゲート酸化膜6、ゲート電極7、ソース/ベース電極8、ドレイン電極9を順次、形成することにより、図15に示す構成のUMOSFETが完成する。
図15に示すUMOSFETの動作について説明する。ソース/ベース電極8をアース電位とし、ゲート電極7に十分大きな負バイアスを印加すると、n型ソース領域4とn型ドリフト層2に挟まれたp型ベース部分の、ゲート酸化膜6との界面近傍の領域に、正孔が誘起され、蓄積状態となる。それによって、伝導キャリアである電子の経路が遮断されるので、ソース/ベース電極8とドレイン電極9の間には、電流が流れない。ドレイン電極9に正の高電圧を印加すると、p型ベース層3とn型ドリフト層2の問のpn接合が逆バイアス状態になる。従って、空乏層がp型ベース層3内とn型ドリフト層2内に広がり、電流を低く抑えたまま高電圧を維持する。この状態がオフ状態である。
一方、オン状態のときには、ゲート電極7に十分大きい正バイアスを印加すると、n型ソース領域4とn型ドリフト層2に挟まれたp型ベース部分の、ゲート酸化膜6との界面近傍の領域に、電子が誘起され、反転状態となる。それによって、電子がソース/ベース電極8からn型ソース領域4、p型ベース層3のゲート酸化膜近傍の反転層、n型ドリフト層2およびn型基板1を経由して、ドレイン電極9へ流れる。
オン抵抗について、UMOSFETには、図16に示す従来のDIMOSFET(Double−Implanted MOSFET)では加算される蓄積抵抗とJFET抵抗が、発生しないという長所がある。蓄積抵抗は、電子がn型ドリフト層2の、ゲート酸化膜6との界面近傍の領域を移動するときの抵抗である。JFET抵抗は、電子がドリフト層2内をゲート酸化膜6の近傍からドレイン電極9へ向かって流れる際に、n型ドリフト層2の、ゲート酸化膜6に近い領域がp型ベース層3に挟まれている部分によって生じる抵抗である。
従って、DIMOSFETでは、セルピッチがある寸法よりも小さくなると、JFET抵抗が現れて、オン抵抗が増加するが、それに対して、UMOSFETでは、セルピッチが小さくなるに連れてオン抵抗が単調に減少する。特に、耐圧が約3kV以下であるMOSFETでは、MOSチャネル抵抗を無視できないため、微細化によるセルピッチの縮小が必須であり、DIMOSFETよりもUMOSFETの方が好ましい。
図17に、従来のUMOSFETの構造と、オフ状態のときのpn接合部を含む深さ方向の電界強度分布と、オフ状態のときのMOSキャパシタ部を含む深さ方向の電界強度分布を示す。図17において、符号10は、従来のUMOSFETの断面構造であり、符号11は、pn接合部を含む深さ方向の電界強度分布であり、符号12は、MOSキャパシタ部を含む深さ方向の電界強度分布である。
ここで、pn接合部とは、図17に示すように、p型ベース層3とn型ドリフト層2の接合界面を含む部分(破線の矩形で「pn」という文字を囲む部分)のことであり、MOSキャパシタ部とは、トレンチゲート構造のトレンチ底においてゲート酸化膜6とそれを挟むゲート電極7およびn型ドリフト層2からなるキャパシタを含む部分(破線の矩形で「MOS」という文字を囲む部分)のことである。
図17のMOSキャパシタ部を含む深さ方向の電界強度分布12から明らかなように、トレンチ底のゲート酸化膜6に印加される電界強度が非常に高くなる。これは、SiCの比誘電率(4H−SiCで9.7)とSiO2膜の比誘電率(3.8)との差が原因である。また、図17では図示されていないが、トレンチの角部には電界が集中するため、トレンチの角部の酸化膜にかかる電界強度は、さらに高くなる。
本来は、pn接合部における電界強度のピークがSiCの絶縁破壊電界強度に至って素子の破壊が生じるのが理想的である。しかし、従来のUMOSFETでは、pn接合部の電界強度がSiCの絶縁破壊電界強度に至る前に、トレンチ底の酸化膜がその酸化膜の絶縁破壊電界強度(約10MV/cm)に到達してしまう。そのため、理論耐圧よりも低い電圧で絶縁破壊が起こるという問題がある。
Siの絶縁破壊電界強度は、0.2MV/cmであり、酸化膜の絶縁破壊電界強度(約10MV/cm)よりも2桁小さい。従って、Si半導体デバイスでは、ほぼpn接合部で絶縁破壊が起こる。一方、4H−SiCの絶縁破壊電界強度は、2MV/cmであり、酸化膜の絶縁破壊電界強度と1桁しか違わない。そのため、SiC半導体デバイスでは、MOSキャパシタ部での絶縁破壊の問題が顕著となる。
このような問題の対策の一方法として、例えば、図18に符号13で示すUMOSFETの断面構造のように、UMOSFETを作製する際に、トレンチ形成直後に素子全面にAlやBのイオン注入を行い、トレンチ底にのみ、濃度が1018cm-3程度で、厚さが0.5μm程度のp+層16を形成することが報告されている(例えば、非特許文献1参照。)。このようにすることによって、図18に符号15で示すMOSキャパシタ部を含む深さ方向の電界強度分布のように、トレンチ底のp+層16により電界が吸収されるので、トレンチ底のゲート酸化膜6に電界が印加されなくなり、トレンチ底の酸化膜中における絶縁破壊を防ぐことができる。なお、図18において、符号14は、pn接合部を含む深さ方向の電界強度分布である。
また、SiC(000−1)C面を主面とするSiCウェハー上にUMOSFETを作製し、トレンチの側壁面と底面とで熱酸化速度が異なることを利用して、トレンチ側壁の酸化膜よりもトレンチ底の酸化膜を厚くする方法が提案されている(例えば、特許文献1、特許文献2参照。)。なお、本明細書では、ミラー指数の表記において、数字の前に−が付いている指数は負の指数を表すこととする。また、半導体材料としてSiを用いたパワーMOSFETにおいて、トレンチの形成工程、トレンチ底へのp型不純物の拡散工程、トレンチ内へのSiO2の埋め込み工程、埋め込み酸化膜のエッチバック工程を順次、行うことにより、トレンチ底にのみSiO2膜を形成するとともに、トレンチ底の下にp型領域を埋め込むことが提案されている(例えば、非特許文献2参照。)。
特許第3471473号公報 特許第3531291号公報 J.・タン(J. Tan)、外2名、「ハイ−ボルティジ・アキュミュレーション−レイヤ・UMOSFET’s・イン・4H−SiC(High−Voltage Accumulation−Layer UMOSFET’s in 4H−SiC)」、アイ・トリプル・イー・エレクトロン・デバイス・レターズ(IEEE ELECTRON DEVICE LETTERS)、(米国)、1998年12月、第19巻、第12号、p.487−489 ヒデフミ・タカヤ(Hidefumi Takaya)、外5名、「フローティング・アイランド・アンド・シック・ボトム・オキサイド・トレンチ・ゲート・MOSFET(FITMOS)−ア・60V・ウルトラ・ロー・オン−レジスタンス・ノーブル・MOSFET・ウィズ・スピリア・インタナショナル・ボディ・ダイオード−(Floating Island and Thick Bottom Oxide Trench Gate MOSFET(FITMOS)−A 60V Ultra Low On−Resistance Novel MOSFET with Superior Internal Body Diode−)」、プロシーディングズ・オブ・ザ・17th・インタナショナル・シンポジウム・オン・パワー・セミコンダクタ・デバイシス&IC’s(Proceedings of the 17th International Symposium on Power Semiconductor Devices & IC’S)、(米国)、2005年3月23−26日、p.43−46
しかしながら、上記非特許文献1に開示された方法では、トレンチ底にp+層を形成するためのイオン注入と、注入されたイオン種を電気的に活性化するためのアニールが必要であるが、SiCの場合には、AlやBを活性化する際の温度が1600〜1700℃以上と高温であるため、この高温アニールによって表面に凹凸が生じてしまう。ゲート酸化膜とMOSチャネル部のp型ベース層との界面に凹凸があると、電子が散乱されるため、移動度が低下するという問題がある。また、主面のソース/ベース電極の接触部位の表面が荒れると、ソース/ベース電極のオーミツク特性の悪化を招き、メタル接触抵抗が増大するという問題もある。さらに、高温アニールにより、SiC結晶中に存在する転位が成長し、リーク電流などの素子特性が悪化するという問題もある。
また、上記特許文献1または2に開示された方法では、熱酸化速度の面方位異方性を利用してトレンチ側壁とトレンチ底とで膜厚の異なる酸化膜を生成するため、トレンチ側壁の酸化膜厚に対して卜レンチ底の酸化膜厚が一義的に決まってしまう。そのため、ドリフト層の厚みや濃度によっては、MOSFETの絶縁耐圧が理論値まで上がらないという不具合が生じる。さらに、SiC(000−1)C面以外の面を主面としてUMOSFETを作製すると、トレンチ底の酸化膜厚をトレンチ側壁の酸化膜厚に対して十分に厚くすることができないという問題がある。
また、上記非特許文献2に開示された方法は、Si系のUMOSFETに適用されるものであり、SiC系のUMOSFETを対象としたものではない。Si系のUMOSFETでは、SiO2の絶縁破壊電界強度(10MV/cm)に対してSiの絶縁破壊電界強度(0.2MV/cm)が十分に小さいので、トレンチ側壁の酸化膜厚とトレンチ底の酸化膜厚が同じであっても、絶縁耐圧が著しく低くなることはない。また、上記非特許文献2に開示された方法は、同文献のFig.6およびFig.8に示されているように、デバイスの深さ方向の電界強度分布が2つのピークを有するようにすることによって、オン抵抗を低減することを目的としており、絶縁耐圧を向上させることを目的としたものではない。さらに、上記特許文献1および2、並びに上記非特許文献2には、トレンチ底の酸化膜の厚さがどれくらいであれば理論耐圧が得られるのかということに関する言及はない。
この発明は、上述した従来技術による問題点を解消するため、種々のポリタイプの種々の面方位の面を主面とするSiCウェハーを用いて、理論耐圧を有するトレンチゲート型の半導体素子を作製することができる炭化珪素半導体素子の製造方法を提供することを目的とする。
上述した課題を解決し、目的を達成するため、請求項1の発明にかかる炭化珪素半導体素子の製造方法は、半導体材料としてSiCを用いて半導体素子を製造するにあたって、4H型のSiC(0001)Si面を主面とするSiC基板にトレンチを形成する工程と、前記トレンチの底にSiO2膜を、該SiO2膜の厚さをtox[μm]とし、素子の絶縁耐圧をBV[kV]としたときに、式[tox>−0.04BV2+0.4476BV+0.3996]を満たすように、埋め込む工程と、前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、前記トレンチ内にゲート電極となる電極材を形成する工程と、を含むことを特徴とする。
請求項2の発明にかかる炭化珪素半導体素子の製造方法は、半導体材料としてSiCを用いて半導体素子を製造するにあたって、数字の前に−を付けて負のミラー指数を表すと、4H型のSiC(000−1)C面を主面とするSiC基板にトレンチを形成する工程と、前記トレンチの底にSiO2膜を、該SiO2膜の厚さをtox[μm]とし、素子の絶縁耐圧をBV[kV]としたときに、式[tox>−0.04BV2+0.4476BV+0.3996]を満たすように、埋め込む工程と、前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、前記トレンチ内にゲート電極となる電極材を形成する工程と、を含むことを特徴とする。
請求項3の発明にかかる炭化珪素半導体素子の製造方法は、半導体材料としてSiCを用いて半導体素子を製造するにあたって、数字の前に−を付けて負のミラー指数を表すと、4H型のSiC(11−20)面を主面とするSiC基板にトレンチを形成する工程と、前記トレンチの底に0.05μm以上の厚さのSiO2膜を埋め込む工程と、前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、前記トレンチ内にゲート電極となる電極材を形成する工程と、を含むことを特徴とする。
請求項4の発明にかかる炭化珪素半導体素子の製造方法は、半導体材料としてSiCを用いて半導体素子を製造するにあたって、数字の前に−を付けて負のミラー指数を表すと、4H型のSiC(03−38)面を主面とするSiC基板にトレンチを形成する工程と、前記トレンチの底に0.05μm以上の厚さのSiO2膜を埋め込む工程と、前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、前記トレンチ内にゲート電極となる電極材を形成する工程と、を含むことを特徴とする。
請求項5の発明にかかる炭化珪素半導体素子の製造方法は、半導体材料としてSiCを用いて半導体素子を製造するにあたって、3C型のSiC面を主面とするSiC基板にトレンチを形成する工程と、前記トレンチの底に0.05μm以上の厚さのSiO2膜を埋め込む工程と、前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、前記トレンチ内にゲート電極となる電極材を形成する工程と、を含むことを特徴とする。
請求項6の発明にかかる炭化珪素半導体素子の製造方法は、半導体材料としてSiCを用いて半導体素子を製造するにあたって、6H型のSiC(0001)Si面を主面とするSiC基板にトレンチを形成する工程と、前記トレンチの底にSiO2膜を、該SiO2膜の厚さをtox[μm]とし、素子の絶縁耐圧をBV[kV]としたときに、式[tox>−0.0559BV2+0.865BV+0.5106]を満たすように、埋め込む工程と、前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、前記トレンチ内にゲート電極となる電極材を形成する工程と、を含むことを特徴とする。
請求項7の発明にかかる炭化珪素半導体素子の製造方法は、半導体材料としてSiCを用いて半導体素子を製造するにあたって、6H型のSiC(000−1)C面を主面とするSiC基板にトレンチを形成する工程と、前記トレンチの底にSiO2膜を、該SiO2膜の厚さをtox[μm]とし、素子の絶縁耐圧をBV[kV]としたときに、式[tox>−0.0559BV2+0.865BV+0.5106]を満たすように、埋め込む工程と、前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、前記トレンチ内にゲート電極となる電極材を形成する工程と、を含むことを特徴とする。
請求項8の発明にかかる炭化珪素半導体素子の製造方法は、半導体材料としてSiCを用いて半導体素子を製造するにあたって、数字の前に−を付けて負のミラー指数を表すと、6H型のSiC(11−20)Si面を主面とするSiC基板にトレンチを形成する工程と、前記トレンチの底に0.15μm以上の厚さのSiO2膜を埋め込む工程と、前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、前記トレンチ内にゲート電極となる電極材を形成する工程と、を含むことを特徴とする。
請求項9の発明にかかる炭化珪素半導体素子の製造方法は、半導体材料としてSiCを用いて半導体素子を製造するにあたって、数字の前に−を付けて負のミラー指数を表すと、6H型のSiC(01−14)面を主面とするSiC基板にトレンチを形成する工程と、前記トレンチの底に0.15μm以上の厚さのSiO2膜を埋め込む工程と、前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、前記トレンチ内にゲート電極となる電極材を形成する工程と、を含むことを特徴とする。
請求項10の発明にかかる炭化珪素半導体素子の製造方法は、請求項1〜9のいずれか一つに記載の発明において、前記トレンチ形成後、同トレンチの側壁面および底面の上に、トレンチ幅よりも薄いSi膜を堆積し、該Si膜を熱酸化して前記トレンチをSiO2膜で満たし、該SiO2膜をエッチバックして前記トレンチの底にのみSiO2膜を残すことによって、前記トレンチの底にSiO2膜を埋め込むことを特徴とする。
請求項11の発明にかかる炭化珪素半導体素子の製造方法は、請求項1〜9のいずれか一つに記載の発明において、前記トレンチ形成後、減圧気相成長法により同トレンチをSiO2の低温酸化膜で満たし、該SiO2膜をエッチバックして前記トレンチの底にのみSiO2膜を残すことによって、前記トレンチの底にSiO2膜を埋め込むことを特徴とする。
請求項1〜9の発明によれば、トレンチ底に、理論耐圧を得るのに十分な厚さの酸化膜を有するトレンチゲート型の炭化珪素半導体素子が得られる。また、請求項10または11の発明によれば、トレンチ側壁のゲート酸化膜の厚さにかかわらず、トレンチ底に、理論耐圧を得るのに十分な厚さの酸化膜を形成することができる。
本発明にかかる炭化珪素半導体素子の製造方法によれば、種々のポリタイプの種々の面方位の面を主面とするSiCウェハーを用いて、理論耐圧を有するトレンチゲート型の半導体素子を作製することができるという効果を奏する。
以下に添付図面を参照して、この発明にかかる炭化珪素半導体素子の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(本発明方法の具体例)
図1〜図6は、本発明にかかる製造方法により製造途中のUMOSFETの要部断面構成を示す図である。まず、例えば、不純物濃度が1×1018cm-3で、厚さが400μmであるn型SiC基板21の上に、1×1018cm-3の不純物濃度で、0.5μmの厚さのn型フィールドストップ層22、1×1016cm-3の不純物濃度で、8μmの厚さのn型ドリフト層23、2×1017cm-3の不純物濃度で、0.4μmの厚さのn型電流拡散層24、および1×1017cm-3の不純物濃度で、1μmの厚さのp型ベース層25がこの順でn型SiC基板21側から順次、積層され、p型ベース層25の表面層に1×1018cm-3の不純物濃度で、0.5μmの深さのn型ソース領域26が選択的に形成されたSiCウェハーを用意する。
上述したエピタキシャルウェハーを出発基板として用い、図1に示すように、ドライエッチングによりn型ソース領域26、p型ベース層25およびn型電流拡散層24を貫通して、トレンチ底がn型ドリフト層23中に位置するゲートトレンチ27を形成する。その際のエッチング方式として、例えば、誘導結合プラズマ(ICP:Inductively Coupled Plasma)による反応性イオンエッチング方式を採用することができる。その場合には、エッチングガスとしてSF6とO2を用い、ガス比を[SF6/O2=3]とし、ガス圧を3Paとし、ICPパワーおよびバイアスパワーをそれぞれ500Wおよび100Wとするエッチング条件を採用することができる。
次いで、図2に示すように、全面にリンドープ多結晶Si28を堆積する。このリンドープ多結晶Si28の堆積厚さは、この後に続く熱酸化工程においてリンドープ多結晶Si28が熱酸化膜となる際に膨張してゲートトレンチ27を完全に埋めるように決められる。例えば、ゲートトレンチ27の開口幅が2μmであれば、リンドープ多結晶Si28の堆積厚さは0.5μmである。リンドープ多結晶Si28を成膜するにあたっては、例えば、減圧気相成長法(減圧CVD法、CVD:Chemical Vapor Deposition)を採用することができる。その場合には、温度560℃、ガス圧80Pa、SiH4の流量0.2SLM、PH3の流量0.5SLMおよびHeの流量0.8SLMを成膜条件として採用することができる。
次いで、図3に示すように、熱酸化を行って、リンドープ多結晶Si28をSiO2膜29とし、このSiO2膜29でゲートトレンチ27を満たす。このときの酸化条件は、例えば、燃焼酸化1100℃、H2の流量5SLM、O2の流量3SLMおよび酸化時間3時間である。
また、リンドープ多結晶Si28を堆積してそれを熱酸化する代わりに、ゲートトレンチ27の形成後、直接、全面にSiO2膜29を堆積してもよい。その場合には、例えば、減圧CVD法によりSiO2の低温酸化膜(LTO:Low Temperature Oxide)を堆積してもよい。そのときの成膜条件は、例えば、SiH4の流量1SLM、O2の流量0.5SLおよび成膜温度500℃である。
次いで、図4に示すように、ドライエッチングによりSiO2膜29をエッチバックして、トレンチ底部を除いてSiO2膜29を除去する。このときに用いるエッチングガスは、例えば、100%のCHF3ガスである。また、エッチング条件は、例えば、ICPパワー200W、バイアスパワー10Wおよびガス圧1Paである。この段階では、トレンチ底がSiO2膜29により完全に覆われていない場合があるが、後のゲート絶縁膜形成後の界面特性を向上させるためのアニールによって、SiO2膜29が軟化し、平坦化される(図5参照)。トレンチ底に残る、平坦化された後のSiO2膜29の厚さについては、後述する。
次いで、図5に示すように、トレンチ側壁およびトレンチ底のSiO2膜29膜の表面にゲート絶縁膜30を形成する。そして、界面特性を向上させるためにアニールを行う。このときのアニール条件は、例えばN2O10%、N2ベース、1300℃および1時間である。このアニールによって、上述したように、トレンチ底のSiO2膜29が平坦化され、トレンチ底がSiO2膜29により完全に覆われることになる。
平坦化したSiO2膜29の上端は、n型電流拡散層24の下端、すなわちn型電流拡散層24とn型ドリフト層23との界面の位置に一致するのがよい。次いで、図6に示すように、ゲート電極31、トレンチを埋めてゲート電極31とソース/ベース電極32を絶縁する層間絶縁膜(図示省略)、ソース/ベース電極32およびドレイン電極33を形成し、SiC−UMOSFETが完成する。
ここで、上述したように、トレンチ底のSiO2膜29の厚さtoxμm(図6参照)について説明する。素子の絶縁耐圧をBV[kV]とする。n型SiC基板21が4H−SiC(0001)Si面または4H−SiC(000−1)C面を主面とする基板である場合には、次の(1)式を満たす。
ox>−0.04BV2+0.4476BV+0.3996 ・・・(1)
また、n型SiC基板21が4H−SiC(11−20)面、4H−SiC(03−38)面または3C−SiC面を主面とする基板である場合には、次の(2)式を満たす。
ox≧0.05 ・・・(2)
また、n型SiC基板21が6H−SiC(0001)Si面または6H−SiC(000−1)C面を主面とする基板である場合には、次の(3)式を満たす。
ox>−0.0559BV2+0.865BV+0.5106 ・・・(3)
さらに、n型SiC基板21が6H−SiC(11−20)Si面または6H−SiC(01−14)面を主面とする基板である場合には、次の(4)式を満たす。これら(1)〜(4)式の導出過程については、後述する。
ox≧0.15 ・・・(4)
一例として、4H−SiC(0001)Si面を主面とするn型SiC基板21を用い、n型ドリフト層23の厚さおよび不純物濃度をそれぞれ8μmおよび1×1016cm-3とすると、図6にB−B’で示すpn接合部における絶縁耐圧(理論耐圧)は、約1.4kVとなり、図6にA−A’で示すMOSキャパシタ部における絶縁耐圧よりも低い。また、トレンチ底のSiO2膜29の厚さtoxが0.5μm、1μm、1.5μm、2μmおよび2.5μmのUMOSFETを作製し、toxと平均故障時間(MTTF:Mean Time to Failure)との相関関係を調べた結果を図7に示す。
図7は、トレンチ底酸化膜の厚さと平均故障時間との相関関係を調べた結果を示す図である。図7より明らかなように、トレンチ底のSiO2膜29が厚くなるのに伴って、平均故障時間が長くなり、toxが1μmで平均故障時間が100年となることがわかった。この結果は、後述する表1の許容酸化膜厚とほぼ一致しており、この膜厚以上で十分な信頼性が得られることがわかつた。
(埋め込み酸化膜の厚さの導出過程)
次に、上記(1)〜(4)式を導き出した過程について説明する。図8は、本発明が実験に用いたMOSキャパシタの断面構成を示す図である。本発明者は、図8に示すようなメタルゲート/SiO2/SiC半導体のMOSキャパシタを作製し、23℃、125℃、250℃および350℃の各温度においてSiO2膜の長期信頼性試験を実施し、破壊に至るまでにSiO2膜を通過した総電荷量QBDC/cm2を測定した。そして、その結果から、UMOSFETのトレンチ底のSiO2膜29に印加できる許容電界強度を算出した。以下、その実験について説明する。
不純物濃度が1×1018cm-3で、厚さが約400μmであるn型SiC基板41の上に、1×1018cm-3の不純物濃度で、0.5μmの厚さのn型バッファー層42、1×1017cm-3の不純物濃度で、10μmの厚さのp型ドリフト層43がこの順でn型SiC基板41側から順次、積層されたSiCエピタキシャルウェハーを用意した。n型SiC基板41として、4H型、6H型および3C型のポリタイプ(結晶多形)を用いた。各ポリタイプの基板41上に成長するエピタキシャル層(n型バッファー層42とp型ドリフト層43)は、下地(n型SiC基板41)のポリタイプをそのまま引き継いでいた。すなわち、いずれのエピタキシャルウェハーも、一種類のポリタイプからなり、異なるポリタイプが混入していることはなかった。
各ウェハーを酸およびアルカリにより洗浄した後、各ウェハーの表面に減圧CVD法により、典型的な成膜条件で100nmの厚さの低温酸化膜を形成した。低温酸化膜の典型的な成膜条件は、SiH4の流量1SLM、O2の流量0.5SLMおよび成膜温度400℃である。この条件での低温酸化膜の成膜レートは、20オングストローム/minである。次いで、1100℃、常圧のN2O雰囲気中で各試料の熱処理を行った。
この熱処理を行う理由は、密度の低い低温酸化膜を緻密化して、絶縁破壊電界強度を向上させるためと、SiCとSiO2との界面に存在する界面準位密度を低減させることによって、MOSFETのチャネル移動度を向上させて、素子特性を向上させるためである。この熱処理によって、低温酸化膜の厚さは、熱処理前の100nmから80nmに減少した。すなわち、p型ドリフト層43の表面に、80nmの厚さの緻密化した酸化膜44が形成された。
次いで、酸化膜44の表面に、リンドープされたポリSiを積層し、パターニングを行って、電極面積が3.14×10-4cm2(200μmφ)のポリSi電極45を形成した。このようにして、1ウェハー内に少なくとも100個以上のMOSキャパシタを作製した。次いで、ウェハー表面の酸化膜44を一部除去して、p型ドリフト層43を露出させ、そのp型ドリフト層43を露出面にスパッタおよびパターニングによりAlを成膜した。最後に、900℃で10分間のアニールを行って、Al膜とp型ドリフト層43との接触をオーミックコンタクトとし、Al電極46とした。
実際のUMOSFETの動作においては、逆方向バイアス時にトレンチ底のSiO2膜に電界ストレスがかかり、電子がポリSiゲート電極からこのSiO2膜に注入される。同じ状況を作り出すために、図8に示すMOSキャパシタにおいて、Al電極46をアース電位にし、ポリSi電極45に負バイアスを印加した。この場合、ドリフト層43がp型であるため、MOSキャパシタは蓄積状態になり、全バイアスが酸化膜44に印加される。
このようにして測定したMOSキャパシタの室温における酸化膜中の電界強度とリーク電流の関係を図9に示す。図9は、図8に示すMOSキャパシタのIV特性を示す図である。図9において、酸化膜中の電界強度が6MV/cm以上の領域で見られるプロットは、Fowler/Nordheimトンネル電流の理論式によく合致している。つまり、図9のプロットで示される電流は、酸化膜44の実効的な障壁の幅が薄くなることによるFowler/Nordheimトンネル電流によるものである。また、絶縁破壊電界強度は、10MV/cm以上であった。このIV特性については、同一ウェハー内の多数のMOSキャパシタ間で顕著な差が見られなかった。また、長期信頼性試験の各実施温度におけるIV特性にも顕著な差が見られなかった。これは、リーク電流がFowler/Nordheimトンネル電流であることを示している。
なお、図9において、酸化膜中の電界強度が6MV/cmよりも低い領域にプロットがないのは、実際の測定器の測定下限が10pAであり、それよりも少ない電流を測定することができないからである。10pAを電流密度に換算すると3×10-8A/cm2である。図9には、酸化膜中の電界強度が6MV/cmよりも低い領域のリーク電流を、Fowler/Nordheimトンネル電流の理論式から導き出し、曲線で描いている。なお、Fowler/Nordheimトンネル電流の理論式については、「電子材料シリーズ、サブミクロンデバイスII」(小柳光正著、丸善株式会社刊)の第29頁に(3・11)式として記載されている。
MOSキャパシタの長期信頼性試験については、23℃、125℃、250℃および350℃の各温度においてそれぞれ40個のMOSキャパシタに9MV/cmのストレスをかけ、それぞれの素子が破壊するまでに酸化膜44を横切る総電荷量QBDを求めた。総電荷量QBDは、リーク電流と破壊までの時間の積として求めた。各MOSキャパシタの総電荷量QBDは、Weibull統計に従うので、総電荷量QBDを横軸とし、累積故障率Fとしてln(−ln(1‐F))を縦軸とすると、図10に示す特性図が得られた。図10は、図8に示すMOSキャパシタの酸化膜を通過する総電荷量と累積故障率との関係を示す図である。
ここで、全素子数の50%の素子が破壊するときの総電荷量QBDを各測定温度におけるQBDと定義する。製品寿命として100年を保証する必要があるので、これらのことから素子に流せる許容リーク電流値J[A/cm2]は、次の(5)式で算出される。
J=QBD/(100年×365日×24時間×3600秒) ・・・(5)
図9から、このリーク電流Jに対応する酸化膜中の電界強度が、その動作温度において実際に素子に印加することができる許容電界強度となる。また、実際のインバータでは、Siの動作温度の上限である125℃が動作温度となる。従って、125℃において、累積故障率Fが0.5であるときの許容電界強度は、図10から0.3C/cm2であることがわかる。この値を上記(5)式のQBDに代入すると、100年保証のリーク電流Jは、9.5×10-11A/cm2となる。このときの電界強度は、図9から5MV/cmであることがわかる。つまり、酸化膜44の許容電界強度は、5MV/cmとなる。この許容電界強度は、n型のポリSi電極45と酸化膜44にのみ依存するものであるので、SiCのポリタイプには依存しない。
また、図6に示すUMOSFETにおいて、A−A’で示すMOSキャパシタ部およびB−B’で示すpn接合部の電界強度分布は、それぞれ図17のMOSキャパシタ部を含む深さ方向の電界強度分布12およびpn接合部を含む深さ方向の電界強度分布11のようになる。従って、UMOSFETのMOSキャパシタ部およびpn接合部のそれぞれが保持している電圧は、図17のそれぞれの深さ方向に分布している電界強度を深さに対して積分したもの(電界強度分布の総面積)に相当する。
このときの図6のA−A’、すなわちMOSキャパシタ部の印加電圧VAA'は、次の(6)式で表される。ただし、酸化膜中の電界強度をEoxとし、トレンチ底の酸化膜厚をtoxとし、SiCの誘電率をεsとし、酸化膜の誘電率をεoxとし、電荷素量をqとし、ドリフト層の濃度をNdとし、ドリフト層の厚さをtdとする。
AA'=Eoxox+(1/2εs){2εoxox−qNd(td−tox)}(td−tox) ・・・(6)
一方、図6のB−B’、すなわちpn接合部におけるn型ドリフト層23の厚さと不純物濃度で、理論耐圧とオン抵抗が決まる。これらの値は、SiCのポリタイプの種類や面方位によって異なる。4H−SiC(0001)Si面または4H−SiC(000−1)C面を主面とする場合、4H−SiC(11−20)面、4H−SiC(03−38)面または3C−SiC面を主面とする場合、6H−SiC(0001)Si面または6H−SiC(000−1)C面を主面とする場合、並びに6H−SiC(11−20)Si面または6H−SiC(01−14)面を主面とする場合のそれぞれについて、n型ドリフト層23の厚さtd[μm]、オン抵抗Ron[Ωcm2]、理論耐圧BV(V)、および理論耐圧BVがMOSキャパシタ部での保持電圧VAA'を超えるときのトレンチ底のSiO2膜29の厚さtox[μm]を、表1、表2、表3および表4に示す。
Figure 2007207935
Figure 2007207935
Figure 2007207935
Figure 2007207935
表1、表2、表3および表4におけるtoxとBVとの関係を図示すると、それぞれ図11、図12、図13および図14の特性図のようになる。図11、図12、図13および図14からは、それぞれ次の(7)式、(8)式、(9)式および(10)式の関係式が求まる。
ox=−0.04BV2+0.4476BV+0.3996 ・・・(7)
ox=0.05 ・・・(8)
ox=−0.0559BV2+0.865BV+0.5106 ・・・(9)
ox=0.15 ・・・(10)
従って、トレンチ底のSiO2膜29の厚さtoxが上記(7)〜(10)式以上の厚さであれば、十分な信頼性が得られる。以上説明したように、実施の形態によれば、トレンチ底に、理論耐圧を得るのに十分な厚さの酸化膜を有するSiC−UMOSFET等の素子を作製することができる。また、トレンチ側壁のゲート絶縁膜の厚さにかかわらず、トレンチ底に、理論耐圧を得るのに十分な厚さの酸化膜を形成することができる。また、トレンチ底にp型領域を埋め込む必要がないので、そのp型領域を形成するためのイオン注入工程と活性化アニール工程を省略することができる。従って、簡素なプロセスで信頼性の高いSiC−UMOSFET等の素子を作製することができる。また、SiC(000−1)C面に限らず、主種のポリタイプで、主種の面方位の面を主面とするSiC基板を用いて、理論耐圧を有する素子を作製することができる。
以上において本発明は、上述した実施の形態に限らず、種々変更可能である。例えば、実施の形態中に記載した寸法や濃度などは一例であり、本発明はそれらの値に限定されるものではない。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。また、トレンチ底の酸化膜を熱酸化や高温酸化やスバッタにより成膜してもよい。
以上のように、本発明にかかる炭化珪素半導体素子の製造方法は、トレンチゲート構造を有するMOSFETやIGBT等の電圧駆動型の炭化珪素半導体素子の製造に有用であり、特に、MOS型電力用炭化珪素半導体素子の製造に適している。
本発明にかかる製造方法により製造途中のUMOSFETの要部断面構成を示す図である。 本発明にかかる製造方法により製造途中のUMOSFETの要部断面構成を示す図である。 本発明にかかる製造方法により製造途中のUMOSFETの要部断面構成を示す図である。 本発明にかかる製造方法により製造途中のUMOSFETの要部断面構成を示す図である。 本発明にかかる製造方法により製造途中のUMOSFETの要部断面構成を示す図である。 本発明にかかる製造方法により製造途中のUMOSFETの要部断面構成を示す図である。 トレンチ底酸化膜の厚さと平均故障時間との相関関係を調べた結果を示す図である。 本発明が実験に用いたMOSキャパシタの断面構成を示す図である。 図8に示すMOSキャパシタのIV特性を示す図である。 図8に示すMOSキャパシタの酸化膜を通過する総電荷量と累積故障率との関係を示す図である。 図6に示すUMOSFETの絶縁耐圧とトレンチ底酸化膜の厚さとの関係を示す図である。 図6に示すUMOSFETの絶縁耐圧とトレンチ底酸化膜の厚さとの関係を示す図である。 図6に示すUMOSFETの絶縁耐圧とトレンチ底酸化膜の厚さとの関係を示す図である。 図6に示すUMOSFETの絶縁耐圧とトレンチ底酸化膜の厚さとの関係を示す図である。 従来のUMOSFETの断面構造を示す図である。 従来のDIMOSFETの断面構造を示す図である。 従来のUMOSFETの構造とオフ状態のときの深さ方向の電界強度分布を示す図である。 従来のUMOSFETの構造とオフ状態のときの深さ方向の電界強度分布を示す図である。
符号の説明
21 SiC基板
27 トレンチ
29 SiO2
30 ゲート絶縁膜
31 ゲート電極

Claims (11)

  1. 半導体材料としてSiCを用いて半導体素子を製造するにあたって、
    4H型のSiC(0001)Si面を主面とするSiC基板にトレンチを形成する工程と、
    前記トレンチの底にSiO2膜を、該SiO2膜の厚さをtox[μm]とし、素子の絶縁耐圧をBV[kV]としたときに、式[tox>−0.04BV2+0.4476BV+0.3996]を満たすように、埋め込む工程と、
    前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、
    前記トレンチ内にゲート電極となる電極材を形成する工程と、
    を含むことを特徴とする炭化珪素半導体素子の製造方法。
  2. 半導体材料としてSiCを用いて半導体素子を製造するにあたって、
    数字の前に−を付けて負のミラー指数を表すと、4H型のSiC(000−1)C面を主面とするSiC基板にトレンチを形成する工程と、
    前記トレンチの底にSiO2膜を、該SiO2膜の厚さをtox[μm]とし、素子の絶縁耐圧をBV[kV]としたときに、式[tox>−0.04BV2+0.4476BV+0.3996]を満たすように、埋め込む工程と、
    前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、
    前記トレンチ内にゲート電極となる電極材を形成する工程と、
    を含むことを特徴とする炭化珪素半導体素子の製造方法。
  3. 半導体材料としてSiCを用いて半導体素子を製造するにあたって、
    数字の前に−を付けて負のミラー指数を表すと、4H型のSiC(11−20)面を主面とするSiC基板にトレンチを形成する工程と、
    前記トレンチの底に0.05μm以上の厚さのSiO2膜を埋め込む工程と、
    前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、
    前記トレンチ内にゲート電極となる電極材を形成する工程と、
    を含むことを特徴とする炭化珪素半導体素子の製造方法。
  4. 半導体材料としてSiCを用いて半導体素子を製造するにあたって、
    数字の前に−を付けて負のミラー指数を表すと、4H型のSiC(03−38)面を主面とするSiC基板にトレンチを形成する工程と、
    前記トレンチの底に0.05μm以上の厚さのSiO2膜を埋め込む工程と、
    前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、
    前記トレンチ内にゲート電極となる電極材を形成する工程と、
    を含むことを特徴とする炭化珪素半導体素子の製造方法。
  5. 半導体材料としてSiCを用いて半導体素子を製造するにあたって、
    3C型のSiC面を主面とするSiC基板にトレンチを形成する工程と、
    前記トレンチの底に0.05μm以上の厚さのSiO2膜を埋め込む工程と、
    前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、
    前記トレンチ内にゲート電極となる電極材を形成する工程と、
    を含むことを特徴とする炭化珪素半導体素子の製造方法。
  6. 半導体材料としてSiCを用いて半導体素子を製造するにあたって、
    6H型のSiC(0001)Si面を主面とするSiC基板にトレンチを形成する工程と、
    前記トレンチの底にSiO2膜を、該SiO2膜の厚さをtox[μm]とし、素子の絶縁耐圧をBV[kV]としたときに、式[tox>−0.0559BV2+0.865BV+0.5106]を満たすように、埋め込む工程と、
    前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、
    前記トレンチ内にゲート電極となる電極材を形成する工程と、
    を含むことを特徴とする炭化珪素半導体素子の製造方法。
  7. 半導体材料としてSiCを用いて半導体素子を製造するにあたって、
    6H型のSiC(000−1)C面を主面とするSiC基板にトレンチを形成する工程と、
    前記トレンチの底にSiO2膜を、該SiO2膜の厚さをtox[μm]とし、素子の絶縁耐圧をBV[kV]としたときに、式[tox>−0.0559BV2+0.865BV+0.5106]を満たすように、埋め込む工程と、
    前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、
    前記トレンチ内にゲート電極となる電極材を形成する工程と、
    を含むことを特徴とする炭化珪素半導体素子の製造方法。
  8. 半導体材料としてSiCを用いて半導体素子を製造するにあたって、
    数字の前に−を付けて負のミラー指数を表すと、6H型のSiC(11−20)Si面を主面とするSiC基板にトレンチを形成する工程と、
    前記トレンチの底に0.15μm以上の厚さのSiO2膜を埋め込む工程と、
    前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、
    前記トレンチ内にゲート電極となる電極材を形成する工程と、
    を含むことを特徴とする炭化珪素半導体素子の製造方法。
  9. 半導体材料としてSiCを用いて半導体素子を製造するにあたって、
    数字の前に−を付けて負のミラー指数を表すと、6H型のSiC(01−14)面を主面とするSiC基板にトレンチを形成する工程と、
    前記トレンチの底に0.15μm以上の厚さのSiO2膜を埋め込む工程と、
    前記トレンチの側壁およびトレンチ底の前記SiO2膜の上にゲート絶縁膜を形成する工程と、
    前記トレンチ内にゲート電極となる電極材を形成する工程と、
    を含むことを特徴とする炭化珪素半導体素子の製造方法。
  10. 前記トレンチ形成後、同トレンチの側壁面および底面の上に、トレンチ幅よりも薄いSi膜を堆積し、該Si膜を熱酸化して前記トレンチをSiO2膜で満たし、該SiO2膜をエッチバックして前記トレンチの底にのみSiO2膜を残すことによって、前記トレンチの底にSiO2膜を埋め込むことを特徴とする請求項1〜9のいずれか一つに記載の炭化珪素半導体素子の製造方法。
  11. 前記トレンチ形成後、減圧気相成長法により同トレンチをSiO2の低温酸化膜で満たし、該SiO2膜をエッチバックして前記トレンチの底にのみSiO2膜を残すことによって、前記トレンチの底にSiO2膜を埋め込むことを特徴とする請求項1〜9のいずれか一つに記載の炭化珪素半導体素子の製造方法。
JP2006023585A 2006-01-31 2006-01-31 炭化珪素半導体素子の製造方法 Active JP4957005B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006023585A JP4957005B2 (ja) 2006-01-31 2006-01-31 炭化珪素半導体素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006023585A JP4957005B2 (ja) 2006-01-31 2006-01-31 炭化珪素半導体素子の製造方法

Publications (2)

Publication Number Publication Date
JP2007207935A true JP2007207935A (ja) 2007-08-16
JP4957005B2 JP4957005B2 (ja) 2012-06-20

Family

ID=38487135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006023585A Active JP4957005B2 (ja) 2006-01-31 2006-01-31 炭化珪素半導体素子の製造方法

Country Status (1)

Country Link
JP (1) JP4957005B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164558A (ja) * 2007-12-10 2009-07-23 Toyota Central R&D Labs Inc 半導体装置とその製造方法、並びにトレンチゲートの製造方法
JP2011114252A (ja) * 2009-11-30 2011-06-09 Toshiba Corp 半導体装置
WO2012060206A1 (ja) * 2010-11-04 2012-05-10 住友電気工業株式会社 半導体装置およびその製造方法
WO2012066892A1 (ja) * 2010-11-15 2012-05-24 住友電気工業株式会社 半導体装置およびその製造方法
JP2013065907A (ja) * 2007-12-07 2013-04-11 Cree Inc A面の伝導性チャネルおよびトレンチ保護用井戸領域を有するトランジスタ
US9018699B2 (en) 2011-09-22 2015-04-28 Panasonic Intellectual Property Management Co., Ltd. Silicon carbide semiconductor element and method for fabricating the same
JP2018064022A (ja) * 2016-10-12 2018-04-19 トヨタ自動車株式会社 炭化珪素半導体装置
CN113496884A (zh) * 2020-04-01 2021-10-12 成都蓉矽半导体有限公司 碳化硅基板的底部氧化层增厚的制作方法
CN114420761A (zh) * 2022-03-30 2022-04-29 成都功成半导体有限公司 一种耐高压碳化硅器件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088429A (ja) * 1994-06-22 1996-01-12 Nippondenso Co Ltd 半導体装置
JP2000312003A (ja) * 1999-02-23 2000-11-07 Matsushita Electric Ind Co Ltd 絶縁ゲート型半導体素子およびその製造方法
JP2003318392A (ja) * 2002-02-19 2003-11-07 Nissan Motor Co Ltd 炭化珪素半導体装置およびその製造方法
JP2004538648A (ja) * 2001-08-10 2004-12-24 シリコニックス・インコーポレイテッド トレンチゲート電極を有するmisデバイス及びその製造方法
JP2005340685A (ja) * 2004-05-31 2005-12-08 Fuji Electric Holdings Co Ltd 炭化珪素半導体素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088429A (ja) * 1994-06-22 1996-01-12 Nippondenso Co Ltd 半導体装置
JP2000312003A (ja) * 1999-02-23 2000-11-07 Matsushita Electric Ind Co Ltd 絶縁ゲート型半導体素子およびその製造方法
JP2004538648A (ja) * 2001-08-10 2004-12-24 シリコニックス・インコーポレイテッド トレンチゲート電極を有するmisデバイス及びその製造方法
JP2003318392A (ja) * 2002-02-19 2003-11-07 Nissan Motor Co Ltd 炭化珪素半導体装置およびその製造方法
JP2005340685A (ja) * 2004-05-31 2005-12-08 Fuji Electric Holdings Co Ltd 炭化珪素半導体素子

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9064710B2 (en) 2007-12-07 2015-06-23 Cree, Inc. Transistor with A-face conductive channel and trench protecting well region
JP2013065907A (ja) * 2007-12-07 2013-04-11 Cree Inc A面の伝導性チャネルおよびトレンチ保護用井戸領域を有するトランジスタ
JP2009164558A (ja) * 2007-12-10 2009-07-23 Toyota Central R&D Labs Inc 半導体装置とその製造方法、並びにトレンチゲートの製造方法
JP2011114252A (ja) * 2009-11-30 2011-06-09 Toshiba Corp 半導体装置
JPWO2012060206A1 (ja) * 2010-11-04 2014-05-12 住友電気工業株式会社 半導体装置およびその製造方法
WO2012060206A1 (ja) * 2010-11-04 2012-05-10 住友電気工業株式会社 半導体装置およびその製造方法
CN103189992A (zh) * 2010-11-04 2013-07-03 住友电气工业株式会社 半导体器件及其制造方法
JP2012109304A (ja) * 2010-11-15 2012-06-07 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
US20130234156A1 (en) * 2010-11-15 2013-09-12 Sumitomo Electric Industries, Ltd Semiconductor device and method for producing the same
CN103210496A (zh) * 2010-11-15 2013-07-17 住友电气工业株式会社 半导体器件及其制造方法
US8941174B2 (en) 2010-11-15 2015-01-27 Sumitomo Electric Industries, Ltd. Semiconductor device and method for producing the same
WO2012066892A1 (ja) * 2010-11-15 2012-05-24 住友電気工業株式会社 半導体装置およびその製造方法
US9018699B2 (en) 2011-09-22 2015-04-28 Panasonic Intellectual Property Management Co., Ltd. Silicon carbide semiconductor element and method for fabricating the same
JP2018064022A (ja) * 2016-10-12 2018-04-19 トヨタ自動車株式会社 炭化珪素半導体装置
CN113496884A (zh) * 2020-04-01 2021-10-12 成都蓉矽半导体有限公司 碳化硅基板的底部氧化层增厚的制作方法
CN114420761A (zh) * 2022-03-30 2022-04-29 成都功成半导体有限公司 一种耐高压碳化硅器件及其制备方法
CN114420761B (zh) * 2022-03-30 2022-06-07 成都功成半导体有限公司 一种耐高压碳化硅器件及其制备方法

Also Published As

Publication number Publication date
JP4957005B2 (ja) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4843854B2 (ja) Mosデバイス
JP5017768B2 (ja) 炭化珪素半導体素子
JP4957005B2 (ja) 炭化珪素半導体素子の製造方法
JP5017865B2 (ja) 半導体装置
US9142663B2 (en) Silicon carbide devices having smooth channels
US5744826A (en) Silicon carbide semiconductor device and process for its production
US9252266B2 (en) Wide band gap semiconductor device and method for producing the same
JP4872217B2 (ja) 炭化珪素半導体素子の製造方法
US10347735B2 (en) Semiconductor device with lifetime killers and method of manufacturing the same
JP5613995B2 (ja) 炭化珪素半導体装置およびその製造方法
JP2005079339A (ja) 半導体装置、およびその半導体装置を用いた電力変換器、駆動用インバータ、汎用インバータ、大電力高周波通信機器
JP2009182271A (ja) 炭化珪素半導体装置
KR20050084685A (ko) 반도체장치 및 그 반도체장치를 이용한 전력변환기, 구동용인버터, 범용 인버터, 대전력 고주파 통신기기
JP4956904B2 (ja) 炭化珪素半導体装置とその製造方法
WO2019239632A1 (ja) パワー半導体素子及びその製造方法
JP2018022854A (ja) 半導体装置および半導体装置の製造方法
JP4929621B2 (ja) Mosゲート型炭化珪素半導体装置
WO2012105170A1 (ja) 半導体装置およびその製造方法
JP5098293B2 (ja) ワイドバンドギャップ半導体を用いた絶縁ゲート型半導体装置およびその製造方法
JP6550869B2 (ja) 半導体装置
JP5110445B2 (ja) 半導体装置
JP5402220B2 (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
JP7166053B2 (ja) 半導体装置、インバータ回路、駆動装置、車両、及び、昇降機
JP5684304B2 (ja) 炭化珪素半導体装置
JPWO2018135146A1 (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4957005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250