JP2007087442A - 磁気記録媒体 - Google Patents

磁気記録媒体 Download PDF

Info

Publication number
JP2007087442A
JP2007087442A JP2005271799A JP2005271799A JP2007087442A JP 2007087442 A JP2007087442 A JP 2007087442A JP 2005271799 A JP2005271799 A JP 2005271799A JP 2005271799 A JP2005271799 A JP 2005271799A JP 2007087442 A JP2007087442 A JP 2007087442A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
layer
magnetic recording
nonmagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005271799A
Other languages
English (en)
Inventor
Yuichiro Murayama
裕一郎 村山
Hiroshi Hashimoto
博司 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005271799A priority Critical patent/JP2007087442A/ja
Priority to US11/520,621 priority patent/US7641991B2/en
Publication of JP2007087442A publication Critical patent/JP2007087442A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/702Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the bonding agent
    • G11B5/7021Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the bonding agent containing a polyurethane or a polyisocyanate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/733Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the addition of non-magnetic particles
    • G11B5/7334Base layer characterised by composition or structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • G11B5/73929Polyester substrates, e.g. polyethylene terephthalate comprising naphthalene ring compounds, e.g. polyethylene naphthalate substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Landscapes

  • Magnetic Record Carriers (AREA)
  • Paints Or Removers (AREA)

Abstract

【課題】 分散性、塗膜平滑性、電磁変換特性及び走行耐久性に優れた磁気記録媒体を提供すること。
【解決手段】 非磁性支持体上に、強磁性粉末を結合剤中に分散した少なくとも一層の磁性層を有する磁気記録媒体であって、該結合剤として重量平均分子量が20万〜40万のポリウレタン樹脂を含有することを特徴とする磁気記録媒体。また、支持体と磁性層の間に、非磁性粉末を結合剤中に分散した非磁性層を有していてもよい。さらに、該ポリウレタン樹脂のウレタン基濃度は2.5mmol/g〜4.5mmol/gであることが好ましい。

Description

本発明は、非磁性支持体上に強磁性粉末と結合剤とを分散させてなる少なくとも一層の磁性層を設けた磁気記録媒体に関する。
磁気記録技術は、媒体の繰り返し使用が可能であること、信号の電子化が容易であり周辺機器との組み合わせによるシステムの構築が可能であること、信号の修正も簡単にできること等の他の記録方式にはない優れた特長を有することから、ビデオ、オーディオ、コンピューター用途等を始めとして様々な分野で幅広く利用されてきた。
一般にコンピューター用等の磁気記録媒体への高密度記録化の要求に対して、より一層の電磁変換特性の向上が必要とされ、強磁性粉末の微粒子化、媒体表面の超平滑化などが重要となる。
磁性体の微粒子化においては最近の磁性体では0.1μm以下の強磁性金属粉末や強磁性六方晶フェライト粉末が使用されている。また、支持体表面に非磁性下層を設けてから磁性層を上層として設けた重層構成である場合の非磁性層に用いられる微粒子の非磁性粉体や前記の微粒子磁性体を高度に分散するために、結合剤には親水性極性基である−SO3M(Mは水素又はアルカリ金属あるいはアンモニウム塩を表す。)を導入し、極性基を介して磁性体および非磁性粉体にバインダー鎖を吸着させ、平滑化するための分散技術が提案されている。
例えば、結合剤として分岐側鎖を有するジオールや脂肪族イソシアネートから得られたポリウレタン樹脂を使用する磁気記録媒体が提案されている(特許文献1〜7参照)。しかし、これらの結合剤を用いた場合でも磁性体の分散性が不十分であり、特に高密度化に必要な、より微粒子化した超微粒子強磁性粉末を十分に分散させることができず、十分な電磁変換特性が得られないという問題点があった。
さらに、これらの結合剤を使用した場合には、十分な塗膜強度が得られず、繰り返し走行耐久性を十分に確保できないという問題があった。
特開平5−70757号公報 特開平6−162487号公報 特開平8−17036号公報 特開2000−319585号公報 特開2001−126230号公報 特開平11−39639号公報 特開平9−69222号公報
本発明が解決しようとする課題は、分散性、塗膜平滑性、電磁変換特性及び走行耐久性に優れた磁気記録媒体を提供することである。
本発明が解決しようとする課題は、下記<1>または<2>に記載の手段によって解決された。好ましい実施態様である<3>〜<6>と共に以下に記載する。
<1>非磁性支持体上に、強磁性粉末を結合剤中に分散した少なくとも一層の磁性層を有する磁気記録媒体であって、該結合剤として重量平均分子量が20万〜40万のポリウレタン樹脂を含有することを特徴とする磁気記録媒体、
<2>非磁性支持体上に、非磁性粉末を結合剤中に分散した非磁性層を有し、その上に強磁性粉末を結合剤中に分散した少なくとも一層の磁性層を有する磁気記録媒体であって、該磁性層及び/又は該非磁性層の結合剤として重量平均分子量が20万〜40万のポリウレタン樹脂を含有することを特徴とする磁気記録媒体、
<3>該ポリウレタン樹脂のウレタン基濃度が2.5mmol/g〜4.5mmol/gである<1>または<2>に記載の磁気記録媒体、
<4>該ポリウレタン樹脂が炭素数2以上の分岐側鎖を有する脂肪族ジオールからなる<1>〜<3>いずれか1つに記載の磁気記録媒体、
<5>該ポリウレタン樹脂が環状構造を有するジオールからなるポリエーテルポリウレタンである<1>〜<4>いずれか1つに記載の磁気記録媒体、
<6>強磁性粉末が長軸長が20〜50nmの針状強磁性体、板径10〜50nmの平板状磁性体、または、直径10〜50nmの球状または楕円状磁性体である<1>〜<5>いずれか1つに記載の磁気記録媒体。
本発明によれば、分散性、塗膜平滑性、電磁変換特性及び走行耐久性が向上した磁気記録媒体を得ることができた。
1.結合剤
本発明の磁気記録媒体は、非磁性支持体上に、強磁性粉末を結合剤中に分散した少なくとも一層の磁性層を有する磁気記録媒体であって、該結合剤として重量平均分子量が20万〜40万のポリウレタン樹脂を含有することを特徴とする。
また本発明の磁気記録媒体は、非磁性支持体と磁性層との間に、非磁性粉末を結合剤中に分散させた非磁性層を設けることが好ましい。
本発明において、結合剤として使用されるポリウレタン樹脂の重量平均分子量は、20万〜40万である。重量平均分子量が20万より小さいと、保存性が低下する。また、40万より大きいと、十分な分散性が得られない。
結合剤として使用されるポリウレタン樹脂の好ましい重量平均分子量は22万〜34万である。
本発明は、結合剤として従来の磁気記録媒体に用いられているポリウレタン樹脂に比べて、高分子量のポリウレタン樹脂を使用するものであり、磁性体を高度に分散させることができる。この結果、該結合剤を使用した磁気記録媒体は、優れた電磁変換特性を有すると共に、走行耐久性や保存性にも優れている。
重量平均分子量20万〜40万といった従来よりも高分子量のポリウレタン樹脂を用いることで、磁性体への吸着を増やすことができ、磁性体を高度に分散させる作用があると考えられる。
磁性体に結合剤を吸着させるための吸着官能基であるカルボン酸、スルホン酸やこれらの金属塩等をポリウレタン樹脂に導入するには、これらの吸着官能基を有するグリコールやポリオールを用いることが一般的に知られている。このような方法では、ポリウレタンの分子量が低いと、確率的に吸着官能基が導入されていない分子が多く存在する。この結果、実質的に分散に必要な吸着官能基をもった分子が少なくなり、十分な分散性を得ることができなかった。従来よりも高分子量のポリウレタン樹脂を用いると前記の欠点を解決でき、特に超微粒子な磁性体を高度に分散させる作用があることを見出し、本発明の完成に至ったものである。
また、本発明において、従来に比べて少ない量のポリウレタン樹脂で微粒子の磁性体を高度に分散することができ、磁性体の充填率を低下させずに高度に分散できるので、優れた電磁変換特性を確保することができる。
また、本発明において、ポリウレタン樹脂は高分子量なので、従来のポリウレタン樹脂に比べて塗膜強度が高く、繰り返し走行耐久性にも優れる特徴がある。さらに、本発明において、ポリウレタン樹脂は高分子量であるために、従来のポリウレタン樹脂に比べて低分子量成分が少なく、長期保存により磁性層表面に低分子成分が析出して耐久性を低下させる等の故障も少なくできる。
重量平均分子量を上記範囲に制御する方法としては以下のものが挙げられる。
ポリオール由来のOH基とジイソシアネート由来のNCO基のモル比の微調整や反応触媒の使用により、重量平均分子量を調整することができる。
ここで、反応触媒としてはジブチルスズジラウレート等の有機金属化合物、トリエチルアミン、トリエチレンジアミン等の3級アミン類、酢酸カリウム、ステアリン酸亜鉛等の金属塩が例示できる。これらの中で、好ましくはジブチルスズジラウレートが挙げられる。
また、その他の方法としては、反応時の固形分濃度、反応温度、反応溶媒、反応時間等を調整することで、重量平均分子量を制御する方法が挙げられる。
本発明において、ポリウレタン樹脂の重量平均分子量(Mw)と個数平均分子量(Mn)の比Mw/Mn(分子量分布)は1.0〜2.5が好ましい。更に好ましくは1.5〜2.0である。Mw/Mnが上記範囲内であると、組成分布が生じにくく、良好な分散性が得られるので好ましい。
ウレタン基濃度は、2.5mmol/g〜4.5mmol/gであることが好ましく、3.0mmol/g〜4.0mmol/gであることがより好ましい。
ウレタン基濃度が上記範囲内であると、十分な塗膜のガラス転移温度(Tg)が得られ、良好な耐久性が得られるので好ましい。さらに、良好な溶剤溶解性が得られ、分散性が低下することがないので好ましい。さらに、ウレタン基濃度が4.5mmol以下であると、ポリオールの含有量を多くすることができ、分子量の制御が容易であり、合成上有利であるので好ましい。
ポリウレタンは、ポリオールとポリイソシアネートとの反応により得られるポリマーである。以下、ポリオール及びポリイソシアネートについて詳述する。
(ポリオール)
本発明において、ポリウレタン樹脂は、炭素数2以上の分岐側鎖を有する脂肪族ジオールからなることが好ましい。また、環状構造を有するジオールからなることも好ましい。
本発明において、ポリオールとしては、ポリエステルポリオール、ポリエーテルポリオール、ポリエーテルエステルポリオール、ポリカーボネートポリオール、ポリオレフィンポリオール、ダイマージオール等、公知のものを必要に応じて用いることができる。ポリオールは、1種を単独で使用することもできるが、2種以上を使用することもできる。本発明においては、2種以上のポリオールを使用することが好ましい。
これらの中でも好ましいものとしては、ポリエステルポリオール、ポリエーテルポリオールが例示できる。
ポリエステルポリオールに用いることができる二塩基酸成分としては、アジピン酸、アゼライン酸、フタル酸、Naスルホイソフタル酸等が好ましい。ジオールとしては、1,4−ブタンジオール、シクロヘキサンジメタノール、2,2−ジメチル−1,3−プロパンジオール、2−エチル−2−ブチル−1,3−プロパンジオール、3−メチル−1,5−ペンタジオール等が例示できるが、2,2−ジメチル−1,3−プロパンジオール、2−エチル−2−ブチル−1,3−プロパンジオール、3−メチル−1,5−ペンタジオール等の分岐側鎖を有するものが好ましい。
また、ポリエーテルポリオールはビスフェノールAのポリプロピレンオキサイド付加物やビスフェノールAのポリエチレンオキサイド付加物等の環状構造を有するものが好ましい。
前記のポリオールのほかに必要に応じて分子量200〜500程度の公知の短鎖ジオールを鎖延長剤として用いてもよい。中でも炭素数2以上の分岐側鎖をもつ脂肪族ジオールや環構造を有するエーテル化合物が好ましい。
炭素数2以上の分岐側鎖をもつ脂肪族ジオールとしては以下のものが例示できる。
2−メチル−2−エチル−1,3−プロパンジオール、3−メチル−3−エチル−1,5−ペンタンジオール、2−メチル−2−プロピル−1,3−プロパンジオール、3−メチル−3−プロピル−1,5−ペンタンジオール、2−メチル−2−ブチル−1,3−プロパンジオール、3−メチル−3−ブチル−1,5−ペンタンジオール、2,2−ジエチル−1,3−プロパンジオール、3,3−ジエチル−1,5−ペンタンジオール、2−エチル−2−ブチル−1,3−プロパンジオール、3−エチル−3−ブチル−1,5−ペンタンジオール、2−エチル−2−プロピル−1,3−プロパンジオール、3−エチル−3−プロピル−1,5−ペンタンジオール、2,2−ジブチル−1,3−プロパンジオール、3,3−ジブチル−1,5−ペンタンジオール、2,2−ジプロピル−1,3−プロパンジオール、3,3−ジプロピル−1,5−ペンタンジオール、2−ブチル−2−プロピル−1,3−プロパンジオール、3−ブチル−3−プロピル−1,5−ペンタンジオール、2−エチル−1,3−プロパンジオール、2−プロピル−1,3−プロパンジオール、2−ブチル−1,3−プロパンジオール、3−エチル−1,5−ペンタンジオール、3−プロピル−1,5−ペンタンジオール、3−ブチル−1,5−ペンタンジオール、3−オクチル−1,5−ペンタンジオール、3−ミリスチル−1,5−ペンタンジオール、3−ステアリル−1,5−ペンタンジオール、2−エチル−1,6−ヘキサンジオール、2−プロピル−1,6−ヘキサンジオール、2−ブチル−1,6−ヘキサンジオール、5−エチル−1,9−ノナンジオール、5−プロピル−1,9−ノナンジオール、5−ブチル−1,9−ノナンジオール等。
これらの中でも好ましいものとして、2−エチル−2−ブチル−1,3−プロパンジオール、2,2−ジエチル−1,3−プロパンジオールが例示できる。
環構造を有するエーテル化合物としてはビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物、水素化ビスフェノールAのエチレンオキサイド付加物、水素化ビスフェノールAのプロピレンオキサイド付加物、スピログリコールが例示できる。これらの中でも好ましいものとして、ビスフェノールAのプロピレンオキサイド付加物が例示できる。
(ポリイソシアネート)
本発明において、ポリイソシアネートとしてジイソシアネートを使用することが好ましい。ジイソシアネートとしては、公知のものが使用できる。
TDI(トリレンジイソシアネート)、MDI(ジフェニルメタンジイソシアネート)、p−フェニレンジイソシアネート、o−フェニレンジイソシアネート、m−フェニレンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネートなどが好ましい。
本発明に使用するポリウレタンは極性基を含んでいてもよい。極性基としては、−SO3M、−OSO3M、−PO32、−COOMが好ましい。この中でも、−SO3M、−OSO3Mがさらに好ましい。Mは、水素原子、アルカリ金属、またはアンモニウムを表す。
極性基の含有量は、ポリウレタン中に1×10-5eq/g〜2×10-4eq/g含有することが好ましい。極性基の含有量が上記範囲であると磁性体への吸着や溶剤への溶解性が良好であり、分散性が良好となるので好ましい。
ポリウレタン樹脂は、OH基を含んでもよい。OH基は1分子あたり2〜20個が好ましく、3〜15個がより好ましい。OH基が上記範囲内であると、イソシアネート硬化剤との反応性が良好で塗膜強度が良好であり、さらに溶剤への溶解性が良好で、好適な分散性が得られるので好ましい。
ポリウレタンのガラス転移温度(Tg)は80〜200℃が好ましく、90〜160℃がより好ましい。上記範囲であると高温での塗膜強度が低下せず、耐久性、保存性が良好となるので好ましい。また、カレンダー成型性がよく、電磁変換特性が良好となるので好ましい。
ポリウレタン樹脂の弾性率は、1〜3GPaであることが好ましい。弾性率が上記範囲であると、塗膜が粘着故障を起こしにくい。また、カレンダー工程における磁性層の成型性が良好となり、十分な平滑性が得られる。
本発明において、磁性層の結合剤としてその他の樹脂を併用してもよい。その他の樹脂としては、ポリエステル系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、スチレン、アクリロニトリル、メチルメタクリレートなどを共重合したアクリル系樹脂、ニトロセルロースなどのセルロース系樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラールなどのポリビニルアルキラール樹脂などから単独あるいは複数の樹脂を混合して用いることができる。これらの中で好ましいのは塩化ビニル系樹脂、アクリル系樹脂およびセルロース系樹脂である。
塩化ビニル系樹脂としては塩化ビニルモノマーに種々のモノマーと共重合したものが用いられる。共重合モノマーとしては酢酸ビニル、プロピオン酸ビニルなどの脂肪酸ビニルエステル類、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ベンジル(メタ)アクリレートなどのアクリレート、メタクリレート類、アリルメチルエーテル、アリルエチルエーテル、アリルプロピルエーテル、アリルブチルエーテルなどのアルキルアリルエーテル類、その他スチレン、αメチルスチレン、塩化ビニリデン、アクリロニトリル、エチレン、ブタジエン、アクリルアミドが用いられる。
更に官能基をもつ共重合モノマーとしてビニルアルコール、2−ヒドロキシエチル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、2−ヒドロキシエチルアリルエーテル、2−ヒドロキシプロピルアリルエーテル、3−ヒドロキシプロピルアリルエーテル、p−ビニルフェノール、マレイン酸、無水マレイン酸、アクリル酸、メタクリル酸、グリシジル(メタ)アクリレート、アリルグリシジルエーテル、ホスホエチル(メタ)アクリレート、スルホエチル(メタ)アクリレート、p−スチレンスルホン酸、及びこれらのNa塩、K塩などが用いられる。
塩化ビニル系樹脂中の塩化ビニルモノマーの組成は60〜95重量%が好ましい。上記範囲内であると、良好な力学強度が得られると共に、溶剤溶解性が良好であり、溶液粘度が低く分散性が高いので好ましい。
塩化ビニル系樹脂は、吸着する官能基(極性基)を有することが好ましい。
好ましい重合度は200〜600、更に好ましくは240〜450である。上記範囲内であると良好な力学強度が得られると共に、溶液粘度が好適で、分散性が良好であるので好ましい。
結合剤として併用する樹脂には磁性体、非磁性粉体の分散性を向上させるためこれらの粉体表面に吸着する官能基(極性基)を持つことが好ましい。好ましい官能基としては−SO3M、−SO4M、−PO(OM)2、−OPO(OM)2、−COOM、>NSO3M、>NRSO3M、−NR12、−N+123-などがある。ここでMは水素又はNa、K等のアルカリ金属、Rはアルキレン基、R1、R2、R3はアルキル基又はヒドロキシアルキル基又は水素、XはCl、Brなどのハロゲンである。
併用する樹脂が塩化ビニル系樹脂の場合、これらの官能基の導入方法は上記の官能基含有モノマーを共重合しても良いし、塩化ビニル系樹脂を共重合した後、高分子反応で官能基を導入しても良い。
2.強磁性粉末
本発明の磁気記録媒体には、強磁性粉末として、長軸長が20〜50nmの針状強磁性体、板径10〜50nmの平板状磁性体、または直径10〜50nmの球状または楕円状磁性体を使用することが好ましい。以下、それぞれについて説明する。
(1)針状強磁性体
本発明の磁気記録媒体に使用される強磁性粉末として、長軸長が20〜50nmである針状強磁性体を使用することができる。針状強磁性体としては、針状であるコバルト含有強磁性酸化鉄又は強磁性合金粉末等の強磁性金属粉末が例示でき、BET比表面積(SBET)が好ましくは40〜80m2/g、より好ましくは50〜70m2/gである。結晶子サイズは好ましくは12〜25nm、より好ましくは13〜22nmであり、特に好ましくは14〜20nmである。長軸長は20〜50nmであるが、好ましくは20〜40nmである。
強磁性粉末としては、イットリウムを含むFe、Fe−Co、Fe−Ni、Co−Ni−Feが挙げられ、強磁性粉末中のイットリウム含有量は、鉄原子に対してイットリウム原子の比、Y/Feが0.5原子%〜20原子%が好ましく、更に好ましくは、5〜10原子%である。0.5原子%よりも少ないと強磁性粉末の高σS化できないために磁気特性が低下し、電磁変換特性が低下する。20原子%よりも大きいと鉄の含有量が少なくなるので磁気特性が低下し、電磁変換特性が低下する。さらに、鉄100原子%に対して20原子%以下の範囲内で、アルミニウム、ケイ素、硫黄、スカンジウム、チタン、バナジウム、クロム、マンガン、銅、亜鉛、モリブデン、ロジウム、パラジウム、錫、アンチモン、ホウ素、バリウム、タンタル、タングステン、レニウム、金、鉛、リン、ランタン、セリウム、プラセオジム、ネオジム、テルル、ビスマス等を含むことができる。また、強磁性金属粉末が少量の水、水酸化物または酸化物を含むものなどであってもよい。
本発明に使用する、コバルト、イットリウムを導入した強磁性粉末の製造方法の一例を示す。
第一鉄塩とアルカリを混合した水性懸濁液に、酸化性気体を吹き込むことによって得られるオキシ水酸化鉄を出発原料とする例を挙げることができる。
このオキシ水酸化鉄の種類としては、α−FeOOHが好ましい。その製法としては、第一鉄塩を水酸化アルカリで中和してFe(OH)2の水性懸濁液とし、この懸濁液に酸化性ガスを吹き込んで針状のα−FeOOHとする第一の製法がある。一方、第一鉄塩を炭酸アルカリで中和してFeCO3の水性懸濁液とし、この懸濁液に酸化性気体を吹き込んで紡錘状のα−FeOOHとする第二の製法がある。このようなオキシ水酸化鉄は第一鉄塩水溶液とアルカリ水溶液とを反応させて水酸化第一鉄を含有する水溶液を得て、これを空気酸化等により酸化して得られたものであることが好ましい。この際、第一鉄塩水溶液にNi塩や、Ca塩、Ba塩、Sr塩等のアルカリ土類元素の塩、Cr塩、Zn塩などを共存させても良く、このような塩を適宜選択して用いることによって粒子形状(軸比)などを調製することができる。
第一鉄塩としては、塩化第一鉄、硫酸第一鉄等が好ましい。またアルカリとしては水酸化ナトリウム、アンモニア水、炭酸アンモニウム、炭酸ナトリウム等が好ましい。また、共存させることができる塩としては、塩化ニッケル、塩化カルシウム、塩化バリウム、塩化ストロンチウム、塩化クロム、塩化亜鉛等の塩化物が好ましい。
次いで、鉄にコバルトを導入する場合は、イットリウムを導入する前に、硫酸コバルト、塩化コバルト等のコバルト化合物の水溶液を前記のオキシ水酸化鉄のスラリーに撹拌混合する。コバルトを含有するオキシ水酸化鉄のスラリーを調製した後、このスラリーにイットリウムの化合物を含有する水溶液を添加し、撹拌混合することによって導入することができる。
本発明の強磁性粉末には、イットリウム以外にもネオジム、サマリウム、プラセオジウム、ランタン等を導入することができる。これらは、塩化イットリウム、塩化ネオジム、塩化サマリウム、塩化プラセオジウム、塩化ランタン等の塩化物、硝酸ネオジム、硝酸ガドリニウム等の硝酸塩などを用いて導入することができ、これらは、二種以上を併用しても良い。
強磁性金属粉末の抗磁力(Hc)は、好ましくは159.2〜238.8kA/m(2,000〜3,000Oe)であり、さらに好ましくは167.2〜230.8kA/m(2,100〜2,900Oe)である。
また、飽和磁束密度は、好ましくは150〜300mT(1,500〜3,000G)であり、さらに好ましくは160〜290mT(1,600〜2,900G)である。また飽和磁化(σs)は、好ましくは100〜170A・m2/kg(100〜170emu/g)であり、さらに好ましくは110〜160A・m2/kg(110〜160emu/g)である。
磁性体自体のSFD(switching field distribution)は小さい方が好ましく、0.8以下であることが好ましい。SFDが0.8以下であると、電磁変換特性が良好で、出力が高く、また磁化反転がシャープでピークシフトが小さくなり、高密度デジタル磁気記録に好適である。Hc分布を小さくするためには、強磁性金属粉末においてはゲータイトの粒度分布を良くする、単分散α−Fe23を使用する、粒子間の焼結を防止するなどの方法がある。
(2)平板状磁性体
本発明で用いることのできる板径が10〜50nmである平板状磁性体としては六方晶フェライト粉末が好ましい。
六方晶フェライトとしてバリウムフェライト、ストロンチウムフェライト、鉛フェライト、カルシウムフェライトの各置換体、Co置換体等がある。具体的にはマグネトプランバイト型のバリウムフェライト及びストロンチウムフェライト、スピネルで粒子表面を被覆したマグネトプランバイト型フェライト、更に一部スピネル相を含有したマグネトプランバイト型のバリウムフェライト及びストロンチウムフェライト等が挙げられ、その他所定の原子以外にAl、Si、S、Sc、Ti、V、Cr、Cu、Y、Mo、Rh、Pd、Ag、Sn、Sb、Te、Ba、Ta、W、Re、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、P、Co、Mn、Zn、Ni、Sr、B、Ge、Nb、Znなどの原子を含んでもかまわない。一般にはCo−Zn、Co−Ti、Co−Ti−Zr、Co−Ti−Zn、Ni−Ti−Zn、Nb−Zn−Co、Sb−Zn−Co、Nb−Zn等の元素を添加した物を使用することができる。原料・製法によっては特有の不純物を含有するものもある。
粒子サイズは六角板径で10〜50nmであることが好ましい。磁気抵抗ヘッドで再生する場合は、低ノイズにする必要があり、板径は40nm以下が好ましい。板径が上記範囲であると、熱揺らぎがなく安定な磁化が望める。また、ノイズも低くなるため高密度磁気記録に適する。
板状比(板径/板厚)は1〜15が好ましく、2〜7がより好ましい。上記範囲であると配向性が十分であり、粒子間のスタッキングが起こりにくくノイズが小さくなる。この粒子サイズ範囲のBET法による比表面積は10〜200m2/gを示す。比表面積は概ね粒子板径と板厚からの算術計算値と符号する。結晶子サイズは50〜450Å、好ましくは100〜350Åである。粒子板径・板厚の分布は通常狭いほど好ましい。数値化は困難であるが粒子TEM写真より500粒子を無作為に測定する事で比較できる。分布は正規分布ではない場合が多いが、計算して平均サイズに対する標準偏差で表すとσ/平均サイズ=0.1〜2.0である。粒子サイズ分布をシャープにするには粒子生成反応系をできるだけ均一にすると共に、生成した粒子に分布改良処理を施すことも行われている。たとえば酸溶液中で超微細粒子を選別的に溶解する方法等も知られている。
磁性体で測定される抗磁力Hcは39.8〜398kA/m(500〜5,000Oe)程度まで作製できる。Hcは高い方が高密度記録に有利であるが、記録ヘッドの能力で制限される。通常63.7〜318.4kA/m(800〜4,000Oe)程度であるが、好ましくは119.4kA/m(1,500Oe)以上、278.6kA/m(3,500Oe)以下である。ヘッドの飽和磁化が1.4テスラを越える場合は、159.2kA/m(2,000Oe)以上にすることが好ましい。
Hcは粒子サイズ(板径・板厚)、含有元素の種類と量、元素の置換サイト、粒子生成反応条件等により制御できる。飽和磁化σsは40〜80A・m2/kg(40〜80emu/gである。σsは高い方が好ましいが微粒子になるほど小さくなる傾向がある。σs改良のためマグネトプランバイトフェライトにスピネルフェライトを複合すること、含有元素の種類と添加量の選択等が良く知られている。またW型六方晶フェライトを用いることも可能である。
磁性体(磁性粉末)を分散する際に磁性体粒子表面を分散媒、ポリマーに合った物質で処理することも行われている。表面処理材は無機化合物、有機化合物が使用される。主な化合物としてはSi、Al、P、等の酸化物または水酸化物、各種シランカップリング剤、各種チタンカップリング剤が代表例である。量は磁性体に対して0.1〜10%である。磁性体のPHも分散に重要である。通常4〜12程度で分散媒、ポリマーにより最適値があるが、媒体の化学的安定性、保存性から6〜10程度が選択される。磁性体に含まれる水分も分散に影響する。分散媒、ポリマーにより最適値があるが通常0.01〜2.0%が選ばれる。
六方晶フェライトの製法としては、(1)酸化バリウム・酸化鉄・鉄を置換する金属酸化物とガラス形成物質として酸化ホウ素等を所望のフェライト組成になるように混合した後溶融し、急冷して非晶質体とし、次いで再加熱処理した後、洗浄・粉砕してバリウムフェライト結晶粉体を得るガラス結晶化法。(2)バリウムフェライト組成金属塩溶液をアルカリで中和し、副生成物を除去した後100℃以上で液相加熱した後洗浄・乾燥・粉砕してバリウムフェライト結晶粉体を得る水熱反応法。(3)バリウムフェライト組成金属塩溶液をアルカリで中和し、副生成物を除去した後乾燥し1,100℃以下で処理し、粉砕してバリウムフェライト結晶粉体を得る共沈法等があるが、本発明は製法を選ばない。
(3)球状または楕円状磁性体
球状または楕円状磁性体としては、Fe162を主相とする窒化鉄系の強磁性粉末が好ましい。Fe、N原子以外にAl、Si、S、Sc、Ti、V、Cr、Cu、Y、Mo、Rh、Pd、Ag、Sn、Sb、Te、Ba、Ta、W、Re、Au、Hg、Pb、Bi、La、Ce、Pr、Nd、P、Co、Mn、Zn、Ni、Sr、B、Ge、Nbなどの原子を含んでもかまわない。Feに対するNの含有量は1.0〜20.0原子%が好ましい。
窒化鉄は球状または楕円状が好ましく、長軸径/短軸径の軸比は1〜2が好ましい。BET比表面積(SBET)が30〜100m2/gであることが好ましく、より好ましくは50〜70m2/gである。結晶子サイズは12〜25nmであることが好ましく、より好ましくは13〜22nmである。
飽和磁化σsは50〜200A・m2/kg(emu/g)が好ましい。更に好ましくは70〜150A・m2/kg(emu/g)である。
本発明における磁性層には、必要に応じて添加剤を加えることができる。添加剤としては、研磨剤、潤滑剤、分散剤・分散助剤、防黴剤、帯電防止剤、酸化防止剤、溶剤、カーボンブラックなどを挙げることができる。
これら添加剤としては、例えば、二硫化モリブデン、二硫化タングステン、グラファイト、窒化ホウ素、フッ化黒鉛、シリコーンオイル、極性基を持つシリコーン、脂肪酸変性シリコーン、フッ素含有シリコーン、フッ素含有アルコール、フッ素含有エステル、ポリオレフィン、ポリグリコール、ポリフェニルエーテル、フェニルホスホン酸、ベンジルホスホン酸基、フェネチルホスホン酸、α−メチルベンジルホスホン酸、1−メチル−1−フェネチルホスホン酸、ジフェニルメチルホスホン酸、ビフェニルホスホン酸、ベンジルフェニルホスホン酸、α−クミルホスホン酸、トルイルホスホン酸、キシリルホスホン酸、エチルフェニルホスホン酸、クメニルホスホン酸、プロピルフェニルホスホン酸、ブチルフェニルホスホン酸、ヘプチルフェニルホスホン酸、オクチルフェニルホスホン酸、ノニルフェニルホスホン酸等の芳香族環含有有機ホスホン酸およびそのアルカリ金属塩、オクチルホスホン酸、2−エチルヘキシルホスホン酸、イソオクチルホスホン酸、イソノニルホスホン酸、イソデシルホスホン酸、イソウンデシルホスホン酸、イソドデシルホスホン酸、イソヘキサデシルホスホン酸、イソオクタデシルホスホン酸、イソエイコシルホスホン酸等のアルキルホスホン酸およびそのアルカリ金属塩、リン酸フェニル、リン酸ベンジル、リン酸フェネチル、リン酸α−メチルベンジル、リン酸1−メチル−1−フェネチル、リン酸ジフェニルメチル、リン酸ビフェニル、リン酸ベンジルフェニル、リン酸α−クミル、リン酸トルイル、リン酸キシリル、リン酸エチルフェニル、リン酸クメニル、リン酸プロピルフェニル、リン酸ブチルフェニル、リン酸ヘプチルフェニル、リン酸オクチルフェニル、リン酸ノニルフェニル等の芳香族リン酸エステルおよびそのアルカリ金属塩、リン酸オクチル、リン酸2−エチルヘキシル、リン酸イソオクチル、リン酸イソノニル、リン酸イソデシル、リン酸イソウンデシル、リン酸イソドデシル、リン酸イソヘキサデシル、リン酸イソオクタデシル、リン酸イソエイコシル等のリン酸アルキルエステルおよびそのアルカリ金属塩、アルキルスルホン酸エステルおよびそのアルカリ金属塩、フッ素含有アルキル硫酸エステルおよびそのアルカリ金属塩、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、ステアリン酸ブチル、オレイン酸、リノール酸、リノレン酸、エライジン酸、エルカ酸等の炭素数10〜24の不飽和結合を含んでも分岐していてもよい一塩基性脂肪酸およびこれらの金属塩、またはステアリン酸ブチル、ステアリン酸オクチル、ステアリン酸アミル、ステアリン酸イソオクチル、ミリスチン酸オクチル、ラウリル酸ブチル、ステアリン酸ブトキシエチル、アンヒドロソルビタンモノステアレート、アンヒドロソルビタンジステアレート、アンヒドロソルビタントリステアレート等の炭素数10〜24の不飽和結合を含んでも分岐していてもよい一塩基性脂肪酸と炭素数2〜22の不飽和結合を含んでも分岐していてもよい1〜6価アルコール、炭素数12〜22の不飽和結合を含んでも分岐していてもよいアルコキシアルコールまたはアルキレンオキサイド重合物のモノアルキルエーテルのいずれか一つとからなるモノ脂肪酸エステル、ジ脂肪酸エステルまたは多価脂肪酸エステル、炭素数2〜22の脂肪酸アミド、炭素数8〜22の脂肪族アミンなどが使用できる。また、上記炭化水素基以外にもニトロ基およびF、Cl、Br、CF3、CCl3、CBr3等の含ハロゲン炭化水素等炭化水素基以外の基が置換したアルキル基、アリール基、アラルキル基を持つものでもよい。
また、アルキレンオキサイド系、グリセリン系、グリシドール系、アルキルフエノールエチレンオキサイド付加体等のノニオン界面活性剤、環状アミン、エステルアミド、第四級アンモニウム塩類、ヒダントイン誘導体、複素環類、ホスホニウムまたはスルホニウム類等のカチオン系界面活性剤、カルボン酸、スルホン酸、硫酸エステル基等の酸性基を含むアニオン界面活性剤、アミノ酸類、アミノスルホン酸類、アミノアルコールの硫酸またはリン酸エステル類、アルキルベタイン型等の両性界面活性剤等も使用できる。これらの界面活性剤については、「界面活性剤便覧」(産業図書株式会社発行)に詳細に記載されている。
上記分散剤、潤滑剤等は必ずしも純粋ではなく主成分以外に異性体、未反応物、副反応物、分解物、酸化物等の不純分が含まれても構わない。これらの不純分は30重量%以下が好ましく、さらに好ましくは10重量%以下である。
これらの添加物の具体例としては、例えば、日本油脂社製:NAA−102、ヒマシ油硬化脂肪酸、NAA−42、カチオンSA、ナイミーンL−201、ノニオンE−208、アノンBF、アノンLG、竹本油脂社製:FAL−205、FAL−123、新日本理化社製:エヌジェルブOL、信越化学社製:TA−3、ライオンアーマー社製:アーマイドP、ライオン社製:デュオミンTDO、日清製油社製:BA−41G、三洋化成社製:プロファン2012E、ニューポールPE61、イオネットMS−400等が挙げられる。
本発明の磁性層で用いられる有機溶剤は、公知のものが使用できる。有機溶剤は、任意の比率でアセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、テトラヒドロフラン、等のケトン類、メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール、イソプロピルアルコール、メチルシクロヘキサノールなどのアルコール類、酢酸メチル、酢酸ブチル、酢酸イソブチル、酢酸イソプロピル、乳酸エチル、酢酸グリコール等のエステル類、グリコールジメチルエーテル、グリコールモノエチルエーテル、ジオキサンなどのグリコールエーテル系、ベンゼン、トルエン、キシレン、クレゾール、クロルベンゼンなどの芳香族炭化水素類、メチレンクロライド、エチレンクロライド、四塩化炭素、クロロホルム、エチレンクロルヒドリン、ジクロルベンゼン等の塩素化炭化水素類、N,N−ジメチルホルムアミド、ヘキサン等を使用することができる。
これら有機溶媒は必ずしも100%純粋ではなく、主成分以外に異性体、未反応物、副反応物、分解物、酸化物、水分等の不純分が含まれてもかまわない。これらの不純分は30%以下が好ましく、さらに好ましくは10%以下である。本発明で用いる有機溶媒は磁性層と非磁性層でその種類は同じであることが好ましい。その添加量は変えてもかまわない。非磁性層に表面張力の高い溶媒(シクロヘキサノン、ジオキサンなど)を用い塗布の安定性を上げる、具体的には上層溶剤組成の算術平均値が非磁性層溶剤組成の算術平均値を下回らないことが肝要である。分散性を向上させるためにはある程度極性が強い方が好ましく、溶剤組成の内、誘電率が15以上の溶剤が50%以上含まれることが好ましい。また、溶解パラメータは8〜11であることが好ましい。
本発明の磁性層で用いられるこれらの分散剤、潤滑剤、界面活性剤は磁性層および後述する非磁性層でその種類、量を必要に応じ使い分けることができる。例えば、無論ここに示した例のみに限られるものではないが、分散剤は極性基で吸着もしくは結合する性質を有しており、磁性層においては主に強磁性粉末の表面に、また後述する非磁性層においては主に非磁性粉末の表面に前記の極性基で吸着もしくは結合し、一度吸着した有機リン化合物は金属あるいは金属化合物等の表面から脱着しがたいと推察される。したがって、本発明の強磁性粉末表面あるいは後述する非磁性粉末表面は、アルキル基、芳香族基等で被覆されたような状態になるので、強磁性粉末あるいは非磁性粉末の結合剤樹脂成分に対する親和性が向上し、さらに強磁性粉末あるいは非磁性粉末の分散安定性も改善される。また、潤滑剤としては遊離の状態で存在するため非磁性層、磁性層で融点の異なる脂肪酸を用い表面へのにじみ出しを制御する、沸点や極性の異なるエステル類を用い表面へのにじみ出しを制御する、界面活性剤量を調節することで塗布の安定性を向上させる、潤滑剤の添加量を非磁性層で多くして潤滑効果を向上させるなどが考えられる。また本発明で用いられる添加剤のすべてまたはその一部は、磁性層あるいは非磁性層用塗布液の製造時のいずれの工程で添加してもよい。例えば、混練工程前に強磁性粉末と混合する場合、強磁性粉末と結合剤と溶剤による混練工程で添加する場合、分散工程で添加する場合、分散後に添加する場合、塗布直前に添加する場合などがある。
また、本発明における磁性層には、必要に応じてカーボンブラックを添加することができる。
カーボンブラックの種類はゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック等を用いることができる。放射線硬化層のカーボンブラックは所望する効果によって、以下のような特性を最適化すべきであり、併用することでより効果が得られることがある。
カーボンブラックの比表面積は100〜500m2/g、好ましくは150〜400m2/g、DBP吸油量は20〜400ml/100g、好ましくは30〜200ml/100gである。カーボンブラックの粒子径は5〜80mμ、好ましく10〜50mμ、さらに好ましくは10〜40mμである。カーボンブラックのpHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/mlが好ましい。
本発明に用いられるカーボンブラックの具体的な例としてはキャボット社製 BLACKPEARLS 2000,1300,1000,900,800,880,700、VULCAN XC−72、三菱化成工業社製 #3050B,#3150B,#3250B,#3750B,#3950B,#950,#650B,#970B,#850B,MA−600,MA−230,#4000,#4010、コロンビアカーボン社製 CONDUCTEX SC、RAVEN 8800,8000,7000,5750,5250,3500,2100,2000,1800,1500,1255,1250、アクゾー社製ケッチェンブラックECなどがあげられる。
カーボンブラックを分散剤などで表面処理したり、樹脂でグラフト化して使用しても、表面の一部をグラファイト化したものを使用してもかまわない。また、カーボンブラックを塗料に添加する前にあらかじめ結合剤で分散してもかまわない。本発明で使用できるカーボンブラックは例えば「カーボンブラック便覧」(カーボンブラック協会編)を参考にすることができる。
これらのカーボンブラックは単独または組み合せで使用することができる。カーボンブラックを使用する場合、磁性体の重量に対して0.1〜30重量%で用いることが好ましい。カーボンブラックは磁性層の帯電防止、摩擦係数低減、遮光性付与、膜強度向上などの働きがあり、これらは用いるカーボンブラックにより異なる。したがって本発明で使用されるこれらのカーボンブラックは、磁性層でその種類、量、組み合せを変え、粒子サイズ、吸油量、電導度、PHなどの先に示した諸特性を基に目的に応じて使い分けることはもちろん可能であり、むしろ各層で最適化すべきものである。
3.非磁性層
本発明の磁気記録媒体は、非磁性支持体と磁性層との間に、非磁性粉末と結合剤を分散させた少なくとも一層の非磁性層を有していてもよい。非磁性層を有する場合、磁性層に使用する結合剤と同じ結合剤を非磁性層にも使用することができる。
非磁性層に使用できる非磁性粉末は、無機物質でも有機物質でもよい。また、非磁性層には非磁性粉末と共に、必要に応じてカーボンブラックを混合してもよい。
(非磁性粉末)
非磁性層には、非磁性層が実質的に非磁性である範囲で磁性粉末を使用してもよいが、非磁性粉末を用いることが好ましい。
非磁性層に使用できる非磁性粉末は、無機物質でも有機物質でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物などが挙げられる。
具体的には二酸化チタン等のチタン酸化物、酸化セリウム、酸化スズ、酸化タングステン、ZnO、ZrO2、SiO2、Cr23、α化率90〜100%のα−アルミナ、β−アルミナ、γ−アルミナ、α−酸化鉄、ゲータイト、コランダム、窒化珪素、チタンカーバイト、酸化マグネシウム、窒化ホウ素、2硫化モリブデン、酸化銅、MgCO3、CaCO3、BaCO3、SrCO3、BaSO4、炭化珪素、炭化チタンなどが単独又は2種類以上を組み合わせて使用される。好ましいのは、α−酸化鉄、酸化チタンである。
非磁性粉末の形状は、針状、球状、多面体状、板状のいずれでもあってもよい。
非磁性粉末の結晶子サイズは、4nm〜1μmが好ましく、40〜100nmがさらに好ましい。結晶子サイズが4nm〜1μmの範囲であれば、分散が困難になることもなく、また好適な表面粗さを有するため好ましい。
これら非磁性粉末の平均粒径は、5nm〜2μmが好ましいが、必要に応じて平均粒径の異なる非磁性粉末を組み合わせたり、単独の非磁性粉末でも粒径分布を広くしたりして同様の効果をもたせることもできる。とりわけ好ましい非磁性粉末の平均粒径は、10〜200nmである。5nm〜2μmの範囲であれば、分散も良好で、かつ好適な表面粗さを有するため好ましい。
非磁性粉末の比表面積は、好ましくは1〜100m2/gであり、より好ましくは5〜70m2/gであり、さらに好ましくは10〜65m2/gである。比表面積が1〜100m2/gの範囲内にあれば、好適な表面粗さを有し、かつ、所望の結合剤量で分散できるため好ましい。
ジブチルフタレート(DBP)を用いた吸油量は、好ましくは5〜100ml/100g、より好ましくは10〜80ml/100g、さらに好ましくは20〜60ml/100gである。
比重は好ましくは1〜12、より好ましくは3〜6である。タップ密度は好ましくは0.05〜2g/ml、より好ましくは0.2〜1.5g/mlである。タップ密度が0.05〜2g/mlの範囲であれば、飛散する粒子が少なく操作が容易であり、また装置にも固着しにくくなる傾向がある。
非磁性粉末のpHは2〜11であることが好ましいが、pHは6〜9の間が特に好ましい。pHが2〜11の範囲にあれば、高温、高湿下又は脂肪酸の遊離により摩擦係数が大きくなることはない。
非磁性粉末の含水率は、好ましくは0.1〜5重量%、より好ましくは0.2〜3重量%、さらに好ましくは0.3〜1.5重量%である。含水量が0.1〜5重量%の範囲であれば、分散も良好で、分散後の塗料粘度も安定するため好ましい。
強熱減量は、20重量%以下であることが好ましく、強熱減量が小さいものが好ましい。
また、非磁性粉末が無機粉末である場合には、モース硬度は4〜10のものが好ましい。モース硬度が4〜10の範囲であれば耐久性を確保することができる。非磁性粉末のステアリン酸吸着量は、1〜20μmol/m2であり、さらに好ましくは2〜15μmol/m2である。
非磁性粉末の25℃での水への湿潤熱は、20〜60μJ/cm2(200〜600erg/cm2)の範囲にあることが好ましい。また、この湿潤熱の範囲にある溶媒を使用することができる。
100〜400℃での表面の水分子の量は1〜10個/100Åが適当である。水中での等電点のpHは、3〜9の間にあることが好ましい。
これらの非磁性粉末の表面にはAl23、SiO2、TiO2、ZrO2、SnO2、Sb23、ZnOで表面処理することが好ましい。特に分散性に好ましいのはAl23、SiO2、TiO2、ZrO2であるが、さらに好ましいのはAl23、SiO2、ZrO2である。これらは組み合わせて使用してもよいし、単独で用いることもできる。また、目的に応じて共沈させた表面処理層を用いてもよいし、先ずアルミナで処理した後にその表層をシリカで処理する方法、またはその逆の方法を採ることもできる。また、表面処理層は目的に応じて多孔質層にしても構わないが、均質で密である方が一般には好ましい。
本発明の非磁性層に用いられる非磁性粉末の具体的な例としては、例えば、昭和電工製ナノタイト、住友化学製HIT−100、ZA−G1、戸田工業社製DPN−250、DPN−250BX、DPN−245、DPN−270BX、DPB−550BX、DPN−550RX 石原産業製酸化チタンTTO−51B、TTO−55A、TTO−55B、TTO−55C、TTO−55S、TTO−55D、SN−100、MJ−7、α−酸化鉄E270、E271、E300、チタン工業製STT−4D、STT−30D、STT−30、STT−65C、テイカ製MT−100S、MT−100T、MT−150W、MT−500B、T−600B、T−100F、T−500HDなどが挙げられる。堺化学製FINEX−25、BF−1、BF−10、BF−20、ST−M、同和鉱業製DEFIC−Y、DEFIC−R、日本アエロジル製AS2BM、TiO2P25、宇部興産製100A、500A、チタン工業製Y−LOP及びそれを焼成したものが挙げられる。特に好ましい非磁性粉末は二酸化チタンとα−酸化鉄である。
非磁性層には非磁性粉末と共に、カーボンブラックを混合し表面電気抵抗を下げ、光透過率を小さくすると共に、所望のμビッカース硬度を得ることができる。非磁性層のμビッカース硬度は、通常25〜60kg/mm2、好ましくはヘッド当りを調整するために、30〜50kg/mm2であり、薄膜硬度計(日本電気製 HMA−400)を用いて、稜角80度、先端半径0.1μmのダイヤモンド製三角錐針を圧子先端に用いて測定することができる。光透過率は一般に波長900nm程度の赤外線の吸収が3%以下、たとえばVHS用磁気テープでは0.8%以下であることが規格化されている。このためにはゴム用ファーネス、ゴム用サーマル、カラー用ブラック、アセチレンブラック等を用いることができる。
本発明の非磁性層に用いられるカーボンブラックの比表面積は100〜500m2/g、好ましくは150〜400m2/g、DBP吸油量は20〜400ml/100g、好ましくは30〜200ml/100gである。カーボンブラックの粒子径は5〜80nm、好ましく10〜50nm、さらに好ましくは10〜40nmである。カーボンブラックのpHは2〜10、含水率は0.1〜10%、タップ密度は0.1〜1g/mlが好ましい。
本発明の非磁性層に用いることができるカーボンブラックの具体的な例としては、キャボット社製BLACKPEARLS 2000、1300、1000、900、800、880、700、VULCAN XC−72、三菱化成工業社製#3050B、#3150B、#3250B、#3750B、#3950B、#950、#650B、#970B、#850B、MA−600、コロンビアカーボン社製CONDUCTEX SC、RAVEN8800、8000、7000、5750、5250、3500、2100、2000、1800、1500、1255、1250、アクゾー社製ケッチェンブラックECなどが挙げられる。
また、カーボンブラックを分散剤などで表面処理したり、樹脂でグラフト化して使用しても、表面の一部をグラファイト化したものを使用してもかまわない。また、カーボンブラックを塗料に添加する前にあらかじめ結合剤で分散してもかまわない。これらのカーボンブラックは上記無機質粉末に対して50重量%を越えない範囲、非磁性層総重量の40%を越えない範囲で使用できる。これらのカーボンブラックは単独、または組み合せで使用することができる。本発明の非磁性層で使用できるカーボンブラックは例えば「カーボンブラック便覧」カーボンブラック協会編、を参考にすることができる。
また非磁性層には目的に応じて有機質粉末を添加することもできる。このような有機質粉末としては、例えば、アクリルスチレン系樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン系樹脂粉末、フタロシアニン系顔料が挙げられるが、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、ポリフッ化エチレン樹脂も使用することができる。その製法は、特開昭62−18564号公報、特開昭60−255827号公報に記されているようなものが使用できる。
非磁性層の結合剤樹脂、潤滑剤、分散剤、添加剤、溶剤、分散方法その他は、磁性層のそれが適用できる。特に、結合剤樹脂量、種類、添加剤、分散剤の添加量、種類に関しては磁性層に関する公知技術が適用できる。
4.非磁性支持体
本発明に用いることのできる非磁性支持体としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。
これらの支持体はあらかじめコロナ放電、プラズマ処理、易接着処理、熱処理などを行ってもよい。また、本発明に用いることのできる非磁性支持体の表面粗さはカットオフ値0.25mmにおいて中心平均粗さRa3〜10nmが好ましい。
5.平滑化層
本発明の磁気記録媒体には、平滑化層を設けてもよい。平滑化層とは、非磁性支持体表面の突起を埋めるための層であり、非磁性支持体上に磁性層を設けた磁気記録媒体の場合は非磁性支持体と磁性層の間、非磁性支持体上に非磁性層および磁性層をこの順に設けた磁気記録媒体の場合には非磁性支持体と非磁性層の間に設けられる。
平滑化層は、放射線硬化型化合物を放射線照射により硬化させて形成することができる。放射線硬化型化合物とは、紫外線または電子線などの放射線を照射すると重合または架橋を開始し、高分子化して硬化する性質を有する化合物をいう。
6.バックコート層
一般に、コンピュータデータ記録用の磁気テープは、ビデオテープ、オーディオテープに比較して繰り返し走行性が強く要求される。このような高い保存安定性を維持させるために、非磁性支持体の非磁性層および磁性層が設けられた面とは反対の面にバックコート層を設けることもできる。バックコート層用塗料は、研磨剤、帯電防止剤などの粒子成分と結合剤とを有機溶媒に分散させる。粒状成分として各種の無機顔料やカーボンブラックを使用することができる。また、結合剤としては、例えば、ニトロセルロース、フェノキシ樹脂、塩化ビニル系樹脂、ポリウレタン等の樹脂を単独またはこれらを混合して使用することができる。
7.層構成
本発明で用いられる磁気記録媒体の構成において、放射線硬化物層の厚さは、上述のとおり0.3〜1.0μmの範囲が好ましい。また非磁性支持体の好ましい厚さは、3〜80μmである。また、非磁性支持体と非磁性層または磁性層の間に下塗層を設けた場合、下塗層の厚さは0.01〜0.8μm、好ましくは0.02〜0.6μmである。また、非磁性支持体の非磁性層および磁性層が設けられた面とは反対側の面に設けられたバックコート層の厚さは、0.1〜1.0μm、好ましくは0.2〜0.8μmである。
磁性層の厚さは、用いる磁気ヘッドの飽和磁化量やヘッドギャップ長、記録信号の帯域により最適化されるものであるが、一般には0.01〜0.10μm以下であり、好ましくは0.02μm以上0.08μm以下であり、更に好ましくは0.03〜0.08μmである。また、磁性層の厚さ変動率は±50%以内が好ましく、さらに好ましくは±40%以内である。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。
本発明の非磁性層の厚さは、0.2〜3.0μmであり、0.3〜2.5μmであることが好ましく、0.4〜2.0μmであることがさらに好ましい。なお、本発明の磁気記録媒体の非磁性層は、実質的に非磁性であればその効果を発揮するものであり、例えば不純物として、あるいは意図的に少量の磁性体を含んでいても、本発明の効果を示すものであり、本発明の磁気記録媒体と実質的に同一の構成とみなすことができる。なお、実質的に同一とは、非磁性層の残留磁束密度が10mT(100G)以下または抗磁力が7.96kA/m(100 Oe)以下であることを示し、好ましくは残留磁束密度と抗磁力を持たないことを意味する。
8.製造方法
本発明で用いられる磁気記録媒体の磁性層塗布液を製造する工程は、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程からなる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。本発明で用いられる六方晶フェライト強磁性粉末または強磁性金属粉末、非磁性粉末、ベンゼンホスホン酸誘導体、π電子共役系の導電性高分子、結合剤、カーボンブラック、研磨材、帯電防止剤、潤滑剤、溶剤などすべての原料はどの工程の最初または途中で添加してもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。例えば、ポリウレタンを混練工程、分散工程、分散後の粘度調整のための混合工程で分割して投入してもよい。本発明の目的を達成するためには、従来の公知の製造技術を一部の工程として用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダなど強い混練力をもつものを使用することが好ましい。ニーダを用いる場合は磁性粉末または非磁性粉末と結合剤のすべてまたはその一部(但し、全結合剤の30%以上が好ましい)および磁性体100重量部に対し15〜500重量部の範囲で混練処理される。これらの混練処理の詳細については特開平1−106338号公報、特開平1−79274号公報に記載されている。また、磁性層用液および非磁性層用液を分散させるには、ガラスビーズを用いることができる。このようなガラスビーズは、高比重の分散メディアであるジルコニアビーズ、チタニアビーズ、スチールビーズが好適である。これら分散メディアの粒径と充填率は最適化して用いられる。分散機は公知のものを使用することができる。
本発明の磁気記録媒体の製造方法は、例えば、走行下にある非磁性支持体の表面に磁性層用塗布液を所定の膜厚となるように塗布する。ここで複数の磁性層用塗布液を逐次あるいは同時に重層塗布してもよく、下層の磁性層用塗布液と上層の磁性層用塗布液とを逐次あるいは同時に重層塗布してもよい。上記磁性層用塗布液もしくは下層の磁性層用塗布液を塗布する塗布機としては、エアードクターコート、ブレードコート、ロッドコート、押出しコート、エアナイフコート、スクイズコート、含浸コート、リバースロールコート、トランスファーロールコート、グラビヤコート、キスコート、キャストコート、スプレイコート、スピンコート等が利用できる。これらについては例えば(株)総合技術センター発行の「最新コーティング技術」(昭和58年5月31日)を参考にできる。
磁性層塗布液の塗布層は、磁気テープの場合、磁性層塗布液の塗布層中に含まれる強磁性粉末にコバルト磁石やソレノイドを用いて長手方向に磁場配向処理を施す。ディスクの場合、配向装置を用いず無配向でも十分に等方的な配向性が得られることもあるが、コバルト磁石を斜めに交互に配置すること、ソレノイドで交流磁場を印加するなど公知のランダム配向装置を用いることが好ましい。等方的な配向とは強磁性金属粉末の場合、一般的には面内2次元ランダムが好ましいが、垂直成分をもたせて3次元ランダムとすることもできる。六方晶フェライトの場合は一般的に面内および垂直方向の3次元ランダムになりやすいが、面内2次元ランダムとすることも可能である。また異極対向磁石など公知の方法を用い、垂直配向とすることで円周方向に等方的な磁気特性を付与することもできる。特に高密度記録を行う場合は垂直配向が好ましい。また、スピンコートを用いて円周配向としてもよい。
乾燥風の温度、風量、塗布速度を制御することで塗膜の乾燥位置を制御できるようにすることが好ましく、塗布速度は20〜1,000m/分、乾燥風の温度は60℃以上が好ましい。また磁石ゾーンに入る前に適度の予備乾燥を行うこともできる。
乾燥された後、塗布層に表面平滑化処理を施す。表面平滑化処理には、例えばスーパーカレンダーロールなどが利用される。表面平滑化処理を行うことにより、乾燥時の溶剤の除去によって生じた空孔が消滅し磁性層中の強磁性粉末の充填率が向上するので、電磁変換特性の高い磁気記録媒体を得ることができる。
カレンダ処理ロールとしてはエポキシ、ポリイミド、ポリアミド、ポリアミドイミド等の耐熱性プラスチックロールを使用する。また金属ロールで処理することもできる。本発明の磁気記録媒体は、表面の中心面平均粗さが、カットオフ値0.25mmにおいて0.1〜4.0nm、好ましくは0.5〜3.0nmの範囲という極めて優れた平滑性を有する表面であることが好ましい。その方法として、例えば上述したように特定の強磁性粉末と結合剤を選んで形成した磁性層を上記カレンダ処理を施すことにより行われる。カレンダ処理条件としては、カレンダーロールの温度を60〜100℃の範囲、好ましくは70〜100℃の範囲、特に好ましくは80〜100℃の範囲であり、圧力は100〜500kg/cmの範囲、好ましくは200〜450kg/cmの範囲であり、特に好ましくは300〜400kg/cmの範囲の条件で作動させることによって行われることが好ましい。
熱収縮率低減手段として、低テンションでハンドリングしながらウエッブ状で熱処理する方法と、バルクまたはカセットに組み込んだ状態などテープが積層した形態で熱処理する方法(サーモ処理)があり、両者が利用できる。前者は、バックコート層表面の突起写りの影響が少ないが、熱収縮率を大きく下げることができない。一方、後者のサーモ処理は、熱収縮率を大幅に改善できるが、バックコート層表面の突起写りの影響を強く受けるため、磁性層が面荒れし、出力低下およびノイズ増加を引き起こす。特に、サーモ処理を伴う磁気記録媒体で、高出力、低ノイズの磁気記録媒体を供給することができる。得られた磁気記録媒体は、裁断機、打抜機などを使用して所望の大きさに裁断して使用することができる。
9.物理特性
本発明に用いられる磁気記録媒体の磁性層の飽和磁束密度は、100〜300T・m(1,000〜3,000G)である。また磁性層の抗磁力(Hr)は、143.3〜318.4kA/m(1,800〜4,000Oe)であるが、好ましくは159.2〜278.6kA/m(2,000〜3,500Oe)である。抗磁力の分布は狭い方が好ましく、SFDおよびSFDrは0.6以下、さらに好ましくは0.2以下である。
本発明で用いられる磁気記録媒体のヘッドに対する摩擦係数は、温度−10〜40℃、湿度0〜95%の範囲において0.5以下であり、好ましくは0.3以下である。また、帯電位は−500〜+500V以内が好ましい。磁性層の0.5%伸びでの弾性率は、面内各方向で好ましくは0.98〜19.6GPa(100〜2,000kg/mm2)、破断強度は、好ましくは98〜686MPa(10〜70kg/mm2)、磁気記録媒体の弾性率は、面内各方向で好ましくは0.98〜14.7GPa(100〜1,500kg/mm2)、残留のびは、好ましくは0.5%以下、100℃以下のあらゆる温度での熱収縮率は、好ましくは1%以下、さらに好ましくは0.5%以下、最も好ましくは0.1%以下である。
磁性層のガラス転移温度(110Hzで測定した動的粘弾性測定の損失弾性率の極大点)は50〜180℃が好ましく、非磁性層のそれは0〜180℃が好ましい。損失弾性率は1×107〜8×108Pa(1×108〜8×109dyne/cm2)の範囲にあることが好ましく、損失正接は0.2以下であることが好ましい。損失正接が大きすぎると粘着故障が発生しやすい。これらの熱特性や機械特性は媒体の面内各方向において10%以内でほぼ等しいことが好ましい。
磁性層中に含まれる残留溶媒は好ましくは100mg/m2以下、さらに好ましくは10mg/m2以下である。塗布層が有する空隙率は非磁性層、磁性層とも好ましくは30容量%以下、さらに好ましくは20容量%以下である。空隙率は高出力を果たすためには小さい方が好ましいが、目的によってはある値を確保した方が良い場合がある。例えば、繰り返し用途が重視されるディスク媒体では空隙率が大きい方が保存安定性は好ましいことが多い。
デジタルオプチカルプロフィメーター(WYKO製TOPO−3D)を用いて測定した磁性層の中心面表面粗さRaは、4.0nm以下であり、好ましくは3.0nm以下であり、さらに好ましくは2.0nm以下である。磁性層の最大高さSRmaxは、0.5μm以下、十点平均粗さSRzは0.3μm以下、中心面山高さSRpは0.3μm以下、中心面谷深さSRvは0.3μm以下、中心面面積率SSrは20〜80%、平均波長Sλaは5〜300μmが好ましい。磁性層の表面突起は0.01〜1μmの大きさのものを0〜2,000個の範囲で任意に設定することが可能であり、これにより電磁変換特性、摩擦係数を最適化することが好ましい。これらは支持体のフィラーによる表面性のコントロールや磁性層に添加する粉末の粒径と量、カレンダ処理のロール表面形状などで容易にコントロールすることができる。カールは±3mm以内とすることが好ましい。
本発明の磁気記録媒体における非磁性層と磁性層と間では、目的に応じ非磁性層と磁性層でこれらの物理特性を変えることができるのは容易に推定されることである。例えば、磁性層の弾性率を高くし保存安定性を向上させると同時に非磁性層の弾性率を磁性層より低くして磁気記録媒体のヘッドへの当りをよくするなどである。
本発明の磁気記録媒体は、磁気記録媒体に磁気記録された信号を再生するヘッドについては特に制限はないが、MRヘッドのために用いることが好ましい。本発明の磁気記録媒体の再生にMRヘッドを用いる場合、MRヘッドには特に制限はなく、例えばGMRヘッドやTMRヘッドを用いることもできる。また、磁気記録に用いるヘッドは特に制限されないが、飽和磁化量が1.0T以上であり、1.5T以上であることが好ましい。
以下、実施例に基づき本発明を具体的に説明するが、本発明は実施例に限定されるものではない。なお、実施例中の「部」は、断らない限り「重量部」の意味である。
(ポリウレタン合成例)
表1に示した組成のジオール成分及び反応触媒を還流式冷却器、撹拌機を具備し、予め窒素置換した容器にシクロヘキサノン50%溶液に窒素気流下60℃で溶解した。更に表1に示したジイソシアネート成分を加え90℃にて6時間加熱反応し、ポリウレタン樹脂溶液A〜Pを得た。
得られたポリウレタンの重量平均分子量及び重量平均分子量/数平均分子量比を表1に示す。
なおポリウレタンの重量平均分子量はDMF溶媒を用いて標準ポリスチレン換算で求めた。
Figure 2007087442
ここで、表中の記載は以下の通りである。
ポリエステルA:イソフタル酸/2,2−ジメチル−1,3−プロパンジオール=1/2モル反応物(分子量338)
ポリエステルB:スルホイソフタル酸ナトリウム/2,2−ジメチル−1,3−プロパンジオールー=1/2モル反応物(分子量440)
ポリエステルC:アジピン酸/1,4−ブタンジオール=2/3モル反応物(分子量491)
ポリエステルD:アジピン酸/2,2−ジメチル−1,3−プロパンジオール=1/2モル反応物(分子量318)
ポリエステルE:アジピン酸/シクロヘキサンジメタノール=1/2モル反応物(分子量398)
ポリエーテルA:ビスフェノールAのプロピレンオキサイド6モル付加物(分子量577)
ポリエーテルB:ポリテトラメチレングリコール(分子量528)
ポリエーテルC:ポリプロピレングリコール(分子量600)
DMH:2−エチル−2−ブチル−1,3−プロパンジオール(分子量160)
NPG:ネオペンチルグリコール(分子量104)
MPD:3−メチル−1,5−ペンタンジオール(分子量118)
HBpA:水素化ビスフェノールA(分子量240)
BPA−PO:ビスフェノールAプロピレンオキサイド2モル付加物(分子量344)
HD:1,6−ヘキサンジオール(分子量118)
PPG250:ポリプロピレングリコール(分子量250)
MDI:4,4’−ジフェニルメタンジイソシアネート(分子量250)
DBTDL:ジブチルスズジラウレート
<実施例1>
(磁性塗料(磁性層用塗料)の調液)
表2に示した磁性体100部をオープンニーダーで10分間粉砕し、次いでポリウレタン樹脂溶液A15部(固形分)を加えて60分間混練した。次いで、
研磨剤(Al23粒子サイズ0.3μm) 2部
カーボンブラック(粒子サイズ 40μm) 2部
メチルエチルケトン/トルエン=1/1 200部
を加えてサンドミルで360分間分散した。
これに、
ブチルステアレート 2部
ステアリン酸 1部
シクロヘキサノン 50部
を加え、さらに20分間撹拌混合したあと、1μmの平均孔径を有するフィルターを用いて濾過し、磁性塗料を調製した。
(下層用非磁性塗料(非磁性層用塗料)の調液)
α−Fe23(平均粒径0.15μm、SBET52m2/g、表面処理Al23、SiO2、pH6.5〜8.0)85部をオープンニーダーで10分間粉砕し、次いで、
塩ビ/酢ビ/グリシジルメタクリレート=86/9/5の共重合体にヒドロキシエチルスルフォネートナトリウム塩を付加した化合物(SO3Na=6×10-5eq/g,エポキシ=10-3eq/g,Mw 30,000) 7.5部
ポリウレタン樹脂A 10部(固形分)
シクロヘキサノン 60部
を加えて60分間混練し、次いで
メチルエチルケトン/シクロヘキサノン=6/4 200部
を加えてサンドミルで120分間分散した。これに
ブチルステアレート 2部
ステアリン酸 1部
メチルエチルケトン 50部
を加え、さらに20分間撹拌混合したあと、1μmの平均孔径を有するフィルターを用いて濾過し、下層用非磁性塗料を調製した。
次いで接着層としてスルホン酸含有ポリエステル樹脂を乾燥後の厚さが0.1μmになるようにコイルバーを用いて厚さ7μのポリエチレンテレフタレート支持体の表面に塗布した。
次いで得られた下層用非磁性塗料を1.5μmに、さらにその直後に上層磁性塗料を乾燥後の厚さが0.1μmになるように、リバースロールを用いて同時重層塗布した。磁性塗料塗布された非磁性支持体を、磁性塗料が未乾燥の状態で5,000ガウスのCo磁石と4,000ガウスのソレノイド磁石で磁場配向を行ない、塗布したものを金属ロール−金属ロール−金属ロール−金属ロール−金属ロール−金属ロール−金属ロールの組み合せによるカレンダー処理を(速度100m/min、線圧300kg/cm、温度90゜C)で行なった後1/2インチ幅にスリットした。
(実施例2〜16及び比較例1〜5)
上層磁性塗料のポリウレタン樹脂及び磁性体を表2に示したものに代えた以外は実施例1と同様の方法で磁気記録テープを作製した。
得られた磁気記録媒体を、以下の方法で評価した。
(1)平滑性
Digital Instrument社製NanoscopeIIを用い、トンネル電流10nA、バイアス電流400mVで30μm×30μmの範囲を走査して10nm〜20nmの突起数を求め、比較例1を100としたときの相対値で示した。
(2)電磁変換特性
ヘッドを固定した1/2インチリニアシステムで測定した。ヘッド/テープの相対速度は10m/secとした。記録は飽和磁化1.4TのMIGヘッド(トラック幅18μm)を使い、記録電流は各テープの最適電流に設定した。
再生ヘッドには素子厚み25nm、シールド間隔0.2μmの異方性型MRヘッド(A−MR)を用いた。
記録波長0.2μmの信号を記録し、再生信号をシバソク製スペクトラムアナライザーで周波数分析し、キャリア信号(波長0.2μm)の出力とスペクトル全域の積分ノイズとの比をS/N比とし、比較例1を0dBとした相対値で示した。
(3)繰り返し摺動耐久
テープを40℃10%環境下で磁性層面をAlTiC製の円柱棒に接触させて荷重100g(T1)をかけ、2m/secの摺動速度で繰り返し10,000パスまで摺動を行ったあとのテープダメージを以下のランクで評価した。
優秀:ややキズが見られるが、キズのない部分の方が多い。
良好:キズがない部分よりもキズがある部分の方が多い。
不良:磁性層が完全に剥離している。
(4)保存性
LTO−G3カートリッジ用のリールにテープを600m巻いた状態で60℃90%2週間保存した。保存後のテープの摺動耐久性を(3)と同じ方法で測定した。
Figure 2007087442
尚、表2に示した磁性体は、以下の通りである。
・針状強磁性合金粉末
組成:Fe 89atm%,Co 5atm%,Y 6atm%、Hc:175kA/m(2,200Oe)、BET比表面積:70m2/g、針状比:3.5、σs:125A・m2/kg(emu/g)
・六角平板状フェライト粉末
組成:Ba 91atm%、Fe 8atm%、Co 0.5atm%、Zn 0.5atm%、Hc:175kA/m(2,200Oe)、BET比表面積:55m2/g、板比:3.5、σs:51A・m2/kg(emu/g)
・球状窒化鉄粉末
組成:Fe 88atm%、N 8atm%、Y 4atm%、Hc:175kA/m(2,200Oe)、BET比表面積:56m2/g、σs:100A・m2/kg(emu/g)

Claims (6)

  1. 非磁性支持体上に、強磁性粉末を結合剤中に分散した少なくとも一層の磁性層を有する磁気記録媒体であって、
    該結合剤として重量平均分子量が20万〜40万のポリウレタン樹脂を含有することを特徴とする
    磁気記録媒体。
  2. 非磁性支持体上に、非磁性粉末を結合剤中に分散した非磁性層を有し、その上に強磁性粉末を結合剤中に分散した少なくとも一層の磁性層を有する磁気記録媒体であって、
    該磁性層及び/又は該非磁性層の結合剤として重量平均分子量が20万〜40万のポリウレタン樹脂を含有することを特徴とする
    磁気記録媒体。
  3. 該ポリウレタン樹脂のウレタン基濃度が2.5mmol/g〜4.5mmol/gである請求項1または2に記載の磁気記録媒体。
  4. 該ポリウレタン樹脂が炭素数2以上の分岐側鎖を有する脂肪族ジオールからなる請求項1〜3いずれか1つに記載の磁気記録媒体。
  5. 該ポリウレタン樹脂が環状構造を有するジオールからなるポリエーテルポリウレタンである請求項1〜4いずれか1つに記載の磁気記録媒体。
  6. 強磁性粉末が長軸長が20〜50nmの針状強磁性体、板径10〜50nmの平板状磁性体、または、直径10〜50nmの球状または楕円状磁性体である請求項1〜5いずれか1つに記載の磁気記録媒体。
JP2005271799A 2005-09-20 2005-09-20 磁気記録媒体 Pending JP2007087442A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005271799A JP2007087442A (ja) 2005-09-20 2005-09-20 磁気記録媒体
US11/520,621 US7641991B2 (en) 2005-09-20 2006-09-14 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005271799A JP2007087442A (ja) 2005-09-20 2005-09-20 磁気記録媒体

Publications (1)

Publication Number Publication Date
JP2007087442A true JP2007087442A (ja) 2007-04-05

Family

ID=37884543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005271799A Pending JP2007087442A (ja) 2005-09-20 2005-09-20 磁気記録媒体

Country Status (2)

Country Link
US (1) US7641991B2 (ja)
JP (1) JP2007087442A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009015962A (ja) * 2007-07-04 2009-01-22 Fujifilm Corp 磁気記録媒体及び磁気記録媒体の製造方法
JP2012074097A (ja) * 2010-09-28 2012-04-12 Fujifilm Corp 磁気記録媒体用結合剤組成物、磁気記録媒体およびその製造方法
JP2020139154A (ja) * 2019-02-26 2020-09-03 株式会社クラレ ポリウレタン膜状物及びポリウレタン膜状物の表面加工処理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129150A (ja) * 2003-10-23 2005-05-19 Fuji Photo Film Co Ltd 磁気記録媒体
JP2007305257A (ja) * 2006-05-12 2007-11-22 Fujifilm Corp 磁気記録媒体およびその製造方法
JP5037243B2 (ja) * 2007-07-06 2012-09-26 富士フイルム株式会社 界面結合剤、該界面結合剤を含有するレジスト組成物、及び該界面結合剤からなる層を有する磁気記録媒体形成用積層体、並びに該界面結合剤を用いた磁気記録媒体の製造方法、及び該製造方法により製造された磁気記録媒体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457816A (ja) * 1990-06-28 1992-02-25 Dainippon Ink & Chem Inc 磁気記録媒体の結合剤及びその磁気記録媒体
JPH1186266A (ja) * 1997-09-16 1999-03-30 Kao Corp 磁気記録媒体
JP2004296010A (ja) * 2003-03-27 2004-10-21 Fuji Photo Film Co Ltd 磁気記録媒体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2640275B2 (ja) * 1989-07-27 1997-08-13 富士写真フイルム株式会社 磁気記録媒体
JPH0570757A (ja) 1991-03-15 1993-03-23 Yokohama Rubber Co Ltd:The 接着剤組成物
JPH06162487A (ja) 1992-03-30 1994-06-10 Konica Corp 磁気記録媒体
JP3494309B2 (ja) * 1994-04-07 2004-02-09 富士写真フイルム株式会社 磁気記録媒体
JP3659262B2 (ja) 1994-06-30 2005-06-15 Tdk株式会社 磁気記録媒体
JP4046367B2 (ja) 1995-08-30 2008-02-13 富士フイルム株式会社 磁気記録媒体
JP3672403B2 (ja) * 1996-12-18 2005-07-20 Tdk株式会社 磁気記録媒体
JP3922664B2 (ja) 1997-05-21 2007-05-30 富士フイルム株式会社 磁気記録媒体
JP3031377B1 (ja) 1999-05-07 2000-04-10 日本ポリウレタン工業株式会社 磁気記録媒体用バインダ―及びこれを用いた磁気記録媒体
JP2001126230A (ja) 1999-10-29 2001-05-11 Sony Corp 磁気記録媒体及びその製造方法
US6610426B2 (en) * 2000-10-12 2003-08-26 Fuji Photo Film Co., Ltd. Magnetic recording medium containing a binder of trifunctional or higher aliphatic (meth) acrylate compound
JP4128735B2 (ja) * 2000-10-26 2008-07-30 富士フイルム株式会社 磁気テープ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457816A (ja) * 1990-06-28 1992-02-25 Dainippon Ink & Chem Inc 磁気記録媒体の結合剤及びその磁気記録媒体
JPH1186266A (ja) * 1997-09-16 1999-03-30 Kao Corp 磁気記録媒体
JP2004296010A (ja) * 2003-03-27 2004-10-21 Fuji Photo Film Co Ltd 磁気記録媒体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009015962A (ja) * 2007-07-04 2009-01-22 Fujifilm Corp 磁気記録媒体及び磁気記録媒体の製造方法
JP2012074097A (ja) * 2010-09-28 2012-04-12 Fujifilm Corp 磁気記録媒体用結合剤組成物、磁気記録媒体およびその製造方法
JP2020139154A (ja) * 2019-02-26 2020-09-03 株式会社クラレ ポリウレタン膜状物及びポリウレタン膜状物の表面加工処理方法
JP7464406B2 (ja) 2019-02-26 2024-04-09 株式会社クラレ ポリウレタン膜状物及びポリウレタン膜状物の表面加工処理方法

Also Published As

Publication number Publication date
US7641991B2 (en) 2010-01-05
US20070065684A1 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP2007273036A (ja) 磁気記録媒体
JP2009245515A (ja) 磁気記録媒体、磁性粉末用表面改質剤およびこれを含む磁性塗料
US7641991B2 (en) Magnetic recording medium
JP2005129184A (ja) 磁気記録媒体
JP2003132531A (ja) 磁気記録媒体の製造方法および磁気記録媒体
JP4396371B2 (ja) 磁気記録媒体
US20060063041A1 (en) Magnetic recording medium
JP4321461B2 (ja) 磁気記録媒体
JP4534574B2 (ja) 磁気記録媒体
JP2006309818A (ja) 磁気記録媒体
US20050112409A1 (en) Magnetic recording medium
JP2006040472A (ja) 磁気記録媒体
JP4273992B2 (ja) 磁気記録媒体
JP2006048897A (ja) 磁気記録媒体
JP2008181600A (ja) 磁気記録媒体
JP4228952B2 (ja) 磁気記録媒体
JP2005129141A (ja) 磁気記録媒体及びその製造方法
JP4385805B2 (ja) 磁気記録媒体
JP2006099921A (ja) 磁気記録媒体および磁気記録再生方法
JP2004296010A (ja) 磁気記録媒体
JP2009087443A (ja) 磁気記録媒体
JP4955630B2 (ja) 組成物、磁気記録媒体及びその製造方法
JP4453668B2 (ja) 磁気記録媒体
JP2009048678A (ja) 磁気記録媒体
JP2006309864A (ja) 磁気記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406