JP2006032946A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2006032946A
JP2006032946A JP2005195116A JP2005195116A JP2006032946A JP 2006032946 A JP2006032946 A JP 2006032946A JP 2005195116 A JP2005195116 A JP 2005195116A JP 2005195116 A JP2005195116 A JP 2005195116A JP 2006032946 A JP2006032946 A JP 2006032946A
Authority
JP
Japan
Prior art keywords
film
pattern
semiconductor device
manufacturing
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005195116A
Other languages
English (en)
Inventor
Sung-Un Kwean
成雲 權
Jae-Seung Hwang
在晟 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2006032946A publication Critical patent/JP2006032946A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Element Separation (AREA)

Abstract

【課題】 自己整列工程を実施しながら、トンネル酸化膜の形成で発生するシニング現象を減少させフローティングゲートの形成でギャップフィルマージンを十分に確保し、簡単な工程の実施で獲得可能である半導体装置及びその製造方法を提供する。
【解決手段】 半導体装置は、基板10に形成されたトレンチ11を埋立し表面の中心部位にはリセスパターン12aを有する素子分離膜12を備える。そして、基板10の前記素子分離膜12を除いた部位上に形成されるトンネル酸化膜パターン14と、前記トンネル酸化膜パターン14及び前記素子分離膜12の上に形成され、前記素子分離膜12を部分的に露出させる第1ゲート電極18とを備える。また、前記第1ゲート電極18の表面上と前記素子分離膜12の表面上に連続的に形成された誘電膜20、及び前記誘電膜20を有する結果物上に形成された第3導電物からなる第2ゲート電極22を備える。
【選択図】 図1

Description

本発明は半導体装置及びその製造方法に関し、より詳細には一度データを入力すると時間が経ってもその状態を保持しながら電気的にデータの入出力が可能な半導体装置及びその製造方法に関する。
半導体装置中で、既存のフレッシュメモリ装置の製造では、トレンチを形成した後、前記トレンチを有する結果物上に酸化膜とポリシリコン膜を形成する。そして、パターニングを実施して、前記酸化膜とポリシリコン膜をトンネル酸化膜とフローティングゲートに形成した後、前記フローティングゲート上に誘電膜とコントロールゲートを形成する。
しかし、前記酸化膜とポリシリコン膜のパターニングのためのフォトリソグラフィ工程を実施する際、ミスアラインが頻繁に発生する。特に、70nm以下の微細パターンを要求するフレッシュメモリ装置の製造においては、前記ミスアラインがさらに頻繁に発生する。このように前記ミスアラインが発生すると、後続工程を実施するときアクティブ領域が損傷を受ける状況(pitting)が発生する。
これにより、最近のフレッシュメモリ装置の製造では、フローティングゲートを形成するためのアクティブ領域とトレンチ素子分離膜を形成するためのフィールド領域を同時に画定する自己整列工程(self aligned process)を実施して前記ミスアラインの発生を減少させている。
具体的には、基板上にパッド酸化膜とハードマスク膜を順次に形成した後、パターニングを実施してハードマスク膜パターンとパッド酸化膜パターンを形成する。そして、前記パターニングによって露出された基板にトレンチを形成する。その結果、前記アクティブ領域とフィールド領域が同時に画定される。続いて、前記基板上に絶縁物質からなる薄膜を形成する。このとき、前記トレンチには前記絶縁物質が充分に埋立される。続けて、前記ハードマスク膜パターンが露出されるまで前記薄膜を除去する。そして、露出された前記ハードマスク膜パターンとパッド酸化膜パターンを順次に除去した後、前記除去によって露出された基板上にトンネル酸化膜とポリシリコン膜を形成する。続けて、前記薄膜の表面が露出されるまで前記ポリシリコン膜を除去した後、前記トンネル酸化膜とポリシリコン膜からなる構造物の間に露出される薄膜の一部を除去する。これにより、前記トレンチには前記絶縁物質が充分に埋立された素子分離膜が形成され、前記基板上には前記ポリシリコン膜からなるフローティングゲートが形成される。そして、前記フローティングゲートが形成された結果物上に誘電膜とコントロールゲートを形成した後、前記コントロールゲートと誘電膜をパターニングする。
このように、前記自己整列工程を実施することでミスアラインマージンを充分に確保する。しかし、前記トンネル酸化膜の形成において、前記アクティブ領域とトレンチが隣接する領域に形成される前記トンネル酸化膜の厚さが薄くなる現象が頻繁に発生する。また、前記ポリシリコン膜の形成でもギャップフィルのためのマージン不足に起因して、前記ポリシリコン膜内にボイドが頻繁に発生する。
これにより、より最近には、前記ポリシリコン膜を二度の工程を実施することにより形成することで、トンネル酸化膜のシニング現象減少とポリシリコン膜のギャップフィルマージンを確保している。
具体的には、基板上にトンネル酸化膜、第1ポリシリコン膜及びハードマスク膜を順次に形成した後、パターニングを実施してハードマスク膜パターン、第1ポリシリコン膜パターン及びトンネル酸化膜パターンを形成する。そして、前記パターニングによって露出された基板にトレンチを形成する。その結果、前記アクティブ領域とフィールド領域が同時に画定される。続いて、前記基板上に絶縁物質からなる薄膜を形成する。このとき、前記トレンチには前記絶縁物質が充分に埋立される。続けて、前記ハードマスク膜パターンが露出されるまで前記薄膜を除去する。そして、露出された前記ハードマスク膜パターンを除去した後、前記除去によって露出された第1ポリシリコン膜上に第2ポリシリコン膜を形成する。続けて、前記薄膜の表面が露出されるまで前記第2ポリシリコン膜を除去する。そして、前記薄膜の一部を除去することで前記トレンチには前記絶縁物質が充分に埋立された素子分離膜が形成され、前記基板上には前記第1ポリシリコン膜パターンと第2ポリシリコン膜からなるフローティングゲートが形成される。そして、前記フローティングゲートが形成された結果物上に誘電膜とコントロールゲートを形成した後、前記コントロールゲートと誘電膜をパターニングする。
前記フレッシュメモリ装置の製造において、前記第1ポリシリコン膜パターンと第2ポリシリコン膜からなるフローティングゲートを形成する方法に関する一例が特許文献1、特許文献2などに開示されている。特に、特許文献2に開示された発明は本出願人が2000年9月8日に特許出願第09/658,383号として米国特許庁に特許出願し、2003年9月16日に特許第6,620,681号として米国特許庁から特許された発明と同一である。
しかし、前記第1ポリシリコン膜パターンと第2ポリシリコン膜からなるフローティングゲートを形成する方法では多少複雑な工程を実施するという問題点を有する。
韓国特許出願公開第2003−94443号明細書 韓国特許第369,236号明細書
本発明の第1目的は、自己整列工程を実施しながら、トンネル酸化膜の形成で発生するシニング現象を減少させフローティングゲートの形成でギャップフィルマージンを十分に確保すると同時に、簡単な工程の実施によって獲得可能である半導体装置を提供することにある。
本発明の第2目的は、自己整列工程を実施しながら、トンネル酸化膜の形成で発生するシニング現象を減少させフローティングゲートの形成でギャップフィルマージンを充分に確保すると同時に、簡単な工程の実施が可能である半導体装置の製造方法を提供することにある。
前記第1目的を達成するための本発明の半導体装置は、基板に形成されたトレンチを埋立し表面の中心部位にリセスパターンを有する素子分離膜を備える。そして、前記基板の前記素子分離膜を除いた部位上に形成されるトンネル酸化膜パターンと、前記素子分離膜を露出させ前記トンネル酸化膜パターン上に形成された第1導電物からなる第1導電膜パターン、及び前記第1導電膜パターンの側壁に形成された第2導電物からなるスペーサを有する第1ゲート電極とを備える。また、前記第1ゲート電極の表面上と前記素子分離膜の表面上に連続的に形成された誘電膜、及び前記誘電膜を有する結果物上に形成された第3導電物からなる第2ゲート電極を備える。
前記第2目的を達成するための本発明の半導体装置の製造方法では、基板上にトンネル酸化膜、第1導電物からなる第1導電膜、及びハードマスク膜を順次に形成した後、パターニングを実施して、前記基板の表面を露出させトンネル酸化膜パターン、第1導電膜パターン及びハードマスク膜パターンからなるパターン構造物を形成する。そして、前記露出された基板をエッチングしてトレンチを形成した後、前記トレンチに絶縁物質からなる素子分離膜を形成する。続いて、前記パターン構造物の側壁に第2導電物からなるスペーサを形成しながら、前記スペーサの間に露出される素子分離膜の一部を除去してリセスパターンを形成する。続けて、前記ハードマスク膜パターンを除去して前記第1導電膜パターンとスペーサからなる第1ゲート電極を形成する。そして、前記第1ゲート電極の表面上と前記素子分離膜の表面上に誘電膜を連続的に形成した後、前記誘電膜を有する結果物上に第3導電物からなる第2ゲート電極を形成する。
前記第2目的を達成するための本発明の半導体装置の製造方法では、基板上にトンネル酸化膜、第1ポリシリコン膜及びハードマスク膜を順次に形成した後、パターニングを実施して、前記基板の表面を露出させトンネル酸化膜パターン、第1ポリシリコン膜パターン及びハードマスク膜パターンからなるパターン構造物を形成する。続いて、前記露出された基板をエッチングしてトレンチを形成し、前記パターン構造物の間の空間、及び前記トレンチに絶縁物質からなるトレンチ構造物を形成した後、前記トレンチ構造物の一部を除去して素子分離膜を形成する。続けて、前記素子分離膜が形成されたパターン構造物上に第2ポリシリコン膜を形成した後、前記ハードマスク膜パターンが露出されるまで前記第2ポリシリコン膜をエッチングして前記パターン構造物の側壁にスペーサを形成しながら、前記スペーサの間に露出された素子分離膜の一部をエッチングしてリセスパターンを形成する。続いて、前記ハードマスク膜パターンを除去して前記第1ポリシリコン膜パターンとスペーサからなる第1ゲート電極を形成する。そして、前記第1ゲート電極の表面上と前記素子分離膜の表面上に誘電膜を連続的に形成した後、前記誘電膜を有する結果物上に第3ポリシリコン膜からなる第2ゲート電極を形成する。
このように、本発明によるとトンネル酸化膜を基板全面に形成するのでシニング現象は充分に減少される。そして、フローティングゲートに使用するための第1ゲート電極として第1ポリシリコン膜パターンが単一薄膜の構造を有するので、ギャップフィルマージンに対する考慮を省略することでボイドの発生が顕著に減少される。また、前記第1ゲート電極としてスペーサを形成するので、セル領域が占める面積を拡張させることでより優れた電気的特性の確保が可能である。また、前記スペーサはアクティブ領域を充分に保護するので、後続するパターニングのためのエッチング工程でアクティブ領域が損傷されることを防止することができる。さらに、前記素子分離膜にリセスパターンを形成することによってフローティングゲートの間での電子干渉を充分に遮断することができ、誘電膜が占める面積をより広く確保することができるため、高いカップリング係数の保持が可能である。
以下、図面を参照して本発明の望ましい一実施例を詳細に説明する。
図1は本発明の一実施例による半導体装置を概略的に示す断面図である。
図1に示すように、トレンチ11が形成された基板10がある。前記基板10の例としてはシリコン基板、SOI基板などを挙げることができる。
そして、前記基板10にトレンチ11が形成されているので、素子分離膜12はトレンチ素子分離膜であることが望ましい。また、前記素子分離膜12は充分な埋立特性を考慮しなければならないので、埋立特性の優れた高密度プラズマ酸化膜からなることが望ましい。特に、前記素子分離膜12はそれの表面中心部位にリセスパターン12aを有する。前記リセスパターン12aが約200Å未満の深さを有する場合、第1ゲート電極であるフローティングゲートの間で電子干渉を充分に遮断することができないので望ましくなく、前記リセスパターン12aが約300Åを超過する深さを有する場合、前記リセスパターン12aを形成するための工程での不良が発生するので望ましくない。従って、前記リセスパターン12aは表面から約200Åないし300Åの深さを有することが望ましい。
前記基板10上にはトンネル酸化膜パターン14が形成されている。前記トンネル酸化膜パターン14は基板10の前記素子分離膜12を除いた部位上に形成される。即ち、前記トンネル酸化膜パターン14はアクティブ領域上に形成される。特に、前記トンネル酸化膜パターン14は熱酸化法またはラジカル酸化法などを実施して形成されるシリコン酸化膜をパターニングすることで獲得することがのぞましい。また、前記トンネル酸化膜パターン14は約10ないし500Åの厚さを有するように形成することが望ましく、約50ないし300Åの厚さを有するように形成することがより望ましく、約50ないし200Åの厚さを有するように形成することがさらに望ましく、約100Å内外の厚さを有するように形成することが最も望ましい。
前記トンネル酸化膜パターン14上には第1ゲート電極18としての第1導電膜パターン16が形成されている。前記第1導電膜パターン16はポリシリコンのような第1導電物からなることが望ましい。前記第1導電物の他の例としては、金属、窒化物などを挙げることができる。これにより、前記第1導電膜パターン16は熱分解法を実施して形成された第1導電膜であるポリシリコン膜をパターニングすることで獲得することが望ましい。
具体的に、前記第1導電膜パターン16として獲得するためのポリシリコン膜は、積層が行われる第1工程と不純物をドーピングする第2工程を実施して形成する。前記第1工程でプラズマ増大化学気相蒸着工程を実施して前記ポリシリコン膜を形成する場合、前記熱分解法を通じて形成されるポリシリコン膜が有する電気的特性より多少劣るので望ましくない。従って、前記第1工程ではファーネスを使用したシラン(SiH4)ガスの熱分解を実施することが望ましい。前記シランガスの例としては100%シランガス、窒素で希釈した20ないし30%のシランガスなどを挙げることができる。また、前記第1工程での温度が約500℃未満の場合には前記ポリシリコン膜が積層される速度が遅いので望ましくなく、約650℃を超過する場合にはシランガスの枯渇が発生し、前記ポリシリコン膜の積層均一度が悪くなるので望ましくない。従って、前記第1工程は約500ないし650℃の温度で実施することが望ましい。特に、前記温度範囲内で第1工程を実施する場合、約25ないし150Paの圧力で良好な積層速度を示す。
前記第2工程の例としては前記第1工程を実施した後実施する拡散工程、イオン注入工程、前記第1工程を実施する途中不純物ガスを添加することで不純物をドーピングするイン−サイチュドーピング工程などを挙げることができる。特に、第2工程を実施することによってドーピングされる不純物の例としては燐、砒素、ボロン、インジウムなどを挙げることができる。即ち、P−型のゲート電極を所望する場合には燐をドーピングし、N−型のゲート電極を所望する場合にはボロンをドーピングする。
また、前記第1ゲート電極としての第1導電膜パターン16は単一薄膜の構造を有する。従って、前記第1導電膜パターン16を形成するとき、ギャップフィルマージンに対する考慮の省略が可能である。従って、前記第1導電膜パターン16の厚さは約700ないし1500Åの厚さを有することが望ましい。また、前記第1導電膜パターン16の厚さは約800ないし1500Åであることが望ましく、約800ないし1200Åであることがより望ましく、約1000Å内外であることが最も望ましい。特に、前記第1導電膜パターン16の厚さは後続する工程の実施によって多少減少されるので、これを適切に考慮してその厚さを決定することが望ましい。
前記第1導電膜パターン16の側壁には第1ゲート電極18としてのスペーサ17が形成されている。前記スペーサ17は第1導電膜パターン16と同様にポリシリコンのような第2導電物からなることが望ましい。前記第2導電物の例としては金属、金属酸化物などを挙げることができる。これにより、前記スペーサ17は熱分解法を実施して形成されたポリシリコン膜をパターニングすることで獲得することが望ましい。従って、前記スペーサ17を形成するために使用されるポリシリコン膜の形成方法は前記第1導電膜パターン16を形成するための使用されるポリシリコン膜の形成方法と同一の方法で行われることが望ましい。特に、前記スペーサ17は前記素子分離膜12のリセスパターン12aを除いた領域に形成される。これは、前記スペーサ17が、前記リセスパターン12aを形成するときエッチングマスクの役割をするからである。
前記第1導電膜パターン16がポリシリコンではなく金属または金属窒化物などからなる場合には、前記スペーサ17も金属または金属窒化物からなることが望ましい。即ち、前記スペーサ17は前記第1導電膜パターン16と同一の物質からなることが望ましい。
第1ゲート電極18の表面上と素子分離膜12の表面上には誘電膜20が連続的に形成されている。即ち、前記第1導電膜パターン16とスペーサ17及びリセスパターン12aの表面上に誘電膜20が連続的に形成されている。前記誘電膜20として形成するための物質の例としては、酸化物−窒化物−酸化物、金属酸化物などを挙げることができる。特に、前記誘電膜20は前記スペーサ17とリセスパターン12aの表面上に連続的に形成されるので、前記誘電膜20が形成される表面積が既存に比べて拡張されるという長所がある。従って、フレッシュメモリ装置でのカップリング係数が高くなるという効果を得ることができる。
前記誘電膜20を含む結果物上には第2ゲート電極22としての第2導電膜が形成されている。前記第2導電膜は第1導電膜パターン16と同様にポリシリコンのような第3導電膜からなることが望ましい。前記第3導電物の他の例としては、金属、金属窒化物などを挙げることができる。これにより、前記第2導電膜は熱分解法を実施して形成されたポリシリコン膜であることが望ましい。従って、前記第2ゲート電極22である第2導電膜として形成するためのポリシリコン膜の形成方法は前記第1導電膜パターン16として形成するためのポリシリコンの形成方法と同一の方法からなることが望ましい。
前記第1導電膜パターン16がポリシリコンではなく金属または金属窒化物からなる場合には前記第2ゲート電極22としての第2導電膜も金属または金属窒化物からなることが望ましい。即ち、前記第2導電膜は前記第1導電膜パターン16と同一の物質からなることが望ましい。
このように、本実施例においての半導体装置は、第1ゲート電極18と誘電膜20及び第2ゲート電極22を含む。従って、前記半導体装置は第1ゲート電極18がフローティングゲートに該当し、前記第2ゲート電極22がコントロールゲートに該当するのでフレッシュメモリ装置であることが望ましい。特に、前記半導体装置ではフローティングゲートである第1ゲート電極18にスペーサ17を含ませ、素子分離膜12にリセスパターン12aを形成することで、誘電膜20が形成される表面積の拡張が可能であり、フローティングゲートの間での電子干渉を十分に遮断させる。従って、電気的特性に優れたフレッシュメモリ装置の提供が行われる。また、前記第1ゲート電極16として第1ポリシリコン膜パターンが単一薄膜の構造を有するので、ギャップフィルマージンに対する考慮を省略することでボイドの発生が顕著に減少される。また、前記第1ゲート電極18としてスペーサ17を形成するので、セル領域が占める面積を拡張させることでより優れた電気的特性を有するフレッシュメモリ装置の提供が可能である。
以下、本発明の一実施例による半導体装置の製造方法を添付した図面に基づいて詳細に説明する。
図2ないし図9は本発明の一実施例による半導体装置の製造方法を概略的に示す断面図である。
図2に示すように、半導体装置を形成するためのシリコン基板を準備する。そして、前記基板100上にトンネル酸化膜105を形成する。特に、前記トンネル酸化膜105は基板100全面に形成される。前記トンネル酸化膜105は熱酸化法を実施して形成されるシリコン酸化膜であることが望ましく、約100Å内外の厚さを有するように形成することが望ましい。
このように、本実施例においては素子分離膜を形成する以前に前記基板100の全面にトンネル酸化膜105を均一に形成することで、アクティブ領域と素子分離膜とが隣接する領域でトンネル酸化膜105が薄くなる現象を充分に減少することができる。
続いて、前記トンネル酸化膜105上に第1ゲート電極に形成するための第1ポリシリコン膜110を形成する。他にも、前記第1ポリシリコン膜110の代わりに金属膜または金属窒化膜などを形成することもできる。特に、前記第1ポリシリコン膜110はそれの厚さが約1200Åになるように形成することが望ましい。これは、後続工程の実施によって前記第1ポリシリコン膜110の厚さが減少されることを考慮したものであって、前記後続工程を実施して獲得される第1ポリシリコン膜パターンが約1000Åの厚さを有することが望ましいからである。即ち、前記第1ポリシリコン膜110を形成した後、後続工程を実施することによって前記第1ポリシリコン膜110の厚さが約200Å減少されると考慮した結果である。
具体的に、前記第1ポリシリコン膜110は積層が行われる第1工程と、不純物をドーピングする第2工程を実施して形成する。前記第1工程では約500ないし650℃の温度に組成されたファーネスで100%シラン(SiH4)ガス、または窒素で希釈した20ないし30%のシランガスの熱分解を実施することが望ましい。特に、前記第1工程を実施するとき前記ファーネスは約25ないし150Paの圧力を有するように工程条件が調整される。前記第2工程としては第1工程を実施した後イオン注入を実施することが望ましい。これは、前記イオン注入が低い工程温度でもその実施が可能であるからである。他にも、前記第2工程として、前記第1工程を実施した後拡散を実施するか、前記第1工程を実施する途中不純物ガスを添加することで不純物をドーピングするインサイチュドーピングを実施することができる。
このように、本実施例においては前記第1ポリシリコン膜110が約1200Åの厚さを有する単一薄膜の構造を有する。従って、前記第1ポリシリコン膜110を加工して獲得される第1ゲート電極としての第1ポリシリコン膜パターンも単一薄膜の構造を有する。従って、前記第1ポリシリコン膜110を形成するときギャップフィルマージンに対する考慮を省略することができる。その結果、ボイドの発生なしに緻密な構造を有する第1ポリシリコン膜110の形成が可能である。
続けて、前記第1ポリシリコン膜110上にハードマスク膜115を形成する。前記ハードマスク膜115は基板100にトレンチを形成する時エッチングマスクとして使用する。従って、前記ハードマスク膜115の一例としては、シリコン窒化膜、中温酸化膜(MTO)などを挙げることができる。特に、前記ハードマスク膜115は前記シリコン窒化膜と中温酸化膜が順次に積層された多層膜であることが望ましい。
また、後続工程でのパターニングでフォトリソグラフィ工程を選択する場合、前記フォトリソグラフィ工程を円滑に実施するために前記ハードマスク膜115上に反射防止膜(図示せず)としてシリコン酸窒化膜を形成することもできる。
図3に示すように、パターニングを実施して、前記基板100を露出させながらトンネル酸化膜パターン105a、第1ポリシリコン膜パターン110a及びハードマスク膜パターン115aで構成されるパターン構造物117を形成する。前記ハードマスク膜パターン115aはシリコン窒化膜パターン及び中温酸化膜パターンからなる。
ここで、前記パターニングはフォトレジストパターンをマスクとして使用したフォトリソグラフィ工程であることが望ましい。具体的に、前記ハードマスク膜115上にフォトレジスト膜を形成した後、露光及び現象を実施してフォトレジストパターンを形成する。続いて、前記フォトレジストパターンをエッチングマスクとして使用したエッチングを実施して、前記パターン構造物117を形成する。そして、前記パターン構造物117上に残留するフォトレジストパターンを除去する。
続けて、前記パターン構造物117をエッチングマスクとして使用して、前記露出された基板100をエッチングする。その結果、前記基板100にはトレンチ120が形成される。特に、前記トレンチ120を形成することで、前記パターン構造物117が形成された領域はアクティブ領域に画定される。即ち、自己整列工程を実施して、フィールド領域に形成するためのトレンチ120とアクティブ領域を同時に画定する。従って、前記トレンチ120を形成するとき充分なアラインマージンの確保が可能である。
ここで、前記パターン構造物117を形成した後フォトレジストパターンを除去するが、前記フォトレジストパターンを継続的に使用することもできる。即ち、フォトレジストパターンを前記トレンチ120を形成するときエッチングマスクとして使用した後除去してもよい。ただ、前記フォトレジストパターンをトレンチ120を形成するためのエッチングマスクとして使用する場合、前記トレンチ120内にフォトレジストパターンの残留物などが残留することが懸念である。
そして、前記トレンチ120を形成した後、前記トレンチ120の側壁に加えられた損傷などを補償するために前記トレンチ120の側壁を酸化させる工程などを実施することができる。
図4に示すように、前記トレンチ120を有する結果物上に絶縁物質からなるトレンチ構造物122を形成する。このとき、前記トレンチ構造物122の絶縁物質は前記パターン構造物117の間の空間、及びそれの下に位置するトレンチ120に充分に埋立される。特に、前記トレンチ構造物122として埋立特性に優れた高密度プラズマ酸化膜を使用すると、前記絶縁物質より緻密に前記トレンチ122を埋立することができる。前記パターン構造物117の間の空間、及びトレンチ120に前記トレンチ構造物122を充分に埋立させるためには、前記トレンチ構造物122を前記パターン構造物117上部にも形成する。
従って、化学機械的研磨のような除去工程を実施して前記ハードマスク膜パターン115aが露出されるまで前記パターン構造物117上部を研磨する。これにより、前記パターン構造物117の間の空間、及びトレンチ120には絶縁物質からなるトレンチ構造物122が形成される。
図5に示すように、前記トレンチ構造物122の一部分を除去する。前記トレンチ構造物122の除去は主にトレンチ構造物122の絶縁物質と前記ハードマスク膜パターン115aが有するエッチング選択比を用いたエッチング工程によって達成される。即ち、前記ハードマスク膜パターン115aは殆どエッチングされず、前記トレンチ構造物122のみが選択的に除去されるエッチング液を使用したエッチングを実施したのである。例えば、前記ハードマスク膜パターン115aのシリコン窒化膜パターンと前記トレンチ構造物122の高密度プラズマ酸化膜が有するエッチング選択比を用いる。
これにより、前記トレンチ120には前記絶縁物質が十分に埋立された素子分離膜122aが形成される。素子分離膜122aの上部表面が前記トンネル酸化膜パターン105aの表面より下に位置する場合、後続するパターニングのためのエッチング工程でアクティブ領域が損傷される状況が頻繁に発生する。従って、前記素子分離膜122aの上部表面は前記トンネル酸化膜パターン105aの表面と少なくとも同じ高さを有することが望ましい。従って、前記トレンチ構造物122を除去するときエッチング速度の適切な制御が必要である。
図6に示すように、前記素子分離膜122aが形成されたパターン構造物117上に第2ポリシリコン膜125を形成する。前記第2ポリシリコン膜125の形成方法はそれが有する厚さを除いては前記第1ポリシリコン膜110の形成方法と同一である。前記第1ポリシリコン膜110として金属膜または金属窒化膜を選択した場合には前記第2ポリシリコン膜125として金属膜または金属窒化膜を選択することが望ましい。
図7に示すように、前記パターン構造物117のハードマスク膜パターン115aが露出されるまで前記第2ポリシリコン膜125を除去する。このとき、前記第2ポリシリコン膜125の除去は前記第2ポリシリコン膜125と前記ハードマスク膜パターン115aのエッチング選択比を用いたエッチングによって行われる。これにより、前記パターン構造物117の側壁には前記第2ポリシリコン膜125からなるスペーサ125aが形成される。
また、前記スペーサ125をが形成しながら、前記スペーサ125aの間に露出される素子分離膜122aの一部を除去する。ここでも、前記露出される素子分離膜122aの一部除去は前記素子分離膜122aと前記ハードマスク膜パターン115aが有するエッチング選択比を用いたエッチングによって行われる。これにより、前記素子分離膜122aの表面にはリセスパターン124が形成される。即ち、素子分離膜122aの前記スペーサ125aが形成される部分を除いた部位の表面にリセスパターン124が形成される。このとき、約300Åを超過する深さで前記リセスパターン124が形成される場合には、前記ハードマスク膜パターン115aがエッチングマスクの役割を充分にすることができないので望ましくなく、約200Å未満の深さで前記リセスパターン124が形成される場合には、獲得されるフローティングゲートの間で充分な電子干渉を遮断することができないので望ましくない。従って、リセスパターン124の形成でも前記リセスパターン124が約200ないし300Åの深さを有するようにエッチング速度を制御する。
また、本実施例においては前記パターン構造物117のハードマスク膜パターン115aが有するエッチング選択比を用いて前記スペーサ125aとリセスパターン124を形成するが、特に前記リセスパターン124の場合には他の方法の工程を実施してもそれの形成が可能である。例えば、前記スペーサ125aを形成した後、ハードマスク膜パターン115aを除去する。そして、フォトレジストパターンを適切に形成した後、素子分離膜122aを部分的に除去することでリセスパターン124を形成する方法がある。この場合には、前記スペーサ125aの高さを前記パターン構造物117の高さより高く確保することもできる。しかし、前記方法では複雑な工程の実施が要求される。
図8に示すように、前記ハードマスク膜パターン115aを除去する。その結果、前記第1ポリシリコン膜パターン110aが露出される。しかし、前記ハードマスク膜パターン115aを除去するとき前記第1ポリシリコン膜パターン110aも一部共に除去される。この場合、先行工程で第1ポリシリコン膜110を約1200Åの厚さを有するように形成したので、前記第1ポリシリコン膜パターン110aが一部共に除去されても前記第1ポリシリコン膜パターン110aは約1000Åの厚さを確保可能である。
このように、前記ハードマスク膜パターン115aを除去することで、第1ゲート電極130として第1ポリシリコン膜パターン110aとスペーサ125aが形成される。
特に、本実施例において、前記第1ゲート電極130としての第1ポリシリコン膜パターン110aは単一薄膜の構造を有する。従って、前記第1ポリシリコン膜パターン110aはより緻密な構造を有する。これは、第1ゲート電極130が有する電気的特性を向上させる効果がある。また、前記第1ゲート電極130としてスペーサ125aを形成するので、セル領域が示す面積を拡張させることでより優れた電気的特性が確保可能である。また、前記スペーサ125aはアクティブ領域を充分に保護するので、後続するパターニングのためのエッチング工程でアクティブ領域が損傷されることが防止することができる。そして、前記リセスパターン124を形成することで、フローティングゲートの間での電子干渉を遮断することができ、誘電膜が形成される表面積を拡張させるので、高いカップリング係数の確保が可能である。
フレッシュメモリ装置の製造において、前記第1ゲート電極としてスペーサを形成する方法に関する一例は、特許文献3、特許文献4、特許文献5などに開示されている。
しかし、特許文献3、特許文献4、特許文献5では、単純にスペーサを形成する工程に関してのみ開示されている。
(特許文献3) 韓国特許出願公開第2002−91984号明細書
(特許文献4) 米国特許第6,326,263号明細書
(特許文献5) 米国特許第6,171,909号明細書
図9に示すように、前記第1ゲート電極130の表面上と前記素子分離膜122aの表面上に誘電膜140を連続的に形成する。即ち、前記第1ポリシリコン膜パターン110aとスペーサ125a、及びリセスパターン124の表面上に誘電膜140を連続的に形成する。前記誘電膜140は主に酸化物−窒化物−酸化物からなることが望ましい。他にも、前記誘電膜140の例としては高誘電率を有する金属酸化膜を挙げることができる。特に、前記高誘電率を有する金属酸化膜の例としてはハフニウム酸化膜、チタン酸化膜などを挙げることができ、これらは原子層積層を実施して形成することが望ましい。
そして、前記誘電膜140を有する結果物上に第2ゲート電極としての第3導電物からなる第3ポリシリコン膜150を形成する。前記第3ポリシリコン膜150もその厚さを異なるようにすることを除いては第1ポリシリコン膜110を形成する方法と同一の方法で形成する。
続いて、前記誘電膜140と第2ゲート電極である第3ポリシリコン膜150をパターニングする。
これにより、前記基板上にフローティングゲートとしての第1ゲート電極、誘電膜、及びコントロールゲートとしての第2ゲート電極を含むフレッシュメモリ装置の構造物が形成される。
(発明の効果)
本発明によると、ミスアラインによる不良を阻止し、トンネル酸化膜のシニング現象を減少させ、フローティングゲートに形成するための薄膜でのボイドの発生を減少させる。また、スペーサを形成することでセル領域が占める面性を拡張させる一方、後続するパターニングのためのエッチング工程でアクティブ領域が損傷されることを防止する。また、リセスパターンを形成することでフローティングゲートの間での電子干渉を充分に遮断し、誘電膜が占める面積をより広く確保することで高いカップリング係数の保持が可能である。
従って、本発明は安定された工程の実施を通じて、電気的特性に優れた半導体装置を獲得することができる。
以上、本発明の実施例を詳細に説明したが、本発明はこれに限定されず、本発明が属する技術分野において通常の知識を有する者であれば、本発明の思想と精神を離れることなく、本発明の実施例を修正または変更できる。
本発明の一実施例による半導体装置を概略的に示す断面図である。 本発明の一実施例による半導体装置の製造方法を概略的に示す断面図である。 本発明の一実施例による半導体装置の製造方法を概略的に示す断面図である。 本発明の一実施例による半導体装置の製造方法を概略的に示す断面図である。 本発明の一実施例による半導体装置の製造方法を概略的に示す断面図である。 本発明の一実施例による半導体装置の製造方法を概略的に示す断面図である。 本発明の一実施例による半導体装置の製造方法を概略的に示す断面図である。 本発明の一実施例による半導体装置の製造方法を概略的に示す断面図である。 本発明の一実施例による半導体装置の製造方法を概略的に示す断面図である。
符号の説明
10、100 基板、11 トレンチ、12 素子分離膜、12a リセスパターン、14 トンネル酸化膜パターン、16 第1導電膜パターン、17 スペーサ、18、130 第1ゲート電極、20 誘電膜、22 第2ゲート電極、105 トンネル酸化膜、105a トンネル酸化膜パターン、110 第1ポリシリコン膜、110a 第1ポリシリコン膜パターン、115 マスク膜、115a ハードマスク膜パターン、117 パターン構造物、120 トレンチ、122 トレンチ構造物、122a 素子分離膜、124 リセスパターン、125 第2ポリシリコン膜、125a スペーサ、140 誘電膜、150 第3ポリシリコン膜

Claims (29)

  1. 基板に形成されたトレンチを埋立し表面の中心部位にリセスパターンを有する素子分離膜と、
    前記基板の前記素子分離膜を除いた部位上に形成されるトンネル酸化膜パターンと、
    前記トンネル酸化膜パターン及び前記素子分離膜の上に形成され、前記素子分離膜を部分的に露出させる第1ゲート電極と、
    前記第1ゲート電極の表面上、及び前記素子分離膜の表面上に連続的に形成された誘電膜と、
    前記誘電膜を有する結果物上に形成された第3導電物からなる第2ゲート電極と、
    を備えることを特徴とする半導体装置。
  2. 前記第1ゲート電極は、前記素子分離膜を露出させトンネル酸化膜パターン上に形成された第1導電物からなる第1導電膜パターンと、前記第1導電膜パターンの側壁に形成された第2導電物からなるスペーサと、を有することを特徴とする請求項1記載の半導体装置。
  3. 前記トンネル酸化膜パターンは、10ないし500Åの厚さを有することを特徴とする請求項2記載の半導体装置。
  4. 前記第1導電膜パターンは、700ないし1500Åの厚さを有することを特徴とする請求項2記載の半導体装置。
  5. 前記リセスパターンは、表面から200ないし300Åの深さを有することを特徴とする請求項2記載の半導体装置。
  6. 前記トンネル酸化膜パターンは、10ないし500Åの厚さを有し、
    前記第1導電膜パターンは700ないし1500Åの厚さを有し、
    前記リセスパターンは表面から200ないし300Åの深さを有することを特徴とする請求項2記載の半導体装置。
  7. 前記第1導電物、前記第2導電物及び前記第3導電物はそれぞれ、ポリシリコンであることを特徴とする請求項2記載の半導体装置。
  8. 前記誘電膜は、酸化物−窒化物−酸化物または金属酸化物からなることを特徴とする請求項1記載の半導体装置。
  9. 前記誘電膜は、前記第1ゲート電極及び前記リセスパターンに沿って形成されることを特徴とする請求項1記載の半導体装置。
  10. 基板上にトンネル酸化膜、第1導電物からなる第1導電膜、及びハードマスク膜を順次に形成する段階a)と、
    パターニングを実施し、前記基板の表面を露出させトンネル酸化膜パターン、第1導電膜パターン及びハードマスク膜パターンで構成されるパターン構造物を形成する段階b)と、
    前記露出された基板をエッチングしてトレンチを形成する段階c)と、
    前記トレンチに絶縁物質からなる素子分離膜を形成する段階d)と、
    前記パターン構造物の側壁に第2導電物からなるスペーサを形成しながら、前記スペーサの間に露出される素子分離膜の一部を除去してリセスパターンを形成する段階e)と、
    前記ハードマスク膜パターンを除去し、前記第1導電膜パターン及び前記スペーサからなる第1ゲート電極を形成する段階f)と、
    前記第1ゲート電極の表面上、及び前記素子分離膜の表面上に誘電膜を連続的に形成する段階g)と、
    前記誘電膜を有する結果物上に第3導電物からなる第2ゲート電極を形成する段階h)と、
    を含むことを特徴とする半導体装置の製造方法。
  11. 前記トンネル酸化膜は、10ないし500Åの厚さを有するように形成されることを特徴とする請求項10記載の半導体装置の製造方法。
  12. 前記第1導電膜は700ないし1500Åの厚さを有するように形成されることを特徴とする請求項10記載の半導体装置の製造方法。
  13. 前記第1導電物、前記第2導電物及び前記第3導電物はそれぞれ、ポリシリコンであることを特徴とする請求項10記載の半導体装置の製造方法。
  14. 前記第1導電物、前記第2導電物及び前記第3導電物はそれぞれ、25ないし150Paの圧力条件、及び500ないし650℃の温度条件で行われる第1工程と、不純物をドーピングする第2工程とを実施することにより獲得されることを特徴とする請求項13記載の半導体装置の製造方法。
  15. 前記第1工程では100%シランガス、または窒素で希釈された20ないし30%のシランガスを使用することを特徴とする請求項14記載の半導体装置の製造方法。
  16. 前記第2工程は、前記第1工程を実施した以後に実施される拡散工程またはイオン注入工程、あるいは前記第1工程を実施する途中に不純物ガスを添加することで不純物をドーピングするイン−サイチュドーピング工程であることを特徴とする請求項14記載の半導体装置の製造方法。
  17. 前記段階e)では、前記ハードマスク膜パターンが有するエッチング選択比を用いたエッチング工程を実施することを特徴とする請求項10記載の半導体装置の製造方法。
  18. 前記リセスパターンは、200ないし300Åの深さを有するように形成されることを特徴とする請求項10記載の半導体装置の製造方法。
  19. 前記誘電膜は、酸化物−窒化物−酸化物または金属酸化物からなることを特徴とする請求項10記載の半導体装置の製造方法。
  20. 前記誘電膜は、前記第1ゲート電極及び前記リセスパターンに沿って形成されることを特徴とする請求項10記載の半導体装置の製造方法。
  21. 基板上にトンネル酸化膜、第1ポリシリコン膜及びハードマスク膜を順次に形成する段階a)と、
    パターニングを実施し、前記基板の表面を露出させトンネル酸化膜パターン、第1ポリシリコン膜パターン及びハードマスク膜パターンで構成されるパターン構造物を形成する段階b)と、
    前記露出された基板をエッチングしてトレンチを形成する段階c)と、
    前記パターン構造物の間の空間、及び前記トレンチに絶縁物質からなるトレンチ構造物を形成する段階d)と、
    前記トレンチ構造物の一部を除去して素子分離膜を形成する段階e)と、
    前記素子分離膜が形成されたパターン構造物上に第2ポリシリコン膜を形成する段階f)と、
    前記ハードマスク膜パターンが露出されるまで前記第2ポリシリコン膜をエッチングして前記パターン構造物の側壁にスペーサを形成しながら、前記スペーサの間に露出された素子分離膜の一部をエッチングしてリセスパターンを形成する段階g)と、
    前記ハードマスク膜パターンを除去し、前記第1ポリシリコン膜パターン及び前記スペーサからなる第1ゲート電極を形成する段階h)と、
    前記第1ゲート電極の表面上、及び前記素子分離膜の表面上に誘電膜を連続的に形成する段階i)と、
    前記誘電膜を有する結果物上に第3ポリシリコン膜からなる第2ゲート電極を形成する段階j)と、
    を含むことを特徴とする半導体装置の製造方法。
  22. 前記トンネル酸化膜は、10ないし500Åの厚さを有するように形成されることを特徴とする請求項21記載の半導体装置の製造方法。
  23. 前記第1ポリシリコン膜は、700ないし1500Åの厚さを有するように形成されることを特徴とする請求項21記載の半導体装置の製造方法。
  24. 前記第1ポリシリコン膜、前記第2ポリシリコン膜及び前記第3ポリシリコン膜はそれぞれ、25ないし150Paの圧力条件、及び500ないし650℃の温度条件で行われる第1工程と、不純物をドーピングする第2工程とを実施することにより形成されることを特徴とする請求項21記載の半導体装置の製造方法。
  25. 前記第1工程では100%シランガス、または窒素で希釈された20ないし30%のシランガスを使用することを特徴とする請求項24記載の半導体装置の製造方法。
  26. 前記第2工程は、前記第1工程を実施した後に実施される拡散工程またはイオン注入工程、あるいは前記第1工程を実施する途中に不純物ガスを添加することで不純物をドーピングするイン−サイチュドーピング工程であることを特徴とする請求項24記載の半導体装置の製造方法。
  27. 前記段階g)においてのエッチングでは、前記ハードマスク膜パターンが有するエッチング選択比を用いることを特徴とする請求項21記載の半導体装置の製造方法。
  28. 前記リセスパターンは、200ないし300Åの深さを有するように形成されることを特徴とする請求項21記載の半導体装置の製造方法。
  29. 前記誘電膜は、酸化物−窒化物−酸化物または金属酸化物からなることを特徴とする請求項21記載の半導体装置の製造方法。
JP2005195116A 2004-07-21 2005-07-04 半導体装置及びその製造方法 Pending JP2006032946A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040056856A KR20060008555A (ko) 2004-07-21 2004-07-21 반도체 장치 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
JP2006032946A true JP2006032946A (ja) 2006-02-02

Family

ID=35656228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005195116A Pending JP2006032946A (ja) 2004-07-21 2005-07-04 半導体装置及びその製造方法

Country Status (4)

Country Link
US (1) US20060017093A1 (ja)
JP (1) JP2006032946A (ja)
KR (1) KR20060008555A (ja)
CN (1) CN1725515A (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100729923B1 (ko) * 2005-03-31 2007-06-18 주식회사 하이닉스반도체 스텝 sti 프로파일을 이용한 낸드 플래쉬 메모리 소자의트랜지스터 형성방법
KR100650857B1 (ko) * 2005-12-23 2006-11-28 주식회사 하이닉스반도체 플래쉬 메모리 소자의 제조 방법
JP2007305749A (ja) * 2006-05-10 2007-11-22 Toshiba Corp 半導体装置およびその製造方法
KR100898659B1 (ko) * 2006-08-09 2009-05-22 주식회사 하이닉스반도체 플래쉬 메모리 소자의 제조방법
KR100877002B1 (ko) * 2006-09-28 2009-01-07 주식회사 하이닉스반도체 소노스 구조의 비휘발성 메모리 소자 및 그 제조방법
KR100898678B1 (ko) * 2006-10-31 2009-05-22 주식회사 하이닉스반도체 반도체 소자의 제조방법
KR100922989B1 (ko) * 2007-04-25 2009-10-22 주식회사 하이닉스반도체 플래시 메모리 소자 및 그것의 제조방법
TWI340431B (en) * 2007-06-11 2011-04-11 Nanya Technology Corp Memory structure and method of making the same
KR100894772B1 (ko) * 2007-09-05 2009-04-24 주식회사 하이닉스반도체 반도체 메모리 소자 및 그것의 제조 방법
TW200913169A (en) * 2007-09-13 2009-03-16 Powerchip Semiconductor Corp Method of fabricating flash memory
JP2009278098A (ja) 2008-05-13 2009-11-26 Hynix Semiconductor Inc フラッシュメモリ素子及びその製造方法
KR101038355B1 (ko) * 2008-05-13 2011-06-01 주식회사 하이닉스반도체 플래시 메모리 소자 및 그의 제조 방법
US7947543B2 (en) * 2008-09-25 2011-05-24 Micron Technology, Inc. Recessed gate silicon-on-insulator floating body device with self-aligned lateral isolation
JP2010283127A (ja) * 2009-06-04 2010-12-16 Toshiba Corp 半導体装置およびその製造方法
US8686492B2 (en) * 2010-03-11 2014-04-01 Spansion Llc Non-volatile FINFET memory device and manufacturing method thereof
US8383515B2 (en) * 2010-11-16 2013-02-26 Macronix International Co., Ltd. Methodology for wordline short reduction
CN102201363A (zh) * 2011-05-23 2011-09-28 上海宏力半导体制造有限公司 用于闪存器件的浅沟槽隔离结构形成方法
KR20130070923A (ko) * 2011-12-20 2013-06-28 에스케이하이닉스 주식회사 반도체 장치 제조 방법
CN103681512A (zh) * 2013-11-29 2014-03-26 上海华力微电子有限公司 一种改善小尺寸沟槽内薄膜生长效果的方法
CN105789133B (zh) * 2014-12-24 2019-09-20 上海格易电子有限公司 一种闪存存储单元及制作方法
KR101631199B1 (ko) 2015-10-30 2016-06-16 (주)구방엔지니어링건축사사무소 건축 천정 몰딩
CN106783860A (zh) * 2016-12-21 2017-05-31 武汉新芯集成电路制造有限公司 浅沟槽隔离浮栅结构的制作方法和浮栅型闪存的制作方法
CN108172510A (zh) * 2017-12-22 2018-06-15 武汉新芯集成电路制造有限公司 闪存浮栅的制作方法以及nor闪存
US10360825B1 (en) * 2018-09-24 2019-07-23 Innolux Corporation Flexible electronic device
TWI730677B (zh) * 2020-03-18 2021-06-11 力晶積成電子製造股份有限公司 記憶體元件及其製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707218A (en) * 1986-10-28 1987-11-17 International Business Machines Corporation Lithographic image size reduction
US5496747A (en) * 1993-08-02 1996-03-05 United Microelectronics Corporation Split-gate process for non-volatile memory
TW407381B (en) * 1999-03-01 2000-10-01 United Microelectronics Corp Manufacture of the flash memory cell
US6274485B1 (en) * 1999-10-25 2001-08-14 Chartered Semiconductor Manufacturing Ltd. Method to reduce dishing in metal chemical-mechanical polishing
JP2001176855A (ja) * 1999-12-16 2001-06-29 Tokyo Electron Ltd 基板処理方法および基板処理装置
JP2001196476A (ja) * 2000-01-07 2001-07-19 Toshiba Corp 半導体装置及びその製造方法
US6326263B1 (en) * 2000-08-11 2001-12-04 United Microelectronics Corp. Method of fabricating a flash memory cell
WO2004001824A1 (en) * 2002-06-20 2003-12-31 Koninklijke Philips Electronics N.V. Conductive spacers extended floating gates
US6884735B1 (en) * 2002-08-21 2005-04-26 Advanced Micro Devices, Inc. Materials and methods for sublithographic patterning of gate structures in integrated circuit devices
KR100448908B1 (ko) * 2002-09-03 2004-09-16 삼성전자주식회사 상전이 기억 소자 구조 및 그 제조 방법
JP3917063B2 (ja) * 2002-11-21 2007-05-23 株式会社東芝 半導体装置及びその製造方法
US20040197992A1 (en) * 2003-04-03 2004-10-07 Hsiao-Ying Yang Floating gates having improved coupling ratios and fabrication method thereof

Also Published As

Publication number Publication date
CN1725515A (zh) 2006-01-25
US20060017093A1 (en) 2006-01-26
KR20060008555A (ko) 2006-01-27

Similar Documents

Publication Publication Date Title
JP2006032946A (ja) 半導体装置及びその製造方法
US6617226B1 (en) Semiconductor device and method for manufacturing the same
KR100669103B1 (ko) 플래시 메모리 장치의 제조 방법
KR100577565B1 (ko) 핀 전계효과 트랜지스터의 제조방법
JP5234886B2 (ja) 半導体装置の製造方法
JP2002110830A (ja) セルフアライン−シャロートレンチ素子分離法及びこれを利用した不揮発性メモリ装置の製造方法
JP2007110088A (ja) 半導体集積回路装置およびその製造方法
KR100833437B1 (ko) 낸드 플래시 메모리 소자의 제조방법
TWI253114B (en) Semiconductor device with trench isolation structure and method for fabricating the same
JP2007019468A (ja) 半導体装置の製造方法
KR20070000758A (ko) 수직 채널을 갖는 전계 효과 트랜지스터의 제조방법
JP2007027348A (ja) 半導体装置及びその製造方法
JP4834304B2 (ja) 半導体素子の製造方法
KR101506901B1 (ko) 반도체 소자의 제조 방법
JP2007194333A (ja) 半導体装置の製造方法
TWI249223B (en) Spacer for a split gate flash memory cell and a memory cell employing the same
JP2007019191A (ja) 半導体装置とその製造方法
KR20040069515A (ko) 리세스 채널 mosfet 및 그 제조방법
KR20070008969A (ko) 플래시 메모리 장치의 제조 방법
KR20060006514A (ko) 반도체 장치의 제조 방법
JP2009004480A (ja) 半導体装置の製造方法
KR20080069761A (ko) 반도체 소자의 형성 방법
KR20060127515A (ko) 리세스 게이트를 갖는 반도체 소자의 제조방법
JP2009004492A (ja) 半導体装置の製造方法
KR20080071809A (ko) 반도체 소자의 형성 방법