JP2006024289A - 発熱体を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置 - Google Patents

発熱体を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置 Download PDF

Info

Publication number
JP2006024289A
JP2006024289A JP2004202027A JP2004202027A JP2006024289A JP 2006024289 A JP2006024289 A JP 2006024289A JP 2004202027 A JP2004202027 A JP 2004202027A JP 2004202027 A JP2004202027 A JP 2004202027A JP 2006024289 A JP2006024289 A JP 2006024289A
Authority
JP
Japan
Prior art keywords
magnetic head
shield
thin film
layer
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004202027A
Other languages
English (en)
Inventor
Takeshi Umehara
剛 梅原
Norikazu Ota
憲和 太田
Masamichi Tagami
勝通 田上
Hiroki Matsukuma
裕樹 松隈
Shinya Oyama
信也 大山
Soji Koide
宗司 小出
Yoshiyuki Mizoguchi
義之 溝口
Kazuhide Yamada
和秀 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004202027A priority Critical patent/JP2006024289A/ja
Priority to US11/128,192 priority patent/US7623322B2/en
Priority to CNB2005100780856A priority patent/CN100347745C/zh
Publication of JP2006024289A publication Critical patent/JP2006024289A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6011Control of flying height
    • G11B5/6064Control of flying height using air pressure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure

Abstract

【課題】 TPTP現象を積極的に利用してdMSを調整し、磁気抵抗効果層への熱の伝搬を制限して信号の読み出し能力の維持が可能な薄膜磁気ヘッド、これを備えたHGA及び磁気ディスク装置を提供する。
【解決手段】 スライダ基板上に設けられたシールド部を有する読み出し磁気ヘッド素子と、これとスライダ基板の反対側の位置に設けられ、磁極部を有する書き込み磁気ヘッド素子と、これらを覆うように形成されたオーバーコート層と、このオーバーコート層内に設けられた、読み出し磁気ヘッド素子又は書き込み磁気ヘッド素子の少なくとも動作時に発熱する発熱体とを備えた薄膜磁気ヘッドであって、このシールド部の中に、シールド部を構成する材料よりも熱伝導率の低い材料から構成され、シールド部をシールド長方向に分離させるスリット部が設けられた薄膜磁気ヘッドが提供される。
【選択図】 図5

Description

本発明は、発熱体を備えた薄膜磁気ヘッド、この薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ(HGA)及びこのHGAを備えた磁気ディスク装置に関する。
磁気ディスク装置においては、スピンドルモータによって回転させられた磁気ディスクに対して、薄膜磁気ヘッドが信号の書き込み及び読み出しを行う。薄膜磁気ヘッドは、HGAのサスペンションの先端部に固着されたスライダ基板を本体として、このスライダ基板上に形成された書き込み用の誘導型電磁変換素子と読み出し用の磁気抵抗効果素子とを有する。信号の書き込み又は読み出し時において、薄膜磁気ヘッドは、スイングが可能なアームによって磁気ディスク上の所望の位置に駆動させられる。
薄膜磁気ヘッドは、信号の書き込み又は読み出しに際して、回転する磁気ディスク上において流体力学的に所定の間隙(マグネティックスペーシング(dMS))をもって浮上する。薄膜磁気ヘッドは、この浮上状態において、誘電型電磁変換素子から発生する磁界を用いて磁気ディスクに信号の書き込みを行い、磁気抵抗効果素子によって磁気ディスクからの信号磁界を感受して読み出しを行う。
近年、磁気ディスク装置の大容量化及び高記録密度化が進んでおり、これに伴って薄膜磁気ヘッドのトラック幅がより狭小化している。トラック幅が狭くなると、これらの磁気ヘッド素子において書き込み及び読み出し能力が低下してしまう。そこで、この問題を回避すべく、最近の磁気ディスク装置においては、dMSをより小さくする傾向にある。ここでは、薄膜磁気ヘッドに届く磁気ディスクからの信号磁界がdMSの減少と共に強くなることを利用している。実際には、dMSの値は10nm程度にまで小さくなるように設計されている。
しかしながら、信号の書き込み時には、誘電型電磁変換素子内のコイル層からのジュール熱、及び上下部磁極層からの渦電流損失に伴う熱が発生する。この熱によってオーバーコート層が熱膨張し、磁気ヘッド素子が磁気ディスク表面方向に押し出されるTPTP(Thermal Pole Tip Protrusion)現象が生じる。この現象によって、これらの磁気ヘッド素子が面しているヘッド端面が、磁気ディスク表面に向かって湾曲した形で膨出する。その結果、dMSの設計値が非常に小さい場合には、突出した磁気抵抗効果素子部が磁気ディスク表面に接触し、その際の摩擦熱によって磁気抵抗効果素子の電気抵抗値が変化し、異常信号(サーマルアスペリティ(thermal asperity))が発生してしまうことがある。
このサーマルアスペリティを回避するために、dMSを制御する方法が提案されている。例えば、特許文献1には、磁気ヘッド素子であるトランスデューサを備えたスライダにおいて、スライダ基板内に、又はスライダ基板とトランスデューサとの間にトランンスデューサに近接して発熱体を設ける方法が開示されている。この発熱体を通電によって発熱させ、保護膜を含むトランスデューサ形成領域とスライダ基板との熱膨張率の差を利用して、トランスデューサを突出させてdMSを制御している。
また、特許文献2には、熱膨張体に通電することによって、書き込み用及び読み出し用の素子を磁気ディスク面に接近させる薄膜磁気ヘッド構造が開示されている。本構造においては、発熱体と熱膨張体とを一対にして配置し、発熱体の熱によって発熱体と対になった熱膨張体を熱膨張させ、その歪力でオーバーコート層を歪ませて書き込み用及び読み出し用の素子を磁気ディスク面に接近させている。
さらに、特許文献3には、磁気ヘッド素子の浮上面とは反対側の位置に設けられた発熱手段を備えた薄膜磁気ヘッドが開示されている。磁気ヘッド素子の動作時に発熱手段が発熱せしめられることにより、磁気ヘッド素子を浮上面方向に突出させ、dMSを調整している。
米国特許第5,991,113号明細書 特開2003−272335号公報 特開2003−168274号公報
しかしながら、このような発熱体及び/又は熱膨張体を具備した薄膜磁気ヘッドにおいては、特に熱に敏感な読み出し用の磁気ヘッド素子において問題が生じていた。
上述したように、磁気ディスク装置の大容量化、高記録密度化に伴い、装置を構成する各素子においても高性能化及び高信頼性が要求されている。特に、読み出し用の磁気抵抗効果素子においては、トラック幅の狭小化及び微小信号磁界を高い分解能で検出すべき要請から、ナノオーダレベルの薄膜が積層され、素子サイズが縮減される一方で、高出力を確保するために、素子に流す電流密度が非常に高くなっている。従って、磁気抵抗効果素子は、通常動作時においてもかなりの高温となっている。さらに、磁気抵抗効果素子の磁界感度の向上に伴って、素子の出力が温度により強く依存するようになっている。従って、信号の読み出し能力を安定的に確保するために、温度制御、特にさらなる温度上昇の抑制が必須の要件となっている。
しかしながら、上記の特許文献1〜3に記載の技術においては、発熱体からの熱が磁気抵抗効果素子内の磁気抵抗効果層にさらなる温度上昇をもたらし、信号の読み出し能力を低下させてしまう問題が生じていた。
すなわち、特許文献1において、発熱体は、スライダ基板内に又はスライダ基板とトランスデューサとの間に設置されているので、発熱体の熱は、スライダ基板側から保護膜を含むトランスデューサ形成領域全体に向けて伝搬する。この際、磁気抵抗効果素子内のシールド層は一般に金属であり、その熱伝導率は絶縁体であるオーバーコート層よりも一般に高い。従って、このシールド層面で受けた熱はシールド層間に挟まれた磁気抵抗効果層に達し易くなっている。また、特許文献2及び3においては、発熱体が磁気抵抗効果素子の近傍に設置されているので、発熱体又は発熱手段の熱が、シールド層を通して磁気抵抗効果層により伝搬し易くなっている。
すなわち、これらの文献に記載された技術では、発熱体又は発熱手段からの熱が磁気抵抗効果層に達するのを防御する手段が採用されていないので、磁気抵抗効果素子自身の発熱量の他に外乱としての熱量が加わり、磁気抵抗効果層の温度が許容限度以上に上昇する場合があり、所望の読み出し能力を得られないという問題が生じていた。
さらに、特許文献1又は3の技術では、発熱体がスライダ基板内に設けられ若しくは発熱体がスライダ基板に接しており、又は発熱手段とスライダ基板との距離が小さくなっている。従って、発熱体からの熱の多くが熱伝導率の比較的高いスライダ基板に吸収されて薄膜磁気ヘッド外に放出される。すなわち、TPTP現象を引き起こすための熱効率が低くなっている。これに対処するために発熱量を増大させると、シールド層を通して磁気抵抗効果層の温度を増大させ、結果として磁気抵抗効果素子の読み出し能力を低下させてしまう。
従って、本発明の目的は、TPTP現象を積極的に利用してdMSを調整することによってサーマルアスペリティを回避しつつ、磁気抵抗効果層への熱の伝搬を制限して信号の読み出し能力を維持することができる薄膜磁気ヘッド、この薄膜磁気ヘッドを備えたHGA及びこのHGAを備えた磁気ディスク装置を提供することにある。
本発明について説明する前に、明細書において用いられる用語の定義を以下に行う。まず、PTR(Pole Tip Recession)面は、磁気ヘッド素子が面しているヘッド端面とする。動作時には、磁気ディスクに対向する面となる。読み出し磁気ヘッド素子が有するシールド部のシールド長Lshは、シールド部においてPTR面に面している端及びPTR面とは反対側の端の間の距離とする。また、このシールド部が上下部シールド層から構成される場合、各シールド層のシールド長ULsh及びLLshも同様に、各シールド層においてPTR面に面している端及びPTR面とは反対側の端の間の距離とする。書き込み磁気ヘッド素子が有する磁極部のポール長Lは、磁極部のPTR面に面している端及びPTR面とは反対側の端の間の距離とする。また、この磁極部が上下部磁極層から構成される場合、各磁極層のポール長UL及びLLも同様に、各磁極層においてPTR面に面している端及びPTR面とは反対側の端の間の距離とする。
さらに、本発明においては、後述するように磁気ヘッド素子部を覆うオーバーコート層内に発熱体が設けられているが、PTR面からこの発熱体までの距離Dは、PTR面から発熱体のPTR面側の端までの距離とする。さらに、本発明の実施形態として、後述するようにシールド部にスリット部が設けられているが、PTR面からスリット部までの距離Dslitは、PTR面からスリット部のPTR面側の端までの距離とする。ここでシールド部が、上下部シールド層から構成される場合、上下部シールド層にそれぞれ設けられた各スリット部の距離LDslit及びUDslitも同様に、PTR面から各スリット部のPTR面側の端までの距離とする。
本発明によれば、スライダ基板と、このスライダ基板上に設けられたシールド部を有する少なくとも1つの読み出し磁気ヘッド素子と、この少なくとも1つの読み出し磁気ヘッド素子のスライダ基板とは反対側の位置に設けられ、磁極部を有する少なくとも1つの書き込み磁気ヘッド素子と、この少なくとも1つの書き込み磁気ヘッド素子及び少なくとも1つの読み出し磁気ヘッド素子を覆うようにスライダ基板上に形成されたオーバーコート層と、このオーバーコート層内に設けられており、少なくとも1つの読み出し磁気ヘッド素子又は少なくとも1つの書き込み磁気ヘッド素子の少なくとも動作時に発熱せしめられる少なくとも1つの発熱体とを備えた薄膜磁気ヘッドであって、このシールド部内に、このシールド部を構成する材料よりも熱伝導率の低い材料から構成されていてシールド部をシールド長方向に分離させる少なくとも1つのスリット部が設けられている薄膜磁気ヘッドが提供される。
設けられているスリット部は、シールド部を構成する材料、例えばNiFe等の金属材料よりも、熱伝導率の低い材料、例えばAl等の絶縁材料から構成されている。従って、シールド部が発熱体から受け取った熱の伝導が、このスリット部分で抵抗を受けることになる。その結果、発熱体から読み出し用の磁気抵抗効果層への熱の伝搬が抑制され、磁気抵抗効果素子の信号の読み出し能力が維持される。さらに、スリット部によって分離されたシールド部のうちPTR面から遠い方にある部分は、書き込み磁気ヘッド素子からのジュール熱及び渦電流損失に伴う熱等を受け取って、放熱板の役割を果たす。その結果、書き込み磁気ヘッド素子の自ら発する熱量によるTPTP現象が抑制される。これによって、発熱体を用いて積極的にTPTP現象を引き起こしてdMSを制御する際の調整マージンを大きくとることができる。
PTR面からスリット部までの距離Dslitが、PTR面から少なくとも1つの発熱体までの距離D以下であることが好ましい。
スリット部までの距離Dslitが、発熱体までの距離D以下の値であるので、発熱体のスライダ基板と対向する面と、スリット部によって分離されたシールド部のうち磁気抵抗効果素子側の部分におけるスライダ基板とは反対側の面とは、重なり合って対向する部分を有さない。さらに、発熱体は、PTR面に面した磁気抵抗効果層からは所定の距離以上離隔している。従って、発熱体からの熱を受け取るのは、主に、スリット部によって分離されたシールド部のうちPTR面から遠い方の部分であるから、PTR面側の部分には熱が伝搬しにくくなる。その結果、発熱体から読み出し用の磁気抵抗効果層への熱の伝搬が抑制され、磁気抵抗効果素子の信号の読み出し能力が維持される。
PTR面からスリット部までの距離Dslitが、磁極部のポール長L以上であることが好ましい。
スリット部までの距離Dslitが磁極部のポール長L以上の値であるので、スリット部によって分離されたシールド部のうちPTR面側(すなわち磁気抵抗効果素子側)の部分が、書き込み磁気ヘッド素子から発生する磁界、その他の外部からの磁界を磁気抵抗効果層に達する手前で有効に遮蔽することができる。
シールド部が、下部シールド層と、この下部シールド層の基板側とは反対側に積層された上部シールド層とを備えており、少なくとも1つのスリット部が、この下部シールド層及び上部シールド層のそれぞれに設けられていることが好ましい。
PTR面から下部シールド層及び上部シールド層のそれぞれに設けられたスリット部までの距離LDslit及びUDslitが等しいことがさらに好ましい。これにより、スリット部の位置に応じた熱伝導に対する抵抗効果を確実に発揮させることができる。
本発明によれば、スライダ基板と、このスライダ基板上に設けられたシールド部を有する少なくとも1つの読み出し磁気ヘッド素子と、この少なくとも1つの読み出し磁気ヘッド素子のスライダ基板とは反対側の位置に設けられ、磁極部を有する少なくとも1つの書き込み磁気ヘッド素子と、この少なくとも1つの書き込み磁気ヘッド素子及びこの少なくとも1つの読み出し磁気ヘッド素子を覆うようにスライダ基板上に形成されたオーバーコート層と、このオーバーコート層内に設けられており、少なくとも1つの読み出し磁気ヘッド素子又は少なくとも1つの書き込み磁気ヘッド素子の少なくとも動作時に発熱せしめられる少なくとも1つの発熱体とを備えた薄膜磁気ヘッドであって、シールド部のシールド長Lshが、PTR面から少なくとも1つの発熱体までの距離D以下である薄膜磁気ヘッドが提供される。
シールド部のシールド長Lshが発熱体までの距離D以下の値であるので、発熱体のスライダ基板と対向する面と、シールド部のスライダ基板とは反対側の面とは、重なり合って対向する部分を有さない。さらに、発熱体は、PTR面に面した磁気抵抗効果層からは所定の距離以上離隔している。その結果、発熱体から読み出し用の磁気抵抗効果層への熱の伝搬が抑制され、磁気抵抗効果素子の信号の読み出し能力が維持される。
シールド部のシールド長Lshが、磁極部のポール長L以上であることが好ましい。
シールド長Lshがポール長L以上の値であるので、シールド部が、書き込み磁気ヘッド素子から発生する磁界、その他の外部からの磁界を磁気抵抗効果層に達する手前で遮蔽する効果を十分に発揮することができる。
以上のようにシールド長Lshを規定することによって、発熱体によって高い熱効率でTPTP現象を引き起こしてdMSを調整しつつ、従来、回避又は制御することができなかった読み出し用の磁気抵抗効果層への熱の伝搬を制限して薄膜磁気ヘッドの読み出し能力を維持することができる。
シールド部が、下部シールド層と、この下部シールド層のスライダ基板とは反対側に積層された上部シールド層とを備えており、シールド長Lshが、下部シールド長LLshと上部シールド長ULshとのうち、小さくない方に等しいことが好ましい。
磁極部が、下部磁極層と、この下部磁極層と磁気的に接続されており下部磁極層のスライダ基板とは反対側に積層された上部磁極層とを備えており、ポール長Lが、下部磁極層におけるポール長LLであることが好ましい。
少なくとも1つの発熱体が、少なくとも1つの書き込み磁気ヘッド素子のスライダ基板とは反対側の位置に設けられていることが好ましい。
発熱体がこの位置に設けられることによって、発熱体とスライダ基板との間で所定の距離が確保される。従って、発熱体からの熱量のうちスライダ基板に吸収されて薄膜磁気ヘッド外に放出されてしまう分が低減される。すなわち、発熱体からの熱が、より効率良くTPTP現象を引き起こすために使用可能となる。その結果、磁気ヘッド素子の所定の突出量を得るために必要とされる発熱体への通電量がより少なくて済む。これにより磁気抵抗効果層に伝搬する熱量も低減することができ、その温度上昇が防止されるので、磁気抵抗効果素子の信号の読み出し能力が維持される。
少なくとも1つの発熱体が、少なくとも1つの読み出し磁気ヘッド素子又は少なくとも1つの書き込み磁気ヘッド素子のPTR面とは反対側の位置に設けられていることも好ましい。
発熱体がこの位置に設けられることによって、発熱体は主に、読み出し磁気ヘッド素子及び書き込み磁気ヘッド素子のPTR面とは反対側のオーバーコート層の領域を加熱することになる。この加熱によってこの領域が大きく膨張し、読み出し磁気ヘッド素子及び書き込み磁気ヘッド素子がPTR面の方向に効率良く押し出される。その結果、磁気ヘッド素子の所定の突出量を得るために必要とされる発熱体への通電量がより少なくて済む。これにより磁気抵抗効果層に伝搬する熱量も低減することができ、その温度上昇が防止されるので、磁気抵抗効果素子の信号の読み出し能力が維持される。
少なくとも1つの読み出し磁気ヘッド素子が、面内通電型(CIP(Current In Plain))巨大磁気抵抗効果(GMR(Giant Magneto Resistive))素子、垂直通電型(CPP(Current Perpendicular to Plain))GMR素子又はトンネル磁気抵抗効果(TMR(Tunnel Magneto Resistive))素子であることが好ましい。CIP-GMR素子、CPP-GMR素子及びTMR素子はいずれも非常に高い磁界感度を有するが、その出力が温度に強く依存する。これらの素子を、本発明による薄膜磁気ヘッドの読み出し磁気ヘッド素子として用いることによって、温度上昇による読み出し能力の低下を回避しつつ、これらの素子の有する高い磁界感度を有効に利用することができる。
本発明によれば、さらに、上述した薄膜磁気ヘッドと、この薄膜磁気ヘッドの少なくとも1つの読み出し磁気ヘッド素子及び少なくとも1つの書き込み磁気ヘッド素子への信号線と、この薄膜磁気ヘッドの少なくとも1つの発熱体に電流を供給するためのリード線と、薄膜磁気ヘッドを支持する支持機構とを備えたHGAが提供される。
本発明によれば、さらにまた、上述したHGAを少なくとも1つ備えており、少なくとも1つの発熱体へ供給する電流を制御する電流制御手段をさらに備えた磁気ディスク装置が提供される。
電流制御手段が、少なくとも1つの読み出し磁気ヘッド素子及び/又は少なくとも1つの書き込み磁気ヘッド素子の少なくとも動作時に少なくとも1つの発熱体へ電流を供給する制御手段であることが好ましい。
電流制御手段が、発熱体制御信号系を有しており、発熱体制御信号系が少なくとも1つの読み出し磁気ヘッド素子及び/又は少なくとも1つの書き込み磁気ヘッド素子の動作制御信号系とは独立して、発熱体に供給される電流を制御することがことも好ましい。このように、記録/再生動作制御信号系とは独立して、発熱体制御信号系を設けることによって、記録/再生動作に連動した発熱体への通電のみならず、より多様な通電モードを実現することができる。
電流制御手段が、少なくとも1つの読み出し磁気ヘッド素子からの再生データ信号中に含まれているアコースティックエミッション(AE(Acoustic Emission))成分を検出する検出手段を有しており、この検出手段によって検出されたAE成分の検出量に応じて発熱体に供給される電流を制御することも好ましい。AE成分をモニタすることにより、薄膜磁気ヘッドと磁気ディスク表面との接触の程度/頻度を知ることができる。従って、このAE検出量に応じて、発熱体に供給される電流を制御してTPTP現象を調整することによって、薄膜磁気ヘッドと磁気ディスク表面とのクラッシュを回避することができる。
電流制御手段が、磁気ディスク装置内の温度を検出する温度検出手段を有しており、この温度検出手段によって検出された温度に応じて発熱体に供給される電流を制御することも好ましい。一般に、dMSの値は磁気ディスク装置内の温度の影響を受ける。従って、この検出された温度に応じて発熱体に供給される電流を制御することによって、dMS値を一定に保ち、安定した書き込み及び読み出し特性を得ることができる。
本発明の薄膜磁気ヘッド、この薄膜磁気ヘッドを備えたHGA及びこのHGAを備えた磁気ディスク装置によれば、発熱体によって高い熱効率でTPTP現象を引き起こしてdMSを調整しつつ、従来、回避又は制御することができなかった読み出し用の磁気抵抗効果層への熱の伝搬を制限して信号の読み出し能力を維持することができる。
以下に、本発明を実施するための形態について、添付図面を参照しながら詳細に説明する。
図1は、本発明による磁気ディスク装置の一実施形態における要部の構成を概略的に示す斜視図であり、図2はHGA全体を表す斜視図であり、図3はHGAの先端部に装着されている薄膜磁気ヘッド(スライダ)の斜視図である。
図1において、10はスピンドルモータの回転軸11の回りを回転する複数の磁気ディスク、12は薄膜磁気ヘッド(スライダ)をトラック上に位置決めするためのアセンブリキャリッジ装置、13は薄膜磁気ヘッドの読み書き動作及び発熱動作を制御するための記録再生回路をそれぞれ示している。
アセンブリキャリッジ装置12には、複数の駆動アーム14が設けられている。これらの駆動アーム14は、ボイスコイルモータ(VCM)15によってピボットベアリング軸16を中心にして角揺動可能であり、この軸16に沿った方向にスタックされている。各駆動アーム14の先端部には、HGA17が取り付けられている。各HGA17には、スライダが、各磁気ディスク10の表面に対向するように設けられている。磁気ディスク10、駆動アーム14、HGA17及び薄膜磁気ヘッド(スライダ)は、単数であっても良い。
図2に示すように、HGAは、サスペンション20の先端部に、磁気ヘッド素子を有するスライダ21を固着し、さらにそのスライダ21の端子電極に配線部材25の一端を電気的に接続して構成される。
サスペンション20は、ロードビーム22と、このロードビーム22上に固着され支持された弾性を有するフレクシャ23と、ロードビーム22の基部に設けられたベースプレート24と、フレクシャ23上に設けられておりリード導体及びその両端に電気的に接続された接続パッドからなる配線部材25とから主として構成されている。
本発明のHGAにおけるサスペンションの構造は、以上述べた構造に限定されるものではないことは明らかである。なお、図示されていないが、サスペンション20の途中にヘッド駆動用ICチップを装着してもよい。
図3に示すように、本実施形態におけるスライダは、互いに積層された書き込み磁気ヘッド素子及び読み出し磁気ヘッド素子30と、これらの素子に接続された4つの信号端子電極31と、図3には示されていないヒータに流す電流用の2つの駆動端子電極32とを、その素子形成面33上に備えている。34はスライダの浮上面である。なお、これらの端子電極の数及び位置は、図3の形態に限定されるものではない。図3において端子電極は6つであるが、例えば、電極を5つとした上でグランドをスライダ基板に接地した形態でも良い。
図4は、本発明による薄膜磁気ヘッドの第1の実施形態における概略的な構成を示す図である。
同図において、スライダ基板40は浮上面50を有し、書き込み又は読み出し動作時には回転する磁気ディスク表面52上において流体力学的に所定の間隙をもって浮上している。このスライダ基板40の浮上面を底面とした際の一つの側面(素子形成面)に、読み出し用の磁気抵抗効果素子42と、書き込み用の誘電型電磁変換素子44と、これらの素子を覆うオーバーコート層47とが形成されている。
磁気抵抗効果素子42は、磁気抵抗効果層42cと、この層を挟む位置に配置される下部シールド層42a及び上部シールド層42fとを含む。磁気抵抗効果層42cは、CIP-GMR多層膜、CPP-GMR多層膜又はTMR多層膜からなり、非常に高い感度で信号磁界を感知する。下部シールド層42a及び上部シールド層42fは磁性層であり、磁気抵抗効果層42cに対して雑音となる外部磁界を遮断する役割を有する。誘電型電磁変換素子44は、下部磁極層44a、上部磁極層44f及びコイル層44cを含む。下部磁極層44a及び上部磁極層44fは、コイル層44cから発生した磁束を、書き込みがなされる磁気ディスク表面52まで収束させながら導くための磁路である。
磁気抵抗効果素子42及び誘電型電磁変換素子44の磁気ディスク表面52側の端は、PTR面51に達している。ここで、PTR面51には、保護膜としてDLC(Diamond Like Carbon)等のコーディングが施されている。なお、磁気ヘッド素子部のPTR面と磁気ディスク表面との磁気ヘッド素子動作時における距離がdMSとなる。
発熱体46は、オーバーコート層47上に形成される。その結果、発熱体46は、磁気抵抗効果素子42及び誘電型電磁変換素子44のスライダ基板40とは反対側の位置に設けられることになる。さらに、オーバーコート層48が、発熱体46を覆ってオーバーコート層47上に形成される。
本実施形態では、下部シールド層42a及び上部シールド層42fは、それぞれのシールド長LLsh及びULshが等しくなるように形成されている。ここで、これらの値を磁気抵抗効果素子42におけるシールド長Lsh(=LLsh=ULsh)とする。また、下部磁極層44aのポール長LLを誘導型電磁変換素子44におけるポール長L(=LL)とする。さらにPTR面から発熱体46までの距離をDとすると、後述する理由によって、シールド長Lshは、D≧Lsh、さらに好ましくはD≧Lsh≧Lの関係を満たすように設定される。なお、他の態様としてLLsh及びULshの値が異なる場合には、大きな値の方をLshとする。
図5は、本発明による薄膜磁気ヘッドの第2の実施形態における概略的な構成を示す図である。
同図に示した第2の実施形態においては、下部シールド層42a及び上部シールド層42fにおいて、これらのシールド層を構成する磁性材料よりも熱伝導率の低い材料、例えば絶縁性材料から構成されていて、これらのシールド層をそれぞれスリット長方向に分離させるスリット部42gが設けられている。このスリット部42gの存在により、発熱体46から発生する熱は、上下部シールド層42f及び42aを介して磁気抵抗効果層42cに伝搬する際に、このスリット部で抵抗を受ける。これによって、磁気抵抗効果素子42cの温度上昇を抑制することができる。この第2の実施形態は、その他の磁気抵抗効果層42c、誘電型電磁変換素子44、発熱体46及びオーバーコート層47、48等に関しては、図4に示された第1の実施形態と同様の構成を有する。
本実施形態では、下部シールド層42aに形成されたスリット部及び上部シールド層42fに形成されたスリット部において、PTR面からそれぞれのスリット部までの距離LDslit及びUDslitは等しくなっている。ここで、これらの値を、PTR面からスリット部42gまでの距離Dslitとする。また、図4と同様にポール長Lを定義し、PTR面から発熱体46までの距離をDとすると、後述する理由によって、距離Dslitは、D≧Dslit、さらに好ましくはD≧Dslit≧Lの関係を満たすように設定される。
次に、図4及び図5にそれぞれ示された第1及び第2の実施形態における薄膜磁気ヘッドの構成をより詳細に説明する。図6は、これらの実施形態における薄膜磁気ヘッドをスライダ基板の素子形成面側から透視的に見た平面図であり、図7はそのA−A線断面図、図8はそのB−B線断面図である。なお、図7におけるコイルの巻き数は図を簡略化するため、図6における巻き数より少なく表されている。コイルは2層、又はヘリカルコイルでもよい。また、図6及び図7において、発熱体46の構成も、後に詳述するため、簡略的に示されている。
図7において、40は例えばAlTiC(Al−TiC)等からなるスライダ基板、41はスライダ基板40上に積層された例えばAl等からなる厚さ約0.05μm〜約10μmの絶縁層、42aは絶縁層41上に積層された例えばNiFe、NiFeCo、CoFe、FeN又はFeZrN等からなる厚さ約0.3μm〜約3μmの下部シールド層、42bは下部シールド層42a上に積層された例えばAl又はDLC等からなる厚さ約0.005μm〜約0.5μmの下部シールドギャップ層、42cは下部シールドギャップ層上42bに積層された例えばCIP-GMR多層膜、CPP-GMR多層膜又はTMR多層膜からなる磁気抵抗効果層、42dは磁気バイアス層を備えており磁気抵抗効果層42cの両端に接続された例えばCu等からなる素子リード導体層、42eは磁気抵抗効果層42c及び素子リード導体層42d上に積層された例えばAl又はDLC等からなる厚さ約0.005μm〜約0.5μmの上部シールドギャップ層、42fは上部シールドギャップ層42e上に積層された例えばNiFe、NiFeCo、CoFe、FeN又はFeZrN等からなる厚さ約0.3μm〜約4μmの上部シールド層をそれぞれ示している。なお、上下部シールド層42f及び42aの間隔である再生ギャップ長は、約0.03μm〜約1μmである。
ここで、第2の実施形態においては、下部シールド層42a及び上部シールド層42fにおいて、スリット部42gが設けられている。スリット部42gは、それぞれのシールド層に幅約2μm〜約10μmの間隙が設けられて、下部シールド層42aの間隙には下部シールドギャップ層42bと同一の材料が、さらに上部シールド層42fの間隙にはオーバーコート層47と同一の材料が埋め込まれたものである。この際、これらの間隙を埋める材料は他の材料でも良いが、上下部シールド層42f及び42aを構成する材料よりも熱伝導率の低い材料が選択される。
なお、第1の実施形態においては、スリット部42gは設けられていない。
43は上部シールド層42f上に積層された例えばAl等からなる厚さ約0.1μm〜約2.0μmの絶縁層、44aは絶縁層43上に積層された例えばNiFe、NiFeCo、CoFe、FeN又はFeZrN等からなる厚さ約0.3μm〜約3μmの下部磁極層、44bは下部磁極層44a上に積層された例えばAl又はDLC等からなる厚さ約0.03μm〜約0.5μm(記録ギャップ長に相当)の磁気ギャップ層、44cは磁気ギャップ層44b上に積層された例えばCu等からなる厚さ約0.5μm〜約3μmのコイル層、44dはコイル層44cを覆う例えば熱硬化されたレジスト層等からなる厚さ約0.1μm〜約5μmのコイル絶縁層、44eはコイル層44cの一端に電気的に接続された例えばCu又はNiFe等からなるコイルリード導体層、44fは下部磁極層44aと共に磁極及び磁気ヨークを形成する例えばNiFe、NiFeCo、CoFe、FeN又はFeZrN等からなる厚さ約0.5μm〜約5μmの上部磁極層、47は例えばAl等からなるオーバーコート層をそれぞれ示している。なお、絶縁層43は必ずしも設ける必要はない。
46は、上部磁極層44fを覆うオーバーコート層47の上に形成されている発熱体を示している。発熱体46は、オーバーコート層47上に形成されているので、必ず、磁気抵抗効果素子42及び誘電型電磁変換素子44のスライダ基板とは反対側の位置に設けられることになる。48は、発熱体46全体を覆う例えばAl等からなるオーバーコート層を示している。
次いで、図8においては、図7と同一の構成要素が、同じ参照番号を用いて示されている。ただし、同図に示されたB−B線断面には、磁気抵抗効果層42c、コイルリード導体層44e、スリット部42g及び発熱体46は現れていない。
図9は、第1及び第2の実施形態における薄膜磁気ヘッドの発熱体46の構成を示す図である。また、図10は、発熱体46の電極パッド部の構成を示すための図6におけるC−C線断面図である。
図9によると、発熱体46は、1本のラインを層内で蛇行させた発熱部46aと、発熱部46aの両端にそれぞれ接続された引き出し電極46b及び46cとを有しており、所定の長さの通電路となっている。
より具体的には、発熱部46aは、所定の始点60から折り返し点61まで矩形波状に蛇行するように形成された上り部66と、折り返し点61から始点60の近傍の終点62まで上り部66に沿って蛇行しながら戻るように形成された下り部67と、始点60と引き出し電極46cとを接続する接続部74と、終点62と引き出し電極46bとを接続する75とを有している。また、互いに沿うように形成された上り部66と下り部67との間隔70は、互いに面する上り部66同士の間隔72及び互いに面する下り部87同士の間隔73と比較して、狭くなるように設定されている。
発熱部46aは、例えば、約100nm〜約5000nm程度の厚さを有しており、例えば、NiCuを含む材料からなる。ここで、NiCuにおけるNiの含有割合は、例えば、約15〜約60原子%であり、好ましくは25〜45原子%である。また、このNiCuに対する添加物として、Ta、Al、Mn、Cr、Fe、Mo、Co、Rh、Si、Ir、Pt、Ti、Nb、Zr及びHfのうち、少なくとも1つの元素が含まれていてもよい。これらの添加物の含有割合は、5原子%以下であることが好ましい。
また、発熱部46aは、例えば、NiCrを含む材料からなっていてもよい。この場合、NiCrにおけるNiの含有割合は、例えば、約55〜約90原子%であり、好ましくは70〜85原子%である。また、このNiCrに対する添加物として、Ta、Al、Mn、Cu、Fe、Mo、Co、Rh、Si、Ir、Pt、Ti、Nb、Zr及びHfのうち、少なくとも1つの元素が含まれていてもよい。これらの添加物の含有割合は、5原子%以下であることが好ましい。また、引き出し電極46b及び46cは、発熱部46aと同じ材料である。
図10によれば、引き出し電極46b及び46c上には、導電性を有する電極膜部材80b及び80cがそれぞれ形成されている。この電極膜部材80b及び80c上には、この電極膜部材80b及び80cを電極として電界めっきによって形成された、上方に伸びるバンプ81b及び81cがそれぞれ設けられている。電極膜部材80b及び80c並びにバンプ81b及び81cは、Cu等の導電材料等からなる。電極膜部材80b及び80cの厚みは、約10nm〜約200nm程度であり、バンプ81b及び81cの厚みは、約5μm〜約30μm程度である。
バンプ81b及び81cの上端は、オーバーコート層48から露出しており、これらの上端には、発熱体46用のパッド82b及び82cがそれぞれ設けられている。このパッド82b及び82cを介して、発熱体46に電流が供給されることになる。なお、同様にして、磁気抵抗効果素子42及び誘導型電磁変換素子44は信号端子電極31(図3)と接続されているが、これらの接続構造は、図の簡略化のため図示されていない。
図11は、第1及び第2の実施形態における薄膜磁気ヘッドの製造工程を説明する工程図であり、図6のA−A線断面を示している。
以下、同図を参照して、これらの実施形態における薄膜磁気ヘッドの製造工程を簡単に説明する。まず、図11(A)に示すように、例えばスパッタリング法によって、基板40上に絶縁層41を積層する。次いで、絶縁層41上に、例えばめっき法によって所定のシールド長Lshを有する下部シールド層42aを形成する。
ここで、第2の実施形態においては、この下部シールド層42aにおいて、フォトリソグラフィ及びドライエッチング法等を用いた公知の方法によって、PTR面51から下部シールド層42aまでの距離Dslitの位置に間隙を形成する。この工程は、第1の実施形態では用いられない。
次いで、例えばスパッタリング法等によって、下部シールドギャップ層42bが形成される。第2の実施形態においては、この工程により、上記の形成された間隙に下部シールドギャップ層42bの材料が埋め込まれることによりスリット部42gが形成される。次いで、例えばスパッタリング法等によって、磁気抵抗効果層42c、磁気バイアス層を備えた素子リード導体層42d、上部シールドギャップ層42eを形成する。次いで、例えばめっき法によって所定のシールド長Lshを有する上部シールド層42fを形成する。
ここで、第2の実施形態においては、この上部シールド層42fにおいて、フォトリソグラフィ及びドライエッチング法等を用いた公知の方法によって、PTR面から上部シールド層42fまでの距離Dslitの位置に間隙を形成する。この工程は、第1の実施形態では用いられない。
その後、PTR面から見てその後ろ側に平坦化層47aを形成する。第2の実施形態においては、この工程により、上記の形成された間隙に平坦化層47aの材料が埋め込まれることによりスリット部42gが形成される。以上の工程によって、磁気抵抗効果素子42の形成が完了する。
次いで、図11(B)に示すように、上部シールド層42fの上に、例えばスパッタリング法によって絶縁層43、所定のポール長Lを有する下部磁極層44a、磁気ギャップ層44bを形成すると共に、PTR面から見てその後ろ側に平坦化層47bを形成する。次いで、フォトリソグラフィ及びドライエッチング法等を用いた公知の方法によって、磁気ギャップ層44bの上にコイル層44c、コイル層44cを覆うようにコイル絶縁層44d及び上部磁極層44fを形成する。以上の工程によって、誘導型電磁変換素子44の形成が完了する。さらに、次工程である発熱体46の形成に備えて、平坦化したオーバーコート層47cを形成する(図11(C))。
次いで、図11(D)に示すように、発熱部46を構成する発熱部46aと、引き出し電極46b及び46cが、例えばスパッタリング法によって、オーバーコート層47c上において所定の位置に形成される。この位置は、発熱部46aのPTR面51側の端からPTR面51までの距離Dが所定範囲内の値となるように決定される。最後に、発熱体46を覆うオーバーコート層48が形成される(図11(E))。
図12は、図1の実施形態における磁気ディスク装置の記録再生回路13の回路構成を示すブロック図である。また、図13は、図1の実施形態における磁気ディスク装置の発熱体制御回路の構成を示すブロック図である。
図12において、90は記録再生制御LSIであり、サーマルアスペリティ(TA)検出回路90aを含む。91は記録再生制御LSI90から記録データを受け取るライトゲート、92はライト回路、93は、発熱体への電流値の制御用テーブル等を格納するROM、95は磁気抵抗効果素子42へセンス電流を供給する定電流回路、96は磁気抵抗効果素子42の出力電圧を増幅する増幅器、97は記録再生制御LSI90に対して再生データを出力する復調回路、98は、温度検出器、99は発熱体46の制御回路をそれぞれ示している。
記録再生制御LSI90から出力される記録データは、ライトゲート90に供給される。ライトゲート90は、記録再生制御LSI90から出力される記録制御信号が書き込み動作を指示するときのみ、記録データをライト回路92へ供給する。ライト回路92は、この記録データに従ってコイル層44cに書き込み電流を流し、誘電型電磁変換素子44により磁気ディスク10(図1)上に記録を行う。
記録再生制御LSI90から出力される再生制御信号が読み出し動作を指示するときのみ、定電流回路95から磁気抵抗効果層42cに定電流が流れる。この磁気抵抗効果素子42により再生された信号は増幅器96で増幅された後、復調回路97で復調され、得られた再生データが記録再生制御LSI90に出力される。
本実施形態における発熱体制御回路99は、図13に示すような構成となっている。すなわち、発熱体46の発熱部46aに、直流定電圧回路99a、スイッチングトランジスタ99b及び可変抵抗器99cによる直列回路が接続されている。記録再生制御LSI90から出力される発熱体ON/OFF信号は、スイッチングトランジスタ99bに供給される。また、記録再生制御LSI90から出力される発熱体電流値制御信号は、D/A変換器99dにおいてアナログ信号に変換された後、可変抵抗器99cに供給される。
発熱体ON/OFF信号がオン動作指示である場合、スイッチングトランジスタ99bがオンとなって電流が発熱体46の発熱部46aに流れる。この際の電流値は、可変抵抗器99cにおいて、アナログに変換された発熱体電流値制御信号に応じた値に制御される。
このように、記録/再生動作制御信号系とは独立して、発熱体ON/OFF信号及び発熱体電流値制御信号系を設けることによって、記録再生動作に連動した発熱体への通電のみならず、より多様な通電モードを実現することができる。
実際の動作においては、発熱体46の発熱部46aに、所定の通電モードに対応した電流が流れる。この電流によって、この発熱体46の部分及びその周囲が加熱されて熱膨張し、誘電型電磁変換素子44及び磁気抵抗効果素子42がPTR面51方向にわずかに突出する。これにより、dMSを書き込み動作時及び読み出し動作時にのみ小さくすることができる。このように、磁気ヘッド素子の動作時にのみdMSを小さくすることにより、磁気ディスク表面にスライダが衝突するクラッシュの確率をさほど高めることなく、トラック幅の狭小化に伴う信号書き込み能力及び/又は信号読み出し能力の低下を補い、記録ビットの微小化に伴う信号磁界の微弱化に対応することができる。このdMS値は、発熱部46aに流れる電流を制御する発熱体電流値制御信号により精度良く調整することができる。
なお、記録再生回路13の回路構成は、図11及び図12に示したものに限定されるものでないことは明らかである。記録制御信号及び再生制御信号以外の信号で書き込み動作及び読み出し動作を特定しても良い。また、少なくとも書き込み動作時及び読み出し動作時の両方で発熱体46を発熱させることが望ましいが、書き込み動作時若しくは読み出し動作時の一方でのみ、又は書き込み動作及び読み出し動作が連続する一定期間内において継続して発熱体46を発熱させることも可能である。さらに、発熱体46に通電する電流として、直流だけではなく、交流又はパルス電流等を用いることも可能である。
以下、発熱体46への通電モードの一実施形態について説明する。
最初に、dMSを制御する発熱体への供給電力の初期設定について説明する。一般に、個々の薄膜磁気ヘッドのdMS値はばらつきを示す。そこで、まず磁気ディスクの最内周トラックにおいて再生データ中のAE(Acoustic emission)成分をTA検出回路90aによって検出し、基準範囲以上のAE(Acoustic emission)が発生する電流量まで発熱体46に通電し、限界電流量を決定する。この電流量をROM93に記録しておく。最内周トラックを使用する理由は、シーク時のdMSが最内周において最も小さいため、電流量の上限の基準となるからである。その後、ROM93に記録された一般的な「電流vsTPTP突出量」のテーブルを用いて、所望のdMSとなる電流量を設定する。
次いで、磁気ディスク装置の通常運転時における電力供給について説明する。まず、上記の設定された電流量を発熱体46に通電した状態において、書き込み及び読み出しを行う。ここで、AEの発生量が基準範囲内ならばそのまま動作させる。基準範囲を超える場合、所定の単位だけ電流量を減少させ、引き続きAE発生量をモニタする。以後、このサイクルを繰り返す。この際、所定の繰り返し回数を経てもAE発生量が基準範囲を超えている場合には、ヘッドの浮上状態が不安定であるか、又はクラッシュの前兆であるとして、使用停止等のフラッグをホストCPUに通知する。
次いで、dMSの温度補償について説明する。スライダは流体力学的に浮上するため、dMSは装置内部の温度の影響を受ける。さらに、TPTP現象による磁気ヘッド素子の突出量もバックグランドとなる装置内部の温度の影響を受ける。そこで、ROM93に、温度検出器98(例えば、抵抗型センサ)の特性及びTPTP突出量に基づく「装置内部の温度vsdMS変化」のテーブルを記憶させておき、温度検出器98によって温度をモニタする。装置内部の温度に対応して、このテーブルを参照して電流量を調整し、一定のdMSを確保する。
次いで、dMSの他の要因による補償について説明する。dMSは、装置内の気圧変化又は外的振動によっても変動する。しかしながら、通常、磁気ディスク装置内に気圧センサ又は振動センサは設置されていない。そこで、まず、装置内部の温度に基づいてdMSの調整を行う。この調整後、AEの発生量がなお基準範囲外となる場合、気圧変化又は振動等によるdMSの変動とみなして、第1の所定量だけ発熱体に供給する電流を減少させる。ここで、AE発生量がなお基準範囲外であれば、第2の所定量だけ電流を減少させる。以後、このサイクルを繰り返す。この際、所定の繰り返し回数を経てもAE発生量が基準範囲を超える場合には、ヘッドの浮上状態が不安定であるか、又はクラッシュの前兆であるとして、使用停止等のフラッグをホストCPUに通知する。
さらにdMSは、磁気ディスク内での位置によっても変動する。これは、同一回転数においても内周側と外周側では媒体移動速度が異なるためである。そこで、磁気ディスク内での記録再生位置の半径に応じて、発熱体に供給される電流を微調整してdMSの一定化を図ることができる。
さらに、カーナビ等、車載用装置等での使用においては、強い振動モード(AE頻度モード)として、通電を退避モードに設定し、dMSを十分に大きくする措置をとることができる。
次いで、発熱体46によって引き起こされたTPTP現象に対する、シールド長Lsh及びシールド層に設けられたスリット部の位置の影響について説明する。
図4及び図5において、発熱体46は、通電によって発熱し、オーバーコート層47及び48の近傍部分に熱を供給する。その結果、オーバーコート層47及び48は熱を蓄積し、その温度分布に合わせて熱膨張する。この熱膨張によって、磁気抵抗効果素子42及び誘電型電磁変換素子44が磁気ディスク表面52方向に押し出され、PTR面51が突出してdMSが小さくなる。この際、dMSの低下量は、発熱体46に供給される電流量によって制御可能となる。
ここで、発熱体46から発生する熱は、上下部シールド層42f及び42a、並びに上下部磁極層44a及び44fへも、発熱体46との位置関係に応じた量だけ伝搬する。上述したように、これらの磁極層及びシールド層は一般にNiFe等の金属材料で構成されており、その熱伝導率は絶縁材料で構成されているオーバーコート層よりも高い。従って、例えば発熱体46から伝搬して上下部シールド層42f及び42aで受け止められた熱は、両シールド層の間に挟まれた磁気抵抗効果層42cにより積極的に伝わってしまう。その結果、このような熱量が多くなると磁気抵抗効果層42cの温度を許容限度以上に上昇させ、磁気抵抗効果素子42の読み出し能力を低下させてしまう。
このような読み出し能力の低下を防止する手段として、図4に示した第1の実施形態においては、発熱体46の距離Dに対して、両シールド層のシールド長Lshを調整する。すなわち、両シールド層が発熱体46から受け取る熱量は、両シールド層と発熱体46との位置関係に応じて変化するので、シールド長Lshと発熱体46の位置を規定しているDとの関係を調整することによって受け取る熱量を制限することができる。
さらに図5に示した第2の実施形態においては、シールド層にスリット部42gを設けて、発熱体46の位置Dに対して、PTR面からスリット部までの距離Dslitを調整する。すなわち、両シールド層にスリット部42gを設けることによって、シールド層内の熱伝導に抵抗を与え、磁気抵抗効果層42cに達する熱量を制限する。ここで、磁気抵抗効果層42cに伝搬する熱量は、両シールド層に設けられたスリット部42gの位置によって変化するので、スリット部の位置を規定しているDslitと発熱体46の位置を規定しているDとの関係を調整することによって伝搬する熱量を制限することができる。
図14は、第1の実施形態における薄膜磁気ヘッドのシールド長Lshと、磁気抵抗効果層のTPTP現象による突出量及び温度上昇の比との関係を示した図である。縦軸は、突出量(nm)/温度上昇分(℃)であり、シミュレーションによる値である。この値が大きくなるほど、小さな熱供給量で大きな突出が発生しており、TPTP現象の熱効率が高くなっていることになる。ここで、発熱体46への供給電力は100mWであり、距離Dは50.0μmである。また、下部磁極層44aのポール長Lは25.0μmである。
図14において、グラフ曲線は、シールド長Lshが50μm(=D)の付近に変曲点を有しており、この点以下のシールド長領域において大きな突出量/温度上昇分が得られている。すなわちシールド長Lshが発熱体の距離D以下である場合に、TPTP現象の熱効率が高くなっていることがわかる。この原因を考察すると、シールド長Lshが、PTR面から発熱体46までの距離D以下の値である場合、発熱体46のスライダ基板と対向する面と、上部シールド層のスライダ基板とは反対側の面とは、重なり合って対向する部分を有さない。さらに、発熱体46は、PTR面に面した磁気抵抗効果層42cからは所定の距離以上離隔している。その結果、発熱体46から磁気抵抗効果層42cへの熱の伝搬が抑制され、磁気抵抗効果素子42cの温度上昇が抑制されることによって、突出量/温度上昇分が大きな値をとることになる。
一方、磁気抵抗効果層42cを誘電型電磁変換素子44及び磁気ディスク表面52等の外部より発生する磁界から遮蔽する機能を確保するため、シールドLshは少なくともL以上の値としなければならない。シールド長Lshが磁極部のポール長L以上の値であれば、両シールド層が、誘電型電磁変換素子44及び磁気ディスク表面52等の外部から発生する磁界を磁気抵抗効果層42cに達する手前で遮蔽する効果を十分に発揮することができる。
以上の結果及び考察により、シールド長Lshを、D≧Lshの関係を満たす値に設定することにより、両シールド層が十分な熱伝導抑制効果を発揮し、さらにD≧Lsh≧Lの関係を満たす値に設定することにより、両シールド層が、十分な熱伝導抑制効果及び磁界遮蔽効果を発揮することがわかる。
図15は、両シールド層にスリット部を設けた第2の実施形態の薄膜磁気ヘッドにおける、シールド長Lshと、磁気抵抗効果層のTPTP現象による突出量及び温度上昇分の比との関係を示した図である。スリット部を設けない第1の実施形態のグラフ曲線(図14)を比較として併せて示している。PTR面からスリット部42gまでの距離Dslitは25.0μmである。またスリット部42gの間隙幅は5.0μmである。ここで、第2の実施形態のシールド長Lshは、スリット部42gの間隙分を含めたシールド端間の距離としている。その他の条件は、図14と同じである。
同図によると、両シールド層にスリット部42gが設けられた構成においては、同じシールド長Lshであってスリット部がない構成と比較して、より大きな突出量/温度上昇分が得られている。従って、スリット部42gを設けることによって、TPTP現象の熱効率が高くなっていることがわかる。
ここで、スリット部42gが設けられている場合のグラフ曲線には、スリット部が無い場合のグラフ曲線に見られるような変曲点が存在しない。これは、スリット部が、発熱体よりもPTR面に近い位置(Dslit=25.0μm)にあるために、発熱体からの熱の伝搬がこのスリット部において大きく制限されるので、シールド長Lshと発熱体46の距離Dとの関係における臨界的影響が打ち消されるためと考えられる。逆に見れば、第1の実施形態のグラフ曲線(図14)の変曲点は、シールド長Lshと発熱体46の距離Dとの関係における臨界的効果であることが明確となる。
図16は、両シールド層にスリット部を設けた第2の実施形態における、スリット部までの距離Dslitと、磁気抵抗効果層のTPTP現象による突出量及び温度上昇分の比との関係を示した図である。スリット部の間隙幅を含めたシールド長Lshは160μmである。また、スリット部42gの間隙幅は5.0μmである。その他の条件は、図14と同じである。
同図によれば、グラフ曲線は、シールド長Lshが、50μm(=D)の付近に変曲点を有しており、この点以下のシールド長領域において大きな突出量/温度上昇分が得られている。すなわちスリット部までの距離DslitがD以下である場合に、TPTP現象の熱効率が高くなっていることがわかる。この原因を考察すると、スリット部の距離Dslitが、発熱体の距離D以下の値である場合、発熱体のスライダ基板と対向する面と、スリット部によって分離された両シールド層のうち磁気抵抗効果素子側の部分におけるスライダ基板とは反対側の面とは、重なり合って対向する部分を有さない。さらに、発熱体は、PTR面に面した磁気抵抗効果層からは所定の距離以上離隔している。従って、発熱体からの熱を受け取るのは、主にスリット部によって分離された両シールド層のうちPTR面から遠い方の部分となり、PTR面側の部分には熱が伝搬しにくくなる。その結果、発熱体から読み出し用の磁気抵抗効果層への熱の伝搬が抑制され、磁気抵抗効果素子の温度上昇が抑制されることによって、突出量/温度上昇分が大きな値をとることになる。
一方、磁気抵抗効果層を誘電型電磁変換素子44及び磁気ディスク表面52等の外部より発生する磁界から保護する機能を確保するため、スリット部までの距離Dslitは少なくともL以上の値としなければならない。スリット部までの距離Dslitが磁極部のポール長L以上の値であれば、スリット部によって分離された両シールド層のうちPTR面側(すなわち磁気抵抗効果素子側)の部分が、誘電型電磁変換素子44及び磁気ディスク表面52等の外部より発生する磁界を磁気抵抗効果層に達する手前で有効に遮蔽することができる。
以上の結果及び考察により、両スリット層までの距離Dslitを、D≧Dslitの関係を満たす値に設定することにより、両シールド層が十分な熱伝導抑制効果を発揮し、さらにD≧Dslit≧Lの関係を満たす値に設定することにより、両シールド層が、十分な熱伝導抑制効果及び磁界遮蔽効果を発揮することがわかる。
以下に、スリット部が無い第1の実施形態とスリット部が設けられた第2の実施形態とにおける、TPTP現象で見られる効果の相違点について述べる。
図17は、スリット部が無い第1の実施形態、及びスリット部が設けられた第2の実施形態における典型的な3つの構成を示している。図17(A)及び(B)は第1の実施形態に含まれる構成であり、図17(C)は第2の実施形態に含まれる構成である。これらの構成の各々において、D=50.0μm、L=25.0μmであり、何れの構成も、上述したLsh及びDslitの条件である、D≧Lsh≧L及びD≧Dslit≧Lの関係を満たしている。なお、図17(C)の構成においては、スリット部の間隙幅を含めたシールド長Lshが50μmとなっている。
表1に、これらの構成における、誘電型電磁変換素子の自身の発熱による突出量、及び発熱体による磁気抵抗効果素子の突出量/温度上昇分を示している。何れの値もシミュレーション値であり、図17(A)の構成での値を100としたときの比率となっている。
Figure 2006024289
ここで、誘電型電磁変換素子の突出量は、発熱体への電力供給はせず、誘電型電磁変換素子のコイル層に周波数300MHzの電流40mAを印加した場合の量である。すなわち、誘電型電磁変換素子自身からの発熱のみによる突出量である。この突出量は、一般に、発熱体による突出量に比べて数分の1程度の大きさであるが、この突出現象の電力投入からの反応時間は、0.1ミリ秒のオーダであり、発熱体による突出現象の反応時間(ミリ秒オーダ)に比べて短い。そのため発熱体への投入電力によってdMSを適時に制御するという目的からすると、この誘電型電磁変換素子の突出量はできるだけ小さい方が良い。さらに、この突出量を小さくすることによって、発熱体によるdMS制御の際の調整マージンを大きくとることもできる。
表1において、構成Aでの値を基準に考えると、構成Bでは、Lshを小さくした分だけ磁気抵抗効果素子の突出量/温度上昇分が大きくなり、発熱体によるTPTP現象の熱効率が高くなっている。しかしながら、誘電型電磁変換素子の自身の発熱による突出量も16%増大している。一方、構成Aと同一長のシールド層にスリット部を設けた構成Cでは、発熱体によるTPTP現象の熱効率も良くなり、誘電型電磁変換素子の自身の発熱による突出量は、構成Bに比べると抑制されている。従って、制御の目的及び状況に応じて、スリット部が無い第1の実施形態又はスリット部が設けられた第2の実施形態のいずれかを選択することにより、十分な熱効率を有しながら、dMSの制御において必要なだけの調整マージンと追随性を有する薄膜磁気ヘッドを実現することができる。スリット部を設けることで発熱体の温度が磁気抵抗効果素子に伝わりにくくなり熱効率が良くなる。(磁気抵抗効果素子の温度上昇を抑制できる。)
ここで、スリット部を有する構成Cにおいて誘電型電磁変換素子の突出量が抑制される理由として、スリット部によってシールド長方向に分離されたシールド層の部分のうち、PTR面とは反対側の部分が、誘電型電磁変換素子の発熱分を吸収するヒートシンクとしての役割を果たすことが考えられる。
従って、このようなスリット部を設けることは、スリット部までの距離Dslitに相当するシールド長Lshを有するシールド層と、このシールド層に近接して連なったヒートシンク層とを構成することに等しい。従って、このようなシールド層及び近接するヒートシンク層の構成も、本発明の範囲内に帰属するといえる。
また、1つのシールド層につき、上述の条件を満たす複数個のスリット部を設けた場合においても、上述した十分な熱伝導抑制効果及び磁界遮蔽効果を発揮することは明らかである。
さらに、本発明は、発熱体を備えた長手磁気記録用の薄膜磁気ヘッドだけではなく、発熱体を備えた垂直磁気記録用の薄膜磁気ヘッドにおいても実施可能であることは明らかである。すなわち、第1及び第2の実施形態において、誘電型電磁変換素子が垂直磁気記録に対応した構造を有していても、発熱体が発する熱に対するシールド長及びスリット部の効果は上述した内容と全く同様である。さらに、誘電型電磁変換素子自身の発する熱及び磁界に対する効果も同様になることは明らかである。
さらに、以上に述べた実施形態は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。
本発明による磁気ディスク装置の一実施形態における要部の構成を概略的に示す斜視図である。 図1の実施形態におけるHGA全体を表す斜視図である。 図1の実施形態におけるHGAの先端部に装着されている薄膜磁気ヘッドを示す斜視図である。 本発明による薄膜磁気ヘッドの第1の実施形態における概略的な構成を示す図である。 本発明による薄膜磁気ヘッドの第2の実施形態における概略的な構成を示す図である。 第1及び第2の実施形態における薄膜磁気ヘッドをスライダ基板の素子形成面側から透視的に見た平面図である。 第1及び第2の実施形態における薄膜磁気ヘッドの構成を示す、図6のA−A線での断面図である。 第1及び第2の実施形態における薄膜磁気ヘッドの構成を示す、図6のB−B線での断面図である。 第1及び第2の実施形態における薄膜磁気ヘッドの発熱体の構成を示す図である。 発熱体の電極パッド部の構成を示す、図6のC−C線での断面図である。 第1及び第2の実施形態における薄膜磁気ヘッドの製造工程を説明する工程図である。 図1の実施形態における磁気ディスク装置の記録再生回路の回路構成を示すブロック図である。 図1の実施形態における磁気ディスク装置の発熱体制御回路の構成を示すブロック図である。 第1の実施形態における薄膜磁気ヘッドのシールド長Lshと、磁気抵抗効果層のTPTP現象による突出量及び温度上昇の比との関係を示した図である。 第2の実施形態の薄膜磁気ヘッドにおける、シールド長Lshと、磁気抵抗効果層のTPTP現象による突出量及び温度上昇分の比との関係を示した図である。 第2の実施形態の薄膜磁気ヘッドにおける、スリット部までの距離Dslitと、気抵抗効果層のTPTP現象による突出量及び温度上昇分の比との関係を示した図である。 第1及び第2の実施形態における典型的な3つの構成を示した図である。
符号の説明
10 磁気ディスク
11 スピンドルモータの回転軸
12 アセンブリキャリッジ装置
13 記録再生回路
14 駆動アーム
15 ボイスコイルモータ
16 ピボットベアリング軸
17 HGA
20 サスペンション
21、40 スライダ基板
22 ロードビーム
23 フレクシャ
24 ベースプレート
25 配線部材
30 書き込み及び読み出し磁気ヘッド素子
31 信号端子電極
32 駆動端子電極
33 素子形成面
34、50 浮上面
41、43、46b 絶縁層
42 磁気抵抗効果素子
42a 下部シールド層
42b 下部シールドギャップ層
42c 磁気抵抗効果層
42d 素子リード導体層
42e 上部シールドギャップ層
42f 上部シールド層
42g スリット部
44 誘導型電磁変換素子
44a 下部磁極層
44b 磁気ギャップ層
44c コイル層
44d コイル絶縁層
44e コイルリード導体層
44f 上部磁極層
46 発熱体
46a 発熱部
46b、46c 引き出し電極
47、47c、48 オーバーコート層
47a、47b 平坦化層
51 PTR面
51a,51b、51c、51d、51e、51f 突出したPTR面
52 磁気ディスク表面
60 始点
61 折り返し点
62 終点
66 上り部
67 下り部
70、72、73 間隔
74、75 接続部
80b、80c 電極膜部材
81b、81c バンプ
82b、82c パッド
90 記録再生制御LSI
90a TA検出回路
91 ライトゲート
92 ライト回路
93 ROM
95 定電流回路
96 増幅器
97 復調回路
98 温度検出器
99 ヒータ制御回路
99a 直流定電圧回路
99b スイッチングトランジスタ
99c 可変抵抗器
99d D/A変換器

Claims (18)

  1. 基板と、該基板上に設けられたシールド部を有する少なくとも1つの読み出し磁気ヘッド素子と、該少なくとも1つの読み出し磁気ヘッド素子の前記基板とは反対側の位置に設けられ、磁極部を有する少なくとも1つの書き込み磁気ヘッド素子と、該少なくとも1つの書き込み磁気ヘッド素子及び前記少なくとも1つの読み出し磁気ヘッド素子を覆うように前記基板上に形成されたオーバーコート層と、該オーバーコート層内に設けられており、前記少なくとも1つの読み出し磁気ヘッド素子又は前記少なくとも1つの書き込み磁気ヘッド素子の少なくとも動作時に発熱せしめられる少なくとも1つの発熱体とを備えた薄膜磁気ヘッドであって、前記シールド部内に、前記シールド部を構成する材料よりも熱伝導率の低い材料から構成されていてシールド部をシールド長方向に分離させる少なくとも1つのスリット部が設けられていることを特徴とする薄膜磁気ヘッド。
  2. 前記シールド部が面しているヘッド端面から前記少なくとも1つのスリット部までの距離Dslitが、該ヘッド端面から前記少なくとも1つの発熱体までの距離D以下であることを特徴とする請求項1に記載の薄膜磁気ヘッド。
  3. 前記シールド部が面しているヘッド端面から前記少なくとも1つのスリット部までの距離Dslitが、前記磁極部のポール長L以上であることを特徴とする請求項1又は2に記載の薄膜磁気ヘッド。
  4. 前記シールド部が、下部シールド層と、該下部シールド層の前記基板側とは反対側に積層された上部シールド層とを備えており、前記少なくとも1つのスリット部が、前記下部シールド層及び該上部シールド層のそれぞれに設けられていることを特徴とする請求項1から3のいずれか1項に記載の薄膜磁気ヘッド。
  5. 前記ヘッド端面から前記下部シールド層及び前記上部シールド層のそれぞれに設けられたスリット部までの距離LDslit及びUDslitが等しいことを特徴とする請求項4に記載の薄膜磁気ヘッド。
  6. 基板と、該基板上に設けられたシールド部を有する少なくとも1つの読み出し磁気ヘッド素子と、該少なくとも1つの読み出し磁気ヘッド素子の前記基板とは反対側の位置に設けられ、磁極部を有する少なくとも1つの書き込み磁気ヘッド素子と、該少なくとも1つの書き込み磁気ヘッド素子及び前記少なくとも1つの読み出し磁気ヘッド素子を覆うように前記基板上に形成されたオーバーコート層と、該オーバーコート層内に設けられており、前記少なくとも1つの読み出し磁気ヘッド素子又は前記少なくとも1つの書き込み磁気ヘッド素子の少なくとも動作時に発熱せしめられる少なくとも1つの発熱体とを備えた薄膜磁気ヘッドであって、前記シールド部のシールド長Lshが、前記シールド部が面しているヘッド端面から前記少なくとも1つの発熱体までの距離D以下であることを特徴とする薄膜磁気ヘッド。
  7. 前記シールド長Lshが、前記磁極部のポール長L以上であることを特徴とする請求項6に記載の薄膜磁気ヘッド。
  8. 前記シールド部が、下部シールド層と、該下部シールド層の前記基板とは反対側に積層された上部シールド層とを備えており、前記シールド長Lshが、前記下部シールド層の下部シールド長LLshと該上部シールド層の上部シールド長ULshとのうち、小さくない方に等しいことを特徴とする請求項6又は7に記載の薄膜磁気ヘッド。
  9. 前記磁極部が、下部磁極層と、該下部磁極層と磁気的に接続されており前記下部磁極層の前記基板とは反対側に積層された上部磁極層とを備えており、前記磁極部のポール長Lが、前記下部磁極層におけるポール長LLであることを特徴とする請求項1から8のいずれか1項に記載の薄膜磁気ヘッド。
  10. 前記少なくとも1つの発熱体が、前記少なくとも1つの書き込み磁気ヘッド素子の前記基板とは反対側の位置に設けられていることを特徴とする請求項1から9のいずれか1項に記載の薄膜磁気ヘッド。
  11. 前記少なくとも1つの発熱体が、前記少なくとも1つの読み出し磁気ヘッド素子又は前記少なくとも1つの書き込み磁気ヘッド素子の前記シールド部が面しているヘッド端面とは反対側の位置に設けられていることを特徴とする請求項1から10のいずれか1項に記載の薄膜磁気ヘッド。
  12. 前記少なくとも1つの読み出し磁気ヘッド素子が、巨大磁気抵抗効果素子又はトンネル磁気抵抗効果素子であることを特徴とする請求項1から11のいずれか1項に記載の薄膜磁気ヘッド。
  13. 請求項1から12のいずれか1項に記載の薄膜磁気ヘッドと、該薄膜磁気ヘッドの前記少なくとも1つの読み出し磁気ヘッド素子及び前記少なくとも1つの書き込み磁気ヘッド素子への信号線と、前記薄膜磁気ヘッドの前記少なくとも1つの発熱体に電流を供給するためのリード線と、前記薄膜磁気ヘッドを支持する支持機構とを備えたことを特徴とするヘッドジンバルアセンブリ。
  14. 請求項13に記載のヘッドジンバルアセンブリを少なくとも1つ備えており、前記少なくとも1つの発熱体へ供給する電流を制御する電流制御手段をさらに備えたことを特徴とする磁気ディスク装置。
  15. 前記電流制御手段が、前記少なくとも1つの読み出し磁気ヘッド素子及び/又は前記少なくとも1つの書き込み磁気ヘッド素子の少なくとも動作時に前記少なくとも1つの発熱体へ電流を供給する制御手段であることを特徴とする請求項14に記載の磁気ディスク装置。
  16. 前記電流制御手段が、発熱体制御信号系を有しており、該発熱体制御信号系が前記少なくとも1つの読み出し磁気ヘッド素子及び/又は前記少なくとも1つの書き込み磁気ヘッド素子の動作制御信号系とは独立して、前記発熱体に供給される電流を制御することを特徴とする請求項14又は15に記載の磁気ディスク装置。
  17. 前記電流制御手段が、前記少なくとも1つの読み出し磁気ヘッド素子からの再生データ信号中に含まれているアコースティックエミッション成分を検出する検出手段を有しており、該検出手段によって検出された該成分の検出量に応じて前記発熱体に供給される電流を制御することを特徴とする請求項14から16のいずれか1項に記載の磁気ディスク装置。
  18. 前記電流制御手段が、前記磁気ディスク装置内の温度を検出する温度検出手段を有しており、該温度検出手段によって検出された該温度に応じて前記発熱体に供給される電流を制御することを特徴とする請求項14から17のいずれか1項に記載の磁気ディスク装置。
JP2004202027A 2004-07-08 2004-07-08 発熱体を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置 Pending JP2006024289A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004202027A JP2006024289A (ja) 2004-07-08 2004-07-08 発熱体を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置
US11/128,192 US7623322B2 (en) 2004-07-08 2005-05-13 Thin-film magnetic head with heater spaced further from medium facing surface than split in shield
CNB2005100780856A CN100347745C (zh) 2004-07-08 2005-06-14 具有加热器的薄膜磁头、磁头万向组件、及磁盘驱动装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202027A JP2006024289A (ja) 2004-07-08 2004-07-08 発熱体を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置

Publications (1)

Publication Number Publication Date
JP2006024289A true JP2006024289A (ja) 2006-01-26

Family

ID=35541099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202027A Pending JP2006024289A (ja) 2004-07-08 2004-07-08 発熱体を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置

Country Status (3)

Country Link
US (1) US7623322B2 (ja)
JP (1) JP2006024289A (ja)
CN (1) CN100347745C (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107007A (ja) * 2012-11-28 2014-06-09 Seagate Technology Llc 抵抗温度センサを製造するための方法、および抵抗温度センサを含む装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687650B2 (ja) * 2002-12-19 2005-08-24 Tdk株式会社 浮上型薄膜磁気ヘッド
US7656619B1 (en) * 2003-06-05 2010-02-02 Seagate Technology Llc Magnetic head sliders for disk drives having a heating element and pedestal in thick undercoat layer
JP4020114B2 (ja) * 2004-10-07 2007-12-12 Tdk株式会社 発熱体を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置
US7430098B1 (en) 2005-01-18 2008-09-30 Western Digital (Fremont), Llc Perpendicular magnetic recording head with dynamic flying height heating element
US7372665B1 (en) * 2005-01-18 2008-05-13 Western Digital (Fremont), Llc Magnetic recording head with resistive heating element located near the write coil
US7593188B2 (en) * 2006-03-31 2009-09-22 Hitachi Global Storage Technologies Netherlands, B.V. Low protrusion compensation air bearing
US7423830B2 (en) * 2006-04-10 2008-09-09 Iomega Corporation Detecting head/disk contact in a disk drive using a calibration parameter
US7505227B2 (en) * 2006-05-03 2009-03-17 Samsung Electronics Co., Ltd. Apparatus and method for preventing excessive thermal pole tip protrusion in slider of a hard disk drive
JP2008027504A (ja) * 2006-07-20 2008-02-07 Fujitsu Ltd 磁気ヘッド
KR100884002B1 (ko) * 2007-01-24 2009-02-17 삼성전자주식회사 헤드슬라이더와, 이를 구비한 하드디스크 드라이브와, 상기헤드슬라이더의 부상 높이 제어 방법
US9202495B2 (en) * 2007-05-01 2015-12-01 Seagate Technology Llc Method and apparatus for detecting proximity contact between a transducer and a medium
JP4909878B2 (ja) * 2007-11-30 2012-04-04 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ ディスク・ドライブ装置及びそのクリアランス調整方法
EP2065888A1 (en) * 2007-11-30 2009-06-03 Hitachi Global Storage Technologies Netherlands B.V. Disk drive device and clearence control method thereof
JP2009158065A (ja) * 2007-12-27 2009-07-16 Fujitsu Ltd ヘッドスライダおよび磁気記憶装置
US8154826B2 (en) * 2008-06-16 2012-04-10 Tdk Corporation Thin-film magnetic head with variable-volume cavity in medium-opposed surface
US8149541B2 (en) 2008-10-17 2012-04-03 Hitachi Global Storage Technologies Netherlands B.V. System for controlling contact location during TFC touchdown and methods thereof
US8218263B2 (en) * 2008-12-22 2012-07-10 Hitachi Global Storage Technologies Netherlands B.V. Write head with different upper and lower yoke lengths and methods for making the same
JP2011129204A (ja) * 2009-12-17 2011-06-30 Hitachi Global Storage Technologies Netherlands Bv 磁気ディスクの製造方法、浮上ヘッドを磁気ディスク上で浮上させる装置及び浮上ヘッド
US8523312B2 (en) 2010-11-08 2013-09-03 Seagate Technology Llc Detection system using heating element temperature oscillations
CN103155037B (zh) 2010-11-17 2016-06-08 希捷科技有限公司 使用电阻传感器的多级温度系数的凹凸体和磁头-介质接触检测
US8667856B2 (en) * 2011-05-20 2014-03-11 General Electric Company Sensor assemblies and methods of assembling same
US8717711B2 (en) 2011-09-28 2014-05-06 HGST Netherlands B.V. Low clearance magnetic head having a contact detection sensor
US8749920B1 (en) 2011-12-16 2014-06-10 Western Digital (Fremont), Llc Magnetic recording head with dynamic fly height heating and having thermally controlled pole tip protrusion to control and protect reader element
US8670214B1 (en) 2011-12-20 2014-03-11 Western Digital (Fremont), Llc Method and system for providing enhanced thermal expansion for hard disk drives
US8817425B1 (en) * 2013-03-15 2014-08-26 Headway Technologies, Inc. Dual-piece heat sink layer for robust reader in magnetic recording head
US9159349B2 (en) 2013-08-28 2015-10-13 Seagate Technology Llc Writer core incorporating thermal sensor having a temperature coefficient of resistance
CN103985395B (zh) * 2014-05-22 2016-11-09 无锡微焦科技有限公司 一种滑动检测装置
US9564151B1 (en) * 2015-08-28 2017-02-07 Seagate Technology Llc Data writer coil heater
US9799351B1 (en) * 2015-11-30 2017-10-24 Western Digital (Fremont), Llc Short yoke length writer having assist coils
US10366715B1 (en) * 2017-02-22 2019-07-30 Seagate Technology Llc Slider with heat sink between read transducer and substrate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991113A (en) 1997-04-07 1999-11-23 Seagate Technology, Inc. Slider with temperature responsive transducer positioning
US6963464B2 (en) * 2000-10-26 2005-11-08 Hitachi Global Storage Technologies Japan, Ltd. Magnetic head heating element in a disk drive
JP3636133B2 (ja) 2001-11-29 2005-04-06 Tdk株式会社 薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置
JP2003272335A (ja) 2002-03-13 2003-09-26 Toshiba Corp 磁気ディスク装置
US7082016B2 (en) * 2002-07-22 2006-07-25 Seagate Technology Llc Multilayer magnetic shields with compensated thermal protrusion
JP3854204B2 (ja) 2002-07-22 2006-12-06 アルプス電気株式会社 薄膜磁気ヘッド
JP2004079115A (ja) 2002-08-21 2004-03-11 Hitachi Ltd 複合型薄膜磁気ヘッド及び磁気ディスク装置
JP3944138B2 (ja) * 2003-03-07 2007-07-11 アルプス電気株式会社 薄膜磁気ヘッド
JP2004335069A (ja) * 2003-04-14 2004-11-25 Tdk Corp 薄膜磁気ヘッド、ヘッドジンバルアセンブリ、及び、ハードディスク装置
JP3944120B2 (ja) * 2003-06-04 2007-07-11 アルプス電気株式会社 磁気ヘッド

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107007A (ja) * 2012-11-28 2014-06-09 Seagate Technology Llc 抵抗温度センサを製造するための方法、および抵抗温度センサを含む装置

Also Published As

Publication number Publication date
US20060007594A1 (en) 2006-01-12
US7623322B2 (en) 2009-11-24
CN100347745C (zh) 2007-11-07
CN1719522A (zh) 2006-01-11

Similar Documents

Publication Publication Date Title
JP2006024289A (ja) 発熱体を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置
JP4093250B2 (ja) オーバーコート積層体内に発熱体を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置
US7612965B2 (en) Thin-film magnetic head having heatsink wider on air bearing surface side
JP3992052B2 (ja) 発熱体用放熱部を備えた薄膜磁気ヘッド
US7203035B2 (en) Thin-film magnetic head having a sheet-shaped heater with a lead part connected in series with the heater and having a resistance lower than the heater
JP4438853B2 (ja) 低抵抗部分を有する発熱素子を備えた薄膜磁気ヘッド
JP2008123654A (ja) 発熱部及び突出調整部を備えた薄膜磁気ヘッド及び該ヘッドの製造方法
JP3632025B2 (ja) 薄膜磁気ヘッド、ヘッドジンバルアセンブリ、及び、ハードディスク装置
JP2008047241A (ja) 浮上量測定方法及び浮上量の調整が可能な磁気ディスク装置
US7724471B2 (en) Thin-film magnetic head with heating means for adjusting magnetic spacing
US7224553B2 (en) Thin-film magnetic head, head gimbal assembly, and hard disk drive incorporating a heater
US20090103208A1 (en) Magnetic head
JP4134003B2 (ja) 発熱層を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置、並びにマグネティックスペーシング制御方法
JP2004280887A (ja) 薄膜磁気ヘッドの製造方法、薄膜磁気ヘッド、ヘッドジンバルアセンブリ及びハードディスク装置
JP2006351115A (ja) 抵抗発熱体を備えた薄膜磁気ヘッド
JP2005327383A (ja) 薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ、該ヘッドジンバルアセンブリを備えた磁気ディスク装置、薄膜磁気ヘッドの設計方法及び薄膜磁気ヘッドの製造方法
US7903370B2 (en) Thin-film magnetic head with coil-insulating layer that thermal expansion coefficient and young'S modulus are specified
JP2006323932A (ja) 発熱体を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ、該ヘッドジンバルアセンブリを備えた磁気ディスク装置及び該薄膜磁気ヘッドを用いた磁気記録再生方法
US7180707B2 (en) Thin-film magnetic head, head gimbal assembly, and hard disk drive
JP2005322279A (ja) 発熱体を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置
JP2006196127A (ja) 薄膜磁気ヘッド、磁気ヘッドアセンブリ及び磁気ディスクドライブ装置
JP4186912B2 (ja) マグネティックスペーシングの制御方法
JP2006351116A (ja) 抵抗発熱体を備えた薄膜磁気ヘッド
JP2006172561A (ja) 発熱体を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置
JP2005332514A (ja) 薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ及び該ヘッドジンバルアセンブリを備えた磁気ディスク装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106