JP2005037900A - 偏光光学素子、およびそれを用いた表示装置 - Google Patents

偏光光学素子、およびそれを用いた表示装置 Download PDF

Info

Publication number
JP2005037900A
JP2005037900A JP2004156463A JP2004156463A JP2005037900A JP 2005037900 A JP2005037900 A JP 2005037900A JP 2004156463 A JP2004156463 A JP 2004156463A JP 2004156463 A JP2004156463 A JP 2004156463A JP 2005037900 A JP2005037900 A JP 2005037900A
Authority
JP
Japan
Prior art keywords
light
optical element
layer
grating layer
polarizing optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004156463A
Other languages
English (en)
Other versions
JP4425059B2 (ja
Inventor
Takashi Ueki
俊 植木
Tokio Taguchi
登喜生 田口
Satoshi Shibata
諭 柴田
Kiyoshi Minoura
潔 箕浦
Masahiro Shimizu
雅宏 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004156463A priority Critical patent/JP4425059B2/ja
Priority to US10/866,835 priority patent/US7233563B2/en
Priority to TW093118134A priority patent/TWI257494B/zh
Priority to CNB2004100620195A priority patent/CN1281985C/zh
Priority to KR1020040048282A priority patent/KR100616392B1/ko
Publication of JP2005037900A publication Critical patent/JP2005037900A/ja
Application granted granted Critical
Publication of JP4425059B2 publication Critical patent/JP4425059B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/09Function characteristic transflective

Abstract

【課題】単独で表示装置に適用しても高いコントラストを有する表示を実現でき、薄型で光利用効率に優れた偏光光学素子を提供する。
【解決手段】入射する光の偏光に応じて光の反射率および/または透過率が変化する偏光光学素子であり、所定方向に延びる複数のストライプ部分を有する第1グレーティング層2と、所定方向に延びる複数のストライプ部分を有する第2グレーティング層3とを備える。第1グレーティング層2の平均格子ピッチ2pおよび第2グレーティング層3の平均格子ピッチ3pは、いずれも、光の波長よりも短く設定されている。第1グレーティング層2は、光に対して反射性を示す第1材料から形成され、第2グレーティング層3は、第1グレーティング層2による光の反射を抑制する第2材料から形成されている。
【選択図】図2

Description

本発明は、偏光光学素子、およびそれを用いた表示装置に関する。
現在、最も広く用いられているタイプの偏光子は、吸収型二色性偏光子である。吸収型二色性偏光子は、延伸された高分子フィルムに、光の吸収異方性を有する化合物(ヨウ素や二色性色素など)を吸着、配向させることによって作製される。この偏光子は、偏光子に入射する光を直交する偏光成分に分解し、二色性色素の吸収軸に平行な偏光成分を吸収し、吸収軸と直交する偏光成分を透過する。従って、偏光子を透過した光は直線偏光となる。このような吸収型の偏光子を表示装置に用いると、自然光に対する透過率は原理的に50%を超えることができないため、光の利用効率が低いという課題があった。
このような吸収型二色性偏光子の光吸収による損失を防ぐ目的で、特定方向の直線偏光を反射し、他方の偏光を透過する直線偏光反射型偏光子が開発され、実用化に至っている。直線偏光反射型偏光子は、例えば、2種の異なるポリマー材料AおよびBが交互に積層(ABABA・・・)された非吸収性誘電体の積層物である。このような偏光子は、2種の材料AおよびBを交互に積層した後、共に押出すことにより作製されるので、積層された材料は一軸xに沿って延伸されるが、他の軸yに沿って実質的に延伸されることはない。そのため、x軸方向の直線偏光に対しては高い反射率を示し、y軸方向の直線偏光に対しては高い透過率を示す。積層物の上下で層厚が異なるように作製すれば、広帯域の可視光に対して高い反射率を示す反射型偏光子が得られる。
また、他の直線偏光反射型偏光子として、微細金属格子(ワイヤー格子)による偏光子が挙げられる(例えば特許文献1など)。この偏光子は、単一金属で形成された金属線を平行に並べた構成を有しており、各金属線の直径は光の波長より十分小さい。このワイヤー格子偏光子は、金属線と平行な偏光成分(TE波)を反射し、金属線と直交する偏光成分(TM波)を透過する偏光特性を有する。
特開平9−90122号公報
反射型偏光子を表示装置に用いると、偏光子は、偏光子の上面および下面にそれぞれ入射する同一偏光に対して等しい反射率を示すため、光利用効率は向上する。しかし、この偏光子を単独で表示装置に用いる場合には、光減衰性が小さいので暗表示が得られず、その結果、表示のコントラストが低下する。暗表示を得るためには、表示装置において、反射型偏光子と上述した吸収偏光子とを組み合わせて使用する必要があるが、組み合わせて利用すると、部材の数やコストが増大する。また、吸収偏光子の厚さ(およそ100μm)の分だけ表示装置の厚さが増大するという問題もある。
本発明は、上記従来技術の問題点を鑑みてなされたものであり、その主な目的は、単独で表示装置に適用しても高いコントラストを有する表示を実現できる、薄型で光利用効率に優れた偏光光学素子を提供することである。
本発明の偏光光学素子は、入射する光の偏光に応じて光の反射率および/または透過率が変化する偏光光学素子であって、所定方向に延びる複数のストライプ部分を有する第1グレーティング層と、前記所定方向に延びる複数のストライプ部分を有する第2グレーティング層とを備え、前記第1グレーティング層の平均格子ピッチおよび前記第2グレーティング層の平均格子ピッチは、いずれも、前記光の波長よりも短く設定されており、前記第1グレーティング層は、前記光に対して反射性を示す第1材料から形成され、前記第2グレーティング層は、前記第1グレーティング層による前記光の反射を抑制する第2材料から形成されている。
ある好ましい実施形態において、前記第2材料は光吸収性を示す。
前記光に対する前記第2材料の反射率は、前記光に対する前記第1材料の反射率よりも小さいことが好ましい。
ある好ましい実施形態において、前記第1グレーティング層の前記複数のストライプ部分と、前記第2グレーティング層の前記複数のストライプ部分とは、同一の形状を有し、かつ重なっている。
ある好ましい実施形態において、前記第1グレーティング層の各ストライプ部分は、前記第2グレーティング層の対応するストライプ部分と積層構造を形成しており、前記積層構造は、基板に支持されている。
前記積層構造は、前記所定方向に延びる軸に関する180度の回転について非対称であることが好ましい。
前記積層構造の最下層または最上層は前記第1グレーティング層であってもよい。
ある好ましい実施形態において、前記第1グレーティング層は前記基板の一方の面に形成され、前記第2グレーティング層は前記基板の他方の面に形成されている。
可視光線の直線偏光に対する前記1グレーティング層の反射率は50%より大きいことが好ましい。
ある好ましい実施形態において、前記複数のストライプ部分を覆う透明層をさらに備え、前記透明層の表面は略平坦である。
好ましくは、前記透明層は誘電体材料から形成される。
本発明の表示装置は、上記いずれかの偏光光学素子を用いている。
本発明の液晶表示装置は、第1基板と、第2基板と、前記第1基板および前記第2基板に挟持された液晶層とを備え、前記液晶層に電圧を印加することにより表示を行なう液晶表示装置において、前記第1基板と前記液晶層との間に配置され、入射する光の偏光に応じて光の反射率および/または透過率が変化する偏光光学素子をさらに備えており、前記偏光光学素子は、前記第1基板の上に形成され、所定方向に延びる複数のストライプ部分を有する積層構造を有し、前記積層構造の平均格子ピッチは、前記光の波長よりも短く設定されており、前記積層構造は、前記光に対して反射性を示す第1材料から形成された第1グレーティング層と、前記第1グレーティング層よりも前記液晶層側に形成され、前記第1グレーティング層による前記光の反射を抑制する第2材料から形成されている第2グレーティング層とを含む。
本発明によると、薄型で光利用効率に優れた偏光光学素子を提供できる。本発明の偏光光学素子を表示装置に適用すると、高いコントラストを有する表示を実現できる。
本発明の偏光光学素子の好ましい実施形態では、基板上に、反射防止効果を示す格子状の膜と光反射性を示す格子状の膜(以下、「光反射性膜」と呼ぶことがある)を含む多層膜(金属、誘電体、半導体等を含む)を形成する。
本発明の偏光光学素子は、所定方向に延びる複数のストライプ部分を有する第1グレーティング層と、第1グレーティング層のストライプ部分と同じ方向に延びる複数のストライプ部分を有する第2グレーティング層とを備えている。これらのグレーティング層の平均格子ピッチはいずれも、光学素子に入射する光の波長よりも短い。本明細書では、「平均格子ピッチ」とは、グレーティング層において、互いに隣接するストライプ部分の幅の中心線間の距離をいう。第1グレーティング層は、入射する光に対して反射性を示す第1材料から形成されている。例えば、可視光線の直線偏光に対する第1グレーティング層の反射率は50%より大きい。第2グレーティング層は、第1グレーティング層による光の反射を抑制する第2材料から形成されている。
反射防止効果を有する膜(第2グレーティング層)を用いて光反射性膜(第1グレーティング層)による反射を防止する手法として、A)金属などの光反射性膜の光入射側に、非干渉性の光吸収性を示す膜を設けることによる反射防止手法、およびB)薄膜の干渉や吸収を利用して、光反射性膜とその上の(多層)膜の光学アドミッタンスを揃えることによる反射防止手法が考えられる。後者の反射防止手法B)には、(B1)透明膜による(光反射性膜の光入射側に透明膜を設けることによる)反射防止、(B2)光吸収性を示す膜による(光反射性膜の光入射側に光吸収性の膜を設けることによる)反射防止、(B3)光反射性膜に干渉フィルター型の多層コーティングを施すことによる反射防止が含まれる。上記Bの手法では、反射防止効果を有する膜を1層設けると、特定波長の単色光に対して完全反射防止の条件が成り立つ。また、これらの反射防止効果を有する膜を複数用いると、広帯域で反射防止が可能となる。例えば、反射防止効果を有する膜を、2層、3層と積み重ねた多層構造とし、各層の材料や厚さを適宜選択することにより、可視スペクトル全域に渡って反射防止可能な偏光光学素子を構成できる。広帯域で反射防止が可能となれば、直視型の多色表示装置に好適に適用できるなど、偏光光学素子の用途が広がる。
本発明の偏光光学素子は、上記構成を有しているので、入射する光の偏光に応じて光の反射率および/または透過率を変化させることができる。より具体的には、上記ストライプ部分の方向に振動する直線偏光TEが第1グレーティング層に入射すると、直線偏光TEの大部分は反射されるが、上記直線偏光TEが第2グレーティング層に入射すると、直線偏光の大部分は吸収などされる。一方、上記ストライプ部分と直交する方向に振動する直線偏光TMの大部分は、第1および第2グレーティング層を透過する。従って、光学素子の一方の表面(甲面)に入射する光の反射率を第1グレーティング層によって制御し、他方の面(乙面)に入射する光の反射率を第2グレーティング層によって制御することができる。第2グレーティング層の第2材料が光吸収性を示す材料であれば、この光学素子を表示装置に適用した場合にコントラストの高い表示が可能となるので有利である。また、第2材料は、第1材料の反射率よりも小さい反射率を有していてもよい。第1材料または第2材料として、金属、誘電体、半導体などを用いることができる。
このように、本発明の偏光光学素子は、吸収型偏光子や反射型偏光子としてのみでなく、それら2種の偏光子を組み合わせた偏光子ユニットとしても機能できる。また、表示装置に適用されると、第1および第2材料の選択により、表示のコントラストを向上できる。さらに、従来の吸収型偏光子または反射型偏光子の厚さ(100μm程度)と比べて、本発明の偏光光学素子の厚さ(0.2μm程度、保護層で覆う場合は1μm程度)は小さいので、光学素子およびそれを用いた表示装置の薄型化が可能になる。特に、従来の表示装置で用いる、吸収型偏光子と反射型偏光子とを組み合わせた偏光子ユニットと比べると、1/100程度の厚さの光学素子を形成できるので有利である。
第1グレーティング層の複数のストライプ部分と、第2グレーティング層の複数のストライプ部分とは、同一の形状を有し、かつ重なっていてもよい。このような第1および第2グレーティング層は、例えば、第1材料および第2材料を基板の同一の面に同一パターンで堆積させることによって積層膜を形成した後、上記複数のストライプ部分を有するように、上記積層膜をパターニングすることによって得られる。このように、2層同時にパターニングできるので、製造プロセスが軽減される。
本発明の偏光光学素子は、第1グレーティング層および第2グレーティング層を含む2層以上の積層構造を有してもよい。この積層構造は、所定方向に延びる複数のストライプ部分を有するようにパターニングされている。ストライプ部分のそれぞれが、所定方向に延びる軸に関する180度の回転について非対称であれば、積層構造の上面と下面とで反射率を異ならせることができる。例えば、第1グレーティング層を積層構造の最上層として用い、第1グレーティング層よりも反射率の低い(および/または光吸収性の)グレーティング層を最下層として用いてもよい。また、この積層構造は基板の上に形成できる。このような積層構造を有する光学素子を表示装置に用いると、高い光利用効率を維持しつつ、コントラストを向上させることができる。この積層構造の厚さは、0.05μm以上1μm以下であり、従来の偏光子の厚さよりも極めて小さい。
代わりに、第1グレーティング層を基板の一方の表面(甲面)に形成し、第2グレーティング層を基板の他の表面(乙面)に形成することもできる。これによって、基板の甲面と乙面とで光反射率を独立に制御できる。このような光学素子は、基板の甲面および乙面に第1および第2材料をそれぞれ堆積して薄膜を形成した後、各薄膜を別個にパターニングすることによって得られる。パターニングは片面ずつ行うので、パターニング精度が向上し、光学設計の際に計算された値に近い高性能な光学特性が得られやすい。また、第1グレーティング層のストライプ部分と第2グレーティング層のストライプ部分とを位置合わせする必要がないので、製造プロセスにおける負担が軽減される。
ここで、図面を参照しながら、第1グレーティング層のストライプ部分と第2グレーティング層のストライプ部分との間で位置合わせを行う必要がない理由を説明する。図1Aおよび図1Bは、基板31の甲面31aに反射性の金属を用いて第1グレーティング層32が形成され、基板31の乙面31bに光吸収材料を用いてグレーティング層33が形成された偏光光学素子を示す。第1グレーティング層32のストライプ部分と第2グレーティング層33のストライプ部分との間で位置合せは行われていない。ただし、これらのグレーティング層32、33におけるストライプ部分は同じ方向に延びている。また、第1および第2グレーティング層32、33のライン幅は可視光よりも十分小さく、例えば可視光線の波長の1/4以下(すなわち100nm以下)とする。
まず、図1Aを参照しながら、基板31の甲面31aの側から光が入射する場合について説明する。
第1および第2グレーティング層32、33のストライプ部分と平行に振動する電気ベクトルを有する偏光可視光(TE波)36が基板1の甲面側から偏光光学素子に入射すると、TE波36の大部分は基板甲面31aの第1グレーティング層32で反射されるので、基板乙面31bには達しない。他方、第1および第2グレーティング層32、33のストライプ部分と垂直に振動する電気ベクトルを有するTM波35が基板31の甲面31aの側から入射すると、TM波35は第1グレーティング層32を認識せずに第1グレーティング層32を透過し、さらに基板31を透過して基板31の乙面31bに達する。ここで、TM波35は第2グレーティング層33のストライプ部分に対しても平行な直線偏光であるため、第2グレーティング層33を認識せずに第2グレーティング層33を透過する。従って、第1グレーティング層32のストライプ部分の位置と第2グレーティング層33のストライプ部分の位置とが整合しているか否かにかかわらず、TM波35の大部分は偏光光学素子を透過する。
次に、図1Bを参照しながら、基板31の乙面31bの側から光が入射する場合について説明する。
第1および第2グレーティング層32、33のストライプ部分と平行に振動する電気ベクトルを有する偏光可視光(TE波)38が基板31の乙面31bの側から偏光光学素子に入射すると、TE波38の多くは第2グレーティング層33で吸収されるが、TE波38の一部は第2グレーティング層33で吸収されずに基板31の甲面31aに達する。基板31の甲面31aに達したTE波38の大部分は第1グレーティング層32で反射されて、再度基板31の乙面31bの第2グレーティング層33で吸収される。他方、第1および第2グレーティング層32、33のストライプ部分と垂直に振動する電気ベクトルを有する偏光可視光(TM波)37が基板31の乙面31bの側から入射すると、TM波37は第2グレーティング層33を認識せずに第2グレーティング層33を透過し、さらに基板31を透過して基板31の甲面31aに達する。ここで、TM波37は第1グレーティング層32のストライプ部分に対しても平行な直線偏光であるため、第1グレーティング層32を認識せずに第1グレーティング層32を透過する。従って、第1グレーティング層32のストライプ部分の位置と第2グレーティング層33のストライプ部分の位置とが整合しているか否かにかかわらず、TM波37の大部分は偏光光学素子を透過する。
このように、基板31の甲面31aに形成された反射性の第1グレーティング層32と乙面31bに形成された吸収性の第2グレーティング層33とは互いに独立して機能するので、これらのグレーティング層32、33のストライプ部分の位置を合わせる必要はない。
上記では、単純なストライプ形状を有する第1および第2グレーティング層32、33を例に説明したが、これらのグレーティング層32、33は、基板31の面内において異方性を示す構造を有していれば良い。例えば、一定の方向(長軸方向)に光の波長以上の長さを有し、長軸方向と直交する短軸方向に光の波長よりも十分に短い幅を有する単位構造から構成されていれば良い。また、グレーティング層32、33の構造は互いに異なっていても良い。なお、グレーティング層32、33の構造にかかわらず、上述した理由により、これらのグレーティング層32、33におけるグレーティング位置は基板31を介して整合されている必要はない。
また、グレーティング層を形成した基板の表面に、ストライプ部分を覆う透明層をさらに設けることによって、基板の表面を平坦化してもよい。透明層は、例えば誘電体材料から形成される。これにより、略平坦な表面を有する偏光光学素子が構成できるので、偏光光学素子の上に電極や配向膜などの膜を形成しやすくなる。また、この透明層はグレーティング層表面の損傷を防止する保護膜としても機能するので、偏光光学素子の光学特性の劣化を抑制できる。
以下、図面を参照しながら本発明の実施形態を説明する。図面を通じて同様の部材には同一の参照符号を付している。以下に説明する実施形態1は、上述したAの反射防止手法を用いた偏光光学素子である。同様に、実施形態2はB(2)、実施形態3はB(3)、実施形態4はB(1)の反射防止手法をそれぞれ用いた偏光光学素子である。
(実施形態1)
本発明による偏光光学素子の実施形態1を図2に示す。
本実施形態の偏光光学素子は、基板1と、基板1の一方の表面1aに形成された光反射性の第1グレーティング層2と、基板1の他方の表面1bに形成された第2グレーティング層3と、これらのグレーティング層2、3をそれぞれ覆う保護層4および5を備えている。
基板1は、例えば光学的に等方なガラスから形成される。第1グレーティング層2は、例えば、光反射性の高いアルミニウムの膜(厚さ:150nm)から形成され、格子状のライン/スペースにパターニングされている。ライン幅、スペース幅および平均格子ピッチ2pは、それぞれ例えば80nm、70nmおよび150nmに設定される。
第2グレーティング層3は、例えば、光吸収性を示すタングステン膜(厚さ:150nm)から形成され、第1グレーティング層2と同様の方向に延びる格子状のライン/スペースにパターニングされている。ライン幅、スペース幅および平均格子ピッチ3pは、それぞれ例えば80nm、70nmおよび150nmである。
本実施形態では、第2グレーティング層3のストライプ部分と、第1グレーティング層のストライプ部分とが完全に重なり合うように位置合わせを行う必要はない。
第1グレーティング層を覆う保護層4および第2グレーティング層を覆う保護層5は、それぞれ、例えば透過性を有する光硬化性樹脂から形成されている。保護層4および5の厚さは、基板に入射する光が薄膜干渉しないように十分大きいことが好ましい。保護層4および5の好適な厚さは、500nm以上5000nm以下である。本実施形態では、これらの厚さは1000nm程度である。このように保護層4および5を設けると、微細格子パターンを有するグレーティング層の劣化や損傷が防止できるので、寿命の長い偏光光学素子を得ることができる。
以下に、この偏光光学素子の作製方法を説明する。
まず、基板1の表面1aに、例えばアルミニウム膜などの光反射性の膜を形成する。次いで、光反射性の膜の表面にフォトレジストを塗布し、フォトリソグラフおよびエッチング技術を用いて光反射性の膜を上記ライン/スペースとなるようにパターニングする。本実施形態では、ホログラフィーによる干渉フォトリソグラフ法を用いて、微細なレジストパターンを形成した後、Arイオンを用いたイオンビームエッチングを行い、光反射性の膜のうちレジストパターンから露出している部分を除去する。このようにして、微細な格子ピッチ(例えば100nm程度)を有する第1グレーティング層2が得られる。
次いで、レジストを剥離し、基板1の表面1a全面に透明な光硬化性樹脂を塗布した後、露光により光硬化性樹脂を硬化させる。これにより、第1グレーティング層の微細パターンを保護する保護層4が形成できる。
この後、基板1の他方の表面1bにタングステン膜などの光吸収性の膜を形成する。次に、上記の光反射性の膜のパターニング方法と同様の方法で、光吸収性の膜をパターニングする。光吸収性の膜は、第1グレーティング層の格子と同方向に延びる格子状にパターニングされる。これにより、基板1の表面1bに第2グレーティング層3が形成される。なお、第2グレーティング層3のパターンは、可視光線の波長より十分小さい平均格子ピッチを有することと、第1グレーティング層2のパターンと格子の向きが同じであることが必要であり、第1グレーティング層2のパターンと厳密に同じライン幅および同じ間隔(スペース)を有している必要はない。すなわち、第2グレーティング層3は、第1グレーティング層2と位置を合わせるようにパターニングしなくてもよい。
最後に、第2グレーティング層3の上にも、保護層4を形成した方法と同様の方法で、保護層5を形成すると、偏光光学素子が完成する。
本実施形態では、第1グレーティング層2は光反射性を示す膜から形成されている。光反射性の膜の材料として、導電性の良好なアルミニウムの他、銀、ニッケル、白金およびこれらの合金などを用いることができる。本明細書において、「光反射性の膜」または「光反射性を有する膜」という文言は、少なくとも光反射性を有していることを意味しており、その膜が光反射性という性質以外に光透過性や光吸収性を有していてもよい。
また、第2グレーティング層3は、光吸収性の膜から形成されている。光吸収性の膜の材料として、タングステンの他、クロム、モリブデン、クロムおよびモリブテンの合金、カーボンブラック、ヨウ素錯体、染料、顔料などを用いることができる。光吸収性の膜は、これらの材料のうち1以上を含む薄膜であってもよい。
第1グレーティング層2および第2グレーティング層3の平均格子ピッチは、可視光線の波長よりも十分に小さければよく、好ましくは、5nm以上200nm以下である。格子ピッチは、各グレーティング層内で均一である必要はなく、分布を有していてもよい。
また、第1グレーティング層2および第2グレーティング層のライン幅は、いずれも入射光の波長の1/4程度以下であることが好ましい。
第1グレーティング層2における可視光線の直線偏光に対する反射率は50%より大きいことが好ましい。反射率が50%より大きいと、この偏光光学素子を表示装置に用いた場合に、高いコントラストが実現できる。
第2グレーティング層3は、光吸収性とともに光反射性を有していてもよいが、第2グレーティング層3の反射率は、第1グレーティング層2の反射率よりも小さいことが好ましい。
異方的な格子形状の形成方法(パターニング方法)は、上記のイオンビームエッチングに限定されず、公知の微細加工技術が適用できる。具体的には、加工されるべき膜の上に光反応性レジスト層を塗布した後、フォトリソグラフィ工程で所望のパターン(潜像)をレジスト層に形成した後、現像工程を行うことにより、エッチングマスクとして機能するレジストマスクを形成する。その後、光反射性の膜のうち、レジストマスクで覆われていない部分を、種々のウェットエッチングおよび/または/ドライエッチングによって除去し、基板を露出させればよい。また、このようなフォトリソグラフィ技術を用いる代わりに、電子線リソグラフィー法によって所望のパターンに直接加工されたレジストマスクを用いても良いし、あるいは、レジストマスクを用いることなく、電子やレーザービームによる直接描画法によるパターニングを行ってもよい。さらには、レプリカ(複製)法や光学ホログラフィーなどを用いることもできる。
本実施形態では、第1グレーティング層および第2グレーティング層は金属の単層膜から形成されるが、所望の性質(光反射性、光吸収性)を示す膜から形成されればよく、金属材料、半導体材料、誘電体材料などから形成された単層膜もしくは多層膜を用いて形成できる。従って、これらの膜のパターニング方法も、光反射性の膜または光吸収性の膜の材質や厚さなどにより適時選択することが好ましい。
次に、上記方法により作製された偏光光学素子の光学特性を測定した結果を説明する。偏光光学素子の第1グレーティング層(アルミニウム膜)2側の表面4aに光(波長:1000nm)を入射すると、入射した光のうち、TE波の反射率は87%であり、TM波の透過率は80%であった。一方、偏光光学素子のグレーティング層(タングステン膜)3側の表面5bに光(波長:1000nm)を入射すると、入射した光のうち、TE波の反射率は31%であり、TM波の透過率は80%であった。この結果から、本実施形態の偏光光学素子に波長が1000nmの光を入射すると、表面4aから入射したTE波の大部分はアルミニウム膜で反射されるが、表面5bから入射したTE波の大部分はタングステン膜によって吸収されることがわかる。すなわち、表面5bから入射したTE波のアルミニウム膜による反射は、タングステン膜によって抑制されている。また、いずれの表面4aおよび5bから入射するかにかかわらず、入射光のTM波の大部分は、グレーティング層2、3の格子を透過することもわかる。
上記のように、本実施形態による偏光光学素子は、可視光線のみでなく、赤外領域の光線に対しても適用できる。
(実施形態2)
本発明による偏光光学素子の実施形態2を図3に示す。本実施形態の偏光光学素子は、基板1と、基板1の一方の表面1aに形成された第2グレーティング層3と、第2グレーティング層3の上に形成された光反射性の第1グレーティング層2と、これらのグレーティング層を覆う保護層4を備えている。基板1は、例えば光学的に等方なガラス基板である。第1グレーティング層2は、例えば光反射性の高いアルミニウムの膜(厚さ:150nm)であり、第2グレーティング層3は、例えば、光吸収性を示すカーボンブラック膜(厚さ:150nm)である。第1グレーティング層2および第2グレーティング層3は、同一の格子状のライン/スペースを有するようにパターニングされている。ライン幅、スペース幅および平均格子ピッチ2pは、それぞれ例えば80nm、70nmおよび150nmである。第1グレーティング層2および第2グレーティング層3を覆う保護層4は、例えば透過性を有する光硬化性樹脂から形成されている。保護層4の厚さは、基板に入射する光が薄膜干渉しないように十分大きいことが好ましく、例えば1000nm程度である。
以下に、この偏光光学素子の作製方法を説明する。
まず、基板1の表面1aに、例えばカーボンブラック膜などの光吸収性の膜、およびアルミニウム膜などの光反射性の膜をこの順に積層する。次いで、光反射性の膜の表面にレジストを塗布し、電子描画法を用いて、これらの膜を格子状(平均格子ピッチ:約150nm)にパターニングすることにより、光吸収性を有する第2グレーティング層3と、光反射性を有する第1グレーティング層2とが得られる。本実施形態では、積層された光反射性の膜および光吸収性の膜は、同一のパターンを用いて同時にパターニングされるが、同一のパターンを用いて、それぞれの膜の材質に適合した方法によって別個にパターニングすることもできる。
次いで、レジストを剥離し、基板1の表面1a全面に透明な光硬化性樹脂を塗布した後、露光により光硬化性樹脂を硬化させる。これにより、第1および第2グレーティング層2、3の微細パターンを保護する保護層4が形成され、偏光光学素子が完成する。
本実施形態においても、光反射性の膜および光吸収性の膜として、上記に限らず、実施形態1で例示したような種々の膜を用いることができる。また、これらの膜のパターニング方法も上記に限らず、実施形態1と同様に、適宜選択することができる。
次に、上記方法により作製された偏光光学素子の光学特性を測定した結果を説明する。偏光光学素子の第1グレーティング層(アルミニウム膜)2側の表面4aに光(波長:1000nm)を入射すると、入射した光のうち、TE波の反射率は80%であり、TM波の透過率は78%であった。一方、偏光光学素子のグレーティング層(カーボンブラック膜)3側の表面1bに光(波長:1000nm)を入射すると、入射した光のうち、TE波の反射率は35%であり、TM波の透過率は78%であった。この結果から、図3の偏光光学素子に波長が1000nmの光を入射すると、表面4aから入射したTE波の大部分はアルミニウム膜で反射されるが、表面1bから入射したTE波の大部分は、基板1を透過した後、カーボンブラック膜によって吸収されることがわかる。すなわち、表面1bから入射したTE波のアルミニウム膜による反射は、カーボンブラック膜によって抑制されている。また、いずれの表面4aおよび1bから入射するかにかかわらず、入射光のTM波の大部分は、グレーティング層2、3の格子を透過することもわかる。
(実施形態3)
本発明による偏光光学素子の実施形態3を図4に示す。本実施形態の偏光光学素子は、基板1と、基板1の一方の表面1aに形成された積層体10と、積層体10を覆う保護層4を備えている。基板1は、例えば光学的に等方なガラス基板である。積層体10は、基板の表面1aに順次積層された光反射性の第1グレーティング層2と、第1誘電体層6と、第2グレーティング層3と、第2誘電体層7とを有している。第1グレーティング層2は、例えば光反射性の高い銀(Ag)膜(厚さ:150nm)であり、第2グレーティング層3は、例えば、光吸収性を示すタングステン膜(厚さ:12.8nm)である。第1誘電体層6は、例えばSiO2膜(厚さ:66.4nm)であり、第2誘電体層7は、例えばZrO2膜(厚さ:114.1nm)である。積層体10は、格子状のライン/スペースを有するようにパターニングされている。ライン幅、スペース幅および平均格子ピッチ2pは、それぞれ例えば80nm、70nmおよび150nmである。積層体10を覆う保護層4は、例えば透過性を有する光硬化性樹脂から形成されている。保護層4の厚さは、基板に入射する光が薄膜干渉しないように十分大きいことが好ましく、例えば1000nm程度である。
本実施形態では、第2グレーティング層3および誘電体層6、7が反射防止効果を有している。このように、第2グレーティング層3による光吸収のみでなく、誘電体層6、7による薄膜干渉も利用することにより、より広い帯域の光に対して反射を防止することができる。
以下、図4の偏光光学素子の作製方法を、図8(a)〜(e)を参照しながら説明する。
まず、図8(a)に示すように、基板1の表面1aに、光反射性の膜(Ag膜)2A、誘電体の膜(SiO2膜)6A、光吸収性の膜(W膜)3Aおよび誘電体の膜(ZrO2膜)7Aを順次積層し、積層膜を形成する。次に、図8(b)に示すように、最上面であるZrO2膜の表面にレジスト8を塗布し、電子リソグラフィー法により、上述したようなライン/スペースを有するように積層膜をパターニングする(図8(c))。この後、レジスト8を剥離することにより、図8(d)に示すような積層体(厚さ:約0.2μm)10が得られる。必要に応じて、基板の表面1a全面に透明な誘電体(n=1.5)である光硬化性樹脂を塗布した後、露光により樹脂を硬化させると、図8(e)に示すように、微細格子パターンを保護する保護層4が形成される。保護層4の厚さは、薄膜干渉しないように十分大きいことが好ましく、例えば1000nm程度である。これにより、基板1に支持された偏光光学素子20が完成する。
積層体10に含まれる各層の材料や厚さは、上記に限定されない。各層の屈折率、厚さを変えることにより、偏光光学素子の積層体10側の表面4aに入射する光の反射率、偏光光学素子の基板1側の表面1bに入射する光の反射率、反射率ニ色比などを制御できる。例えば、第1グレーティング層2の厚さを大きくすることによって、第1グレーティング層2の光反射率を高くでき、その結果、偏光光学素子の表面1b(積層体10の第1グレーティング層2側)から入射したTE波の反射率を高くすることができる。具体的には、Agの光反射性が十分得られるように、Ag膜の厚さは50nm以上であることが好ましい。Ag膜の厚さが50nm以上であれば、偏光光学素子の表面1bから光を入射した際のTE波の反射率を高めることができると共に、表面1bから入射する光の反射率二色比を向上できる。また、偏光光学素子の表面4aから入射する光の反射率と、表面1bから入射する光の反射率とのコントラストを向上できる。積層体10の各層は、用途に応じて複屈折性を有する材料を用いて形成してもよい。また、積層体10の積層数も上記に限定されず、5層以上の積層構造を有していてもよい。
本実施形態における積層体10の厚さは、0.05μm以上1μm以下であることが好ましい。このように、本実施形態では、偏光光学素子の厚さを従来の偏光子の厚さと比べて極めて小さくできる。
上記方法に従って作製した偏光光学素子について、保護層4を形成する前に、各偏光の光の反射率、透過率のスペクトルを測定したので、その結果を図5から図7に示す。
図5は、基板の表面1b側から入射するTE波の波長と、反射率との関係を表すグラフである。図5におけるTE波の反射率は、主に第1グレーティング層2によって制御されている。図6は、基板の表面1a側から入射するTE波の波長と反射率および透過率との関係を表すグラフである。図6からわかるように、TE波の反射は広帯域において抑制されている。また透過率も略ゼロであることから、入射したTE波の大部分は第2グレーティング層3に吸収されていると考えられる。このように積層体10が反射防止作用を有する理由を以下に説明する。反射防止作用は、一般的に、反射層と吸収層とを含む多層膜において、これらの層の光学アドミッタンスを調整することによって得られる。本実施形態では、第1グレーティング(Ag)層2が反射層、第2グレーティング(W)層が吸収層にそれぞれ相当する。また、誘電体(SiO2)層6は反射層と吸収層との光学アドミッタンスを調整する役割を果たし、誘電体(ZrO2)層7は吸収層と空気との光学アドミッタンスを調整する役割を果たしているからである。図7は、表面1aおよび1bから入射するTM波の波長と透過率を表すグラフである。これらのスペクトルに基づいて偏光光学素子の光学特性を計算すると、以下の値が得られる。
偏光光学素子の基板1の表面1b側から単一波長の光(波長:539nm)を入射すると、入射した光のうち、TE波の反射率は94%であり、TM波の透過率は82%であった。一方、積層体10が形成された基板1の表面1a側から光(波長:539nm)を入射すると、入射した光のうち、TE波の反射率は1%であり、TM波の透過率は82%であった。この結果から、偏光光学素子に波長が539nmの光が入射する場合、表面1b側から入射したTE波の大部分は、基板1を透過した後、第1グレーティング層(Ag膜)2によって反射され、一方、表面1a側から入射したTE波の大部分は、ZrO2膜を透過した後、第2グレーティング層(タングステン膜)3によって吸収されることがわかる。すなわち、表面1a側から入射したTE波のAg膜による反射は、タングステン膜によって抑制されている。また、いずれの表面1aおよび1b側から入射するかにかかわらず、入射光のTM波の大部分は、積層体10の格子を透過することもわかる。
また、380nm以上780nm以下の波長を有する可視光を偏光光学素子に入射すると、基板1の表面1b側から入射したTE波の反射率は平均91%であり、TM波の透過率は平均75%であった。一方、基板1の表面1a側から入射したTE波の反射率は平均3%であり、TM波の透過率は平均75%であった。この結果から、本実施形態の偏光光学素子は、特定波長においてのみでなく、可視波長の広帯域(380nm〜780nm)においても優れた光学特性を示すことがわかる。
(実施形態4)
本発明による偏光光学素子の実施形態4は、図3に示す実施形態2の偏光光学素子と同様の構成を有するが、第2グレーティング層3として、透明な誘電体膜を用いる点で異なっている。
本実施形態の偏光光学素子における第2グレーティング層3は、誘電体であり、かつ消衰係数k=0の透明層である。透明層は、例えば酸化チタン膜(厚さ:25nm)である。また、本実施形態では、第1グレーティング層2は、実施形態2と同様に、導電性を示す光反射性の金属膜(例えば、厚さが150nmのタングステン膜)から形成されている。これらのグレーティング層2、3は、例えば、ライン幅が100nm、スペース幅が100nm、格子ピッチが200nmの格子状にパターニングされている。これらのグレーティング層は、保護層4(厚さ:1000nm程度)に覆われている。
本実施形態の偏光光学素子は、実施形態2の偏光光学素子の作製方法と同様の方法により作製される。
まず、基板1の表面1aに、例えば酸化チタン膜などの透明膜、およびタングステン膜などの光反射性の膜をこの順に積層する。次いで、フォトリソグラフ法により光反射性の膜の表面にレジストを塗布し、Arスパッタ法により、これらの膜を約200nmの平均格子ピッチを有するライン/ストライプとなるようにパターニングすることにより、透明な第2グレーティング層3と、光反射性を有する第1グレーティング層2とが得られる。次いで、レジストを剥離し、実施形態2で説明した方法と同様の方法で、基板1の表面1a全面に保護層4を形成する。
本実施形態においても、光反射性の膜および透明膜として、上記に限らず、実施形態1で例示したような種々の膜を用いることができる。また、これらの膜のパターニング方法も上記に限らず、実施形態1と同様に、適宜選択することができる。
次に、上記方法により作製された偏光光学素子の光学特性を測定した結果を説明する。偏光光学素子の第1グレーティング層(タングステン膜)2側の表面4aに光(波長:530nm)を入射すると、入射した光のうち、TE波の反射率は37%であり、TM波の透過率は87%であった。一方、偏光光学素子の第2グレーティング層(酸化チタン膜)3側の表面1bに光(波長:530nm)を入射すると、入射した光のうち、TE波の反射率は2%であり、TM波の透過率は87%であった。本実施形態では、表面1bから入射したTE波は基板1と酸化チタン膜とを透過し、一部はタングステン膜で吸収され、残りはタングステン膜で反射される。反射された光は、酸化チタン膜によるタングステン膜との薄膜干渉によって弱められ、表面1bから出射されない。すなわち、表面1bから入射したTE波のタングステン膜による反射は、酸化チタン膜によって抑制されている。また、いずれの表面4aおよび1bから入射するかにかかわらず、入射光のTM波の大部分は、グレーティング層2、3の格子を透過することもわかる。
(実施形態5)
本発明による実施形態5は、実施形態3の偏光光学素子を備えた半透過型液晶表示装置である。前述したように、実施形態3の偏光光学素子は、単一波長の光に適用する場合と比べてコントラストは若干低くなるものの、光学設計次第では可視波長の広帯域においても、単一波長に対する光学特性と同様の優れた光学特性を示す。従って、この偏光光学素子を表示装置における偏光板として用いることができる。
以下、実施形態3の偏光光学素子を用いて半透過型液晶表示装置の製造方法および構成を説明する。
図8(a)〜(e)を参照しながら実施形態3で説明した方法で、偏光光学素子20を作製する。偏光光学素子20は透明な絶縁性保護層4で被覆された状態である。
まず、図8(f)に示すように、偏光光学素子20の保護層4上に透明電極11を形成した後、透明電極11の表面に配向膜12を塗布する。配向膜12には、ラビングによる配向処理を施す。これにより、液晶表示装置の第1基板21が得られる。
次に、第1基板21と対向する第2基板22を作製する。第2基板22は、透明基板の液晶層側の表面に、第1基板21と同様に、透明電極11および配向膜12を形成し、配向膜12にラビングによる配向処理を施すことにより作製される。
第1基板21と第2基板22との間に数μmのギャップ保持用のスペーサーを担持し、それぞれの配向膜12のラビング方向が互いに直交するように第1および第2基板21、22を貼り合わせてセルを形成する。その後、セルの周囲をシール剤で接着する。このセル中に液晶材料を注入することにより、液晶層23を有する液晶セル24が得られる。液晶層23内では、液晶分子はTN配向している。
図9は、液晶セル24を備えた反射/透過両用液晶表示装置の構成の一例を示す断面模式図である。図9に示すように、液晶セル24の観察者側には、吸収偏光板25が設けられている。吸収偏光板25は、その透過軸が第1基板21に形成された偏光光学素子20の透過軸と直交するように貼り合わされている。また、液晶セル24の背面側にはバックライト26および導光体27が設置されている。
ここで、図9に示す表示装置の表示原理を説明する。図10Aおよび図10Bはそれぞれ、液晶層23に電場を印加していない時に明状態、および電場を印加した時に暗状態が実現される表示装置の原理を説明するための模式図である。
まず、図10Aを参照しながら、電場無印加時に明状態が実現される原理について説明する。
透過表示の場合、光源はバックライト26であり、バックライト26からはあらゆる偏光状態の光が液晶セル24に入射する。入射光のうち、第1基板21側の偏光光学素子20の透過軸と一致する直線偏光B1は、偏光光学素子20を透過し、TN液晶層23で90度旋光される。その後、観察者側の吸収偏光板25も透過して観察者側に出射するので、透過モードにおいて明状態が得られる。バックライト26から出射された光のうち、直線偏光B1と直交する直線偏光B2は、偏光光学素子20(の第1グレーティング層)、および導光体27の背面に配置された反射層30によって繰り返し反射される。反射された後、場合によってはリサイクルされる。
一方、反射表示の場合、光源は外光であり、透過表示の場合と同様に、あらゆる偏光状態を有する光が液晶セル24に入射する。入射光のうち第2基板22側の吸収偏光板25の透過軸と一致する直線偏光F1は、吸収偏光板25を透過し、TN液晶層23で90度旋光される。その後、第1基板21側の偏光光学素子20を透過し、導光体27の背面の反射層30で反射される。反射された直線偏光F1は、往路と同様に、偏光光学素子20を透過し、TN液晶層で旋光され、さらに吸収偏光板25を透過して観察者側に出射する。その結果、反射モードにおいても明状態が得られる。また、外部から入射する光のうち、直線偏光F1と直交する直線偏光F2は、第2基板22側の吸収偏光板25で吸収されるので、表示には寄与しない。
次に、図10Bを参照しながら、電場印加時に暗状態が実現される原理について説明する。
透過表示の場合、光源であるバックライト26から入射する光のうち、第1基板21側の偏光光学素子20の透過軸と一致する直線偏光B1は、偏光光学素子20を透過するが、電場印加時の液晶層23では入射光の偏光状態が保持されるため、観察者側の吸収偏光板25を透過することができない。そのため、透過モードにおいて暗状態が得られる。バックライト26から出射された光のうち、直線偏光B1と直交する直線偏光B2は、偏光光学素子20で反射されるため、直接的には表示には寄与しない。
一方、反射表示の場合、光源である外光から入射する光のうち、第2基板22側の吸収偏光板25の透過軸と一致する直線偏光F1は、吸収偏光版25および液晶層23を透過し、第1基板21側の偏光光学素子20で吸収される。そのため、反射モードにおいても暗状態が得られる。また、外部から入射する光のうち、直線偏光F1と直交する直線偏光F2は、第2基板22側の吸収偏光板25で吸収されるため、直接的に表示には寄与しない。
上記に述べたように、実施形態3の偏光光学素子20を液晶表示装置の偏光板として用いると、表示のコントラストを維持できると共に、バックライト26から出射される光または外光を有効に利用できるため、明るく、高コントラストな表示が得られる。
また、従来の液晶表示装置では、第1基板21とバックライト26との間に偏光板(厚さ:例えば100μm)または偏光子ユニット(厚さ:例えば300μm)が設けられていた。これに対し、本実施形態では、偏光光学素子20は、液晶表示装置の第1基板21上に形成できるので、第1基板21側の偏光板として必要な厚さは、実質的に積層体10の厚さ(約0.2μm)のみである。積層体10を覆う保護層4を設けた場合でも、必要な厚さは保護層4の厚さ(例えば1μm)のみである。その結果、本実施形態の液晶表示装置の厚さを、従来の液晶表示装置の厚さよりも大幅に小さくすることができる。
なお、上記で図10Aおよび図10Bを参照しながら表示装置の原理を説明したが、この説明は、導光体27の背面の反射層30で反射されても、光の偏光状態が保存されるという前提で行ったものである。従って、液晶層と反射層の間に位相差フィルムの類を配置したり、反射層30によって強く光拡散させたりすること等により、反射層30で反射されると光の偏光状態が変わるように表示装置を構成すると、反射層30で反射された直線偏光B2の一部は第1基板21側の偏光光学素子20を透過できるようになる。従って、バックライト26からの直線偏光B2のリサイクル効率を増加させることができる。一方、このように反射層30を構成すると、外光の直線偏光F1の一部は、反射層30で反射された後に偏光光学素子20を透過せず、表示に寄与できなくなる。すなわち、直線偏光F1の損失が生じてしまう。これらを考慮しながら反射層30の偏光保存性を制御することにより、透過モードおよび反射モードの明るさの割合をパネルの用途に適するように設定できる。
本実施形態では、実施形態3の偏光光学素子20を、液晶表示装置の第1基板21に組み込むことにより、液晶表示装置を構成しているが、本発明の液晶表示装置はこれに限定されない。例えば、偏光光学素子20をそのまま従来の液晶表示装置の第1基板とバックライトとの間に配置することもできる。しかし、薄型、高コントラストといった本発明の偏光光学素子の特徴を効果的に発揮させるためには、偏光光学素子20を表示装置の内部に組み込む構成が好ましい。特に、本実施形態のように、偏光光学素子20の積層体10を液晶表示装置の基板上に形成すると、偏光光学素子20の基板1を省略できるので、表示装置の薄型化だけでなく、製造コストの面でも有利である。
本実施形態によれば、表示装置の厚さを小さく抑えながら、光を効率良く利用できる。以下に、本実施形態の半透過型液晶表示装置におけるこれらのメリットを、従来の半透過型液晶表示装置と比較して詳しく説明する。
まず、従来の半透過型液晶表示装置として、図11に示す表示装置を用いる。この装置では、第1基板210側の偏光板として、第2基板22側の吸収偏光板25と同様の吸収偏光板200を用いている。吸収偏光板200は、第1基板210とバックライト26との間に配置されている。吸収偏光板200の吸収軸は、第2基板22側の吸収偏光板25の吸収軸と直交するように配置される。
図11の半透過型液晶表示装置において、透過表示の場合には、バックライト26からの光量Bのうち表示に用いられる光量は、吸収偏光板200の透過軸に平行な偏光B1のみであるため、最大でも0.5Bである。バックライト26からの光量Bのうち吸収偏光板200の吸収軸に平行な偏光B2は、吸収偏光板200によって吸収されるので表示に用いられることはない。
一方、反射表示の場合、外部から表示装置に入射する光のうち吸収偏光板25の吸収軸に平行な偏光F1は、吸収偏光板25によって吸収されるので表示に用いられないが、偏光F1と直交する偏光F2は、液晶層23を旋光しながら通過した後、吸収偏光板200を通過して導光体27背面の反射層30で反射される。反射後、再び吸収偏光板200および液晶層23を通過して観察者に還る。この時、導光体27および反射層30における偏光解消度をα(0<α<1)とすると、外部から表示装置に入射する光量Fのうち観測者に還る光量は0.5αFと表現できる。
従って、図11に示すような従来の半透過型表示装置において、バックライト26から出射される光量Bおよび外部から表示装置に入射する光量Fのうち、表示に利用できる光量は理想的には0.5B+0.5αFとなる。
一方、図9に示す本実施形態の半透過型液晶表示装置では、バックライト26からの光(光量:B)のうち偏光光学素子20の透過軸に平行な偏光(TM波)B1(光量:0.5B)が表示に用いられるだけでなく、バックライト26からの光のうち偏光B1と直交するTE波B2も部分的にリサイクルされて、表示に用いられ得る。TE波B2は、偏光光学素子20で吸収されずに反射され、その後も、導光体背面の反射層30および偏光光学素子20によって繰り返し反射される。この時、TE波B2の一部は、導光体や反射層30によって偏光が解消されるので、偏光光学素子20を通過して表示に利用される。従って、バックライト26からの光量Bのうち表示に用いられる光量は、導光体および反射層30における偏光解消度をα(0<α<1)とすると、理想的には0.5B+0.5αB+0.5(1−α)αB+・・・となる。
一方、外部からの光(光量:F)のうち、吸収偏光板25の吸収軸に平行な偏光F1は吸収されるので表示に用いられないが、偏光F1と直交する偏光F2(光量:0.5F)は液晶層23に入射し、液晶層23を旋光しながら通過する。その後、偏光光学素子20を通過して導光体27背面の反射層30で反射される。反射後、再び偏光光学素子20および液晶層23を通過して観察者に還る。すなわち、外部からの光量Fのうち表示に利用される光量は、導光体27および反射層30における偏光解消度をα(0<α<1)とすると、理想的には0.5αF+0.5(1−α)αF+・・・と表現することができる。
従って、本実施形態の半透過型表示装置において、バックライト26から出射される光量Bおよび外部から表示装置に入射する光量Fのうち、表示に利用できる光量は、0.5B+0.5αB+0.5(1−α)αB+0.5αF+0.5(1−α)αFよりも大きくなる。この光量は、上述の従来の半透過型表示装置における表示に利用される光量(0.5B+0.5αF)よりも大きい。このことから、本実施形態によれば、光の利用効率を向上できることがわかる。
上述したように、図11に示す従来の半透過型液晶表示装置では、光の利用効率が低いので、表示が暗いという問題がある。そこで、光の利用効率を向上させるために、吸収型偏光子と併せて直線偏光反射型偏光子を用いる半透過型液晶表示装置が特許文献1などにより提案されている。この表示装置では、第1基板側の偏光板として、図12に示すように、吸収偏光板200(厚さ:例えば100μm)と反射型偏光子201(厚さ:例えば200μm)とを組み合わせて構成され、入射方向によってTE波の反射率が異なる偏光子ユニット(厚さ:例えば300μm)を備えている。
以下に、図12の偏光子ユニットを備える従来の半透過型液晶表示装置と比較した場合の、本実施形態の半透過型液晶表示装置のメリットについて説明する。
図12の偏光子ユニットを備える半透過型液晶表示装置の断面模式図を図13に示す。この表示装置は、第1基板210側の吸収偏光子200(厚さ:例えば0.10mm)とバックライト26との間に直線偏光反射型偏光板201(厚さ:例えば0.20mm)を備えている。この反射型偏光板201は、特定方向の直線偏光を反射し、これと直交する偏光を透過する。直線偏光反射型偏光子201は、例えば、2種の異なるポリマー材料を交互に積層(ABABABA・・・)することによって作製される非吸収性誘電体の積層物である。
図13の半透過型液晶表示装置では、吸収偏光板200と反射偏光板201とを併用しているので、本実施形態の表示装置と同様に、バックライト光および周囲光を部分的にリサイクルできる。図13の表示装置によれば、本実施形態の表示装置におけるリサイクル効率および光利用効率とそれぞれ同程度のリサイクル効率および光利用効率を実現できる。しかし、図13の表示装置は、偏光子ユニットを備えているため、表示装置の厚さが大きい。具体的には、観察者側吸収偏光板の厚さを0.1mm、液晶パネルの厚さを1.4mm、背面側偏光子ユニットの厚さを0.3mm、バックライトユニットの厚さを1.5mmとすると、図13の表示装置の厚さは3.3mmである。これに対し、図9に示す本実施形態の表示装置の厚さは3.0mmであり、本実施形態の表示装置の方が図13の表示装置よりもおよそ0.3mm薄いことがわかる。この厚さの差(0.3mm)は、表示装置の厚さのおよそ1割に相当する。
このように、本実施形態では、吸収偏光子200(厚さ:0.10mm)および反射偏光子201(厚さ:0.20mm)に代わって、偏光光学素子20(積層体10の厚さ:0.2μm)を用いることにより、高い光利用効率を維持しながら、表示装置の大幅な薄型化が可能である。
単独で表示装置に適用しても高いコントラストを有する表示を実現でき、かつ薄型で光利用効率に優れた偏光光学素子を提供できる。
本発明の偏光光学素子は、透過型、反射型、半透過型表示装置の偏光板として好適に適用される。
基板の一方の表面に反射性グレーティング層、他の表面に吸収性グレーティング層が形成された構成を有する偏光光学素子の作用を説明するための断面模式図である。 基板の一方の表面に反射性グレーティング層、他の表面に吸収性グレーティング層が形成された構成を有する偏光光学素子の作用を説明するための断面模式図である。 本発明の実施形態1の偏光光学素子を示す断面模式図である。 本発明の実施形態2の偏光光学素子を示す断面模式図である。 本発明の実施形態3の偏光光学素子を示す断面模式図である。 本発明の実施形態3の偏光光学素子における、保護層の上方から入射するTE波に対する光学特性を示すグラフである。 本発明の実施形態3の偏光光学素子における、積層体が形成された基板の背面から入射するTE波に対する光学特性を示すグラフである。 本発明の実施形態3の偏光光学素子における、TM波に対する光学特性を示すグラフである。 本発明の実施形態3の偏光光学素子の作製工程を説明するための断面模式図である。 本発明の実施形態5の半透過型液晶表示装置を示す断面模式図である。 本発明の実施形態5の半透過型液晶表示装置における、液晶層に電界を印加していない時の偏光光学素子の作用を説明するための図である。 本発明の実施形態5の半透過型液晶表示装置における、液晶層に電界を印加した時の偏光光学素子の作用を説明するための図である。 従来の半透過型液晶表示装置を示す断面模式図である。 吸収型偏光子と反射型偏光子とを貼り合わせた構成を有する従来の偏光子ユニットを示す図である。 図12の偏光子ユニットを備えた、従来の半透過型液晶表示装置を示す断面模式図である。
符号の説明
1 基板
1a、1b 基板の表面
2 第1グレーティング層
3 第2グレーティング層
4、5 保護層
6、7 誘電体層
8 レジスト
10 積層体
11 透明電極
12 配向膜
20 偏光光学素子
21 第1基板
22 第2基板
23 液晶層
24 液晶セル
25 吸収型偏光子
26 バックライト
27 導光体
30 反射層
B1、B2、F1、F2 直線偏光

Claims (13)

  1. 入射する光の偏光に応じて光の反射率および/または透過率が変化する偏光光学素子であって、
    所定方向に延びる複数のストライプ部分を有する第1グレーティング層と、
    前記所定方向に延びる複数のストライプ部分を有する第2グレーティング層と
    を備え、
    前記第1グレーティング層の平均格子ピッチおよび前記第2グレーティング層の平均格子ピッチは、いずれも、前記光の波長よりも短く設定されており、
    前記第1グレーティング層は、前記光に対して反射性を示す第1材料から形成され、
    前記第2グレーティング層は、前記第1グレーティング層による前記光の反射を抑制する第2材料から形成されている、偏光光学素子。
  2. 前記第2材料は光吸収性を示す、請求項1に記載の偏光光学素子。
  3. 前記光に対する前記第2材料の反射率は、前記光に対する前記第1材料の反射率よりも小さい、請求項1または2に記載の偏光光学素子。
  4. 前記第1グレーティング層の前記複数のストライプ部分と、前記第2グレーティング層の前記複数のストライプ部分とは、同一の形状を有し、かつ重なっている、請求項1から3のいずれかに記載の偏光光学素子。
  5. 前記第1グレーティング層の各ストライプ部分は、前記第2グレーティング層の対応するストライプ部分と積層構造を形成しており、前記積層構造は、基板に支持されている、請求項1から4のいずれかに記載の偏光光学素子。
  6. 前記積層構造は、前記所定方向に延びる軸に関する180度の回転について非対称である、請求項5に記載の偏光光学素子。
  7. 前記積層構造の最下層または最上層は前記第1グレーティング層である、請求項5または6に記載の偏光光学素子。
  8. 前記第1グレーティング層は前記基板の一方の面に形成され、前記第2グレーティング層は前記基板の他方の面に形成されている、請求項1から3のいずれかに記載の偏光光学素子。
  9. 可視光線の直線偏光に対する前記1グレーティング層の反射率は50%より大きい、請求項1から8のいずれかに記載の偏光光学素子。
  10. 前記複数のストライプ部分を覆う透明層をさらに備え、前記透明層の表面は略平坦である、請求項1から9のいずれかに記載の偏光光学素子。
  11. 前記透明層は、誘電体材料から形成される、請求項10に記載の偏光光学素子。
  12. 請求項1から11のいずれかに記載の偏光光学素子を用いた表示装置。
  13. 第1基板と、第2基板と、前記第1基板および前記第2基板に挟持された液晶層とを備え、前記液晶層に電圧を印加することにより表示を行なう液晶表示装置において、前記第1基板と前記液晶層との間に配置され、入射する光の偏光に応じて光の反射率および/または透過率が変化する偏光光学素子をさらに備えており、前記偏光光学素子は、
    前記第1基板の上に形成され、所定方向に延びる複数のストライプ部分を有する積層構造を有し、前記積層構造の平均格子ピッチは、前記光の波長よりも短く設定されており、前記積層構造は、
    前記光に対して反射性を示す第1材料から形成された第1グレーティング層と、
    前記第1グレーティング層よりも前記液晶層側に形成され、前記第1グレーティング層による前記光の反射を抑制する第2材料から形成されている第2グレーティング層と
    を含む、液晶表示装置。
JP2004156463A 2003-06-25 2004-05-26 偏光光学素子、およびそれを用いた表示装置 Expired - Fee Related JP4425059B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004156463A JP4425059B2 (ja) 2003-06-25 2004-05-26 偏光光学素子、およびそれを用いた表示装置
US10/866,835 US7233563B2 (en) 2003-06-25 2004-06-15 Polarizing optical element and display device including the same
TW093118134A TWI257494B (en) 2003-06-25 2004-06-23 Polarizing optical element and display device including the same
CNB2004100620195A CN1281985C (zh) 2003-06-25 2004-06-25 偏振光学元件以及包括此偏振光学元件的显示器件
KR1020040048282A KR100616392B1 (ko) 2003-06-25 2004-06-25 편광 광학 소자, 및 그것을 포함한 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003180995 2003-06-25
JP2004156463A JP4425059B2 (ja) 2003-06-25 2004-05-26 偏光光学素子、およびそれを用いた表示装置

Publications (2)

Publication Number Publication Date
JP2005037900A true JP2005037900A (ja) 2005-02-10
JP4425059B2 JP4425059B2 (ja) 2010-03-03

Family

ID=33543519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156463A Expired - Fee Related JP4425059B2 (ja) 2003-06-25 2004-05-26 偏光光学素子、およびそれを用いた表示装置

Country Status (5)

Country Link
US (1) US7233563B2 (ja)
JP (1) JP4425059B2 (ja)
KR (1) KR100616392B1 (ja)
CN (1) CN1281985C (ja)
TW (1) TWI257494B (ja)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324107A (ja) * 2005-05-18 2006-11-30 Cheil Ind Co Ltd バックライトユニットおよび液晶表示装置
JP2007133294A (ja) * 2005-11-14 2007-05-31 Epson Imaging Devices Corp 液晶装置及び電子機器
JP2007183524A (ja) * 2006-01-06 2007-07-19 Cheil Industries Inc 偏光光学素子及びそれを用いた液晶表示装置
JP2008102416A (ja) * 2006-10-20 2008-05-01 Hitachi Displays Ltd ワイヤーグリッド偏光子及びそれを用いた液晶表示装置
WO2008084856A1 (ja) * 2007-01-12 2008-07-17 Toray Industries, Inc. 偏光板およびこれを用いた液晶表示装置
JP2008181112A (ja) * 2006-12-26 2008-08-07 Toray Ind Inc 反射型偏光板及びその製造方法、それを用いた液晶表示装置
JP2008185810A (ja) * 2007-01-30 2008-08-14 Asahi Kasei Corp 液晶表示装置
KR100860368B1 (ko) * 2006-06-28 2008-09-25 제일모직주식회사 편광 분리 소자 및 그 제조 방법
JP2009037227A (ja) * 2007-07-06 2009-02-19 Semiconductor Energy Lab Co Ltd 偏光子および偏光子を有する表示装置
JP2009186929A (ja) * 2008-02-08 2009-08-20 Asahi Kasei E-Materials Corp ワイヤグリッド型偏光素子及びそれを用いた表示装置
JP2009192587A (ja) * 2008-02-12 2009-08-27 Asahi Kasei E-Materials Corp ワイヤグリッド型偏光素子
JP2009271526A (ja) * 2008-04-30 2009-11-19 Samsung Mobile Display Co Ltd 液晶表示装置
JP2009300654A (ja) * 2008-06-12 2009-12-24 Asahi Kasei E-Materials Corp ワイヤグリッド偏光子及びそれを用いた表示装置
JP2009300655A (ja) * 2008-06-12 2009-12-24 Asahi Kasei E-Materials Corp 吸収型ワイヤグリッド偏光子
JP2010073694A (ja) * 2008-09-19 2010-04-02 Beijing Boe Optoelectronics Technology Co Ltd 液晶ディスプレイ装置及びそのバック・ライトモジュール
JP2010210706A (ja) * 2009-03-06 2010-09-24 Seiko Epson Corp 偏光素子
KR100993382B1 (ko) 2007-12-26 2010-11-09 제일모직주식회사 와이어 그리드 편광자 및 그 제조 방법
JP2011039351A (ja) * 2009-08-14 2011-02-24 Seiko Epson Corp 偏光素子および偏光素子の製造方法、投写型表示装置、液晶装置、電子機器
US7951527B2 (en) 2006-10-30 2011-05-31 Samsung Electronics Co., Ltd. Method of forming an integrated optical polarization grid on an LCD substrate and liquid crystal display manufactured to include the grid
JP2011118343A (ja) * 2009-10-30 2011-06-16 Seiko Epson Corp 偏光素子、偏光素子の製造方法、液晶装置および電子機器
JP2011227415A (ja) * 2010-04-23 2011-11-10 Polatechno Co Ltd 液晶プロジェクター用無機偏光板及びそれを用いる液晶プロジェクター
WO2012032939A1 (ja) * 2010-09-07 2012-03-15 ソニー株式会社 固体撮像素子、固体撮像装置、撮像機器、及び、偏光素子の製造方法
JP2012098738A (ja) * 2007-06-22 2012-05-24 Moxtek Inc 選択吸収性ワイヤーグリッド偏光素子
US8300158B2 (en) 2010-02-19 2012-10-30 Seiko Epson Corporation Polarization element and projector
US8350992B2 (en) 2009-11-16 2013-01-08 Seiko Epson Corporation Polarization element and projector
US8363319B2 (en) 2010-01-08 2013-01-29 Seiko Epson Corporation Polarizing element, method of manufacturing polarizing element, and electronic apparatus
US8369013B2 (en) 2010-01-08 2013-02-05 Seiko Epson Corporation Polarizing element, method of manufacturing polarizing element, and electronic apparatus
US8416371B2 (en) 2010-06-16 2013-04-09 Seiko Epson Corporation Polarization device, method of manufacturing the same, liquid crystal device, and electronic apparatus
US8508675B2 (en) 2010-01-22 2013-08-13 Seiko Epson Corporation Liquid crystal projector that includes an inorganic polarizer
JP2013232003A (ja) * 2006-07-07 2013-11-14 Sony Corp 液晶プロジェクター
JP2014052439A (ja) * 2012-09-05 2014-03-20 Dexerials Corp 偏光素子、プロジェクター及び偏光素子の製造方法
US8696131B2 (en) 2010-02-19 2014-04-15 Seiko Epson Corporation Polarization element and projector
JP2015152835A (ja) * 2014-02-17 2015-08-24 キヤノン株式会社 波長選択偏光素子、光学系および投射型表示装置
JP2015528581A (ja) * 2012-08-10 2015-09-28 テマセク ポリテクニックTemasek Polytechnic 光回折格子
US9164307B2 (en) 2011-11-14 2015-10-20 Seiko Epson Corporation Polarizer, polarizer producing process, projector, liquid crystal device, and electronic device
JP5900571B1 (ja) * 2014-09-30 2016-04-06 ウシオ電機株式会社 紫外線用吸収型グリッド偏光素子及び光配向装置
JP2017167561A (ja) * 2007-02-06 2017-09-21 ソニー株式会社 偏光素子、及び透過型液晶プロジェクター
JP2018535445A (ja) * 2015-11-12 2018-11-29 モックステック・インコーポレーテッド 吸収反射両用型のワイヤグリッド偏光子
WO2019159982A1 (ja) * 2018-02-19 2019-08-22 デクセリアルズ株式会社 偏光板及びその製造方法、並びに光学機器
WO2020071257A1 (ja) * 2018-10-01 2020-04-09 Agc株式会社 ワイヤグリッド型偏光子、偏光板、映像表示装置
WO2020071256A1 (ja) * 2018-10-01 2020-04-09 Agc株式会社 ワイヤグリッド型偏光子

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4479535B2 (ja) * 2005-02-21 2010-06-09 セイコーエプソン株式会社 光学素子の製造方法
JP4580797B2 (ja) * 2005-03-28 2010-11-17 株式会社東芝 偏光状態検査方法及び半導体装置の製造方法
US7277172B2 (en) 2005-06-06 2007-10-02 Kla-Tencor Technologies, Corporation Measuring overlay and profile asymmetry using symmetric and anti-symmetric scatterometry signals
KR20070010472A (ko) * 2005-07-19 2007-01-24 삼성전자주식회사 하이브리드형 편광자와, 이의 제조 방법 및 이를 갖는표시장치
US20070242352A1 (en) * 2006-04-13 2007-10-18 Macmaster Steven William Wire-grid polarizers, methods of fabrication thereof and their use in transmissive displays
US8755113B2 (en) 2006-08-31 2014-06-17 Moxtek, Inc. Durable, inorganic, absorptive, ultra-violet, grid polarizer
KR101282323B1 (ko) 2006-10-26 2013-07-04 삼성디스플레이 주식회사 액정 표시 장치
US7957062B2 (en) * 2007-02-06 2011-06-07 Sony Corporation Polarizing element and liquid crystal projector
CN101334497B (zh) * 2007-06-28 2015-11-25 第一毛织株式会社 偏振分光器件及其制造方法和设备以及包括其的显示器
KR100894321B1 (ko) * 2008-01-29 2009-04-24 도시바삼성스토리지테크놀러지코리아 주식회사 회절격자 및 이를 이용한 광픽업 장치
JP5022312B2 (ja) * 2008-06-18 2012-09-12 株式会社ジャパンディスプレイイースト 液晶表示装置の製造方法
JP5244848B2 (ja) * 2009-05-01 2013-07-24 日東電工株式会社 偏光子の製造方法
US8320722B1 (en) 2010-04-13 2012-11-27 Western Digital (Fremont), Llc Non-linear optical grating
US8422841B1 (en) * 2010-05-13 2013-04-16 Western Digital (Fremont), Llc Double optical grating
JP5760388B2 (ja) * 2010-11-01 2015-08-12 セイコーエプソン株式会社 偏光素子とその製造方法、プロジェクター、液晶装置、電子機器
TWI429966B (zh) * 2010-12-20 2014-03-11 Ind Tech Res Inst 偏振片
US20150077851A1 (en) 2010-12-30 2015-03-19 Moxtek, Inc. Multi-layer absorptive wire grid polarizer
CN102902099B (zh) * 2011-07-28 2015-04-22 上海丽恒光微电子科技有限公司 平板显示装置
CN103999303B (zh) * 2012-01-12 2018-03-13 慧与发展有限责任合伙企业 集成亚波长光栅系统
TWI472813B (zh) * 2012-02-17 2015-02-11 Nat Univ Tsing Hua 反射式偏光片
KR102081979B1 (ko) * 2013-01-23 2020-02-27 삼성디스플레이 주식회사 표시 장치
KR102116308B1 (ko) * 2013-09-04 2020-06-01 삼성디스플레이 주식회사 표시 장치
KR20150029817A (ko) * 2013-09-10 2015-03-19 삼성디스플레이 주식회사 편광판, 이를 갖는 표시장치 및 이의 제조방법
US9348076B2 (en) 2013-10-24 2016-05-24 Moxtek, Inc. Polarizer with variable inter-wire distance
WO2015103709A1 (en) * 2014-01-11 2015-07-16 UNIVERSITé LAVAL Method and apparatus for creation and electrical tuning of spatially non-uniform reflection of light
KR20170023826A (ko) 2014-06-25 2017-03-06 목스테크, 인크 이중 흡수성 영역을 가진 와이어 그리드 편광기
US9632224B2 (en) 2014-06-25 2017-04-25 Moxtek, Inc. Broadband, selectively-absorptive wire grid polarizer
JP2016114627A (ja) * 2014-12-11 2016-06-23 シャープ株式会社 光学フィルタ
CN105807978A (zh) * 2014-12-31 2016-07-27 联想(北京)有限公司 触控显示部件及电子设备
JP6170985B2 (ja) * 2015-10-29 2017-07-26 デクセリアルズ株式会社 無機偏光板及びその製造方法
WO2017110084A1 (ja) * 2015-12-25 2017-06-29 富士フイルム株式会社 直下型バックライトユニット
CN107167863B (zh) * 2017-07-07 2019-09-10 深圳市华星光电技术有限公司 纳米线栅偏光片的制作方法
US10353239B2 (en) 2017-07-07 2019-07-16 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method of manufacturing nanowire grid polarizer
TWI641878B (zh) * 2017-09-22 2018-11-21 友達光電股份有限公司 線柵偏光器以及使用此線柵偏光器的顯示面板
KR102559836B1 (ko) * 2018-01-31 2023-07-27 삼성디스플레이 주식회사 편광자, 상기 편광자를 포함한 광학 장치, 상기 편광자를 포함한 디스플레이 장치 및 상기 편광자의 제조 방법
WO2019243046A1 (en) * 2018-06-18 2019-12-26 Lumileds Holding B.V. Lighting device comprising led and grating
KR102102888B1 (ko) * 2019-02-28 2020-04-21 고려대학교 세종산학협력단 향상된 fov를 갖는 증강현실 디스플레이 및 그의 웨이브 가이드 장치와 회절 광학 구조체
JP7296245B2 (ja) * 2019-05-08 2023-06-22 デクセリアルズ株式会社 偏光板および光学機器、並びに偏光板の製造方法
US11150088B2 (en) 2019-05-13 2021-10-19 Lumileds Llc Depth sensing using line pattern generators
US20220236570A1 (en) * 2019-08-19 2022-07-28 University Of Central Florida Research Foundation, Inc. Input coupler component, optical display system and electronics apparatus
CN110456553A (zh) 2019-08-22 2019-11-15 武汉华星光电技术有限公司 一种显示装置
CN111090176B (zh) * 2020-01-08 2021-11-30 上海交通大学 一种反射不对称的金属光栅偏振分束器
CN114077102B (zh) * 2020-08-14 2023-03-17 华为技术有限公司 偏振器及阵列、偏振可控方法及装置、电子设备
CN113917591A (zh) * 2021-10-15 2022-01-11 中国人民解放军国防科技大学 任意偏振转换超表面及将任意偏振光进行偏振转换的方法
CN117255959A (zh) * 2021-12-09 2023-12-19 瑞仪(广州)光电子器件有限公司 光学元件、光源模组与显示装置
CN114371529B (zh) * 2022-01-30 2024-01-09 珠海莫界科技有限公司 一种堆叠光栅及ar显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990122A (ja) 1995-09-28 1997-04-04 Kyocera Corp グリッド型偏光子の製造方法
US5986730A (en) 1998-12-01 1999-11-16 Moxtek Dual mode reflective/transmissive liquid crystal display apparatus
WO2000034821A1 (fr) 1998-12-09 2000-06-15 Citizen Watch Co.,Ltd. Affichage a cristaux liquides
US6122103A (en) 1999-06-22 2000-09-19 Moxtech Broadband wire grid polarizer for the visible spectrum
US6288840B1 (en) 1999-06-22 2001-09-11 Moxtek Imbedded wire grid polarizer for the visible spectrum
US6243199B1 (en) 1999-09-07 2001-06-05 Moxtek Broad band wire grid polarizing beam splitter for use in the visible wavelength region
JP2001297459A (ja) * 2000-04-14 2001-10-26 Nec Corp 光ヘッド装置および光学式情報記録再生装置
US6532111B2 (en) * 2001-03-05 2003-03-11 Eastman Kodak Company Wire grid polarizer

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324107A (ja) * 2005-05-18 2006-11-30 Cheil Ind Co Ltd バックライトユニットおよび液晶表示装置
JP2007133294A (ja) * 2005-11-14 2007-05-31 Epson Imaging Devices Corp 液晶装置及び電子機器
JP2007183524A (ja) * 2006-01-06 2007-07-19 Cheil Industries Inc 偏光光学素子及びそれを用いた液晶表示装置
US7746425B2 (en) 2006-01-06 2010-06-29 Cheil Industries, Inc. Polarizing optical device, liquid crystal display using the same and method of making the same
KR100860368B1 (ko) * 2006-06-28 2008-09-25 제일모직주식회사 편광 분리 소자 및 그 제조 방법
US8154690B2 (en) 2006-06-28 2012-04-10 Cheil Industries, Inc. Polarized-light splitting device, display including the same, method of manufacturing the same, and apparatus for manufacturing the same
JP2019003209A (ja) * 2006-07-07 2019-01-10 ソニー株式会社 液晶プロジェクター
JP2016122214A (ja) * 2006-07-07 2016-07-07 ソニー株式会社 投影方法
JP2013232003A (ja) * 2006-07-07 2013-11-14 Sony Corp 液晶プロジェクター
JP2017167547A (ja) * 2006-07-07 2017-09-21 ソニー株式会社 液晶プロジェクター
US8199282B2 (en) 2006-10-20 2012-06-12 Hitachi Displays, Ltd. Wire grid polarized and liquid crystal display device using the same
US8049841B2 (en) 2006-10-20 2011-11-01 Hitachi Displays, Ltd. Wire grid polarized and liquid crystal display device using the same
JP2008102416A (ja) * 2006-10-20 2008-05-01 Hitachi Displays Ltd ワイヤーグリッド偏光子及びそれを用いた液晶表示装置
US7951527B2 (en) 2006-10-30 2011-05-31 Samsung Electronics Co., Ltd. Method of forming an integrated optical polarization grid on an LCD substrate and liquid crystal display manufactured to include the grid
JP2008181112A (ja) * 2006-12-26 2008-08-07 Toray Ind Inc 反射型偏光板及びその製造方法、それを用いた液晶表示装置
JPWO2008084856A1 (ja) * 2007-01-12 2010-05-06 東レ株式会社 偏光板およびこれを用いた液晶表示装置
WO2008084856A1 (ja) * 2007-01-12 2008-07-17 Toray Industries, Inc. 偏光板およびこれを用いた液晶表示装置
JP2008185810A (ja) * 2007-01-30 2008-08-14 Asahi Kasei Corp 液晶表示装置
JP2017167561A (ja) * 2007-02-06 2017-09-21 ソニー株式会社 偏光素子、及び透過型液晶プロジェクター
JP2021063997A (ja) * 2007-02-06 2021-04-22 ソニー株式会社 偏光素子、及び透過型液晶プロジェクター
USRE48640E1 (en) 2007-02-06 2021-07-13 Dexerials Corporation Polarizing element and liquid crystal projector
JP7237057B2 (ja) 2007-02-06 2023-03-10 ソニーグループ株式会社 偏光素子
JP2012098738A (ja) * 2007-06-22 2012-05-24 Moxtek Inc 選択吸収性ワイヤーグリッド偏光素子
US8493658B2 (en) 2007-07-06 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Polarizer and display device including polarizer
JP2009037227A (ja) * 2007-07-06 2009-02-19 Semiconductor Energy Lab Co Ltd 偏光子および偏光子を有する表示装置
KR100993382B1 (ko) 2007-12-26 2010-11-09 제일모직주식회사 와이어 그리드 편광자 및 그 제조 방법
JP2009186929A (ja) * 2008-02-08 2009-08-20 Asahi Kasei E-Materials Corp ワイヤグリッド型偏光素子及びそれを用いた表示装置
JP2009192587A (ja) * 2008-02-12 2009-08-27 Asahi Kasei E-Materials Corp ワイヤグリッド型偏光素子
JP2012027492A (ja) * 2008-04-30 2012-02-09 Samsung Mobile Display Co Ltd 液晶表示装置
JP2009271526A (ja) * 2008-04-30 2009-11-19 Samsung Mobile Display Co Ltd 液晶表示装置
US8384854B2 (en) 2008-04-30 2013-02-26 Samsung Display Co., Ltd. Liquid crystal display apparatus having grids
JP2009300655A (ja) * 2008-06-12 2009-12-24 Asahi Kasei E-Materials Corp 吸収型ワイヤグリッド偏光子
JP2009300654A (ja) * 2008-06-12 2009-12-24 Asahi Kasei E-Materials Corp ワイヤグリッド偏光子及びそれを用いた表示装置
JP2010073694A (ja) * 2008-09-19 2010-04-02 Beijing Boe Optoelectronics Technology Co Ltd 液晶ディスプレイ装置及びそのバック・ライトモジュール
US8205992B2 (en) 2009-03-06 2012-06-26 Seiko Epson Corporation Polarization element and projection display device
JP2010210706A (ja) * 2009-03-06 2010-09-24 Seiko Epson Corp 偏光素子
JP2011039351A (ja) * 2009-08-14 2011-02-24 Seiko Epson Corp 偏光素子および偏光素子の製造方法、投写型表示装置、液晶装置、電子機器
US8687151B2 (en) 2009-10-30 2014-04-01 Seiko Epson Corporation Polarization element comprising a plurality of metal protruding sections formed in a striped manner having first and second heat radiation sections tilted in opposite directions
JP2011118343A (ja) * 2009-10-30 2011-06-16 Seiko Epson Corp 偏光素子、偏光素子の製造方法、液晶装置および電子機器
US8350992B2 (en) 2009-11-16 2013-01-08 Seiko Epson Corporation Polarization element and projector
US8369013B2 (en) 2010-01-08 2013-02-05 Seiko Epson Corporation Polarizing element, method of manufacturing polarizing element, and electronic apparatus
US8363319B2 (en) 2010-01-08 2013-01-29 Seiko Epson Corporation Polarizing element, method of manufacturing polarizing element, and electronic apparatus
US8508675B2 (en) 2010-01-22 2013-08-13 Seiko Epson Corporation Liquid crystal projector that includes an inorganic polarizer
US8696131B2 (en) 2010-02-19 2014-04-15 Seiko Epson Corporation Polarization element and projector
US8300158B2 (en) 2010-02-19 2012-10-30 Seiko Epson Corporation Polarization element and projector
JP2011227415A (ja) * 2010-04-23 2011-11-10 Polatechno Co Ltd 液晶プロジェクター用無機偏光板及びそれを用いる液晶プロジェクター
US8416371B2 (en) 2010-06-16 2013-04-09 Seiko Epson Corporation Polarization device, method of manufacturing the same, liquid crystal device, and electronic apparatus
USRE47179E1 (en) 2010-06-16 2018-12-25 Seiko Epson Corporation Polarization device, method of manufacturing the same, liquid crystal device, and electronic apparatus
USRE49885E1 (en) 2010-06-16 2024-03-26 Seiko Epson Corporation Polarization device, method of manufacturing the same, liquid crystal device, and electronic apparatus
USRE45993E1 (en) 2010-06-16 2016-05-03 Seiko Epson Corporation Polarization device, method of manufacturing the same, liquid crystal device, and electronic apparatus
JP2012080065A (ja) * 2010-09-07 2012-04-19 Sony Corp 固体撮像素子、固体撮像装置、撮像機器、及び、偏光素子の製造方法
WO2012032939A1 (ja) * 2010-09-07 2012-03-15 ソニー株式会社 固体撮像素子、固体撮像装置、撮像機器、及び、偏光素子の製造方法
US9064763B2 (en) 2010-09-07 2015-06-23 Sony Corporation Solid-state imaging element, solid-state imaging device, imaging apparatus, and method of manufacturing polarizing element
US9164307B2 (en) 2011-11-14 2015-10-20 Seiko Epson Corporation Polarizer, polarizer producing process, projector, liquid crystal device, and electronic device
JP2015528581A (ja) * 2012-08-10 2015-09-28 テマセク ポリテクニックTemasek Polytechnic 光回折格子
JP2014052439A (ja) * 2012-09-05 2014-03-20 Dexerials Corp 偏光素子、プロジェクター及び偏光素子の製造方法
JP2015152835A (ja) * 2014-02-17 2015-08-24 キヤノン株式会社 波長選択偏光素子、光学系および投射型表示装置
JP5900571B1 (ja) * 2014-09-30 2016-04-06 ウシオ電機株式会社 紫外線用吸収型グリッド偏光素子及び光配向装置
TWI554795B (zh) * 2014-09-30 2016-10-21 Ushio Electric Inc Absorbent grating polarizing elements for ultraviolet light and optical alignment devices
WO2016052575A1 (ja) * 2014-09-30 2016-04-07 ウシオ電機株式会社 紫外線用吸収型グリッド偏光素子及び光配向装置
JP2018535445A (ja) * 2015-11-12 2018-11-29 モックステック・インコーポレーテッド 吸収反射両用型のワイヤグリッド偏光子
DE112016005225B4 (de) 2015-11-12 2022-02-24 Moxtek, Inc. Drahtgitterpolarisator und Verfahren zu dessen Herstellung
WO2019159982A1 (ja) * 2018-02-19 2019-08-22 デクセリアルズ株式会社 偏光板及びその製造方法、並びに光学機器
JP2019144334A (ja) * 2018-02-19 2019-08-29 デクセリアルズ株式会社 偏光板及びその製造方法、並びに光学機器
CN111670395A (zh) * 2018-02-19 2020-09-15 迪睿合株式会社 偏光板及其制造方法、以及光学设备
US11874484B2 (en) 2018-02-19 2024-01-16 Dexerials Corporation Polarizing plate, method of manufacturing the same, and optical apparatus
WO2020071257A1 (ja) * 2018-10-01 2020-04-09 Agc株式会社 ワイヤグリッド型偏光子、偏光板、映像表示装置
WO2020071256A1 (ja) * 2018-10-01 2020-04-09 Agc株式会社 ワイヤグリッド型偏光子

Also Published As

Publication number Publication date
KR100616392B1 (ko) 2006-08-29
CN1281985C (zh) 2006-10-25
KR20050001471A (ko) 2005-01-06
US7233563B2 (en) 2007-06-19
TW200500688A (en) 2005-01-01
TWI257494B (en) 2006-07-01
JP4425059B2 (ja) 2010-03-03
CN1576907A (zh) 2005-02-09
US20040264350A1 (en) 2004-12-30

Similar Documents

Publication Publication Date Title
JP4425059B2 (ja) 偏光光学素子、およびそれを用いた表示装置
JP7237057B2 (ja) 偏光素子
JP6770037B2 (ja) 液晶プロジェクター
JP6100492B2 (ja) 偏光素子、プロジェクター及び偏光素子の製造方法
US6665119B1 (en) Wire grid polarizer
KR101123192B1 (ko) 내장 디스플레이를 가지는 미러
US7414784B2 (en) Low fill factor wire grid polarizer and method of use
US20070285598A1 (en) Polarizing plate, method of manufacturing the same and display panel having the same
KR20070101814A (ko) 와이어 그리드 편광기, 그의 제조 방법 및 투과성디스플레이에서 그의 사용
JP2010066571A (ja) 偏光素子及びその製造方法、並びに液晶プロジェクタ
JP2010048999A (ja) ワイヤグリッド偏光子及びそれを用いた表示装置
JP7236230B2 (ja) 光学素子、液晶表示装置および投射型画像表示装置
JP2006503325A (ja) 偏光配置
JP5420859B2 (ja) 複合型ワイヤグリッド偏光子及びその製造方法
JP5368011B2 (ja) 吸収型ワイヤグリッド偏光子
JP3941437B2 (ja) 液晶表示装置およびその製造方法ならびに電子機器
JP5291435B2 (ja) ワイヤグリッド偏光子及びその製造方法
JP5291425B2 (ja) 吸収型ワイヤグリッド偏光子及び液晶表示装置
JP3897300B2 (ja) 液晶情報ディスプレイ
KR100936956B1 (ko) 반투과형 액정 표시장치
JP2006072170A (ja) 液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees