JP2004144221A - 自動クラッチ制御装置 - Google Patents

自動クラッチ制御装置 Download PDF

Info

Publication number
JP2004144221A
JP2004144221A JP2002310640A JP2002310640A JP2004144221A JP 2004144221 A JP2004144221 A JP 2004144221A JP 2002310640 A JP2002310640 A JP 2002310640A JP 2002310640 A JP2002310640 A JP 2002310640A JP 2004144221 A JP2004144221 A JP 2004144221A
Authority
JP
Japan
Prior art keywords
speed
clutch
vehicle
control
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002310640A
Other languages
English (en)
Inventor
Hiroyuki Kano
加納 啓行
Masaki Kinoshita
木下 正樹
Taro Hirose
廣瀬 太郎
Hiroaki Endo
遠藤 弘昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advics Co Ltd
Toyota Motor Corp
Original Assignee
Advics Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advics Co Ltd, Toyota Motor Corp filed Critical Advics Co Ltd
Priority to JP2002310640A priority Critical patent/JP2004144221A/ja
Priority to US10/690,666 priority patent/US7079933B2/en
Priority to DE10349601A priority patent/DE10349601A1/de
Publication of JP2004144221A publication Critical patent/JP2004144221A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18172Preventing, or responsive to skidding of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/066Control of fluid pressure, e.g. using an accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/025Clutch slip, i.e. difference between input and output speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1021Electrical type
    • F16D2500/1023Electric motor
    • F16D2500/1024Electric motor combined with hydraulic actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30406Clutch slip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/30806Engaged transmission ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3114Vehicle wheels
    • F16D2500/3115Vehicle wheel speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/312External to the vehicle
    • F16D2500/3125Driving resistance, i.e. external factors having an influence in the traction force, e.g. road friction, air resistance, road slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/3146Signal inputs from the user input from levers
    • F16D2500/31466Gear lever
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/506Relating the transmission
    • F16D2500/50653Gearing shifting without the interruption of drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/506Relating the transmission
    • F16D2500/50684Torque resume after shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/508Relating driving conditions
    • F16D2500/50816Control during a braking operation, e.g. during ABS control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/508Relating driving conditions
    • F16D2500/50858Selecting a Mode of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position
    • F16D2500/70414Quick displacement to clutch touch point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/70663State analysis; Analysing potential states of the machine and developing control strategies at each state

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

【課題】車両の走行状態に応じてクラッチの接合作動速度や分断作動速度を適切に変更することができる自動クラッチ制御装置を提供すること。
【解決手段】この自動クラッチ制御装置は、分断作動開始時点(時刻t1)にて路面摩擦係数が、0.3以上のときノーマルモードを、0.1以上0.3未満のとき弱低速モードを、0.1未満のとき低速モードを選択する。また、時刻t1においてトラクション制御等の車両安定化制御が実行されていないときノーマルモードを、車両安定化制御が実行されているとき低速モードを選択する。また、時刻t1において車両がスポーツ走行モードにあるとき高速モードを、車両がスポーツ走行モードにないときノーマルモードを選択する。そして、ギヤシフト制御を行う際のクラッチ断接用アクチュエータによる自動クラッチ断接制御において上記選択したモードに対応する速度でクラッチの接合作動を行う。
【選択図】 図4

Description

【0001】
【発明の属する技術分野】
本発明は、車両の変速装置により変速作動が実行される際に同車両の動力源の出力軸と同変速装置の入力軸との間に配設されたクラッチを自動的に断接可能な自動クラッチ制御装置に関する。
【0002】
【従来の技術】
従来より、車両の動力源の出力軸と変速装置の入力軸との間に配設されたクラッチを断接駆動するためのクラッチ断接用アクチュエータを備え、運転者によるクラッチペダル操作によることなくクラッチ断接用アクチュエータにより、変速装置の変速作動が開始される前にクラッチの状態を接合状態から分断状態へ変更するための分断作動を行うとともに、同変速作動が終了した後に同クラッチの状態を分断状態から接合状態へ変更するための接合作動を行う自動クラッチ制御装置が知られている(例えば、下記特許文献1、特許文献2を参照。)。
【0003】
【特許文献1】
特開昭60−44641号公報
【特許文献2】
特開平9−79374号公報
【0004】
【発明が解決しようとする課題】
しかしながら、この種の従来の装置が開示されている上記特許文献1及び特許文献2等においては、クラッチ断接用アクチュエータにより行われる前記接合作動の速度、又は前記分断作動の速度の設定方法・変更方法は開示されていないので、従来の装置では、例えば、車両が走行している路面の状況等の車両の走行状態に応じてクラッチの接合作動速度や分断作動速度を変更したいという要求があっても、同要求に応じて適切に同クラッチの接合作動速度や分断作動速度を変更することができないという問題があった。
【0005】
従って、本発明の目的は、車両の走行状態に応じてクラッチの接合作動速度や分断作動速度を適切に変更することができる自動クラッチ制御装置を提供することにある。
【0006】
【発明の概要】
本発明の特徴は、車両の動力源の出力軸と変速装置の入力軸との間に配設されたクラッチを断接駆動するクラッチ断接用アクチュエータと、前記変速装置の変速作動が開始される前に前記クラッチの状態を接合状態から分断状態へ変更するための分断作動が実行されるとともに同変速作動が終了した後に同クラッチの状態を分断状態から接合状態へ変更するための接合作動が実行されるように前記クラッチ断接用アクチュエータを制御するクラッチ制御手段と、を備えた自動クラッチ制御装置において、前記クラッチ制御手段が、前記車両の走行状態に応じて前記接合作動の速度及び前記分断作動の速度の少なくとも一つを変更するように構成されたことにある。
【0007】
ここにおいて、「変速装置」は、例えば、運転者によるシフトレバー操作により変速作動が実行される手動変速装置(運転者によるシフトレバーの操作力により直接的に変速作動が実行されるものも、運転者により操作されるシフトレバーの位置を示す信号に基いてギヤシフト用アクチュエータにより変速作動が実行されるものも含む。)、運転者によるシフトレバー操作によることなく車両の走行状態に応じて自動的に変速作動が実行される自動変速装置である。
【0008】
また、「接合作動速度」及び「分断作動速度」は、例えば、クラッチ断接用アクチュエータが空気圧又は油圧を利用したアクチュエータである場合には同空気圧又は油圧の変化速度、空気圧又は油圧により移動させられるクラッチ内の特定構成部材の移動速度、クラッチ内のクラッチディスクの摩擦面の圧着力の変化速度等であって、これらに限定されない。また、ここにいう「クラッチ」は、変速作動を実行するために変速装置内に配設されているものを含んでいない。
【0009】
この場合、上記自動クラッチ制御装置は、前記車両が走行している路面と同車両のタイヤとの間の摩擦係数である路面摩擦係数を取得する路面摩擦係数取得手段を備え、前記クラッチ制御手段は、前記路面摩擦係数に応じて前記接合作動速度及び前記分断作動速度の少なくとも一つを変更するように構成されることが好適であって、更に、前記クラッチ制御手段が、前記路面摩擦係数が小さいほど前記接合作動速度及び前記分断作動速度の少なくとも一つを遅くするように構成されることがより一層好適である。
【0010】
一般に、クラッチが分断状態にある間、駆動輪に駆動力が働かないことで車両が加速できない状態になるとともに不安定になり易いので、変速装置による変速時においてはクラッチが分断状態にある期間を短くする必要がある。従って、クラッチ断接用アクチュエータにより実行される前記分断作動の速度及び前記接合作動の速度も速くする必要がある。
【0011】
ここで、かかる分断作動及び接合作動が実行されている間(即ち、クラッチが半クラッチ状態にある間)、駆動輪に働く駆動トルク(エンジンブレーキによる減速トルクを含む。)は変化し、その駆動トルクの変化速度は、分断作動速度及び接合作動速度の増加に応じて増加するとともに同分断作動速度及び同接合作動速度の減少に応じて減少する。従って、分断作動速度及び接合作動速度が過度に速過ぎると駆動輪に働く駆動トルクの変化速度も過大となって駆動輪のスリップが発生し易くなる。以上のことから、一般に、分断作動速度及び接合作動速度は、通常の路面上において駆動輪のスリップが発生しない程度の所定の速い一定値に設定される。
【0012】
しかしながら、一方では、駆動輪のスリップは路面摩擦係数が小さくなるほど発生し易くなる傾向がある。従って、路面摩擦係数の大きさに拘わらず、分断作動速度及び接合作動速度を常に前記所定の速い一定値に設定すると、路面摩擦係数が小さくなったとき、駆動輪のスリップが発生し易くなって車両が不安定になる場合がある。
【0013】
これに対して、上記のように、路面摩擦係数に応じて接合作動速度及び前記分断作動速度の少なくとも一つを変更するように構成することにより、例えば、接合作動速度を、路面摩擦係数が大きいときは所定の速い値に設定するとともに路面摩擦係数の減少に応じて遅くなるように設定することができる。この結果、路面摩擦係数が大きいときはクラッチが分断状態にある期間が短くなるとともに路面摩擦係数が小さいときは駆動輪の(加速)スリップが発生しにくくなるので、路面摩擦係数の大きさに拘わらず車両安定性が良好に維持され得る。
【0014】
また、上記自動クラッチ制御装置が適用される車両が、同車両の走行状態に応じて各車輪の目標車輪速度関連量を設定するとともに同各車輪の実車輪速度関連量が同目標車輪速度関連量になるように同各車輪に付与される制動力を制御する車両安定化制御を実行する車両安定化制御実行手段を備える場合には、前記クラッチ制御手段は、前記車両安定化制御が実行されているか否かに応じて前記接合作動速度及び前記分断作動速度の少なくとも一つを変更するように構成されることが好適であって、更に、前記クラッチ制御手段が、前記車両安定化制御が実行されているとき、同車両安定化制御が実行されていないときに比して前記接合作動速度及び前記分断作動速度の少なくとも一つを遅くするように構成されることがより一層好適である。
【0015】
ここにおいて、前記「車両安定化制御」は、例えば、所謂ABS制御、所謂トラクション制御、所謂オーバーステア及びアンダーステア抑制制御等である。また、「車輪速度関連量」は、例えば、車輪速度、スリップ率(例えば、車体速度から車輪速度を減じた値の同車体速度に対する比率)、スリップ量(例えば、車体速度から車輪速度を減じた値)であって、これらに限定されない。
【0016】
駆動輪を含む各車輪の実際の車輪速度関連量が目標車輪速度関連量になるように同各車輪に付与される制動力を制御する前記車両安定化制御が実行されている場合、駆動輪に働く駆動トルク(エンジンブレーキによる減速トルクを含む。)の変化速度が大きくなると、かかる駆動トルクの変化が大きな外乱となって同車両安定化制御を精度良く実行することが困難になる可能性がある。
【0017】
従って、車両安定化制御が実行されている間に変速装置による変速作動が行われる場合、前記分断作動速度及び接合作動速度が速い値(例えば、前記所定の速い一定値)に設定されていると、同車両安定化制御を精度良く実行することが困難になる可能性がある。
【0018】
これに対して、上記のように、車両安定化制御が実行されているか否かに応じて接合作動速度及び分断作動速度の少なくとも一つを変更するように構成することにより、例えば、車両安定化制御が実行されているとき、同車両安定化制御が実行されていないときに比して接合作動速度を遅くするように設定することができる。この結果、車両安定化制御が実行されている間に変速装置による変速作動が行われても、同車両安定化制御が精度良く実行されるとともに車両の安定性が良好に維持され得る。
【0019】
また、上記自動クラッチ制御装置は、車両が通常の走行状態にあるときに得られる加速度よりも大きい加速度を得るための所定の操作が運転者により実行されているか否かを判定する判定手段を備え、前記クラッチ制御手段は、前記所定の操作が実行されているか否かに応じて前記接合作動速度及び前記分断作動速度の少なくとも一つを変更するように構成されることが好適であって、更に、前記クラッチ制御手段が、前記所定の操作が実行されているとき、同所定の操作が実行されていないときに比して前記接合作動速度及び前記分断作動速度の少なくとも一つを速くするように構成されることがより一層好適である。
【0020】
ここにおいて、前記「所定の操作」は、例えば、所定時間以上継続してアクセルペダルの操作量が所定の大きい値よりも大きくなるような同アクセルペダルの操作、上記自動クラッチ制御装置が適用される車両が通常走行モードと同通常走行モードよりも大きい加速度が得られるように変速装置内のギヤのシフトアップのタイミングをより高速回転側に移動させたスポーツ走行モードとを選択する選択手段(例えば、スポーツ走行モード選択スイッチ)を備えている場合、同選択手段によりスポーツ走行モードを選択する操作等であって、これらに限定されない。
【0021】
運転者により前記所定の操作が実行されたときは、車両が通常の走行状態にあるときに得られる加速度よりも大きい加速度を得たいという運転者の要求があることになる。この場合、クラッチが分断状態にあって駆動輪に駆動力を付与することができない期間を短くすることは前記運転者の要求に沿う。
【0022】
よって、上記のように、前記所定の操作が実行されているか否かに応じて接合作動速度及び分断作動速度の少なくとも一つを変更するように構成することにより、例えば、前記所定の操作が実行されているとき、同所定の操作が実行されていないときに比して接合作動速度を速く設定することができる。この結果、運転者により前記所定の操作が実行されたとき、変速装置による変速作動に伴いクラッチが分断状態にある期間を短くすることができ、より早い段階から車両を再び加速状態に復帰させることができるので、上記運転者の要求に沿う内容の制御が実行され得る。
【0023】
【発明の実施の形態】
以下、本発明による自動クラッチ制御装置の一実施形態について図面を参照しつつ説明する。図1は、本発明の実施形態に係る自動クラッチ制御装置を含む車両の制御装置10を搭載した車両の概略構成を示している。この車両は、非駆動輪である前2輪(左前輪FL及び右前輪FR)と、駆動輪である後2輪(左後輪RL及び右後輪RR)を備えた後輪駆動方式の4輪車両である。
【0024】
この車両の制御装置10は、駆動力を発生するとともに同駆動力を駆動輪RL,RRに伝達する駆動力伝達機構部20と、各車輪にブレーキ液圧によるブレーキ力を発生させるためのブレーキ液圧制御装置30と、各種センサから構成されるセンサ部40と、電気式制御装置50とを含んで構成されている。
【0025】
駆動力伝達機構部20は、駆動力を発生する動力源としてのエンジン21と、同エンジン21の吸気管21a内に配置されるとともに吸気通路の開口断面積を可変とするスロットル弁THの開度を制御するDCモータからなるスロットル弁アクチュエータ22と、エンジン21の図示しない吸気ポート近傍に燃料を噴射するインジェクタを含む燃料噴射装置23と、エンジン21の出力軸に入力軸が接続されたクラッチ24と、クラッチ24の出力軸に入力軸が接続された変速装置としてのトランスミッション25と、トランスミッション25の出力軸から伝達される駆動力を適宜分配して後輪RR,RLに伝達するディファレンシャルギヤ26とを含んで構成されている。
【0026】
クラッチ24は、図示しないクラッチスプリングの付勢力F1に基く圧着力Fをクラッチディスクの摩擦面に作用させることにより発生する同圧着力Fに応じた摩擦力によってエンジン21からの動力をトランスミッション25に伝達する摩擦クラッチである。この圧着力Fは、図示しない油圧回路を利用して発生する油圧により作動するクラッチ断接用アクチュエータ24aにより調整できるようになっている。
【0027】
より具体的に述べると、クラッチ断接用アクチュエータ24aは、クラッチディスクの摩擦面に作用する前記圧着力Fを減少させるための駆動力を発生するように構成されている。従って、前記圧着力Fは、クラッチ断接用アクチュエータ24aが駆動力を発生していない状態ではクラッチスプリングの付勢力F1と等しい最大値F1となり、このとき、クラッチ24は、クラッチディスクの摩擦面にすべりが発生せず、且つ、エンジン21からの動力の全てをトランスミッション25に伝達する完全な接合状態(以下、「完全接合状態」と称呼する。)になる。
【0028】
また、前記圧着力Fは、クラッチ断接用アクチュエータ24aの駆動力が増大するほど減少していき、同圧着力が「0」より大きく最大値F1よりも小さい状態では、クラッチ24はクラッチディスクの摩擦面にすべりが発生し得るとともにエンジン21からの動力の一部をトランスミッション25に伝達し得る半接合状態(以下、「半クラッチ状態」と称呼する。)になる。
【0029】
そして、クラッチ断接用アクチュエータ24aの駆動力が所定値以上になると前記圧着力Fが「0」になり、このとき、クラッチ24は、エンジン21からの動力をトランスミッション25に伝達し得ない完全な分断状態(以下、「完全分断状態」と称呼する。)になる。
【0030】
また、クラッチ断接用アクチュエータ24aは、クラッチ24が完全接合状態にあるときには、クラッチ24が完全接合状態にあることを示す信号を出力するとともに、クラッチ24が完全分断状態にあるときには、クラッチ24が完全分断状態にあることを示す信号を出力するようになっている。このようにして、クラッチ24の状態は、運転者によるクラッチペダル操作によることなく、クラッチ断接用アクチュエータ24aの駆動力を調整することにより変更できるようになっている。
【0031】
トランスミッション25は、前進走行用としての複数(例えば7段)の前進段、後進走行用としての後進段、及びニュートラル段を備えていて、図示しない油圧回路を利用して発生する油圧により作動するギヤシフト用アクチュエータ25aにより内部の複数枚のギヤの組み合わせを変更することで、前記何れかの段が選択されるようになっている。また、ギヤシフト用アクチュエータ25aは、ギヤシフト作動が完了したとき、ギヤシフト作動が完了したことを示す信号を出力するようになっている。
【0032】
ブレーキ液圧制御装置30は、その概略構成を表す図2に示すように、高圧発生部31と、ブレーキペダルBPの操作力に応じたブレーキ液圧を発生するブレーキ液圧発生部32と、各車輪FR,FL,RR,RLにそれぞれ配置されたホイールシリンダWfr,Wfl,Wrr,Wrlに供給するブレーキ液圧をそれぞれ調整可能なFRブレーキ液圧調整部33,FLブレーキ液圧調整部34,RRブレーキ液圧調整部35,RLブレーキ液圧調整部36とを含んで構成されている。
【0033】
高圧発生部31は、電動モータMと、同電動モータMにより駆動されるとともにリザーバRS内のブレーキ液を昇圧する液圧ポンプHPと、液圧ポンプHPの吐出側にチェック弁CVHを介して接続されるとともに同液圧ポンプHPにより昇圧されたブレーキ液を貯留するアキュムレータAccとを含んで構成されている。
【0034】
電動モータMは、アキュムレータAcc内の液圧が所定の下限値を下回ったとき駆動され、同アキュムレータAcc内の液圧が所定の上限値を上回ったとき停止されるようになっており、これにより、アキュムレータAcc内の液圧は常時所定の範囲内の高圧に維持されるようになっている。
【0035】
また、アキュムレータAccとリザーバRSとの間にリリーフ弁RVが配設されており、アキュムレータAcc内の液圧が前記高圧より異常に高い圧力になったときに同アキュムレータAcc内のブレーキ液がリザーバRSに戻されるようになっている。これにより、高圧発生部31の液圧回路が保護されるようになっている。
【0036】
ブレーキ液圧発生部32は、ブレーキペダルBPの作動により応動するハイドロブースタHBと、同ハイドロブースタHBに連結されたマスタシリンダMCとから構成されている。ハイドロブースタHBは、液圧高圧発生部31から供給される前記高圧を利用してブレーキペダルBPの操作力を所定の割合で助勢し同助勢された操作力をマスタシリンダMCに伝達するようになっている。
【0037】
マスタシリンダMCは、前記助勢された操作力に応じたマスタシリンダ液圧を発生するようになっている。また、ハイドロブースタHBは、マスタシリンダ液圧を入力することによりマスタシリンダ液圧と略同一の液圧である前記助勢された操作力に応じたレギュレータ液圧を発生するようになっている。これらマスタシリンダMC及びハイドロブースタHBの構成及び作動は周知であるので、ここではそれらの詳細な説明を省略する。このようにして、マスタシリンダMC及びハイドロブースタHBは、ブレーキペダルBPの操作力に応じたマスタシリンダ液圧及びレギュレータ液圧をそれぞれ発生するようになっている。
【0038】
マスタシリンダMCとFRブレーキ液圧調整部33の上流側及びFLブレーキ液圧調整部34の上流側の各々との間には、3ポート2位置切換型の電磁弁である制御弁SA1が介装されている。同様に、ハイドロブースタHBとRRブレーキ液圧調整部35の上流側及びRLブレーキ液圧調整部36の上流側の各々との間には、3ポート2位置切換型の電磁弁である制御弁SA2が介装されている。また、高圧発生部31と制御弁SA1及び制御弁SA2の各々との間には、2ポート2位置切換型の常閉電磁開閉弁である切換弁STRが介装されている。
【0039】
制御弁SA1は、図2に示す第1の位置(非励磁状態における位置)にあるときマスタシリンダMCとFRブレーキ液圧調整部33の上流部及びFLブレーキ液圧調整部34の上流部の各々とを連通するとともに、第2の位置(励磁状態における位置)にあるときマスタシリンダMCとFRブレーキ液圧調整部33の上流部及びFLブレーキ液圧調整部34の上流部の各々との連通を遮断して切換弁STRとFRブレーキ液圧調整部33の上流部及びFLブレーキ液圧調整部34の上流部の各々とを連通するようになっている。
【0040】
制御弁SA2は、図2に示す第1の位置(非励磁状態における位置)にあるときハイドロブースタHBとRRブレーキ液圧調整部35の上流部及びRLブレーキ液圧調整部36の上流部の各々とを連通するとともに、第2の位置(励磁状態における位置)にあるときハイドロブースタHBとRRブレーキ液圧調整部35の上流部及びRLブレーキ液圧調整部36の上流部の各々との連通を遮断して切換弁STRとRRブレーキ液圧調整部35の上流部及びRLブレーキ液圧調整部36の上流部の各々とを連通するようになっている。
【0041】
これにより、FRブレーキ液圧調整部33の上流部及びFLブレーキ液圧調整部34の上流部の各々には、制御弁SA1が第1の位置にあるときマスタシリンダ液圧が供給されるとともに、制御弁SA1が第2の位置にあり且つ切換弁STRが第2の位置(励磁状態における位置)にあるとき高圧発生部31が発生する高圧が供給されるようになっている。
【0042】
同様に、RRブレーキ液圧調整部35の上流部及びRLブレーキ液圧調整部36の上流部の各々には、制御弁SA2が第1の位置にあるときレギュレータ液圧が供給されるとともに、制御弁SA2が第2の位置にあり且つ切換弁STRが第2の位置にあるとき高圧発生部31が発生する高圧が供給されるようになっている。
【0043】
FRブレーキ液圧調整部33は、2ポート2位置切換型の常開電磁開閉弁である増圧弁PUfrと、2ポート2位置切換型の常閉電磁開閉弁である減圧弁PDfr
とから構成されており、増圧弁PUfrは、図2に示す第1の位置(非励磁状態における位置)にあるときFRブレーキ液圧調整部33の上流部とホイールシリンダWfrとを連通するとともに、第2の位置(励磁状態における位置)にあるときFRブレーキ液圧調整部33の上流部とホイールシリンダWfrとの連通を遮断するようになっている。減圧弁PDfrは、図2に示す第1の位置(非励磁状態における位置)にあるときホイールシリンダWfrとリザーバRSとの連通を遮断するとともに、第2の位置(励磁状態における位置)にあるときホイールシリンダWfrとリザーバRSとを連通するようになっている。
【0044】
これにより、ホイールシリンダWfr内のブレーキ液圧は、増圧弁PUfr及び減圧弁PDfrが共に第1の位置にあるときホイールシリンダWfr内にFRブレーキ液圧調整部33の上流部の液圧が供給されることにより増圧され、増圧弁PUfrが第2の位置にあり且つ減圧弁PDfrが第1の位置にあるときFRブレーキ液圧調整部33の上流部の液圧に拘わらずその時点の液圧に保持されるとともに、増圧弁PUfr及び減圧弁PDfrが共に第2の位置にあるときホイールシリンダWfr内のブレーキ液がリザーバRSに戻されることにより減圧されるようになっている。
【0045】
また、増圧弁PUfrにはブレーキ液のホイールシリンダWfr側からFRブレーキ液圧調整部33の上流部への一方向の流れのみを許容するチェック弁CV1が並列に配設されており、これにより、制御弁SA1が第1の位置にある状態で操作されているブレーキペダルBPが開放されたときホイールシリンダWfr内のブレーキ液圧が迅速に減圧されるようになっている。
【0046】
同様に、FLブレーキ液圧調整部34,RRブレーキ液圧調整部35及びRLブレーキ液圧調整部36は、それぞれ、増圧弁PUfl及び減圧弁PDfl,増圧弁PUrr及び減圧弁PDrr,増圧弁PUrl及び減圧弁PDrlから構成されており、これらの各増圧弁及び各減圧弁の位置が制御されることにより、ホイールシリンダWfl,ホイールシリンダWrr及びホイールシリンダWrl内のブレーキ液圧をそれぞれ増圧、保持、減圧できるようになっている。また、増圧弁PUfl,PUrr及びPUrlの各々にも、上記チェック弁CV1と同様の機能を達成し得るチェック弁CV2,CV3及びCV4がそれぞれ並列に配設されている。
【0047】
また、制御弁SA1にはブレーキ液の上流側から下流側への一方向の流れのみを許容するチェック弁CV5が並列に配設されており、同制御弁SA1が第2の位置にあってマスタシリンダMCとFRブレーキ液圧調整部33及びFLブレーキ液圧調整部34の各々との連通が遮断されている状態にあるときに、ブレーキペダルBPを操作することによりホイールシリンダWfr,Wfl内のブレーキ液圧が増圧され得るようになっている。また、制御弁SA2にも、上記チェック弁CV5と同様の機能を達成し得るチェック弁CV6が並列に配設されている。
【0048】
以上、説明した構成により、ブレーキ液圧制御装置30は、全ての電磁弁が第1の位置にあるときブレーキペダルBPの操作力に応じたブレーキ液圧を各ホイールシリンダに供給できるようになっている。また、この状態において、例えば、増圧弁PUrr及び減圧弁PDrrをそれぞれ制御することにより、ホイールシリンダWrr内のブレーキ液圧のみを所定量だけ減圧することができるようになっている。
【0049】
また、ブレーキ液圧制御装置30は、ブレーキペダルBPが操作されていない状態(開放されている状態)において、例えば、制御弁SA1,切換弁STR及び増圧弁PUflを共に第2の位置に切換るとともに増圧弁PUfr及び減圧弁PDfrをそれぞれ制御することにより、ホイールシリンダWfl内のブレーキ液圧を保持した状態で高圧発生部31が発生する高圧を利用してホイールシリンダWfr内のブレーキ液圧のみを所定量だけ増圧することもできるようになっている。このようにして、ブレーキ液圧制御装置30は、ブレーキペダルBPの操作に拘わらず、各車輪のホイールシリンダ内のブレーキ液圧をそれぞれ独立して制御し、各車輪毎に独立して所定のブレーキ力を付与することができるようになっている。
【0050】
再び図1を参照すると、センサ部40は、各車輪FL,FR,RL及びRRが所定角度回転する度にパルスを有する信号をそれぞれ出力するロータリーエンコーダから構成される車輪速度センサ41fl,41fr,41rl及び41rrと、運転者により操作されるアクセルペダルAPの操作量を検出し、同アクセルペダルAPの操作量Accpを示す信号を出力するアクセル開度センサ42と、車両に働く実際の加速度の車体左右方向の成分である横加速度を検出し、横加速度Gyを示す信号を出力する横加速度センサ43と、運転者によりブレーキペダルBPが操作されているか否かを検出し、ブレーキ操作の有無を示す信号を出力するブレーキスイッチ44と、運転者により操作されるシフトレバーSLの位置を検出し、シフトレバーSLの位置を示す信号を出力するシフト位置センサ45とから構成されている。
【0051】
シフトレバーSLは、図3に示すように、N(ニュートラル)位置、R(リバース)位置、HOLD(ホールド)位置、UP(アップ)位置、及びDOWN(ダウン)位置に移動できるようになっていて、N位置、R位置、及びHOLD位置の何れかの位置にあるときは運転者による操作力等の外力が作用しない限り同何れかの位置に固定されるようになっている。また、シフトレバーSLがUP位置又はDOWN位置にあるときは、シフトレバーSLにはHOLD位置方向の復帰力が作用するようになっていて、運転者による操作力等の外力によりUP位置又はDOWN位置に移動させられたシフトレバーSLは、同外力が作用しなくなると自動的にHOLD位置に復帰するようになっている。
【0052】
シフト位置センサ45は、シフトレバーSLがN位置に移動したときはトランスミッション25をニュートラル段が選択された状態にするための信号(以下、「N信号」と称呼する。)を出力し、シフトレバーSLがR位置に移動したときはトランスミッション25を後進段が選択された状態にするための信号(以下、「R信号」と称呼する。)を出力するようになっている。また、シフト位置センサ45は、シフトレバーSLがHOLD位置に移動したときはトランスミッション25を現時点での前進段が選択された状態に維持するための信号(以下、「HOLD信号」と称呼する。)を出力するようになっている。
【0053】
また、シフト位置センサ45は、シフトレバーSLがUP位置に移動したときはトランスミッション25を現時点での前進段から一段だけ高速側の前進段が選択された状態にするための信号(以下、「UP信号」と称呼する。)を出力し、シフトレバーSLがDOWN位置に移動したときはトランスミッション25を現時点での前進段から一段だけ低速側の前進段が選択された状態にするための信号(以下、「DOWN信号」と称呼する。)を出力するようになっている。
【0054】
電気式制御装置50は、互いにバスで接続されたCPU51、CPU51が実行するルーチン(プログラム)、テーブル(ルックアップテーブル、マップ)、定数等を予め記憶したROM52、CPU51が必要に応じてデータを一時的に格納するRAM53、電源が投入された状態でデータを格納するとともに同格納したデータを電源が遮断されている間も保持するバックアップRAM54、及びADコンバータを含むインターフェース55等からなるマイクロコンピュータである。
【0055】
インターフェース55は、クラッチ断接用アクチュエータ24a、ギヤシフト用アクチュエータ25a、ブレーキ液圧制御装置30、及び前記センサ41〜45と接続され、CPU51にセンサ41〜45等からの信号を供給するとともに、同CPU51の指示に応じて、スロットル弁アクチュエータ22、燃料噴射装置23、クラッチ断接用アクチュエータ24a、ギヤシフト用アクチュエータ25a、並びにブレーキ液圧制御装置30の各電磁弁及びモータMに駆動信号を送出するようになっている。
【0056】
これにより、スロットル弁アクチュエータ22は、通常、スロットル弁THの開度がアクセルペダルAPの操作量Accpに応じた開度になるように同スロットル弁THを駆動するとともに、燃料噴射装置23は、スロットル弁THの開度に応じた吸入空気量に対して所定の目標空燃比(理論空燃比)を得るために必要な量の燃料を噴射するようになっている。また、ギヤシフト用アクチュエータ25aは、シフト位置センサ45の出力に基いてトランスミッション25の段を選択するようになっている。
【0057】
(本発明によるクラッチ断接制御、及びギヤシフト制御の概要)
本発明による自動クラッチ制御装置を含む車両の制御装置10(以下、単に「本装置」と云うこともある。)は、運転者によりシフトレバーSLが操作され、シフト位置センサ45から上記したUP信号、又はDOWN信号が出力されたとき、トランスミッション25の前進段を変更するためのギヤシフト作動(変速装置の変速作動)を行うため、クラッチ断接用アクチュエータ24aの駆動力を制御することによりクラッチ24を断接駆動する。
【0058】
なお、シフト位置センサ45から上記したN信号、R信号、HOLD信号が出力されたとき、車両が停止しているとき、車両が発進するとき、車両が極低速で走行しているとき等も、必要に応じて、本装置は周知の技術に基いてクラッチ24を制御するが、本明細書では、これらの場合におけるクラッチ24の制御の詳細については説明を省略する。
【0059】
<基本的なクラッチ断接制御、及びギヤシフト制御>
以下、図4を参照しながら、本装置が実行する基本的なクラッチ断接制御、及びギヤシフト制御について説明する。図4は、シフト位置センサ45からUP信号又はDOWN信号が出力されてクラッチ24が断接駆動される際の同クラッチ24内のクラッチディスクの摩擦面に作用する圧着力Fの時間に対する変化を示したタイムチャートである。このタイムチャートでは、時刻t1においてシフト位置センサ45から上記UP信号又はDOWN信号が出力されたものと仮定する。
【0060】
先ず、時刻t1になるまでは、クラッチ24は完全接合状態になっているので、圧着力Fは先に説明した最大値F1に維持されている。換言すれば、クラッチ断接用アクチュエータ24aの駆動力は「0」になっている。この状態から時刻t1になると、本装置はクラッチ断接用アクチュエータ24aの駆動力を所定の一定速度(一定増加率)で増大開始させる。
【0061】
これにより、時刻t1以降、圧着力Fは最大値F1(図4において点aに対応する。)から所定の一定速度で減少し、クラッチ24の状態を完全接合状態から完全分断状態へ変更するための分断作動が開始・実行されるとともにクラッチ24は半クラッチ状態となる。
【0062】
時刻t2になると、圧着力Fが「0」になり(図4において点bに対応する。)、前記分断作動が完了するとともにクラッチ24が完全分断状態になる。このとき、クラッチ断接用アクチュエータ24aはクラッチ24が完全分断状態にあることを示す信号を出力する。ここで、時刻t1〜時刻t2(以下、「分断作動中」と称呼する。)において実行された前記分断作動の速度(分断作動速度)Vcutを下記数1により定義する。本例では、分断作動速度Vcutは一定である。
【0063】
【数1】
Vcut=F1/(t1−t2)
【0064】
一方、本装置は、分断作動が進行するにつれてエンジン21の動力のうちクラッチ24がトランスミッション25に伝達し得る動力の割合が減少することに伴って同エンジン21の負荷が減少することに起因する同エンジン21のレーシングの発生を防止するため、前記分断作動中において「分断作動中スロットル弁開度制御」を実行する。
【0065】
具体的には、本装置は、クラッチ断接用アクチュエータ24aの駆動力が増加するにつれて減少するスロットル弁THの所定の許容開度を分断作動中に渡って設定し、運転者のアクセルペダルAPの操作量Accpに対応するスロットル弁THの開度が前記許容開度を超えているとき、同スロットル弁THの開度が同許容開度になるようにスロットル弁アクチュエータ22を制御する。
【0066】
また、本装置は、時刻t2になると、クラッチ24を完全分断状態に維持したままギヤシフト作動を開始する。具体的には、本装置は、クラッチ断接用アクチュエータ24aの駆動力を時刻t2における値に維持したまま(圧着力Fを「0」に維持したまま)、時刻t1においてシフト位置センサ45からUP信号が出力されていた場合にはトランスミッション25の前進段が現時点での前進段から一段だけ高速側の前進段(目標段)へ変更され、時刻t1においてシフト位置センサ45からDOWN信号が出力されていた場合にはトランスミッション25の前進段が現時点での前進段から一段だけ低速側の前進段(目標段)へ変更されるように、ギヤシフト用アクチュエータ25aを駆動開始する。
【0067】
そして、時刻t3になると、本装置は、トランスミッション25の前進段を前記目標段に変更完了する(図4において点cに対応する。)。このとき、ギヤシフト用アクチュエータ25aはギヤシフト作動が完了したことを示す信号を出力する。これにより、ギヤシフト作動(ギヤシフト制御)が完了する。ここで、時刻t2〜時刻t3の間を「シフト作動中」と称呼する。
【0068】
一方、本装置は、クラッチ24が完全分断状態にあってエンジン21が無負荷の状態になっていることに起因するエンジン21のレーシングの発生を防止するため、前記シフト作動中において「シフト作動中スロットル弁開度制御」を実行する。具体的には、本装置は、シフト作動中に渡り、運転者のアクセルペダルAPの操作量Accpに拘わらず、スロットル弁THの開度がアクセルペダルAPの操作量Accpが「0」のときに対応するスロットル弁THの開度(一定値)になるようにスロットル弁アクチュエータ22を制御する。
【0069】
また、本装置は、時刻t3になると、クラッチ断接用アクチュエータ24aの駆動力を所定の一定速度(一定減少率)で減少開始させる。これにより、時刻t3以降、圧着力Fは「0」(図4において点cに対応する。)から所定の一定速度で増加し、クラッチ24の状態を完全分断状態から完全接合状態へ変更するための接合作動が開始・実行されるとともにクラッチ24は半クラッチ状態となる。
【0070】
時刻t4になると、クラッチ断接用アクチュエータ24aの駆動力が「0」となることで圧着力Fが最大値F1になり(図4において点dに対応する。)、前記接合作動が完了するとともにクラッチ24が完全接合状態になる。このとき、クラッチ断接用アクチュエータ24aはクラッチ24が完全接合状態にあることを示す信号を出力する。これにより、クラッチ断接制御が完了する。ここで、時刻t3〜時刻t4(以下、「接合作動中」と称呼する。)において実行された前記接合作動の速度(接合作動速度)Vconnectを下記数2により定義する。
【0071】
【数2】
Vconnect=F1/(t4−t3)
【0072】
一方、本装置は、接合作動が進行するにつれてエンジン21の動力のうちクラッチ24がトランスミッション25に伝達し得る動力の割合が増加することに伴い、同エンジン21のレーシングの発生を防止しつつ同エンジン21の動力を最大限トランスミッション25に伝達できるようにするため、前記接合作動中において「接合作動中スロットル弁開度制御」を実行する。
【0073】
具体的には、本装置は、クラッチ断接用アクチュエータ24aの駆動力が減少するにつれて増加するスロットル弁THの所定の許容開度を接合作動中に渡って設定し、運転者のアクセルペダルAPの操作量Accpに対応するスロットル弁THの開度が前記許容開度を超えているとき、同スロットル弁THの開度が同許容開度になるようにスロットル弁アクチュエータ22を制御する。
【0074】
以上のようにして、ギヤシフト作動が開始される前にクラッチ24の状態を完全接合状態から完全分断状態へ変更するための分断作動が実行されるとともに同ギヤシフト作動が終了した後に同クラッチ24の状態を完全分断状態から完全接合状態へ変更するための接合作動が実行されるようにクラッチ断接用アクチュエータ24aを制御する手段がクラッチ制御手段に相当する。
【0075】
本装置は、通常、上記した接合作動速度Vconnectを、図4において実線にて示された点cと点dとを結ぶ線分の傾きに対応する上記数2に従って計算される値に設定する。接合作動速度Vconnectがこの値に設定されるモードをノーマルモードと称呼する。
【0076】
また、本装置は、このノーマルモード以外にも、接合作動速度Vconnectを、図4において破線にて示された点cと点eとを結ぶ線分の傾きに対応する値に設定する弱低速モード、図4において破線にて示された点cと点fとを結ぶ線分の傾きに対応する値に設定する低速モード、及び図4において破線にて示された点cと点gとを結ぶ線分の傾きに対応する値に設定する高速モードの何れかを選択・設定することができ、後述するように、これらノーマルモード以外の各モードの何れかを車両の走行状態に応じて選択する。
【0077】
<路面摩擦係数に応じた接合作動速度の選択>
本装置は、現時点で走行している路面の路面摩擦係数μを下記数3に基いて推定するとともに、上記クラッチ断接制御が開始される時点(分断作動開始時点)における同路面摩擦係数μに応じて、接合作動速度Vconnectを変更する。
【0078】
【数3】
μ=((k1・DVso)+(k2・Gy)1/2
【0079】
上記数3において、DVsoは後述するように算出される推定車体加速度であり、Gyは上述した横加速度センサ43により検出される実際の横加速度である。k1,k2は所定の定数である。上記数3に基いて路面の路面摩擦係数μを取得する手段が路面摩擦係数取得手段に相当する。
【0080】
具体的には、本装置は、上記のようなクラッチ断接制御が開始される時点(分断作動開始時点)において路面の路面摩擦係数μが0.3以上のとき上記ノーマルモードを選択し、路面の路面摩擦係数μが0.1以上0.3未満のとき上記弱低速モードを選択するとともに、路面の路面摩擦係数μが0.1未満のとき上記低速モードを選択する。これにより、路面摩擦係数μが小さいほど接合作動速度Vconnectが遅くなるように設定される。
【0081】
図5は、路面摩擦係数μが0.1未満の路面上で、運転者がアクセルペダルの操作量Accpを所定の一定値に維持した状態で車両が加速しているときに、運転者がアクセルペダルの操作量Accpを同所定の一定値に維持したままシフトレバーSLをUP位置に移動してトランスミッション25の前進段が一段だけ高速側の前進段へ変更される場合における、駆動輪RL,RRに作用する駆動トルクT(加速方向の値を正の値とする。)、及び各車輪の車輪速度Vwの変化を示したタイムチャートである。
【0082】
本装置は、この場合、路面摩擦係数μが0.1未満であるので、接合作動速度Vconnectをノーマルモードではなく低速モードに設定するが、図5においては、ノーマルモードが設定された場合と低速モードが設定された場合とを比較するため、ノーマルモードが設定された場合の変化が実線で、低速モードが設定された場合の変化が破線で、それぞれ示されている。図5における時刻t1〜時刻t4は、図4における時刻t1〜時刻t4にそれぞれ対応している。
【0083】
図5(a)に示すように、駆動輪RL,RRに作用する駆動トルクTは、分断作動中である時刻t1〜時刻t2の間、分断作動が進行するにつれてエンジン21の動力のうちクラッチ24がトランスミッション25に伝達し得る動力の割合が減少することに伴って(及び、上記「分断作動中スロットル弁開度制御」の効果も相俟って)、アクセルペダルの操作量Accpが上記所定の一定値に維持されているにも拘わらず、上記一定の分断速度Vcutに応じた速度で正の所定値から減少していく。
【0084】
そして、駆動トルクTは、シフト作動中である時刻t2〜時刻t3の間、クラッチ24が完全分断状態にあることにより、負の一定値となる。ここで、駆動トルクTが負の一定値となるのは、駆動輪RL,RRにはエンジン21からの駆動力が伝達されない一方で、クラッチ24から駆動輪RL,RRまでの間の駆動系部材の回転抵抗力が駆動輪RL,RRに対して負の駆動トルクとして作用することに基く。
【0085】
また、駆動トルクTは、接合作動速度Vconnectがノーマルモードに設定された場合(上記数2に従って計算される場合)には、接合作動中である時刻t3〜時刻t4までの間、接合作動が進行するにつれてエンジン21の動力のうちクラッチ24がトランスミッション25に伝達し得る動力の割合が増加することに伴って(及び、上記「接合作動中スロットル弁開度制御」の効果も相俟って)、アクセルペダルの操作量Accpが上記所定の一定値に維持されているにも拘わらず、ノーマルモードに設定された接合作動速度Vconnectに応じた通常の比較的速い変化速度で実線にて示すように増加していく。
【0086】
同様に、接合作動速度Vconnectが本装置のように低速モードに設定された場合には、駆動トルクTは、接合作動中である時刻t3〜時刻t4より後の所定時刻までの間、低速モードに設定された接合作動速度Vconnectに応じた遅い変化速度(前記通常の変化速度よりも遅い変化速度)で破線にて示すように増加していく。
【0087】
他方、図5(b)に示すように、各車輪の車輪速度Vwは、時刻t1から時刻t3の間、駆動輪RL,RRが加速スリップすることなく全ての車輪速度が同一の値となる状態で変化しているものと仮定する。そして、時刻t3以降クラッチ24の接合作動が開始されると、接合作動速度Vconnectがノーマルモードに設定された場合には、前述したように駆動輪RL,RRに作用する駆動トルクTの変化速度(増大速度)が比較的速く、また路面摩擦係数μが小さいので、時刻t3より少し後の時刻からの所定の期間に渡り、駆動輪RL,RRは大きく加速スリップし、図5(b)に実線にて示したように駆動輪RL,RRの車輪速度Vwrl,Vwrrは非駆動輪FL,FRの車輪速度Vwfl,Vwfr(2点鎖線にて示されている。)よりも大きく上回る。この結果、前記所定の期間において、車両は不安定になり易い。
【0088】
これに対して、本装置のように接合作動速度Vconnectが低速モードに設定された場合には、前述したように駆動輪RL,RRに作用する駆動トルクTの変化速度(増大速度)が遅いので、路面摩擦係数μが小さいにも拘わらず駆動輪RL,RRは殆ど加速スリップせず、図5(b)に破線にて示したように、駆動輪RL,RRの車輪速度Vwrl,Vwrrが非駆動輪FL,FRの車輪速度Vwfl,Vwfr(2点鎖線にて示されている。)より上回る程度も小さい。従って、この場合、車両安定性は維持され得る。
【0089】
<車両安定化制御中か否かに基く接合作動速度の選択>
本装置は、後述するように、ブレーキ液圧制御装置30を利用することにより、後述する周知のABS制御、前後制動力配分制御、トラクション制御、及び制動操舵制御を実行する。これらの制御は、車両の走行状態に応じて各車輪の目標スリップ率St(目標車輪速度関連量)を設定するとともに同各車輪の実際のスリップ率Sa(実際の車輪速度関連量)が同目標スリップ率Stになるように同各車輪に付与される制動力を制御して車両の走行状態を安定化するための車両安定化制御である。このように車両安定化制御を実行する手段が車両安定化制御実行手段に相当する。
【0090】
本装置は、ギヤシフト制御を実行するために上記のようなクラッチ断接制御が開始される時点(分断作動開始時点)で前記何れかの車両安定化制御を実行している場合には、同クラッチ断接制御実行中(分断作動開始時点から接合作動完了時点までの間)に渡り、同何れかの車両安定化制御の要否に拘わらず、同何れかの車両安定化制御を継続して実行するようになっている。
【0091】
また、本装置は、上記クラッチ断接制御が開始される時点にて車両安定化制御が実行されているか否かに応じて上記接合作動速度Vconnectを変更する。具体的には、本装置は、車両安定化制御が実行されていないとき上記ノーマルモードを選択するとともに、車両安定化制御が実行されているとき上記低速モードを選択する。これにより、車両安定化制御が実行されているとき、車両安定化制御が実行されていないときに比して接合作動速度Vconnectが遅くなるように設定される。
【0092】
図6は、運転者がアクセルペダルの操作量Accpを所定の大きい値に維持することで周知のトラクション制御が適切に実行され、駆動輪RL,RRの(加速)スリップ量(駆動輪の車輪速度から車体速度(非駆動輪の車輪速度)を減じた速度)が同トラクション制御の目標スリップ量ΔVwに維持された状態で車両が加速しているときに、運転者がアクセルペダルの操作量Accpを同所定の大きい値に維持したままシフトレバーSLをUP位置に移動してトランスミッション25の前進段が一段だけ高速側の前進段へ変更される場合における、駆動輪RL,RRに作用する駆動トルクT(加速方向の値を正の値とする。)、及び各車輪の車輪速度Vwの変化を示したタイムチャートである。
【0093】
本装置は、この場合、分断作動が開始される時刻t1の時点でトラクション制御を実行しているので、接合作動速度Vconnectをノーマルモードではなく低速モードに設定するが、図6においては、図5と同様、ノーマルモードが設定された場合と低速モードが設定された場合とを比較するため、ノーマルモードが設定された場合の変化が実線で、低速モードが設定された場合の変化が破線で、それぞれ示されている。図6における時刻t1〜時刻t4は、図4における時刻t1〜時刻t4にそれぞれ対応している。なお、図6(a)に示した駆動トルクTの変化は図5(a)に示した駆動トルクTの変化と同様であるので、ここでは、駆動トルクTの変化についての説明は省略する。
【0094】
図6(b)に示すように、駆動輪RL,RRの車輪速度Vwrl,Vwrr(実線にて示されている。)は、時刻t1までは、トラクション制御により非駆動輪FL,FRの車輪速度Vwfl,Vwfr(2点鎖線にて示されている。)よりも目標スリップ量ΔVwだけ大きい値に維持された状態で車両の車体速度の増大に伴い増大する。
【0095】
分断作動中である時刻t1〜時刻t2の間は、駆動輪RL,RRの車輪速度Vwrl,Vwrrは、分断作動が進行するにつれて同駆動輪RL,RRに働く駆動トルクTが減少することに伴って次第に非駆動輪FL,FRの車輪速度Vwfl,Vwfrに近づき、分断作動が完了する時刻t2になると非駆動輪FL,FRの車輪速度Vwfl,Vwfrと同一の値となる。換言すれば、駆動輪RL,RRのスリップ量が「0」になる。時刻t2以降シフト作動が完了する時刻t3までの間もクラッチ24が完全分断状態にあることから、駆動輪RL,RRの車輪速度Vwrl,Vwrrは非駆動輪FL,FRの車輪速度Vwfl,Vwfrと同一の値となる。
【0096】
そして、時刻t3以降クラッチ24の接合作動が開始されると、接合作動速度Vconnectがノーマルモードに設定された場合には、前述したように駆動輪RL,RRに作用する駆動トルクTの変化速度(増大速度)が比較的速く、時刻t3より少し後の時刻から駆動輪RL,RRは大きく加速スリップする。このとき、かかる速い駆動トルクTの変化がトラクション制御における大きな外乱となって、駆動輪RL,RRのスリップ量がトラクション制御の目標スリップ量ΔVwを上回っても、同スリップ量を目標スリップ量ΔVwに直ちに復帰させることが困難になる。従って、図6(b)に実線にて示したように、時刻t3より少し後の時刻からの所定の期間に渡り、駆動輪RL,RRのスリップ量はトラクション制御の目標スリップ量ΔVwよりも大きく上回る。この結果、前記所定の期間において、トラクション制御が精度良く実行されず、その結果、車両は不安定になり易い。
【0097】
これに対して、本装置のように接合作動速度Vconnectが低速モードに設定された場合には、前述したように駆動輪RL,RRに作用する駆動トルクTの変化速度(増大速度)が遅い。かかる遅い駆動トルクTの変化はトラクション制御における大きな外乱となり得ない。従って、時刻t3より少し後の時刻から駆動輪RL,RRが加速スリップを開始して駆動輪RL,RRのスリップ量がトラクション制御の目標スリップ量ΔVwを上回ろうとしても、同スリップ量を目標スリップ量ΔVwに直ちに維持させることができる。従って、図6(b)に破線にて示したように、時刻t3より少し後の時刻にて駆動輪RL,RRのスリップ量がトラクション制御の目標スリップ量ΔVwに到達した後は、同駆動輪RL,RRのスリップ量が同目標スリップ量ΔVwに維持され得るので、この場合、トラクション制御が精度良く実行されるとともに、車両安定性が維持され得る。
【0098】
<スポーツ走行モードか否かに基く接合作動速度の選択>
運転者により所定時間以上継続してアクセルペダルの操作量Accpが所定値Aよりも大きくなるようなアクセルペダルAPの操作(所定の操作)が実行されている場合、車両が通常の走行状態にあるときに得られる加速度よりも大きい加速度を得たいという運転者の要求があることになる。この場合、クラッチ24が分断状態にあって駆動輪RL,RRに駆動力を付与することができない期間(分断作動開始時点から接合作動完了時点までの間)を短くすることは運転者の要求に沿う。
【0099】
そこで、本装置は、前記所定の操作が実行されているとき、車両がスポーツ走行モードにあると判定し、上記クラッチ断接制御が開始される時点(分断作動開始時点)にて車両がスポーツ走行モードにあるか否かに応じて上記接合作動速度Vconnectを変更する。ここで、前記所定の操作が実行されているか否かを判定する手段が判定手段に相当する。
【0100】
具体的には、本装置は、上記クラッチ断接制御が開始される時点にて車両がスポーツ走行モードにないとき上記ノーマルモードを選択するとともに、車両がスポーツ走行モードにあるとき上記高速モードを選択する。これにより、車両がスポーツ走行モードにあるとき、車両がスポーツ走行モードにないときに比して接合作動速度Vconnectが速くなるように設定される。
【0101】
図7は、運転者によりアクセルペダルの操作量Accpが前記所定値Aよりも大きくなるようなアクセルペダルAPの操作が既に前記所定時間以上継続して実行されている場合であって、運転者がアクセルペダルの操作量Accpを所定の一定値(所定値Aよりも大きい値)に維持した状態で車両が加速しているときに、運転者がアクセルペダルの操作量Accpを同所定の一定値に維持したままシフトレバーSLをUP位置に移動してトランスミッション25の前進段が一段だけ高速側の前進段へ変更される場合における、駆動輪RL,RRに作用する駆動トルクT(加速方向の値を正の値とする。)、及び各車輪の車輪速度Vwの変化を示したタイムチャートである。
【0102】
本装置は、この場合、車両がスポーツ走行モードにあるので、接合作動速度Vconnectをノーマルモードではなく高速モードに設定するが、図7においては、ノーマルモードが設定された場合と高速モードが設定された場合とを比較するため、ノーマルモードが設定された場合の変化が実線で、高速モードが設定された場合の変化が破線で、それぞれ示されている。図7における時刻t1〜時刻t4は、図4における時刻t1〜時刻t4にそれぞれ対応している。
【0103】
図7(a)に示すように、駆動トルクTは、接合作動速度Vconnectがノーマルモードに設定された場合(上記数2に従って計算される場合)には、接合作動中である時刻t3〜時刻t4までの間、図5(a)及び図6(a)に示した場合と同様、ノーマルモードに設定された接合作動速度Vconnectに応じた通常の変化速度で実線にて示すように増加していく。
【0104】
同様に、接合作動速度Vconnectが本装置のように高速モードに設定された場合には、駆動トルクTは、接合作動中である時刻t3〜(時刻t3より後であって時刻t4より前の所定時刻)までの間、高速モードに設定された接合作動速度Vconnectに応じた速い変化速度(前記通常の変化速度よりも速い変化速度)で破線にて示すように増加していく。
【0105】
他方、図7(b)に示すように、各車輪の車輪速度Vwは、図中に示された期間内に渡り、駆動輪RL,RRが加速スリップすることなく全ての車輪速度が同一の値となる状態で変化しているものと仮定する。そして、時刻t3以降クラッチ24の接合作動が開始されると、本装置のように接合作動速度Vconnectが高速モードに設定された場合には、接合作動速度Vconnectがノーマルモードに設定された場合に比して、より早い段階で接合作動が終了する。換言すれば、クラッチ断接制御実行中(分断作動開始時点から接合作動完了時点までの間)にある期間を短くすることができ、より早い段階から車両を再び加速状態に復帰させることができる。従って、運転者により前記所定の操作が実行されたとき、前記運転者の要求に沿う内容の制御が実行され得る。
【0106】
以上のようにして、本装置は、上記クラッチ断接制御が開始される時点(分断作動開始時点)における路面摩擦係数μの値、同時点において車両安定化制御が実行されているか否か、及び、同時点において車両がスポーツ走行モードにあるか否か、という3つの観点から、接合作動速度Vconnectを図4に示した4つのモードの中からそれぞれ選択する一方で、選択されたそれぞれのモードが異なる場合、本装置は、以下のようにして、接合作動速度Vconnectを最終的に決定する。
【0107】
即ち、先ず、本装置は、路面摩擦係数μの値の観点から選択された接合作動速度Vconnectのモードと、車両安定化制御が実行されているか否かの観点から選択された接合作動速度Vconnectのモードのうちでより低速側のモードを選択する。そして、前記選択された低速側のモードがノーマルモード以外であったとき(即ち、弱低速モード又は低速モードであったとき)、本装置は、前記選択された低速側のモードを最終的な接合作動速度Vconnectのモードとして設定する。
【0108】
一方、前記選択された低速側のモードがノーマルモードであったとき、本装置は、車両がスポーツ走行モードにあるか否かの観点から選択された接合作動速度Vconnectのモードを、そのまま最終的な接合作動速度Vconnectのモードとして設定する。これにより、仮に、車両がスポーツ走行モードにあるときでも、車両が不安定になる恐れがある場合、車両の安定性確保の観点からノーマルモードよりも低速側のモード(即ち、弱低速モード又は低速モード)が高速モードに優先して設定される。以上が、本発明によるクラッチ断接制御、及びギヤシフト制御の概要である。
【0109】
(実際の作動)
次に、以上のように構成された本発明による自動クラッチ制御装置を含んだ車両の制御装置10の実際の作動について、電気式制御装置50のCPU51が実行するルーチンをフローチャートにより示した図8〜図15を参照しながら説明する。なお、各種変数・フラグ・符号等の末尾に付された「**」は、同各種変数・フラグ・符号等が各車輪FR等のいずれに関するものであるかを示すために同各種変数・フラグ・符号等の末尾に付される「fl」,「fr」等の包括表記であって、例えば、車輪速度Vw**は、左前輪速度Vwfl, 右前輪速度Vwfr, 左後輪速度Vwrl, 右後輪速度Vwrrを包括的に示している。
【0110】
CPU51は、図8に示した車輪速度Vw**等の計算を行うルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU51はステップ800から処理を開始し、ステップ805に進んで各車輪FR等の車輪速度(各車輪の外周の速度)Vw**をそれぞれ算出する。具体的には、CPU51は各車輪速度センサ41**が出力する信号が有するパルスの時間間隔に基いて各車輪FR等の車輪速度Vw**をそれぞれ算出する。
【0111】
次いで、CPU51はステップ810に進み、各車輪FR等の車輪速度Vw**の関数である関数fに基いて推定車体速度Vsoを算出する。次に、CPU51はステップ815に進み、ステップ810にて算出した推定車体速度Vsoの値と、ステップ805にて算出した各車輪FR等の車輪速度Vw**の値と、ステップ815内に記載した式とに基いて各車輪毎の実際のスリップ率Sa**を算出する。この実際のスリップ率Sa**は、後述するように、車両安定化制御に基き各車輪に付与すべきブレーキ力を計算する際に使用される。
【0112】
次いで、CPU51はステップ820に進み、下記数4に基いて推定車体速度Vsoの時間微分値である推定車体加速度DVsoを算出する。
【0113】
【数4】
DVso=(Vso−Vso1)/Δt
【0114】
上記数4において、Vso1は前回の本ルーチン実行時にステップ810にて算出した前回の推定車体速度であり、Δtは本ルーチンの演算周期である上記所定時間である。
【0115】
そして、CPU51はステップ825に進み、ステップ820にて算出した推定車体加速度DVsoの値と、横加速度センサ43により得られる実際の横加速度Gyの値と、上記数3の右辺に対応するステップ825内に記載した式とに基いて路面摩擦係数μを推定する。
【0116】
なお、ステップ825における計算に使用される推定車体加速度DVsoの値及び実際の横加速度Gyの値として、それぞれ、所定回前の本ルーチン実行時から今回の本ルーチン実行時までに取得された値のうちの最大値を採用してもよい。そして、CPU51はステップ895に進んで本ルーチンを一旦終了する。
【0117】
次に、車両安定化制御モードの設定について説明すると、CPU51は図9に示したルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU51はステップ900から処理を開始し、後述するクラッチ・ギヤシフト制御実行中フラグXSHIFTの値が「0」であるか否かを判定する。ここで、クラッチ・ギヤシフト制御実行中フラグXSHIFTは、その値が「1」のとき上記したクラッチ・ギヤシフト制御(クラッチ断接制御)を実行していることを示し、その値が「0」のとき同クラッチ・ギヤシフト制御を実行していないことを示す。
【0118】
ここで、ステップ905の判定において、クラッチ・ギヤシフト制御実行中フラグXSHIFTの値が「1」になっていると、CPU51はステップ905にて「No」と判定しステップ995に直ちに進んで本ルーチンを一旦終了する。これにより、クラッチ・ギヤシフト制御が開始される時点(分断作動開始時点)において後述する本ルーチンのステップにて既に選択されていた車両安定化制御モードが、同クラッチ・ギヤシフト制御中(分断作動開始時点から接合作動完了時点までの間)に渡りそのまま維持されることになる。
【0119】
いま、クラッチ・ギヤシフト制御が実行されていないものとして説明を続けると、CPU51はステップ905にて「Yes」と判定してステップ910に進んで、現時点においてABS制御が必要であるか否かを判定する。ABS制御は、ブレーキペダルBPが操作されている状態において特定の車輪がロックしている場合に、同特定の車輪のブレーキ力を減少させる制御である。ABS制御の詳細については周知であるので、ここではその詳細な説明を省略する。
【0120】
具体的には、CPU51はステップ910において、ブレーキスイッチ44によりブレーキペダルBPが操作されていることが示されている場合であって、且つ図8のステップ815にて算出した特定の車輪の実際のスリップ率Sa**の値が正の所定値以上となっている場合に、ABS制御が必要であると判定する。
【0121】
ステップ910の判定にてABS制御が必要であると判定したとき、CPU51はステップ915に進んで、後述する制動操舵制御とABS制御とを重畳して実行する制御モードを設定するため変数Modeに「1」を設定し、続くステップ955に進む。
【0122】
一方、ステップ910の判定にてABS制御が必要でないと判定したとき、CPU51はステップ920に進んで、現時点において前後制動力配分制御が必要であるか否かを判定する。前後制動力配分制御は、ブレーキペダルBPが操作されている状態において車両の前後方向の減速度の大きさに応じて前輪のブレーキ力に対する後輪のブレーキ力の比率(配分)を減少させる制御である。前後制動力配分制御の詳細については周知であるので、ここではその詳細な説明を省略する。
【0123】
具体的には、CPU51はステップ920において、ブレーキスイッチ44によりブレーキペダルBPが操作されていることが示されている場合であって、且つ図8のステップ820にて算出した推定車体加速度DVsoが負の値でありその絶対値が所定値以上となっている場合に、前後制動力配分制御が必要であると判定する。
【0124】
ステップ920の判定にて前後制動力配分制御が必要であると判定したとき、CPU51はステップ925に進んで、制動操舵制御と前後制動力配分制御とを重畳して実行する制御モードを設定するため変数Modeに「2」を設定し、続くステップ955に進む。
【0125】
ステップ920の判定にて前後制動力配分制御が必要でないと判定したとき、CPU51はステップ930に進んで、現時点においてトラクション制御が必要であるか否かを判定する。トラクション制御は、ブレーキペダルBPが操作されていない状態において特定の車輪がエンジン21の駆動力が発生している方向にスピンしている場合に、同特定の車輪のブレーキ力を増大させる制御又はエンジン21の駆動力を減少させる制御である。トラクション制御の詳細については周知であるので、ここではその詳細な説明を省略する。
【0126】
具体的には、CPU51はステップ930において、ブレーキスイッチ44によりブレーキペダルBPが操作されていないことが示されている場合であって、且つ図8のステップ815にて算出した特定の車輪の実際のスリップ率Sa**の値が負の値であり同実際のスリップ率Sa**の絶対値が所定値以上となっている場合に、トラクション制御が必要であると判定する。
【0127】
ステップ930の判定にてトラクション制御が必要であると判定したとき、CPU51はステップ935に進んで、制動操舵制御とトラクション制御とを重畳して実行する制御モードを設定するため変数Modeに「3」を設定し、続くステップ955に進む。
【0128】
ステップ930の判定にてトラクション制御が必要でないと判定したとき、CPU51はステップ940に進んで、現時点において制動操舵制御が必要であるか否かを判定する。制動操舵制御は、車両の状態がアンダーステアの状態又はオーバーステアの状態にある場合、所定の車輪にブレーキ力を発生させて所定のヨーイングモーメントを車両に発生させることで同車両の状態をニュートラルステア状態に近づける制御である。制動操舵制御の詳細については周知であるので、ここではその詳細な説明を省略する。
【0129】
ステップ940の判定にて制動操舵制御が必要であると判定したとき、CPU51はステップ945に進んで、制動操舵制御のみを実行する制御モードを設定するため変数Modeに「4」を設定し、続くステップ955に進む。一方、ステップ940の判定にて制動操舵制御が必要でないと判定したとき、CPU51はステップ950に進んで、車両安定化制御を実行しない非制御モードを設定するため変数Modeに「0」を設定し、続くステップ955に進む。この場合、制御すべき特定の車輪は存在しない。
【0130】
CPU51はステップ955に進むと、制御対象車輪に対応するフラグCONT**に「1」を設定するとともに、制御対象車輪でない非制御対象車輪に対応するフラグCONT**に「0」を設定する。なお、このステップ955における制御対象車輪は、図2に示した対応する増圧弁PU**及び減圧弁PD**の少なくとも一方を制御する必要がある車輪である。
【0131】
従って、例えば、ブレーキペダルBPが操作されていない状態であって右前輪FRのホイールシリンダWfr内のブレーキ液圧のみを増圧する必要がある場合、図2に示した制御弁SA1,切換弁STR及び増圧弁PUflを共に第2の位置に切換るとともに増圧弁PUfr及び減圧弁PDfrをそれぞれ制御することにより、ホイールシリンダWfl内のブレーキ液圧を保持した状態で高圧発生部31が発生する高圧を利用してホイールシリンダWfr内のブレーキ液圧のみを増圧することになる。従って、この場合における制御対象車輪には、右前輪FRのみならず左前輪FLが含まれる。そして、CPU51はステップ955を実行した後、ステップ995に進んで本ルーチンを一旦終了する。このようにして、車両安定化制御モードが特定されるとともに、制御対象車輪が特定される。
【0132】
次に、各車輪に付与すべきブレーキ力の制御について説明すると、CPU51は図10に示したルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU51はステップ1000から処理を開始し、ステップ1005に進んで、変数Modeが「0」でないか否かを判定し、変数Modeが「0」であればステップ1005にて「No」と判定してステップ1010に進み、各車輪に対してブレーキ制御を実行する必要がないのでブレーキ液圧制御装置30における総ての電磁弁をOFF(非励磁状態)にした後、ステップ1095に進んで本ルーチンを一旦終了する。これにより、ドライバーによるブレーキペダルBPの操作力に応じたブレーキ液圧が各ホイールシリンダW**に供給される。
【0133】
一方、ステップ1005の判定において変数Modeが「0」でない場合、CPU51はステップ1005にて「Yes」と判定してステップ1015に進み、現時点にて図9のルーチンの実行により設定されている変数Modeの値に対応する車両安定化制御を実行するために設定すべき各車輪の目標スリップ率St**を制御対象車輪毎に設定する。
【0134】
次に、CPU51はステップ1020に進み、図9のステップ955にてフラグCONT**の値が「1」に設定された制御対象車輪に対して、前記目標スリップ率St**の値と、図8のステップ815にて算出した実際のスリップ率Sa**の値と、ステップ1020内に記載の式とに基いて制御対象車輪毎にスリップ率偏差ΔSt**を算出する。
【0135】
次いで、CPU51はステップ1025に進み、上記制御対象車輪に対して同制御対象車輪毎に液圧制御モードを設定する。具体的には、CPU51はステップ1020にて算出した制御対象車輪毎のスリップ率偏差ΔSt**の値と、ステップ1025内に記載のテーブルとに基いて、制御対象車輪毎に、スリップ率偏差ΔSt**の値が所定の正の基準値を超えるときは液圧制御モードを「増圧」に設定し、スリップ率偏差ΔSt**の値が所定の負の基準値以上であって前記所定の正の基準値以下であるときは液圧制御モードを「保持」に設定し、スリップ率偏差ΔSt**の値が前記所定の負の基準値を下回るときは液圧制御モードを「減圧」に設定する。
【0136】
次に、CPU51はステップ1030に進み、ステップ1025にて設定した制御対象車輪毎の液圧制御モードに基いて、図2に示した制御弁SA1,SA2、切換弁STRを制御するとともに制御対象車輪毎に同液圧制御モードに応じて増圧弁PU**及び減圧弁PD**を制御する。
【0137】
具体的には、CPU51は液圧制御モードが「増圧」となっている車輪に対しては対応する増圧弁PU**及び減圧弁PD**を共に第1の位置(非励磁状態における位置)に制御し、液圧制御モードが「保持」となっている車輪に対しては対応する増圧弁PU**を第2の位置(励磁状態における位置)に制御するとともに対応する減圧弁PD**を第1の位置に制御し、液圧制御モードが「減圧」となっている車輪に対しては対応する増圧弁PU**及び減圧弁PD**を共に第2の位置(励磁状態における位置)に制御する。
【0138】
これにより、液圧制御モードが「増圧」となっている制御対象車輪のホイールシリンダW**内のブレーキ液圧は増大し、また、液圧制御モードが「減圧」となっている制御対象車輪のホイールシリンダW**内のブレーキ液圧は減少することで、各制御車輪の実際のスリップ率Sa**が目標スリップ率St**に近づくようにそれぞれ制御され、この結果、図9に設定した車両安定化制御モードに対応する制御が達成される。
【0139】
なお、図9のルーチンの実行により設定された制御モードがトラクション制御を実行する制御モード(変数Mode=3)又は制動操舵制御のみを実行する制御モード(変数Mode=4)であるときには、エンジン21の駆動力を減少させるため、CPU51は必要に応じて、スロットル弁THの開度がアクセルペダルAPの操作量Accpに応じた開度よりも所定量だけ小さい開度になるようにスロットル弁アクチュエータ22を制御する。そして、CPU51はステップ1095に進んで本ルーチンを一旦終了する。
【0140】
次に、路面摩擦係数μに応じた接合作動速度の決定について説明すると、CPU51は図11に示したルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU51はステップ1100から処理を開始し、ステップ1105に進んで、図8のステップ825にて算出した路面摩擦係数μが0.3以上であるか否かを判定し、路面摩擦係数μが0.3以上であればステップ1105にて「Yes」と判定してステップ1110に進み、変数SPEEDmyuの値を「3」に設定した後ステップ1195に進んで本ルーチンを一旦終了する。ここで、変数SPEEDmyuは、路面摩擦係数μの観点から選択される接合作動速度Vconnectのモードを示す値であって、値「3」は、上述したノーマルモードに対応する。
【0141】
一方、ステップ1105の判定において路面摩擦係数μが0.3未満であれば、CPU51はステップ1105にて「No」と判定してステップ1115に進み、路面摩擦係数μが0.1以上であるか否かを判定し、路面摩擦係数μが0.1以上であればステップ1115にて「Yes」と判定してステップ1120に進み、変数SPEEDmyuの値を「2」に設定した後ステップ1195に進んで本ルーチンを一旦終了する。ここで、値「2」は、上述した弱低速モードに対応する。
【0142】
また、ステップ1115の判定において路面摩擦係数μが0.1未満であれば、CPU51はステップ1115にて「No」と判定してステップ1125に進み変数SPEEDmyuの値を「1」に設定した後ステップ1195に進んで本ルーチンを一旦終了する。ここで、値「1」は、上述した低速モードに対応する。
【0143】
次に、車両安定化制御実行中か否かに基く接合作動速度の決定について説明すると、CPU51は図12に示したルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU51はステップ1200から処理を開始し、ステップ1205に進んで、図9のルーチンの実行にて設定されている変数Modeの値が「0」であるか否かを判定する。ここで、変数Modeの値が「0」であれば、現時点で車両安定制御が実行されていないことを意味し、変数Modeの値が「0」でなければ、現時点で車両安定制御が実行されていることを意味する。
【0144】
ステップ1205の判定において、変数Modeの値が「0」であれば(即ち、車両安定化制御が実行中でなければ)、CPU51はステップ1205にて「Yes」と判定してステップ1210に進み、変数SPEEDstableの値を「3」に設定した後ステップ1295に進んで本ルーチンを一旦終了する。ここで、変数SPEEDstableは、車両安定化制御実行中か否かの観点から選択される接合作動速度Vconnectのモードを示す値であって、値「3」は、変数SPEEDmyuの値「3」と同様、ノーマルモードに対応する。
【0145】
一方、ステップ1205の判定において変数Modeの値が「0」でなければ(即ち、車両安定化制御が実行中であれば)、CPU51はステップ1205にて「No」と判定してステップ1215に進み、変数SPEEDstableの値を「1」に設定した後ステップ1295に進んで本ルーチンを一旦終了する。ここで、値「1」は、変数SPEEDmyuの値「1」と同様、低速モードに対応する。
【0146】
次に、車両がスポーツ走行モードにあるか否かに基く接合作動速度の決定について説明すると、CPU51は図13に示したルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU51はステップ1300から処理を開始し、ステップ1305に進んで、現時点でのアクセルペダルAPの操作量Accpが前記所定値Aよりも大きいか否かを判定し、アクセルペダルAPの操作量Accpが同所定値A以下であればステップ1305にて「No」と判定してステップ1310にてカウンタCの値を「0」に設定した後ステップ1320に進む。
【0147】
一方、ステップ1305の判定において、アクセルペダルAPの操作量Accpが所定値Aより大きければステップ1305にて「Yes」と判定してステップ1315にてその時点でのカウンタCの値を「1」だけ増大した値を新たなカウンタCの値として設定した後ステップ1320に進む。即ち、カウンタCの値は、現時点までにおいてアクセルペダルAPの操作量Accpが前記所定値Aよりも大きい状態が継続している時間を示す値(時間に対応する値)となっている。
【0148】
CPU51はステップ1320に進むと、カウンタCの値が所定の一定値C1以上になっているか否かを判定し、カウンタCの値が所定の一定値C1以上になっていれば、車両がスポーツ走行モードの状態にあることを意味するので、ステップ1325にて変数SPEEDsportsの値を「4」に設定した後ステップ1395に進んで本ルーチンを一旦終了する。ここで、変数SPEEDsportsは、車両がスポーツ走行モードにあるか否かの観点から選択される接合作動速度Vconnectのモードを示す値であって、値「4」は、高速モードに対応する。
【0149】
一方、ステップ1320の判定において、カウンタCの値が所定の一定値C1未満になっていれば、車両がスポーツ走行モードの状態にないことを意味するので、ステップ1330にて変数SPEEDsportsの値を「3」に設定した後ステップ1395に進んで本ルーチンを一旦終了する。ここで、値「3」は、変数SPEEDmyu及び変数SPEEDstableの値「3」と同様、ノーマルモードに対応する。
【0150】
次に、クラッチ・ギヤシフト制御の開始判定について説明すると、CPU51は図14に示したルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU51はステップ1400から処理を開始し、ステップ1405に進んで、シフト位置センサ45からUP信号又はDOWN信号が出力されているか否かを判定する。ここで、シフト位置センサ45からUP信号又はDOWN信号が出力されていなければ、CPU51はステップ1495に直ちに進んで本ルーチンを一旦終了する。
【0151】
いま、シフト位置センサ45からUP信号又はDOWN信号が出力されていて、且つ、クラッチ・ギヤシフト制御が実行されていないものとして説明を続けると、CPU51はステップ1405にて「Yes」と判定してステップ1410に進み、クラッチ・ギヤシフト制御実行中フラグXSHIFTの値が「0」であるか否かを判定する。
【0152】
現時点では、前述したようにクラッチ・ギヤシフト制御が実行されていないので、クラッチ・ギヤシフト制御実行中フラグXSHIFTの値は「0」になっている。従って、CPU51はステップ1410にて「Yes」と判定してステップ1415に進み、図11のルーチンにて決定されている現時点での変数SPEEDmyuの値と図12のルーチンにて決定されている現時点での変数SPEEDstableの値のうちの小さい方の値を変数SPEEDに格納する。
【0153】
次に、CPU51はステップ1420に進み、変数SPEEDの値が「2」以下であるか否かを判定し、変数SPEEDの値が「2」以下であればステップ1420にて「Yes」と判定してステップ1430に直接進む。一方、ステップ1420の判定において、変数SPEEDの値が「2」より大きければ(即ち、「3」であれば)、ステップ1420にて「No」と判定してステップ1425に進んで図13のルーチンにて決定されている現時点での変数SPEEDsportsの値を変数SPEEDに格納し直した後ステップ1430に進む。
【0154】
ここで、変数SPEEDは、最終的に選択される接合作動速度Vconnectのモードを示す値であって、上記ステップ1420又はステップ1425の処理により、値「1」〜「4」の何れかに設定される。値「1」〜「4」は、それぞれ、低速モード、弱低速モード、ノーマルモード、高速モードに対応する。そして、ステップ1430に進むと、CPU51はクラッチ・ギヤシフト制御実行中フラグXSHIFTの値を「1」に設定し、ステップ1495に進んで本ルーチンを一旦終了する。
【0155】
これ以降、クラッチ・ギヤシフト制御実行中フラグXSHIFTの値は「1」になっているので、CPU51はシフト位置センサ45からUP信号又はDOWN信号が出力されていてもステップ1410にて「No」と判定して直ちに本ルーチンを一旦終了するようになる。従って、クラッチ・ギヤシフト実行中(クラッチ・ギヤシフト制御実行中フラグXSHIFTの値が「1」になっている間)は、変数SPEEDの値は変更されない。このようにして、クラッチ・ギヤシフト制御の開始が判定されるとともに、最終的に選択される接合作動速度Vconnectのモードを示す値である変数SPEEDの値が決定される。
【0156】
次に、クラッチ・ギヤシフト制御の実行について説明すると、CPU51は図15に示したルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU51はステップ1500から処理を開始し、ステップ1502に進んで、クラッチ・ギヤシフト制御実行中フラグXSHIFTの値が「0」から「1」に変更されたか否かをモニタする。
【0157】
いま、図14のステップ1430の処理が実行されてクラッチ・ギヤシフト制御実行中フラグXSHIFTの値が「0」から「1」に変更された直後であるものとして説明を続けると、CPU51はステップ1502にて「Yes」と判定してステップ1504に進み、分断作動実行中フラグXCUTの値を「1」に設定する。ここで、分断作動実行中フラグXCUTは、その値が「1」のとき上記した分断作動を実行していることを示し、その値が「0」のとき同分断作動を実行していないことを示す。
【0158】
次に、CPU51はステップ1506に進み、分断作動実行中フラグXCUTの値が「1」になっているか否かを判定する。現時点では、分断作動実行中フラグXCUTの値は「1」になっているので、CPU51はステップ1506にて「Yes」と判定してステップ1508に進み、クラッチ断接用アクチュエータ24aに対して分断作動の指示を行う。具体的には、CPU51は、クラッチ24のクラッチディスクの摩擦面の圧着力Fが上記数1にて計算される分断作動速度Vcutをもってその時点での値(現時点では最大値F1)から減少していくようにクラッチ断接用アクチュエータ24aの駆動力を制御するための指示を行う。
【0159】
次いで、CPU51はステップ1510に進み、スロットル弁アクチュエータ22に対して上述した「分断作動中スロットル弁開度制御」の指示を行う。続いて、CPU51はステップ1512に進み、クラッチ24が完全分断状態にあるか否かを判定する。具体的には、CPU51はクラッチ断接用アクチュエータ24aがクラッチ24が完全分断状態にあることを示す信号を出力しているか否かを判定する。現時点では分断作動が開始された直後であるから、CPU51はステップ1512にて「No」と判定してステップ1595に直ちに進んで本ルーチンを一旦終了する。
【0160】
以降、クラッチ24の分断作動が進行してクラッチ24が完全分断状態になるまで(分断作動が終了するまで)、ステップ1500、1502(「No」と判定)、1506(「Yes」と判定)〜1512(「No」と判定)、1595の一連の処理が繰り返し実行される。そして、クラッチ24が完全分断状態になると、CPU51はステップ1512にて「Yes」と判定してステップ1514に進み、分断作動実行中フラグXCUTの値を「0」に設定するとともに、続くステップ1516にてシフト作動実行中フラグXCNGの値を「1」に設定した後、ステップ1595に進んで本ルーチンを一旦終了する。ここで、シフト作動実行中フラグXCNGは、その値が「1」のとき上記したギヤシフト作動を実行していることを示し、その値が「0」のとき同ギヤシフト作動を実行していないことを示す。
【0161】
以降、CPU51は、ステップ1502及びステップ1506にて「No」と判定してステップ1518に進むようになり、同ステップ1518にてシフト作動実行中フラグXCNGの値が「1」になっているか否かを判定する。現時点では、ステップ1516の処理によりシフト作動実行中フラグXCNGの値は「1」になっているので、CPU51はステップ1518にて「Yes」と判定してステップ1520に進み、ギヤシフト用アクチュエータ25aに対してトランスミッション25の段を目標段にシフトするための指示を行う。
【0162】
次いで、CPU51はステップ1522に進み、スロットル弁アクチュエータ22に対して上述した「シフト作動中スロットル弁開度制御」の指示を行う。続いて、CPU51はステップ1524に進み、目標段へのギヤシフト作動が完了したか否かを判定する。具体的には、CPU51はギヤシフト用アクチュエータ25aがギヤシフト作動が完了したことを示す信号を出力しているか否かを判定する。現時点ではギヤシフト用アクチュエータ25aによるギヤシフト作動が開始された直後であるから、CPU51はステップ1524にて「No」と判定してステップ1595に直ちに進んで本ルーチンを一旦終了する。
【0163】
以降、ギヤシフト作動が完了するまで、ステップ1500、1502(「No」と判定)、1506(「No」と判定)、1518(「Yes」と判定)〜1524(「No」と判定)、1595の一連の処理が繰り返し実行される。そして、ギヤシフト作動が完了すると、CPU51はステップ1524にて「Yes」と判定してステップ1526に進み、シフト作動実行中フラグXCNGの値を「0」に設定するとともに、続くステップ1528にて接合作動実行中フラグXCONNECTの値を「1」に設定した後、ステップ1595に進んで本ルーチンを一旦終了する。ここで、接合作動実行中フラグXCONNECTは、その値が「1」のとき上記した接合作動を実行していることを示し、その値が「0」のとき同接合作動を実行していないことを示す。
【0164】
以降、CPU51は、ステップ1502、ステップ1506、及びステップ1518にて「No」と判定してステップ1530に進むようになり、同ステップ1530にて接合作動実行中フラグXCONNECTの値が「1」になっているか否かを判定する。現時点では、ステップ1528の処理により接合作動実行中フラグXCONNECTの値は「1」になっているので、CPU51はステップ1530にて「Yes」と判定してステップ1532に進み、クラッチ断接用アクチュエータ24aに対して接合作動の指示を行う。具体的には、CPU51は、クラッチ24のクラッチディスクの摩擦面の圧着力Fが、図14のルーチンにて決定されている変数SPEEDの値に応じたモードに対応する接合作動速度Vconnectをもってその時点での値(現時点では「0」)から増大していくようにクラッチ断接用アクチュエータ24aの駆動力を制御するための指示を行う。
【0165】
次いで、CPU51はステップ1534に進み、スロットル弁アクチュエータ22に対して上述した「接合作動中スロットル弁開度制御」の指示を行う。続いて、CPU51はステップ1536に進み、クラッチ24が完全接合状態にあるか否かを判定する。具体的には、CPU51はクラッチ断接用アクチュエータ24aがクラッチ24が完全接合状態にあることを示す信号を出力しているか否かを判定する。現時点では接合作動が開始された直後であるから、CPU51はステップ1536にて「No」と判定してステップ1595に直ちに進んで本ルーチンを一旦終了する。
【0166】
以降、クラッチ24の接合作動が進行してクラッチ24が完全接合状態になるまで(接合作動が終了するまで)、ステップ1500、1502(「No」と判定)、1506(「No」と判定)、1518(「No」と判定)、1530(「Yes」と判定)〜1536(「No」と判定)、1595の一連の処理が繰り返し実行される。そして、クラッチ24が完全接合状態になると、CPU51はステップ1536にて「Yes」と判定してステップ1538に進み、接合作動実行中フラグXCONNECTの値を「0」に設定するとともに、続くステップ1540にてクラッチ・ギヤシフト制御実行中フラグXSHIFTの値を「0」に設定した後、ステップ1595に進んで本ルーチンを一旦終了する。これにより、クラッチ・ギヤシフト制御が終了する。
【0167】
以降、CPU51は、図14のルーチンの実行によりクラッチ・ギヤシフト制御実行中フラグXSHIFTの値が再び「1」に設定されるまで(運転者がシフトレバーSLをUP位置又はDOWN位置に移動させるまで)、ステップ1502、1506、1518、1530の総てにおいて「No」と判定してステップ1595に直ちに進んで、本ルーチンを一旦終了するようになる。
【0168】
以上、説明したように、本発明による自動クラッチ制御装置によれば、上記クラッチ断接制御が開始される時点(分断作動開始時点)における路面摩擦係数μに応じてクラッチ24の接合作動速度Vconnectが変更され、路面摩擦係数μが小さいほど同接合作動速度Vconnectが遅くなるように設定される。この結果、路面摩擦係数μが大きいときはクラッチ24が分断状態にある期間(分断作動開始時点から接合作動完了時点までの期間)が短くなるとともに路面摩擦係数μが小さいときは駆動輪RL,RRの(加速)スリップが発生しにくくなるので、路面摩擦係数μの大きさに拘わらず車両安定性が良好に維持された。
【0169】
また、上記クラッチ断接制御が開始される時点にてトラクション制御等の車両安定化制御が実行されているか否かに応じて前記接合作動速度Vconnectが変更され、車両安定化制御が実行されているとき、車両安定化制御が実行されていないときに比して接合作動速度Vconnectが遅くなるように設定される。この結果、車両安定化制御が実行されている間にクラッチ・ギヤシフト制御が行われても、同制御により発生する駆動輪RL,RRの駆動トルクTの変化は車両安定化制御に対する大きな外乱とはならず、同車両安定化制御が精度良く実行されるとともに車両の安定性が良好に維持された。
【0170】
また、運転者により所定時間以上継続してアクセルペダルの操作量Accpが所定値Aよりも大きくなるようなアクセルペダルAPの操作(所定の操作)が実行されている場合、車両がスポーツ走行モードにあると判定され、上記クラッチ断接制御が開始される時点にて車両がスポーツ走行モードにあるとき、車両がスポーツ走行モードにないときに比して接合作動速度Vconnectが速くなるように設定される。この結果、運転者により前記所定の操作が実行されたとき、ギアシフト作動に伴いクラッチ24が分断状態にある期間(分断作動開始時点から接合作動完了時点までの期間)を短くすることができ、より早い段階から車両を再び加速状態に復帰させることができるので、運転者の要求に沿う内容の制御を実行することができた。
【0171】
本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態においては、トランスミッション25は、運転者によるシフトレバー操作により変速作動が実行される手動変速装置であるが、運転者によるシフトレバー操作によることなく車両の走行状態に応じて自動的に変速作動が実行される自動変速装置であってもよい。
【0172】
また、上記実施形態においては、車両の走行状態に応じてクラッチ24の接合作動速度Vconnectのみを変更するように構成されているが、車両の走行状態(例えば、路面摩擦係数μの値、車両安定化制御実行中か否か、スポーツ走行モードであるか否か)に応じてクラッチ24の分断作動速度Vcutのみ、若しくは分断作動速度Vcut及び接合作動速度Vconnectを変更するように構成してもよい。
【0173】
また、上記実施形態においては、クラッチ24の接合作動速度Vconnectを車両の走行状態に応じて、4つのモードのうちの何れかのモードに対応する速度に設定しているが、クラッチ24の接合作動速度Vconnect(及び/又は分断作動速度Vcut)を車両の走行状態に応じて、無段階に変更するように構成してもよい。
【0174】
また、上記実施形態においては、所定時間以上継続してアクセルペダルAPの操作量Accpが所定値Aよりも大きくなるような操作が実行されているとき車両がスポーツ走行モードにあると判定しているが、車両が通常走行モードと同通常走行モードよりも大きい加速度が得られるように変速装置内のギヤのシフトアップのタイミングをより高速回転側に移動させたスポーツ走行モードとを選択する選択手段(例えば、スポーツ走行モード選択スイッチ)を備えている場合、同選択手段によりスポーツ走行モードを選択する操作が実行されているとき車両がスポーツ走行モードにあると判定してもよい。
【0175】
また、上記実施形態においては、電気式制御装置50(CPU51)が上記した全ての演算・判定・指示等を実行しているが、電気式制御装置50とは別にクラッチ断接用アクチュエータ24aを駆動制御するための専用の電気式制御装置を備え、同専用の電気式制御装置が、電気式制御装置50から出力されるクラッチ24の分断速度及び/又は接合速度に関する指示信号を受けて同指示信号に応じてクラッチ断接用アクチュエータ24aを駆動制御するように構成してもよい。
【図面の簡単な説明】
【図1】本発明の実施形態に係る車両の自動クラッチ制御装置を搭載した車両の概略構成図である。
【図2】図1に示したブレーキ液圧制御装置の概略構成図である。
【図3】図1に示したシフトレバーのシフトパターンを示した図である。
【図4】図1に示したクラッチが断接駆動される際の同クラッチ内のクラッチディスクの摩擦面に作用する圧着力の時間に対する変化を示したタイムチャートである。
【図5】路面摩擦係数に応じてクラッチの接合速度を変化させることによる効果を説明するため、車両が路面摩擦係数が小さい路面上を走行中にクラッチ・ギヤシフト制御が実行される際の駆動輪に作用する駆動トルク、各車輪の車輪速度の時間に対する変化を示したタイムチャートである。
【図6】車両安定化制御実行中か否かに基いてクラッチの接合速度を変化させることによる効果を説明するため、トラクション制御実行中にクラッチ・ギヤシフト制御が実行される際の駆動輪に作用する駆動トルク、各車輪の車輪速度の時間に対する変化を示したタイムチャートである。
【図7】車両がスポーツ走行モードにあるか否かに基いてクラッチの接合速度を変化させることによる効果を説明するため、車両がスポーツ走行モードにあるときクラッチ・ギヤシフト制御が実行される際の駆動輪に作用する駆動トルク、各車輪の車輪速度の時間に対する変化を示したタイムチャートである。
【図8】図1に示したCPUが実行する車輪速度等を算出するためのルーチンを示したフローチャートである。
【図9】図1に示したCPUが実行する車両安定化制御モードを設定するためのルーチンを示したフローチャートである。
【図10】図1に示したCPUが実行する各車輪に付与する車両安定化制御に基くブレーキ力を制御するためのルーチンを示したフローチャートである。
【図11】図1に示したCPUが実行する路面摩擦係数に応じて接合作動速度を決定するためのルーチンを示したフローチャートである。
【図12】図1に示したCPUが実行する車両安定化制御実行中か否かに基いて接合作動速度を決定するためのルーチンを示したフローチャートである。
【図13】図1に示したCPUが実行する車両がスポーツ走行モードにあるか否かに基いて接合作動速度を決定するためのルーチンを示したフローチャートである。
【図14】図1に示したCPUが実行するクラッチ・ギヤシフト制御の開始を判定するためのルーチンを示したフローチャートである。
【図15】図1に示したCPUが実行するクラッチ・ギヤシフト制御を行うためのルーチンを示したフローチャートである。
【符号の説明】
10…車両の制御装置、20…駆動力伝達機構部、21…エンジン、22…スロットル弁アクチュエータ、24…クラッチ、24a…クラッチ断接用アクチュエータ、25…トランスミッション、25a…ギヤシフト用アクチュエータ、30…ブレーキ液圧制御装置、40…センサ部、41**…車輪速度センサ、42…アクセル開度センサ、43・・・横加速度センサ、45・・・シフト位置センサ、50…電気式制御装置、51…CPU。

Claims (4)

  1. 車両の動力源の出力軸と変速装置の入力軸との間に配設されたクラッチを断接駆動するクラッチ断接用アクチュエータと、
    前記変速装置の変速作動が開始される前に前記クラッチの状態を接合状態から分断状態へ変更するための分断作動が実行されるとともに同変速作動が終了した後に同クラッチの状態を分断状態から接合状態へ変更するための接合作動が実行されるように前記クラッチ断接用アクチュエータを制御するクラッチ制御手段と、を備えた自動クラッチ制御装置において、
    前記クラッチ制御手段は、前記車両の走行状態に応じて前記接合作動の速度及び前記分断作動の速度の少なくとも一つを変更するように構成された自動クラッチ制御装置。
  2. 請求項1に記載の自動クラッチ制御装置であって、
    前記車両が走行している路面と同車両のタイヤとの間の摩擦係数である路面摩擦係数を取得する路面摩擦係数取得手段を備え、
    前記クラッチ制御手段は、前記路面摩擦係数に応じて前記接合作動速度及び前記分断作動速度の少なくとも一つを変更するように構成された自動クラッチ制御装置。
  3. 請求項1に記載の自動クラッチ制御装置であって、
    前記自動クラッチ制御装置が適用される車両は、同車両の走行状態に応じて各車輪の目標車輪速度関連量を設定するとともに同各車輪の実際の車輪速度関連量が同目標車輪速度関連量になるように同各車輪に付与される制動力を制御する車両安定化制御を実行する車両安定化制御実行手段を備え、
    前記クラッチ制御手段は、前記車両安定化制御が実行されているか否かに応じて前記接合作動速度及び前記分断作動速度の少なくとも一つを変更するように構成された自動クラッチ制御装置。
  4. 請求項1に記載の自動クラッチ制御装置であって、
    車両が通常の走行状態にあるときに得られる加速度よりも大きい加速度を得るための所定の操作が運転者により実行されているか否かを判定する判定手段を備え、
    前記クラッチ制御手段は、前記所定の操作が実行されているか否かに応じて前記接合作動速度及び前記分断作動速度の少なくとも一つを変更するように構成された自動クラッチ制御装置。
JP2002310640A 2002-10-25 2002-10-25 自動クラッチ制御装置 Pending JP2004144221A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002310640A JP2004144221A (ja) 2002-10-25 2002-10-25 自動クラッチ制御装置
US10/690,666 US7079933B2 (en) 2002-10-25 2003-10-23 Automatic clutch control device
DE10349601A DE10349601A1 (de) 2002-10-25 2003-10-24 Automatische Kupplungssteuervorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310640A JP2004144221A (ja) 2002-10-25 2002-10-25 自動クラッチ制御装置

Publications (1)

Publication Number Publication Date
JP2004144221A true JP2004144221A (ja) 2004-05-20

Family

ID=32171054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310640A Pending JP2004144221A (ja) 2002-10-25 2002-10-25 自動クラッチ制御装置

Country Status (3)

Country Link
US (1) US7079933B2 (ja)
JP (1) JP2004144221A (ja)
DE (1) DE10349601A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8045723B2 (en) 2007-07-25 2011-10-25 Honda Motor Co., Ltd. Active sound effect generating apparatus
JP2012072914A (ja) * 2012-01-12 2012-04-12 Yamaha Motor Co Ltd クラッチ制御装置および車両
CN109417122A (zh) * 2016-06-29 2019-03-01 皇家飞利浦有限公司 Eap致动器和驱动方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2325273T3 (es) * 2005-07-27 2009-08-31 C.R.F. Societa Consortile Per Azioni Caja de velocidades robotizada para vehiculos motorizados, en particular para personas discapacitadas.
DE102007008477B4 (de) * 2006-02-22 2018-10-04 Mitsubishi Fuso Truck And Bus Corp. Steuerverfahren für ein hybrid-elektrisches Fahrzeug
JP4873543B2 (ja) * 2006-04-18 2012-02-08 ヤマハ発動機株式会社 自動変速制御装置および車両
JP5001566B2 (ja) * 2006-03-23 2012-08-15 三菱ふそうトラック・バス株式会社 電気自動車の制御装置
JP4893468B2 (ja) * 2007-05-18 2012-03-07 トヨタ自動車株式会社 半クラッチ状態判定装置
FR2922847B1 (fr) * 2007-10-26 2009-11-20 Renault Sas Procede d'optimisation de l'adherence d'un vehicule automobile sur le sol et systeme pour sa mise en oeuvre
JP5121654B2 (ja) * 2008-10-06 2013-01-16 ヤマハ発動機株式会社 変速制御システムおよび車両
DE102009053037A1 (de) * 2008-12-18 2010-07-01 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren zur Beendigung einer Kupplungsschutzfunktion
DE112009004444B4 (de) * 2009-03-06 2014-10-23 Toyota Jidosha Kabushiki Kaisha Fahrzeugzustand-Bestimmungsvorrichtung und Fahrzeugzustand-Bestimmungsverfahren
JP5503954B2 (ja) * 2009-12-14 2014-05-28 日立建機株式会社 作業車両のクラッチ制御装置
DE102011080850B4 (de) * 2011-08-11 2022-01-13 Zf Friedrichshafen Ag Verfahren zur Schaltsteuerung eines automatisierten Schaltgetriebes
KR101349404B1 (ko) 2011-11-28 2014-01-15 현대자동차주식회사 자동변속기의 변속레버용 시프트/틸트 록킹 장치 및 방법
KR20130063159A (ko) * 2011-12-06 2013-06-14 현대자동차주식회사 시프트 바이 와이어용 자동변속장치
DE102012019895A1 (de) * 2012-10-11 2014-04-17 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zur Regelung eines elektromechanischen Kupplungssystems
GB2515105B (en) * 2013-06-14 2016-04-13 Jaguar Land Rover Ltd Vehicle control including control over a rate of torque decrease
US9574657B1 (en) * 2015-12-01 2017-02-21 GM Global Technology Operations LLC Transmission with acceleration-compensated valve control
US10228035B2 (en) 2016-06-20 2019-03-12 Kongsberg Automotive As Velocity dependent brake for clutch actuator
KR102461507B1 (ko) * 2017-09-25 2022-11-02 현대자동차주식회사 차량용 클러치 버스트 방지방법
JP6826522B2 (ja) 2017-11-27 2021-02-03 本田技研工業株式会社 クラッチ制御装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211805B2 (ja) * 1972-10-23 1977-04-02
DE3129681A1 (de) * 1981-07-28 1983-02-17 Daimler-Benz Ag, 7000 Stuttgart "anordnung zur regelung des uebertragbaren momentes von reibschaltelementen"
JPH0729569B2 (ja) * 1983-06-29 1995-04-05 いすゞ自動車株式会社 自動クラッチ制御装置
CA1250642A (en) * 1983-06-30 1989-02-28 Toshihiro Hattori Method of controlling the starting of a vehicle having automatic clutch
DE3590104T (de) 1984-03-16 1986-06-05 Mitsubishi Jidosha Kogyo K.K., Tokio/Tokyo Getriebeautomatik für Fahrzeuge
JPS60241553A (ja) 1984-05-15 1985-11-30 Jiyunji Komatsu 自動クラツチ
US4720790A (en) * 1984-05-21 1988-01-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Apparatus for controlling steer angle of rear wheels of vehicle
KR900000592B1 (ko) 1985-02-16 1990-02-01 미쓰비시지도오샤고오교오 가부시기가이샤 자동변속장치의 변속제어장치
GB2174780B (en) 1985-04-11 1988-07-06 Mitsubishi Motors Corp Automatic transmission apparatus for vehicle
JPS62227824A (ja) * 1986-03-28 1987-10-06 Isuzu Motors Ltd 自動クラツチ搭載車両のクラツチ制御装置
US4899279A (en) 1986-04-07 1990-02-06 Eaton Corporation Method for controlling AMT system including wheel lock-up detection and tolerance
US4831894A (en) * 1988-03-14 1989-05-23 Eaton Corporation Transmission input section
EP0470630B1 (en) * 1990-08-10 1996-02-07 Matsushita Electric Industrial Co., Ltd. Controlling apparatus of steering angle of rear wheels of four-wheel steering vehicle
US5403249A (en) * 1991-10-07 1995-04-04 Eaton Corporation Method and apparatus for robust automatic clutch control
JP2565441B2 (ja) * 1991-11-06 1996-12-18 本田技研工業株式会社 車両用自動クラッチの制御方法
JP2783112B2 (ja) * 1992-03-31 1998-08-06 三菱電機株式会社 極低温冷凍機
JPH06272761A (ja) 1993-03-19 1994-09-27 Mitsubishi Motors Corp セミオートマチック式変速機装置
JPH0791537A (ja) * 1993-09-27 1995-04-04 Mazda Motor Corp 電子制御変速機
US5439428A (en) * 1994-02-22 1995-08-08 Eaton Corporation Method and apparatus for robust automatic clutch control with pid regulation
US5694867A (en) * 1994-06-08 1997-12-09 Diaz-Lopez; William Fail-safe access control chamber security system
US5634867A (en) 1994-09-19 1997-06-03 Eaton Corporation Main clutch reengagement control for a double clutch downshift
JP3501881B2 (ja) 1995-08-03 2004-03-02 株式会社ボッシュオートモーティブシステム クラッチ制御方法
JP3598688B2 (ja) * 1996-11-13 2004-12-08 いすゞ自動車株式会社 クラッチ断続装置
JP3550956B2 (ja) 1997-07-17 2004-08-04 日産自動車株式会社 車両用駆動力制御装置
JP3787978B2 (ja) * 1997-09-12 2006-06-21 いすゞ自動車株式会社 クラッチ断接装置
JP2000088009A (ja) 1998-09-17 2000-03-28 Toyota Motor Corp 自動クラッチ制御装置
DE10080639B4 (de) * 1999-03-15 2017-03-02 Schaeffler Technologies AG & Co. KG Kupplungssteuervorrichtung zur automatischen Betätigung einer Kupplung während des Anfahrens
JP3399441B2 (ja) * 1999-06-28 2003-04-21 日産自動車株式会社 変速比無限大無段変速機の変速制御装置
CN1140427C (zh) * 2000-09-19 2004-03-03 日产自动车株式会社 估计离合器温度的设备
JP4722280B2 (ja) 2000-10-16 2011-07-13 いすゞ自動車株式会社 車両の自動クラッチ制御装置
JP4394304B2 (ja) * 2001-04-24 2010-01-06 富士重工業株式会社 車両運動制御装置
JP3582521B2 (ja) * 2002-08-13 2004-10-27 日産自動車株式会社 4輪駆動車両の駆動力制御装置
JP4010925B2 (ja) 2002-11-05 2007-11-21 株式会社アドヴィックス 自動クラッチ制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8045723B2 (en) 2007-07-25 2011-10-25 Honda Motor Co., Ltd. Active sound effect generating apparatus
JP2012072914A (ja) * 2012-01-12 2012-04-12 Yamaha Motor Co Ltd クラッチ制御装置および車両
CN109417122A (zh) * 2016-06-29 2019-03-01 皇家飞利浦有限公司 Eap致动器和驱动方法

Also Published As

Publication number Publication date
US20040138024A1 (en) 2004-07-15
US7079933B2 (en) 2006-07-18
DE10349601A1 (de) 2004-05-19

Similar Documents

Publication Publication Date Title
JP2004144221A (ja) 自動クラッチ制御装置
JP4010925B2 (ja) 自動クラッチ制御装置
US20130138316A1 (en) Brake Control Apparatus
JP5857593B2 (ja) 車両の制動制御装置
CN108621787B (zh) 四轮驱动车辆的控制装置
JPH11139273A (ja) 車両の制動制御装置
JP2004090886A (ja) 車両のトラクション制御装置
JPH1059149A (ja) 制動力制御装置
JP2007186020A (ja) 車両の運動制御装置
JPH10129441A (ja) 車両の運動制御装置
US11279332B2 (en) Braking force control apparatus for vehicle
JP4293092B2 (ja) 車両の運動制御装置
US11590942B2 (en) Braking force control apparatus for a vehicle
JP2004017721A (ja) 四輪駆動車の制御装置
JP5895480B2 (ja) 車両のブレーキ制御装置
JP4219126B2 (ja) 車両の運動制御装置
JP6135406B2 (ja) 車両制御装置
JP4569087B2 (ja) 車両の前後輪駆動力配分制御装置
JP6248477B2 (ja) 車両制御装置
JP3405387B2 (ja) 車両の制動力制御装置
JP4754153B2 (ja) 車両の運動制御装置
JP2004268870A (ja) 車両の運動制御装置
JP5195129B2 (ja) 車両用ブレーキ制御装置
JP5720066B2 (ja) ブレーキ制御装置
JP2016164058A (ja) 車両の制動力制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080116