JP2004047832A - 光半導体装置 - Google Patents
光半導体装置 Download PDFInfo
- Publication number
- JP2004047832A JP2004047832A JP2002204782A JP2002204782A JP2004047832A JP 2004047832 A JP2004047832 A JP 2004047832A JP 2002204782 A JP2002204782 A JP 2002204782A JP 2002204782 A JP2002204782 A JP 2002204782A JP 2004047832 A JP2004047832 A JP 2004047832A
- Authority
- JP
- Japan
- Prior art keywords
- optical semiconductor
- semiconductor element
- differential
- semiconductor device
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0427—Electrical excitation ; Circuits therefor for applying modulation to the laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19107—Disposition of discrete passive components off-chip wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/02208—Mountings; Housings characterised by the shape of the housings
- H01S5/02212—Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/02208—Mountings; Housings characterised by the shape of the housings
- H01S5/02216—Butterfly-type, i.e. with electrode pins extending horizontally from the housings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02251—Out-coupling of light using optical fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/023—Mount members, e.g. sub-mount members
- H01S5/02325—Mechanically integrated components on mount members or optical micro-benches
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/06226—Modulation at ultra-high frequencies
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
- Optical Communication System (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Optical Transform (AREA)
Abstract
【解決手段】光半導体素子20の一端に接続され、この光半導体素子20に電気信号を供給する第1の導体線路と、光半導体素子20の他端に接続され、この光半導体素子20に電気信号を供給する第2の導体線路と、光半導体素子20の一端に接続され、高周波の電気信号を遮断する第1のインダクタンス素子21aと、光半導体素子20の他端に接続され、高周波の電気信号を遮断する第2のインダクタンス素子21bとを備え、第1、第2の導体線路が差動線路を成す。
【選択図】 図1
Description
【発明の属する技術分野】
この発明は、電気信号に基づいて変調された光信号を出力する光半導体素子を備えた光半導体装置に関するものである。
【0002】
【従来の技術】
図18は、従来の単相給電方式による光半導体装置の一例を示す回路図である。このような回路に類似した回路として、例えば特開平9−200150号公報や、特開平8−172401号公報などに記載されたものがある。
【0003】
図18に示す光半導体装置は、半導体レーザダイオード素子310(以下LDと称する)を駆動するLD駆動回路200が、LDモジュール300と接続される。LD310の発光出力は、光ファイバ316から出力されるようになっている。差動増幅器を構成する差動トランジスタ202および203は、トランジスタ204によって定電流駆動され、相補形式のデータ入力信号(正相信号/逆相信号)が与えられて、正相信号を出力する。差動トランジスタ202のコレクタは接地される。差動トランジスタ203のコレクタはダンピング抵抗309の一端に接続され、ダンピング抵抗309の他端がLD310の一方の電極(カソード)に接続される。また、LD310のカソードは、高周波に対するインピーダンスが大きいチップインダクタなどのインダクタンス素子311の一端に接続される。インダクタンス素子311の他端は、LD310にバイアス電流を供給する定電流源314に接続される。インダクタンス素子311はLDモジュール300のバイアス回路を構成する。
【0004】
図19は、図18のLD駆動回路200に示すような回路から出力される電気信号波形のアイパターンの一例を示す図である。なお、この例で示すLD駆動回路では、回路の低消費電力化を図るため、シリコン・ゲルマニウムの半導体を用いている。
【0005】
このLD駆動回路は、図18に示すように負電圧で駆動される場合、光信号パルスの立ち上がり部に対応する電気信号パルスの立ち上がり部は下に向かう部分であり、逆に立ち下がり部は上に向かう部分である。図19に示すように、立ち下がり時間Tfが立ち上がり時間Trに比較して略40%長くなっている。
【0006】
図20は、図19に示すような信号波形の電気信号を出力するLD駆動回路を用いて、図18のLDモジュールから出力される光信号波形(光出力波形)のアイパターンの一例を示す図である。これは様々なパターンの光信号波形を光−電気変換した後で、帯域フィルタを通し、その電気信号を重ね書きしたものであり、上の部分がマーク側(発光)であり、横軸は時間を示している。また、同図には、アイマスク領域(信号の劣化を判定するための指標でありアイパターンが入ってはいけない領域)も併せて示している。
【0007】
このアイマスク領域で示されるアイマスク規定は、信号波形の性能を見る指標である。信号波形(アイパターン)とアイマスク領域との隙間(アイマスクマージン)が大きいほど、光受信器で信号を受けたときに良好な受信感度特性が得られる。換言すれば、より微弱なパワーの光信号でもエラーが生じにくくなり、良好な伝送特性が得られることになる。
【0008】
つまり、光半導体装置から出力された光信号を受信し、電気信号に変換して信号の再生を行う際に、低い誤り率の信号を得るためには、アイパターンがアイマスク領域に入らないようにすることが必要である。
【0009】
しかしながら、例えば、10Gb/s以上の変調信号の伝送を行う際に、図18に示すようにLDモジュールの光出力波形が顕著に劣化する。図20に示す波形から分かるように、中央部の左上付近(図中W1に示す立ち上がりの部分)ではアイマスク規定に対する余裕があるが、中央部の右上付近(図中W2に示す立ち上がりの部分)ではアイマスクマージンが極めて小さくなり、アイマスク規定に対する余裕が全くなくなっている。したがって、例えば周囲温度が上昇すれば光半導体の緩和振動周波数が下がり、信号波形が中央部の右上のアイマスクを満足できないという問題が発生する。
【0010】
このように、図18に示す従来の光半導体装置では、図20に示すように、アイマスク規定に対するアイマスクマージンが低下している。
【0011】
このアイマスクマージンの低下の原因は、低周波域から高周波域に渡って広帯域に光変調するパルス強度変調方式の場合において、上述したような電気信号パルスの立下がり時間が遅く、LDモジュール300に入力される電気信号の非対称性により、アイパターンの余裕度であるアイマスクマージンが小さくなるので、結果として、出力される光信号の伝送特性が劣化することに一因がある。
【0012】
また、図18に示すLD駆動回路200とLDモジュール300の間の信号伝送路Pを、マイクロストリップ線路のような分布定数回路で構成し、この分布定数回路からLDモジュール300を見たときの、周波数応答特性のグラフを図21に示す。同図から、遮断周波数(ピークから3dB下がるところ)が約8.8GHzであり、10GHz付近に急峻な落ち込みがあることが分かる。この急峻な落ち込みが存在するのは、つぎの理由によるものである。
【0013】
10GHz付近のような高周波数域では、図14の例で示すインダクタンス素子311の両端をセラミック基板に固定し、かつワイヤボンドによる配線を可能にするため複数箇所の導体から成るパッド部を設けている。このパッド部は容量として機能するため、これらの複数の容量と、LD310とインダクタンス素子311および整合抵抗309の間に設けられたパッドとを接続する複数のワイヤボンドと、バイアス回路を構成するインダクタンス素子311のリアクタンス成分とで共振を起こし、これによって非常に急峻な減衰特性となるからである。
【0014】
【発明が解決しようとする課題】
このように、従来技術に示す光半導体装置では、光信号の出力特性がLD駆動回路の立ち下がり特性の悪さに引きずられ、光信号の伝送特性が劣化するという課題があった。
【0015】
また、LDモジュールの通過特性が、10GHz付近で急激に減衰するという問題点があった。特に、10GHz付近の急峻な落ち込みは光半導体装置の光出力波形を大きく劣化させる原因にもなり、この問題点を解決する意味は大きい。
【0016】
この発明は、上記に鑑みてなされたものであり、LD駆動回路の出力波形の立ち上がり時間と立ち下がり時間との非対称性に起因する光出力波形の劣化や、光半導体素子モジュールの通過特性の急峻な落ち込みに伴なう光出力波形の劣化などの光出力波形の劣化を改善し、光出力波形の品質を向上させた光半導体装置を得ることを目的とする。
【0017】
【課題を解決するための手段】
上記目的を達成するため、この発明にかかる光半導体装置は、光半導体素子と、前記光半導体素子の有する一対の電極の一方に接続され、この光半導体素子に電気信号を供給する第1の導体線路と、前記光半導体素子の有する一対の電極の他方に接続され、この光半導体素子に電気信号を供給する第2の導体線路と、前記光半導体素子の一方の電極と前記第1の導体線路とに接続された第1のインダクタンス素子と、前記光半導体素子の他方の電極と前記第2の導体線路とに接続された第2のインダクタンス素子とを備え、前記第1、第2の導体線路は、一対の差動線路を成すことを特徴とする。
【0018】
この発明によれば、第1の導体線路と第2の導体線路とが一対の差動線路を構成し、光半導体素子の有する一対の電極の一方に接続された第1の導体線路が光半導体素子に電気信号を供給し、光半導体素子の有する一対の電極の他方に接続された第2の導体線路が光半導体素子に電気信号を供給し、光半導体素子の一方の電極と第1の導体線路とに接続された第1のインダクタンス素子が高周波の電気信号を遮断し、光半導体素子の他方の電極と第2の導体線路とに接続された第2のインダクタンス素子が高周波の電気信号を遮断することができる。
【0019】
つぎの発明にかかる光半導体装置は、光半導体素子と、前記光半導体素子の有する一対の電極の一方に電気信号を供給する第1の差動入力端子と、前記光半導体素子の有する一対の電極の他方に、前記第1の差動入力端子と逆相の電気信号を供給する第2の差動入力端子と、前記光半導体素子の一方の電極と前記第1の導体線路とに接続され、高周波の前記電気信号を遮断する第1のインダクタンス素子と、前記光半導体素子の他方の電極と前記第2の導体線路とに接続され、高周波の前記電気信号を遮断する第2のインダクタンス素子とを備えることを特徴とする。
【0020】
この発明によれば、光半導体素子の有する一対の電極の一方に接続された第1の差動入力端子が光半導体素子に電気信号を供給し、光半導体素子の有する一対の電極の他方に接続された第2の差動入力端子が光半導体素子に電気信号を供給し、光半導体素子の一方の電極に接続された第1のインダクタンス素子が高周波の電気信号を遮断し、光半導体素子の他方の電極に接続された第2のインダクタンス素子が高周波の電気信号を遮断することができる。
【0021】
つぎの発明にかかる光半導体装置は、光半導体素子と、前記光半導体素子の有する一対の電極の一方および他方に、夫々一方の端子および他方の端子が接続され、この光半導体素子に電気信号を供給する一対の差動増幅器と、前記光半導体素子の一方の電極に接続され、高周波の前記電気信号を遮断する第1のインダクタンス素子と、前記光半導体素子の他方の電極に接続され、高周波の前記電気信号を遮断する第2のインダクタンス素子とを備えることを特徴とする。
【0022】
この発明によれば、光半導体素子の有する一対の電極の一方および他方に、夫々一方の端子および他方の端子が接続された一対の差動増幅器が、この光半導体素子に電気信号を供給し、光半導体素子の一方の電極に接続された第1のインダクタンス素子が高周波の電気信号を遮断し、光半導体素子の他方の電極に接続された第2のインダクタンス素子が高周波の電気信号を遮断することができる。
【0023】
つぎの発明にかかる光半導体装置は、上記の発明において、前記光半導体素子の一方の電極および他方の電極に夫々接続され、前記電気信号をこの光半導体素子に導く一対の整合抵抗をさらに備えることを特徴とする。
【0024】
この発明によれば、光半導体素子の一方の電極および他方の電極に夫々接続された一対の抵抗が、高周波におけるインピーダンスを整合し電気信号を光半導体素子に効率良く導くことができる。
【0025】
つぎの発明にかかる光半導体装置は、上記の発明において、前記第1のインダクタンス素子とこの第1のインダクタンス素子に並列接続された第1の抵抗とを有する第1のバイアス回路と、前記第2のインダクタンス素子とこの第2のインダクタンス素子に並列接続された第2の抵抗とを有する第2のバイアス回路とを備えることを特徴とする。
【0026】
この発明によれば、第1のインダクタンス素子とこの第1のインダクタンス素子に並列接続された第1の抵抗とを有する第1のバイアス回路と、第2のインダクタンス素子とこの第2のインダクタンス素子に並列接続された第2の抵抗とを有する第2のバイアス回路とが、インダクタンス素子のリアクタンス成分と、ワイヤボンドのインダクタンスと、パッドの容量やインダクタンス素子の寄生容量を原因とする共振を防止して広い周波数帯域にわたって高周波の電気信号を遮断することができる。
【0027】
つぎの発明にかかる光半導体装置は、上記の発明において、前記第1および第2の導体線路と前記一対の整合抵抗との間に、少なくともディジタル信号の最大繰り返し周波数よりも高い周波数を遮断するフィルタを備えることを特徴とする。
【0028】
この発明によれば、第1および第2の導体線路と一対の整合抵抗との間に備えられたフィルタが、少なくともディジタル信号の最大繰り返し周波数よりも高い周波数を遮断することができ、不要な周波数帯にある電気入力波形のリンギングを除去することができる。
【0029】
つぎの発明にかかる光半導体装置は、上記の発明において、前記フィルタは、前記第1および第2の導体線路に対して交差する複数の導体が櫛型状に形成された第1および第2の導体フィンガー部を夫々備え、前記第1の導体フィンガー部と前記第2の導体フィンガー部とが交互に配置されていることを特徴とする。
【0030】
この発明によれば、第1および第2の導体線路に対して交差する複数の導体が櫛型状に形成された第1および第2の導体フィンガー部を有し、この第1の導体フィンガー部と第2の導体フィンガー部とが交互に配置されたフィルタが、少なくともディジタル信号の最大繰り返し周波数よりも高い周波数を遮断することができ、不要な周波数帯にある電気入力波形のリンギングを除去することができる。
【0031】
つぎの発明にかかる光半導体装置は、上記の発明において、前記第1および第2の導体線路を収納するパッケージと、前記光半導体素子の出射光を集光するレンズと、光ファイバを保持する光ファイバ保持部材とを備えることを特徴とする。
【0032】
この発明によれば、第1および第2の導体線路を収納するパッケージと、光半導体素子の出射光を集光するレンズと、光ファイバを保持する光ファイバ保持部材とを備える半導体光変調装置を構成することができる。
【0033】
つぎの発明にかかる光半導体装置は、上記の発明において、前記第1および第2のインダクタンス素子が空芯コイルであることを特徴とする。
【0034】
この発明によれば、第1および第2の空芯コイルが、高周波の電気信号を広い周波数帯で遮断するためのバイアス回路を小型化することができる。
【0035】
つぎの発明にかかる光半導体装置は、上記の発明において、前記光半導体素子は、半導体レーザダイオードであることを特徴とする。
【0036】
この発明によれば、半導体レーザダイオードの光出力波形の劣化を減少させる半導体光変調装置を構成することができる。
【0037】
なお、第1、第2のインダクタンス素子は、バイアス電流を供給するものであることを特徴としても良い。
【0038】
つぎの発明にかかる光半導体装置は、光半導体素子と、前記光半導体素子の一対の電極に夫々接続され、この光半導体素子に差動信号を供給する第1、第2の導体線路と、前記第1の導体線路と前記光半導体素子の一方の電極とに電気的に接続される第1の端子と、前記第2の導体線路と前記光半導体素子の他方の電極とに電気的に接続された第2の端子とを備え、前記第1、第2の端子は夫々、高周波を遮断するバイアス電流が給電されるバイアス回路に接続されることを特徴とする。
【0039】
この発明によれば、光半導体素子の一対の電極に夫々接続された第1、第2の導体線路が、この光半導体素子に差動信号を供給し、第1の導体線路と光半導体素子の一方の電極とに電気的に接続される第1の端子と、第2の導体線路と光半導体素子の他方の電極とに電気的に接続された第2の端子とが、夫々高周波を遮断するバイアス回路に接続されることにより、インダクタンス素子のリアクタンス成分と、ワイヤボンドのインダクタンスと、パッドの容量を原因とする共振を防止して広い周波数帯域にわたって高周波の電気信号を遮断することができる。
【0040】
つぎの発明にかかる光半導体装置は、光半導体素子の一対の電極の一方に一端が接続され、この光半導体素子に電気信号を供給する第1の導体線路と、前記光半導体素子の一対の電極の他方に一端が接続され、この光半導体素子に電気信号を供給する第2の導体線路と、前記光半導体素子の一方の電極と前記第1の導体線路とに接続される第1のインダクタンス素子と、前記光半導体素子の他方の電極と前記第1の導体線路と並列に接続される第2のインダクタンス素子とを備え、前記光半導体素子がプシュ・プル動作により駆動されることを特徴とする。
【0041】
この発明によれば、プシュ・プル動作により駆動される光半導体素子の一対の電極の一方に接続された第1の導体線路が光半導体素子に電気信号を供給し、光半導体素子の一対の電極の他方に接続された第2の導体線路が光半導体素子に電気信号を供給し、光半導体素子の一端に接続された第1のインダクタンス素子が高周波の電気信号を遮断し、光半導体素子の他端に接続された第2のインダクタンス素子が高周波の電気信号を遮断することができる。
【0042】
つぎの発明にかかる光半導体装置は、上記の発明において、少なくとも2つのバイアス回路のインピーダンスを非対称にしたことを特徴とする。
【0043】
この発明によれば、インピーダンス非対称にした少なくとも2つのバイアス回路によって、周波数応答特性のうねりを改善した半導体光変調装置を構成することができる。
【0044】
【発明の実施の形態】
以下に添付図面を参照して、この発明にかかる光半導体装置の好適な実施の形態を詳細に説明する。
【0045】
実施の形態1.
図1は、実施の形態1にかかる光半導体装置の一例を示す回路構成図である。同図において、LD駆動回路1は、差動型の入力構成を有する入力バッファ11と、逆相信号および正相信号を出力する差動構成を成す一対の差動トランジスタ12、13、定電流動作をするトランジスタ14、差動トランジスタ12、13のコレクタの負荷であり、インピーダンス整合をとるための抵抗15、16を夫々備えている。
【0046】
入力バッファ11は、入力される逆相信号と正相信号の波形を整形し、差動トランジスタ12および13のベースへ入力する調整された逆相信号と正相信号を生成する。
【0047】
差動構成をなす一対の差動トランジスタ12、13とトランジスタ14は、差動増幅器を構成する。差動トランジスタ12および13の夫々のコレクタ側は、抵抗15および16の一方側に接続されている。抵抗15、16の他方側は接地端子に接続される。差動トランジスタ12および13の夫々のエミッタは、定電流動作をするトランジスタ14に接続されている。差動トランジスタ12のベースには入力バッファ11の逆相信号出力端子が接続され、差動トランジスタ13のベースには入力バッファ11の正相信号出力端子が接続されている。トランジスタ14のエミッタ側、および入力バッファ11の電圧入力端子は、ともに負電源(Vee)に接続されている。
【0048】
差動トランジスタ12、13のコレクタ側の出力端子は、マイクロストリップ線路やグランデッドコプレーナ線路などで構成される分布定数回路18、整合抵抗19a、19bを介してLD20の一対の電極(アノードと、カソード)に夫々接続されている。
【0049】
なお、差動トランジスタ12、13は、電界効果型トランジスタ(FET)を用いても良い。この場合、LD20のアノード、カソードともに、電界効果型トランジスタのドレイン側に夫々接続される。
【0050】
LDモジュール2側は、分布定数回路18と、20Ω程度のインピーダンス整合用の整合抵抗19a、19bとを介して、高周波インピーダンスが5Ω程度のLD20と接続される。LD20のアノード側は整合抵抗19bに電気的に接続された導体線路に半田などで接合され、LD20のカソード側はワイヤボンド29を介して、整合抵抗19aと電気的に接続された導体線路に接続される。分布定数回路18は、LD駆動回路1の差動型の差動トランジスタ13、12の出力端子と、整合抵抗19a、19bとの間を、差動線路やワイヤボンドで接続して構成される。差動線路は、2つの導体線路を近接して配置し、2つの導体線路に対する入力信号の、一方が正相信号、他方が逆相信号となるようにして信号伝送を行うことにより、2線路間の電気的結合度を高め、電界の漏洩損失を低減することができる。
【0051】
また、例えば、従来の単相駆動方式の場合には、LDを駆動した大電流が接地を経由してLD駆動回路に帰還するので、接地電位が変動するため、近接して設置された微弱電流を検出する光受信系の電子回路に悪影響が出ることがある。これに対し、本実施の形態では、差動線路を用いて、LDをプッシュ・プル動作しているので、大電流は差動線路を流れ、接地電位の変動が少なくなり、周辺回路への影響が出にくいという利点がある。
【0052】
差動線路は、2本の信号伝送線路を近接して配置した差動型のマイクロストリップ線路(マイクロストリップ差動線路)、あるいは差動型のグランデッドコプレーナ線路(グランデッドコプレーナ差動線路)や、2本の導体ピンを近接して配置した差動ピン(あるいはリード)などによって構成される。
【0053】
高周波に対するインピーダンスが大きいソレノイド21aと、このソレノイド21aに並列に接続され共振防止のためにQ値を下げる抵抗22aとから第1のバイアス回路28aが構成される。また、高周波に対するインピーダンスが大きいソレノイド21bと、このソレノイド21bに並列に接続され共振防止のためにQ値を下げる抵抗22bとから第2のバイアス回路28bが構成される。ソレノイド21a、21bには、バイアス電流(直流)を通過させるとともに、LD駆動回路1から出力される変調信号(数百kHz〜数十GHzの電気信号)が第1、第2のバイアス回路28a、28bから漏れ出るのを抑圧する、すなわち高周波信号を遮断する空心コイルを用いている。第1のバイアス回路28aのソレノイド21a、および第2のバイアス回路28bのソレノイド21bとも、夫々ワイヤボンド23a、23bを介して、夫々の一端側が、LD20のアノードおよびカソードに電気的に接続された夫々の導体線路と接続される。これによって、バイアス回路28aは、ワイヤボンド23aを介して整合抵抗19aに電気的に接続された導体線路と接続されて、ワイヤボンド29を介してLD20のカソードに接続される。また、バイアス回路28bは、ワイヤボンド23bを介して整合抵抗19bに電気的に接続された導体線路と接続されて、LD20のアノードの半田付けされた導体線路(パッド)に接続される。
【0054】
LD20のアノード側は、ワイヤボンド23b、第2のバイアス回路28bの並列回路を介して接地端子に接続されている。LD20のカソード側は、ワイヤボンド23a、第2のバイアス回路28aの並列回路を介して定電流源24に接続される。定電流源24はトランジスタを用いて構成され、エミッタ側が負電圧源(Vee)に接続されている。この負電源は、LD駆動回路1のトランジスタ14が接続される負電源(Vee)と同じ電圧としているが、異なる電圧にしても良い。
バイアス回路28a、28bは、ワイヤボンド23a、23bなどとともに、高周波的には非接地の開放端子の如く作用する。
【0055】
このLD20の駆動構成によれば、LD20のアノード、カソードに一対の第1、第2のバイアス回路28a、28bを介して直流バイアス電流が供給され、かつ差動型の一対の差動トランジスタ12、13によってLD20のアノード、カソードに高周波の変調電流が差動で入力されている。
【0056】
すなわち、LD駆動回路1の差動トランジスタ12がONからOFF(差動トランジスタ13がOFFからON)になると、LD20に変調電流が流れ、LD20からのレーザ光出力はOFFからONとなる。また、差動トランジスタ13がONからOFF(差動トランジスタ12がOFFからON)になると、LD20に流れる変調電流が小さくなり、LD20からのレーザ光出力はONからOFFとなる。
【0057】
したがって、LD駆動回路1の差動的に構成された差動トランジスタ12、13から出力された変調電気信号は、分布定数回路18などを通じてLD20に伝送され、LD20において変調電気信号が光変調信号に変換される。LD20から発生された光変調信号は、集光レンズ25によって光ファイバ26に集光され、この光ファイバ26を通じて出力される。
【0058】
図2(a)は、LD駆動回路1の一対の差動トランジスタ12、13の立ち上がり、立ち下がり特性を模式的に示す説明図であり、図2(b)は、一対の差動トランジスタ12、13の立ち上がり、立ち下がり特性が平均化される原理を示す説明図である。
【0059】
図2(a)に示すように差動トランジスタ12または13(両者の特性は同等と仮定)の立ち上がり時間をtr、立ち下がり時間をtfとすると、trとtfとの間には、tr<tfの関係がある。このことは上述したとおりである。
【0060】
また、上述したように、正相信号と逆相信号とが分布定数回路18を経由し、一方は整合抵抗19aを介してLD20のカソードに、他方は整合抵抗19bを介してLD20のアノードに接続されている。これらの接続により、差動トランジスタ12が立ち上がるときは差動トランジスタ13が同時に立ち下がり、一方、差動トランジスタ12が立ち下がるときは差動トランジスタ13が同時に立ち上がるため、LD20から見れば一対の差動トランジスタ12、13からプシュ・プルで駆動されている。
【0061】
図18に示す従来の光半導体装置の回路では、LD駆動回路200は一対のトランジスタが差動で動作を行っているが、LD310から見た場合には、差動トランジスタ203が立ち上がるときにLD310に電流が流れ、差動トランジスタ203が立ち下がるときにLD310の電流が流れなくなるだけである。つまり、LD310(あるいはLD駆動回路200とLD310とを接続する分布定数回路)から見た場合には、プシュ・プルで駆動されているわけではない。
【0062】
図1に示すこの発明の光半導体装置の回路は、このようなプシュ・プル動作を行うので、分布定数回路18が差動線路となりLD20に対する電流の押込み(push)と吸い出し(pull)を同時に行い、LD20から見れば差動トランジスタ12の立ち上がり時間(tr)と、差動トランジスタ13の立ち下がり時間(tf)との平均時間((tr+tf)/2)で動作していることになる。この結果、図2(b)に示すように、立ち上がり時間と立ち下がり時間とが平均化された対称形の立ち上がり特性を示すことになる。
【0063】
図3は、様々なパターンの光信号波形を光−電気変換した後で帯域フィルタを通し、その電気信号を重ね書きした図であり、上の部分がマーク側(発光)であり、横軸は時間を示している。図20に示すアイパターンと比較して、波形の非対称性が改善されるとともにアイマスクマージンにも余裕があり、良好な伝送特性が得られることが分かる。
特に、中央部の右上付近(図中Fに示す立ち下がりの部分)で、アイマスク規定に対する余裕ができており、使用温度上昇によるLD20の緩和振動周波数の低下に伴なう波形劣化に対して余裕ができる。
【0064】
また、図19のように立ち上がり時間や立ち下がり時間が比較的に長いLD駆動回路に対して、その立ち上がり特性を改善するために、LD駆動回路200にピーキング特性を持たせるように調整することによって、信号帯域よりも高周波の15GHz付近の周期を持つ僅かなリンギングが発生し、図19の電気波形に重ね合わされることがある。
【0065】
このリンギングによって、光出力波形の立ち下がり波形を持ち上げることができ、アイパターンの右肩(右下がり部分)がアイマスクに対して余裕を持つようになって、光出力波形の品質を向上させることができる。例えば、10Gb/sディジタル信号(最小パルス)の基本波が5GHzである場合、その3倍の高調波の15GHz位でリンギングが発生するようにLD駆動回路200のピーキングを調整することにより、より品質のよい光出力波形が得られる。
【0066】
なお、特開平11−233876号公報には、差動負荷インピーダンスのバランスをとることによって、ジッタのないデータ伝送を行うレーザモジュールの例が開示されているが、LDから見てプシュ・プル動作を行っているわけではなく、本願発明とは異なるものである。
【0067】
また、特開平5−327617号公報は、駆動回路から見たLDの入力インピーダンスを下げることによって立ち下がり時間のみを改善しているのであって、本願発明の原理と全く異なるものである。
【0068】
図4(a)は、図1に示すLDモジュール2を分布定数回路18から見たときの周波数応答特性を示すグラフである。上述したように、図1に示すLDモジュール2には、LD20のカソード側にワイヤボンド23aを介してソレノイド21aと抵抗22aとの並列回路であるバイアス回路28aが接続され、LD20のアノード側にワイヤボンド23bを介してソレノイド21bと抵抗22bとの並列回路であるバイアス回路28bが接続されている。このため、夫々のバイアス回路28a、28bがセラミック基板などに設けられたパッド部分などによる容量成分を原因として共振を起こすことは、従来技術のLDモジュール300の例と同じである。しかし、分布定数回路18側から等価回路として見ると2つのバイアス回路が直列接続されて見えるため共振の振幅を小さくでき、図21に示すような10GHz付近での急峻な落ち込みを防止している。なお、図4(a)に示す例は、抵抗22a、抵抗22bのインピーダンスを、同じインピーダンスとしたときの周波数応答特性を示すグラフである。
【0069】
また、図4(b)は、夫々のバイアス回路28a、28bを異なるインピーダンスにしたときの周波数応答特性を示すグラフである。同図に示すように、図4(a)で見られたようなうねりが改善されているのが比較できる。なお、インダクタンスや抵抗値の具体的な例については、後述の実施の形態3、4で説明する。
【0070】
特開平5−37083号公報には、バイアス回路と半導体レーザを接続するボンディングワイヤのインダクタンスLsと、バイアス回路と外部回路の接続のために設けられた気密パッケージのセラミックブロックの有する寄生容量Cs1とで、小信号周波数特性が劣化するという課題が開示されている。同公報では、この寄生容量Cs1による影響を低減するために、気密パッケージのセラミックブロックに配したバイアスライン下面のメタライズを除去することにより、回路内の寄生容量を除去している。セラミックブロックの下面は、バイアスラインの下面以外の他の部分で、メタライズが除去されていない。
【0071】
然るに、同公報に記載された発明は半導体レーザへの変調信号の供給に単相線路を用いたものであって、同公報には差動線路を用いた回路例や、2つのバイアス回路を使用する例、またその2つのバイアス回路のインピーダンスを異なるものにする例について開示されていない。また、差動線路と接続されるバイアス回路を2つ配置した実施の形態1とは、回路構成が異なるものである。
【0072】
さらに、同公報に記載された発明は、共振による通過特性の3dB減衰周波数を2.5GHzから2.9GHzに周波数軸で移動させるものであり、実施の形態1のように共振の振幅を変化させているものとは、まったく異なるものである。
【0073】
このように実施の形態1によれば、差動線路が接続された光半導体素子がプシュ・プル動作により駆動されるので、電気駆動波形の非対称性が改善され、光出力波形の品質が向上することにより、良好な伝送特性が得られるという効果を奏する。
【0074】
また、差動線路が接続された光半導体素子の両側に夫々バイアス回路を配置したので、等価回路としては2つのバイアス回路が直列接続されて見えるため共振の振幅を小さくでき、バイアス回路の配置に伴なう通過特性の急峻な落ち込み(リップル)を改善でき、光出力波形の品質が向上することにより、良好な伝送特性を得ることができる。
【0075】
なお、実施の形態1としてLDを直接変調する装置を図示したが、これは一定強度の光を出力する光源を別に有する、例えば電界吸収型半導体光変調素子等を用いた光半導体装置に適用することもでき、同様の作用および効果を有する。
【0076】
また、実施の形態1では直列共振を防止する素子としてソレノイドを用いているが、インダクタンス成分を持つ素子(インダクタンス素子)であれば他のものであってもよく、セラミック基板のパターン配線で構成したチップインダクタや直径0.01〜0.5mm、長さ10mm程度のワイヤなどを用いてもよい。
【0077】
以上説明したように、実施の形態1にかかる光半導体装置によれば、差動線路が接続された光半導体素子がプシュ・プル動作により駆動されるので、波形の非対称性が改善され、光出力波形の品質が向上することにより、良好な伝送特性を得ることができるという効果を奏する。
【0078】
また、実施の形態1にかかる光半導体装置によれば、差動線路が接続された光半導体素子の両電極側にバイアス回路を配置したので、バイアス回路に伴なう通過特性のリップルを改善でき、光出力波形の品質が向上することにより、良好な伝送特性を得ることができるという効果を奏する。
【0079】
実施の形態2.
図5は、実施の形態2にかかる光半導体装置の一例を示す回路構成図である。同図において、LD駆動回路1は、差動型の入力構成を有する入力バッファ11と、逆相信号および正相信号を出力する差動構成を成す一対の差動トランジスタ12、13、定電流動作をするトランジスタ14、差動トランジスタ12、13のコレクタの負荷抵抗でインピーダンス整合をとるための抵抗15、16を夫々備えている。
【0080】
入力バッファ11は、入力される正相信号と逆相信号の波形を整形し、差動トランジスタ12および13のベースへ入力する調整された逆相信号と正相信号を生成する。
【0081】
差動構成を成す一対の差動トランジスタ12、13、およびトランジスタ14は差動増幅器を構成する。差動トランジスタ12および13の夫々のコレクタ側は、抵抗15および16に接続されている。抵抗15、16の他方側は接地端子に接続される。差動トランジスタ12および13の夫々のエミッタは、定電流動作をするトランジスタ14に接続されている。差動トランジスタ12のベースには入力バッファ11の逆相信号出力端子が接続され、差動トランジスタ13のベースには入力バッファ11の正相信号出力端子が接続されている。トランジスタ14のエミッタ側、および入力バッファ11の電圧入力端子は、ともに負電源(Vee)に接続されている。
【0082】
差動トランジスタ12、13の出力端子(コレクタ側)は、マイクロストリップ差動線路やグランデッドコプレーナ差動線路などで構成される分布定数回路18、フィルタ27、整合抵抗19a、19bを介してLD20のアノード、カソードに夫々接続されている。
【0083】
なお、差動トランジスタ12、13は、電界効果型トランジスタ(FET)を用いても良い。この場合、LD20のアノード、カソードともに、電界効果型トランジスタのドレイン側に接続される。
【0084】
LDモジュール2側は、分布定数回路18、フィルタ27、20Ω程度のインピーダンス整合用の整合抵抗19a、19bを介して、高周波インピーダンスが5Ω程度のLD20とアノード側は半田付けで、カソード側はワイヤボンド29で接続され、高周波に対するインピーダンスが大きいソレノイド21aと、このソレノイド21aに並列に接続され共振防止のためにQ値を下げる抵抗22aとからなる第1のバイアス回路28aと、高周波に対するインピーダンスが大きいソレノイド21bと、このソレノイド21bに並列に接続され共振防止のためにQ値を下げる抵抗22bとからなる第2のバイアス回路28bとに、夫々ワイヤボンド23a、23bを介して接続される。
【0085】
LD20のアノード側は、ワイヤボンド23b、第2のバイアス回路28bの並列回路を介して接地端子に接続されている。LD20のカソード側は、ワイヤボンド29、23a、第2のバイアス回路28aを介してバイアス定電流源24に接続される。定電流源24はトランジスタを用いて構成され、エミッタ側が負電圧源(Vee)に接続されている。この負電源は、LD駆動回路1のトランジスタ14が接続される負電源(Vee)と同じ電圧としているが、異なる電圧にしても良い。
【0086】
また、実施の形態1と同様に、LD20のアノード、カソードに一対のバイアス回路28a、28bを介して直流バイアス電流が供給され、かつ差動型の一対の差動トランジスタ12、13によってLD20のアノード、カソードに高周波の変調信号が差動で入力されている。
【0087】
いま、LD駆動回路1の差動トランジスタ12、13の立ち上がり特性を改善するため、図5には図示しない回路定数の変更でLD駆動回路1にピーキングをかけると、15GHz程度を周期とするリンギングが発生する。図5に示すフィルタ27は、このリンギングを除去するための低域通過フィルタである。
【0088】
光ファイバの分散の影響が少ない波長1.31μm帯では、光ファイバ伝送後の波形変化が小さく、このリンギング波形は受信機のフィルタで減衰するので、アイマスクに対してより余裕を持たせた光出力波形が得られるので、このリンギングを積極的に受信機のフィルタ後の信号波形改善に利用することもできる。しかし、光ファイバの分散の影響が大きい波長1.55μm帯では、このリンギング波形があると光半導体発光素子で引き起こされる波長チャープが大きくなり、光ファイバ伝送後の波形に悪影響を与えることもあるため、フィルタ27によってリンギングを除去する。
【0089】
図6(a)は、フィルタ27の上面図であり、図6(b)はこのフィルタ27のP方向矢視図である。同図(a)および(b)において、フィルタ27は、セラミック基板41の上面に一対のマイクロストリップ差動線路39、下面に接地導体40を備えている。また、櫛形のストリップ導体電極38が、一対のマイクロストリップ導体線路39から交互に、マイクロストリップ導体線路39に直交する内側方向に形成されている。
【0090】
図7は、フィルタ27を挿入する前後の周波数応答特性を対比したグラフである。同図において、C1は図4(b)の曲線を示したものであり、図5に示す2つのバイアス回路28a、28bのインピーダンスを非対称にして、応答特性のうねりを改善した波形である。C2は、上述したように、図5のLD駆動回路1に図示しない回路定数の変更でピーキングかかったときに、15GHz程度を周期とするリンギングが生じている場合の応答特性を示す波形である。C3は、フィルタ27によって15GHz付近のリンギングを遮断したときの応答特性を示す波形である。同図から、12GHzを越える付近まで、フラットで良好な周波数応答特性が得られている。
【0091】
なお、特開平7−38185号公報の図6に、LD素子と並列に容量と抵抗との直列回路を挿入して、立ち上がり特性のリンギングを防止する回路の開示がある。しかし、この回路は、バイアス電流を流さないために発生するオーバーシュートや緩和振動を除去する目的であり、本願発明とは目的が異なる。また、単相給電である点や回路の構成も異なる。
【0092】
また、特開平7−46194号公報の図1および図2に、整合抵抗とLD駆動回路との間にインダクタンスと抵抗との直列回路をLD素子に並列接続することで整合状態を変化させてリンギングを防止する回路の開示があるが、目的や回路構成が異なり、また単相給電である点で相違する。
【0093】
図8は、図5に示す光半導体装置の高周波動作を模擬する簡単化した等価回路図である。31はLD駆動回路の出力インピーダンスを示している。LDモジュール側では、夫々図5のLDモジュールの各素子を示す符号に対応しており、19a、19bは整合抵抗、20はLD、27はフィルタを示している。
【0094】
いま、整合抵抗19aおよび19bの抵抗値をRd、LD20の内部抵抗をr、フィルタ27の容量をC、LD駆動回路の出力インピーダンスをZとおくと、この等価回路の遮断周波数fcの近似式は、次式で表せる。
【0095】
【数1】
【0096】
例えば、LD駆動回路側のインピーダンスZを100Ω、LD20の内部抵抗rを8Ω、整合抵抗19aおよび19bの抵抗Rdを45Ω、フィルタ27の容量Cを0.16pFとすると、遮断周波数fcは約10GHzと近似される。実際の回路定数は複雑化するため、このように遮断周波数を単純に得ることはできないが、この遮断周波数fcを目安として、容量を設定すれば、所望のフィルタとしての効果を得ることができる。
【0097】
このように実施の形態2によれば、第1および第2の導体線路に対して交差する複数の導体が櫛型状に形成された第1および第2の導体フィンガー部を有し、この第1の導体フィンガー部と第2の導体フィンガー部とが交互に配置されたフィルタが少なくともディジタル信号の最大繰り返し周波数よりも高い周波数を遮断し、LD駆動回路のピーキング動作ときに発生する、LD出力の不要なリンギングを除去、または低減するので、光出力信号の信号雑音比を改善し、これによって光出力波形の品質が向上することにより、良好な伝送特性を得ることができる。
【0098】
また、実施の形態2ではリンギングを防止する素子として櫛形のフィルタを用いる例を示したが、キャパシタンス成分を持つ素子であれば何でもよく、通常の導体パターン等で構成することもできる。
【0099】
また、実施の形態2としてLDを直接変調する装置を図示したが、これは一定強度の光を出力する光源を別に有する、例えば電界吸収型半導体光変調素子等を用いた光半導体装置に適用することもでき、同様の作用および効果を有する。
【0100】
実施の形態3.
実施の形態1では、差動線路を用いる利点としてLD駆動回路の立ち上がり/立ち下がり特性の非対称性を補償し、光出力波形が改善されることを中心に説明してきたが、この差動線路を用いることにより、立ち上がり/立ち下がり特性の非対称性の補償とは別に周波数特性を改善できる利点がある。この実施の形態では、リアクタンス、抵抗値の具体例を与える等価回路を示し、その利点について説明する。
【0101】
図9(a)は、図18に示す従来技術の光半導体装置の高周波動作を模擬する簡単化した等価回路図である。同図において、31はLD駆動回路の出力インピーダンス、309は整合抵抗、310はLDの内部抵抗を示す。329は、整合抵抗309と電気的に接続される導体線路に設けられた図示しないパッドと、LD310のカソードとを接続するワイヤボンドである。32はソレノイドなどのインダクタンス素子311を有するバイアス回路を示しており、実際にはリアクタンスであるが、図9と図10では基本的な通過特性の説明を簡単にするため、抵抗としている。
【0102】
図9(b)は、この等価回路の周波数応答特性のシミュレーション結果を示すグラフである。同図は、LD駆動回路側の出力インピーダンスZ1が50Ω、LD310の内部抵抗r1が8Ω、整合抵抗309の抵抗値R3が40Ω、ワイヤボンド329のインダクタンスL3が0.5nH、バイアス回路32のインピーダンスが50Ωのときのシミュレーション結果を示しており、同図より3dB帯域(図中のm1から3dB低下するところのm2との間)が10.6GHz程度であることが分かる。
【0103】
一方、図10(a)は、図1に示すこの発明の光半導体装置(差動線路)の高周波動作を模擬する簡単化した等価回路図である。同図において、31はLD駆動回路の出力インピーダンス、19aおよび19bは整合抵抗、20はLD、29はワイヤボンド、32および33は夫々のバイアス回路を示している。
【0104】
図10(b)は、この等価回路の周波数応答特性のシミュレーション結果を示すグラフである。同図は、LD駆動回路側の出力インピーダンスZ1が100Ω、LD20の内部抵抗r1が8Ω、整合抵抗19aおよび19bの抵抗値R3およびR4が夫々40Ω、ワイヤボンド29のインダクタンスL3が0.5nH、バイアス回路32および33のインピーダンスが夫々50Ωのときのシミュレーション結果を示しており、同図より3dB帯域(図中のm3から3dB低下するところのm4との間)が18.6GHz程度であることが分かる。
【0105】
LD素子の基板側(アノード)は、給電線路に半田付けなどで固定されるため、LDモジュール側のインダクタンス成分は、LD素子のカソード側のワイヤボンドを主因とするものであり、差動給電回路と単相給電回路とで殆ど差異はない。一方、LD素子側から見たインピーダンスは、差動線路を用いた回路の方が2倍近く大きくなり、結果として差動線路の使用により周波数応答特性(通過特性)が改善される。
【0106】
このように、LD駆動回路とLDモジュールとを差動線路を用いて接続することにより、周波数応答特性を改善することができる。
【0107】
実施の形態4.
図11(a)は、図10(a)の等価回路においてバイアス回路の構成を詳細に示した回路構成図である。この等価回路の構成および動作は実施の形態1で説明したとおりなので、ここでの説明は省略する。この実施の形態4では、実施の形態1の等価回路についてインダクタンス、容量、抵抗値の具体例を与えて、その特性について説明する。
【0108】
(第1の具体例)
第1の具体例の光半導体装置の等価回路における各素子の諸元は、図11(a)に示す記号を用いて表すと、抵抗22aおよび22bの抵抗値R1およびR2=1000Ω、整合抵抗19aおよび19bの抵抗値R3およびR4=40Ω、ソレノイド21a、21bのインダクタンスL1およびL2=100nH、ワイヤボンド29のインダクタンスL3=0.5nH、ワイヤボンド23a、23bのインダクタンスL4およびL5=3nH、LD駆動回路側の抵抗値Z1=100Ω、LD20の抵抗値r1=8Ω、バイアス回路の寄生容量C1、C2、C3およびC4=0.1pFである。なお、図11(b)はこの回路条件に基づく周波数応答特性のシミュレーション結果を示すグラフである。
【0109】
一方、図11(c)は、図9(a)の等価回路においてバイアス回路の構成を詳細に示した回路構成図である。この等価回路の構成および動作は従来の技術で説明したとおりなので、ここでの説明は省略する。この等価回路において、各素子の諸元を図11(c)に示す記号を用いて表すと、R2=1000Ω、R3=40Ω、インダクタンス素子311のインダクタンスL2=100nH、L3=0.5nH、L5=3nH、LD駆動回路側の抵抗値Z2=50Ω、LD310の抵抗値r1=8Ω、バイアス回路の寄生容量C2およびC4=0.1pFである。なお、図11(d)はこの回路条件に基づく周波数応答特性のシミュレーション結果を示すグラフである。
【0110】
図11(b)および図11(d)のシュミレーション結果に示されるように、差動給電方式のバイアス回路を用いた場合は、単相給電方式のバイアス回路を用いた場合と比較して、バイアス回路による共振リップルの振幅を減少させることができる。なお、この効果は、図11(b)が実施の形態1における差動給電方式の実験結果として示した図4(a)に対応し、図11(d)が単相給電方式の実験結果として示した図21に対応する。但し、図4(a)と図21の実験結果にはLD駆動回路1、200の周波数特性が含まれ、高域が遮断されている。
【0111】
なお、特開平5−37083号公報では、バイアス回路の容量が原因となって発生する共振リップルの改善を目的として、光モジュールのパッケージ壁面から外側の寄生容量を低減するために、パッケージのフィードスルーのグランド面を除去した回路の開示がある。しかし、この回路は、単相線路を用いるものであり、回路の構成も本願発明とは異なっている。
【0112】
(第2の具体例)
つぎに、実施の形態1の光半導体装置の等価回路について、インダクタンス、容量、抵抗値に関する第2の具体例として、他の条件を与えた場合のバイアス回路の特性について説明する。
【0113】
図12(a)は、図11(a)と同一の等価回路を示した回路構成図であり、図12(b)は、図12(a)の回路条件に基づくシミュレーション結果を示すグラフであり、図11(b)のグラフに対応する。また、図12(c)は、図11(a)の等価回路において、ワイヤボンド23a(または23b)のインダクタンスL4を、3nHから1nHに変更したときの周波数応答特性のシミュレーション結果を示すグラフである。
【0114】
図12(b)および図12(c)のシュミレーション結果に示されるように、バイアス回路とLD素子とを接続するワイヤボンドなどのインダクタンス成分を、両側で非対称にすることにより、共振リップルを生じさせる周波数を高くすることができる。なお、リップルの振幅は増加しているが、リップルが生じる領域を帯域外に追いやることができるので、所望の帯域を確保する場合などに有用である。
【0115】
(第3の具体例)
さらに、実施の形態1の光半導体装置の等価回路について、インダクタンス、容量、抵抗値に関する第3の具体例として、他の条件を与えた場合のバイアス回路の特性について説明する。
【0116】
図13(a)は、図11(a)と同一の等価回路を示した回路構成図であり、図13(b)は、図13(a)の回路条件に基づくシミュレーション結果を示すグラフであり、図11(b)に対応する。また、図13(c)は、図11(a)の等価回路において、ソレノイド21aのインダクタンスL1を変更したときの周波数応答特性のシミュレーション結果を示すグラフである。ここで、ソレノイド21aおよび抵抗22aに関し、L1=100nH、R1=1000ΩとしてL1のインダクタンスを変更する前のグラフを図13(b)に示し、L1=10nH、R1=400ΩとしてL1のインダクタンスを変更した後のグラフを図13(c)に示す。
【0117】
図13(b)および図13(c)のシュミレーション結果に示されるように、バイアス回路に並列接続されたソレノイド21a(または21b)と抵抗22a(または22b)のインピーダンスを、両側で非対称にすることにより、共振リップルの振幅をさらに小さくすることができる。これは実施の形態1の図4(b)の実験結果で示した内容と同じである。なお、実施の形態1の図4(b)の実験結果にはLD駆動回路1の周波数特性を含み、高域が遮断されている。
【0118】
このように実施の形態4によれば、LD駆動回路とLDモジュールとを差動線路を用いて接続することによって、共振リップルの振幅を減少させることができる。また、バイアス回路とLD素子とを接続するワイヤボンドなどのインダクタンス成分を、ワイヤボンドの長さを変えるなどして両側で非対称にすることにより、共振リップルを生じさせる周波数を高く設定することができる。さらに、バイアス回路に並列接続されたインダクタンス素子と抵抗のインピーダンスを両側で非対称にすることにより、共振リップルの振幅をさらに小さくすることができる。
【0119】
実施の形態5.
まず、図14から図16を用いて、この発明の実施の形態5の光半導体素子モジュールについて説明する。
【0120】
図14はキャンパッケージ101およびレセプタクル102から構成される光半導体素子モジュール(以下、この実施の形態5では主にLDを搭載した例を示すので、LDモジュールと呼ぶ。)103の外観構成を示す図であり、図15(a)(b)はLDモジュール103の水平断面図(図14のxに平行な面)、垂直断面図(図14のyに平行な面)である。
【0121】
図14、15に示すように、キャンパッケージ101は、バイアス給電ピン(144a、144b)、高周波信号ピン(141a、141b)などがマウントされる円板状のステム110と、複数のセラミック基板が搭載される台形柱状の台座111(台座ブロック)と、LD20から発生されたレーザ光を集光する集光レンズ25と、台座111などを外部から密閉するための円筒形のキャップ113などを備えている。
【0122】
キャップ113は、図15に示すように、プロジェクション溶接などによってステム110に固定される第1キャップ部材113aと、この第1キャップ部材113aの先端側に外嵌されてYAG溶接などによって第1キャップ部材113aに固定される第2キャップ部材113bとから2段円筒形状を成している。具体的には、第1キャップ部材113aは段付きの外筒を有し、太い径の外筒の先に細い径の外筒が設けられている。この細い径の外筒の外周に対して、第2キャップ部材113bの一端側の内筒が嵌合し、貫通YAG溶接によって第1キャップ部材113aと第2キャップ部材113bが固定される。
【0123】
第1キャップ部材113aの先端側には、レンズ挿入用の孔114が形成されており、この孔114に集光レンズ25が挿入される。集光レンズ25は、ネジ、接着材などによって第1キャップ部材113aに固定される。第1キャップ部材113aの内部空間115は、ガラス製のウィンドウ116によって外部から画成されており、これにより台座111が収納される内部空間115を気密状態に保つようにしている。なお、集光レンズ25の接着、または半田付けによって、内部空間115を気密状態に保つことが可能な場合は、ウィンドウ116を省略してもよい。
【0124】
第2キャップ部材113bの集光レンズ25に対向する部分(他端側)には、レーザ光を通過させるための孔117が形成されている。この第2キャップ部材113bをレーザ光軸方向に位置決め調整して、第1キャップ部材113aにYAG溶接固定することで、集光レンズ25とレセプタクル102内に保持されたダミーフェルール118とのレーザ光軸方向の位置合わせを行う。
【0125】
レセプタクル102は、光ファイバ120が接続されたフェルール121(図14参照)が挿入されるフェルール挿入孔119を有しており、光ファイバ120を保持する。フェルール挿入孔119内のキャンパッケージ101側には、内部に光ファイバ118aが配設されているダミーフェルール118が圧入され固定されている。レセプタクル102におけるダミーフェルール118が固定される側の一端面は、YAG溶接による突き合わせ溶接などによってキャンパッケージ101の第2キャップ部材113bの他端側の端面に固定される。レセプタクル102を第2キャップ部材113bに固定する際に、レーザ光軸方向に垂直な2つの方向に対する位置決め調整を行うことで、集光レンズ25とレセプタクル102内のダミーフェルール118とのレーザ光軸に直角な2つの方向に関する位置合わせを行う。
【0126】
光ファイバ120が接続されているフェルール121は、フェルール121がレセプタクル102のフェルール挿入孔119に挿入されたとき、ダミーフェルール118の方にフェルール121を押圧し、かつフェルール121をレセプタクル102にロック固定するための適宜の機構(図示せず)を有している。したがって、フェルール121がレセプタクル102のフェルール挿入孔119に挿入されると、ダミーフェルール118の光ファイバ118aとフェルール121内の光ファイバ120の端面同士が当接し、これによりファイバ間が接続(光結合)される。
【0127】
つぎに、キャンパッケージ101内の構成について説明する。図16は、キャップ113を外した状態におけるキャンパッケージ101を示す斜視図である。
【0128】
図16に示すように、キャンパッケージ101は、複数のピンがマウントされた円板状のステム110と、Agロウ付けなどによってステム110の内壁面に垂直に固定される台形柱状の台座111とから構成される。
【0129】
グランドを構成するステム110には、LD駆動回路1からの差動の変調電気信号(以下差動高周波信号ともいう)が伝送される一対の高周波信号ピン141a、141bと、これら高周波信号ピン141a、141bの両側に配される2本のグランドピン142a、142bと、モニタ用の受光素子(例えばフォトダイオード、以下PDという)150の信号伝送のための1本のモニタ信号ピン143と、LD20に対して外部の直流バイアス電流源からバイアス電流を供給する一対のバイアス給電ピン144a、144bと、モニタ用のPD150を搭載するためのPD用チップキャリア145とがマウントされている。例えば、高周波信号ピン141aから図16に示す正相の電流信号I2が引き抜かれるとともに高周波信号ピン141bに対して図16に示す電流信号I2と逆相の電流信号I1が与えられる。
【0130】
これらの信号ピンのうち、高周波信号ピン141a、141bと、グランドピン142a、142bは、気密を保ったままステム110を介して電気信号を通過させるフィードスルーを構成している。これら各ピンは、ガラスなどの材料で構成される誘電体を介してステム110に対し気密封止状態で固定されている。グランドピン142a、142bは、グランドを構成するステム110の外壁面(図示せず)に圧着および溶接によって固着されている。PD用チップキャリア145上にマウントされたPD150は、LD20から後方に出射されるモニタ光をモニタするためのものである。
【0131】
台座111の上面には、マイクロストリップ差動線路基板146、147と、LD用チップキャリア148と、バイアス回路用基板149とが搭載されている。マイクロストリップ差動線路基板146、147やLD用チップキャリア148の裏面にグランドとして機能するように形成された平面導体板である接地導体層が、半田などで台座111の上面に接合され、電気的に接続されている。また、台座111は、LD20等から発生する熱の放熱経路になっている。
【0132】
マイクロストリップ差動線路基板146は、セラミック基板151と、セラミック基板151の上面に形成された一対のストリップ差動信号線152a、152bと、セラミック基板151の裏面に形成された接地導体層(図示せず)で構成されている。ストリップ差動信号線152a、152bの一端側には、ステム110から突出した高周波信号ピン141a、141bと接触させるためのパッド153a、153bが形成されている。ストリップ差動信号線152a、152bの途中には、互いの信号線により接近するように突出されたインピーダンス整合用の容量性のスタブ154a、154bが形成されている。ストリップ差動信号線152a、152bは、低いインピーダンスになりやすいフィードスルー部のインピーダンスを補正するために、ステム110に近い入力側の部分では、信号線間隔が大きく設定されている。また、ストリップ差動信号線152a、152bは、信号線間隔が徐々に接近する部分と、間隔が接近して平行に配置される出力側部分とを有している。ステム110にマウントされる高周波信号ピン141a、141bの端部は、マイクロストリップ差動線路基板146のパッド153a、153bにロウ付けまたは半田付けによって接続固定されている。
【0133】
マイクロストリップ差動線路基板147は、セラミック基板155と、セラミック基板155の上面に形成された一対のストリップ差動信号線156a、156bと、セラミック基板155の裏面に形成された接地導体層(図示せず)で構成されている。ストリップ差動信号線156a、156bは、信号線方向を略90度折り曲げるためのコーナーカーブ部を有している。ストリップ差動信号線156a、156bの途中には、インピーダンス整合用の整合抵抗19a、19bがそれぞれ形成されている。ストリップ差動信号線152a、152bと、ストリップ差動信号線156a、156bとは、ワイヤボンド157a、157bによってそれぞれ接続されている。
【0134】
LD用チップキャリア148は、セラミック基板158と、セラミック基板158の上面に形成された一対のストリップ差動信号線159a、159bと、セラミック基板158の裏面に形成された接地導体層(図示せず)で構成されるマイクロストリップ差動線路を有し、一方のストリップ差動信号線159bの一端上にLD20の一方の電極であるアノードが直接当接するように、LD20が搭載されている。LD20の他方の電極としてのカソードは、ワイヤボンド29によって他方のストリップ差動信号線159aの一端に接続されている。ストリップ差動信号線156a、156bと、ストリップ差動信号線159a、159bの他端とは、ワイヤボンド161a、161bによってそれぞれ接続されている。セラミック基板158は、熱伝導性の良い窒化アルミ(AlN)や炭化シリコン(SiC)などの材料から構成されている。LD20としては、10Gb/sの変調信号の伝送が可能な、例えば分布帰還型のレーザダイオード素子が用いられている。
【0135】
バイアス回路用(セラミック)基板149上には、2本の配線パターン162a、162bと一対のインダクタンス回路(インダクタンス素子及び抵抗の並列回路)が形成されている。一方の配線パターン162aには、ソレノイド21aおよびこのソレノイド21aの線間容量とインダクタンスとの共振を防止する抵抗22aが電気的に並列接続されるように配置され、他方の配線パターン162bには、同様に、ソレノイド21bおよび抵抗22bとが電気的に並列接続されるように配置されている。ソレノイド21aおよびソレノイド21bは互いの磁界が干渉しないように、各ソレノイド21a、21bの中心軸(の延長線)が交差するように、好ましくは直交するように、離間配置されている。2本の配線パターン162a、162bの一方の各端部は、LD用チップキャリア148のストリップ差動信号線159a、159bとワイヤボンド23a、23bを介して接続されており、配線パターン162a、162bの他方の端部は、ワイヤボンド163a、163bを介してステム110に設けられるバイアス給電ピン144a、144bに接続される。
【0136】
つぎに、キャンパッケージ101の各部の特徴的な構成をより詳細に説明する。まずステム110の構成について詳述する。
【0137】
LD駆動回路1の差動トランジスタ12、13から出力される差動高周波信号は、図16に示すように、キャンパッケージ101の外部に配置された基板に設けられたグランデッドコプレーナ差動線路170を介して、キャンパッケージ101に入力される。グランデッドコプレーナ差動線路170は、基板上に形成された一対の差動信号線171a、171bと、この一対の差動信号線171a、171bを挟むように差動信号線171a、171bの外側に配置されるグランド172a、172bと、裏面に配置されてグランド172a、172bに接続される接地導体層(図示せず)とから構成されている。差動信号線171a、171bは、LD駆動回路1の上面に設けられた出力端子160a、160bに接続されている。出力端子160aは差動トランジスタ13のコレクタに電気的に接続され、出力端子160bは差動トランジスタ12のコレクタに電気的に接続される。
【0138】
グランデッドコプレーナ差動線路170の差動信号線171a、171bは、ステム110に設けられた高周波信号ピン141a、141bに半田で接続固定されている。グランデッドコプレーナ差動線路170のグランド172a、172bは、ステム110に設けられたグランドピン142a、142bに半田で接続固定されている。また、グランデッドコプレーナ差動線路170のキャンパッケージ側の端面と、ステム110との間に間隙があるので、この間隙に誘電体を充填することによって、インピーダンスの低下による高周波信号の反射を抑えるようにしてもよい。
【0139】
ステム110は、コバール(Fe−Ni合金)、軟鉄、あるいはCuW(銅タングステン)などの金属で構成され、通常、その上層に半田付けのためにNiや金などのメッキが施されている。ステム110には、複数の孔174、175、176a、176bが分散して形成されており、これらの孔174、175、176a、176bに、誘電体177、178、179a、179bが挿入される。
【0140】
誘電体177には一対のピン挿入孔180a、180bが形成され、これらのピン挿入孔180a、180bに高周波信号ピン141a、141bが挿入固定される。同様に、誘電体178、179a、179bには、孔(符号は省略)がそれぞれ形成され、これらの各孔にモニタ信号ピン143およびバイアス給電ピン144a、144bが挿入固定される。一対の高周波信号ピン141a、141bが挿入される誘電体177の形状は、この場合長円形状を呈している。これに対応して、誘電体177が挿入される孔174も長円形状を呈している。その他の誘電体178、179a、179bは、円形形状としている。なお、グランドピン142a、142bは、ステム110の図示しない外壁面に圧着および溶接によって固着されている。
【0141】
ここで、2本の高周波信号ピン141a、141bは、高周波特性を考慮し、誘電体177の少なくとも一方の外側に突出される部分の長さ(LD20側への突出長)が、モニタ信号ピン143およびバイアス給電ピン144a、144bの同突出長よりも短く設定されており、高周波信号ピン141a、141bを伝送される信号が、誘電体177の外側に出ると、即座にマイクロストリップ差動線路基板146のストリップ差動信号線152a、152bに乗り移れるようにしている。モニタ信号ピン143およびバイアス給電ピン144a、144bの方は、高周波特性の厳しい制約がないので、ある程度の突出長を確保して、ワイヤボンドの接続作業などを容易にしている。
【0142】
誘電体177、178、179a、179bとしては、例えば、コバールガラスを使用するのが好ましく、ほうけい酸ガラスなどを使用しても良い。また、高周波信号ピン141a、141b、モニタ信号ピン143、バイアス給電ピン144a、144b、グランドピン142a、142bとしては、例えばコバール、50%Ni−Fe合金などの金属を使用する。
【0143】
なお、グランデッドコプレーナ差動線路170、高周波信号ピン141a、141b、グランドピン142a、142b、ワイヤボンド157a、157b、およびマイクロストリップ差動線路基板146、147によって、分布定数回路18が構成される。
【0144】
本実施の形態5においては、LD駆動回路1の差動トランジスタ12、13の出力からLD20までのインピーダンス整合をとるためこれらの間を全て差動線路で構成してLD20を駆動するようにしており、ステム110を貫通するピンも、長円形状の誘電体177に一対の高周波信号ピン141a、141bを貫通させることで、差動線路を構成する差動ピンとしている。このため、例えば、単相駆動の場合には、LD20を駆動する大電流がグランドを経由してLD駆動回路1に帰還するので、接地電位が変動するため、近接して設置されることが多い微弱電流を検出する光受信系の電子回路に悪影響が出ることがあるが、本実施例では差動線路を用いて、LD20をプッシュ・プル動作しているので、大電流は差動線路を流れ、接地電位の変動が少なくなり、周辺回路への影響が出にくいという利点がある
【0145】
このように、LD駆動回路1側ピン露出領域を差動線路構成としかつその外側にグランドピン142a、142bを配して、この部分のインピーダンスを従来に比べ低くするようにしたので、この部分とフィードスルー部とのインピーダンス差が従来に比べ小さくなり、また電界の不連続も少なくしたので、通過特性および反射特性を改善することができる。
【0146】
高周波信号ピン141a、141bの周りに配置される誘電体177として、ガラスを使用しているので、ステム110の内側部分(高周波信号ピン141a、141bが誘電体177で囲まれているフィードスルー部分、以下ピン非露出領域ともいう)では、取り扱いが容易な直径0.3mmから0.5mm程度の高周波信号ピン141a、141bと直径3.5mmから直径6mm程度のステム110に適当な形状の孔とした場合、インピーダンスが下がりすぎる傾向がある。このピン非露出領域のインピーダンスを上げるためには、高周波信号ピンの周りに配置される誘電体177の断面積(長円の面積)を大きくすればよいが、これでは小型化、省スペース化の要求を満足させることができない。
【0147】
そこで、2本の高周波信号ピン141a、141bは、誘電体177の外側に出ると、即座にマイクロストリップ差動線路基板146のストリップ差動信号線152a、152bに乗り移れるように、LD20側への突出長を短くするとともに、マイクロストリップ差動線路基板146のストリップ差動信号線152a、152bのうち、高周波信号ピン141a、141bに接続される、ステム110に近い部分の間隔を、例えば、マイクロストリップ差動線路基板147に近い部分の線路間隔よりも大きくしたり、高周波信号ピン141a、141bの間隔よりも若干広く設定する等、比較的大きく設定することで、この部分の電気的結合を弱くして、この部分を高インピーダンスに設定している。
【0148】
このように、ステム110を出た直後の差動線路部分の線路間隔を大きくして、高インピーダンス部分を故意に作成しており、この高インピーダンス部分とステム内側(ピン非露出領域)の低インピーダンス部分とでインピーダンスを相殺させ、全体的に見てインピーダンスを整合させるようにしている。すなわち、ピン非露出領域(フィードスルー部分)は低インピーダンスであるので、その後にハイインピーダンスを少し作って、全体としてのインピーダンス整合をとるようにしている。
【0149】
また、ストリップ差動信号線152a、152bの途中には、インピーダンス整合用の一対のスタブ154a、154bを形成しており、これら一対のスタブ154a、154bによりインピーダンスを下げてストリップ差動信号線156a、156bとのミスマッチングが発生しないようにしている。すなわち、これら一対のスタブ154a、154bにより、ドライバ側ピン露出領域のリアクタンス成分と、ピン非露出領域(フィードスルー部分)のリアクタンス成分を補償して、通過特性および反射特性を改善している。
【0150】
また、この場合、一対のスタブ154a、154bは、外側にではなく、内側に(互いの信号線に接近するように)突出されているので、マイクロストリップ差動線路基板146の小型化に寄与する。なお、小型化が必要ない場合は、差動線路の152a、151bの外側に突出するようにしてもよい。
【0151】
キャンパッケージ101においては、高周波信号ピン141a、141bとLD20との間を接続する差動線路基板と、LD20を搭載する基板と、LD20に直流バイアス電流を供給するためのバイアス回路基板と、モニタPD50とを配置する必要がある。
【0152】
このとき、マイクロストリップ差動線路基板146、147と、バイアス回路用基板149とで、LD用チップキャリア148を挟むようにLD用チップキャリア148の両側に配置するようにしている。別言すれば、LD20を真ん中にしてマイクロストリップ差動線路基板146、147の各ストリップ差動信号線152a、152b、156a、156bと、一対のインダクタンス回路を含む配線パターン162a、162bと、LD20とを略U字状に配置している。
【0153】
また、マイクロストリップ差動線路基板146、147が、LD用チップキャリア148からサイドにずれた位置に配設されるので、高周波信号ピン141a、141bを封止固定するための透明の誘電体177の配置位置も、必然的に、LD用チップキャリア148からサイドにずれた位置に配設されることになる。
【0154】
なお、LD20を搭載する基板と、高周波信号ピン141a、141bおよびLD20間を接続する差動線路基板とを、同一の基板で構成する手法もあるが、この場合は、熱源としてのLD20からの熱を放熱するため単位面積あたり高価な放熱性の良い窒化アルミ基板(AlN)などの基板材料を広い面積で使用しなくてはならず、コストアップの原因となる。
【0155】
そこで、熱源としてのLD20を搭載するLD用チップキャリア148を、他の基板から分離して単独基板としている。このため、LD用チップキャリア148にのみ高価な放熱性の良い窒化アルミ基板(AlN)などのセラミック基板材料を使用すればよくなり、他の基板(マイクロストリップ差動線路基板146、147と、バイアス回路用基板149)は、安価なAl2O3などのセラミック基板材料を使用すればよくなり、低コスト化が可能となる。
【0156】
また、本実施の形態によれば、インピーダンス整合用のマイクロストリップ差動線路基板146と、整合抵抗19a、19bを配置するためのマイクロストリップ差動線路基板147とを、別基板としたので、無駄のないセラミック基板の裁断が可能となって低コスト化に寄与する。
【0157】
また、バイアス回路用基板149には、バイアス給電ピン144a、144bに接続されるソレノイド21aおよび抵抗22aの並列回路と、ソレノイド21bおよび抵抗22bの並列回路とを、同一基板上に配置して、バイアス回路基板の小面積化を図っているので、低コスト化および小型化に寄与する。
【0158】
誘電体177の厚みをステム110に形成した孔174の深さすなわちステム110の幅よりも短く設定し、ステム110にはLD側の開口部をすりばち状に形成した孔195が形成される。
【0159】
なお、上記実施の形態において、マイクロストリップ差動線路基板146、147の代わりにグランデッドコプレーナ差動線路を用いるようにしてもよい。グランデッドコプレーナ差動線路は、前述したように、基板上に形成された一対の差動信号線と、この一対の差動信号線を挟むように差動信号線の外側に配置されるグランドと、裏面に配置される接地導体層とから構成されている。
【0160】
実施の形態6.
図17を用いて、この発明の実施の形態6の光半導体素子モジュールについて説明する。図17(a)は上蓋401を外した状態の上面図であり、図17(b)は図17(a)のII断面図である(但し、上蓋401は取付けた状態)。こ
の実施の形態6においては、先の実施の形態のキャンパッケージ101に搭載されるLD20と、LD20を載置する基板501を含む各種構成要素と、LD駆動回路1とを、箱形(バタフライ型)の光半導体用パッケージ402内に収納している。
【0161】
図17に示すように、この光半導体用パッケージ402においても、LD駆動回路1の入力バッファ11には、前述したように、正相および逆相の差動信号が入力される。そこで、この差動信号を光半導体用パッケージ402のLD駆動回路1に入力するために、光半導体用パッケージ402の側壁に誘電体177(フィードスルー)を嵌め込み、誘電体177上に設けれらた差動線路178a、178bを介して、パッケージの内外で気密を確保したまま差動信号の伝送を行う。
【0162】
差動線路178a、178bの一端は、光半導体用パッケージ402の外部で高周波信号ピン141a、141bとが半田接合されている。高周波信号ピン141a、141bはグランドに接続されたグランドピン142a、142bに挟まれるところで互いに近接して配置され、差動線路を構成する。
【0163】
差動線路178a、178bの他端は、基板502に設けられた差動ストリップ線路411の一端に接続される。差動ストリップ線路411の他端は、基板503に設けられた差動ストリップ線路の一端に接続される。基板503に設けられた差動ストリップ線路の他端は、LD駆動回路1の差動信号の入力端子にワイヤボンドを介在させて接続され、LD駆動回路1内の入力バッファ11に電気的に接続される。
【0164】
差動トランジスタ12、13と電気的に接続されたLD駆動回路1の出力端子は、ワイヤボンドを介在させて基板504に設けられた差動線路の一端に接続される。基板504に設けられた差動線路の他端は、基板501に設けられた差動線路の一端にワイヤボンドを介在させて接続される。基板501の差動線路の一方は、他端側で図5に示したようにLD20のアノードが半田接合される。基板501の差動線路の他方は、他端側で図5に示したようにワイヤボンドを介在させてLD20のカソードと接続される。基板501の一端側には、整合抵抗19a、19bが設けられている。基板505には、図5のように、ソレノイド21aと抵抗22aが並列に接続されたバイアス回路28aと、ソレノイド21bと抵抗22bが並列に接続されたバイアス回路28bが設けられている。バイアス回路28a、28bは基板501上の夫々の差動線路と接続される。また、バイアス回路28a、28bはセラミック基板450上の導体線路とワイヤボンドで接続される。
【0165】
バイアス回路28a、28bは、ワイヤボンドとセラミック基板450(フィードスルー)を介して導体リード451に接続されている。セラミック基板450はパッケージ側壁に嵌め込まれ、気密を確保したまま光半導体用パッケージ402の内外でバイアス電流やLD駆動回路1の制御信号を伝送する。
【0166】
LD駆動回路1、基板501、503、504、505は、金属導体マウント510の上に載置される。金属導体マウント510の側面には、レンズとレンズを保持するホルダから成るレンズ520が接合されている。レンズ520は、他の光学部品を介して光ファイバ120に集光するように配置される。また、光半導体用パッケージ402の上面には上蓋401が溶接され、光半導体用パッケージ402の前方の側壁の光通過孔に、窓ガラス600が接合されて気密が確保されている。光ファイバ120は光ファイバ保持部403で保持される。
【0167】
この実施の形態6においては、差動線路を構成する高周波信号ピン141a、141bや差動ストリップ線路411の他各差動線路を用いて、差動信号をLD駆動回路1に入力するようにしている。このため、先の実施の形態と同様、高周波特性の劣化を抑えることができるとともに、気密性を向上させることができる。
【0168】
【発明の効果】
以上説明したように、この発明にかかる光半導体装置によれば、差動線路が接続された光半導体素子がプシュ・プル動作により駆動されるので、波形の非対称性が改善され、光出力波形の品質が向上することにより、良好な伝送特性を得ることができるという効果を奏する。
【0169】
また、この発明にかかる光半導体装置によれば、差動線路が接続された光半導体素子の両電極側にバイアス回路を配置したので、バイアス回路に伴なう通過特性のリップルを改善でき、光出力波形の品質が向上することにより、良好な伝送特性を得ることができるという効果を奏する。
【図面の簡単な説明】
【図1】実施の形態1にかかる光半導体装置の一例を示す回路構成図である。
【図2】(a)はLD駆動回路の一対の差動トランジスタの立ち上がり、立ち下がり特性を模式的に示す説明図であり、(b)は、一対の差動トランジスタの立ち上がり、立ち下がり特性が平均化される原理を示す説明図である。
【図3】様々なパターンの光信号波形を光−電気変換した後で帯域フィルタを通し、その電気信号を重ね書きした図である。
【図4】(a)は図1に示すLDモジュールを分布定数回路から見たときの周波数応答特性を示すグラフであり、(b)は夫々のバイアス回路を異なるインピーダンスにしたときの周波数応答特性を示すグラフである。
【図5】実施の形態2にかかる光半導体装置の一例を示す回路構成図である。
【図6】(a)はフィルタの上面図であり、(b)はこのフィルタのP方向矢視図である。
【図7】フィルタを挿入する前後の周波数応答特性を対比したグラフである。
【図8】図5に示す光半導体装置の高周波動作を模擬する等価回路図である。
【図9】(a)は図18に示す従来技術の光半導体装置の高周波動作を模擬する簡単化した等価回路図であり、(b)はこの等価回路の周波数応答特性のシミュレーション結果を示すグラフである。
【図10】(a)は図1に示すこの発明の光半導体装置(差動線路)の高周波動作を模擬する簡単化した等価回路図であり、(b)はこの等価回路の周波数応答特性のシミュレーション結果を示すグラフである。
【図11】(a)は、図10(a)の等価回路においてバイアス回路の構成を詳細に示した回路構成図であり、(b)はこの回路条件に基づく周波数応答特性のシミュレーション結果を示すグラフであり、(c)は図9(a)の等価回路においてバイアス回路の構成を詳細に示した回路構成図であり、(d)はこの回路条件に基づく周波数応答特性のシミュレーション結果を示すグラフである。
【図12】(a)は図11(a)と同一の等価回路を示した回路構成図であり、(b)は図12(a)の回路条件に基づくシミュレーション結果を示すグラフであり、(c)は図11(a)の等価回路において、ワイヤボンド23a(または23b)のインダクタンスL4を、3nHから1nHに変更したときの周波数応答特性のシミュレーション結果を示すグラフである。
【図13】(a)は図11(a)と同一の等価回路を示したものであり、(b)は図13(a)の回路条件に基づくシミュレーション結果を示すグラフであり、(c)は図11(a)の等価回路において、インダクタンス素子のインダクタンスL1を変更したときの周波数応答特性のシミュレーション結果を示すグラフである。
【図14】キャンパッケージおよびレセプタクルから構成されるLDモジュールの外観構成を示す図である。
【図15】(a)はLDモジュールの水平断面図(図14のxに平行な面)であり、(b)は垂直断面図(図14のyに平行な面)である。
【図16】キャップを外した状態におけるキャンパッケージを示す斜視図である。
【図17】(a)は上蓋を外した状態の上面図であり、図17(b)は上蓋を取付けた状態での図17(a)のII断面図である。
【図18】従来の単相給電方式による光半導体装置の一例を示す回路図である。
【図19】図18のLD駆動回路に示すような回路から出力される電気信号波形のアイパターンの一例を示す図である。
【図20】図19に示すような信号波形の電気信号を出力するLD駆動回路を用いて、図18のLDモジュールから出力される光信号波形(光出力波形)のアイパターンの一例を示す図である。
【図21】図18に示すLD駆動回路とLDモジュールの間の信号伝送路Pを、マイクロストリップ線路のような分布定数回路で構成し、この分布定数回路からLDモジュールを見たときの、周波数応答特性を示すグラフである。
【符号の説明】
1,200 LD駆動回路、2,300 LDモジュール、11,201 入力バッファ、12,13 差動トランジスタ、14,24,204,314 定電流源、15,16,22a,22b,105,106,107 抵抗、18,208 分布定数回路、19a,19b,309 整合抵抗、20,310 LD、21a,21b ソレノイド、23a,23b,29,157a,157b,161a,161b,163a,163b,329 ワイヤボンド、25,315 集光レンズ、26,118a,120,316 光ファイバ、27 フィルタ、28a,28b,32,33 バイアス回路、31 出力インピーダンス、38 ストリップ導体電極、39 マイクロストリップ導体線路、40 接地導体、41,151,155,158,450 セラミック基板、101 キャンパッケージ、102 レセプタクル、103 LDモジュール、110 ステム、111 台座、113 キャップ、113a,113b キャップ部材、114,117,174,195 孔、115 内部空間、116 ウィンドウ、118 ダミーフェルール、119 フェルール挿入孔、121 フェルール、141a,141b 高周波信号ピン、142a,142b グランドピン、143 モニタ信号ピン、144a,144b バイアス給電ピン、145 PD用チップキャリア、146,147 マイクロストリップ差動線路基板、148LD用チップキャリア、149 バイアス回路用基板、150 PD、152a,152b,156a,156b,159a,159b ストリップ差動信号線、153a,153b パッド、154a,154b スタブ、160a,160b 出力端子、162a,162b 配線パターン、170 グランデッドコプレーナ差動線路、171a,171b 差動信号線、172a,172b グランド、177,178 誘電体、178a,178b 差動線路、180a,180b ピン挿入孔、202,203 トランジスタ、311 インダクタンス素子、400,402 光半導体用パッケージ、411 差動ストリップ線路、401 上蓋、403 光ファイバ保持部、451 導体リード、501,502,503,504,505 基板、510 金属導体マウント、520 レンズ、600 窓ガラス。
Claims (13)
- 光半導体素子と、
前記光半導体素子の有する一対の電極の一方に接続され、この光半導体素子に電気信号を供給する第1の導体線路と、
前記光半導体素子の有する一対の電極の他方に接続され、この光半導体素子に電気信号を供給する第2の導体線路と、
前記光半導体素子の一方の電極と前記第1の導体線路とに接続された第1のインダクタンス素子と、
前記光半導体素子の他方の電極と前記第2の導体線路とに接続された第2のインダクタンス素子と、
を備え、
前記第1、第2の導体線路は、一対の差動線路を成す光半導体装置。 - 光半導体素子と、
前記光半導体素子の有する一対の電極の一方に電気信号を供給する第1の差動入力端子と、
前記光半導体素子の有する一対の電極の他方に、前記第1の差動入力端子と逆相の電気信号を供給する第2の差動入力端子と、
前記光半導体素子の一方の電極と前記第1の導体線路とに接続され、高周波の前記電気信号を遮断する第1のインダクタンス素子と、
前記光半導体素子の他方の電極と前記第2の導体線路とに接続され、高周波の前記電気信号を遮断する第2のインダクタンス素子と、
を備えた光半導体装置。 - 光半導体素子と、
前記光半導体素子の有する一対の電極の一方および他方に、夫々一方の端子および他方の端子が接続され、この光半導体素子に電気信号を供給する一対の差動増幅器と、
前記光半導体素子の一方の電極に接続され、高周波の前記電気信号を遮断する第1のインダクタンス素子と、
前記光半導体素子の他方の電極に接続され、高周波の前記電気信号を遮断する第2のインダクタンス素子と、
を備えた光半導体装置。 - 前記光半導体素子の一方の電極および他方の電極に、夫々接続され、前記電気信号をこの光半導体素子に導く一対の整合抵抗をさらに備えることを特徴とする請求項1〜3の何れか一つに記載の光半導体装置。
- 前記第1のインダクタンス素子とこの第1のインダクタンス素子に並列接続された第1の抵抗とを有する第1のバイアス回路と、
前記第2のインダクタンス素子とこの第2のインダクタンス素子に並列接続された第2の抵抗とを有する第2のバイアス回路と、
を備えることを特徴とする請求項1〜4の何れか一つに記載の光半導体装置。 - 前記第1および第2の導体線路と前記一対の整合抵抗との間に、少なくともディジタル信号の最大繰り返し周波数よりも高い周波数を遮断するフィルタを備えることを特徴とする請求項1〜3の何れか一つに記載の光半導体装置。
- 前記フィルタは、前記第1および第2の導体線路に対して交差する複数の導体が櫛型状に形成された第1および第2の導体フィンガー部を夫々備え、前記第1の導体フィンガー部と前記第2の導体フィンガー部とが交互に配置されていることを特徴とする請求項6に記載の光半導体装置。
- 前記第1および第2の導体線路を収納するパッケージと、
前記光半導体素子の出射光を集光するレンズと、
光ファイバを保持する光ファイバ保持部材と、
を備えることを特徴とする請求項1〜7に記載の光半導体装置。 - 前記第1および第2のインダクタンス素子が空芯コイルであることを特徴とする請求項1〜8の何れか一つに記載の光半導体装置。
- 前記光半導体素子は、半導体レーザダイオードであることを特徴とする請求項1〜9の何れか一つに記載の光半導体装置。
- 光半導体素子と、
前記光半導体素子の一対の電極に夫々接続され、この光半導体素子に差動信号を供給する第1、第2の導体線路と、
前記第1の導体線路と前記光半導体素子の一方の電極とに電気的に接続される第1の端子と、
前記第2の導体線路と前記光半導体素子の他方の電極とに電気的に接続される第2の端子と、
を備え、
前記第1、第2の端子は夫々、高周波を遮断するバイアス回路に接続される光半導体装置。 - 光半導体素子と、
前記光半導体素子の一対の電極の一方に一端が接続され、この光半導体素子に電気信号を供給する第1の導体線路と、
前記光半導体素子の一対の電極の他方に一端が接続され、この光半導体素子に電気信号を供給する第2の導体線路と、
前記光半導体素子の一方の電極と前記第1の導体線路とに接続される第1のインダクタンス素子と、
前記光半導体素子の他方の電極と前記第2の導体線路とに接続される第2のインダクタンス素子と、
を備え、
前記光半導体素子がプシュ・プル動作により駆動される光半導体装置。 - 少なくとも2つのバイアス回路のインピーダンスを非対称にしたことを特徴とする請求項1〜11の何れか一つに記載の光半導体装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002204782A JP4046564B2 (ja) | 2002-07-12 | 2002-07-12 | 光半導体装置 |
EP03764178A EP1523078B1 (en) | 2002-07-12 | 2003-07-11 | Optical semiconductor device |
PCT/JP2003/008859 WO2004008594A1 (ja) | 2002-07-12 | 2003-07-11 | 光半導体装置 |
DE60313777T DE60313777T2 (de) | 2002-07-12 | 2003-07-11 | Optisches halbleiterbauelement |
CA002468441A CA2468441C (en) | 2002-07-12 | 2003-07-11 | Optical semiconductor device |
US10/500,325 US20050067698A1 (en) | 2002-07-12 | 2003-07-11 | Optical semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002204782A JP4046564B2 (ja) | 2002-07-12 | 2002-07-12 | 光半導体装置 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004047832A true JP2004047832A (ja) | 2004-02-12 |
JP2004047832A5 JP2004047832A5 (ja) | 2005-10-13 |
JP4046564B2 JP4046564B2 (ja) | 2008-02-13 |
Family
ID=30112738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002204782A Expired - Fee Related JP4046564B2 (ja) | 2002-07-12 | 2002-07-12 | 光半導体装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20050067698A1 (ja) |
EP (1) | EP1523078B1 (ja) |
JP (1) | JP4046564B2 (ja) |
CA (1) | CA2468441C (ja) |
DE (1) | DE60313777T2 (ja) |
WO (1) | WO2004008594A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005252251A (ja) * | 2004-02-19 | 2005-09-15 | Sumitomo Electric Ind Ltd | 光送信アセンブリ |
JP2006222263A (ja) * | 2005-02-10 | 2006-08-24 | Mitsubishi Electric Corp | 光半導体装置 |
JP2006303668A (ja) * | 2005-04-18 | 2006-11-02 | Matsushita Electric Ind Co Ltd | 出力インピーダンス可変回路 |
JP2006332372A (ja) * | 2005-05-26 | 2006-12-07 | Sumitomo Electric Ind Ltd | 光モジュール |
JP2007115832A (ja) * | 2005-10-19 | 2007-05-10 | Sumitomo Electric Ind Ltd | 半導体レーザ駆動回路 |
JP2008135644A (ja) * | 2006-11-29 | 2008-06-12 | Opnext Japan Inc | 光送信器 |
US7869479B2 (en) * | 2005-02-04 | 2011-01-11 | Mitsubishi Denki Kabushiki Kaisha | Optical module |
JP2015228396A (ja) * | 2014-05-30 | 2015-12-17 | 住友電工デバイス・イノベーション株式会社 | 光学装置 |
JP2017050357A (ja) * | 2015-08-31 | 2017-03-09 | 日本オクラロ株式会社 | 光モジュール |
JP2021121048A (ja) * | 2020-01-30 | 2021-08-19 | CIG Photonics Japan株式会社 | 光モジュール及び光伝送装置 |
JP2021521674A (ja) * | 2018-04-06 | 2021-08-26 | アイピージー フォトニクス コーポレーション | 高電圧絶縁を有する海中光学リピーター |
WO2022203058A1 (ja) * | 2021-03-25 | 2022-09-29 | 日本電信電話株式会社 | 送信インターフェースおよび送信装置 |
JP7572282B2 (ja) | 2021-03-25 | 2024-10-23 | 日本電信電話株式会社 | 送信インターフェースおよび送信装置 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100575969B1 (ko) * | 2003-11-14 | 2006-05-02 | 삼성전자주식회사 | 티오-캔 구조의 광 모듈 |
JP4599091B2 (ja) * | 2004-05-19 | 2010-12-15 | 日本オプネクスト株式会社 | 光モジュールおよび光伝送装置 |
US7806602B2 (en) * | 2008-03-14 | 2010-10-05 | Finisar Corporation | Optical micro-connector |
US7901144B2 (en) * | 2008-03-14 | 2011-03-08 | Finisar Corporation | Optical interconnect solution |
JP2011053354A (ja) * | 2009-08-31 | 2011-03-17 | Toshiba Corp | 光電気配線フィルムおよび光電気配線モジュール |
US9379819B1 (en) * | 2014-01-03 | 2016-06-28 | Google Inc. | Systems and methods for reducing temperature in an optical signal source co-packaged with a driver |
WO2020056662A1 (zh) * | 2018-09-20 | 2020-03-26 | 华为技术有限公司 | 一种光电子组件及其制造方法 |
JP2021048206A (ja) * | 2019-09-18 | 2021-03-25 | ソニーセミコンダクタソリューションズ株式会社 | 半導体レーザ駆動装置、電子機器、および、半導体レーザ駆動装置の製造方法 |
JP7350646B2 (ja) * | 2019-12-17 | 2023-09-26 | CIG Photonics Japan株式会社 | 光モジュール |
US11340412B2 (en) * | 2020-02-28 | 2022-05-24 | CIG Photonics Japan Limited | Optical module |
US12047248B2 (en) | 2020-10-26 | 2024-07-23 | Samsung Electronics Co., Ltd. | Method of controlling state control parameter for adjusting state of network of base station by using any one of plurality of models and electronic device performing the method |
KR102495148B1 (ko) * | 2020-11-30 | 2023-02-07 | 주식회사 오이솔루션 | To-can 타입 반도체 패키지를 위한 임피던스 신호선의 구조 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4873566A (en) * | 1985-10-28 | 1989-10-10 | American Telephone And Telegraph Company | Multilayer ceramic laser package |
JPS62206570A (ja) * | 1986-03-07 | 1987-09-11 | Citizen Watch Co Ltd | レ−ザ−ダイオ−ドパルス点燈回路 |
JPH01251801A (ja) * | 1988-03-30 | 1989-10-06 | Ngk Spark Plug Co Ltd | 三導体構造フィルタ |
US5260956A (en) * | 1991-09-30 | 1993-11-09 | Nikon Corporation | Laser drive circuit |
JP2954422B2 (ja) * | 1992-05-22 | 1999-09-27 | 株式会社日立製作所 | 光送信モジュール |
US5646560A (en) * | 1994-09-30 | 1997-07-08 | National Semiconductor Corporation | Integrated low-power driver for a high-current laser diode |
JP3432620B2 (ja) * | 1994-12-20 | 2003-08-04 | 富士通株式会社 | 光送信機及びレーザダイオードモジュール |
JPH0955630A (ja) * | 1995-08-14 | 1997-02-25 | Hitachi Ltd | 出力バッファ回路及び光変調器の駆動装置 |
JPH09115166A (ja) * | 1995-10-16 | 1997-05-02 | Sony Corp | 半導体レーザ素子の出力制御装置 |
US5760939A (en) * | 1995-10-23 | 1998-06-02 | Sdl, Inc. | Optical transmission link capable of high temperature operation without cooling with an optical receiver module having temperature independent sensitivity performance and optical transmitter module with laser diode source |
JPH09283825A (ja) * | 1996-04-18 | 1997-10-31 | Kokusai Electric Co Ltd | 発光回路 |
US5982793A (en) * | 1996-05-20 | 1999-11-09 | Matsushita Electric Industrial Co., Ltd. | Semiconductor laser module with internal matching circuit |
US6181718B1 (en) * | 1997-01-08 | 2001-01-30 | Matsushita Electric Industrial Co., Ltd. | Electronically cooled semiconductor laser module with modified ground line inductance |
JP3379421B2 (ja) * | 1998-02-16 | 2003-02-24 | 住友電気工業株式会社 | レーザモジュール |
JP2002111118A (ja) * | 2000-09-28 | 2002-04-12 | Hitachi Cable Ltd | 光送信回路 |
US20030002551A1 (en) * | 2001-06-29 | 2003-01-02 | Broadband Transport Technologies, Inc. | Laser diode driver |
US20030086455A1 (en) * | 2001-10-24 | 2003-05-08 | Ciubotaru Alexamicu Amclian | High speed semiconductor vertical cavity surface emitting laser driver circuit |
-
2002
- 2002-07-12 JP JP2002204782A patent/JP4046564B2/ja not_active Expired - Fee Related
-
2003
- 2003-07-11 EP EP03764178A patent/EP1523078B1/en not_active Expired - Lifetime
- 2003-07-11 US US10/500,325 patent/US20050067698A1/en not_active Abandoned
- 2003-07-11 CA CA002468441A patent/CA2468441C/en not_active Expired - Fee Related
- 2003-07-11 DE DE60313777T patent/DE60313777T2/de not_active Expired - Lifetime
- 2003-07-11 WO PCT/JP2003/008859 patent/WO2004008594A1/ja active IP Right Grant
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005252251A (ja) * | 2004-02-19 | 2005-09-15 | Sumitomo Electric Ind Ltd | 光送信アセンブリ |
JP4687133B2 (ja) * | 2004-02-19 | 2011-05-25 | 住友電気工業株式会社 | 光送信アセンブリ |
US7869479B2 (en) * | 2005-02-04 | 2011-01-11 | Mitsubishi Denki Kabushiki Kaisha | Optical module |
JP2006222263A (ja) * | 2005-02-10 | 2006-08-24 | Mitsubishi Electric Corp | 光半導体装置 |
JP2006303668A (ja) * | 2005-04-18 | 2006-11-02 | Matsushita Electric Ind Co Ltd | 出力インピーダンス可変回路 |
JP2006332372A (ja) * | 2005-05-26 | 2006-12-07 | Sumitomo Electric Ind Ltd | 光モジュール |
JP2007115832A (ja) * | 2005-10-19 | 2007-05-10 | Sumitomo Electric Ind Ltd | 半導体レーザ駆動回路 |
JP4506640B2 (ja) * | 2005-10-19 | 2010-07-21 | 住友電気工業株式会社 | 半導体レーザ駆動回路 |
US7483459B2 (en) | 2005-10-19 | 2009-01-27 | Sumitomo Electric Industries, Ltd. | Laser driver with selectable output impedance |
JP2008135644A (ja) * | 2006-11-29 | 2008-06-12 | Opnext Japan Inc | 光送信器 |
JP2015228396A (ja) * | 2014-05-30 | 2015-12-17 | 住友電工デバイス・イノベーション株式会社 | 光学装置 |
JP2017050357A (ja) * | 2015-08-31 | 2017-03-09 | 日本オクラロ株式会社 | 光モジュール |
JP2021521674A (ja) * | 2018-04-06 | 2021-08-26 | アイピージー フォトニクス コーポレーション | 高電圧絶縁を有する海中光学リピーター |
JP2021121048A (ja) * | 2020-01-30 | 2021-08-19 | CIG Photonics Japan株式会社 | 光モジュール及び光伝送装置 |
JP7369047B2 (ja) | 2020-01-30 | 2023-10-25 | CIG Photonics Japan株式会社 | 光モジュール及び光伝送装置 |
WO2022203058A1 (ja) * | 2021-03-25 | 2022-09-29 | 日本電信電話株式会社 | 送信インターフェースおよび送信装置 |
JP7572282B2 (ja) | 2021-03-25 | 2024-10-23 | 日本電信電話株式会社 | 送信インターフェースおよび送信装置 |
Also Published As
Publication number | Publication date |
---|---|
CA2468441A1 (en) | 2004-01-22 |
WO2004008594A1 (ja) | 2004-01-22 |
EP1523078B1 (en) | 2007-05-09 |
EP1523078A4 (en) | 2006-02-08 |
DE60313777T2 (de) | 2008-01-24 |
DE60313777D1 (de) | 2007-06-21 |
EP1523078A1 (en) | 2005-04-13 |
CA2468441C (en) | 2009-12-15 |
JP4046564B2 (ja) | 2008-02-13 |
US20050067698A1 (en) | 2005-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4046564B2 (ja) | 光半導体装置 | |
JP3998526B2 (ja) | 光半導体用パッケージ | |
US7130100B2 (en) | Optical module | |
US7030477B2 (en) | Optical semiconductor device | |
JP4586337B2 (ja) | 半導体レーザモジュールおよび半導体レーザ装置 | |
JP4198410B2 (ja) | 光半導体集積装置 | |
JP4199901B2 (ja) | 光送信モジュール | |
JP2001209017A (ja) | 光電変換半導体装置 | |
JP6881745B2 (ja) | 光半導体装置 | |
JP2002324866A (ja) | 電子パッケージ | |
JP4212845B2 (ja) | 光半導体素子モジュール | |
US5926308A (en) | High-speed optical modulator module | |
JP2000353846A (ja) | ステム型半導体レーザ装置 | |
JP4699138B2 (ja) | 光半導体素子モジュール及びその製造方法 | |
JP2004241480A (ja) | 光半導体装置 | |
JP2004259880A (ja) | 光半導体装置 | |
JP2005038984A (ja) | 光伝送モジュール | |
JP2004281975A (ja) | 光半導体装置 | |
JP2004088026A (ja) | 光モジュール | |
JP2004004317A (ja) | 光変調装置 | |
JPH02271585A (ja) | レーザダイオードモジュール | |
JPH11340601A (ja) | 光素子の取付方法およびフレキシブルプリント配線板 | |
JP2004303753A (ja) | 光半導体素子モジュール | |
JP2003198036A (ja) | 光半導体実装構造及び光モジュール | |
JPH0537083A (ja) | 半導体レーザモジユール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050531 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071001 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071120 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101130 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111130 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121130 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121130 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131130 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |