ES2968070T3 - Proceso para la concentración de anticuerpos y productos terapéuticos de estos - Google Patents

Proceso para la concentración de anticuerpos y productos terapéuticos de estos Download PDF

Info

Publication number
ES2968070T3
ES2968070T3 ES10009914T ES10009914T ES2968070T3 ES 2968070 T3 ES2968070 T3 ES 2968070T3 ES 10009914 T ES10009914 T ES 10009914T ES 10009914 T ES10009914 T ES 10009914T ES 2968070 T3 ES2968070 T3 ES 2968070T3
Authority
ES
Spain
Prior art keywords
antibody
concentration
antibody preparation
ultrafiltration
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES10009914T
Other languages
English (en)
Inventor
Charles Matthew Winter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Genentech Inc
Original Assignee
Novartis AG
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35996499&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2968070(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Novartis AG, Genentech Inc filed Critical Novartis AG
Application granted granted Critical
Publication of ES2968070T3 publication Critical patent/ES2968070T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig
    • C07K16/4291Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig against IgE
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39591Stabilisation, fragmentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • B01D61/146Ultrafiltration comprising multiple ultrafiltration steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/16Flow or flux control
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

DESCRIPCIÓN
Proceso para la concentración de anticuerpos y productos terapéuticos de estos
Antecedentes
Los métodos para aislar, purificar y concentrar materiales biológicos son conocidos e incluyen, por ejemplo, cromatografía, ultrafiltración y liofilización, véase en general, R. Hatti-Kaulet al.,«Downstream Processing in Biotechnology», enBasic Biotechnology,cap. 9, páginas 187-211, 2.a ed., Cambridge University Press (2001). La patente de EE. UU. 5 177 194 divulga un proceso de múltiples pasos para purificar una fracción de globulina sérica inmunitaria a partir de una fracción de proteína plasmática cruda. El proceso comprende ultrafiltración, lavado molecular, intercambio aniónico y opcionalmente una ultrafiltración adicional. Los procesos para obtener preparados concentrados de anticuerpos monoclonales para la administración a seres humanos también son conocidos, véase, por ejemplo, la Patente de EE. UU. N.° 6252055, que utiliza ultrafiltración y recircula el filtrado resultante.
Algunos problemas asociados con los métodos de concentración de anticuerpos disponibles incluyen, por ejemplo, flujos bajos, tiempos de proceso prolongados, áreas de membrana grandes, rendimiento y pérdidas de recuperación mecánica, manipulación o intervención intensiva por parte del operador, tasas bajas de transferencia de masa, ineficacias energéticas y límites de presión hidráulica en el equipo de concentración. Estos y otros problemas pueden contribuir a un alto coste total de fabricación y, en última instancia, a costes más altos para los consumidores de fármacos terapéuticos.
Se necesitan procesos mejorados para preparar formulaciones de proteínas altamente concentradas, tales como preparados de anticuerpos líquidos y productos terapéuticos de estos.
Compendio
En términos generales, la presente divulgación se refiere en general a procesos para concentrar proteínas, tales como procesos para concentrar un preparado de anticuerpos, a formulaciones farmacéuticas que contienen un preparado de este tipo y a su uso en terapia humana o terapia animal. En particular, la invención proporciona un proceso para preparar composiciones concentradas de anticuerpos anti-IgE humanizados recombinantes, que comprende:
(a) una primera ultrafiltración de un primer preparado de anticuerpos que tiene una concentración de 0,1 a 10 gramos por litro para proporcionar un segundo preparado de anticuerpos como la fracción retenida, en donde el segundo preparado de anticuerpos tiene una concentración de 10 a 50 gramos por litro;
(b) una diafiltración del segundo preparado de anticuerpos para proporcionar un preparado de anticuerpos intermedio diafiltrado como la fracción retenida, en donde el preparado de anticuerpos intermedio diafiltrado tiene la misma concentración que el segundo preparado de anticuerpos; y
(c) una segunda ultrafiltración del preparado de anticuerpos intermedio diafiltrado para proporcionar un tercer preparado de anticuerpos como la fracción retenida de la segunda ultrafiltración, en donde el tercer preparado de anticuerpos tiene una concentración de 150 a 200 gramos por litro,
en donde los pasos (a), (b) y (c) se llevan a cabo a una temperatura de 45 °C ± 5 °C; y en donde el anticuerpo es rhuMAb E25.
Breve descripción de los dibujos
La FIG. 1 ilustra un aparato para llevar a cabo el proceso de preparación, en las realizaciones de la presente divulgación. Las FIGS. 2 a 17 ilustran varios valores del proceso observados o medidos en varias fases o modos del proceso, en las realizaciones de la presente divulgación.
Las FIGS. 18 y 19 ilustran el efecto de una temperatura elevada sobre la calidad del producto, en las realizaciones de la presente divulgación.
Las FIGS. 20 y 21 ilustran el efecto de una temperatura elevada sobre el control de la carga biológica, en las realizaciones de la presente divulgación.
La FIG. 22 ilustra el efecto de una temperatura elevada sobre el flujo del proceso y el tiempo del proceso, en las realizaciones de la presente divulgación.
Las FIGS. 23 a 25 ilustran varios valores del proceso observados o medidos en varias fases o modos del proceso de escalado, en las realizaciones de la presente divulgación.
Descripción detallada
Se describirán en detalle varias realizaciones de la presente divulgación haciendo referencia a los dibujos. La referencia a varias realizaciones no limita el alcance de la invención, la cual está limitada únicamente por el alcance de las reivindicaciones adjuntas. Además, no se pretende que ninguno de los ejemplos expuestos en esta memoria descriptiva sea limitante y simplemente se exponen algunas de las muchas realizaciones posibles para la invención reivindicada. Se utilizan las siguientes definiciones, a menos que se describa otra cosa:
«Ultrafiltrar», «ultrafiltración», «ultrafiltrado», «UF» y términos similares se refieren, por ejemplo, al uso de membranas semipermeables sintéticas, con propiedades físicas y químicas apropiadas, para discriminar entre moléculas en la mezcla, principalmente en función de la forma y el tamaño molecular, y lograr la separación de diferentes moléculas o lograr la concentración de moléculas similares.
«Diafiltrar», «diafiltración», «diafiltrado», «diafiltrando», «DF» y términos similares se refieren, por ejemplo, al uso de una membrana de ultrafiltración para eliminar, reemplazar o reducir la concentración de sales o disolventes de soluciones o mezclas que contienen proteínas, péptidos, ácidos nucleicos u otras biomoléculas.
«Presión de transmembrana» o «PTM» se refiere a la presión promedio aplicada desde la alimentación hasta el lado del filtrado de la membrana, calculada como PTM [bar] = [(PA PR)/2] - Pf, donde PA es la presión de la alimentación, PR es la presión de la fracción retenida, y P<f>es la presión del filtrado.
«Filtración de flujo tangencial», «filtración de flujo cruzado», «FFT» y términos similares se refieren a un modo de filtración en el que la solución que contiene el soluto pasa tangencialmente a través de la membrana de UF y las sales o solutos de menor peso molecular se hacen pasar aplicando presión.
«Anticuerpo» se utiliza en el sentido más amplio y cubre específicamente anticuerpos monoclonales intactos, anticuerpos policlonales, anticuerpos multiespecíficos (p. ej., anticuerpos biespecíficos) formados a partir de al menos dos anticuerpos intactos y fragmentos de anticuerpos, siempre que exhiban la actividad biológica deseada. Un anticuerpo es una proteína generada por el sistema inmunitario que es capaz de reconocer un antígeno específico y unirse a él. Descrito en cuanto a su estructura, un anticuerpo es una proteína en forma de Y que consta de cuatro cadenas de aminoácidos, dos pesadas y dos ligeras. En un modelo simplificado suficiente para este caso, cada anticuerpo tiene principalmente dos regiones: una región variable y una región constante. La región variable, ubicada en los extremos de los brazos de la Y, se une al antígeno diana e interacciona con él. Esta región variable incluye una región determinante de la complementariedad (CDR) que reconoce un sitio de unión específico en un antígeno particular y se une a él. La región constante, ubicada en la cola de la Y, es reconocida por el sistema inmunitario e interacciona con él (Janeway, C., Travers, P., Walport, M., Shlomchik (2001)Immuno Biology,5.a Ed., Garland Publishing, Nueva York). Un antígeno diana generalmente tiene numerosos sitios de unión, también denominados epítopos, que son reconocidos por las CDR en múltiples anticuerpos. Cada anticuerpo que se une específicamente a un epítopo diferente tiene una estructura diferente. Por lo tanto, un antígeno puede tener más de un anticuerpo correspondiente.
La unidad básica de un anticuerpo de 4 cadenas es una glicoproteína heterotetramérica compuesta por dos cadenas ligeras (L) idénticas y dos cadenas pesadas (H) idénticas (un anticuerpo IgM consta de 5 de las unidades heterotetrámeras básicas junto con un polipéptido adicional denominado cadena J y, por consiguiente, contiene 10 sitios de unión al antígeno, mientras que los anticuerpos IgA secretados pueden polimerizarse para formar ensamblajes polivalentes que comprenden 2-5 de las unidades básicas de 4 cadenas junto con la cadena J). En el caso de las IgG, la unidad de 4 cadenas es por lo general de aproximadamente 150000 daltons. Cada cadena L está unida a una cadena H mediante un enlace de disulfuro covalente, mientras que las dos cadenas H están unidas entre sí mediante uno o más enlaces de disulfuro dependiendo del isotipo de la cadena H. Cada cadena H y L también tiene puentes de disulfuro intracatenarios distribuidos de forma regular. Cada cadena H tiene en el extremo N un dominio variable (V<h>) seguido de tres dominios constantes (C<h>) para cada una de las cadenas a y y, y cuatro dominios C<h>para los isotipos p y £. Cada cadena L tiene en el extremo N un dominio variable (V<l>) seguido de un dominio constante (C<l>) en su otro extremo. V<l>está alineado con V<h>y C<l>está alineado con el primer dominio constante de la cadena pesada (C<h>1). Se cree que determinados residuos aminoacídicos forman una interfaz entre los dominios variables de la cadena ligera y la cadena pesada. El apareamiento de V<h>y V<l>entre sí forma un solo sitio de unión al antígeno. Para consultar la estructura y las propiedades de las diferentes clases de anticuerpos, véase, por ejemplo,Basic and Clinical Immunology,8.a edición, D. Stites, A. Terr y T. Parslow (eds.), Appleton & Lange, Norwalk, CT, 1994 , página 71 y capítulo 6.
La cadena L de cualquier especie de vertebrado se puede asignar a uno de dos tipos claramente distintos, denominados kappa y lambda, en función de las secuencias de aminoácidos de sus dominios constantes. Dependiendo de la secuencia de aminoácidos del dominio constante de sus cadenas pesadas (C<h>), las inmunoglobulinas se pueden asignar a diferentes clases o isotipos. Hay cinco clases de inmunoglobulinas: IgA, IgD, IgE, IgG e IgM, que tienen unas cadenas pesadas que se denominana, 5, s, yyg,respectivamente. Las clasesyyase dividen además en subclases basándose en diferencias relativamente menores en la secuencia de C<h>y la función, p. ej., los seres humanos expresan las siguientes subclases: IgG1, IgG2, IgG3, IgG4, IgA1 e IgA2.
El término «variable» se refiere al hecho de que ciertos segmentos de los dominios variables difieren ampliamente en la secuencia entre los anticuerpos. El dominio V media la unión al antígeno y define la especificidad de un anticuerpo particular para su antígeno particular. Sin embargo, la variabilidad no se distribuye uniformemente en el intervalo de aproximadamente 110 aminoácidos de los dominios variables. En su lugar, las regiones V consisten en tramos relativamente invariantes denominados regiones de armazón (FR) de 15-30 aminoácidos separados por regiones más cortas de extrema variabilidad denominadas «regiones hipervariables» que tienen cada una de ellas una longitud de 9 12 aminoácidos. Los dominios variables de las cadenas pesada y ligera nativas comprenden cada uno de ellos cuatro FR, que adoptan predominantemente una configuración de lámina p, conectadas por tres regiones hipervariables, que forman bucles que conectan y, en algunos casos, forman parte de la estructura de la lámina p. Las regiones hipervariables de cada cadena se mantienen unidas en estrecha proximidad por las FR y, con las regiones hipervariables de la otra cadena, contribuyen a la formación del sitio de unión al antígeno de los anticuerpos (véase Kabatet al.,enSequences of Proteins of Immunological Interest,5.a Ed. Servicio de Sanidad Pública, Institutos Nacionales de Salud, Bethesda, MD. (1991)). Los dominios constantes no participan directamente en la unión de un anticuerpo a un antígeno, pero muestran varias funciones efectoras, tales como la participación del anticuerpo en la citotoxicidad celular dependiente de anticuerpos (ADCC, por sus siglas en inglés).
La expresión «región hipervariable», cuando se utiliza en el presente documento, se refiere a los residuos aminoacídicos de un anticuerpo que son responsables de la unión al antígeno. La región hipervariable comprende por lo general residuos aminoacídicos de una «región determinante de la complementariedad» o «CDR» (p. ej., alrededor de aproximadamente los residuos de Kabat 24-34 (L1), 50-56 (L2) y 89-97 (L3) en V<l>, y alrededor de aproximadamente los residuos de Kabat 31-35B (H1), 50-65 (H2) y 95-102 (H3) en V<h>(véase Kabatet al.,mencionado anteriormente) y/o los residuos de un «bucle hipervariable» (p. ej., alrededor de aproximadamente los residuos de Chothia 26-32 (L1), 50-52 (L2) y 91-96 (L3) en V<l>, y 26-32 (H1), 52A-55 (H2) y 96-101 (H3) en V<h>(Chothia y Lesk,J. Mol. Biol.,196:901-917 (1987)).
La expresión «anticuerpo monoclonal», tal como se utiliza en el presente documento, se refiere a un anticuerpo de una población de anticuerpos sustancialmente homogéneos, es decir, los anticuerpos individuales que componen la población son idénticos y/o se unen al mismo o los mismos epítopos, con la excepción de posibles variantes que puedan surgir durante la producción del anticuerpo monoclonal, estando tales variantes presentes generalmente en cantidades minoritarias. Tal anticuerpo monoclonal normalmente incluye un anticuerpo que comprende una secuencia polipeptídica que se une a una diana, donde la secuencia polipeptídica de unión a la diana se obtuvo mediante un proceso que incluye la selección de una única secuencia polipeptídica de unión a la diana entre una pluralidad de secuencias polipeptídicas. Por ejemplo, el proceso de selección puede ser la selección de un único clon a partir de una pluralidad de clones, tal como un grupo de clones de hibridomas, clones de fagos o clones de ADN recombinante. Debe entenderse que la secuencia de unión a la diana seleccionada puede modificarse adicionalmente, por ejemplo, para mejorar la afinidad por la diana, para humanizar la secuencia de unión a la diana, para mejorar su producción en un cultivo celular, para reducir su inmunogenicidadin vivo,para crear un anticuerpo multiespecífico,etc.,y que un anticuerpo que comprende la secuencia de unión a la diana modificada es también un anticuerpo monoclonal de esta invención. A diferencia de los preparados de anticuerpos policlonales que normalmente incluyen diferentes anticuerpos que se dirigen contra diferentes determinantes (epítopos), cada anticuerpo monoclonal de un preparado de anticuerpos monoclonales se dirige contra un solo determinante en un antígeno. Además de su especificidad, los preparados de anticuerpos monoclonales son ventajosos porque normalmente no están contaminados con otras inmunoglobulinas. El modificador «monoclonal» indica la característica del anticuerpo de que se ha obtenido a partir de una población sustancialmente homogénea de anticuerpos, y no debe interpretarse como que requiere la producción del anticuerpo mediante ningún método particular. Por ejemplo, los anticuerpos monoclonales que se van a utilizar de acuerdo con la presente invención pueden prepararse mediante una variedad de técnicas, que incluyen, por ejemplo, el método del hibridoma (p. ej., Kohleret al., Nature,256:495 (1975); Harlowet al., Antibodies: A Laboratory Manual,(Cold Spring Harbor Laboratory Press, 2.a ed. 1988); Hammerling,et al.,en:Monoclonal Antibodies and T-Cell Hybridomas,563-681, (Elsevier, N.Y., 1981)), métodos de a Dn recombinante (véase, p. ej., la patente de EE. UU. N.° 4816567), tecnologías de presentación de fagos (véase, p. ej., Clacksonet al., Nature,352:624-628 (1991); Markset al., J. Mol. Biol.,222:581-597 (1991); Sidhuet al., J. Mol. Biol.338(2):299-310 (2004); Leeet al., J.Mol.Biol.340(5):1073-1093 (2004); Fellouse,Proc. Nat. Acad. Sci. USA101(34):12467-12472 (2004); y Leeet al., J. Immunol. Methods284(1-2):119-132 (2004), y tecnologías para producir anticuerpos humanos o similares a los humanos en animales que tienen partes o la totalidad de los genes olocide inmunoglobulina humana que codifican las secuencias de inmunoglobulina humana (véanse, p. ej., los documentos WO 1998/24893, WO 1996/34096, WO 1996/33735, WO 1991/10741; Jakobovitset al., Proc. Natl. Acad. Sci. USA,90:2551 (1993); Jakobovitset al., Nature,362:255-258 (1993); Bruggemannet al., Year in Immuno.,7:33 (1993); Patentes de EE. UU. N.os 5545 806, 5569 825, 5591 669 (todas ellas de GenPharm); 5545 807, WO 1997/17852, Patentes de EE. UU. N.os 5545807, 5545806, 5569825, 5625126, 5633425 y 5661 016; Markset al., Bio/Technology,10: 779-783 (1992); Lonberget al., Nature,368: 856-859 (1994); Morrison,Nature,368: 812-813 (1994); Fishwildet al., Nature Biotechnology,14: 845-851 (1996); Neuberger,Nature Biotechnology,14: 826 (1996); y Lonberg y Huszar,Intern. Rev. Immunol.,13: 65-93 (1995).
Los anticuerpos «quiméricos» (inmunoglobulinas) tienen una porción de la cadena pesada y/o ligera idéntica u homóloga a las secuencias correspondientes en anticuerpos derivados de una especie en particular o que pertenecen a una clase o subclase de anticuerpo en particular, mientras que el resto de la(s) cadena(s) es idéntico u homólogo a las secuencias correspondientes en anticuerpos derivados de otra especie o que pertenecen a otra clase o subclase de anticuerpo, así como fragmentos de tales anticuerpos, siempre que muestren la actividad biológica deseada (Patente de EE. UU. N.° 4816567; y Morrisonet al., Proc. Natl. Acad. Sci. USA81:6851-6855 (1984)). Un anticuerpo humanizado, tal como se utiliza en el presente documento, es un subgrupo de anticuerpos quiméricos.
Las formas «humanizadas» de anticuerpos no humanos (p. ej., de murino) son anticuerpos quiméricos que contienen una secuencia mínima derivada de inmunoglobulina no humana. En su mayor parte, los anticuerpos humanizados son inmunoglobulinas humanas (anticuerpo receptor o aceptor) en las que los residuos de la región hipervariable del receptor se reemplazan por residuos de la región hipervariable de una especie no humana (anticuerpo donante) tal como ratón, rata, conejo o primate no humano que tienen la especificidad, afinidad y capacidad deseadas. En algunos casos, los residuos de la región de armazón (FR) de Fv de la inmunoglobulina humana se reemplazan por residuos no humanos correspondientes. Además, los anticuerpos humanizados pueden comprender residuos que no se encuentran en el anticuerpo receptor o en el anticuerpo donante. Estas modificaciones se realizan para refinar aún más el rendimiento de los anticuerpos tal como la afinidad de unión. En general, el anticuerpo humanizado comprenderá sustancialmente la totalidad de al menos uno, y normalmente dos, dominios variables, en los que la totalidad o sustancialmente la totalidad de los bucles hipervariables corresponden a los de una inmunoglobulina no humana y la totalidad o sustancialmente la totalidad de las regiones FR son las de una secuencia de inmunoglobulina humana aunque las regiones FR pueden incluir una o más sustituciones de aminoácidos que mejoren la afinidad de unión. El número de estas sustituciones de aminoácidos en FR normalmente no es superior a 6 en la cadena H y en la cadena L, no es superior a 3. El anticuerpo humanizado también comprenderá opcionalmente al menos una porción de una región constante de inmunoglobulina (Fc), normalmente la de una inmunoglobulina humana. Para consultar más detalles, véase Joneset al., Nature321:522-525 (1986); Reichmannet al., Nature332:323-329 (1988); y Presta,Curr. Op. Struct. Biol.2:593-596 (1992).
Los «fragmentos de anticuerpos» comprenden una porción de un anticuerpo intacto, preferentemente la región variable o de unión al antígeno del anticuerpo intacto. Algunos ejemplos de fragmentos de anticuerpos incluyen Fab, Fab', F(ab')2 y fragmentos Fv; diacuerpos; anticuerpos lineales (véase la Patente de EE. UU. NT 5 641 870, Ejemplo 2; Zapataet al., Protein Eng.,8(10): 1057-1062 (1995)); moléculas de anticuerpos de cadena sencilla; y anticuerpos multiespecíficos formados a partir de fragmentos de anticuerpos.
La digestión con papaína de los anticuerpos produce dos fragmentos de unión al antígeno idénticos, denominados fragmentos «Fab», y un fragmento «Fc» residual, una designación que refleja la capacidad de cristalizar con facilidad. El fragmento Fab consta de una cadena L completa junto con el dominio de la región variable de la cadena H (VH) y el primer dominio constante de una cadena pesada (C<h>1). Cada fragmento Fab es monovalente con respecto a la unión al antígeno, es decir, tiene un solo sitio de unión al antígeno. El tratamiento con pepsina de un anticuerpo produce un solo fragmento F(ab')2 grande que corresponde aproximadamente a dos fragmentos Fab enlazados por un puente de disulfuro, que tiene una actividad de unión al antígeno divalente y sigue siendo capaz de unirse al antígeno de forma cruzada. Los fragmentos Fab' difieren de los fragmentos Fab en que tienen unos pocos residuos adicionales en el extremo carboxi del dominio C<h>1 que incluyen una o más cisteínas de la región bisagra del anticuerpo. Fab'-SH es la designación en el presente documento para un Fab' en el que el o los residuos de cisteína de los dominios constantes contienen un grupo tiol libre. Los fragmentos de anticuerpos F(ab')2 se produjeron originariamente como pares de fragmentos Fab' que tenían cisteínas entre ellos en la región bisagra. También se conocen otros acoplamientos químicos de fragmentos de anticuerpos.
El fragmento Fc comprende las porciones carboxi-terminales de ambas cadenas H unidas entre sí mediante disulfuros. Las funciones efectoras de los anticuerpos están determinadas por secuencias en la región Fc, región que también es la parte reconocida por los receptores Fc (FcR) que se encuentran en ciertos tipos de células.
«Fv» es el fragmento de anticuerpo mínimo que contiene el sitio de unión y reconocimiento del antígeno completo. Este fragmento consta de un dímero de un dominio de región variable de cadena pesada y uno de cadena ligera en una estrecha asociación no covalente. Del plegamiento de estos dos dominios emanan seis bucles hipervariables (3 bucles de cada cadena H y L) que aportan los residuos aminoacídicos para la unión al antígeno y confieren especificidad de unión al antígeno al anticuerpo. Sin embargo, incluso un solo dominio variable (o la mitad de un Fv que comprende solo tres CDR específicas para un antígeno) tiene la capacidad de reconocer el antígeno y unirse a él, aunque con una afinidad menor que el sitio de unión completo.
«Fv monocatenario», también abreviado como «sFv» o «scFv», son fragmentos de anticuerpos que comprenden los dominios V<h>y V<l>del anticuerpo conectados en una sola cadena polipeptídica. Preferentemente, el polipéptido Fv comprende, además, un conector polipeptídico entre los dominios V<h>y V<l>que permite que sFv forme la estructura deseada para la unión al antígeno. Para consultar un artículo de revisión sobre sFv, véase Pluckthun enThe Pharmacology of Monoclonal Antibodies,vol. 113, Rosenburg y Moore eds., Springer-Verlag, Nueva York, págs. 269 315 (1994).
El término «aproximadamente» que modifica, por ejemplo, la cantidad de un ingrediente en las composiciones, la concentración de un agente activo, los volúmenes de tampón, diavolúmenes, el tamaño de poro, el peso molecular aparente, el corte de peso molecular, la temperatura del proceso, el tiempo del proceso, los rendimientos, los caudales, las presiones, las cargas biológicas y valores similares, e intervalos de estos, empleados en los métodos de la invención, se refiere a la variación en la cantidad numérica que puede ocurrir, por ejemplo, debido a procedimientos típicos de medición y manipulación utilizados para preparar concentrados o utilizar soluciones; debido a un error involuntario en estos procedimientos; debido a diferencias en la fabricación, fuente o pureza de los ingredientes empleados para preparar las composiciones o llevar a cabo los métodos; y consideraciones similares. El término «aproximadamente» también abarca cantidades que difieren debido al envejecimiento de una composición con una concentración o mezcla inicial particular. El término «aproximadamente» también abarca cantidades que difieren debido al mezclado o procesamiento de una composición con una concentración o mezcla inicial particular. Tanto si están modificadas o no con el término «aproximadamente», las reivindicaciones incluyen equivalentes de las cantidades.
«Consiste esencialmente en» se refiere a un proceso de obtención de una composición de anticuerpo o una composición de proteína concentrada que incluye los pasos e ingredientes enumerados en la reivindicación, además de otros pasos e ingredientes que no afectan materialmente a las propiedades básicas y novedosas de la composición, tales como una multiplicidad de pasos o medios de tampón. Los ingredientes que afectan materialmente a las propiedades básicas de la composición y el método de la presente divulgación confieren características no deseadas que incluyen, por ejemplo, carga biológica, tal como la toxicidad o irritabilidad no deseada asociada con los contaminantes.
Se entiende que el artículo indefinido «un» o «una» y su correspondiente artículo definido «el/la», tal como se utilizan en el presente documento, significan al menos uno, o uno o más, a menos que se especifique otra cosa.
Los procesos de preparación y los productos de estos pueden ser útiles para tratar afecciones patológicas tales como asma, cáncer, psoriasis, e inhibir la angiogénesis y afecciones patológicas similares.
A continuación, se ilustra cómo realizar y utilizar los procesos de preparación.
En algunas realizaciones, se proporciona un proceso para preparar composiciones de anticuerpos altamente concentradas, de rhuMAb E25, de acuerdo con la realización de los siguientes pasos en el orden indicado, que comprende:
(a) una primera ultrafiltración de un primer preparado de anticuerpos, que tiene una concentración, por ejemplo, de aproximadamente 0,1 a aproximadamente 10 gramos por litro (g/L), para proporcionar un segundo preparado de anticuerpos como la fracción retenida, que tiene una mayor concentración de anticuerpos, por ejemplo, de aproximadamente 10 a aproximadamente 50 gramos por litro;
(b) una diafiltración del segundo preparado de anticuerpos resultante para proporcionar un preparado de anticuerpos intermedio diafiltrado como la fracción retenida, que tiene aproximadamente la misma concentración que la fracción retenida del segundo preparado de anticuerpos resultante, es decir, una diafiltración para realizar un intercambio de tampón con volumen constante; y
(c) una segunda ultrafiltración del preparado de anticuerpos intermedio diafiltrado para proporcionar un tercer preparado de anticuerpos como la fracción retenida, que tiene una mayor concentración de anticuerpos, por ejemplo, de aproximadamente 150 a aproximadamente 200 gramos por litro,
en donde los pasos (a), (b) y (c) se llevan a cabo a una temperatura de 45 °C ± 5 °C.
Los procesos de preparación pueden comprender además un paso o pasos opcionales de recuperación del producto, por ejemplo, y como se divulga e ilustra en el presente documento.
El primer preparado de anticuerpos tiene una concentración de anticuerpos de 0,1 a 10 gramos por litro (g/L). La concentración de anticuerpo es, por ejemplo, una concentración común que se puede obtener habitualmente a partir de otros pasos o métodos preliminares de purificación de proteínas o anticuerpos, tales como centrifugación, filtración, cromatografía y procedimientos similares. El segundo preparado de anticuerpos resultante que se puede obtener a partir de la primera ultrafiltración tiene una concentración de anticuerpos de 10 a 50 gramos por litro, por ejemplo, de aproximadamente 20 a aproximadamente 40 gramos por litro, tal como de 30 gramos por litro. El intervalo de la concentración de anticuerpos del preparado de anticuerpos intermedio puede depender, por ejemplo, de un equilibrio de factores, tales como el volumen de la muestra y el flujo de la muestra que se puede conseguir con un tampón particular que contiene el segundo preparado de anticuerpos. El preparado de anticuerpos intermedio puede tener una concentración de anticuerpos, por ejemplo, de aproximadamente 25 a aproximadamente 35 gramos por litro y el tercer preparado de anticuerpos puede tener una concentración de anticuerpos, por ejemplo, de aproximadamente 170 a aproximadamente 200 gramos por litro. El tercer preparado de anticuerpos puede tener una concentración de anticuerpos de aproximadamente 170 a aproximadamente 200 gramos por litro, tal como de 185 gramos por litro. Será evidente para un experto en la técnica, al comprender la presente divulgación, que el preparado de anticuerpos intermedio y el tercer preparado de anticuerpos comprenden la misma fracción retenida ultrafiltrada con la excepción de, por ejemplo, las diferencias en la concentración de anticuerpos resultantes de la primera y la segunda concentración de ultrafiltración y diferencias en los medios de tampón de suspensión resultantes del intercambio de tampón de la diafiltración. Por lo tanto, existe un cambio en la composición pequeño, en caso de que lo haya, tal como debido a la degradación, del producto de anticuerpo o proteína diana, en realizaciones de la presente divulgación.
Los métodos de concentración por ultrafiltración convencionales pueden presentar por lo general ineficacias debidas a un mayor tiempo y una menor capacidad de procesamiento, ya que tienen unos tiempos de proceso considerablemente más largos, tales como de varios días a varias semanas, y procesan unos volúmenes considerablemente más pequeños, o ambos casos.
En algunas realizaciones, el proceso de concentración de proteínas de la divulgación se puede realizar en, por ejemplo, de aproximadamente 1 a 10 horas, preferentemente de aproximadamente 2 a 5 horas y más preferentemente en aproximadamente 3 horas. Las preferencias favorecen una capacidad de procesamiento de flujo mayor y áreas de membrana más pequeñas.
En algunas realizaciones, la primera ultrafiltración se puede realizar, por ejemplo, en aproximadamente un 35 por ciento del tiempo total del proceso. De este modo, por ejemplo, en un proceso de concentración y purificación de la divulgación con un tiempo total del proceso de aproximadamente 3 horas, la primera ultrafiltración se puede realizar en aproximadamente 45 minutos. En algunas realizaciones, la segunda ultrafiltración se puede realizar, por ejemplo, en aproximadamente un 15 por ciento del tiempo total del proceso. De este modo, por ejemplo, en un proceso de la divulgación con un tiempo total del proceso de aproximadamente 3 horas, la segunda ultrafiltración se puede realizar en aproximadamente 15 minutos. La diafiltración se puede realizar, por ejemplo, en aproximadamente un 50 por ciento del tiempo total del proceso. De este modo, por ejemplo, en un proceso de la divulgación con un tiempo total del proceso de aproximadamente 3 horas, la diafiltración se puede realizar en de aproximadamente 90 a aproximadamente 120 minutos.
En algunas realizaciones, la primera ultrafiltración y la segunda ultrafiltración se pueden realizar, por ejemplo, con una membrana de ultrafiltración que tenga un tamaño de poro nominal, o un corte de peso molecular, de aproximadamente 5 a aproximadamente 50 kiloDaltons. Otro tamaño de poro nominal adecuado es, por ejemplo, de aproximadamente 10 a aproximadamente 40 kiloDaltons. Otro tamaño de poro nominal, o corte de peso molecular, adecuado más es de aproximadamente 30 kiloDaltons.
Los anticuerpos monoclonales se pueden aislar a partir de colecciones de anticuerpos de fagos utilizando, por ejemplo, las técnicas descritas en Clacksonet al.(1991)Nature,352:624-628 y Markset al.(1991)J. Mol. Biol.,222:581-597. Los anticuerpos monoclonales incluyen anticuerpos «quiméricos» en los que una porción de la cadena pesada y/o ligera es idéntica u homóloga a las secuencias correspondientes en anticuerpos derivados de una especie en particular o que pertenecen a una clase o subclase de anticuerpo en particular, mientras que el resto de la(s) cadena(s) es idéntico u homólogo a las secuencias correspondientes en anticuerpos derivados de otra especie o que pertenecen a otra clase o subclase de anticuerpo, así como fragmentos de tales anticuerpos, siempre que muestren la actividad biológica deseada (Pat. de EE. UU. N.° 4816 567; y Morrisonet al.(1984)Proc. Natl. Acad. Sci. USA,81:6851-6855). Los anticuerpos quiméricos pueden incluir anticuerpos «primatizados» que comprenden secuencias de unión al antígeno de dominio variable derivadas de un primate no humano (p. ej., mono del viejo mundo, simio, etc.) y secuencias de regiones constantes humanas.
Los anticuerpos monoclonales son muy específicos y se dirigen contra un solo sitio antigénico. Además, a diferencia de los preparados de anticuerpos policlonales que incluyen diferentes anticuerpos dirigidos contra diferentes determinantes (epítopos), cada anticuerpo monoclonal se dirige contra un solo determinante en el antígeno. Además de su especificidad, los anticuerpos monoclonales son ventajosos porque pueden sintetizarse sin estar contaminados con otros anticuerpos. Por lo tanto, el modificador «monoclonal» indica la característica del anticuerpo de que se ha obtenido a partir de una población de anticuerpos sustancialmente homogénea de este tipo, es decir, los anticuerpos individuales que componen la población son idénticos con la excepción de posibles mutaciones de origen natural que pueden estar presentes en cantidades minoritarias, y no debe interpretarse como que se requiere la producción del anticuerpo mediante ningún método particular. Por ejemplo, los anticuerpos monoclonales para su uso en la divulgación pueden prepararse utilizando el método del hibridoma descrito por primera vez por Kohler & Milstein,Nature,256:495 (1975), o pueden prepararse mediante métodos de ADN recombinante. Se describen otros métodos conocidos de producción de anticuerpos, por ejemplo, en Goding,Monoclonal Antibodies: Principles and Practice,59-103, Academic Press (1986); Kozbor,J. Immunol.,133:3001 (1984); Brodeuret al., Monoclonal Antibody Production Techniques and Applications,51 63, Marcel Dekker, Inc., Nueva York (1987).
Se han empleado varios métodos para producir anticuerpos monoclonales (MAbs). La tecnología del hibridoma, que se refiere a una línea celular clonada que produce un solo tipo de anticuerpo, utiliza las células de varias especies, incluidos ratones (murinos), hámsteres, ratas y seres humanos. Otro método para preparar MAbs utiliza ingeniería genética que incluye técnicas de ADN recombinante. Los anticuerpos monoclonales preparados a partir de estas técnicas incluyen, entre otros, anticuerpos quiméricos y anticuerpos humanizados. Un anticuerpo quimérico combina ADN que codifica regiones de más de un tipo de especie. Por ejemplo, un anticuerpo quimérico puede obtener la región variable de un ratón y la región constante de un ser humano. Un anticuerpo humanizado proviene predominantemente de un ser humano, aunque contienen porciones no humanas. Al igual que un anticuerpo quimérico, un anticuerpo humanizado puede contener una región constante completamente humana. Pero a diferencia de un anticuerpo quimérico, la región variable puede derivar parcialmente de un ser humano. Las porciones sintéticas no humanas de un anticuerpo humanizado a menudo provienen de CDR en anticuerpos de murino. En cualquier caso, estas regiones son cruciales para permitir que el anticuerpo reconozca un antígeno específico y se una a él.
Como se ha mencionado, los anticuerpos de murino desempeñan una función importante en la tecnología de los anticuerpos. Si bien son útiles para el diagnóstico y las terapias a corto plazo, los anticuerpos de murino no se pueden administrar a las personas a largo plazo sin que aumente el riesgo de obtener una respuesta inmunogénica perjudicial. Esta respuesta, denominada anti-anticuerpo de ratón en ser humano (HAMA, por sus siglas en inglés), ocurre cuando un sistema inmunitario humano reconoce el anticuerpo de murino como exógeno y lo ataca. Una respuesta HAMA puede provocar un shock tóxico o incluso la muerte. Los anticuerpos quiméricos y humanizados reducen la probabilidad de obtener una respuesta HAMA ya que minimizan las porciones no humanas de los anticuerpos administrados. Además, los anticuerpos quiméricos y humanizados tienen el beneficio adicional de que activan respuestas inmunitarias humanas secundarias, tales como la citotoxicidad celular dependiente de anticuerpos.
Un anticuerpo «intacto» es uno que comprende una región variable de unión al antígeno así como un dominio constante de cadena ligera (CL) y dominios constantes de cadena pesada, CH1, CH2 y CH3. Los dominios constantes pueden ser dominios constantes de secuencias nativas (p. ej., dominios constantes de secuencias nativas humanas) o una variante de la secuencia de aminoácidos de estos. El anticuerpo intacto puede tener una o más «funciones efectoras» que se refieren a aquellas actividades biológicas que se pueden atribuir a la región Fc (una región Fc de la secuencia nativa o una región Fc variante de la secuencia de aminoácidos) de un anticuerpo. Los ejemplos de funciones efectoras de los anticuerpos incluyen la unión a CIq; la citotoxicidad dependiente del complemento; la unión al receptor Fc; la citotoxicidad mediada por células dependiente de anticuerpos (ADCC, por sus siglas en inglés); la fagocitosis; la reducción de la expresión de receptores de la superficie celular (p. ej., receptor de linfocitos B; BCR), etc.
Dependiendo de la secuencia de aminoácidos del dominio constante de sus cadenas pesadas, los anticuerpos intactos pueden asignarse a diferentes «clases». Hay cinco clases principales de anticuerpos intactos: IgA, IgD, IgE, IgG e IgM, y varios de estos pueden dividirse adicionalmente en «subclases» (isotipos), p. ej., IgG1, IgG2, IgG3, IgG4, IgA e IgA2. Los dominios constantes de cadena pesada que corresponden a las diferentes clases de anticuerpos se denominana, 5, £, y,y V respectivamente. Las estructuras de las subunidades y las configuraciones tridimensionales de las diferentes clases de inmunoglobulinas son muy conocidas.
En algunas realizaciones, la primera ultrafiltración concentra el primer preparado de anticuerpos para proporcionar el segundo preparado de anticuerpos que tiene una concentración de anticuerpos de aproximadamente 30 gramos por litro, y la segunda ultrafiltración concentra el preparado de anticuerpos intermedio (obtenido a partir de una diafiltración) para proporcionar el tercer preparado de anticuerpos que tiene una concentración de anticuerpos, por ejemplo, de aproximadamente 170 a aproximadamente 200 gramos por litro. La primera ultrafiltración y la segunda ultrafiltración se pueden realizar con la misma membrana de ultrafiltración y, si se desea, dentro del mismo recipiente o circuito del proceso, por ejemplo, para minimizar la manipulación, las pérdidas, las fugas y otros efectos similares sobre el rendimiento, la eficacia y la economía. La primera ultrafiltración y la segunda ultrafiltración se pueden realizar con cualquier aparato de ultrafiltración o membrana de ultrafiltración adecuado. Muchos aparatos de ultrafiltración y membranas de ultrafiltración adecuados, que son capaces de operar con filtración de flujo tangencial (FFT) para realizar las ultrafiltraciones y la diafiltración, se pueden adquirir de proveedores comerciales tales como Millipore, Pall Corp., Sartorius y proveedores similares. En algunas realizaciones, una membrana de ultrafiltración adecuada puede ser, por ejemplo, cualquier material compuesto de celulosa regenerada, donde el material compuesto tiene un perfil de adsorción de proteínas relativamente bajo en comparación con otras membranas de ultrafiltración disponibles, tal como la polietersulfona.
La operación de diafiltración intercambia una primera composición de tampón presente en el primer y el segundo preparado de anticuerpos por un segundo tampón deseado en el tercer preparado de anticuerpos. En algunas realizaciones, el primer tampón puede comprender, por ejemplo, una mezcla de cloruro de sodio acuoso y un tampón TRIS, y el segundo tampón puede comprender, por ejemplo, una mezcla de cloruro de histidina acuoso y cloruro de arginina. La diafiltración puede realizar un intercambio de tampón con volumen constante, concentración constante o ambos. En algunas realizaciones, la diafiltración realiza un intercambio de tampón con volumen constante y concentración constante. La diafiltración puede realizar un intercambio de tampón, por ejemplo, de aproximadamente 5 a aproximadamente 15 veces el volumen (es decir, diavolúmenes). La diafiltración también puede realizar un intercambio de tampón, por ejemplo, de aproximadamente 8 veces el volumen (8 diavolúmenes), es decir, 8 veces el volumen de la muestra que contiene el preparado de anticuerpos que se va a someter al intercambio. Por ejemplo, un preparado de anticuerpos de 10 litros se puede diafiltrar con un volumen de 5 veces (diavolúmenes) o 50 litros de tampón de intercambio. El volumen de intercambio y las preferencias por los volúmenes de intercambio tienen en cuenta un equilibrio de factores, por ejemplo, la eficiencia de la capacidad de procesamiento del proceso, la pureza del producto, los estándares gubernamentales y de aceptabilidad del cliente-paciente, y estándares similares, y pueden depender, por ejemplo, de la concentración y el tipo de tampón (p. ej., el primer tampón) en el primer preparado de anticuerpos, y consideraciones similares.
La primera ultrafiltración, la segunda ultrafiltración y la diafiltración se realizan preferentemente con filtración de flujo tangencial (modo FFT) a través de una membrana de ultrafiltración, y la membrana de ultrafiltración es preferentemente la misma membrana para cada paso. El rendimiento del producto en la mezcla final (es decir, el tercer preparado de anticuerpos) puede ser, por ejemplo, superior a aproximadamente un 70 por ciento en peso, tal como de aproximadamente un 80 a aproximadamente un 100 por ciento en peso en función del peso de los anticuerpos en el primer preparado de anticuerpos. El rendimiento del tercer preparado de anticuerpos puede ser, en algunas realizaciones, superior a aproximadamente un 90 % en peso, en algunas realizaciones, superior a aproximadamente un 95 % en peso y, en algunas realizaciones, incluso superior a aproximadamente un 98 % en peso, en función del peso de los anticuerpos en el primer preparado de anticuerpos.
La primera ultrafiltración puede tener una tasa de recirculación, por ejemplo, de aproximadamente 50 a 1000 mL/min, y preferentemente de aproximadamente 100 a 1000 mL/min. La tasa de recirculación se puede escalar de acuerdo con el área de membrana disponible, por ejemplo, áreas de membrana de 5, 20, 200, 1000 pies cuadrados y áreas similares permiten tasas de recirculación cada vez más altas. Por lo tanto, una tasa de recirculación escalada adecuada, en algunas realizaciones, puede ser, por ejemplo, de aproximadamente 0,5 L/min/ft2 a aproximadamente 5 L/min/ft2 La ultrafiltración y la diafiltración se pueden realizar, por ejemplo, con presiones de transmembrana de aproximadamente 5 a aproximadamente 50 p.s.i. La ultrafiltración y la diafiltración se pueden realizar, por ejemplo, con presiones de transmembrana de aproximadamente 10 a aproximadamente 50 p.s.i. En algunas realizaciones de la presente divulgación, se proporciona un proceso para preparar un concentrado de anticuerpos para una formulación de anticuerpos más diluida, teniendo el concentrado de anticuerpos una biocarga mínima, por ejemplo, inferior a o por debajo de un límite detectable tal como inferior a aproximadamente 100 UFC/mL.
Las composiciones de anticuerpos de la divulgación pueden ser, por ejemplo, un preparado concentrado de anticuerpos monoclonales para su administración a seres humanos tal como con una concentración superior o igual a aproximadamente 100 g/L (mg/mL), tal como de aproximadamente 120 a aproximadamente 170 g/L.
Las composiciones de anticuerpos pueden incluir un tampón. Un tampón preferido puede ser, por ejemplo, una mezcla de cloruro de arginina y cloruro de histidina acuoso.
Los procesos de preparación de la divulgación se realizan preferentemente en el mismo aparato y sin la intervención de un operador o con una intervención mínima del operador, por ejemplo, como se ilustra en la FIG. 1.
El primer preparado de anticuerpos se puede proporcionar o preparar utilizando una variedad de métodos químicos, físicos, mecánicos o no mecánicos o bioquímicos, tales como trituración, ultrasonidos, homogeneización, digestión enzimática, extracción con solventes, centrifugación, cromatografía y métodos similares y combinaciones de estos, véase, por ejemplo, R. Hatti-Kaulet al.,«Downstream Processing in Biotechnology», enBasic Biotechnology,capítulo 9, que se ha mencionado anteriormente. El tercer preparado de anticuerpos se puede procesar adicionalmente, si se desea, utilizando, por ejemplo, nanofiltración (para eliminar, p. ej., iones divalentes), ósmosis inversa (para eliminar, p. ej., iones monovalentes) y métodos de purificación de líquidos similares. El tercer preparado de anticuerpos de la presente divulgación se puede envasar, almacenar o utilizar directamente. El tercer preparado de anticuerpo se puede procesar adicionalmente, si se desea, utilizando, por ejemplo, pasos de concentración adicionales, tales como secado, liofilización, liofilización-reconstitución y métodos similares. El producto del tercer preparado de anticuerpos concentrado resultante se puede reconstituir en un momento posterior, si se desea, con un líquido adecuado.
Haciendo referencia a las figuras, la FIG. 1 ilustra un aparato, en algunas realizaciones de la presente divulgación, para llevar a cabo el proceso de preparación que incluye un sistema de ultrafiltración-difiltración (100) que tiene una unidad (110) de ultrafiltración-difiltración (UF-DF) por FFT, que tiene una membrana de UF-DF (115), que está en comunicación con un tanque de recirculación (120), donde el tanque sirve como depósito de la alimentación principal y la fracción retenida. En algunas realizaciones, el tanque (120) puede tener un sistema de control de la temperatura que comprende, por ejemplo, una camisa aislante (125), un elemento de calentamiento termostático o de temperatura controlada (126), tal como un elemento calefactor resistivo con reóstato o un sistema de circulación de líquido calentado que incluye un calefactor (no se muestra), un regulador de flujo (127), tal como una bomba de recirculación, y un fluido de transferencia de calor adecuado, tal como agua, glicoles o mezclas de estos. Todos los componentes del circuito o los componentes que contribuyen al flujo o procesamiento en el circuito, tales como tuberías, válvulas, bombas, tanques y componentes similares, pueden aislarse opcionalmente o adaptarse opcionalmente para el calentamiento externo con el fin de mantener un control estricto sobre las especificaciones de temperatura y evitar oscilaciones de la temperatura en el bucle de fluido de recirculación dentro y entre la cámara de filtración (110) y el tanque de recirculación (120). En algunas realizaciones, por ejemplo, cuando el sistema (100) está realizando la primera ultrafiltración o el primer ultrafiltrado, tal como en un modo de alimentación por lotes, el sistema puede incluir un tanque de alimentación opcional (128) que esté en comunicación fluida con el tanque de alimentación por recirculación (120) y se puede utilizar para, por ejemplo, compensar, reponer o complementar la fase líquida empobrecida del tanque de recirculación (120).
Una bomba (130) bombea el líquido de alimentación desde el tanque (120) a través de la unidad de UF/DF (110) y posteriormente recircula la fracción retenida resultante (la porción del líquido de alimentación no filtrada o excluida por la membrana) al tanque de recirculación (120). Un segundo tanque (140) contiene un tampón y opcionalmente lo bombea (no se muestra) al circuito principal (bucle 110-120) durante la diafiltración con volumen constante. Por ejemplo, la velocidad de adición y el volumen del tampón introducido en el circuito principal son preferentemente la misma velocidad y el mismo volumen con los que el filtrado sale del circuito principal a través de la membrana (115). El tanque de tampón (140) puede aislarse opcionalmente con una camisa (143) y puede incluir el equivalente del elemento calefactor mencionado anteriormente y una bomba de recirculación (no se muestra). Se puede utilizar una fuente de gas inerte opcional (145), tal como nitrógeno u otras fuentes de gas comprimido, por ejemplo, para la recuperación del producto, para presurizar el retorno de la fracción retenida, excluir el oxígeno, para purgar, para lavar, para evaluar la integridad de la membrana y operaciones similares. Se utiliza un tercer tanque (160) para recolectar y recuperar el filtrado que sale de la unidad (110). Se pueden utilizar válvulas (150, 170) según corresponda para regular la dirección y, opcionalmente, el caudal de líquido en el sistema. Todas las válvulas y bombas se pueden accionar manualmente, mediante un control informático coordinado, o ambos. Un cuarto tanque (190) y una corriente de salida opcionales pueden proporcionar un sistema de monitoreo, recuperación de producto o purga de residuos auxiliar, por ejemplo, cuando se dota de un dispositivo de monitoreo opcional (180), tal como un medidor de densidad óptica, filtro(s) opcional(es) (185), tal(es) como un filtro de protección, un filtro de producto y subsistemas opcionales similares. En algunas realizaciones, el circuito de fluido principal (bucle 110-120) puede estar dotado opcionalmente de un sistema de monitoreo en línea.
Los preparados de anticuerpos concentrados obtenidos mediante los procesos de la presente divulgación se pueden utilizar para la administración terapéutica humana. Los preparados de anticuerpos concentrados pueden incluir un estabilizante, por ejemplo, una solución salina de aminoácidos tamponada, azúcares simples o estabilizantes similares, agentes quelantes de iones adecuados, tales como EDTA o ión citrato, y combinaciones de estos, véase, por ejemplo, Wang, Y.-C. J.et al.,«Parenteral formulations of proteins and peptides: stability and stabilizers»,J. Parenteral Sci. Technol.,42, Supl. S3-S26 (1988). El resumen de Derwent del documento JP01268646A (AN89-359879) notifica que la solicitud describe un preparado inyectable de un anticuerpo monoclonal de tipo IgG3 que tiene una concentración de 0,1 microgramos/mL a 100 mg/mL. La materia en cuestión divulgada en estas publicaciones se encuentra fuera del alcance de la presente divulgación.
Los preparados pueden estar sustancialmente exentos de agregados. Los niveles aceptables de contaminantes agregados serían menos de, por ejemplo, aproximadamente un 5 % en peso, e idealmente menos de un 2 % en peso. Se pueden conseguir niveles de incluso tan solo un 0,2 % en peso, aunque son más habituales unos niveles de contaminantes agregados de aproximadamente un 1 % en peso. El preparado también puede estar exento preferentemente de excipientes utilizados tradicionalmente para estabilizar formulaciones policlonales, por ejemplo, glicina y/o maltosa.
La presente divulgación puede proporcionar un preparado de anticuerpos monoclonales para su administración a un ser humano, caracterizado porque el anticuerpo en el preparado es rhuMAb E25 y puede tener una concentración superior a 150 mg/mL. Preferentemente el preparado está sustancialmente exento de cualquier agregación de proteínas.
El pH de las formulaciones farmacéuticas dependerá de la vía particular de administración. Sin embargo, con el fin de maximizar la solubilidad del anticuerpo en la solución concentrada, el pH de la solución debe ser diferente del pH del punto isoeléctrico (pI) del anticuerpo.
El preparado monoclonal puede concebirse para uso en terapia humana. Se pueden tratar varios trastornos humanos tales como el cáncer o enfermedades infecciosas, por ejemplo, las mencionadas anteriormente, y disfunciones inmunitarias tales como trastornos mediados por linfocitos T, que incluyen vasculitis grave, artritis reumatoide, lupus sistémico, también trastornos autoinmunitarios tales como esclerosis múltiple, enfermedad de injerto contra huésped, psoriasis, diabetes juvenil, enfermedad de Sjogren, enfermedad tiroidea, miastenia grave, rechazo de trasplantes, enfermedad inflamatoria intestinal, asma, trastornos mediados por IgE y trastornos o afecciones similares, o combinaciones de estos.
Un preparado de anticuerpos monoclonales concentrado tal como se describe en el presente documento se puede utilizar en la elaboración de un medicamento para el tratamiento de cualquiera de los trastornos mencionados anteriormente y trastornos similares; o en un método para tratar a un ser humano que tenga cualquiera de tales trastornos, que comprende administrar al individuo una cantidad terapéuticamente eficaz del preparado. Las dosis de tales preparados de anticuerpos variarán dependiendo de las afecciones que se estén tratando y el receptor del tratamiento, pero pueden estar comprendidas, por ejemplo, en el intervalo de aproximadamente 50 a aproximadamente 2000 mg para un paciente adulto, preferentemente pueden ser de aproximadamente 100 a aproximadamente 1000 mg administrados diariamente o semanalmente durante un período de entre 1 y 30 días, y que se repiten según sea necesario. Las dosis se pueden administrar como dosis únicas o múltiples.
Descripción del proceso.El paso de formulación normalmente intercambia la sustancia farmacológica a granel purificada, por ejemplo, resultante de una cromatografía de intercambio iónico, en la composición final de excipientes y la concentración. Por lo general, no se realizó ninguna purificación en este paso, con la excepción de la eliminación de moléculas de bajo peso molecular. Se puso énfasis en la obtención de un rendimiento elevado, el intercambio de tampón y la solidez del paso de formulación. Durante la formulación mediante FFT (filtración de flujo tangencial), la solución de alimentación que contenía la proteína se bombeó a través del sistema de membrana y de regreso al recipiente de reciclaje (recirculación). La membrana de FFT retuvo la proteína (como parte de la fracción retenida) mientras que el filtrado (o fracción de permeación) fue impulsado a través de la membrana por presión. La presión se denomina presión de transmembrana (PTM) y normalmente se controla utilizando una válvula de control de presión de la fracción retenida. El proceso generalmente se realizó mediante una secuencia de una primera ultrafiltración (concentración), diafiltración (intercambio de tampón con volumen constante) y una segunda ultrafiltración (concentración adicional). El número de diavolúmenes (equivalentes volumétricos) necesarios para eliminar los componentes del tampón del proceso se puede calcular fácilmente o se puede determinar experimentalmente.
Proceso de UF/DF en general para anti-IgE.Se ajustó el pH de una mezcla de intercambio aniónico procedente de una cromatografía hasta un pH de aproximadamente 6 utilizando ácido fosfórico acuoso 0,5 M. La mezcla de intercambio aniónico con el pH ajustado se formuló mediante el proceso de ultrafiltración/diafiltración (UF/DF) de la presente divulgación utilizando una membrana que tenía un corte molecular nominal de 10000 - 30000 Dalton. Antes del procesamiento, la membrana de UF se equilibró con tampón de diafiltración (histidina 0,02 M, arginina-HCl 0,2 M, pH 6).
El producto del intercambio aniónico (mezcla de intercambio aniónico) se cargó a continuación en el sistema y se concentró hasta una concentración intermedia mediante la primera ultrafiltración. A continuación, la mezcla se sometió a diafiltración (8 X o diavolúmenes) para obtener su formulación (histidina 0,02 M, arginina-HCl 0,2 M, pH 6). A continuación, la mezcla se concentró mediante una segunda ultrafiltración hasta obtener una concentración final de la masa > 170 g/l y se recuperó a través de un filtro estéril de 0,22 micrómetros. El proceso entero de UF/DF se llevó a cabo con un punto de ajuste de la temperatura de aproximadamente 45 grados C. Este control de la temperatura se consiguió controlando la temperatura de la mezcla de intercambio aniónico entrante y el tampón de diafiltración, y utilizando un recipiente de recirculación con camisa para el proceso de UF/DF tal como se ilustra en el presente documento.
Después de la UF/DF, la mezcla recuperada se diluyó (es decir, se acondicionó) hasta una concentración de la masa de aproximadamente 150 g/L en histidina 0,02 M, arginina-HCl 0,2 M, polisorbato-20 al 0,04 %, pH 6 (formulación final). Durante los pasos de acondicionamiento, se permitió que la temperatura de la masa volviera a la temperatura ambiente. Después del acondicionamiento, la masa formulada se recuperó de nuevo a través de un filtro estéril de 0,22 micrómetros.
El sistema de UF/DF se puede regenerar con hidróxido de sodio 0,1 N y se puede desinfectar con Minncare® al 1,4 %. Cuando no esté en uso, el sistema se puede almacenar en hidróxido de sodio acuoso 0,1 N. Las membranas de UF/DF se pueden almacenar, por ejemplo, en una solución de Roccal® al 0,1 %/glicerol-agua al 20 % entre campañas.
Procedimientos generales del proceso de ultrafiltración/diafiltración
Parámetros de operación: Caudal de alimentación de 0,5 L/min/ft2. Se utilizó un control de la presión de la fracción retenida constante (p. ej., 10 psig) para el lavado y la equilibración previa al uso, mientras que para el procesamiento se utilizó una PTM constante o presión de la fracción retenida constante, Cpared.
Equilibración previa al uso: Se llevaron a cabo las siguientes preparaciones en membranas de casete Pellicon-2 limpias antes de su uso para asegurar que las membranas estuvieran correctamente equilibradas.
Uso del proceso: Se realizó lo siguiente en la mezcla de intercambio aniónico inicial resultante (mezcla Q) obtenida a partir de un paso de separación anterior, por ejemplo, un paso de cromatografía de Q-Sepharose:
un primer ultrafiltrado o primera ultrafiltración (UF1) hasta una concentración de aproximadamente 5 g/L hasta una concentración para difiltración (C<df>);
diafiltrado o diafiltración (DF1) con cuatro (4) volúmenes de difiltración (VD) con el tampón de DF;
continuación de la diafiltración (DF2) con cuatro (4) volúmenes de difiltración (VD) de tampón de DF;
un segundo ultrafiltrado o segunda ultrafiltración (UF2) hasta una concentración final (CFinal); y
recuperación opcional del producto.
Los pasos anteriores se realizaron normalmente con un reciclaje (mezcla) de Pd (presión diferencial) baja, por ejemplo, 15 min.
Limpieza posterior al uso: Se utilizaron las siguientes condiciones y secuencia tabuladas para la limpieza de las membranas del casete Pellicon-2 inmediatamente después de su uso.
Definiciones de los modos de operación en FFT.
Paso único con filtrado abierto (SPFO, por sus siglas en inglés). La fracción retenida y el filtrado se dirigen al drenaje. Válvula del filtrado abierta.
Reciclaje total con filtrado abierto (TRFO, por sus siglas en inglés). La fracción retenida y el filtrado se dirigen al recipiente de reciclaje. Válvula del filtrado abierta.
Ultrafiltración de alimentación por lotes (FB-UF, por sus siglas en inglés). La fracción retenida se dirige al tanque de reciclaje, el filtrado se dirige al drenaje y la mezcla entrante se transfiere al tanque de reciclaje.
Ultrafiltración por lotes (B-UF, por sus siglas en inglés). La fracción retenida se dirige al tanque de reciclaje y el filtrado se dirige al drenaje.
Diafiltración (DF). La fracción retenida se dirige al tanque de reciclaje, el filtrado se dirige al drenaje y el tampón de diafiltración se transfiere al tanque de reciclaje.
Pd se refiere a la presión diferencial.
Transferencia del producto. La unidad de la membrana de ultrafiltración y el tanque de reciclaje están abiertos al tanque de mezcla. La presión de superposición de nitrógeno está controlada. La mezcla se transfiere en primer lugar utilizando la bomba de reciclaje y a continuación utilizando una bomba peristáltica manual.
Transferencia de la alimentación. La mezcla entrante se bombea al tanque de reciclaje.
Reciclaje total con filtrado cerrado (TRFC, por sus siglas en inglés). La fracción retenida se dirige a un recipiente de reciclaje. Válvula del filtrado cerrada.
«Mezcla Q» se refiere a la mezcla de proteínas que se obtiene a partir de, por ejemplo, un paso de cromatografía de Q-Sepharose anterior que ha sido acondicionada con tampón, a la que también se hace referencia como «mezcla acondicionada».
WFI (siglas en inglés) se refiere a agua para inyección.
EJEMPLOS
Los siguientes ejemplos sirven para describir más completamente la manera de utilizar la divulgación descrita anteriormente, así como para exponer los mejores modos contemplados para llevar a cabo varios aspectos de la divulgación. Se entiende que estos ejemplos de ninguna manera sirven para limitar el verdadero alcance de esta divulgación, sino que se presentan con fines ilustrativos.
Ejemplo 1 (para referencia)
Formulación de alta concentración de rhuMAb E25. Se utilizó un sistema de UF a escala piloto para concentrar/formular rhuMAb E25 (un anticuerpo monoclonal humano recombinante que tiene como diana IgE, Patente de EE. UU. 6 172213). Se ensambló un sistema de ultrafiltración/diafiltración Pelicon de Millipore con una membrana compuesta de celulosa regenerada de 5,7 pies cuadrados y 10 000 dalton. El sistema constaba de un soporte de membrana, una bomba de alimentación de lóbulos rotativos Waukeskaw modelo 6, tuberías de recirculación de acero inoxidable 316L de 1^ " y un recipiente de recirculación. Se ubicaron indicadores/transmisores de presión (Anderson) en la entrada (ALIMENTACIÓN), la salida (FRACCIÓN RETENIDA) y la fracción de permeación (FILTRADO) del soporte de la membrana. Se ubicaron medidores de flujo (Yokogawa ADMAG) en la entrada (ALIMENTACIÓN) y la fracción de permeación (FILTRADO) del soporte de la membrana. Se ubicó una válvula reguladora de contrapresión (Mikroseal) en la salida del soporte de la membrana para controlar la presión de la fracción retenida y ejercer la presión de transmembrana (PTM). Se utilizó un tanque con camisa de acero inoxidable 316L de 40 litros para el recipiente de recirculación. Este tanque estaba dotado de un indicador de nivel, un agitador montado por la parte superior (Lightnin), un dispositivo antirremolino y una válvula de fondo (NovAseptic). El control de la temperatura se realizó mediante el uso de una alimentación de glicol de temperatura modulada en la camisa del tanque.
Durante este experimento, el caudal de la alimentación se fijó en un caudal constante de 2,85 L/min (0,5 L/min/ft2). Durante todas las operaciones previas al uso y posteriores al uso, el control de la presión de la fracción retenida se ajustó a una constante de 10 psig. Durante las operaciones de ultrafiltración y diafiltración, el sistema utilizó un esquema de control de Cpared para controlar el flujo a través de la membrana, véase, por ejemplo, R. van Reiset al.,«Constant Cwall Ultrafiltration Process Control»,J. of Membrane Science,130 (1997), 123-140.
Antes del proceso, la solución de almacenamiento del sistema (NaOH 0,1 N) se purgó en un solo paso hacia el modo de drenaje, en primer lugar con 2 L/ft2 de agua purificada (AP) y a continuación con 1 L/ft2 de tampón de diafiltración (histidina 50 mM/pH 6,0). Después de las purgas, el sistema se equilibró recirculando 0,5 L/ft2 de tampón de diafiltración durante 10 min. Se comprobó el pH de la solución recirculada para confirmar la equilibración. A continuación, el nivel en el tanque se redujo hasta un valor mínimo medible para minimizar la dilución de la mezcla de proteínas entrante. Se determinó por medición que la mezcla de proteínas resultante de un paso de cromatografía de Q-Sepharose anterior tenía una concentración de 3,2 g de E25/L y tenía un volumen de 43,1 L. La proteína estaba en una solución de tampón TRIS 25 mM y NaCl aproximadamente 200 mM y el pH estaba ajustado a 6,2 . Para comenzar el experimento, la mezcla de proteínas se transfirió al recipiente de recirculación. En el recipiente, la mezcla se agitó a través del impulsor montado en la parte superior y la temperatura se mantuvo a temperatura ambiente (20-25 °C).
Durante el proceso, la mezcla se concentró en modo UF1 hasta 50 g de E25/L (aproximadamente 2,8 L). Al comienzo de la diafiltración, el punto de ajuste de la temperatura del recipiente de recirculación se aumentó hasta 40 °C. El aumento de la temperatura y el control se vieron afectados por el flujo de glicol caliente a través de la camisa exterior del tanque. A continuación, la mezcla se diafiltró con 8 diavolúmenes de tampón de diafiltración. La diafiltración se realizó con un volumen constante, lo que se consiguió haciendo coincidir el caudal de la solución tamponada que se estaba transfiriendo al tanque de recirculación con el caudal de filtrado que se estaba eliminando del sistema. Al final de la diafiltración, la mezcla se concentró adicionalmente en modo UF2. Esta fase también se realizó utilizando un punto de ajuste de la temperatura elevado de 40 °C. El objetivo para esta concentración final era de 110 g/L. Esto se consiguió sin necesidad de reducir el caudal de alimentación. A continuación, se realizó una mezcla con baja caída de presión en la que se controló la bomba de alimentación para mantener una caída de presión de 5-10 psig a través del canal de alimentación. Se extrajo una muestra del tanque de recirculación y se midió una concentración final de la masa de aproximadamente 120 g/L. La Tabla 1 resume los resultados de rendimiento y flujo de UF1, DF (DF1 DF2) y UF2.
Tabla 1.
La FIG. 2 muestra los valores observados o medidos del proceso en función del tiempo para los parámetros de caudal de la alimentación (210), temperatura del tanque (220), Pd alimentada (230), PTM (240) y caudal del filtrado (250) durante las diversas fases o modos del proceso que incluyen UF1 (10), DF (20) y UF2 (30).
La FIG. 3 muestra los valores observados o medidos del proceso en función del tiempo para la concentración de E25 (310), el flujo (320) y la PTM (240).
La FIG. 4 muestra los valores observados o medidos del proceso en función del tiempo para la caída de presión frente a la concentración de proteínas observada para UF1 (410) y UF2 (420) a 37 °C.
La mezcla de proteínas se recuperó mediante una serie de pasos. En primer lugar, la mezcla en el tanque de recirculación se bombeó desde el tanque a través de un filtro Millipac 200 de 0,22 micras de grado esterilizante utilizando la bomba de alimentación de lóbulos rotativos. A continuación, la solución de proteínas se desplazó desde las tuberías y la unidad de membrana con una despresurización de nitrógeno gaseoso de 5 psig aplicada al punto más alto de la línea de la fracción retenida. La fase final fue una despresurización del tanque y la línea de alimentación, utilizando también nitrógeno gaseoso a 5 psig.
Se cree que la recuperación del producto se mejoró en comparación con el Ejemplo 1 cuando se llevó a cabo a temperatura ambiente porque la temperatura elevada utilizada en uno o más de los pasos de ultrafiltración, diafiltración o recuperación redujo los efectos viscosos. Por ejemplo, cuando se apagó el control de la temperatura durante la recuperación del producto, el sistema se enfrió lentamente durante esta operación, lo que provocó dificultades para la recuperación a partir de la unidad de la membrana. Como alternativa, la recuperación se puede llevar a cabo en primer lugar desde el soporte de la membrana y a continuación desde el recipiente de recirculación.
Para determinar la masa de pérdida durante la recuperación, se añadieron 1,74 L de tampón de DF al sistema y se recircularon durante aproximadamente 5 minutos y se recuperaron utilizando la misma secuencia descrita anteriormente. A continuación, se analizó la concentración de proteínas de este volumen con las otras mezclas. La Tabla 2 resume los resultados.
Tabla 2.
Después del procesamiento, la membrana se regeneró utilizando NaOH 0,1 N, 1 L/ft2 de lavado de un solo paso seguido de 0,5 l/ft2 de recirculación total durante 30 min. A esto le siguió 1L/ft2 de lavado con AP (agua pura). A esto le siguió una recirculación total de una solución de 300 ppm de Minncare® durante 30 min. El sistema se lavó de nuevo con 1L/ft2 de AP y finalmente se recirculó durante 15 min con NaOH 0,1 N y se almacenó. La mezcla recuperada se diluyó hasta 80 g de E25/L y se acondicionó en la formulación final de histidina 50 mM/trehalosa 150 mM/polisorbato 20 al 0,02 %/pH 6,0. La calidad del producto se evaluó mediante cromatografía de exclusión por tamaño (SEC, por sus siglas en inglés) tanto para la mezcla Q entrante como para la masa final recuperada. Estos datos se resumen en la Tabla 3.
Tabla 3.
Ejemplo comparativo 2
Formulación de alta concentración de rhuMAb E25 a temperatura ambiente
El Ejemplo 1 se llevó a cabo con las siguientes excepciones. Antes del proceso, la solución de almacenamiento del sistema (NaOH 0,1 N) se purgó en un solo paso hacia el modo de drenaje, en primer lugar con 2 L/ft2 de agua purificada (AP) y a continuación con 1 L/ft2 de tampón de diafiltración (histidina 20 mM/pH 6,0). Después de las purgas, el sistema se equilibró recirculando 0,5 L/ft2 de tampón de diafiltración durante 10 min. Se comprobó el pH de la solución recirculada para confirmar la equilibración. A continuación, el nivel en el tanque se redujo hasta un valor mínimo medible para minimizar la dilución de la mezcla de proteínas entrante.
Se determinó por medición que la mezcla de proteínas resultante del paso de cromatografía de Q-Sepharose anterior tenía una concentración de 3,3 g de E25/L y tenía un volumen de 33,3 L. La proteína estaba en una solución de tampón TRIS 25 mM y NaCl aproximadamente 200 mM y el pH estaba ajustado a 6,2 . Para comenzar el experimento, la mezcla de proteínas se transfirió al recipiente de recirculación. En el recipiente, la mezcla se agitó a través del impulsor montado en la parte superior y la temperatura se mantuvo a temperatura ambiente (20-25 °C). Durante el proceso, la mezcla se concentró en modo UF1 hasta 50 g de E25/L (aproximadamente 2,2 L). A continuación, la mezcla se diafiltró con 8 diavolúmenes de tampón de diafiltración. La diafiltración se realizó con un volumen constante, este volumen se consiguió haciendo coincidir el caudal de la solución tamponada que se estaba transfiriendo al tanque de recirculación con el caudal de filtrado que se estaba eliminando del sistema. La diafiltración también se realizó a temperatura ambiente. Al final de la diafiltración, la mezcla se concentró adicionalmente en modo UF2. El objetivo para esta concentración final era de 110 g/L. Sin embargo, debido a una gran caída de presión a través del canal de alimentación, no se consiguió esta concentración. En un intento por lograr esta concentración, el caudal de alimentación se redujo hasta 1,4 L/min con una concentración de la masa de aproximadamente 80 g de E25/L porque la caída de presión a través del canal de alimentación había alcanzado 50 psig. Se continuó con la UF2 hasta que se alcanzó de nuevo una caída de presión alta de 50 psig y se detuvo el proceso. A continuación, se intentó realizar una mezcla con baja caída de presión en la que se utilizó la bomba de alimentación para mantener una caída de presión de 5 psig a través del canal de alimentación. Una vez más, la naturaleza viscosa de la solución de proteínas hizo que esto fuera difícil de conseguir ya que la bomba de lóbulos rotativos alcanzó presiones excesivas. Se extrajo una muestra del tanque de recirculación y se midió una concentración final de la masa de aproximadamente 104 g/L. La Tabla 4 resume la capacidad de procesamiento y el flujo medidos durante las fases de UF1, DF (DF1 DF2) y UF2.
Tabla 4.
La FIG. 5 muestra los valores observados o medidos del proceso en función del tiempo para los parámetros de caudal de la alimentación (210), temperatura del tanque (220), Pd alimentada (230), PTM (240) y caudal del filtrado (250) durante las diversas fases o modos del proceso que incluyen UF1 (10), DF (20) y UF2 (30).
La FIG. 6 muestra los valores observados o medidos del proceso en función del tiempo para la concentración de E25 (310), el flujo (320) y la PTM (240).
La FIG. 7 muestra los valores observados o medidos del proceso en función del tiempo para la caída de presión frente a la concentración de proteínas observada para UF1 (410) y UF2 (420) a 24 °C.
La mezcla de proteínas se recuperó en varios pasos. En primer lugar, la mezcla en el tanque de recirculación se bombeó desde el tanque a través de un filtro Millipac 200 de 0,22 micras de grado esterilizante utilizando la bomba de alimentación de lóbulos rotativos. A continuación, la solución de proteínas se desplazó desde las tuberías y la unidad de membrana con una despresurización de nitrógeno gaseoso de 5 psig aplicada al punto más alto de la línea de la fracción retenida. La recuperación del producto a partir de esto fue muy deficiente debido a la naturaleza viscosa de la solución. La fase final fue una despresurización del tanque y la línea de alimentación, utilizando también nitrógeno gaseoso a 5 psig.
Para determinar la masa de pérdida durante la recuperación, se añadieron 1,85 L de tampón de DF al sistema y se recircularon durante aproximadamente 5 minutos y se recuperaron utilizando la secuencia del Ejemplo 1. A continuación, se analizó la concentración de proteínas de este volumen con las otras mezclas. La Tabla 5 resume los resultados.Tabla 5.
Después del proceso, la membrana se regeneró utilizando NaOH 0,1 N, 1 L/ft2 de lavado de un solo paso seguido de 0,5 L/ft2 de recirculación total durante 30 min. A esto le siguió 1 L/ft2 de lavado con AP. A esto le siguió una recirculación total de una solución de 300 ppm de Minncare® durante 30 min. El sistema se lavó de nuevo con 1L/ft2 de AP y finalmente se recirculó durante 15 min con NaOH 0,1 N y se almacenó. La mezcla recuperada se diluyó hasta 80 g de E25/L y se acondicionó en la formulación final de histidina 20 mM/sacarosa 250 mM/polisorbato 20 al 0,02 %/pH 6,0. La calidad del producto se evaluó mediante cromatografía de exclusión por tamaño (SEC, por sus siglas en inglés) tanto para la mezcla Q entrante como para la masa final recuperada. Estos datos se resumen en la Tabla 6.
Tabla 6.
Ejemplo 3 (para referencia)
Formulación de alta concentración de rhuMAb E26 con modo de alimentación por lotes inicial
Se repitió el Ejemplo I con las siguientes excepciones. El concentrado/fórmula fue rhuMAb E26 (un anticuerpo monoclonal humano recombinante que tiene IgE como diana). Los productos de este ejemplo se utilizaron en una evaluación toxicológica. El sistema de ultrafiltración/diafiltración Pelican de Millipore se ensambló con una membrana compuesta de celulosa regenerada de 11,4 pies cuadrados y 30000 Dalton. El caudal de la alimentación se fijó en un caudal constante de 5,0 L/min (0,44 L/min/ft2). Durante las operaciones de ultrafiltración y diafiltración, la presión del retenido se mantuvo entre aproximadamente 6 y 8 psig. Se determinó por medición que la mezcla de proteínas resultante del paso de cromatografía de Q-Sepharose anterior tenía una concentración de 6,7 g de E25/L y tenía un volumen de 59,3 L.
Debido a que la mezcla entrante era más grande que el recipiente de recirculación, el proceso de UF1 empezó en un modo de alimentación por lotes. En este modo, se añadió la mezcla Q al recipiente de recirculación aproximadamente a la misma velocidad que el filtrado pasa a través de la membrana de TFF para drenar. Después de que la mezcla Q restante se transfiriese al recipiente de recirculación, el proceso de UF1 continuó en modo de lotes. Durante la UF1, la mezcla se concentró hasta 50 g de E26/L (aproximadamente 7,9 L). Al comienzo de la diafiltración, el punto de ajuste de la temperatura del recipiente de recirculación se aumentó hasta 40 °C. El aumento de la temperatura y el control se vieron afectados por el flujo de glicol caliente a través de la camisa exterior del tanque. A continuación, la mezcla se diafiltró con 8 diavolúmenes de tampón de diafiltración. La diafiltración se realizó con un volumen constante, que se consiguió haciendo coincidir el caudal de la solución tamponada que se estaba transfiriendo al tanque de recirculación con el caudal de filtrado que se estaba eliminando del sistema. Al final de la diafiltración, la mezcla se concentró adicionalmente en un modo de UF2 hasta una concentración final de 109 g de E26/L (3,6 L). Esta fase también se realizó utilizando un punto de ajuste de la temperatura elevado de 40 °C. A continuación, se realizó una mezcla con baja caída de presión en la que se controló la bomba de alimentación para mantener una caída de presión de 5-10 psig a través del canal de alimentación. La Tabla 7 resume los resultados de la capacidad de procesamiento y el flujo de UF1, DF (DF1 DF2) y UF2.
Tabla 7.
La FIG. 8 muestra los valores observados o medidos del proceso en función del tiempo para el caudal de la alimentación (210), la temperatura del tanque (220), la Pd alimentada (230), la PTM (240) y el caudal del filtrado (250). La FIG. 9 muestra los valores observados o medidos del proceso en función del tiempo para la concentración de E26 (910), el flujo (920) y la PTM (940).
La FIG. 10 muestra los valores observados o medidos del proceso en función del tiempo para la caída de presión frente a la concentración de proteínas observada para UF1 (1010) y UF2 (1020).
Justo antes de la recuperación del producto, se analizó una muestra de 10 mL para determinar la detección y el título de carga biológica. Un límite de rechazo típico es de 1000 unidades formadoras de colonias (UFC) por mL. Los resultados de esta prueba fueron de 1,8 UFC/mL, un valor adecuado en este paso y muy por debajo del límite de rechazo. Para determinar la masa de pérdida durante la recuperación, se añadieron 908,1 mL de tampón de DF al sistema y se recircularon durante aproximadamente 5 minutos y se recuperaron utilizando la misma secuencia descrita anteriormente. A continuación, se analizó la concentración de proteínas de este volumen con las otras mezclas. La Tabla 8 resume los resultados.
Tabla 8.
La mezcla recuperada se diluyó hasta 80 g de E26/L y se acondicionó en la formulación final de histidina 50 mM/trehalosa 150 mM/polisorbato 20 al 0,02 %/pH 6,0. La calidad del producto se evaluó mediante cromatografía de exclusión por tamaño (SEC) para la mezcla Q entrante, la mezcla de la fracción retenida después de la UF1, la mezcla de la fracción retenida después de la DF y la masa recuperada final. Estos datos se resumen en la Tabla 9.
Tabla 9.
Ejemplo 4 (para referencia)
Formulación de alta concentración de rhuMAb E26 para evaluación toxicológica: comparación de 10 kD y 30 kD.
Se repitió el Ejemplo 3 con las siguientes excepciones. Se utilizaron dos sistemas de UF a escala piloto para concentrar/formular rhuMAb E26. Se ensamblaron dos sistemas de ultrafiltración/diafiltración Pelicon de Millipore con una membrana compuesta de celulosa regenerada de 11,4 pies cuadrados, uno con un tamaño de poro de 10 000 Dalton y el otro con un tamaño de poro de 30 000 Dalton. Las presiones de la fracción retenida se mantuvieron a aproximadamente 6-9 psig.
Proceso de 10 kD
Se determinó por medición que la mezcla de proteínas resultante del paso de cromatografía de Q-Sepharose anterior tenía una concentración de 5,85 g de E25/L y tenía un volumen de 62,4 L. Durante la UF1, la mezcla se concentró hasta 50 g de E26/L (aproximadamente 7,3 L). Al final de la diafiltración, la mezcla se concentró adicionalmente en un modo de UF2 hasta una concentración final de 107,5 g de E26/L (3,4 L). La Tabla 10 resume los resultados de la capacidad de procesamiento y el flujo de UF1, DF y UF2.
Tabla 10.
Para determinar la masa de pérdida durante la recuperación, se añadieron 987 mL de tampón de DF al sistema y se recircularon durante aproximadamente 5 minutos y se recuperaron utilizando la misma secuencia descrita anteriormente. A continuación, se analizó la concentración de proteínas de este volumen con las otras mezclas. La Tabla 11 resume los resultados.
Tabla 11.
La FIG. 11 muestra los valores observados o medidos del proceso en función del tiempo para el caudal de la alimentación (210), la temperatura del tanque (220), la Pd alimentada (230), la PTM (240) y el caudal del filtrado (250) durante las diversas fases o modos del proceso que incluyen UF1 (10), DF (20), UF2 (30) y Pd baja (40), para el proceso de 10 kD.
La FIG. 12 muestra los valores observados o medidos del proceso en función del tiempo para la concentración de E25 (1210), el flujo (1220) y la PTM (1240) durante las diversas fases o modos del proceso que incluyen UF1 (10), DF (20), UF2 (30) y Pd baja (40), para el proceso de 10 kD.
La FIG. 13 muestra los valores observados o medidos del proceso en función del tiempo para la caída de presión frente a la concentración de proteínas observada para UF1 (1310) y UF2 (1320) para el proceso de 10 kD.
Proceso de 30 kD
Se determinó por medición que la mezcla de proteínas resultante del paso de cromatografía de Q-Sepharose anterior tenía una concentración de 5,85 g de E25/L y tenía un volumen de 64,5 L. Durante la UF1, la mezcla inicial se concentró hasta 50 g de E26/L (aproximadamente 7,5 L). Al final de la diafiltración, la mezcla se concentró adicionalmente en un modo de UF2 hasta una concentración final de 117,5 g de E26/L (3,2 L). La Tabla 12 resume los resultados de la capacidad de procesamiento y el flujo de UF1, DF y UF2.
Tabla 12.
Para determinar la masa de pérdida durante la recuperación, se añadieron 918 mL de tampón de DF al sistema y se recircularon durante aproximadamente 5 minutos y se recuperaron utilizando la misma secuencia descrita anteriormente. La mezcla recuperada se diluyó hasta 80 g de E26/L y se acondicionó en la formulación final de histidina 50 mM/trehalosa 150 mM/polisorbato 20 al 0,02 %/pH 6,0. La Tabla 13 resume los resultados.
Tabla 13.
La FIG. 14 muestra los valores observados o medidos del proceso en función del tiempo para el caudal de la alimentación (210), la temperatura del tanque (220), la Pd alimentada (230), la PTM (240) y el caudal del filtrado (250) durante las diversas fases o modos del proceso que incluyen UF1 (10), DF (20), UF2 (30) y Pd baja (40), para el proceso de 30 kD.
La FIG. 15 muestra los valores observados o medidos del proceso en función del tiempo para la concentración de E25 (1510), el flujo (1520) y la PTM (1540) durante las diversas fases o modos del proceso que incluyen UF1 (10), DF (20), UF2 (30) y Pd baja (40), para el proceso de 30 kD.
La FIG. 16 muestra los valores observados o medidos del proceso en función del tiempo para la caída de presión frente a la concentración de proteínas observada para UF1 (1610) y UF2 (1620) para el proceso de 30 kD.
Ejemplo 5
Escalado de rhuMAb E25 líquido.Se repitió el Ejemplo 1 con las siguientes excepciones.
Se utilizó un sistema de UF a escala de producción para concentrar/formular rhuMAb E25 líquido (un anticuerpo monoclonal humano recombinante que tiene como diana IgE). El producto se puede utilizar en aplicaciones terapéuticas y ensayos de bioequivalencia en seres humanos. Los sistemas de ultrafiltración/diafiltración Pelicon de Millipore se ensamblaron con una membrana compuesta de celulosa regenerada de 226 pies cuadrados, con un tamaño de poro de 30 000 Dalton. Cada sistema constaba de un soporte de membrana, una bomba de alimentación de lóbulos rotativos Viking S3S, tuberías de recirculación de acero inoxidable 316L de 11^" y un recipiente de recirculación de 250 L.
Se utilizó un tanque con camisa de acero inoxidable 316L de 250 litros para el recipiente de recirculación. El control de la temperatura en este tanque se realizó con una alimentación de glicol de temperatura modulada en la camisa del tanque. La temperatura de la alimentación de glicol en la camisa del tanque se incrementó o redujo utilizando un intercambiador de calor alimentado con vapor o un suministro de glicol frío, respectivamente.
Para este experimento, el caudal de la alimentación se fijó en un caudal constante de 114 L/min (0,5 L/min/ft2). El tampón de diafiltración (histidina 20 mM/cloruro de arginina 1200 mM/pH 6,0) se preparó en un tanque por separado. La temperatura de este tampón se fijó en 45 °C antes del proceso. Esto permitió un control preciso de la temperatura durante todo el proceso.
Antes del procesamiento, la solución de almacenamiento del sistema (NaOH 0,1 N) se purgó en un solo paso hacia el modo de drenaje en primer lugar con 1 L/ft2 de agua para inyección (WFI) y a continuación con 1L/ft2 de tampón de diafiltración. Después de las purgas, el sistema se equilibró recirculando 0,5 L/ft2 de tampón de diafiltración durante 10 min. Se comprobó el pH de la solución recirculada para confirmar la equilibración.
Se determinó por medición que la mezcla de proteínas resultante del paso de cromatografía de Q-Sepharose anterior tenía una concentración de 5,2562 g de E25/L y tenía un volumen de 1141 L. La proteína estaba en una solución de tampón TRIS 25 mM y NaCl aproximadamente 200 mM y el pH estaba ajustado a 6,2 . Justo antes del experimento, el punto de ajuste de la temperatura de esta mezcla se fijó en 45 °C. Para empezar el experimento, la mezcla de proteínas se transfirió al recipiente de recirculación, a través de un filtro de grado esterilizante de 0,22 micras, hasta un nivel de aproximadamente 200 L en el tanque. En el recipiente, la mezcla se agitó a través de un impulsor montado en la parte superior y la temperatura se mantuvo a aproximadamente (40-50 °C). Debido a que la mezcla entrante era más grande que el recipiente de recirculación, el proceso de UF1 empezó en un modo de alimentación por lotes. En este modo, se añadió la mezcla Q al recipiente de recirculación aproximadamente a la misma velocidad que el filtrado pasa a través de la membrana de FFT para drenar. Después de que la mezcla Q restante se transfiriese al recipiente de recirculación, el proceso de UF2 continuó en modo de lotes. Durante el modo de UF1, la mezcla se concentró hasta aproximadamente 30 g de E25/L (aproximadamente 200 L). A continuación, la mezcla se diafiltró con aproximadamente 8 diavolúmenes de tampón de diafiltración. Durante la diafiltración, la temperatura se mantuvo entre 40 °C y 50 °C. La diafiltración se realizó con un volumen constante, que se consiguió haciendo coincidir el caudal de la solución tamponada que se estaba transfiriendo al tanque de recirculación con el caudal de filtrado que se estaba eliminando del sistema. Al final de la diafiltración, la mezcla se concentró adicionalmente en un modo de UF2 hasta un punto de ajuste de la concentración final > 170 g de E25/L (35 L). Esta fase del modo de UF2 también se realizó con un punto de ajuste de la temperatura elevado de 45 °C /- 5 °C. A continuación, se realizó una mezcla con baja caída de presión en la que se controló la bomba de alimentación para mantener una caída de presión de 5-10 psig a través del canal de alimentación. Se extrajo una muestra y se realizó un barrido espec. para confirmar la concentración antes de la recuperación. La concentración de esta muestra fue de 219 g de E25/L. La Tabla 14 resume la capacidad de procesamiento y el flujo medidos durante las fases de UF1, DF (DF1 DF2) y UF2.
Tabla 14.
Justo antes de la recuperación del producto, se extrajo una muestra de 30 mL y se sometió a detección y titulación de la carga biológica. El resultado fue < 0,13 UFC/mL. La mezcla de proteínas se recuperó mediante una serie de pasos. En primer lugar, el producto se retiró de la membrana en un modo de un solo paso utilizando 5 L de tampón de DF que se añadieron a la línea de la fracción retenida. El producto se filtró en un tanque de recuperación a través de un filtro de protección de grado esterilizante de 0,22 micras y 7,4 ft2 seguido de un filtro final de grado esterilizante de 0,22 micras y 2 ft2. A continuación, la mezcla en el tanque de recirculación se bombeó desde el tanque usando la bomba de alimentación de lóbulos rotativos. A continuación, la solución de proteínas residual se retiró del tanque y la línea de alimentación con una despresurización de nitrógeno gaseoso de 5 psig. La fase final fue una despresurización de la unidad de membrana, que ahora contenía principalmente el tampón de DF procedente de la retirada inicial del producto. Esta fase también utilizó el nitrógeno gaseoso de 5 psig aplicado al punto más alto en la línea de la fracción retenida. La mezcla recuperada se diluyó en primer lugar hasta aproximadamente 153 g de E25/L utilizando tampón de DF.
Finalmente, la mezcla se acondicionó en la formulación final de histidina 20 mM/arginina-HCl 200 mM/polisorbato 20 al 0,04 %/pH 6,0. A continuación, se analizaron los volúmenes de la mezcla recuperada, la mezcla diluida y la mezcla acondicionada (mezcla Q) para determinar la concentración de proteínas. La Tabla 15 resume los resultados.
Tabla 15.
La FIG. 17 muestra los parámetros de caudal de la alimentación (210), temperatura del tanque (220), Pd alimentada (230), PTM (240) y caudal del filtrado (250) durante las diversas fases o modos del proceso que incluyen UF1 (10), DFI (20), DF2 (25), UF2 (30) y Pd baja (50).
Ejemplo 6
Preparación de rhuMAb E25 líquido.Se repitió el Ejemplo 5 con las siguientes excepciones. Se utilizó un sistema de UF a escala de producción para concentrar/formular rhuMAb E25 líquido (E25, un anticuerpo monoclonal humano recombinante que tiene como diana IgE). Los sistemas de ultrafiltración/diafiltración Pelicon de Millipore se ensamblaron con una membrana compuesta de celulosa regenerada de 226 pies cuadrados, con un tamaño de poro de 30 000 Dalton. Cada sistema constaba de un soporte de membrana, una bomba de alimentación de lóbulos rotativos Viking S3S, tuberías de recirculación de acero inoxidable 316L de 11^" y un recipiente de recirculación de 250 L. Se utilizó un tanque con camisa de acero inoxidable 316L de 250 litros para el recipiente de recirculación. El caudal de alimentación se fijó en un caudal constante de 114 L/min (0,5 L/min/ft2). Durante todas las operaciones previas al uso y posteriores al uso, el control de la presión de la fracción retenida se ajustó a una constante de 10 psig. Durante las operaciones de ultrafiltración y diafiltración, el sistema utilizó el esquema de control de Cpared para controlar el flujo a través de la membrana. El tampón de diafiltración (histidina 20 mM/cloruro de arginina 1200 mM/pH 6,0) se preparó en un tanque por separado. La temperatura de este tampón se fijó en 45 °C antes del proceso. Esto permitió un control preciso de la temperatura durante todo el proceso. Se determinó por medición que la mezcla de proteínas resultante del paso de cromatografía de Q-Sepharose anterior tenía una concentración de 5,5438 g de E25/L y tenía un volumen de 1.082 L. La proteína estaba en una solución de tampón TRIS 25 mM y NaCl aproximadamente 200 mM y el pH estaba ajustado a 6,2 . Justo antes del experimento, el punto de ajuste de la temperatura de esta mezcla se fijó en 45 °C. Para empezar el experimento, la mezcla de proteínas se transfirió al recipiente de recirculación, a través de un filtro de grado esterilizante de 0,22 micras, hasta un nivel de aproximadamente 200 L en el tanque. En el recipiente, la mezcla se agitó a través del impulsor montado en la parte superior y la temperatura se mantuvo a temperatura ambiente (40-50 °C). Debido a que la mezcla entrante era más grande que el recipiente de recirculación, el proceso de UF1 empezó en un modo de alimentación por lotes. En este modo, se añadió la mezcla Q al recipiente de recirculación aproximadamente a la misma velocidad que el filtrado pasa a través de la membrana de FFT para drenar. Después de que la mezcla Q restante se transfiriese al recipiente de recirculación, el proceso de UF1 continuó en modo de lotes. Durante la UF1, la mezcla se concentró hasta aproximadamente 30 g de E25/L (aproximadamente 200 L). A continuación, la mezcla se diafiltró con 8 diavolúmenes de tampón de diafiltración. Durante la diafiltración, la temperatura se mantuvo entre 40 °C y 50 °C. La diafiltración se realizó con un volumen constante, que se consiguió haciendo coincidir el caudal de la solución tamponada que se estaba transfiriendo al tanque de recirculación con el caudal de filtrado que se estaba eliminando del sistema. Al final de la diafiltración, la mezcla se concentró adicionalmente en un modo de UF2 hasta un punto de ajuste de la concentración final superior a 170 g de E25/L (35 L). Esta fase también se realizó con un punto de ajuste de la temperatura elevado de 45 °C /- 5 °C. A continuación, se realizó una mezcla con baja caída de presión en la que se controló la bomba de alimentación para mantener una caída de presión de 5-10 psig a través del canal de alimentación. Se extrajo una muestra y se realizó un barrido espec. para confirmar la concentración antes de la recuperación. La concentración de esta muestra fue de 191 g de E25/L y el volumen de la mezcla fue de 31,9 L. La gráfica de los parámetros del proceso en función del tiempo fue comparable a la observada y resumida en la FIG. 17 anterior.
Tabla 14.
Justo antes de la recuperación del producto, se extrajo una muestra de 30 mL y se analizó para determinar el título de carga biológica. Los resultados de esta prueba estuvieron por debajo del límite de detección (< 0,13 UFC/mL).
La mezcla de proteínas se recuperó mediante una serie de pasos. En primer lugar, el producto se retiró de la membrana en un modo de un solo paso utilizando 5 L de tampón de DF que se añadieron a la línea de la fracción retenida. El producto se filtró en un tanque de recuperación a través de un filtro de protección de grado esterilizante de 0,22 micras y 7,4 ft2 seguido de un filtro final de grado esterilizante de 0,22 micras y 2 ft2. A continuación, la mezcla en el tanque de recirculación se bombeó desde el tanque usando la bomba de alimentación de lóbulos rotativos. A continuación, la solución de proteínas residual se retiró del tanque y la línea de alimentación con una despresurización de nitrógeno gaseoso de 5 psig. La fase final fue una despresurización de la unidad de membrana, que contenía principalmente el tampón de DF procedente de la retirada inicial del producto. Esta fase también utilizó nitrógeno gaseoso de 5 psig aplicado al punto más alto en la línea de la fracción retenida. La mezcla recuperada se diluyó en primer lugar hasta aproximadamente 153 g de E25/L utilizando tampón de DF. Finalmente, la mezcla se acondicionó en la formulación final de histidina 20 mM/arginina-HCl 1200 mM/polisorbato 20 al 0,04 %/pH 6,0. A continuación, se analizaron los volúmenes de la mezcla recuperada, la mezcla diluida y la mezcla acondicionada para determinar la concentración de proteínas. La Tabla 15 resume los resultados. Después del proceso, la membrana se regeneró como se ha descrito anteriormente.
Tabla 15.
Ejemplo 7
Efecto de la temperatura elevada sobre la calidad del producto.Las muestras de E25 de 30 g/L y 150 g/L en histidina y tampones Q se mantuvieron a varias temperaturas durante 24 horas. Se tomaron muestras para realizar mediciones de turbidez y ensayos de SEC. Los resultados de la turbidez frente a la temperatura para E25 de 30 g/L en tampón Q se muestran en la FIG. 18. La FIG. 19 muestra la cantidad de agregado soluble de e25 (150 g/L en tampón de histidina 50 mM, pH 6,0) observada en función del tiempo y a temperaturas de 23 °C, 40 °C, 50 °C, 60 °C y 70 °C. Los cuatro intervalos de tiempo (tiempo de 0 horas, 4 horas, 7,5 horas y 24 horas) para cada una de estas temperaturas se muestran como la agrupación de cuatro barras de izquierda a derecha como 1810 y 1910, en las FIGS. 18 y 19. La turbidez de la solución permaneció esencialmente sin cambios después de 24 horas a 60 °C. No se observó ningún agregado soluble significativo de E25 por debajo de 70 °C, lo que sugiere que las muestras de producto fueron sustancialmente estables hasta al menos 60 °C y al menos 24 horas.
Ejemplo 8
Efecto de la temperatura elevada sobre la carga biológica.Se inocularon 103 unidades formadoras de colonias por mL de dos organismos de exposición: una cepa grampositiva(Staphylococcus aureus)y una cepa gramnegativa(Pseudomonas clororaphis),en muestras de E25 de 30 g/L en tampones de arginina e histidina . Se tomaron muestras después de 1,5 horas y 6 horas. Los resultados mostrados en los diagramas de barras de las FIGS. 20 y 21 indican que estos organismos de exposición disminuyeron ambos al aumentar la temperatura. Los tres intervalos de temperatura (temperatura de 25 °C, 40 °C y 50 °C horas) para cada intervalo de tiempo observado se muestran como la agrupación de tres barras de izquierda a derecha como 2010 y 2110, en las FIGs . 20 y 21. Las inoculaciones mostradas se realizaron en tampón de arginina con concentraciones de proteínas de 30 g/L.
Ejemplo 9
Efecto de la temperatura elevada sobre el flujo del proceso.Se evaluaron muestras de E25 de 10 g/L en arginina 0,2 M, histidina 25 mM, tampón de pH 6,0 para determinar su influencia sobre el flujo frente a la presión de transmembrana (PTM). La FIG. 22 muestra que el hecho de aumentar la temperatura del sistema también incrementó el flujo del proceso durante las operaciones de UF/DF. Se llevaron a cabo variaciones del flujo para varias concentraciones de la masa y tres temperaturas diferentes de 23 °C (2210), 40 °C (2220) y 46 °C (2230). El coeficiente de transferencia de masa y el flujo de filtrado aumentaron de aproximadamente 2 a aproximadamente 3 veces, con lo que se proporcionaron tiempos de proceso considerablemente reducidos.
Ejemplo 10
Formulación de alta concentración de rhuMAb anti-CD20 («2H7»). Se utilizó un sistema de UF a escala piloto para concentrar y formular rhuMAb anti-CD20 (2H7; un anticuerpo monoclonal humano recombinante). Se repitió el Ejemplo 1 con las siguientes excepciones. Los sistemas de ultrafiltración/diafiltración Pelicon de Millipore se ensamblaron con una membrana compuesta de celulosa regenerada de 17,5 pies cuadrados, con un tamaño de poro de 30000 Dalton. El sistema constaba de un soporte de membrana, una bomba de alimentación de lóbulos rotativos Viking S1 L, tuberías de recirculación de acero inoxidable 316L de V" y un recipiente de recirculación de 40 L. Las válvulas reguladoras de contrapresión eran H.D. Baumann, Inc. La temperatura del glicol utilizado como alimentación en la camisa del tanque se reguló hacia arriba o hacia abajo según fuera necesario utilizando un intercambiador de calor eléctrico, un suministro de glicol frío o ambos.
Durante este experimento, el caudal de la alimentación se fijó en un caudal constante de 8,5 L/min (aproximadamente 0,5 L/min/ft2). La FIG. 23 muestra las tendencias de los valores en función del tiempo para el caudal de la alimentación (210) escalado de 0 a 20, el pH (212) escalado de 2 a 12, el caudal del filtrado (250) escalado de 0 a 5, el nivel del tanque de reciclaje (2320) escalado de 0 a 45, y la Pd de la fracción retenida (2350) escalada de 0 a 100 durante las diversas fases o modos del proceso que incluyen UF1 (10), DFI (20) y UF2 (30).
Durante las operaciones de ultrafiltración y diafiltración, el sistema utilizó una presión de la fracción retenida constante seguida de un esquema de control de la presión diferencial de la alimentación/fracción retenida constante para controlar el flujo a través de la membrana. El tampón de diafiltración (acetato de sodio 30 mM/pH 4,9) se preparó en un tanque por separado. La temperatura de este tampón se fijó en 45 °C antes del proceso para conseguir un control de la temperatura preciso durante todo el proceso. Antes del procesamiento, la solución de almacenamiento del sistema (NaOH 0,1 N) se purgó en un solo paso hacia el modo de drenaje en primer lugar con 1 L/ft2 de agua para inyección (WFI) y a continuación con 1 L/ft2 de tampón de diafiltración. Después de las purgas, el sistema se equilibró recirculando 0,5 L/ft2 de tampón de diafiltración durante 10 min. Se comprobó el pH de la solución recirculada para confirmar la equilibración.
Se determinó por medición que la mezcla de proteínas resultante de un paso de cromatografía de Q-Sepharose anterior tenía una concentración de 2,31 g de 2H7/L y tenía un volumen de 356 L. La proteína estaba en una solución de HEPES 6 mM en forma de ácido libre / HEPES 19 mM en forma de sal sódica y acetato de sodio 25 mM, a la cual se le había ajustado el pH hasta 5,3 con ácido acético 0,5 M. Justo antes del experimento, el punto de ajuste de la temperatura de esta mezcla se fijó en 45 °C. Para empezar el experimento, la mezcla de proteínas se transfirió al recipiente de recirculación, a través de un filtro de grado esterilizante de 0,22 micras, hasta un nivel de aproximadamente 40 L en el tanque. En el recipiente, la mezcla se agitó a través del impulsor montado en la parte superior y la temperatura se mantuvo a 40-50 °C.
Debido a que la mezcla entrante era más grande que el recipiente de recirculación, el proceso de UF1 empezó en un modo de alimentación por lotes (véase la FIG. 23). En este modo, se añadió la mezcla Q al recipiente de recirculación aproximadamente a la misma velocidad que el filtrado pasa a través de la membrana de FFT para drenar. Después de que la mezcla Q restante se transfiriese al recipiente de recirculación, el proceso de UF1 continuó en modo de lotes. Durante la UF1, la mezcla se concentró hasta aproximadamente 50 g de 2 H7/L (aproximadamente 16 L). A continuación, la mezcla se diafiltró con 10 diavolúmenes de tampón de diafiltración. Durante la diafiltración, la temperatura se mantuvo entre 40 °C y 50 °C. La diafiltración se realizó con un volumen constante, que se consiguió haciendo coincidir el caudal de la solución tamponada que se estaba transfiriendo al tanque de recirculación con el caudal de filtrado que se estaba eliminando del sistema. Al final de la diafiltración, la mezcla se concentró adicionalmente en un modo de UF2 hasta un punto de ajuste objetivo de la concentración final de 190 g de 2H7/L (4,3 L). Véase en la FIG. 23 la incorporación del control de Pd constante en 50 psig al final de esta fase. Esta fase también se realizó con un punto de ajuste de la temperatura elevado de 45 °C /- 5 °C. A continuación, se realizó una mezcla con baja caída de presión en la que se controló la bomba de alimentación para mantener una caída de presión de 20 psig a través del canal de alimentación. Se extrajo una muestra y se realizó una medición de la densidad para confirmar la concentración antes de la recuperación. La concentración de esta muestra fue de 189 g de 2H7/L. La Tabla 16 resume los resultados de la capacidad de procesamiento y el flujo.
Tabla 16.
La mezcla de proteínas se recuperó mediante una serie de pasos. En primer lugar, el producto se retira de la membrana en un modo de un solo paso utilizando 0,2 L de tampón de DF que se añaden a la línea de la fracción retenida. El producto se filtra en un tanque de recuperación a través de un filtro final de grado esterilizante de 0,22
micras. A continuación, la mezcla en el tanque de recirculación se bombeó desde el tanque usando la bomba de alimentación de lóbulos rotativos. A continuación, la solución de proteínas residual se retira del tanque y la línea de alimentación con una despresurización de nitrógeno gaseoso de 5 psig. La fase final fue una despresurización de la unidad de membrana, que ahora contienen el tampón de DF procedente de la retirada inicial del producto. Esta fase también utilizó el nitrógeno gaseoso de 5 psig aplicado al punto más alto en la línea de la fracción retenida.
Cuando fue necesario, mezcla recuperada se diluyó en primer lugar hasta aproximadamente 175 g de 2H7/L utilizando tampón de dilución (acetato de sodio 30 mM, pG 5,3). Finalmente, la mezcla se diluye hasta una concentración objetivo de 150 g de 2H7/L y se acondiciona en la formulación final de acetato de sodio 30 mM, trehalosa al 7 %, polisorbato 20 al 0,03 %, pH 5, mediante un tampón de acondicionamiento 7X (acetato de sodio 30 mM, trehalosa al 49 %, polisorbato 20 al 0,21 % , pH 5,3).
A continuación, se analizaron los volúmenes de la mezcla recuperada, la mezcla diluida y la mezcla acondicionada para determinar la concentración de proteínas. La Tabla 17 presenta los resultados.
Tabla 17.
Después del proceso, la membrana se regeneró utilizando NaOH 0,1 N, 1 L/ft2 de lavado de un solo paso seguido de 0,5 L/ft2 de recirculación total durante 30 min. A esto le siguió 1 L/ft2 de lavado con AP. A esto le siguió una recirculación total de 0,5 L/ft2 de una solución de Minncare® al 1,4 % durante 30 min. El sistema se lavó de nuevo con 1L/ft2 de AP y finalmente se recirculó durante 15 min con NaOH 0,1 N y se almacenó.
Ejemplo 11 (para referencia)
Formulación de alta concentración de rhuMAb anti-CD20. Se utilizó un sistema de UF a escala piloto para concentrar y formular rhuMAb anti-CD20 (2H7) para su uso en un estudio clínico de fase I en seres humanos en unas instalaciones de fabricación de GMP. Se repitió el Ejemplo 10 con las siguientes excepciones.
Se determinó por medición que la mezcla de proteínas resultante de un paso de cromatografía de Q-Sepharose anterior tenía una concentración de 3,729 g de 2H7/L y tenía un volumen de 262 L. La proteína estaba en una solución de HEPES 6 mM en forma de ácido libre / HEPES 19 mM en forma de sal sódica y acetato de sodio 25 mM, a la cual se le había ajustado el pH hasta 5,3 con ácido acético 0,5 M. Justo antes del experimento, el punto de ajuste de la temperatura de esta mezcla se fijó en 45 °C. Para empezar el experimento, la mezcla de proteínas se transfirió al recipiente de recirculación, a través de un filtro de grado esterilizante de 0,22 micras, hasta un nivel de aproximadamente 40 L en el tanque. En el recipiente, la mezcla se agitó a través del impulsor montado en la parte superior y la temperatura se mantuvo a 40-50 °C.
Durante la UF1, la mezcla se concentró hasta aproximadamente 50 g de 2H7/L (aproximadamente 20 L). La FIG. 24 muestra las tendencias de los valores en función del tiempo para el nivel del tanque de reciclaje (210) escalado de -0,713963 a 295,989, la Pd de la fracción retenida (2420) escalada de -0,237899 a 98,6629, el caudal de la alimentación (250) escalado de -0,356981 a 147,994 y el caudal del filtrado (2450) escalado de -0,118994 a 49,3315 durante el proceso. A continuación, la mezcla se diafiltró con 10 diavolúmenes de tampón de diafiltración. Durante la diafiltración, la temperatura se mantuvo entre 40 °C y 50 °C. La diafiltración se realizó con un volumen constante, que se consiguió haciendo coincidir el caudal del tampón que se estaba transfiriendo al tanque de recirculación con el caudal de filtrado que se estaba eliminando del sistema. Al final de la diafiltración, la mezcla se concentró adicionalmente en un modo de UF2 hasta un punto de ajuste objetivo de la concentración final de 190 g de 2H7/L (5,25 L). Cabe destacar en la FIG. 24 la incorporación del control de Pd constante en 40 psig al final de esta fase. Esta fase también se realizó con un punto de ajuste de la temperatura elevado de 45 °C /- 5 °C. A continuación, se realizó una mezcla con baja caída de presión en la que se controla la bomba de alimentación para mantener una caída de presión de 20 psig a través del canal de alimentación. Se extrajo una muestra y se realizó una medición de la densidad para confirmar la concentración antes de la recuperación. La concentración de esta muestra fue de 194 g de 2H7/L. La Tabla 18 resume los resultados de la capacidad de procesamiento y el flujo.
Tabla 18.
Justo antes de la recuperación del producto, se extrajo una muestra de 30 mL y se sometió a detección y titulación de la carga biológica. Los resultados fueron negativos (es decir, < 0,13 UFC/mL). La mezcla de proteínas se recuperó mediante la serie de pasos del Ejemplo 10. A continuación, se analizaron los volúmenes de la mezcla recuperada, la mezcla diluida y la mezcla acondicionada para determinar la concentración de proteínas. La Tabla 19 presenta los resultados. La membrana se regeneró como en el Ejemplo 10.
Tabla 19.
Ejemplo 12 (para referencia)
Formulación de alta concentración de rhuMAb anti-CD20 GMP.Se repitió el Ejemplo 11 con las siguientes excepciones. Se determinó por medición que la mezcla de proteínas resultante de un paso de cromatografía de Q-Sepharose anterior tenía una concentración de 5,106 g de 2 H7/L y tenía un volumen de 196 L. La proteína estaba en una solución de HEPES 6 mM en forma de ácido libre / HEPES 19 mM en forma de sal sódica y acetato de sodio 25 mM, a la cual se le había ajustado el pH hasta 5,3 con ácido acético 0,5 M. Justo antes del experimento, el punto de ajuste de la temperatura de esta mezcla se fijó en 45 °C. Para empezar el experimento, la mezcla de proteínas se transfirió al recipiente de recirculación, a través de un filtro de grado esterilizante de 0,22 micras, hasta un nivel de aproximadamente 40 L en el tanque. En el recipiente, la mezcla se agitó a través del impulsor montado en la parte superior y la temperatura se mantuvo a 40-50 °C.
Durante la UF1, la mezcla se concentró hasta aproximadamente 50 g de 2H7/L (aproximadamente 20 L). La FIG. 25 muestra las tendencias de los valores en función del tiempo para el nivel del tanque de reciclaje (210) escalado de 0 a 300, la Pd de la fracción retenida (2520) escalada de 0 a 100, el caudal de la alimentación (250) escalado de 0 a 150 y el caudal del filtrado (2550) escalado de 0 a 50 durante el proceso. La mezcla se diafiltró con 10 diavolúmenes (10 X) de tampón de diafiltración. Durante la diafiltración, la temperatura se mantuvo entre 40 °C y 50 °C. La diafiltración se realizó con un volumen constante, que se consiguió haciendo coincidir el caudal del tampón que se estaba transfiriendo al tanque de recirculación con el caudal de filtrado que se estaba eliminando del sistema. Al final de la diafiltración, la mezcla se concentró adicionalmente en un modo de UF2 hasta un punto de ajuste objetivo de la concentración final de 190 g de 2H7/L (5,26 L) utilizando de nuevo un control de Pd constante muy al final de esta fase (véase la FIG. 25). Esta fase también se realizó con un punto de ajuste de la temperatura elevado de 45 °C /- 5 °C. A continuación, se realizó una mezcla con baja caída de presión en la que se controla la bomba de alimentación para mantener una caída de presión de 20 psig a través del canal de alimentación. Se extrajo una muestra y se realizó una medición de la densidad para confirmar la concentración antes de la recuperación. La concentración de esta muestra fue de 191 g de 2H7/L. La Tabla 20 resume los resultados de la capacidad de procesamiento y el flujo.
Tabla 20.
Justo antes de la recuperación del producto, se extrajo una muestra de 30 mL y se sometió a detección y titulación de la carga biológica. Los resultados fueron negativos (es decir, < 0,13 UFC/mL). La mezcla de proteínas se recuperó mediante una serie de pasos como en el Ejemplo 11. A continuación, se analizaron los volúmenes de la mezcla recuperada, la mezcla diluida y la mezcla acondicionada para determinar la concentración de proteínas. La Tabla 21 presenta los resultados. La membrana se regeneró como en el Ejemplo 11.
Tabla 21.

Claims (20)

REIVINDICACIONES
1. Un proceso para preparar composiciones concentradas de anticuerpos anti-IgE humanizados recombinantes, que comprende:
(a) una primera ultrafiltración de un primer preparado de anticuerpos que tiene una concentración de 0,1 a 10 gramos por litro para proporcionar un segundo preparado de anticuerpos como la fracción retenida, en donde el segundo preparado de anticuerpos tiene una concentración de 10 a 50 gramos por litro;
(b) una diafiltración del segundo preparado de anticuerpos para proporcionar un preparado de anticuerpos intermedio diafiltrado como la fracción retenida, en donde el preparado de anticuerpos intermedio diafiltrado tiene la misma concentración que el segundo preparado de anticuerpos; y
(c) una segunda ultrafiltración del preparado de anticuerpos intermedio diafiltrado para proporcionar un tercer preparado de anticuerpos como la fracción retenida de la segunda ultrafiltración, en donde el tercer preparado de anticuerpos tiene una concentración de 150 a 200 gramos por litro,
en donde los pasos (a), (b) y (c) se llevan a cabo a una temperatura de 45 °C ± 5 °C; y en donde el anticuerpo es rhuMAb E25.
2. El proceso de la reivindicación 1, en donde uno o más de los pasos a), b) y c) se llevan a cabo a una temperatura de 45 °C.
3. El proceso de una cualquiera de las reivindicaciones anteriores, en donde el proceso se realiza en de 1 a 10 horas, por ejemplo, en de 2 a 5 horas o en 3 horas.
4. El proceso de la reivindicación 1, en donde el primer preparado de anticuerpos tiene una concentración de anticuerpos de 1 a 5 g/L.
5. El proceso de una cualquiera de las reivindicaciones anteriores, en donde el segundo preparado de anticuerpos tiene una concentración de anticuerpos de 20 a 40 g/L.
6. El proceso de una cualquiera de las reivindicaciones anteriores, en donde el tercer preparado de anticuerpos tiene una concentración de anticuerpos de 170 a 200 g/L.
7. El proceso de una cualquiera de las reivindicaciones 1 a 3, en donde el preparado de anticuerpos intermedio tiene una concentración de anticuerpos de 25 a 35 g/L y el tercer preparado de anticuerpos tiene una concentración de anticuerpos de 170 a 200 g/L.
8. El proceso de una cualquiera de las reivindicaciones 1 a 3, en donde la primera ultrafiltración concentra el primer preparado de anticuerpos para proporcionar el segundo preparado de anticuerpos que tiene una concentración de anticuerpos de 30 g/L y la segunda ultrafiltración concentra el preparado de anticuerpos intermedio para proporcionar el tercer preparado de anticuerpos que tiene una concentración de anticuerpos de 170 a 200 g/L.
9. El proceso de una cualquiera de las reivindicaciones anteriores, en donde el rendimiento del tercer preparado de anticuerpos es superior a un 70 % en peso en función del peso de anticuerpos en el primer preparado de anticuerpos.
10. El proceso de la reivindicación 9, en donde el rendimiento del tercer preparado de anticuerpos es de un 80 a un 100 % en peso en función del peso de anticuerpos en el primer preparado de anticuerpos.
11. El proceso de la reivindicación 10, en donde el rendimiento del tercer preparado de anticuerpos es superior a un 98 % en peso en función del peso de anticuerpos en el primer preparado de anticuerpos.
12. El proceso de una cualquiera de las reivindicaciones anteriores, en donde los pasos de filtración a), b) y c) utilizan una membrana de ultrafiltración.
13. El proceso de la reivindicación 12, en donde la membrana de ultrafiltración utilizada en los pasos a) y c) comprende una membrana de ultrafiltración compuesta de celulosa regenerada.
14. El proceso de la reivindicación 10 o la reivindicación 11, en donde el paso de diafiltración realiza un intercambio de tampón a una concentración de anticuerpos constante.
15. El proceso de una cualquiera de las reivindicaciones 10 a 12, en donde la diafiltración realiza un intercambio de tampón de 5 a 15 veces el volumen.
16. El proceso de la reivindicación 15, en donde la diafiltración realiza un intercambio de tampón de 8 veces el volumen.
17. El proceso de una cualquiera de las reivindicaciones anteriores, en donde la primera ultrafiltración tiene una tasa de recirculación de 0,5 L/min/ft2 a 5 L/min/ft2 (5,38195 L/min/m2 a 53,8195 L/min/m2).
18. El proceso de una cualquiera de las reivindicaciones anteriores, en donde la ultrafiltración y la diafiltración se realizan a una presión de transmembrana de 5 a 50 psi (0,345 a 3,45 bar).
19. El proceso de una cualquiera de las reivindicaciones anteriores, en donde los pasos a), b) y c) se realizan a una presión de transmembrana de 10 a 50 psi (0,689 a 3,45 bar).
20. El proceso de una cualquiera de las reivindicaciones anteriores, en donde el nivel de contaminantes agregados en el tercer preparado de anticuerpos es inferior a un 2 por ciento en peso.
ES10009914T 2004-09-09 2005-09-08 Proceso para la concentración de anticuerpos y productos terapéuticos de estos Active ES2968070T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US60909204P 2004-09-09 2004-09-09
US11/220,362 US20060051347A1 (en) 2004-09-09 2005-09-06 Process for concentration of antibodies and therapeutic products thereof

Publications (1)

Publication Number Publication Date
ES2968070T3 true ES2968070T3 (es) 2024-05-07

Family

ID=35996499

Family Applications (3)

Application Number Title Priority Date Filing Date
ES05806393.4T Active ES2528541T3 (es) 2004-09-09 2005-09-08 Proceso para la concentración de anticuerpos y productos terapéuticos de los mismos
ES20200642T Active ES2942574T3 (es) 2004-09-09 2005-09-08 Proceso para la concentración de anticuerpos y productos terapéuticos de estos
ES10009914T Active ES2968070T3 (es) 2004-09-09 2005-09-08 Proceso para la concentración de anticuerpos y productos terapéuticos de estos

Family Applications Before (2)

Application Number Title Priority Date Filing Date
ES05806393.4T Active ES2528541T3 (es) 2004-09-09 2005-09-08 Proceso para la concentración de anticuerpos y productos terapéuticos de los mismos
ES20200642T Active ES2942574T3 (es) 2004-09-09 2005-09-08 Proceso para la concentración de anticuerpos y productos terapéuticos de estos

Country Status (33)

Country Link
US (6) US20060051347A1 (es)
EP (5) EP4104859B1 (es)
JP (2) JP5210633B2 (es)
KR (2) KR20070109975A (es)
CN (3) CN104961797B (es)
AR (1) AR050641A1 (es)
AU (1) AU2005285243C1 (es)
BR (1) BRPI0515649B8 (es)
CA (1) CA2577317C (es)
DK (4) DK4108259T3 (es)
EC (1) ECSP077282A (es)
ES (3) ES2528541T3 (es)
FI (2) FI2292636T3 (es)
GT (1) GT200500254A (es)
HK (2) HK1101249A1 (es)
HU (2) HUE065025T2 (es)
IL (2) IL181372A (es)
LT (3) LT4108259T (es)
MA (1) MA28991B1 (es)
MX (2) MX2007002812A (es)
MY (2) MY162525A (es)
NO (1) NO333660B1 (es)
NZ (1) NZ553239A (es)
PE (1) PE20060816A1 (es)
PL (4) PL1786830T3 (es)
PT (4) PT4108259T (es)
RU (1) RU2390524C2 (es)
SG (1) SG177161A1 (es)
SI (4) SI1786830T1 (es)
TN (1) TNSN07069A1 (es)
TW (1) TWI372630B (es)
WO (1) WO2006031560A2 (es)
ZA (1) ZA200701626B (es)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703126B2 (en) 2000-10-12 2014-04-22 Genentech, Inc. Reduced-viscosity concentrated protein formulations
ES2332402T5 (es) * 2000-10-12 2018-05-14 Genentech, Inc. Formulaciones de proteína concentradas de viscosidad reducida
SI2335725T1 (sl) 2003-04-04 2017-01-31 Genentech, Inc. Visokokoncentrirane formulacije protiteles in proteinov
CA2554883C (en) 2004-01-30 2013-10-01 Zymenex A/S Production and purification of recombinant arylsulfatase a
PT1765294E (pt) 2004-05-12 2008-12-30 Baxter Healthcare Sa Microesferas de ácido nucleico, sua produção e entrega
CA2566199C (en) 2004-05-12 2013-10-22 Baxter International Inc. Delivery of as-oligonucleotide microspheres to induce dendritic cell tolerance for the treatment of autoimmune type 1 diabetes
US20060051347A1 (en) 2004-09-09 2006-03-09 Winter Charles M Process for concentration of antibodies and therapeutic products thereof
BRPI0611901A2 (pt) 2005-06-14 2012-08-28 Amgen, Inc composição, liofilizado, kit, e, processo para preparar uma composição
US20070246406A1 (en) * 2006-03-31 2007-10-25 Dibel Kevin R Tangential flow filtration apparatuses, systems, and processes for the separation of compounds
MX2008012748A (es) 2006-04-04 2009-01-07 Shire Pharmaceuticals Ireland Un proceso para la concentracion de un polipeptido.
MX2009010361A (es) 2007-03-29 2009-10-16 Abbott Lab Anticuerpos il-12 anti-humanos cristalinos.
AU2008277886B8 (en) 2007-07-17 2013-08-01 F. Hoffmann-La Roche Ag Variable tangential flow filtration
JP5205470B2 (ja) * 2007-11-29 2013-06-05 エフ.ホフマン−ラ ロシュ アーゲー 免疫グロブリン凝集物
US8420081B2 (en) * 2007-11-30 2013-04-16 Abbvie, Inc. Antibody formulations and methods of making same
US8883146B2 (en) 2007-11-30 2014-11-11 Abbvie Inc. Protein formulations and methods of making same
EP2271382B1 (en) * 2008-04-15 2013-03-13 Grifols Therapeutics Inc. Two-stage ultrafiltration/diafiltration
ES2644983T3 (es) * 2008-05-15 2017-12-01 Biosys Health Inc. Proceso para producir fracciones de leche ricas en inmunoglobulinas secretoras
JP2012511531A (ja) * 2008-12-09 2012-05-24 エフ.ホフマン−ラ ロシュ アーゲー 賦形剤不含抗体溶液を得るための方法
US8795530B2 (en) * 2009-01-21 2014-08-05 Smartflow Technologies, Inc. Optimization of separation for viscous suspensions
SG174258A1 (en) * 2009-03-06 2011-10-28 Genentech Inc Antibody formulation
US9586180B2 (en) * 2009-03-24 2017-03-07 Wyeth Llc Membrane evaporation for generating highly concentrated protein therapeutics
CN102459331B (zh) * 2009-05-27 2015-01-28 巴克斯特国际公司 生产用于皮下使用的高度浓缩的免疫球蛋白制品的方法
JP5697268B2 (ja) * 2009-09-29 2015-04-08 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft バッファー溶質のろ過前調整方法
SI3133083T1 (sl) 2009-10-01 2020-07-31 F. Hoffmann-La Roche Ag Končna filtracija v več korakih
DK2531218T3 (en) 2010-02-04 2019-04-01 Csl Behring Ag immunoglobulin
MX2012010198A (es) 2010-03-01 2012-10-03 Bayer Healthcare Llc Anticuerpos monoclonales optimizados contra el inhibidor de la via del factor tisular (tfpi).
WO2013009686A2 (en) 2011-07-08 2013-01-17 Shire Human Genetic Therapies, Inc. Methods for purification of arylsulfatase a
CA2847302C (en) 2011-09-01 2021-02-16 Chugai Seiyaku Kabushiki Kaisha Method for preparing a composition comprising highly concentrated antibodies by ultrafiltration
AR089434A1 (es) 2011-12-23 2014-08-20 Genentech Inc Procedimiento para preparar formulaciones con alta concentracion de proteinas
US20130281355A1 (en) 2012-04-24 2013-10-24 Genentech, Inc. Cell culture compositions and methods for polypeptide production
US9592297B2 (en) 2012-08-31 2017-03-14 Bayer Healthcare Llc Antibody and protein formulations
US8613919B1 (en) 2012-08-31 2013-12-24 Bayer Healthcare, Llc High concentration antibody and protein formulations
US20150361131A1 (en) * 2012-12-28 2015-12-17 Novo Nordisk A/S High temperature dead end antibody filtration
MX2015008875A (es) 2013-01-09 2015-10-22 Shire Human Genetic Therapies Metodos para la purificacion de arilsulfatasa a.
DE102013001628A1 (de) 2013-01-30 2014-07-31 Fresenius Medical Care Deutschland Gmbh Verfahren zur Bereitstellung eines Konzentrats
CN112588116A (zh) 2014-05-13 2021-04-02 美国安进公司 用于过滤器和过滤过程的过程控制系统和方法
EP2957335B1 (en) * 2014-06-16 2020-05-27 EMD Millipore Corporation Single-pass filtration systems and processes
US10207225B2 (en) 2014-06-16 2019-02-19 Emd Millipore Corporation Single-pass filtration systems and processes
EP4144434B1 (en) * 2014-06-16 2024-04-17 EMD Millipore Corporation Single-pass filtration systems and processes
WO2015195453A2 (en) * 2014-06-16 2015-12-23 Emd Millipore Corporation Methods for increasing the capacity of flow-through processes
CN110756051B (zh) 2014-06-25 2022-11-04 Emd 密理博公司 过滤器元件、切向流过滤系统、产生进料筛网的方法
WO2016033546A1 (en) 2014-08-29 2016-03-03 Emd Millipore Corporation Single pass tangential flow filtration systems and tangential flow filtration systems with recirculation of retentate
KR102061553B1 (ko) 2014-08-29 2020-02-11 이엠디 밀리포어 코포레이션 잔류물의 재순환에 의한 싱글 패스 접선 유동 여과 시스템 및 접선 유동 여과 시스템을 사용하여 액체를 여과하는 공정
MX2017005243A (es) 2014-10-23 2017-08-18 Amgen Inc Reducción de la viscosidad de formulaciones farmacéuticas.
GB201506870D0 (en) 2015-04-22 2015-06-03 Ucb Biopharma Sprl Method
KR20200035496A (ko) * 2015-09-22 2020-04-03 화이자 인코포레이티드 치료학적 단백질 제형의 제조 방법 및 이러한 방법에 의해 생산된 항체 제형
KR102465761B1 (ko) 2016-08-16 2022-11-09 젠자임 코포레이션 재조합 치료 단백질을 포함하는 유체의 처리 방법 및 상기 유체의 용도
CA3031860A1 (en) * 2016-08-17 2018-02-22 Boehringer Ingelheim International Gmbh Process for the preparation of highly concentrated liquid formulations containing biomolecules
AU2017345490B2 (en) 2016-10-21 2022-07-07 Amgen Inc. Pharmaceutical formulations and methods of making the same
JP7377596B2 (ja) 2017-02-22 2023-11-10 アムジエン・インコーポレーテツド 低粘度、高濃度エボロクマブ製剤及びそれらの製造方法
CN107952280A (zh) * 2017-11-28 2018-04-24 安徽东方帝维生物制品股份有限公司 一种兽用疫苗无菌超滤浓缩装置及方法
KR20190079530A (ko) * 2017-12-27 2019-07-05 (주)셀트리온 투석 여과 방법
MA52204A (fr) * 2018-04-12 2021-02-17 Amgen Inc Procédés de préparation de compositions protéiques stables
TW202003832A (zh) * 2018-05-04 2020-01-16 美商健臻公司 具有過濾系統的灌注式生物反應器
US20210308265A1 (en) * 2018-08-10 2021-10-07 Amgen Inc. Method of preparing an antibody pharmaceutical formulation
EP3837273A1 (en) 2018-08-14 2021-06-23 Bristol-Myers Squibb Company Improved protein recovery
TW202043253A (zh) * 2019-01-28 2020-12-01 美商安進公司 藉由將藥物物質和藥物產品過程整體化的生物製劑製造之連續製造過程
CN111018968B (zh) * 2019-12-16 2021-07-27 兴盟生物医药(苏州)有限公司 一种通过超滤浓缩制备高浓度抗体制剂的方法
CN111944046B (zh) * 2020-08-28 2021-04-09 江苏荃信生物医药有限公司 高浓度、低粘度抗人il-23单克隆抗体溶液的制备方法
CN116406369A (zh) * 2020-10-05 2023-07-07 百时美施贵宝公司 用于浓缩蛋白质的方法
AU2021381439A1 (en) 2020-11-23 2023-06-22 Abec, Inc. Filtration systems,components and methods
CN114014929B (zh) * 2021-11-04 2022-07-19 江苏荃信生物医药股份有限公司 一种抗人白介素-33单克隆抗体浓缩溶液的制备方法
TW202342068A (zh) 2022-02-25 2023-11-01 美商安進公司 製備高濃度液體原料藥之方法
CN115261193A (zh) * 2022-05-31 2022-11-01 利穗科技(苏州)有限公司 一种生物制品浓缩系统及其工艺
WO2024012364A1 (en) * 2022-07-12 2024-01-18 Beigene Switzerland Gmbh Preparation methods for a highly concentrated pd1 antibody solution by ultrafiltration/diafiltration (uf/df)

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625616B2 (es) 1973-10-08 1981-06-13
FR2459619B1 (fr) 1979-06-26 1983-07-29 Agronomique Inst Nat Rech Procede pour l'obtention a partir de lactoserum, d'un produit enrichi en alpha-lactalbumine et applications dudit procede
US4374763A (en) 1979-09-17 1983-02-22 Morishita Pharmaceutical Co., Ltd. Method for producing gamma-globulin for use in intravenous administration and method for producing a pharmaceutical preparation thereof
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
ZA847349B (en) 1983-10-05 1985-04-24 Solco Basel Ag Process for the preparation of a biologically active extract
US4786501A (en) * 1985-07-15 1988-11-22 International Minerals & Chemical Corp. Cylindrical implants for the controlled release of growth hormones
US4756696A (en) 1985-12-06 1988-07-12 Amp Incorporated Solder joint inspection feature for surface mount connectors
GB8628104D0 (en) * 1986-11-25 1986-12-31 Connaught Lab Pasteurization of immunoglobin solutions
JPS6485829A (en) 1987-09-29 1989-03-30 Aisin Aw Co Transmission for four-wheel drive vehicle
JPH01268646A (ja) 1988-04-20 1989-10-26 Meiji Milk Prod Co Ltd 抗腫瘍剤
GB8823869D0 (en) 1988-10-12 1988-11-16 Medical Res Council Production of antibodies
US4897465A (en) 1988-10-12 1990-01-30 Abbott Laboratories Enrichment and concentration of proteins by ultrafiltration
US5175384A (en) 1988-12-05 1992-12-29 Genpharm International Transgenic mice depleted in mature t-cells and methods for making transgenic mice
SG48759A1 (en) 1990-01-12 2002-07-23 Abgenix Inc Generation of xenogenic antibodies
US5177194A (en) * 1990-02-01 1993-01-05 Baxter International, Inc. Process for purifying immune serum globulins
NL9001650A (nl) 1990-07-19 1992-02-17 Ver Coop Melkind Werkwijze voor de bereiding van een melkeiwit-isolaat.
US5661016A (en) 1990-08-29 1997-08-26 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US5545806A (en) 1990-08-29 1996-08-13 Genpharm International, Inc. Ransgenic non-human animals for producing heterologous antibodies
US5625126A (en) 1990-08-29 1997-04-29 Genpharm International, Inc. Transgenic non-human animals for producing heterologous antibodies
US5633425A (en) 1990-08-29 1997-05-27 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
EP0546073B1 (en) 1990-08-29 1997-09-10 GenPharm International, Inc. production and use of transgenic non-human animals capable of producing heterologous antibodies
US5256294A (en) 1990-09-17 1993-10-26 Genentech, Inc. Tangential flow filtration process and apparatus
US6582959B2 (en) 1991-03-29 2003-06-24 Genentech, Inc. Antibodies to vascular endothelial cell growth factor
JP2907603B2 (ja) * 1991-09-09 1999-06-21 雪印乳業株式会社 新規生理活性ペプチド、該活性ペプチドを有効成分とする胃酸分泌抑制剤、抗潰瘍剤及び飲食品
US6270757B1 (en) 1994-04-21 2001-08-07 Genetics Institute, Inc. Formulations for IL-11
US6372716B1 (en) 1994-04-26 2002-04-16 Genetics Institute, Inc. Formulations for factor IX
US5641870A (en) 1995-04-20 1997-06-24 Genentech, Inc. Low pH hydrophobic interaction chromatography for antibody purification
US5707678A (en) 1995-04-12 1998-01-13 Galagen Inc. Method for microfiltration of milk or colostral whey
EP1978033A3 (en) 1995-04-27 2008-12-24 Amgen Fremont Inc. Human antibodies derived from immunized xenomice
CA2219486A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
CN1151842C (zh) * 1995-07-27 2004-06-02 基因技术股份有限公司 稳定等渗的冻干蛋白制剂
DE19544393A1 (de) 1995-11-15 1997-05-22 Hoechst Schering Agrevo Gmbh Synergistische herbizide Mischungen
DE19543737A1 (de) 1995-11-24 1997-05-28 Hoechst Ag Verfahren zur Ultrafiltration von Peptide oder Proteine enthaltender biologischer Matrices
GB9610992D0 (en) 1996-05-24 1996-07-31 Glaxo Group Ltd Concentrated antibody preparation
ES2301183T3 (es) 1996-12-03 2008-06-16 Amgen Fremont Inc. Anticuerpo completamente humano que se une al receptor del egfr.
US6172213B1 (en) 1997-07-02 2001-01-09 Genentech, Inc. Anti-IgE antibodies and method of improving polypeptides
US5994511A (en) 1997-07-02 1999-11-30 Genentech, Inc. Anti-IgE antibodies and methods of improving polypeptides
JP2001516599A (ja) * 1997-09-22 2001-10-02 セプラジェン コーポレーション ホエータンパク質の逐次分離およびその配合物
RU2140287C1 (ru) 1998-08-25 1999-10-27 Государственное унитарное предприятие "Иммунопрепарат" Способ получения альбумина
WO2000024266A2 (en) 1998-10-26 2000-05-04 Galagen, Inc. Soy and immunoglobulin compositions
AR024676A1 (es) 1999-07-07 2002-10-23 New Zealand Co Operative Dairy Company Ltd Metodos para obtener aislados de proteina y concentrados de calostro
JP5485489B2 (ja) * 2000-08-11 2014-05-07 中外製薬株式会社 抗体含有安定化製剤
ES2332402T5 (es) 2000-10-12 2018-05-14 Genentech, Inc. Formulaciones de proteína concentradas de viscosidad reducida
ES2184594B1 (es) 2001-01-17 2004-01-01 Probitas Pharma Sa Procedimiento para la produccion de gammaglobulina g humana inactivada de virus.
ES2351786T3 (es) * 2001-11-13 2011-02-10 Genentech, Inc. Formulaciones con ligando apo2/trail y usos de las mismas.
CA2490423A1 (en) * 2002-06-21 2003-12-31 Biogen Idec Inc. Buffered formulations for concentrating antibodies and methods of use thereof
US7674885B2 (en) * 2002-11-01 2010-03-09 Bayer Healthcare Llc Process for concentration of macromolecules
GB0229444D0 (en) 2002-12-18 2003-01-22 Royal Free Hampstead Nhs Trust Diagnostic method and assay kit
US20040167320A1 (en) * 2003-02-24 2004-08-26 Couto Daniel E. Methods of tangential flow filtration and an apparatus therefore
SI2335725T1 (sl) 2003-04-04 2017-01-31 Genentech, Inc. Visokokoncentrirane formulacije protiteles in proteinov
EP1709077A1 (en) 2004-01-30 2006-10-11 Suomen Punainen Risti Veripalvelu Process for the manufacture of virus safe immunoglobulin
US20060051347A1 (en) 2004-09-09 2006-03-09 Winter Charles M Process for concentration of antibodies and therapeutic products thereof
JP6044754B2 (ja) 2012-01-19 2016-12-14 株式会社ジェイテクト クラッチプレートおよびその製造方法

Also Published As

Publication number Publication date
EP3805248A3 (en) 2021-07-14
CN101056885B (zh) 2015-08-26
IL216851A0 (en) 2012-01-31
EP1786830A2 (en) 2007-05-23
EP4104859A1 (en) 2022-12-21
DK1786830T3 (en) 2015-01-19
CN102911268A (zh) 2013-02-06
EP2292636A2 (en) 2011-03-09
EP1786830B1 (en) 2014-11-12
CA2577317A1 (en) 2006-03-23
TW200612989A (en) 2006-05-01
SI1786830T1 (sl) 2015-03-31
TWI372630B (en) 2012-09-21
US10370456B2 (en) 2019-08-06
FI2292636T3 (fi) 2024-01-12
SI2292636T1 (sl) 2024-02-29
IL181372A0 (en) 2007-07-04
ES2942574T3 (es) 2023-06-02
PT2292636T (pt) 2024-01-09
US20210095050A1 (en) 2021-04-01
BRPI0515649B1 (pt) 2021-10-13
PT3805248T (pt) 2023-04-05
AU2005285243B2 (en) 2012-03-08
KR20070109975A (ko) 2007-11-15
NZ553239A (en) 2009-11-27
EP4104859B1 (en) 2024-04-17
PL4108259T3 (pl) 2024-05-13
CN101056885A (zh) 2007-10-17
FI3805248T3 (fi) 2023-04-21
DK2292636T3 (da) 2024-01-15
SG177161A1 (en) 2012-01-30
JP5210633B2 (ja) 2013-06-12
LT3805248T (lt) 2023-04-25
CN104961797A (zh) 2015-10-07
EP4108259B1 (en) 2024-01-03
HUE061899T2 (hu) 2023-08-28
KR101528970B9 (ko) 2022-12-09
PT4108259T (pt) 2024-03-07
RU2390524C2 (ru) 2010-05-27
PL1786830T3 (pl) 2015-05-29
NO20071432L (no) 2007-03-16
DK3805248T5 (da) 2023-04-24
PT1786830E (pt) 2015-02-05
CN104961797B (zh) 2020-12-25
HUE065025T2 (hu) 2024-04-28
SI4108259T1 (sl) 2024-04-30
WO2006031560A3 (en) 2006-08-24
EP3805248B1 (en) 2023-01-18
TNSN07069A1 (en) 2008-06-02
ECSP077282A (es) 2007-03-29
MX342788B (es) 2016-10-12
CA2577317C (en) 2016-04-26
MA28991B1 (fr) 2007-11-01
MX2007002812A (es) 2007-05-16
JP2008512473A (ja) 2008-04-24
US20060051347A1 (en) 2006-03-09
NO333660B1 (no) 2013-08-05
US20070237762A1 (en) 2007-10-11
WO2006031560A2 (en) 2006-03-23
PL2292636T3 (pl) 2024-03-11
EP2292636A3 (en) 2013-05-01
SI3805248T1 (sl) 2023-05-31
MY162525A (en) 2017-06-15
ES2528541T3 (es) 2015-02-10
MY150549A (en) 2014-01-30
AU2005285243C1 (en) 2012-10-25
HK1101249A1 (en) 2007-10-12
DK4108259T3 (da) 2024-03-11
AU2005285243A1 (en) 2006-03-23
US20230074486A1 (en) 2023-03-09
ZA200701626B (en) 2008-10-29
JP2012097086A (ja) 2012-05-24
EP2292636B1 (en) 2023-10-18
US20140370003A1 (en) 2014-12-18
US11767370B2 (en) 2023-09-26
EP2292636B9 (en) 2024-01-03
JP5426641B2 (ja) 2014-02-26
LT2292636T (lt) 2024-01-10
RU2007110534A (ru) 2008-10-20
BRPI0515649B8 (pt) 2021-11-03
HK1215869A1 (zh) 2016-09-23
EP3805248A2 (en) 2021-04-14
GT200500254A (es) 2006-08-02
PE20060816A1 (es) 2006-09-02
KR20120135530A (ko) 2012-12-14
US20090214522A1 (en) 2009-08-27
LT4108259T (lt) 2024-04-10
PL3805248T3 (pl) 2023-05-22
IL181372A (en) 2012-01-31
EP4108259A1 (en) 2022-12-28
AR050641A1 (es) 2006-11-08
BRPI0515649A (pt) 2008-07-29
DK3805248T3 (da) 2023-04-03
KR101528970B1 (ko) 2015-06-15

Similar Documents

Publication Publication Date Title
ES2968070T3 (es) Proceso para la concentración de anticuerpos y productos terapéuticos de estos
US20200172569A1 (en) Method for preparing a composition comprising highly concentrated antibodies by ultrafiltration