ES2939732T3 - Liposomas pequeños para la administración de ARN que codifica para inmunógeno - Google Patents

Liposomas pequeños para la administración de ARN que codifica para inmunógeno Download PDF

Info

Publication number
ES2939732T3
ES2939732T3 ES22166818T ES22166818T ES2939732T3 ES 2939732 T3 ES2939732 T3 ES 2939732T3 ES 22166818 T ES22166818 T ES 22166818T ES 22166818 T ES22166818 T ES 22166818T ES 2939732 T3 ES2939732 T3 ES 2939732T3
Authority
ES
Spain
Prior art keywords
rna
liposomes
liposome
immunogen
lipid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES22166818T
Other languages
English (en)
Inventor
Andrew Geall
Ayush Verma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GlaxoSmithKline Biologicals SA
Original Assignee
GlaxoSmithKline Biologicals SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44645813&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2939732(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by GlaxoSmithKline Biologicals SA filed Critical GlaxoSmithKline Biologicals SA
Application granted granted Critical
Publication of ES2939732T3 publication Critical patent/ES2939732T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16111Cytomegalovirus, e.g. human herpesvirus 5
    • C12N2710/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18511Pneumovirus, e.g. human respiratory syncytial virus
    • C12N2760/18534Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/36011Togaviridae
    • C12N2770/36111Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
    • C12N2770/36141Use of virus, viral particle or viral elements as a vector
    • C12N2770/36143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/36011Togaviridae
    • C12N2770/36111Alphavirus, e.g. Sindbis virus, VEE, EEE, WEE, Semliki
    • C12N2770/36171Demonstrated in vivo effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dermatology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La inmunización con ácido nucleico se logra mediante la entrega de ARN encapsulado dentro de un liposoma. El ARN codifica un inmunógeno de interés y el liposoma tiene un diámetro en el rango de 60-180 nm, e idealmente en el rango de 80-160 nm. Por tanto, la invención proporciona un liposoma que tiene una bicapa lipídica que encapsula un núcleo acuoso, en el que: (i) la bicapa lipídica tiene un diámetro en el intervalo de 60-180 nm; y (ii) el núcleo acuoso incluye un ARN que codifica un inmunógeno. Estos liposomas son adecuados para el suministro in vivo del ARN a una célula de vertebrado y, por tanto, son útiles como componentes en composiciones farmacéuticas para inmunizar sujetos contra diversas enfermedades. (Traducción automática con Google Translate, sin valor legal)

Description

DESCRIPCIÓN
Liposomas pequeños para la administración de ARN que codifica para inmunógeno
Campo técnico
Esta invención se encuentra en el campo de la administración viral de ARN para inmunización.
Técnica anterior
La administración de ácidos nucleicos para inmunizar a animales ha sido un objetivo desde hace varios años. Se han sometido a prueba diversos enfoques, incluyendo el uso de ADN o ARN, de vehículos de administración viral o no viral (o incluso sin vehículo de administración, en una vacuna “desnuda”), de vectores replicantes o no replicantes, o vectores virales o no virales.
Los documentos EP1637144 y JP2007112768 se refieren a complejos de ácidos nucleicos y liposomas. Los documentos EP0786522, US5750390 y US5972704 describen el uso de ribozimas que pueden administrarse en un liposoma. El documento WO99/52503 describe liposomas virales que comprenden ácido nucleico que codifica un antígeno asociado a tumor. El documento WO2009/009054 describe vacunas basadas en liposomas catiónicos.
Sigue existiendo una necesidad de vacunas de ácido nucleico adicionales y mejoradas y, en particular, de maneras mejoradas de administrar vacunas de ácido nucleico.
Divulgación de la invención
Según la invención, la inmunización de ácido nucleico se logra administrando ARN encapsulado dentro de un liposoma que comprende un lípido con un grupo de cabeza catiónico y un lípido con un grupo de cabeza zwitteriónico. El ARN codifica un inmunógeno de interés que es una hemaglutinina de Orthomyxovirus, y el liposoma tiene un diámetro en el intervalo de 60-180 nm, e idealmente en el intervalo de 80-160 nm. Este tamaño se compara con, por ejemplo, un diámetro ~40 nm para una cápside de proteína isométrica de alfavirus sin envuelta. La combinación de encapsulación eficiente de un ARN (en particular, un ARN autorreplicante) dentro de un liposoma pequeño permite una administración eficaz para provocar una respuesta inmunitaria fuerte.
Por tanto, la invención proporciona un liposoma dentro del cual está encapsulado ARN que codifica para un inmunógeno de interés, en el que el liposoma que comprende un lípido con un grupo de cabeza catiónico y un lipido con un grupo de cabeza zwitteriónico tiene un diámetro en el intervalo de 60-180 nm, y en el que el inmunógeno es una hemaglutinina de Orthomyxovirus. Estos liposomas son adecuados para la administración in vivo del ARN a una célula de vertebrado y, por tanto, son útiles como componentes en composiciones farmacéuticas para inmunizar a sujetos contra diversas enfermedades.
El liposoma
La invención usa liposomas dentro de los cuales está encapsulado ARN que codifica para inmunógeno. Por tanto, el ARN está separado (como en un virus natural) de cualquier medio externo. Se ha encontrado que la encapsulación dentro del liposoma protege al ARN frente a la digestión por ARNasa. Los liposomas pueden incluir algún ARN externo (por ejemplo, en su superficie), pero al menos la mitad del ARN (y, de manera ideal, la totalidad del mismo) está encapsulado en el núcleo del liposoma. La encapsulación dentro de liposomas es distinta, por ejemplo, de los complejos de lípido/ARN dados a conocer en la referencia 1, en los que se mezcla ARN con liposomas previamente formados.
Diversos lípidos anfífilos pueden formar bicapas en un entorno acuoso para encapsular un núcleo acuoso que contiene ARN como un liposoma. Estos lípidos pueden tener un grupo de cabeza hidrófilo aniónico, catiónico o zwitteriónico. La formación de liposomas a partir de fosfolípidos aniónicos se remonta a la década de 1960, y los lípidos que forman liposomas catiónicos se han estudiado desde la década de 1990. Algunos fosfolípidos son aniónicos mientras que otros son zwitteriónicos y otros son catiónicos. Las clases adecuadas de fosfolípidos incluyen, pero no se limitan a, fosfatidiletanolaminas, fosfatidilcolinas, fosfatidilserinas y fosfatidil-gliceroles, y en la tabla 1 se indican algunos fosfolípidos útiles. Los lípidos catiónicos útiles incluyen, pero no se limitan a, dioleoil-trimetilamonio-propano (DOTAP), 1,2-diesteariloxi-N,N-dimetil-3-aminopropano (Ds Dm a ), 1,2-dioleiloxi-N,N-dimetil-3-aminopropano (DOd Ma ), 1,2-dilinoleiloxi-N,N-dimetil-3-aminopropano (DLinDMA), 1,2-dilinoleniloxi-N,N-dimetil-3-aminopropano (DLenDMA). Los lípidos zwitteriónicos incluyen, pero no se limitan a, lípidos zwitteriónicos de acilo y lípidos zwitteriónicos de éter. Ejemplos de lípidos zwitteriónicos útiles son DPPC, DOPC, DSPC, dodecilfosfocolina, 1,2-dioleoil-sn-glicero-3-fosfatidiletanolamina (DOPE) y 1,2-difitanoil-sn-glicero-3-fosfoetanolamina (DPyPE). Los lípidos pueden estar saturados o insaturados. Se prefiere el uso de al menos un lípido insaturado para preparar liposomas. Si un lípido insaturado tiene dos colas, ambas colas pueden estar insaturadas, o puede tener una cola saturada y una cola insaturada. Un lípido puede incluir un grupo esteroide en una cola, por ejemplo como en RV05 (véanse también las figuras 16A y C-K).
Por tanto, en algunas realizaciones, la invención proporciona un liposoma que tiene una bicapa lipídica que encapsula un núcleo acuoso, en el que: (i) el liposoma comprende un lípido con un grupo de cabeza catiónico, un lípido con un grupo de cabeza zwitteriónico y tiene un diámetro en el intervalo de 60-180 nm; y (ii) el núcleo acuoso incluye un ARN que codifica para un inmunógeno, en el que el inmunógeno es una hemaglutinina de Orthomyxovirus.
Los liposomas de la invención se forman a partir de una mezcla de lípidos. Una mezcla puede comprender tanto lípidos saturados como insaturados. Por ejemplo, una mezcla puede comprender DSPC (zwitteriónico, saturado), DlinDMA (catiónico, insaturado) y/o DMG (aniónico, saturado). Cuando se usa una mezcla de lípidos, no se necesita que todos los lípidos componentes en la mezcla sean anfífilos, por ejemplo pueden mezclarse uno o más lípidos anfífilos con colesterol.
Se prefiere que la proporción de los lípidos que son catiónicos deba estar entre el 20-80 % de la cantidad total de lípidos, por ejemplo entre el 30-70 %, o entre el 40-60 %. El resto puede estar compuesto, por ejemplo, por colesterol (por ejemplo, el 35-50% de colesterol) y/o DMG (opcionalmente pegilado) y/o DSPC. Tales mezclas se usan a continuación. Estos valores de porcentajes son porcentajes en moles.
Un liposoma puede incluir un lípido anfífilo cuya porción hidrófila está PEGilada (es decir, modificada mediante unión covalente de un polietilenglicol). Esta modificación puede aumentar la estabilidad y prevenir la adsorción no específica de los liposomas. Por ejemplo, pueden conjugarse lípidos a PEG usando técnicas tales como las dadas a conocer en la referencia 2 y 3. PEG dota a los liposoma de un recubrimiento que puede conferir características farmacocinéticas favorables. Pueden usarse diversas longitudes de PEG, por ejemplo, entre 0,5-8 kDa.
Por tanto, puede formarse un liposoma a partir de un lípido catiónico (por ejemplo, DlinDMA, RV05), un lípido zwitteriónico (por ejemplo, DSPC, DPyPE), un colesterol y un lípido pegilado. En los ejemplos se usa una mezcla de DSPC, DlinDMA, PEG-DMG y colesterol, así como varias mezclas adicionales.
Los liposomas se dividen habitualmente en tres grupos: vesículas multilamelares (MLV); vesículas unilamelares pequeñas (SUV); y vesículas unilamelares grandes (LUV). Las MLV tienen múltiples bicapas en cada vesícula, que forman varios compartimentos acuosos independientes. Las SUV y las LUV tienen una única bicapa que encapsula un núcleo acuoso; las SUV tienen normalmente un diámetro <50 nm, y las LUV tienen un a diámetro >50 nm. Los liposomas de la invención son de manera ideal LUV con un diámetro en el intervalo de 60-180 nm y preferiblemente en el intervalo de 80-160 nm. Los liposomas son de manera preferible sustancialmente esféricos. Si no son esféricos, el término “diámetro” se refiere al diámetro de sección transversal más grande de un liposoma.
Un liposoma de la invención puede formar parte de una composición que comprende una pluralidad de liposomas, y los liposomas dentro de la pluralidad pueden tener un intervalo de diámetros. Para una composición que comprende una población de liposomas con diferentes diámetros: (i) al menos el 80% en número de los liposomas deben tener diámetros en el intervalo de 60-180 nm, y preferiblemente en el intervalo de 80-160 nm, y/o (ii) el diámetro promedio (por intensidad, por ejemplo promedio Z) de la población está de manera ideal en el intervalo de 60-180 nm y preferiblemente en el intervalo de 80-160 nm.
Idealmente, la distribución de tamaños de liposomas (por intensidad) tiene solo un máximo, es decir, hay una sola población de liposomas distribuidos alrededor de un promedio (moda), en vez de tener dos máximos. Los diámetros dentro de una población de liposomas deben tener de manera ideal un índice de polidispersidad <0,2, y algunas veces < 0,1. Se espera que los complejos de liposoma/ARN de la referencia 1 tengan un diámetro en el intervalo de 600-800 nm y tengan una alta polidispersidad.
Los aparatos para determinar el diámetro de partícula promedio en una suspensión de liposomas, y la distribución de tamaño, están comercialmente disponibles. Estos usan normalmente las técnicas de dispersión de luz dinámica y/o detección óptica de partículas individuales, por ejemplo, la serie Accusizer™ y Nicomp™ de instrumentos disponibles de Particle Sizing Systems (Santa Barbara, EE. UU.), o los instrumentos Zetasizer™ de Malvem Instruments (RU), o los instrumentos analizadores de la distribución de tamaño de partícula de Horiba (Kyoto, Japón). La dispersión de luz dinámica es el método preferido mediante el cual se determinan los diámetros de liposomas. Para una población de liposomas, el método preferido para definir el diámetro de liposoma promedio en una composición de la invención es un promedio Z, es decir, el tamaño hidrodinámico medio ponderado por intensidad de la colección en conjunto de liposomas medidos por dispersión de luz dinámica (DLS). El promedio Z se deriva de los análisis acumulados de la curva de correlación medida, en la que se supone un solo tamaño de partícula (diámetro de liposoma) y se aplica un solo ajuste exponencial a la función de autocorrelación. El algoritmo de análisis de cumulantes no produce una distribución sino que, además de un promedio Z ponderado por intensidad, proporciona un índice de polidispersidad.
En la técnica se conocen bien técnicas para preparar liposomas adecuados, véanse, por ejemplo, las referencias 4 a 6. En la referencia 7 se describe un método útil e implica mezclar (i) una disolución etanólica de los lípidos, (ii) una disolución acuosa del ácido nucleico y (iii) tampón, seguido por mezclado, equilibración, dilución y purificación. Los liposomas preferidos de la invención pueden obtenerse mediante este procedimiento de mezclado. Para obtener liposomas con el/los diámetro(s) deseado(s), puede realizarse el mezclado usando un procedimiento en el que se combinan dos corrientes de alimentación de disolución acuosa de ARN en una única zona de mezclado con una corriente de disolución etanólica de lípido, todas a la misma velocidad de flujo, por ejemplo en un canal de microfluido tal como se describe a continuación.
El ARN
Los liposomas de la invención incluyen una molécula de ARN que (a diferencia de ARNip) codifica para un inmunógeno que es una hemaglutinina de Orthomyxovirus. Tras la administración in vivo de las partículas, se libera ARN a partir de las partículas y se traduce en el interior de una célula para proporcionar el inmunógeno in situ.
El ARN es de cadena y, por tanto, puede traducirse por células sin necesitar ninguna etapa de replicación intermedia tal como transcripción inversa. También puede unirse a receptores de TLR7 expresados por células inmunitarias, iniciando de ese modo un efecto adyuvante.
Los ARN de cadena positiva preferidos son autorreplicantes. Una molécula de ARN autorreplicante (replicón) puede conducir, cuando se administra a una célula de vertebrado incluso sin ninguna proteína, a la producción de múltiples ARN hijos mediante transcripción a partir de sí misma (mediante una copia antisentido que genera a partir de sí misma). Por tanto, una molécula de ARN autorreplicante es normalmente una molécula de cadena que puede traducirse directamente tras la administración a una célula, y esta traducción proporciona una ARN polimerasa dependiente de ARN que después produce transcritos tanto antisentido como sentido a partir del ARN administrado. Por tanto, el ARN administrado conduce a la producción de múltiples ARN hijos. Estos ARN hijos, así como transcritos subgenómicos colineales, pueden traducirse por sí mismos para proporcionar la expresión in situ de un inmunógeno codificado, o pueden transcribirse para proporcionar transcritos adicionales con el mismo sentido que el ARN administrado que se traducen para proporcionar la expresión in situ del inmunógeno. El resultado global de esta secuencia de transcripciones es una enorme amplificación del número de los ARN de replicón introducidos y, por tanto, el inmunógeno codificado pasa a ser un producto polipeptídico principal de las células.
Un sistema adecuado para lograr la autorreplicación es usar un replicón de ARN basado en alfavirus. Estos replicones de cadena se traducen tras la administración a una célula para dar una replicasa (o replicasa-transcriptasa). La replicasa se traduce como poliproteína que se autoescinde para proporcionar un complejo de replicación que crea copias genómicas de cadena - del ARN administrado de cadena . Estos transcritos de cadena - pueden transcribirse por sí mismos para dar copias adicionales del ARN original de cadena y también para dar un transcrito subgenómico que codifica el inmunógeno. Por tanto, la traducción del transcrito subgenómico conduce a la expresión in situ del inmunógeno por la célula infectada. Los replicones de alfavirus adecuados pueden usar una replicasa a partir de un virus Sindbis, un virus del bosque Semliki, un virus de la encefalitis equina del Este, un virus de la encefalitis equina de Venezuela, etc. Pueden usarse secuencias de virus mutantes o de tipo natural, por ejemplo se ha usado el mutante TC83 atenuado de VEEV en replicones [8].
Por tanto, una molécula de ARN autorreplicante preferida codifica (i) una ARN polimerasa dependiente de ARN que puede transcribir ARN a partir de la molécula de ARN autorreplicante y (ii) un inmunógeno. La polimerasa puede ser una replicasa de alfavirus, por ejemplo que comprende una o más de las proteínas de alfavirus nsP1, nsP2, nsP3 y nsP4.
Aunque los genomas de alfavirus naturales codifican proteínas de virión estructurales además de la poliproteína replicasa no estructural, se prefiere que una molécula de ARN autorreplicante de uso en la invención no codifique proteínas estructurales de alfavirus. Por tanto, un ARN autorreplicante preferido puede conducir a la producción de copias de ARN genómico de sí mismo en una célula, pero no a la producción de viriones que contienen ARN. La incapacidad de producir estos viriones significa que, a diferencia de un alfavirus de tipo natural, la molécula de ARN autorreplicante no puede perpetuarse de forma infecciosa. Las proteínas estructurales de alfavirus que son necesarias para la perpetuación en virus de tipo natural están ausentes de los ARN autorreplicantes de uso en la invención y su lugar ha sido ocupado por gen(es) que codifica(n) el inmunógeno de interés, de tal manera que el transcrito subgenómico codifica el inmunógeno en vez de las proteínas de virión de alfavirus estructurales.
Por tanto, una molécula de ARN autorreplicante útil con la invención puede tener dos marcos de lectura abiertos. El primer marco de lectura abierto (en 5') codifica una replicasa; el segundo marco de lectura abierto (en 3') codifica un inmunógeno. En algunas realizaciones, el ARN puede tener marcos de lectura abiertos adicionales (por ejemplo, en el sentido de 3') por ejemplo para codificar inmunógenos adicionales (véase a continuación) o para codificar polipéptidos auxiliares.
Una molécula de ARN autorreplicante puede tener una secuencia en 5' que es compatible con la replicasa codificada.
Las moléculas de ARN autorreplicante pueden tener diversas longitudes, pero normalmente tienen 5000-25000 nucleótidos de longitud, por ejemplo 8000-15000 nucleótidos o 9000-12000 nucleótidos. Por tanto, el ARN es más largo de lo que se observa en la administración de ARNip.
Una molécula de ARN útil con la invención puede tener una caperuza en 5' (por ejemplo, una 7-metilguanosina). Esta caperuza puede potenciar la traducción in vivo del ARN.
El nucleótido en 5' de una molécula de ARN útil con la invención puede tener un grupo trifosfato en 5'. En un ARN con caperuza, esto puede estar unido a una 7-metilguanosina a través de un puente de 5' a 5'. Un trifosfato en 5' puede potenciar la unión a RIG-I y, por tanto, fomentar los efectos adyuvantes.
Una molécula de ARN puede tener una cola de poli-A en 3'. También puede incluir una secuencia de reconocimiento de poli-A polimerasa (por ejemplo, AAUAAA) cerca de su extremo 3'.
Una molécula de ARN útil con la invención será normalmente monocatenaria. Los ARN monocatenarios pueden iniciar generalmente un efecto adyuvante mediante unión a TLR7, TLR8, ARN helicasas y/o PKR. El ARN administrado en forma bicatenaria (ARNbc) puede unirse a TLR3, y este receptor también puede activarse mediante ARNbc que se forma o bien durante la replicación de un ARN monocatenario o bien dentro de la estructura secundaria de un ARN monocatenario.
Una molécula de ARN útil con la invención puede prepararse de manera conveniente mediante transcripción in vitro (IVT). IVT puede usar un molde (ADNc) creado y propagado en forma de plásmido en bacterias, o creado de manera sintética (por ejemplo, mediante métodos de ingeniería de síntesis génica y/o reacción en cadena de la polimerasa). Por ejemplo, puede usarse una ARN polimerasa dependiente de ADN (tal como las ARN polimerasas de bacteriófago T7, T3 o SP6) para transcribir el ARN a partir de un molde de ADN. Pueden usarse reacciones apropiadas de adición de caperuza y adición de poli-A según se requiera (aunque la poli-A del replicón se codifica habitualmente dentro del molde de ADN). Estas ARN polimerasas pueden tener requisitos rigurosos para el/los nucleótido(s) en 5' transcrito(s) y, en algunas realizaciones, estos requisitos deben hacerse corresponder con los requisitos de la replicasa codificada, para garantizar que el ARN transcrito por IVT puede funcionar de manera eficiente como sustrato para su replicasa codificada por sí mismo.
Tal como se comenta en la referencia 9, un ARN autorreplicante puede incluir (además de cualquier estructura de caperuza en 5') uno o más nucleótidos que tienen una nucleobase modificada. Por tanto, el ARN puede comprender m5C (5-metilcitidina), m5U (5-metiluridina), m6A (N6-metiladenosina), s2U (2-tiouridina), Um (2'-O-metiluridina), m1A (1-metiladenosina); m2A (2-metiladenosina); Am (2'-O-metiladenosina); ms2m6A (2-metiltio-N6-metiladenosina); i6A (N6-isopenteniladenosina); ms2i6A (2-metiltio-N6-isopenteniladenosina); io6A (N6-(cis-hidroxiisopentenil)adenosina); ms2io6A (2-metiltio-N6-(cis-hidroxiisopentenil)adenosina); g6A (N6-glicinilcarbamoiladenosina); t6A (N6-treonilcarbamoiladenosina); ms2t6A (2-metiltio-N6-treonilcarbamoiladenosina); m6t6A (N6-metil-N6-treonilcarbamoiladenosina); hn6A (N6-hidroxinorvalilcarbamoiladenosina); ms2hn6A (2-metiltio-N6-hidroxinorvalilcarbamoiladenosina); Ar(p) (2'-O-ribosiladenosina (fosfato)); I (inosina); m11 (1-metilinosina); m'Im (1,2'-O-dimetilinosina); m3C (3-metilcitidina); Cm (2T-O-metilcitidina); s2C (2-tiocitidina); ac4C (N4-acetilcitidina); f5C (5-formilcitidina); m5Cm (5,2-O-dimetilcitidina); ac4Cm (N4-acetil-2TO-metilcitidina); k2C (lisidina); m1G (1-metilguanosina); m2G (N2-metilguanosina); m7G (7-metilguanosina); Gm (2'-O-metilguanosina); m22G (N2,N2-dimetilguanosina); m2Gm (N2,2'-O-dimetilguanosina); m22Gm (N2,N2,2'-O-trimetilguanosina); Gr(p) (2'-O-ribosilguanosina (fosfato)); yW (wibutosina); o2yW (peroxiwibutosina); OHyW (hidroxiwibutosina); OHyW* (hidroxiwibutosina sin modificar); imG (wiosina); mimG (metilguanosina); Q (queuosina); oQ (epoxiqueuosina); galQ (galtactosilqueuosina); manQ (manosil-queuosina); preQo (7-ciano-7-desazaguanosina); preQi (7-aminometil-7-desazaguanosina); G* (arqueosina); D (dihidrouridina); m5Um (5,2'-O-dimetiluridina); s4U (4-tiouridina); m5s2U (5-metil-2-tiouridina); s2Um (2-tio-2'-O-metiluridina); acp3U (3-(3-amino-3-carboxipropil)uridina); ho5U (5-hidroxiuridina); mo5U (5-metoxiuridina); cmo5U (ácido uridin-5-oxiacético); mcmo5U (éster metílico del ácido uridin-5-oxiacético); chm5U (5-(carboxihidroximetil)uridina)); mchm5U (éster metílico de 5-(carboxihidroximetil)uridina); mcm5U (5-metoxicarbonil-metiluridina); mcm5Um (S-metoxicarbonilmetil-2-O-metiluridina); mcm5s2U (5-metoxicarbonilmetil-2-tiouridina); nm5s2U (5-aminometil-2-tiouridina); mnm5U (5-metilaminometiluridina); mnm5s2U (5-metilaminometil-2-tiouridina); mnm5se2U (5-metilaminometil-2-selenouridina); ncm5U (5-carbamoilmetiluridina); ncm5Um (5-carbamoilmetil-2'-O-metiluridina); cmnm5U (5-carboximetilaminometiluridina); cnmm5Um (5-carboximetilaminometil-2-L-O-metiluridina); cmnm5s2U (5-carboximetilaminometil-2-tiouridina); m62A (N6,N6-dimetiladenosina); Tm (2'-O-metilinosina); m4C (N4-metilcitidina); m4Cm (N4,2-O-dimetilcitidina); hm5C (5-hidroximetilcitidina); m3U (3-metiluridina); cm5U (5-carboximetiluridina); m6Am (N6,T-O-dimetiladenosina); rn62Am (N6,N6,O-2-trimetiladenosina); m2'7G (N2,7-dimetilguanosina); m2'2'7G (N2,N2,7-trimetilguanosina); m3Um (3,2T-O-dimetiluridina); m5D (5-metildihidrouridina); f5Cm (5-formil-2'-O-metilcitidina); m1Gm (1,2'-O-dimetilguanosina); m'Am (1,2-O-dimetiladenosina)irinometiluridina); tm5s2U (S-taurinometil-2-tiouridina)); imG-14 (4-desmetilguanosina); imG2 (isoguanosina); o ac6A (N6-acetiladenosina), hipoxantina, inosina, 8-oxo-adenina, derivados sustituidos en siete de la misma, dihidrouracilo, pseudouracilo, 2-tiouracilo, 4-tiouracilo, 5-aminouracilo, 5-(alquil C1-C6)-uracilo, 5-metiluracilo, 5-(alquenil C2-C6)-uracilo, 5-(alquinil C2-C6)-uracilo, 5-(hidroximetil)uracilo, 5-clorouracilo, 5-fluorouracilo, 5bromouracilo, 5-hidroxicitosina, 5-(alquil C1-C6)-citosina, 5-metilcitosina, 5-(alquenil C2-C6)-citosina, 5-(alquinil C2-C6)-citosina, 5-clorocitosina, 5-fluorocitosina, 5-bromocitosina, N2-dimetilguanina, 7-desazaguanina, 8-azaguanina, 7-desaza-guanina sustituida en 7, 7-desaza-7-(alquinil C2-C6)guanina, 7-desaza-guanina sustituida en 8, 8-hidroxiguanina, 6-tioguanina, 8-oxoguanina, 2-aminopurina, 2-amino-6-cloropurina, 2,4-diaminopurina, 2,6-diaminopurina, 8-azapurina, 7-desazapurina sustituida, 7-desaza-purina sustituida en 7, 7-desaza-purina sustituida en 8, o un nucleótido abásico. Por ejemplo, un ARN autorreplicante puede incluir una o más nucleobases de pirimidina modificadas, tales como residuos de pseudouridina y/o 5-metilcitosina. Sin embargo, en algunas realizaciones, el ARN no incluye ninguna nucleobase modificada, y puede no incluir ningún nucleótido modificado, es decir, todos los nucleótidos en el ARN son ribonucleótidos de A, C, G y U convencionales (excepto por cualquier estructura de caperuza en 5', que puede incluir una 7'-metilguanosina). En otras realizaciones, el ARN puede incluir una caperuza en 5' que comprende una 7'-metilguanosina, y los primeros 1, 2 o 3 ribonucleótidos en 5' pueden estar metilados en la posición 2' de la ribosa.
De manera ideal, un ARN usado con la invención solo incluye uniones fosfodiéster entre nucleósidos, pero, en algunas realizaciones, puede contener uniones fosforamidato, fosforotioato y/o metilfosfonato.
De manera ideal, un liposoma incluye menos de 10 especies diferentes de ARN, por ejemplo 5, 4, 3 o 2 especies diferentes; lo más preferiblemente, un liposoma incluye una única especie de ARN, es decir, todas las moléculas de ARN en el liposoma tienen la misma secuencia y la misma longitud.
La cantidad de ARN por cada liposoma puede variar. El número de moléculas de ARN autorreplicante individuales por cada liposoma es normalmente de <50, por ejemplo <20, <10, <5 o 1-4 por cada liposoma.
El inmunógeno
Las moléculas de ARN usadas con la invención codifican un inmunógeno polipeptídico que es una hemaglutinina de Orthomyxovirus. Tras la administración de los liposomas, el ARN se traduce in vivo y el inmunógeno puede provocar una respuesta inmunitaria en el receptor. La respuesta inmunitaria puede comprender una respuesta de anticuerpos (que habitualmente incluye IgG) y/o una respuesta inmunitaria mediada por células.
La molécula de ARN puede codificar un único inmunógeno polipeptídico o múltiples polipéptidos. Múltiples inmunógenos pueden presentarse como un único inmunógeno polipeptídico (polipéptido de fusión) o como polipéptidos independientes. Si los inmunógenos se expresan como polipéptidos independientes a partir de un replicón, entonces uno o más de los mismos pueden estar dotados de un IRES en el sentido de 5' o un elemento de promotor viral adicional. Alternativamente, pueden expresarse múltiples inmunógenos a partir de una poliproteína que codifica inmunógenos individuales fusionados a una proteasa autocatalítica corta (por ejemplo, proteína 2A del virus de la enfermedad de pies y boca) o como inteínas.
A diferencia de las referencias 1 y 10, el ARN codifica un inmunógeno que es una hemaglutinina de Orthomyxovirus. Para evitar cualquier duda, la invención no abarca ARN que codifica para una luciferasa de luciérnaga o que codifica para una proteína de fusión de p-galactosidasa de E. coli o que codifica para una proteína verde fluorescente (GFP). Tales polipéptidos pueden ser útiles como marcadores, o incluso en un contexto de terapia génica, pero la invención se refiere a la administración de ARN para provocar un sistema de respuesta inmunológica. El diámetro óptimo de los liposomas para terapia génica puede diferir de los liposomas para fines de inmunización porque las células y los tejidos diana difieren para estos dos enfoques. Por tanto, el inmunógeno tampoco es una autoproteína que se administra para complementar o sustituir una proteína huésped defectuosa (como en terapia génica). Además, el ARN no es ARN de timo de ratón total.
Cuando el inmunógeno es una hemaglutinina de virus influenza A, puede ser de cualquier subtipo, por ejemplo H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15 o H16.
Composiciones farmacéuticas
Los liposomas de la invención son útiles como componentes en composiciones farmacéuticas para inmunizar a sujetos contra diversas enfermedades. Estas composiciones incluirán normalmente un portador farmacéuticamente aceptable además de los liposomas. En la referencia 29 está disponible una discusión exhaustiva sobre portadores farmacéuticamente aceptables.
Una composición farmacéutica de la invención puede incluir uno o más inmunopotenciadores de molécula pequeña. Por ejemplo, la composición puede incluir un agonista de TLR2 (por ejemplo, Pam3CSK4), un agonista de TLR4 (por ejemplo, un fosfato de aminoalquil-glucosaminida, tal como E6020), un agonista de TLR7 (por ejemplo, imiquimod), un agonista de TLR8 (por ejemplo, resiquimod) y/o un agonista de TLR9 (por ejemplo, IC31). De manera ideal, cualquiera de tales agonistas tiene un peso molecular de <2000 Da. En algunas realizaciones, tal(es) agonista(s) también está(n) encapsulado(s) con el ARN dentro de liposomas, pero, en otras realizaciones, no está(n) encapsulado(s).
Las composiciones farmacéuticas de la invención pueden incluir los liposomas en agua pura (por ejemplo, w.f.i.) o en un tampón, por ejemplo un tampón fosfato, un tampón Tris, un tampón borato, un tampón succinato, un tampón histidina o un tampón citrato. Normalmente se incluirán sales de tampón en el intervalo de 5-20 mM.
Las composiciones farmacéuticas de la invención pueden tener un pH de entre 5,0 y 9,5, por ejemplo entre 6,0 y 8,0.
Las composiciones de la invención también pueden incluir sales de sodio (por ejemplo, cloruro de sodio) para dar tonicidad. Una concentración de 10±2 mg/ml de NaCl resulta típica, por ejemplo de aproximadamente 9 mg/ml.
Las composiciones de la invención pueden incluir quelantes de iones metálicos. Estos pueden prolongar la estabilidad de ARN eliminando iones que pueden acelerar la hidrólisis de fosfodiéster. Por tanto, una composición puede incluir uno o más de EDTA, EGTA, BAPTA, ácido pentético, etc. Tales quelantes están normalmente presentes a entre 10­ 500 pM, por ejemplo 0,1 mM. Una sal de citrato, tal como citrato de sodio, también puede actuar como quelante, al tiempo que también proporciona ventajosamente actividad tamponante.
Las composiciones farmacéuticas de la invención pueden tener una osmolalidad de entre 200 mOsm/kg y 400 mOsm/kg, por ejemplo entre 240-360 mOsm/kg o entre 290-310 mOsm/kg.
Las composiciones farmacéuticas de la invención pueden incluir uno o más conservantes, tales como tiomersal o 2-fenoxietanol. Se prefieren composiciones libres de mercurio y pueden prepararse vacunas libres de conservantes.
Las composiciones farmacéuticas de la invención son preferiblemente estériles.
Las composiciones farmacéuticas de la invención son preferiblemente no pirogénicas, conteniendo, por ejemplo, <1 UE (unidad de endotoxina, una medida convencional) por dosis, y preferiblemente <0,1 UE por dosis.
Las composiciones farmacéuticas de la invención están preferiblemente libres de gluten.
Las composiciones farmacéuticas de la invención pueden prepararse en una forma de dosis unitaria. En algunas realizaciones, una dosis unitaria puede tener un volumen de entre 0,1-1,0 ml, por ejemplo de aproximadamente 0,5 ml.
Las composiciones pueden prepararse como productos inyectables, o bien como disoluciones o bien como suspensiones. La composición puede prepararse para su administración pulmonar, por ejemplo mediante un inhalador, usando una pulverización fina. La composición puede prepararse para su administración nasal, aural u ocular, por ejemplo como pulverización o colirios. Los productos inyectables para administración intramuscular resultan típicos.
Las composiciones comprenden una cantidad inmunológicamente eficaz de liposomas, así como cualquier otro componente, según se necesite. Por “cantidad inmunológicamente eficaz” quiere decirse que la administración de esa cantidad a un individuo, o bien en una única dosis o bien como parte de una serie, es eficaz para el tratamiento o la prevención. Esta cantidad varía dependiendo de la salud y el estado físico del individuo que va a tratarse, la edad, el grupo taxonómico del individuo que va a tratarse (por ejemplo, primate no humano, primate, etc.), la capacidad del sistema inmunitario del individuo para sintetizar anticuerpos, el grado de protección deseado, la formulación de la vacuna, la evaluación del médico encargado sobre la situación médica y otros factores relevantes. Se espera que la cantidad se encontrará en un intervalo relativamente amplio que puede determinarse mediante ensayos de rutina. El contenido en liposoma y ARN de las composiciones de la invención se expresará generalmente en cuanto a la cantidad de ARN por dosis. Una dosis preferida tiene <100 pg de ARN (por ejemplo, desde 10-100 pg, tal como aproximadamente 10 pg, 25 pg, 50 pg, 75 pg o 100 pg), pero puede observarse expresión a niveles mucho menores, por ejemplo <1 pg/dosis, <100 ng/dosis, <10 ng/dosis, <1 ng/dosis, etc.
La invención también proporciona un dispositivo de administración (por ejemplo, jeringa, nebulizador, pulverizador, inhalador, parche dérmico, etc.) que contiene una composición farmacéutica de la invención. Este dispositivo puede usarse para administrar la composición a un sujeto vertebrado.
Los liposomas de la invención no contienen ribosomas.
Usos médicos
En contraste con las partículas dadas a conocer en la referencia 10, los liposomas y las composiciones farmacéuticas de la invención son para su uso in vivo para provocar una respuesta inmunitaria contra un inmunógeno de interés.
La invención también proporciona un liposoma o una composición farmacéutica de la invención para su uso en un método para producir una respuesta inmunitaria en un vertebrado.
Produciendo una respuesta inmunitaria en el vertebrado mediante estos usos, puede protegerse al vertebrado contra diversas enfermedades y/o infecciones. Los liposomas y las composiciones son inmunogénicos y, más preferiblemente, son composiciones de vacuna. Las vacunas según la invención pueden ser o bien profilácticas (es decir, para prevenir una infección) o bien terapéuticas (es decir, para tratar una infección), pero normalmente serán profilácticas.
El vertebrado es preferiblemente un mamífero, tal como un ser humano o un mamífero veterinario grande (por ejemplo, caballos, ganado, ciervos, cabras, cerdos). Cuando la vacuna es para uso profiláctico, el ser humano es preferiblemente un niño (por ejemplo, un niño pequeño o lactante) o un adolescente; cuando la vacuna es para uso terapéutico, el ser humano es preferiblemente un adolescente o un adulto. Una vacuna destinada para niños también puede administrarse a adultos, por ejemplo, para evaluar la seguridad, dosificación, inmunogenicidad, etc.
Las vacunas preparadas según la invención pueden usarse para tratar tanto a niños como a adultos. Por tanto, un paciente humano puede tener menos de 1 año de edad, menos de 5 años de edad, 1-5 años de edad, 5-15 años de edad, 15-55 años de edad o al menos 55 años de edad. Los pacientes preferidos para recibir las vacunas son las personas ancianas (por ejemplo, >50 años de edad, >60 años de edad y preferiblemente >65 años), las personas jóvenes (por ejemplo, <5 años de edad), los pacientes hospitalizados, trabajadores sanitarios, personal militar y de las fuerzas armadas, mujeres embarazadas, los enfermos crónicos o pacientes inmunodeficientes. Sin embargo, las vacunas no son adecuadas únicamente para estos grupos y pueden usarse de manera más general en una población.
Generalmente, las composiciones de la invención se administrarán directamente a un paciente. La administración directa puede lograrse mediante inyección parenteral (por ejemplo, por vía subcutánea, intraperitoneal, intravenosa, intramuscular, intradérmica o en el espacio intersticial de un tejido; a diferencia de la referencia 1, normalmente no se usa inyección intraglosal con la presente invención). Las vías de administración alternativas incluyen rectal, oral (por ejemplo, comprimido, pulverización), bucal, sublingual, vaginal, tópica, transdérmica o transcutánea, intranasal, ocular, aural, pulmonar u otra administración mucosa. La administración intradérmica e intramuscular son dos vías preferidas. La inyección puede realizarse mediante una aguja (por ejemplo, una aguja hipodérmica), pero alternativamente puede usarse una inyección sin aguja. Una dosis intramuscular típica es de 0,5 ml.
La invención puede usarse para provocar inmunidad sistémica y/o mucosa, preferiblemente para provocar una inmunidad sistémica y/o mucosa potenciada.
La dosificación puede realizarse mediante un esquema de una única dosis o un esquema de múltiples dosis. Pueden usarse múltiples dosis en un esquema de inmunización primaria y/o en un esquema de inmunización de refuerzo. En un esquema de múltiples dosis, las diversas dosis pueden administrarse por la misma vía o diferentes vías, por ejemplo una sensibilización parenteral y refuerzo mucoso, una sensibilización mucosa y refuerzo parenteral, etc. Normalmente se administrarán múltiples dosis separadas al menos 1 semana (por ejemplo, aproximadamente 2 semanas, aproximadamente 3 semanas, aproximadamente 4 semanas, aproximadamente 6 semanas, aproximadamente 8 semanas, aproximadamente 10 semanas, aproximadamente 12 semanas, aproximadamente 16 semanas, etc.). En una realización, pueden administrarse múltiples dosis aproximadamente 6 semanas, 10 semanas y 14 semanas tras el nacimiento, por ejemplo a la edad de 6 semanas, 10 semanas y 14 semanas, tal como se usa con frecuencia en el programa ampliado de inmunización (“PAI”) de la Organización Mundial de la Salud. En una realización alternativa, se administran dos dosis primarias separadas aproximadamente dos meses, por ejemplo separadas aproximadamente 7, 8 o 9 semanas, seguidas por una o más dosis de refuerzo aproximadamente de 6 meses a 1 año tras la segunda dosis primaria, por ejemplo aproximadamente 6, 8, 10 o 12 meses tras la segunda dosis primaria. En una realización adicional, se administran tres dosis primarias separadas aproximadamente dos meses, por ejemplo separadas aproximadamente 7, 8 o 9 semanas, seguidas por una o más dosis de refuerzo aproximadamente de 6 meses a 1 año tras la tercera dosis primaria, por ejemplo aproximadamente 6, 8, 10 o 12 meses tras la tercera dosis primaria.
General
La práctica de la presente invención empleará, a menos que se indique lo contrario, métodos convencionales de química, bioquímica, biología molecular, inmunología y farmacología, dentro de la experiencia de la técnica. Tales técnicas se explican completamente en la bibliografía. Véanse, por ejemplo, las referencias 30-36, etc.
El término “que comprende” abarca “que incluye” así como “que consiste”, por ejemplo una composición “que comprende” X puede consistir exclusivamente en X o puede incluir algo adicional, por ejemplo X Y.
El término “aproximadamente” con respecto a un valor numérico x es opcional y significa, por ejemplo, x+10%.
El término “sustancialmente” no excluye “completamente”, por ejemplo una composición que está “sustancialmente libre” de Y puede estar completamente libre de Y. Cuando sea necesario, el término “sustancialmente” puede omitirse de la definición de la invención.
Se entiende que las referencias a carga, a cationes, a aniones, a zwitteriones, etc., son a pH 7.
TLR3 es el receptor de tipo Toll 3. Es un único receptor que se extiende por la membrana que desempeña un papel clave en el sistema inmunitario innato. Los agonistas de TLR3 conocidos incluyen poli(I:C). “TLR3” es el nombre de HGNC aprobado para el gen que codifica para este receptor, y su ID de HGNC único es HGNC: 11849. La secuencia de RefSeq para el gen de TLR3 humano es GI:2459625.
TLR7 es el receptor de tipo Toll 7. Es un único receptor que se extiende por la membrana que desempeña un papel clave en el sistema inmunitario innato. Los agonistas de TLR7 conocidos incluyen, por ejemplo, imiquimod. “TLR7” es el nombre de HGNC aprobado para el gen que codifica para este receptor, y su ID de HGNC único es HGNC: 15631. La secuencia de RefSeq para el gen de TLR7 humano es GI:67944638.
TLR8 es el receptor de tipo Toll 8. Es un único receptor que se extiende por la membrana que desempeña un papel clave en el sistema inmunitario innato. Los agonistas de TLR8 conocidos incluyen, por ejemplo, resiquimod. “TLR8” es el nombre de HGNC aprobado para el gen que codifica para este receptor, y su ID de HGNC único es HGNC: 15632. La secuencia de RefSeq para el gen de TLR8 humano es GI:20302165.
La familia de receptor de tipo RIG-I (“RLR”) incluye diversas ARN helicasas que desempeñan papeles clave en el sistema inmunitario innato [37]. RLR-1 (también conocido como RIG-I o gen inducible por ácido retinoico I) tiene dos dominios de reclutamiento de caspasa cerca de su extremo N-terminal. El nombre de HGNC aprobado para el gen que codifica para la RLR-1 helicasa es “DDX58” (por polipéptido 58 de caja DEAD (Asp-Glu-Ala-Asp)) y el ID de HGNC único es HGNC:19102. La secuencia de RefSeq para el gen de RLR-1 humano es GI:77732514. RLR-2 (también conocido como MDA5 o gen asociado con diferenciación de melanoma 5) también tiene dos dominios de reclutamiento de caspasa cerca de su extremo N-terminal. El nombre de HGNC aprobado para el gen que codifica para la RLR-2 helicasa es “ IFIH1” (por interferón inducido con dominio de helicasa C 1) y el ID de HGNC único es HGNC:18873. La secuencia de RefSeq para el gen de RLR-2 humano es GI: 27886567. RLR-3 (también conocido como LGP2 o laboratorio de genética y fisiología 2) no tiene ningún dominio de reclutamiento de caspasa. El nombre de HGNC aprobado para el gen que codifica para la RLR-3 helicasa es “DHX58” (por polipéptido 58 de caja DEXH (Asp-Glu-X-His)) y el ID de HGNC único es HGNC:29517. La secuencia de RefSeq para el gen de RLR-3 humano es GI: 149408121.
PKR es una proteína cinasa dependiente de ARN bicatenario. Desempeña un papel clave en el sistema inmunitario innato. “EIF2AK2” (por factor de iniciación de traducción eucariota 2-alfa cinasa 2) es el nombre de HGNC aprobado para el gen que codifica para esta enzima, y su ID de HGNC único es HGNC:9437. La secuencia de RefSeq para el gen de PKR humano es Gi:208431825.
Breve descripción de los dibujos
La figura 1 muestra un gel con ARN teñido. Los carriles muestran (1) marcadores, (2) replicón desnudo, (3) replicón tras tratamiento con ARNasa, (4) replicón encapsulado en liposoma, (5) liposoma tras tratamiento con ARNasa, (6) liposoma tratado con ARNasa y después sometido a extracción con fenol/cloroformo.
La figura 2 es una micrografía electrónica de liposomas.
La figura 3 muestra la expresión de proteína (como unidades de luz relativas, ULR) en los días 1, 3 y 6 tras la administración de ARN en liposomas grandes (línea inferior) o pequeños (línea superior).
La figura 4 muestra un gel con ARN teñido. Los carriles muestran (1) marcadores, (2) replicón desnudo, (3) replicón encapsulado en liposoma, (4) liposoma tratado con ARNasa y después sometido a extracción con fenol/cloroformo.
La figura 5 muestra la expresión de proteína en los días 1, 3 y 6 tras la administración de ARN como replicón empaquetado en virión (cuadrados), como ARN desnudo (rombos) o en liposomas (+ = 0,1 pg, x = 1 pg).
La figura 6 muestra la expresión de proteína en los días 1, 3 y 6 tras la administración de cuatro dosis diferentes de ARN encapsulado en liposoma.
La figura 7 muestra títulos de IgG anti-F en animales que reciben replicón empaquetado en virión (VRP o VSRP), 1 pg de ARN desnudo y 1 pg de ARN encapsulado en liposoma.
La figura 8 muestra títulos de IgG anti-F en animales que reciben VRP, 1 pg de ARN desnudo y 0,1 g o 1 pg de ARN encapsulado en liposoma.
La figura 9 muestra títulos de anticuerpos neutralizantes en animales que reciben VRP u o bien 0,1 g o bien 1 pg de ARN encapsulado en liposoma.
La figura 10 muestra niveles de expresión tras la administración de un replicón como ARN desnudo (círculos), ARN encapsulado en liposoma (triángulo y cuadrado) o como lipoplejo (triángulo invertido).
La figura 11 muestra títulos de IgG específica de F (2 semanas tras la segunda dosis) tras la administración de un replicón como ARN desnudo (0,01-1 pg), ARN encapsulado en liposoma (0,01-10 pg) o empaquetado como un virión (VRP, 106 unidades infecciosas o UI).
La figura 12 muestra títulos de IgG específica de F (círculos) y títulos de PRNT (cuadrados) tras la administración de un replicón como ARN desnudo (1 pg), ARN encapsulado en liposoma (0,1 o 1 pg) o empaquetado como un virión (VRP, 106 UI). También se muestran los títulos en ratones no sometidos a tratamiento. Las líneas continuas muestran las medias geométricas.
La figura 13 muestra la producción de citocinas intracelulares tras la reestimulación con péptidos sintéticos que representan los epítopos principales para la proteína F, 4 semanas tras una segunda dosis. El eje de las y muestra el % positivos para citocina de CD8+CD4-.
La figura 14 muestra títulos de IgG específica de F (media de log10 de títulos desv. est.) a lo largo de 210 días tras la inmunización de terneros. Las tres líneas se distinguen fácilmente en el día 63 y, desde abajo hacia arriba, son: control negativo de PBS; ARN administrado con liposoma; y el producto “Triangle 4”.
La figura 15 muestra la expresión (relativa) de títulos anti-F dos semanas después de una primera dosis de proteína F que codifica el replicón. Los títulos se representan gráficamente frente al diámetro promedio Z del liposoma (nm).
Las figuras 16A a 16M muestran la estructura de lípidos catiónicos alternativos: (A) RV05; (B) RV02; (C) RV04; (D) RV07; (E) RV03; (F) RV08; (G) RV09; (H) RV14; (I) RVlO; (J) RVll; (K) RV15; (L) RV16; (M) RV17.
La figura 17 muestra la estructura de un lípido conjugado con PEG “dividido” útil. El peso molecular total de PEG dentro del recuadro es de 2000 en los liposomas sometidos a prueba.
Las figuras 18A a 18E muestran las estructuras de diversos lípidos conjugados con PEG, en los que R es PEG de una longitud deseada.
Ejemplos de referencia
Replicones de ARN
A continuación se usan diversos replicones. En general, se basan en un genoma de alfavirus híbrido con proteínas no estructurales de virus de la encefalitis equina de Venezuela (VEEV), una señal de empaquetamiento de VEEV y una 3'-UTR de virus Sindbis o un mutante de VEEV. El replicón tiene aproximadamente 10 kb de longitud y tiene una cola de poli-A.
ADN de plásmido que codifica para replicones de alfavirus (denominados: pT7-mVEEV-FL.RSVF o A317; pT7-mVEEV-SEAP o A306; pSP6-VCR-GFP o A50) sirvió como molde para la síntesis de ARN in vitro. Los replicones contienen los elementos genéticos de alfavirus requeridos para la replicación de ARN, pero carecen de los que codifican para productos génicos necesarios para el ensamblaje de partículas; en vez de eso, las proteínas estructurales están sustituidas por una proteína de interés (o bien un indicador, tal como SEAP o GFP, o bien un inmunógeno, tal como proteína F de VSR de longitud completa) y, por tanto, los replicones no pueden inducir la generación de partículas infecciosas. Un promotor de bacteriófago (T7 o SP6) en el sentido de 5' del ADNc de alfavirus facilita la síntesis del ARN de replicón in vitro y una ribozima de virus de la hepatitis delta (VHD) inmediatamente en el sentido de 3' de la cola de poli(A) genera el extremo 3' correcto mediante su actividad de autoescisión.
Tras la linealización del ADN de plásmido en el sentido de 3' de la ribozima de VHD con una endonucleasa de restricción adecuada, se sintetizaron transcritos de tipo run-off in vitro usando ARN polimerasa dependiente de ADN derivada de bacteriófago T7 o SP6. Se realizaron transcripciones durante 2 horas a 37 °C en presencia de 7,5 mM (ARN polimerasa de T7) o 5 mM (ARN polimerasa de SP6) de cada uno de los trifosfatos de nucleósido (ATP, CTP, GTP y UTP) siguiendo las instrucciones proporcionadas por el fabricante (Ambion). Tras la transcripción, se digirió el ADN de molde con ADNasa TURBO (Ambion). Se precipitó el ARN de replicón con LiCl y se reconstituyó en agua libre de nucleasa. Se añadió una caperuza a ARN sin caperuza tras la transcripción con enzima de adición de caperuza de vaccinia (VCE) usando el sistema de adición de caperuza ScriptCap m7G (Epicentre Biotechnologies) tal como se expone en el manual del usuario; a los replicones con caperuza añadida de esta manera se les proporciona el prefijo “v”, por ejemplo vA317 es el replicón A317 con caperuza añadida mediante VCE. Se precipitó ARN con caperuza añadida tras la transcripción con LiCl y se reconstituyó en agua libre de nucleasa. Se determinó la concentración de las muestras de ARN midiendo la DO260 nm. Se confirmó la integridad de los transcritos in vitro mediante electroforesis en gel de agarosa en condiciones desnaturalizantes.
Encapsulación liposomal
Se encapsuló ARN en liposomas realizados esencialmente mediante el método de las referencias 7 y 38. Los liposomas estaban compuestos por el 10% de DSPC (zwitteriónico), el 40% de DlinDMA (catiónico), el 48% de colesterol y el 2% de DMG conjugada con PEG (PEG de 2 kDa). Estas proporciones se refieren al % en moles en el liposoma total.
Se sintetizó DlinDMA (1,2-dilinoleiloxi-N,N-dimetil-3-aminopropano) usando el procedimiento de la referencia 2. Se adquirió DSPC (1,2-diastearoil-sn-glicero-3-fosfocolina) de Genzyme. Se obtuvo colesterol de Sigma-Aldrich. DMG conjugada con PEG (1,2-dimiristoil-sn-glicero-3-fosfoetanolamina-N-[metoxi(polietilenglicol), sal de amonio), DOTAP (1,2-dioleoil-3-trimetilamonio-propano, sal de cloruro) y DC-chol (clorhidrato de 3p-[N-(N',N'-dimetilaminoetano)-carbamoil]colesterol) eran de Avanti Polar Lipids.
En resumen, se disolvieron los lípidos en etanol (2 ml), se disolvió un replicón de ARN en tampón (2 ml, citrato de sodio 100 mM, pH 6) y se mezclaron con 2 ml de tampón seguido por 1 hora de equilibración. Se diluyó la mezcla con 6 ml de tampón y después se filtró. El producto resultante contenía liposomas, con una eficiencia de encapsulación de ~95%.
Por ejemplo, en un método particular, se prepararon disoluciones madre de lípido recientes en etanol. Se pesaron 37 mg de DlinDMA, 11,8 mg de DSPC, 27,8 mg de colesterol y 8,07 mg de PEG-DMG y se disolvieron en 7,55 ml de etanol. Se balanceó suavemente la disolución madre de lípido recién preparada a 37 °C durante aproximadamente 15 min para formar una mezcla homogénea. Después, se añadieron 755 pl de la disolución madre a 1,245 ml de etanol para preparar una disolución madre de lípido de trabajo de 2 ml. Se usó esta cantidad de lípidos para formar liposomas con 250 pg de ARN. También se prepararon 2 ml de disolución de trabajo de ARN a partir de una disolución madre de ~ 1 pg/pl en tampón citrato 100 mM (pH 6). Se aclararon tres viales de vidrio de 20 ml (con barras de agitación) con disolución de RNase Away (Molecular BioProducts) y se lavaron con una gran cantidad de agua MilliQ antes de su uso para descontaminar los viales con respecto a ARNasas. Se usó uno de los viales para la disolución de trabajo de ARN y los otros para recoger las mezclas de lípido y de ARN (tal como se describe a continuación). Se calentaron las disoluciones de trabajo de lípido y de ARN a 37 °C durante 10 min antes de cargarse en jeringas de tipo Luer-lock de 3 cc. Se cargaron 2 ml de tampón citrato (pH 6) en otra jeringa de 3 cc. Se conectaron las jeringas que contenían ARN y los lípidos a una mezcladora en T (PEEK™, DI de unión de 500 pm, Idex Health Science) usando tubos de FEP (etileno-propileno fluorado; todos los tubos de FEP usados tenían un diámetro interno de 2 mm y un diámetro externo de 3 mm; obtenidos de Idex Health Science). La salida de la mezcladora en T también tenía tubos de FEP. Se conectó la tercera jeringa que contenía el tampón citrato a un fragmento independiente de tubo. Después se accionaron todas las jeringas a una velocidad de flujo de 7 ml/min usando una bomba de jeringa. Se posicionaron las salidas de tubos para recoger las mezclas en un vial de vidrio de 20 ml (con agitación). Se extrajo la barra de agitación y se dejó equilibrar la disolución de etanol/acuosa hasta temperatura ambiente durante 1 hora. Se cargaron 4 ml de la mezcla en una jeringa de 5 cc, que estaba conectada a un fragmento de tubo de FEP, y en otra jeringa de 5 cc conectada a una longitud igual de tubo de FEP, se cargó una cantidad igual de tampón citrato 100 mM (pH 6). Se accionaron las dos jeringas a una velocidad de flujo de 7 ml/min usando la bomba de jeringa y se recogió la mezcla final en un vial de vidrio de 20 ml (con agitación). A continuación, la mezcla recogida de la segunda etapa de mezclado (liposomas) se hizo pasar a través de una membrana Mustang Q (un soporte de intercambio aniónico que se une a y elimina moléculas aniónicas, obtenido de Pall Corporation). Antes de usar esta membrana para los liposomas, se hicieron pasar sucesivamente 4 ml de NaOH 1 M, 4 ml de NaCl 1 M y 10 ml de tampón citrato 100 mM (pH 6) a través de la misma. Se calentaron los liposomas durante 10 min a 37 °C antes de hacerlos pasar a través de la membrana. A continuación, se concentraron los liposomas hasta 2 ml y se sometieron a diálisis frente a 10-15 volúmenes de 1X PBS usando filtración de flujo tangencial antes de recuperar el producto final. El sistema de TFF y las membranas de filtración de fibras huecas se adquirieron de Spectrum Labs (Rancho Dominguez) y se usaron según las directrices del fabricante. Se usaron membranas de filtración de fibras huecas de polisulfona con un punto de corte de tamaño de poro de 100 kD y un área de superficie de 8 cm2. Para experimentos in vitro e in vivo, se diluyeron las formulaciones hasta la concentración de ARN requerida con 1X PBS.
La figura 2 muestra una micrografía electrónica de ejemplo de liposomas preparados mediante estos métodos. Estos liposomas contienen ARN encapsulado que codifica para antígeno F de VSR de longitud completa. La dispersión de luz dinámica de un lote mostró un diámetro promedio de 141 nm (por intensidad) o 78 nm (en número).
Se determinó el porcentaje de ARN encapsulado y la concentración de ARN mediante el kit de reactivo de ARN QuantiT RiboGreen (Invitrogen), siguiendo las instrucciones del fabricante. Se usó el patrón de ARN ribosómico proporcionado en el kit para generar una curva patrón. Se diluyeron los liposomas 10 veces o 100 veces en tampón 1X TE (del kit) antes de la adición del colorante. Por separado, se diluyeron los liposomas 10 veces o 100 veces en tampón 1X TE que contenía Tritón X al 0,5% antes de la adición del colorante (para alterar los liposomas y, por tanto, para someter a ensayo el ARN total). Después de eso, se añadió una cantidad igual de colorante a cada disolución y después se cargaron por duplicado ~180 pl de cada disolución tras la adición de colorante en una placa de cultivo tisular de 96 pocillos. Se leyó la fluorescencia (ex. de 485 nm, em. de 528 nm) en un lector de microplacas. Se dosificaron todas las formulaciones de liposomas in vivo basándose en la cantidad de ARN encapsulado.
Se mostró que la encapsulación en liposomas protege al ARN frente a la digestión por ARNasa. Los experimentos usaron 3,8 mUA de ARNasa A por microgramo de ARN, incubados durante 30 minutos a temperatura ambiente. Se inactivó la ARNasa con proteinasa K a 55°C durante 10 minutos. Después se añadió una mezcla 1:1 v/v de muestra con respecto a 25:24:1 v/v/v de fenol:cloroformo:alcohol isoamílico para extraer el ARN a partir de los lípidos al interior de la fase acuosa. Se mezclaron las muestras mediante agitación con vórtex durante unos pocos segundos y después se colocaron en una centrífuga durante 15 minutos a 12k RPM. Se retiró la fase acuosa (que contenía el ARN) y se usó para analizar el ARN. Antes de la carga (400 ng de ARN por pocillo), se incubaron todas las muestras con colorante de carga de formaldehído, se desnaturalizaron durante 10 minutos a 65°C y se enfriaron hasta temperatura ambiente. Se usaron marcadores Ambion Millennium para aproximar el peso molecular del constructo de ARN. Se hizo pasar el gel a 90 V. Se tiñó el gel usando SYBR oro al 0,1% según las directrices del fabricante en agua mediante balanceo a temperatura ambiente durante 1 hora. La figura 1 muestra que la ARNasa digiere completamente el ARN en ausencia de encapsulación (carril 3). No puede detectarse ARN tras la encapsulación (carril 4) y no se observa ningún cambio si se tratan estos liposomas con ARNasa (carril 4). Tras someter los liposomas tratados con ARNasa a extracción con fenol, se observa ARN no digerido (carril 6). Incluso después de 1 semana a 4°C, pudo observarse el ARN sin ninguna fragmentación (figura 4, flecha). La expresión de proteína in vivo no cambió después de 6 semanas a 4°C y un ciclo de congelación-descongelación. Por tanto, el ARN encapsulado en liposoma es estable.
Para evaluar la expresión in vivo del ARN, se codificó una enzima indicadora (SEAP; fosfatasa alcalina secretada) en el replicón, en vez de en un inmunógeno. Se midieron los niveles de expresión en sueros diluidos 1:4 en 1X tampón de dilución Phospha-Light usando un sustrato de fosfato alcalino quimioluminiscente. A ratones BALB/c de 8-10 semanas de edad (5/grupo) se les inyectaron por vía intramuscular, en el día 0, 50 pl por pata de una dosis de 0,1 pg o 1 pg de ARN. También se administró el mismo vector sin los liposomas (en 1X PBS libre de ARNasa) a 1 pg. También se sometieron a prueba replicones empaquetados en virión. Los replicones empaquetados en virión usados en el presente documento (denominados “VRP”) se obtuvieron mediante los métodos de la referencia 39, en la que el replicón de alfavirus se derivó a partir del VEEV mutante o una quimera derivada a partir del genoma de VEEV modificado por ingeniería para contener la 3'-UTR del virus Sindbis y una señal de empaquetamiento (PS) del virus Sindbis, empaquetados mediante electroporación conjunta en células BHK con ARN auxiliares defectuosos que codifican para los genes de glicoproteína y cápsida de virus Sindbis.
Tal como se muestra en la figura 5, la encapsulación aumentó los niveles de SEAP en aproximadamente 1X log a la dosis de 1 pg, y en el día 6 la expresión a partir de una dosis encapsulada de 0,1 pg coincidió con los niveles observados con una dosis sin encapsular de 1 pg. En el día 3, los niveles de expresión superaron los logrados con VRP (cuadrados). Por tanto, la expresión aumentó cuando se formuló el ARN en los liposomas con respecto al control de ARN desnudo, incluso a una dosis 10 veces inferior. La expresión también fue superior con respecto al control de VRP, pero la cinética de expresión fue muy diferente (véase la figura 5). La administración del ARN con electroporación dio como resultado una expresión aumentada con respecto al control de ARN desnudo, pero estos niveles fueron menores que con liposomas.
Para evaluar si el efecto observado en los grupos de liposoma se debía simplemente a los componentes de liposoma o estaba asociado con la encapsulación, se administró el replicón en forma encapsulada (con dos protocolos de purificación diferentes, 0,1 pg de ARN) o mezclado con los liposomas tras su formación (un “lipoplejo” no encapsulado, 0,1 pg de ARN) o como a Rn desnudo (1 pg). La figura 10 muestra que el lipoplejo dio los niveles de expresión más bajos, mostrando que la encapsulación de muestra es esencial para una expresión potente.
Experimentos de SEAP adicionales mostraron una clara respuesta a la dosis in vivo, con expresión observada tras la administración de tan solo 1 ng de ARN (figura 6). Experimentos adicionales que compararon la expresión a partir de replicones encapsulados y desnudos indicaron que 0,01 pg de ARN encapsulado era equivalente a 1 pg de ARN desnudo. A una dosis de 0,5 pg de ARN, el material encapsulado dio una expresión 12 veces superior en el día 6; a una dosis de 0,1 pg los niveles fueron 24 veces superiores en el día 6.
En vez de considerar los niveles promedio en el grupo, también se estudiaron los animales individuales. Mientras que varios animales no presentaron respuesta a replicones desnudos, la encapsulación eliminó los animales sin respuesta.
Experimentos adicionales sustituyeron DlinDMA por DOTAP. Aunque los liposomas de DOTAP dieron una expresión mejor que el replicón desnudo, fueron inferiores a los liposomas de DlinDMA (diferencia de 2 a 3 veces en el día 1).
Para evaluar la inmunogenicidad in vivo, se construyó un replicón para expresar proteína F de longitud completa a partir de virus sincitial respiratorio (VSR). Esto se administró de manera desnuda (1 pg), encapsulado en liposomas (0,1 o 1 |jg) o empaquetado en viriones (106 UI; “VRP”) en los días 0 y 21. La figura 7 muestra títulos de IgG anti-F 2 semanas después de la segunda dosis, y los liposomas potencian claramente la inmunogenicidad. La figura 8 muestra títulos 2 semanas después, momento en el cual no había ninguna diferencia estadística entre el ARN encapsulado a 0,1 jg , el ARN encapsulado a 1 jg o el grupo de VRP. Los títulos de neutralización (medidos como reducción de placa del 60%, “PRNT60”) no fueron significativamente diferentes en estos tres grupos 2 semanas después de la segunda dosis (figura 9). La figura 12 muestra títulos tanto de IgG como de PRNT 4 semanas después de la segunda dosis.
La figura 13 confirma que el ARN provoca una respuesta de células T CD8 robusta.
Experimentos adicionales compararon los títulos de IgG específica de F en ratones que recibieron VRP, 0,1 jg de ARN encapsulado en liposoma o 1 jg de ARN encapsulado en liposoma. Las razones de títulos (VRP:liposoma) en diversos momentos después de la segunda dosis fueron las siguientes:
Figure imgf000013_0001
Por tanto, el ARN encapsulado en liposoma induce esencialmente la misma magnitud de respuesta inmunitaria que la observada con la administración de viriones.
Experimentos adicionales mostraron respuestas de IgG específica de F superiores con una dosis de 10 jg , respuestas equivalentes para dosis de 1 jg y 0,1 jg , y una respuesta inferior con una dosis de 0,01 jg . La figura 11 muestra títulos de IgG en ratones que reciben el replicón en forma desnuda a 3 dosis diferentes, en liposomas a 4 dosis diferentes o como VRP (106 UI). La respuesta observada con 1 jg de ARN encapsulado en liposoma fue estadísticamente insignificante (ANOVA) en comparación con VRP, pero la respuesta superior observada con 10 jg de ARN encapsulado en liposoma fue estadísticamente significativa (p<0,05) en comparación con ambos de estos grupos.
Un estudio adicional confirmó que 0,1 jg de ARN encapsulado en liposoma dio respuestas de IgG anti-F mucho más altas (15 días tras la segunda dosis) que 0,1 jg de ADN administrado y fue incluso más inmunogénico que 20 jg de ADN de plásmido que codifica para el antígeno F, administrado mediante electroporación (sistema de administración de ADN Elgen™, Inovio).
Ratas algodoneras
Se realizó un estudio con ratas algodoneras (Sigmodon hispidis) en vez de ratones. A una dosis de 1 jg , la encapsulación en liposomas aumentó los títulos de IgG específica de F en 8,3 veces en comparación con ARN desnudo y aumentó los títulos de PRNT en 9,5 veces. La magnitud de la respuesta de anticuerpos fue equivalente a la inducida por 5*106 UI de VRP. Tanto ARN desnudo como encapsulado en liposoma pudieron proteger a las ratas algodoneras frente a la exposición a VSR (1*105 unidades formadoras de placa), reduciendo la carga viral en los pulmones en al menos 3,5 log. La encapsulación aumentó la reducción en aproximadamente 2 veces.
Un trabajo adicional con ratas algodoneras usó cuatro replicones diferentes: vA317 expresa VSR-F de longitud completa; vA318 expresa VSR-F truncada (parte transmembrana y cola citoplasmática retiradas); vA142 expresa VSR-F con su péptido de fusión eliminado; vA140 expresa la VSR-F truncada también sin su péptido. A ratas algodoneras, de 4 a 8 animales por grupo, se les administraron vacunaciones intramusculares (100 j l en una pata) en los días 0 y 21 con los cuatro replicones diferentes a dos dosis (1,0 y 0,1 jg ) formuladas en liposomas preparados usando DMG conjugada con PEG de 2 kDa mediante el método (D), pero con un tamaño de lote de 150 jg de ARN. Los grupos de control recibieron una vacuna de proteína de subunidad de VSR-F (5 jg ) con adyuvante de alumbre (8 animales/grupo), VRP que expresaban VSR-F de longitud completa (1*106 UI, 8 animales/grupo) o control no sometido a tratamiento (4 animales/grupo). Se recogió suero para análisis de anticuerpos en los días 0, 21 y 34.
Los títulos de IgG en suero específica de F y títulos de anticuerpos neutralizantes en suero de VSR en los días 21 y 34 fueron:
Figure imgf000014_0001
Los cuatro replicones evaluados en este estudio (vA317, vA318, vA142, vA140) fueron inmunogénicos en ratas algodoneras cuando se administraron mediante liposoma, aunque los títulos de neutralización en suero fueron al menos diez veces menores que los inducidos mediante vacunas de proteína con adyuvante o mediante VRP. Las vacunas de liposoma/ARN provocaron IgG específica de F en suero y anticuerpos neutralizantes de VSR tras la primera vacunación, y una segunda vacunación reforzó la respuesta eficazmente. Los títulos de IgG específica de F tras la segunda vacunación con 1 pg de replicón fueron de 2 a 3 veces superiores tras la segunda vacunación con 0,1 pg de replicón. Los cuatro replicones provocaron títulos de anticuerpos comparables, lo que sugiere que la VSR-F de longitud completa y truncada, cada una con o sin el péptido de fusión, son inmunogénicas de manera similar en ratas algodoneras.
Un trabajo adicional con ratas algodoneras usó de nuevo los replicones vA317, vA318 y vA142. A ratas algodoneras, 2-8 animales por grupo, se les administraron vacunaciones intramusculares (100 pl en una pata) en los días 0 y 21 con los replicones (0,1 o 1 pg) encapsulados en liposomas RV01 (con PEG-2000) preparados mediante el método (D) pero con un tamaño de lote de 150 pg de ARN. Los grupos de control recibieron la vacuna de proteína de subunidad de VSR-F (5 pg) con adyuvante de alumbre o VRP que expresaban VSR-F de longitud completa (1*10® UI, 8 animales/grupo). Todos estos animales recibieron una tercera vacunación (día 56) con vacuna de proteína de subunidad de VSR-F (5 pg) con adyuvante de alumbre. Además, hubo un control no sometido a tratamiento (4 animales/grupo). Además, a un grupo adicional se le administraron vacunaciones intramusculares bilaterales (50 pl por pata) en los días 0 y 56 con 1 pg de ARN de vA317 en liposomas pero no recibió una tercera vacunación con la vacuna de proteína de subunidad.
Se recogió suero para análisis de anticuerpos en los días 0, 21, 35, 56, 70, más los días 14, 28 y 42 para el grupo adicional. Los títulos de IgG en suero específica de F (GMT) fueron los siguientes:
Figure imgf000014_0002
Los títulos de neutralización en suero fueron los siguientes (títulos de neutralización de VSR al 60% para 2 combinaciones de 3-4 animales por grupo, GMT de estas 2 combinaciones por grupo):
Figure imgf000014_0003
Los títulos en suero y títulos neutralizantes para el grupo adicional fueron los siguientes:
Figure imgf000015_0001
Por tanto, se confirmó que los replicones eran inmunogénicos en ratas algodoneras, provocando IgG específica de F en suero y anticuerpos neutralizantes de VSR tras la primera vacunación. Una segunda vacunación reforzó las respuestas eficazmente. Los títulos de IgG específica de F tras la segunda vacunación con 1,0 pg de replicón fueron de 1,5 a 4 veces superiores después la segunda vacunación con 0,1 pg de replicón.
La tercera vacunación (proteína en el día 56) no reforzó los títulos en ratas algodoneras anteriormente vacunadas con subunidad de trímero de F alumbre, pero sí que proporcionó un gran refuerzo a los títulos en ratas algodoneras anteriormente vacunadas con replicón. En la mayoría de los casos, los títulos de neutralización en suero de VSR tras dos vacunaciones con replicón seguidas por refuerzo con proteína fueron iguales o superiores a los títulos inducidos mediante dos o tres vacunaciones con proteína secuenciales.
Este estudio también evaluó la cinética de la respuesta de anticuerpos frente a 1,0 pg de vA317. Los títulos de IgG en suero específica de F y de neutralización de VSR inducidos mediante una única vacunación alcanzaron su pico aproximadamente en el día 21 y se mantuvieron al menos hasta el día 56 (disminución del 50-70% del título de IgG específica de F, poco cambio en el título de neutralización de VSR). Se administró una segunda vacunación homóloga a estos animales en el día 56 y reforzó los títulos de anticuerpos hasta un nivel al menos igual al alcanzado cuando se administró la segunda vacunación en el día 21.
Experimentos adicionales implicaron una exposición viral. El replicón vA368 codifica la glicoproteína de fusión de superficie de tipo natural de longitud completa de VSR con el péptido de fusión eliminado, con la expresión impulsada por el IRES de EV71. A ratas algodoneras, 7 por grupo, se les administraron vacunaciones intramusculares (100 pl por pata) en los días 0 y 21 con vA368 en liposomas preparados mediante el método (H), tamaño de lote de 175 pg de ARN, o con VRP que tenían el mismo replicón. Los liposomas incluyeron PEG de 2 kDa, conjugado a DMG. Un grupo de control recibió 5 pg de proteína con adyuvante de alumbre y también se inoculó un grupo de control no sometido a tratamiento.
Todos los grupos recibieron una exposición intranasal (i.n.) con 1*106 UFP de VSR cuatro semanas tras la inmunización final. Se recogió suero para análisis de anticuerpos en los días 0, 21, 35. Se midieron los títulos virales en el pulmón 5 días tras la exposición. Los resultados fueron los siguientes:
Figure imgf000015_0002
Por tanto, la vacuna de ARN redujo la carga viral en el pulmón en más de tres log, desde aproximadamente 106 UFP/g en ratas algodoneras de control no vacunadas hasta menos de 103 UFP/g en ratas algodoneras vacunadas.
Estudio con mamíferos grandes
Se realizó un estudio con animales grandes con ganado. Se inmunizó a terneros (4-6 semanas de edad, ~60-80 kg, 5 por grupo) con 66 pg de replicón vA317 que codificaba para proteína F de VSR de longitud completa en los días 0, 21,86 y 146. Se formularon los replicones dentro de liposomas preparados mediante el método (E) pero con un tamaño de lote de 1,5 mg de ARN; tenían el 40% de DlinDMA, el 10% de DSPC, el 48% de colesterol y el 2% de PEG-2000 conjugado con DMG. Se usó PBS solo como control negativo y se usó una vacuna licenciada como control positivo (“Triangle 4” de Fort Dodge, que contenía virus muerto). Todos los terneros recibieron 15 pg de proteína F con adyuvante de la emulsión MF59 en el día 146.
Las vacunas de ARN codificaban para F de VSR humano mientras que la vacuna de “Triangle 4” contiene F de VSR bovino, pero la proteína F de VSR está altamente conservada entre VSRB y VSRH.
Los terneros recibieron 2 ml de cada vacuna experimental, administrados por vía intramuscular como 2*1 ml en cada lado del cuello. En cambio, la vacuna de “Triangle 4” se administró como una única dosis de 2 ml en el cuello.
Se recogió suero para análisis de anticuerpos en los días 0, 14, 21, 35, 42, 56, 63, 86, 100, 107, 114, 121, 128, 135, 146, 160, 167, 174, 181, 188, 195 y 202. Si un animal individual tenía un título por debajo del límite de detección, se le asignó un título de 5.
La figura 14 muestra títulos de IgG específica de F a lo largo de 210 días. A lo largo de los primeros 63 días, el replicón de ARN fue inmunogénico en las vacas mediante liposomas, aunque dio títulos inferiores a la vacuna licenciada. Todas las vacas vacunadas mostraron anticuerpos específicos de F después de la segunda dosis y los títulos fueron muy estables a partir del periodo de 2 a 6 semanas después de la segunda dosis (y fueron particularmente estables para las vacunas de ARN). Los títulos hasta el día 202 fueron los siguientes:
Figure imgf000016_0001
Los títulos de anticuerpos neutralizantes en suero de VSR fueron los siguientes:
Figure imgf000016_0002
El material usado para la segunda dosis de liposoma no se preparó de manera reciente y el mismo lote de ARN mostró una disminución de potencia en un estudio de inmunogenicidad con ratones. Por tanto, es posible que la vacuna hubiera sido más inmunogénica si se hubiera usado material reciente para todas las vacunaciones.
Cuando se sometió a ensayo con complemento, se detectaron anticuerpos neutralizantes en todas las vacas vacunadas. En este ensayo, todos los terneros vacunados tuvieron buenos títulos de anticuerpos neutralizantes tras la segunda vacunación de ARN. Además, la vacuna de ARN provocó títulos de IgG en suero específica de F que se detectaron en unos pocos terneros tras la segunda vacunación y en todos los terneros tras la tercera.
VSR-F con adyuvante de MF59 pudo reforzar la respuesta de IgG en todos los terneros anteriormente vacunados y reforzar los títulos de neutralización independientes del complemento de terneros anteriormente vacunados con ARN.
La prueba de concepto para vacunas de ARN en animales grandes es particularmente importante a la vista de la pérdida de potencia observada anteriormente con vacunas basadas en ADN cuando se pasa de modelos de animales pequeños a animales más grandes y seres humanos. Una dosis típica para una vacuna de ADN de vaca será de 0,5­ 1 mg [40, 41 ] y, por tanto, es muy alentador que se indujeran respuestas inmunitarias con tan solo 66 pg de ARN.
Efecto del diámetro del liposoma
Para obtener liposomas más pequeños, se sustituyó el método de jeringa/tubo por un método en el que se mezclaron disoluciones de lípido y de ARN en canales en un chip de microfluido.
Se prepararon disoluciones madre de lípido recientes en etanol. Se pesaron 37 mg de DlinDMA, 11,8 mg de DSPC, 27,8 mg de colesterol y 8,07 mg de p EG-DMG y se disolvieron en 7,55 ml de etanol. Se balanceó suavemente la disolución madre de lípido recién preparada a 37 °C durante aproximadamente 15 min para formar una mezcla homogénea. Después, se añadieron 226,7 pl de la disolución madre a 1,773 ml de etanol para preparar una disolución madre de lípido de trabajo de 2 ml. También se prepararon 4 ml de disolución de trabajo de ARN a partir de una disolución madre de ~ 1 pg/pl en tampón citrato 100 mM (pH 6). Se aclararon cuatro 20 ml viales de vidrio (con barras de agitación) con disolución de RNase Away y se lavaron con una gran cantidad de agua MilliQ antes de su uso para descontaminar los viales de ARNasas. Se usaron dos de los viales para la disolución de trabajo de ARN (2 ml en cada vial) y los otros para recoger las mezclas de lípido y de ARN. Se calentaron las disoluciones de trabajo de lípido y de ARN a 37 °C durante 10 min antes de cargarse en jeringas de tipo Luer-lock de 3 cc. Se conectaron las jeringas que contenían ARN y los lípidos a un chip de unión Mitos Droplet (un dispositivo de microfluidos de vidrio obtenido de Syrris, n.° de pieza 3000158) usando tubos de PTFE con un Di de 0,03 pulgadas x DE de 1/16 pulgadas (Syrris) usando un conector de borde de 4 vías. Se accionaron dos corrientes de ARN y una corriente de lípido mediante bombas de jeringa y se realizó el mezclado de la fase de etanol y la acuosa en la unión en X (100 pm x 105 pm) del chip. Se mantuvo la velocidad de flujo de las tres corrientes a 1,5 ml/min, por tanto, la razón de la velocidad de flujo total acuosa con respecto a etanólica era de 2:1. Se posicionó la salida del tubo para recoger las mezclas en un vial de vidrio de 20 ml (con agitación). Se extrajo la barra de agitación y se dejó equilibrar la disolución de etanol/acuosa hasta temperatura ambiente durante 1 hora. Después, se cargó la mezcla en una jeringa de 5 cc que estaba ajustada a un fragmento de tubo de PTFE con un DI de 0,03 pulgadas x DE de 1/16 pulgadas y en otra jeringa de 5 cc con igual longitud de tubo de PTFE, se cargó un volumen igual de tampón citrato 100 mM (pH 6). Se accionaron las dos jeringas a una velocidad de flujo de 3 ml/min usando una bomba de jeringa y se recogió la mezcla final en un vial de vidrio de 20 ml (con agitación). A continuación, se concentraron los liposomas hasta 2 ml y se sometieron a diálisis frente a 10-15 volúmenes de 1X PBS usando el sistema de TFF antes de recuperar el producto final. Se usaron membranas de filtración de fibras huecas con un punto de corte de tamaño de poro de 100 kDa y un área de superficie de 20 cm2. Para experimentos in vitro e in vivo, se diluyeron las formulaciones hasta la concentración de ARN requerida con 1X PBS.
Mientras que los liposomas preparados usando el método de jeringa/tubo con 75 pg de ARN tenían un diámetro promedio Z de 148 nm y un índice de polidispersidad (pdl) de 0,122, el mezclado con chip produjo liposomas con un diámetro promedio Z de 97 nm y un pdl de 0,086. La proporción de ARN encapsulado disminuyó ligeramente desde el 90% hasta el 87%. Estos diámetros y los índices de polidispersidad se midieron usando un instrumento Zetasizer Nano ZS (Malvern Instruments, Worcestershire, RU) según las instrucciones del fabricante. Se diluyeron los liposomas en 1X PBS antes de la medición.
Se administraron los liposomas a ratones BALB/C de 8-10 semanas de edad mediante inyección intramuscular en el día 0, 50 pl por pata. Se tomaron muestras de sangre del seno orbital en los días 1 y 3, y una muestra de sangre terminal en el día 6. Se midieron los niveles de SEAP en suero mediante ensayo quimioluminiscente. Tal como se muestra en la figura 3, los liposomas más pequeños aumentaron los niveles de SEAP en ~2 veces en el día 1 y en ~5 veces en el día 6.
Los liposomas preparados mediante los dos métodos diferentes también se evaluaron para determinar la administración de un replicón que codifica proteína F de VRS de longitud completa. Se midieron los títulos de IgG en suero específica de F de ratones, 8 animales por grupo, después de vacunaciones intramusculares en los días 0 y 21. Se recogieron sueros para el análisis de anticuerpos en los días 14 (2wpl) y 35 (2wp2). Si un animal individual tenía un título de <25 (límite de detección), se le asignó un título de 5. Se muestran datos a continuación como títulos medios geométricos de cada grupo:
Figure imgf000017_0001
Por tanto, los liposomas mixtos de chip más pequeños produjeron GMT ~2 veces más altos en 2wpl y 2wp2.
Se usaron también diversos liposomas diferentes con diámetros diferentes para administrar un replicón que codifica proteína F de VRS de longitud completa. En la figura 15 se representan gráficamente los títulos de IgG totales contra proteína F dos semanas después de la primera dosis frente al diámetro de liposoma.
Métodos de producción de liposomas
En general, se han usado ocho métodos diferentes para preparar liposomas. En el texto, se denominan métodos (A) a (H) y difieren principalmente con respecto a las etapas de filtración y TFF. Los detalles son los siguientes:
(A) Se prepararon disoluciones madre de lípido recientes en etanol. Se pesaron 37 mg de DlinDMA, 11,8 mg de DSPC, 27,8 mg de colesterol y 8,07 mg de PEG DMG 2000 y se disolvieron en 7,55 ml de etanol. Se balanceó suavemente la disolución madre de lípido recién preparada a 37 °C durante aproximadamente 15 min para formar una mezcla homogénea. Después, se añadieron 755 pl de la disolución madre a 1,245 ml de etanol para preparar una disolución madre de lípido de trabajo de 2 ml. Se usó esta cantidad de lípidos para formar liposomas con 250 pg de ARN. También se preparó una disolución de trabajo de ARN de 2 ml a partir de una disolución madre de ~ 1 pg/pl en tampón citrato 100 mM (pH 6). Se aclararon tres viales de vidrio de 20 ml (con barras de agitación) con disolución de RNase Away (Molecular BioProducts, San Diego, CA) y se lavaron con una gran cantidad de agua MilliQ antes de su uso para descontaminar los viales de ARNasas. Se usó uno de los viales para la disolución de trabajo de ARN y los otros para recoger las mezclas de lípido y de ARN (tal como se describe a continuación). Se calentaron las disoluciones de trabajo de lípido y de ARN a 37 °C durante 10 min antes de cargarse en jeringas de tipo Luer-lock de 3 cc. Se cargaron 2 ml de tampón citrato (pH 6) en otra jeringa de 3 cc. Se conectaron las jeringas que contenían ARN y los lípidos a una mezcladora en T (PEEK™, DI de unión de 500 pm, Idex Health Science, Oak Harbor, WA) usando tubos de FEP (etileno-propileno fluorado; todos los tubos de FEP tenían un diámetro interno de 2 mm * diámetro externo de 3 mm, suministrados por Idex Health Science). La salida de la mezcladora en T también tenía tubos de FEP. Se conectó la tercera jeringa que contenía el tampón citrato a un fragmento independiente de tubo de FEP. Después se accionaron todas las jeringas a una velocidad de flujo de 7 ml/min usando una bomba de jeringa. Se posicionaron las salidas de tubos para recoger las mezclas en un vial de vidrio de 20 ml (con agitación). Se extrajo la barra de agitación y se dejó equilibrar la disolución de etanol/acuosa hasta temperatura ambiente durante 1 hora. Se cargaron 4 ml de la mezcla en una jeringa de 5 cc, que estaba conectada a un fragmento de tubo de FEP, y en otra jeringa de 5 cc conectada a una longitud igual de tubo de FEP, se cargó una cantidad igual de tampón citrato 100 mM (pH 6). Se accionaron las dos jeringas a una velocidad de flujo de 7 ml/min usando la bomba de jeringa y se recogió la mezcla final en un vial de vidrio de 20 ml (con agitación). A continuación, se hizo pasar la mezcla recogida a partir de la segunda etapa de mezclado (liposomas) a través de una membrana Mustang Q (un soporte de intercambio aniónico que se une a, y retira, moléculas aniónicas, obtenida de Pall Corporation, AnnArbor, MI, EE.UU.). Antes de hacer pasar los liposomas, se hicieron pasar sucesivamente 4 ml de NaOH 1 M, 4 ml de NaCl 1 M y 10 ml de tampón citrato 100 mM (pH 6) a través de la membrana Mustang. Se calentaron los liposomas durante 10 min a 37 °C antes de hacerlos pasar a través de la membrana. A continuación, se concentraron los liposomas hasta 2 ml y se sometieron a diálisis frente a 10-15 volúmenes de 1X PBS usando TFF antes de recuperar el producto final. El sistema de TFF y las membranas de filtración de fibras huecas se adquirieron de Spectrum Labs y se usaron según las directrices del fabricante. Se usaron membranas de filtración de fibras huecas de polisulfona (número de pieza P/N: X1AB-100-20P) con un punto de corte de tamaño de poro de 100 kD y un área de superficie de 8 cm2 Para experimentos in vitro e in vivo, se diluyeron las formulaciones hasta la concentración de ARN requerida con 1X PBS.
(B) Como el método (A) excepto porque, tras el balanceo, se añadieron 226,7 pl de la disolución madre a 1,773 ml de etanol para preparar una disolución madre de lípido de trabajo de 2 ml, modificando por tanto la razón de lípido:ARN.
(C) Como el método (B) excepto porque se omitió la filtración en Mustang, de modo que los liposomas pasaron del vial de vidrio de 20 ml a la diálisis de TFF.
(D) Como el método (C) excepto porque la TFF usó membranas de fibras huecas de polietersulfona (PES) (número de pieza P-C1-100E-100-01N) con un punto de corte de tamaño de poro de 100 kD y un área de superficie de 20 cm2.
(E) Como el método (D) excepto porque se usó una membrana Mustang, como en el método (A).
(F) Como el método (A) excepto porque se omitió la filtración en Mustang, de modo que los liposomas pasaron del vial de vidrio de 20 ml a la diálisis de TFF.
(G) Como el método (D) excepto porque se preparó una disolución de trabajo de ARN de 4 ml a partir de una disolución madre de ~1 pg/pl en tampón citrato 100 mM (pH 6). Después, se prepararon cuatro viales de vidrio de 20 ml de la misma manera. Dos de ellos se usaron para la disolución de trabajo de ARN (2 ml en cada vial) y los otros para recoger las mezclas de lípido y de ARN, como en (C). En vez de usar una mezcladora en T, se conectaron las jeringas que contenían ARN y los lípidos a un chip de unión Mitos Droplet (un dispositivo de microfluidos de vidrio obtenido de Syrris, n.° de pieza 3000158) usando tubos de PTFE (diámetro interno de 0,03 pulgadas * diámetro externo de 1/16 pulgadas) usando un conector de borde de 4 vías (Syrris). Se accionaron dos corrientes de ARN y una corriente de lípido mediante bombas de jeringa y se realizó el mezclado de la fase de etanol y la acuosa en la unión en X (100 pm * 105 pm) del chip. Se mantuvo la velocidad de flujo de las tres corrientes a 1,5 ml/min, por tanto, la razón de la velocidad de flujo total acuosa con respecto a etanólica era de 2:1. Se posicionó la salida del tubo para recoger las mezclas en un vial de vidrio de 20 ml (con agitación). Se extrajo la barra de agitación y se dejó equilibrar la disolución de etanol/acuosa hasta temperatura ambiente durante 1 h. Después, se cargó la mezcla en una jeringa de 5 cc, que estaba ajustada a otro fragmento del tubo de PTFE; en otra jeringa de 5 cc con igual longitud de tubo de PTFE, se cargó un volumen igual de tampón citrato 100 mM (pH 6). Se accionaron las dos jeringas a una velocidad de flujo de 3 ml/min usando una bomba de jeringa y se recogió la mezcla final en un vial de vidrio de 20 ml (con agitación). A continuación, se concentraron los liposomas hasta 2 ml y se sometieron a diálisis frente a 10-15 volúmenes de 1X PBS usando TFF, como en (D).
(H) Como el método (A) excepto porque la disolución madre de lípido de trabajo de 2 ml se preparó mezclando 120,9 pl de la disolución madre de lípido con 1,879 ml de etanol. Además, después de mezclar en la mezcladora en T, se cargaron los liposomas del vial de 20 ml en un casete de diálisis Pierce Slide-A-Lyzer (Thermo Scientific, fuerza extra, capacidad de 0,5-3 ml) y se sometieron a diálisis frente a 400-500 ml de 1X PBS durante la noche a 4°C en un recipiente de plástico sometido a esterilización en autoclave antes de recuperar el producto final.
Inmunogenicidad de VSR
Se administró el replicón autorreplicante vA317 que codificaba para proteína F de VSR a ratones BALB/c, 4 u 8 animales por grupo, mediante vacunaciones intramusculares bilaterales (50 pl por pata) en los días 0 y 21 con el replicón (1 pg) solo o formulado como liposomas con DlinDMA (“RV01”) o DOTAP (“RV13”) o el lípido mostrado en las figuras 16A a 16M (“RV05”). Los liposomas RV01 tenían el 40% de DlinDMA, el 10% de Ds PC, el 48% de colesterol y el 2% de PEG-d Mg , pero con diferentes cantidades de ARN. Los liposomas RV05 tenían o bien el 40% de RV05, el 10% de DSPC, el 48% de colesterol y el 2% de PEG-DMG o bien el 60% de RV05, el 38% de colesterol y el 2% de PEG-DMG. Los liposomas RV13 tenían el 40% de DOTAP, el 10% de DOPE, el 48% de colesterol y el 2% de PEG-DMG. Para comparación, se administró ADN de plásmido desnudo (20 pg) que expresaba el mismo antígeno F de VSR o bien usando electroporación o bien con liposomas RV01(10) (0,1 pg de ADN). Se usaron cuatro ratones como grupo de control no sometido a tratamiento.
Se prepararon liposomas mediante el método (A) o el método (B). Para algunos liposomas preparados mediante el método (A), se usó una cantidad doble o la mitad de ARN. El diámetro de partícula promedio Z y el índice de polidispersidad fueron:
Figure imgf000019_0004
____________
Se recogió suero para análisis de anticuerpos en los días 14, 36 y 49. Se extirparon los bazos a partir de los ratones en el día 49 para el análisis de células T.
Los títulos de IgG en suero específica de F (GMT) fueron los siguientes:
Figure imgf000019_0003
La proporción de células T que son positivas para citocina y específicas para péptido F51-66 de VSR son las siguientes, mostrando únicamente cifras que estaban de estadísticamente significativa por encima de cero:
Figure imgf000019_0002
Por tanto, las formulaciones de liposoma potenciaron significativamente la inmunogenicidad con respecto a los controles de ARN desnudo, tal como se determina mediante el aumento de títulos de IgG específica de F y las frecuencias de células T. El ADN de plásmido formulado con liposomas, o administrado de manera desnuda usando electroporación, fue significativamente menos inmunogénico que ARN autorreplicante formulado en liposomas.
Se prepararon liposomas de RV01 adicionales mediante el método (H), usando PEG conjugado con DMG o bien corto (2 kDa) o bien largo (5 kDa), y o bien encapsulando 150 pg de ARN (replicón vA375 que codifica la glicoproteína de fusión de superficie de VSR) o bien encapsulando solo tampón. Por tanto, estos liposomas tenían el 40% de DlinDMA, el 10% de DSPC, el 48% de Chol y el 2% de PEG-DMG. Los tamaños y la encapsulación fueron los siguientes:
Figure imgf000019_0001
Se administraron los liposomas a ratones BALB/c (10 por grupo) mediante inyección intramuscular bilateral (50 pl por pata) en los días 0 y 21. Las dosis fueron de 0,01, 0,03, 0,1, 0,3 o 1 pg. Los títulos de IgG en suero específica de F y PRNT60 (GMT) fueron los siguientes, 2 semanas tras la primera o segunda inyección:
Figure imgf000020_0002
Liposomas requisito para la encapsulación
Tal como se mencionó anteriormente, con referencia a la figura 10, la encapsulación es esencial para lograr una expresión potente. Experimentos adicionales usaron tres ARN diferentes: (i) el replicón 'vA317' que expresa F de VSR, es decir, la glicoproteína de fusión de superficie de VSR; (ii) el replicón 'vA17' que expresa GFP; y (iii) 'vA336' que es de replicación defectuosa y codifica GFP. Se administraron los ARN o bien desnudos o bien con liposomas producidos mediante el método (D). Se produjeron liposomas vacíos mediante el método (D) pero sin ningún ARN. Las formulaciones de liposomas tenían estas características:
Figure imgf000020_0001
A ratones BALB/c, 5 animales por grupo, se les administraron vacunaciones intramusculares bilaterales (50 pl por pata) en los días 0 y 21 con:
Grupo 1 ARN de F de VSR autorreplicante (vA317, 0,1 pg)
Grupo 2 ARN de F de VSR autorreplicante (vA317, 0,1 pg) encapsulado en liposomas
Grupo 3 ARN de F de VSR autorreplicante (vA317, 0,1 pg) añadido a liposomas vacíos
Grupo 4 Proteína de subunidad F (5 pg)
Se recogió suero para el análisis de anticuerpos en los días 14, 35 y 51. Se midieron los títulos (GMT) de IgG en suero específica de F; si un animal individual tenía un título de <25 (límite de detección), se le asignó un título de 5. Además, se recogieron los bazos de los ratones en el día 51 para el análisis de células T, para determinar células que eran positivas para citocinas y específicas para el péptido F51-66 de VSR (CD4+) o para los péptidos F de VSR F85-93 y F249-258 (CD8+).
Los títulos de IgG fueron los siguientes en los 10 grupos y en ratones de control no inmunizados:
Figure imgf000020_0003
Los títulos de neutralización en suero de VSR en el día 51 fueron los siguientes:
Figure imgf000021_0005
Los animales que muestran células T esplénicas CD4+ específicas de F de VSR en el día 51 fueron los siguientes, en donde se proporciona solo una cifra (% de células positivas) si la respuesta estimulada estaba de manera estadísticamente significativa por encima de cero:
Figure imgf000021_0003
Los animales que muestran células T esplénicas CD8+ específicas de F de VSR en el día 51 fueron los siguientes, donde se proporciona solo una cifra si la respuesta estimulada estaba de manera estadísticamente significativa por encima de cero:
Figure imgf000021_0004
Por tanto, la encapsulación de ARN dentro de los liposomas es necesaria para lograr una alta inmunogenicidad, ya que una mezcla simple de ARN y los liposomas (grupo 3) no era inmunogénica (de hecho, menos inmunogénica que el ARN desnudo).
Lípidos catiónicos diferentes con replicón de VSR vA317
Experimentos adicionales compararon cuatro lípidos catiónicos diferentes (DlinDMA, RV02, RV04 y RV07). Todos los liposomas contenían el 2% de PEG-DMG 2000 pero las composiciones de lípidos restantes variaban. Las composiciones y las características físicas fueron las siguientes:
Figure imgf000021_0001
A ratones BALB/c, 8 por grupo, se les administraron vacunaciones intramusculares bilaterales (50 |jl por pata) en los días 0 y 21 con replicón desnudo (1 jg ) o 0,1 jg de ARN encapsulado. Los títulos (GMT) de IgG en suero específica de F 2 semanas después de estas dos inyecciones fueron los siguientes:
Figure imgf000021_0002
Para RV07, la ausencia de DSPC provocó una gran disminución en la inmunogenicidad.
Se sometieron a prueba lípidos adicionales (RV03, RV08, RV09, RV14 [42]) del mismo modo:
Figure imgf000022_0002
Figure imgf000022_0004
El liposoma M (con DC-colesterol) tuvo un mal rendimiento, incluso por debajo del control de ARN desnudo. En cambio, los lípidos catiónicos restantes proporcionaron resultados útiles. El liposoma N se preparó mediante un método de mezclado diferente (método (G) con un chip de microfluido) a partir del liposoma G (método (D)) y este liposoma más pequeño proporcionó mejores resultados con aproximadamente la misma encapsulación.
Se sometieron a prueba lípidos adicionales (RV01, RV10, RV11, RV15) del mismo modo:
Figure imgf000022_0001
Figure imgf000022_0003
Excepto por el liposoma Q, cada uno de estos liposomas tuvo un mejor rendimiento que el control. El lípido RV10 en el liposoma Q tiene un pKa de 7,86 que parece demasiado alto como para ser útil in vivo. Sin embargo, incluso dentro del intervalo de pKa útil de 5,0 a 7,6, aunque los resultaros fueron buenos, ninguno de los lípidos con una cola de alquilo y una cola que contiene esteroides proporcionó resultados tan buenos como RV01.
Se prepararon liposomas adicionales con RV05. Todos los liposomas tenían el 40% de RV05 y el 2% de lípido PEGilado, pero los componentes restantes variaban (aunque siempre se incluía colesterol). Las características físicas fueron:
Figure imgf000023_0001
aGC = a-galactosilceramida
Se sometieron a prueba ratones BALB/c como anteriormente:
Figure imgf000023_0003
Para un lípido catiónico con colas lipídicas asimétricas (alquilo colesterol), el cambio del lípido neutro de DSPC (cola lipídica C18 saturada) a PC 18:2 o 18:3 (con 2 y 3 dobles enlaces insaturados por cola) aumentó los títulos de IgG totales. Se observaron resultados comparables al reemplazar DSPC por DPyPE.
Lípidos catiónicos diferentes adicionales con el replicón de VSR vA317
También se usaron los lípidos catiónicos dados a conocer en la referencia 43 para preparar liposomas para el replicón vA317. Estos lípidos catiónicos tienen un pKa de entre 5,8 y 6,1. Para comparación, también se sometieron a prueba DODMA, DlinDMA y DOTMA. El lípido catiónico estaba presente siempre al 40%. Todos los liposomas incluían colesterol y el 2% de DMG PEGilada (PEG2000, excepto los liposomas E que tenían PEG5000) y se produjeron mediante el método (H). Las características fueron las siguientes:
Figure imgf000023_0002
Estos liposomas se usaron para vacunar a ratones BALB/c como anteriormente. Los títulos de IgG en suero específica de F (GMT) fueron los siguientes:
Figure imgf000024_0002
Por tanto, los liposomas RV05 eran más inmunogénicos que el ARN desnudo, pero menos inmunogénicos que los liposomas RV01.
Se recogieron los bazos en el día 49 para el análisis de células T. Todos los liposomas proporcionaron frecuencias de células T positivas para citocinas específicas de F (CD4+ y CD8+) que estaban de manera estadísticamente significativa por encima de cero.
Diferentes lípidos y longitudes de PEG
Se administró el replicón vA317 en liposomas que tenían una variedad de lípidos diferentes con longitudes de PEG diferentes. Todos los liposomas tenían el 40% de DlinDMA, el 10% de DSPC y el 48% de colesterol, pero el 2% restante variaba, con diferentes lípidos pegilados (por ejemplo, las figuras 18A a 18E) y diferentes longitudes de PEG.
Las características físicas de los liposomas, producidos mediante el método (H), fueron:
Figure imgf000024_0001
A ratones BALB/c, 8 por grupo, se les administraron vacunaciones intramusculares bilaterales (50 pl por pata) en los días 0 y 21 con el replicón, o bien desnudo (1 pg) o bien encapsulado (0,1 pg). Se recogió suero para análisis de anticuerpos en los días 14 y 35.
Los títulos de IgG en suero específica de F (GMT) fueron los siguientes, 2 semanas tras las dos inyecciones (2wp1):
Figure imgf000024_0003
Los resultados muestran una tendencia, que indica que grupos de cabeza de PEG de peso molecular superior son más inmunogénicos. A medida que aumenta la longitud de PEG conjugado con DMG desde 1000 Da hasta 3000 Da, los títulos de IgG específica de F 2wp2 aumentan desde 7412 hasta 15659 hasta 22378.
Cambiar la región de grupo de unión de éster a éter no tuvo ningún impacto sustancial sobre los títulos. Además, al mismo peso molecular del grupo de cabeza (2000) hubo una tendencia de que aumentar la longitud de las colas lipídicas reduce los títulos (H con dialquilo C14 frente a I con dialquilo C18). Sustituir una cola de PEG-dialquil-lípido por colesterol tuvo poco impacto sobre la inmunogenicidad (A con DMG frente a G con colesterol).
Se realizaron experimentos similares con diferentes lípidos en los que se dividen los 2 kDa de PEG en 2 grupos de 1 kDa (figura 17). Se uso de nuevo el replicón vA317, con ratones BALB/c, 8 por grupo, a los que se les administraron vacunaciones intramusculares bilaterales (50 pl por pata) en los días 0 y 21 con 1 pg de ARN desnudo o 0,1 pg de ARN encapsulado en liposoma. Todos los liposomas tenían el 40% de lípido catiónico (DlinDMA), el 10% de DSPC y el 48% de colesterol, pero el 2% restante variaba, con diferentes lípidos pegilados (pero todos con PEG de 2 kDa). Se prepararon mediante el método (H).
Las características físicas de los liposomas fueron:
Figure imgf000025_0002
Se prepararon liposomas adicionales con RV05. Todos los liposomas tenían el 40% de lípido catiónico (RV05) y el 2% de lípido pegilado (PEG de 2 kDa), pero los componentes restantes variaban (aunque siempre se incluía colesterol). Los liposomas se prepararon mediante el método (H) pero con pH 5. Las características físicas fueron:
Figure imgf000025_0001
aGC = a-galactosilceramida
A ratones BALB/c, 8 por grupo, se les administraron vacunaciones intramusculares bilaterales (50 pl por pata) en los días 0 y 21 con el replicón, o bien desnudo (1 pg) o bien encapsulado (0,1 pg). Se recogió suero para análisis de anticuerpos en los días 14, y 35. Los títulos de IgG en suero específica de F (GMT) fueron los siguientes, 2 semanas tras las dos inyecciones (2wp1):
Figure imgf000025_0003
Por tanto, dividir los grupos de cabeza de PEG redujo los títulos in vivo. Incluir un doble enlace (1 grado de instauración por cola de alquilo) en las colas de PEG-lípido aumentó los títulos de IgG, 6 veces en el día 14 y 7 veces en el día 35. Para un lípido catiónico con una cola de lípido asimétrica (alquilo colesterol), cambiar el lípido neutro de DSPC (cola de lípido C18 saturado) a PC 18:2 o 18:3 (con 2 y 3 dobles enlaces insaturados por cola) aumentó los títulos de IgG totales. Se observaron resultados comparables con la sustitución de DSPC por DPyPE.
Inmunogenicidad de CMV
Se usaron liposomas de RV01 con DLinDMA como lípido catiónico para administrar replicones de ARN que codificaban para glicoproteínas de citomegalovirus (CMV). El replicón “vA160” codifica glicoproteínas de longitud completa H y L (gH/gL), mientras que el replicón “vA322” codifica una forma soluble (gHsol/gL). Las dos proteínas están bajo el control de promotores subgenómicos independientes en un único replicón; la administración conjunta dos vectores independientes, uno que codificaba para gH y uno que codificaba para gL, no dio buenos resultados.
A ratones BALB/c, 10 por grupo, se les administraron vacunaciones intramusculares bilaterales (50 pl por pata) en los días 0, 21 y 42 con VRP que expresaban gH/gL (1*106 UI), VRP que expresaban gHsol/gL (1*106 Ul) y PbS como controles. Dos grupos de prueba recibieron 1 pg del replicón vA160 o vA322 formulado en liposomas (el 40% de DlinDMA, el 10% de DSPC, el 48% de Chol, el 2% de PEG-DMG; preparado usando el método (D) pero con un tamaño de lote de 150 pg de ARN).
Los liposomas vA160 tenían un diámetro Zprom de 168,8 nm, un pdl de 0,144 y el 87,4% de encapsulación. Los liposomas vA322 tenían un diámetro Zprom de 162 nm, un pdl de 0,131 y el 90% de encapsulación.
Los replicones pudieron expresar dos proteínas a partir de un único vector.
Se recogieron sueros para análisis inmunológico en el día 63 (3wp3). Los títulos de neutralización de CMV (la recíproca de la dilución en suero que produce una reducción del 50% del número de focos de virus positivos por pocillo, en relación con los controles) fueron los siguientes:
Figure imgf000026_0001
Por tanto, ARN que expresaba una forma o bien de longitud completa o bien soluble del complejo de gH/gL de CMV provocó altos títulos de anticuerpos neutralizantes, tal como se somete a ensayo en células epiteliales. Los títulos promedio provocados por los ARN encapsulados en liposoma fueron al menos tan altos como para los VRP correspondientes.
Experimentos repetidos confirmaron que el replicón podía expresar dos proteínas a partir de un único vector. El replicón de ARN dio un título de 3wp3 de 11457, en comparación con 5516 con VRP.
Tabla 1: fosfolípidos útiles
DDPC 1 2-Didecanoil-sn-glicero-3-fosfatidilcolina
DEPA 12-Dierucoil-sn-glicero-3-fosfato
DEPC 1 2-Erucoil-sn-glicero-3-fosfatidilcolina
DEPE 12-Dierucoil-sn-glicero-3-fosfatidiletanolamina
DEPG 1 2-Dierucoil-sn-glicero-3[fosfatidil-rac-(1-glicerol...) DLOPC 12-Linoleoil-sn-glicero-3-fosfatidilcolina
DLPA 12-Dilauroil-sn-glicero-3-fosfato
DLPC 12-Dilauroil-sn-glicero-3-fosfatidilcolina
DLPE 12-Dilauroil-sn-glicero-3-fosfatidiletanolamina
DLPG 12-Dilauroil-sn-glicero-3[fosfatidil-rac-(1-glicerol...) DLPS 12-Dilauroil-sn-glicero-3-fosfatidilserina
DMG 12-Dimiristoil-sn-glicero-3-fosfoetanolamina
DMPA 12-Dimiristoil-sn-glicero-3-fosfato
DMPC 12-Dimiristoil-sn-glicero-3-fosfatidilcolina
DMPE 12-Dimiristoil-sn-glicero-3-fosfatidiletanolamina
DMPG 12-Miristoil-sn-glicero-3[fosfatidil-rac-(1 -glicerol...) DMPS 12-Dimiristoil-sn-glicero-3-fosfatidilserina
DOPA 1 2-Dioleoil-sn-glicero-3-fosfato
DOPC 12-Dioleoil-sn-glicero-3-fosfatidilcolina
DOPE 1 2-Dioleoil-sn-glicero-3-fosfatidiletanolamina
DOPG 12-Dioleoil-sn-glicero-3[fosfatidil-rac-( 1 -glicerol...) DOPS 1 2-Dioleoil-sn-glicero-3-fosfatidilserina
DPPA 12-Dipalmitoil-sn-glicero-3-fosfato
DPPC 1 2-Dipalmitoil-sn-glicero-3-fosfatidilcolina
DPPE 12-Dipalmitoil-sn-glicero-3-fosfatidiletanolamina
DPPG 1 2-Dipalmitoil-sn-glicero-3[fosfatidil-rac-(1 -glicerol...) DPPS 1.2- Dipalmitoil-sn-glicero-3-fosfatidilserina DPyPE 1.2- Difitanoil-sn-glicero-3-fosfoetanolamina
DSPA 1.2- Diestearoil-sn-glice ro-3-fosfato
DSPC 1.2- Diestearoil-sn-glicero-3-fosfatidilcolina
DSPE 1.2- Diestearoil-sn-glicero-3-fosfatidiletanolamina DSPG 1.2- Diestearoil-sn-glicero-3[fosfatidil-rac-(1-glicerol...) DSPS 1.2- Diestearoil-sn-glicero-3-fosfatidilserina
EPC PC de huevo
HEPC PC de huevo hidrogenada
HSPC PC de soja hidrogenada de alta pureza
HSPC PC de soja hidrogenada
LYSOPC MIRÍSTICA 1 -Miristoil-sn-glicero-3-fosfatidilcolina
LYSOPC PALMÍTICA 1 -Palmitoil-sn-glicero-3-fosfatidilcolina
LYSOPC ESTEÁRICA 1-Estearoil-sn-glicero-3-fosfatidilcolina
MPPC de esfingomielina de la leche 1-Miristoil-2-palmitoil-sn-glicero-3-fosfatidilcolina
MSPC 1-Miristoil-2-estearoil-sn-glicero-3-fosfatidilcolina
PMPC 1-Palmitoil-2-miristoil-sn-glicero-3-fosfatidilcolina
POPC 1-Palmitoil-2-oleoil-sn-glicero-3-fosfatidilcolina
POPE 1-Palmitoil-2-oleoil-sn-glicero-3-fosfatidiletanolamina POPG 1.2- Dioleoil-sn-glicero-3[fosfatidil-rac-(1-glicerol)...] PSPC 1-Palmitoil-2-estearoil-sn-glicero-3-fosfatidilcolina SMPC 1-Estearoil-2-miristoil-sn-glicero-3-fosfatidilcolina
SOPC 1-Estearoil-2-oleoil-sn-glicero-3-fosfatidilcolina
SPPC 1-Estearoil-2-palmitoil-sn-glicero-3-fosfatidilcolina Bibliografía
[1] Johanning et al. (1995) Nucleic Acids Res 23:1495-1501.
[2] Heyes et al. (2005) J Controlled Release 107:276-87.
[3] Documento WO2005/121348.
[4] Liposomes: Methods and Protocols, volumen 1: Pharmaceutical Nanocarriers: Methods and Protocols. (ed. Weissig). Humana Press, 2009. ISBN 160327359X.
[5] Liposome Technology, volúmenes I, II y III. (ed. Gregoriadis). Informa Healthcare, 2006.
[6] Functional Polymer Colloids and Microparticles volumen 4 (Microspheres, microcapsules & liposomes). (eds. Arshady & Guyot). Citus Books, 2002.
[7] Jeffs et al. (2005) Pharmaceutical Research 22 (3):362-372.
[8] Documento WO2005/113782.
[9] Documento WO2011/005799.
[10] El Ouahabi et al. (1996) FEBS Letts 380:108-12.
[29] Gennaro (2000) Remington: The Science and Practice of Pharmacy. 20a edición, ISBN: 0683306472.
[30] Methods In Enzymology (S. Colowick and N. Kaplan, eds., Academic Press, Inc.)
[31] Handbook of Experimental Immunology, volúmenes I-IV (D.M. Weir and C.C. Blackwell, eds, 1986, Blackwell Scientific Publications)
[32] Sambrook et al. (2001) Molecular Cloning: A Laboratory Manual, 3a edición (Cold Spring Harbor Laboratory Press).
[33] Handbook of Surface and Colloidal Chemistry (Birdi, K.S. ed., CRC Press, 1997)
[34] Ausubel et al. (eds) (2002) Short protocols in molecular biology, 5a edición (Current Protocols).
[35] Molecular Biology Techniques: An Intensive Laboratory Course, (Ream et al., eds., 1998, Academic Press) [36] PCR (Introduction to Biotechniques Series), 2a ed. (Newton & Graham eds., 1997, Springer Verlag)
[37] Yoneyama & Fujita (2007) Cytokine & Growth Factor Reviews 18:545-51.
[38] Maurer et al. (2001) Biophysical Journal, 80: 2310-2326.
[39] Perri et al. (2003) J Virol 77:10394-10403.
[40] Boxus et al. (2007) J Virol 81:6879-89.
[41] Taylor et al. (2005) Vaccine 23:1242-50.
[42] Documento WO2011/076807.
[43] Documento WO2011/057020.

Claims (12)

  1. REIVINDICACIONES
    i. Liposoma dentro del cual está encapsulado ARN que codifica para un inmunógeno de interés, en el que el liposoma comprende un lípido con un grupo de cabeza catiónico, un lípido con un grupo de cabeza zwitteriónico y tiene un diámetro en el intervalo de 60-180 nm, y en el que el inmunógeno es una hemaglutinina de Orthomyxovirus.
  2. 2. Liposoma según la reivindicación 1, en el que el inmunógeno es una hemaglutinina de virus influenza A.
  3. 3. Liposoma según la reivindicación 1 o 2, en el que el liposoma tiene un diámetro en el intervalo de 80-160 nm.
  4. 4. Liposoma según una cualquiera de las reivindicaciones 1 a 3, en el que el ARN es un ARN autorreplicante.
  5. 5. Liposoma según la reivindicación 4, en el que la molécula de ARN autorreplicante codifica (i) una ARN polimerasa dependiente de ARN que puede transcribir ARN a partir de la molécula de ARN autorreplicante y (ii) un inmunógeno.
  6. 6. Liposoma según la reivindicación 5, en el que la molécula de ARN tiene dos marcos de lectura abiertos, el primero de los cuales codifica una replicasa de alfavirus y el segundo de los cuales codifica el inmunógeno.
  7. 7. Liposoma según una cualquiera de las reivindicaciones 1 a 6, en el que la molécula de ARN tiene 9000-12000 nucleótidos de longitud.
  8. 8. Composición farmacéutica que comprende un liposoma según una cualquiera de las reivindicaciones 1 a 7.
  9. 9. Composición farmacéutica que comprende una población de liposomas, dentro de los cuales está encapsulado ARN que codifica para un inmunógeno de interés, en la que los liposomas comprenden un lípido con un grupo de cabeza catiónico, un lípido con un grupo de cabeza zwitteriónico, en el que el inmunógeno es una hemaglutinina de Orthomyxovirus, y en la que el diámetro promedio Z de los liposomas en la población es de entre 60 nm y 180 nm incluidos.
  10. 10. Composición farmacéutica según la reivindicación 9, en la que los diámetros dentro de la población de liposomas tienen un índice de polidispersidad <0,2.
  11. 11. Liposoma según una cualquiera de las reivindicaciones 1 a 7, para su uso en un método para producir una respuesta inmunitaria protectora en un vertebrado, comprendiendo dicho método la etapa de administrar al vertebrado una cantidad eficaz de dicho liposoma.
  12. 12. Composición farmacéutica de una cualquiera de las reivindicaciones 8 a 10, para su uso en un método para producir una respuesta inmunitaria protectora en un vertebrado, comprendiendo dicho método la etapa de administrar al vertebrado una cantidad eficaz de dicha composición farmacéutica.
ES22166818T 2010-08-31 2011-08-31 Liposomas pequeños para la administración de ARN que codifica para inmunógeno Active ES2939732T3 (es)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US37883110P 2010-08-31 2010-08-31

Publications (1)

Publication Number Publication Date
ES2939732T3 true ES2939732T3 (es) 2023-04-26

Family

ID=44645813

Family Applications (4)

Application Number Title Priority Date Filing Date
ES11755497T Active ES2923634T3 (es) 2010-08-31 2011-08-31 Liposomas pequeños para la administración de ARN que codifica para inmunógeno
ES21208092T Active ES2935542T3 (es) 2010-08-31 2011-08-31 Liposomas pequeños para la administración de ARN que codifica para inmunógeno
ES22166818T Active ES2939732T3 (es) 2010-08-31 2011-08-31 Liposomas pequeños para la administración de ARN que codifica para inmunógeno
ES22175210T Active ES2941244T3 (es) 2010-08-31 2011-08-31 Liposomas pequeños para la administración de ARN que codifica para inmunógeno

Family Applications Before (2)

Application Number Title Priority Date Filing Date
ES11755497T Active ES2923634T3 (es) 2010-08-31 2011-08-31 Liposomas pequeños para la administración de ARN que codifica para inmunógeno
ES21208092T Active ES2935542T3 (es) 2010-08-31 2011-08-31 Liposomas pequeños para la administración de ARN que codifica para inmunógeno

Family Applications After (1)

Application Number Title Priority Date Filing Date
ES22175210T Active ES2941244T3 (es) 2010-08-31 2011-08-31 Liposomas pequeños para la administración de ARN que codifica para inmunógeno

Country Status (20)

Country Link
US (1) US9254265B2 (es)
EP (6) EP4008357B1 (es)
JP (2) JP2013538569A (es)
CN (1) CN103179989A (es)
AU (8) AU2011296062A1 (es)
BR (1) BR112013004879A2 (es)
CA (1) CA2809678A1 (es)
DK (4) DK4008357T3 (es)
ES (4) ES2923634T3 (es)
FI (3) FI4008357T3 (es)
HR (4) HRP20230501T1 (es)
HU (4) HUE059214T2 (es)
LT (4) LT4043040T (es)
MX (1) MX341989B (es)
PL (4) PL4008357T3 (es)
PT (4) PT4066819T (es)
RS (4) RS63404B1 (es)
RU (1) RU2671482C2 (es)
SI (4) SI4043040T1 (es)
WO (1) WO2012030901A1 (es)

Families Citing this family (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI3243526T1 (sl) 2010-07-06 2020-02-28 Glaxosmithkline Biologicals S.A. Dostava RNA za sprožitev večih imunskih poti
BR112013000244A2 (pt) 2010-07-06 2016-05-17 Novartis Ag lipossomas com lipídeos apresentando pka vantajoso para administração de rna
EP2591114B1 (en) 2010-07-06 2016-06-08 GlaxoSmithKline Biologicals SA Immunisation of large mammals with low doses of rna
US9770463B2 (en) 2010-07-06 2017-09-26 Glaxosmithkline Biologicals Sa Delivery of RNA to different cell types
SI4005592T1 (sl) 2010-07-06 2023-03-31 Glaxosmithkline Biologicals S.A. Virionom podobni dostavni delci za samopodvojene molekule RNA
CA2807552A1 (en) 2010-08-06 2012-02-09 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
ES2938866T3 (es) 2010-08-31 2023-04-17 Glaxosmithkline Biologicals Sa Liposomas pegilados para la administración de ARN que codifica para inmunógeno
AU2011296062A1 (en) 2010-08-31 2013-04-04 Novartis Ag Small liposomes for delivery of immunogen-encoding RNA
CN104531812A (zh) 2010-10-01 2015-04-22 现代治疗公司 设计核酸及其使用方法
ES2716243T3 (es) 2010-10-11 2019-06-11 Glaxosmithkline Biologicals Sa Plataformas de suministro de antígenos
WO2012116715A1 (en) * 2011-03-02 2012-09-07 Curevac Gmbh Vaccination in newborns and infants
WO2012116714A1 (en) 2011-03-02 2012-09-07 Curevac Gmbh Vaccination in elderly patients
WO2012135805A2 (en) 2011-03-31 2012-10-04 modeRNA Therapeutics Delivery and formulation of engineered nucleic acids
KR102128248B1 (ko) 2011-06-08 2020-07-01 샤이어 휴먼 지네틱 테라피즈 인크. Mrna 전달을 위한 지질 나노입자 조성물 및 방법
CA2841047A1 (en) * 2011-07-06 2013-01-10 Novartis Ag Immunogenic compositions and uses thereof
EP3854413A1 (en) * 2011-07-06 2021-07-28 GlaxoSmithKline Biologicals SA Immunogenic combination compositions and uses thereof
SG10201605537XA (en) * 2011-07-06 2016-09-29 Novartis Ag Liposomes having useful n:p ratio for delivery of rna molecules
DK2750707T3 (en) * 2011-08-31 2019-02-11 Glaxosmithkline Biologicals Sa PEGYLED LIPOSOMES FOR DELIVERING IMMUNOGEN-CODING RNA
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
RU2707251C2 (ru) 2011-10-03 2019-11-25 Модерна Терапьютикс, Инк. Модифицированные нуклеозиды, нуклеотиды и нуклеиновые кислоты и их применение
KR20140102759A (ko) 2011-12-16 2014-08-22 모더나 세라퓨틱스, 인코포레이티드 변형된 뉴클레오사이드, 뉴클레오타이드 및 핵산 조성물
US10501513B2 (en) * 2012-04-02 2019-12-10 Modernatx, Inc. Modified polynucleotides for the production of oncology-related proteins and peptides
US9878056B2 (en) 2012-04-02 2018-01-30 Modernatx, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
EP2833892A4 (en) 2012-04-02 2016-07-20 Moderna Therapeutics Inc MODIFIED POLYNUCLEOTIDES FOR THE PRODUCTION OF PROTEINS AND PEPTIDES ASSOCIATED WITH ONCOLOGY
WO2013151666A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics Modified polynucleotides for the production of biologics and proteins associated with human disease
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9512456B2 (en) 2012-08-14 2016-12-06 Modernatx, Inc. Enzymes and polymerases for the synthesis of RNA
JP6144355B2 (ja) 2012-11-26 2017-06-07 モデルナティエックス インコーポレイテッドModernaTX,Inc. 化学修飾mRNA
WO2014108515A1 (en) 2013-01-10 2014-07-17 Novartis Ag Influenza virus immunogenic compositions and uses thereof
WO2014159813A1 (en) 2013-03-13 2014-10-02 Moderna Therapeutics, Inc. Long-lived polynucleotide molecules
WO2014152211A1 (en) 2013-03-14 2014-09-25 Moderna Therapeutics, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
HUE042072T2 (hu) 2013-03-15 2019-06-28 Glaxosmithkline Biologicals Sa Eljárások RNS tisztítására
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
US20160194368A1 (en) 2013-09-03 2016-07-07 Moderna Therapeutics, Inc. Circular polynucleotides
AU2014315287A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Chimeric polynucleotides
WO2015048744A2 (en) 2013-09-30 2015-04-02 Moderna Therapeutics, Inc. Polynucleotides encoding immune modulating polypeptides
US10323076B2 (en) 2013-10-03 2019-06-18 Modernatx, Inc. Polynucleotides encoding low density lipoprotein receptor
WO2015144732A2 (en) 2014-03-25 2015-10-01 Yale University Uses of parasite macrophage migration inhibitory factors
BR112016024644A2 (pt) * 2014-04-23 2017-10-10 Modernatx Inc vacinas de ácido nucleico
EP2974739A1 (en) 2014-07-15 2016-01-20 Novartis AG RSVF trimerization domains
ES2834556T3 (es) 2014-06-25 2021-06-17 Acuitas Therapeutics Inc Lípidos y formulaciones de nanopartículas lipídicas novedosos para la entrega de ácidos nucleicos
CA2955250A1 (en) 2014-07-16 2016-01-21 Moderna Therapeutics, Inc. Chimeric polynucleotides
US20170210788A1 (en) 2014-07-23 2017-07-27 Modernatx, Inc. Modified polynucleotides for the production of intrabodies
EP3061826A1 (en) 2015-02-27 2016-08-31 Novartis AG Flavivirus replicons
EP4353257A2 (en) 2015-04-13 2024-04-17 CureVac Manufacturing GmbH Method for producing rna compositions
WO2016197133A1 (en) 2015-06-04 2016-12-08 Protiva Biotherapeutics, Inc. Delivering crispr therapeutics with lipid nanoparticles
JP7072386B2 (ja) 2015-06-29 2022-05-20 アクイタス セラピューティクス インコーポレイテッド 核酸の送達のための脂質および脂質ナノ粒子製剤
ES2937963T3 (es) 2015-07-21 2023-04-03 Modernatx Inc Vacunas de enfermedad infecciosa
US11364292B2 (en) 2015-07-21 2022-06-21 Modernatx, Inc. CHIKV RNA vaccines
HRP20220156T1 (hr) 2015-09-17 2022-04-15 Modernatx, Inc. Spojevi i pripravci za unutarstaničnu isporuku terapeutskih sredstava
AU2016336344A1 (en) 2015-10-05 2018-04-19 Modernatx, Inc. Methods for therapeutic administration of messenger ribonucleic acid drugs
MA47016A (fr) 2015-10-22 2018-08-29 Modernatx Inc Vaccins contre les virus respiratoires
MA45209A (fr) 2015-10-22 2019-04-17 Modernatx Inc Vaccins contre les maladies sexuellement transmissibles
JP6921833B2 (ja) 2015-10-22 2021-08-18 モデルナティーエックス, インコーポレイテッド ヒトサイトメガロウイルスワクチン
TW201729838A (zh) 2015-10-22 2017-09-01 現代公司 用於水痘帶狀疱疹病毒 (vzv)之核酸疫苗
EP3364950A4 (en) 2015-10-22 2019-10-23 ModernaTX, Inc. VACCINES AGAINST TROPICAL DISEASES
CN108368028B (zh) 2015-10-28 2021-09-03 爱康泰生治疗公司 用于递送核酸的新型脂质和脂质纳米颗粒制剂
JP7080172B2 (ja) 2015-12-10 2022-06-03 モデルナティエックス インコーポレイテッド 治療薬の送達のための組成物及び方法
DK3394030T3 (da) 2015-12-22 2022-03-28 Modernatx Inc Forbindelser og sammensætninger til intracellulær afgivelse af midler
ES2919552T3 (es) 2015-12-23 2022-07-27 Modernatx Inc Procedimientos de utilización de polinucleotidos codificadores de ligando ox40
EP3400023A1 (en) 2016-01-10 2018-11-14 ModernaTX, Inc. Therapeutic mrnas encoding anti ctla-4 antibodies
WO2017162265A1 (en) 2016-03-21 2017-09-28 Biontech Rna Pharmaceuticals Gmbh Trans-replicating rna
WO2017162266A1 (en) 2016-03-21 2017-09-28 Biontech Rna Pharmaceuticals Gmbh Rna replicon for versatile and efficient gene expression
IL263079B2 (en) 2016-05-18 2024-05-01 Modernatx Inc Relaxin-encoding polynucleotides
US10967057B2 (en) 2016-06-02 2021-04-06 Glaxosmithkline Biologicals S.A. Zika viral antigen constructs
WO2018029586A1 (en) 2016-08-07 2018-02-15 Novartis Ag Mrna-mediated immunization methods
WO2018033254A2 (en) 2016-08-19 2018-02-22 Curevac Ag Rna for cancer therapy
EP3518966A1 (en) 2016-09-29 2019-08-07 GlaxoSmithKline Biologicals S.A. Compositions and methods of treatment of persistent hpv infection
GB201616904D0 (en) 2016-10-05 2016-11-16 Glaxosmithkline Biologicals Sa Vaccine
CA3041307A1 (en) 2016-10-21 2018-04-26 Giuseppe Ciaramella Human cytomegalovirus vaccine
US11583504B2 (en) 2016-11-08 2023-02-21 Modernatx, Inc. Stabilized formulations of lipid nanoparticles
US10925958B2 (en) 2016-11-11 2021-02-23 Modernatx, Inc. Influenza vaccine
EP4043031A3 (en) 2016-11-17 2022-11-23 GlaxoSmithKline Biologicals SA Zika viral antigen constructs
EP3551193A4 (en) 2016-12-08 2020-08-19 Modernatx, Inc. NUCLEIC ACID VACCINES AGAINST RESPIRATORY VIRUSES
JP2020501545A (ja) 2016-12-08 2020-01-23 キュアバック アーゲー 肝疾患の処置または予防のためのrna
US11542490B2 (en) 2016-12-08 2023-01-03 CureVac SE RNAs for wound healing
WO2018115525A1 (en) 2016-12-23 2018-06-28 Curevac Ag Lassa virus vaccine
WO2018115527A2 (en) 2016-12-23 2018-06-28 Curevac Ag Mers coronavirus vaccine
CA3051252A1 (en) * 2017-02-01 2018-08-09 Modernatx, Inc. Immunomodulatory therapeutic mrna compositions encoding activating oncogene mutation peptides
EP3582790A4 (en) 2017-02-16 2020-11-25 ModernaTX, Inc. VERY POWERFUL IMMUNOGENIC COMPOSITIONS
KR20190132405A (ko) 2017-03-15 2019-11-27 모더나티엑스, 인크. 치료제의 세포내 전달을 위한 화합물 및 조성물
AU2018234814B2 (en) 2017-03-15 2022-06-30 Modernatx, Inc. Crystal forms of amino lipids
US11045540B2 (en) 2017-03-15 2021-06-29 Modernatx, Inc. Varicella zoster virus (VZV) vaccine
US11576961B2 (en) 2017-03-15 2023-02-14 Modernatx, Inc. Broad spectrum influenza virus vaccine
US11752206B2 (en) 2017-03-15 2023-09-12 Modernatx, Inc. Herpes simplex virus vaccine
EP3595713A4 (en) 2017-03-15 2021-01-13 ModernaTX, Inc. RESPIRATORY SYNCYTIAL VIRUS VACCINE
AU2018234828A1 (en) 2017-03-15 2019-09-19 Modernatx, Inc. Lipid nanoparticle formulation
US20200085944A1 (en) 2017-03-17 2020-03-19 Curevac Ag Rna vaccine and immune checkpoint inhibitors for combined anticancer therapy
MA47790A (fr) 2017-03-17 2021-05-05 Modernatx Inc Vaccins à base d'arn contre des maladies zoonotiques
SG11201906297QA (en) 2017-03-24 2019-10-30 Curevac Ag Nucleic acids encoding crispr-associated proteins and uses thereof
WO2018187590A1 (en) 2017-04-05 2018-10-11 Modernatx, Inc. Reduction or elimination of immune responses to non-intravenous, e.g., subcutaneously administered therapeutic proteins
EP3395365A1 (en) * 2017-04-28 2018-10-31 Ajinomoto Co., Inc. Immunostimulating agent
AU2018266705B2 (en) 2017-05-08 2023-05-04 Gritstone Bio, Inc. Alphavirus neoantigen vectors
CA3063723A1 (en) 2017-05-18 2018-11-22 Modernatx, Inc. Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof
WO2018213789A1 (en) 2017-05-18 2018-11-22 Modernatx, Inc. Modified messenger rna comprising functional rna elements
EP3630076A1 (en) * 2017-05-30 2020-04-08 GlaxoSmithKline Biologicals SA Methods for manufacturing a liposome encapsulated rna
IE87414B1 (en) 2017-05-30 2023-07-19 Glaxosmithkline Biologicals Sa Novel methods for manufacturing an adjuvant
US11015204B2 (en) 2017-05-31 2021-05-25 Arcturus Therapeutics, Inc. Synthesis and structure of high potency RNA therapeutics
US20200268666A1 (en) 2017-06-14 2020-08-27 Modernatx, Inc. Polynucleotides encoding coagulation factor viii
MA49421A (fr) 2017-06-15 2020-04-22 Modernatx Inc Formulations d'arn
SG11201911430PA (en) 2017-07-04 2020-01-30 Curevac Ag Novel nucleic acid molecules
CA3073020A1 (en) 2017-08-16 2019-02-21 Acuitas Therapeutics, Inc. Lipids for use in lipid nanoparticle formulations
WO2019046809A1 (en) 2017-08-31 2019-03-07 Modernatx, Inc. METHODS OF MANUFACTURING LIPID NANOPARTICLES
US20200277627A1 (en) 2017-09-13 2020-09-03 Biontech Rna Pharmaceuticals Gmbh Rna replicon for reprogramming somatic cells
US20200283497A1 (en) 2017-09-13 2020-09-10 Biontech Cell & Gene Therapies Gmbh Rna replicon for expressing at cell receptor or an artificial t cell receptor
EP3681514A4 (en) 2017-09-14 2021-07-14 ModernaTX, Inc. RNA VACZINE AGAINST ZIKA VIRUS
EP3461497A1 (en) 2017-09-27 2019-04-03 GlaxoSmithKline Biologicals S.A. Viral antigens
BR112020004351A2 (pt) 2017-10-19 2020-09-08 Curevac Ag moléculas de ácido nucleico artificial
US20210236644A1 (en) 2017-11-10 2021-08-05 Cocoon Biotech Inc. Ocular applications of silk-based products
EP3714048A1 (en) 2017-11-22 2020-09-30 Modernatx, Inc. Polynucleotides encoding ornithine transcarbamylase for the treatment of urea cycle disorders
EP3714047A2 (en) 2017-11-22 2020-09-30 ModernaTX, Inc. Polynucleotides encoding phenylalanine hydroxylase for the treatment of phenylketonuria
CA3079543A1 (en) 2017-11-22 2019-05-31 Modernatx, Inc. Polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits for the treatment of propionic acidemia
AU2019205330A1 (en) 2018-01-04 2020-08-27 Iconic Therapeutics Llc Anti-tissue factor antibodies, antibody-drug conjugates, and related methods
WO2019136241A1 (en) 2018-01-05 2019-07-11 Modernatx, Inc. Polynucleotides encoding anti-chikungunya virus antibodies
EP3740241A1 (en) * 2018-01-18 2020-11-25 eTheRNA Immunotherapies NV Lipid nanoparticles
US11590079B2 (en) 2018-01-18 2023-02-28 EndoProtech, Inc. Treating microvascular dysfunction
EP3746090A4 (en) 2018-01-29 2021-11-17 ModernaTX, Inc. RSV RNA Vaccines
EP3773745A1 (en) 2018-04-11 2021-02-17 ModernaTX, Inc. Messenger rna comprising functional rna elements
WO2019226650A1 (en) 2018-05-23 2019-11-28 Modernatx, Inc. Delivery of dna
WO2020023390A1 (en) 2018-07-25 2020-01-30 Modernatx, Inc. Mrna based enzyme replacement therapy combined with a pharmacological chaperone for the treatment of lysosomal storage disorders
US20210252133A1 (en) 2018-08-17 2021-08-19 Glaxosmithkline Biologicals Sa Immunogenic compositions and uses thereof
MA53545A (fr) 2018-09-02 2021-07-14 Modernatx Inc Polynucléotides codant pour l'acyl-coa déshydrogénase à très longue chaîne pour le traitement de l'insuffisance en acyl-coa déshydrogénase à très longue chaîne
WO2020056155A2 (en) 2018-09-13 2020-03-19 Modernatx, Inc. Polynucleotides encoding branched-chain alpha-ketoacid dehydrogenase complex e1-alpha, e1-beta, and e2 subunits for the treatment of maple syrup urine disease
JP2022500436A (ja) 2018-09-13 2022-01-04 モダーナティエックス・インコーポレイテッドModernaTX, Inc. 糖原病を処置するためのグルコース−6−ホスファターゼをコードするポリヌクレオチド
JP2022500444A (ja) 2018-09-14 2022-01-04 モダーナティエックス・インコーポレイテッドModernaTX, Inc. クリグラー−ナジャー症候群の治療のためのウリジン二リン酸グリコシルトランスフェラーゼ1ファミリー、ポリペプチドa1をコードするポリヌクレオチド
MA53734A (fr) 2018-09-27 2021-08-04 Modernatx Inc Polynucléotides codant pour l'arginase 1 pour le traitement d'une déficience en arginase
JP2022512578A (ja) 2018-10-09 2022-02-07 ザ ユニヴァーシティ オブ ブリティッシュ コロンビア 有機溶媒不含かつ劣化剤不含のトランスフェクション・コンピテント・ベシクルを含む組成物及びシステム並びにそれらに関連する方法
WO2020097409A2 (en) 2018-11-08 2020-05-14 Modernatx, Inc. Use of mrna encoding ox40l to treat cancer in human patients
TW202043256A (zh) 2019-01-10 2020-12-01 美商健生生物科技公司 前列腺新抗原及其用途
WO2020144295A1 (en) 2019-01-10 2020-07-16 Biontech Rna Pharmaceuticals Gmbh Localized administration of rna molecules for therapy
CN113474328A (zh) 2019-01-11 2021-10-01 爱康泰生治疗公司 用于脂质纳米颗粒递送活性剂的脂质
US11351242B1 (en) 2019-02-12 2022-06-07 Modernatx, Inc. HMPV/hPIV3 mRNA vaccine composition
WO2020227642A1 (en) 2019-05-08 2020-11-12 Modernatx, Inc. Compositions for skin and wounds and methods of use thereof
BR122024002387A2 (pt) 2019-05-30 2024-03-12 Gritstone Bio, Inc. Vetores de adenovírus, composição farmacêutica, sequência de nucleotídeo isolada, célula isolada, vetor, kit, usos de um vetor, método para fabricar o vetor, métodos para produzir um vírus e vetor viral
MA56517A (fr) 2019-06-24 2022-04-27 Modernatx Inc Arn messager comprenant des éléments d'arn fonctionnels et leurs utilisations
MA56539A (fr) 2019-06-24 2022-04-27 Modernatx Inc Arn messager résistant à l'endonucléase et utilisations correspondantes
CN112237628A (zh) * 2019-07-17 2021-01-19 四川大学华西医院 靶向EBV的LMP2-mRNA纳米疫苗
US20220265781A1 (en) 2019-07-18 2022-08-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for inducing full ablation of hematopoiesis
JP2022542032A (ja) 2019-07-21 2022-09-29 グラクソスミスクライン バイオロジカルズ ソシエテ アノニム 治療用ウイルスワクチン
WO2021038508A1 (en) * 2019-08-30 2021-03-04 Glaxosmithkline Biologicals Sa Jet mixing lipid nanoparticle manufacturing process
EP4031524A1 (en) 2019-09-19 2022-07-27 ModernaTX, Inc. Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents
AU2020355000A1 (en) 2019-09-23 2022-03-17 Omega Therapeutics, Inc. Compositions and methods for modulating apolipoprotein B (APOB) gene expression
EP4041894A1 (en) 2019-09-23 2022-08-17 Omega Therapeutics, Inc. COMPOSITIONS AND METHODS FOR MODULATING HEPATOCYTE NUCLEAR FACTOR 4-ALPHA (HNF4a) GENE EXPRESSION
EP3819377A1 (en) 2019-11-08 2021-05-12 Justus-Liebig-Universität Gießen Circular rna and uses thereof for inhibiting rna-binding proteins
AU2020385683A1 (en) 2019-11-18 2022-06-30 Janssen Biotech, Inc. Vaccines based on mutant CALR and JAK2 and their uses
US11576966B2 (en) 2020-02-04 2023-02-14 CureVac SE Coronavirus vaccine
AU2021233816A1 (en) 2020-03-09 2022-10-06 Arcturus Therapeutics, Inc. Coronavirus vaccine compositions and methods
EP4118207A1 (en) 2020-03-11 2023-01-18 Omega Therapeutics, Inc. Compositions and methods for modulating forkhead box p3 (foxp3) gene expression
EP4135761A1 (en) 2020-04-16 2023-02-22 GlaxoSmithKline Biologicals S.A. Sars cov-2 spike protein construct
WO2021247507A1 (en) 2020-06-01 2021-12-09 Modernatx, Inc. Phenylalanine hydroxylase variants and uses thereof
JP2023527910A (ja) 2020-06-04 2023-06-30 バイオエヌテック エスエー 多用途かつ効率的な遺伝子発現のためのrnaレプリコン
WO2021245611A1 (en) 2020-06-05 2021-12-09 Glaxosmithkline Biologicals Sa Modified betacoronavirus spike proteins
EP4171629A1 (en) 2020-06-29 2023-05-03 GlaxoSmithKline Biologicals S.A. Adjuvants
WO2022016070A1 (en) 2020-07-16 2022-01-20 Acuitas Therapeutics, Inc. Cationic lipids for use in lipid nanoparticles
AU2021320896A1 (en) 2020-08-06 2023-03-23 Gritstone Bio, Inc. Multiepitope vaccine cassettes
US11406703B2 (en) 2020-08-25 2022-08-09 Modernatx, Inc. Human cytomegalovirus vaccine
EP4243776A1 (en) 2020-11-13 2023-09-20 Modernatx, Inc. Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis
EP4008785A1 (en) 2020-12-03 2022-06-08 Justus-Liebig-Universität Gießen Circular nucleic acids and uses thereof for interfering with genome expression and proliferation of coronaviruses
AU2021405281A1 (en) 2020-12-22 2023-07-06 CureVac SE Rna vaccine against sars-cov-2 variants
EP4267181A1 (en) * 2020-12-23 2023-11-01 Daykin Molecular Systems, LLC Nucleic acid stabilizing solution for vaccines, therapy, diagnostics, storage, and transport
EP4267593A2 (en) 2020-12-23 2023-11-01 GlaxoSmithKline Biologicals SA Self-amplifying messenger rna
CA3208643A1 (en) 2021-01-18 2022-07-21 Conserv Bioscience Limited Coronavirus immunogenic compositions, methods and uses thereof
EP4032546A1 (en) 2021-01-20 2022-07-27 GlaxoSmithKline Biologicals S.A. Therapeutic viral vaccine
US11524023B2 (en) 2021-02-19 2022-12-13 Modernatx, Inc. Lipid nanoparticle compositions and methods of formulating the same
WO2022204380A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits and uses thereof
WO2022204390A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding phenylalanine hydroxylase and uses thereof
WO2022204369A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Polynucleotides encoding methylmalonyl-coa mutase for the treatment of methylmalonic acidemia
US20240189449A1 (en) 2021-03-24 2024-06-13 Modernatx, Inc. Lipid nanoparticles and polynucleotides encoding ornithine transcarbamylase for the treatment of ornithine transcarbamylase deficiency
US20240207374A1 (en) 2021-03-24 2024-06-27 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding glucose-6-phosphatase and uses thereof
CA3212653A1 (en) 2021-03-26 2022-09-29 Glaxosmithkline Biologicals Sa Immunogenic compositions
CN113230394B (zh) * 2021-04-30 2024-04-30 广州源博医药科技有限公司 一种用于牛病毒性腹泻的rna疫苗及其构建方法
EP4346894A1 (en) 2021-05-24 2024-04-10 GlaxoSmithKline Biologicals S.A. Adjuvants
EP4352247A1 (en) 2021-06-09 2024-04-17 GlaxoSmithKline Biologicals s.a. Release assay for determining potency of self-amplifying rna drug product and methods for using
EP4355882A2 (en) 2021-06-15 2024-04-24 Modernatx, Inc. Engineered polynucleotides for cell-type or microenvironment-specific expression
WO2022271776A1 (en) 2021-06-22 2022-12-29 Modernatx, Inc. Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide a1 for the treatment of crigler-najjar syndrome
EP4367242A2 (en) 2021-07-07 2024-05-15 Omega Therapeutics, Inc. Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression
EP4377331A2 (en) 2021-07-30 2024-06-05 CureVac SE Mrnas for treatment or prophylaxis of liver diseases
WO2023020994A1 (en) 2021-08-16 2023-02-23 Glaxosmithkline Biologicals Sa Novel methods
WO2023020993A1 (en) 2021-08-16 2023-02-23 Glaxosmithkline Biologicals Sa Novel methods
WO2023021427A1 (en) 2021-08-16 2023-02-23 Glaxosmithkline Biologicals Sa Freeze-drying of lipid nanoparticles (lnps) encapsulating rna and formulations thereof
WO2023021421A1 (en) 2021-08-16 2023-02-23 Glaxosmithkline Biologicals Sa Low-dose lyophilized rna vaccines and methods for preparing and using the same
WO2023020992A1 (en) 2021-08-16 2023-02-23 Glaxosmithkline Biologicals Sa Novel methods
CA3229889A1 (en) 2021-09-03 2023-03-09 Glaxosmithkline Biologicals Sa Substitution of nucleotide bases in self-amplifying messenger ribonucleic acids
WO2023056044A1 (en) 2021-10-01 2023-04-06 Modernatx, Inc. Polynucleotides encoding relaxin for the treatment of fibrosis and/or cardiovascular disease
CA3234214A1 (en) 2021-10-18 2023-04-27 BioNTech SE Methods for determining mutations for increasing modified replicable rna function and related compositions and their use
CA3234396A1 (en) 2021-10-18 2023-04-27 BioNTech SE Modified replicable rna and related compositions and their use
WO2023135298A1 (en) 2022-01-17 2023-07-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of inducing cell death of a population of solid tumor cells
WO2023144193A1 (en) 2022-01-25 2023-08-03 CureVac SE Mrnas for treatment of hereditary tyrosinemia type i
WO2023152365A1 (en) 2022-02-14 2023-08-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of the 15-lipoxygenase for the treatment of lymphedema
WO2023161350A1 (en) 2022-02-24 2023-08-31 Io Biotech Aps Nucleotide delivery of cancer therapy
WO2023183909A2 (en) 2022-03-25 2023-09-28 Modernatx, Inc. Polynucleotides encoding fanconi anemia, complementation group proteins for the treatment of fanconi anemia
WO2023213378A1 (en) 2022-05-02 2023-11-09 BioNTech SE Replicon compositions and methods of using same for the treatment of diseases
WO2023242817A2 (en) 2022-06-18 2023-12-21 Glaxosmithkline Biologicals Sa Recombinant rna molecules comprising untranslated regions or segments encoding spike protein from the omicron strain of severe acute respiratory coronavirus-2
WO2024017479A1 (en) 2022-07-21 2024-01-25 BioNTech SE Multifunctional cells transiently expressing an immune receptor and one or more cytokines, their use and methods for their production
WO2024023034A1 (en) 2022-07-25 2024-02-01 Institut National de la Santé et de la Recherche Médicale Use of apelin for the treatment of lymphedema
WO2024026254A1 (en) 2022-07-26 2024-02-01 Modernatx, Inc. Engineered polynucleotides for temporal control of expression
WO2024044147A1 (en) 2022-08-23 2024-02-29 Modernatx, Inc. Methods for purification of ionizable lipids
WO2024047247A1 (en) 2022-09-02 2024-03-07 Institut National de la Santé et de la Recherche Médicale Base editing approaches for the treatment of amyotrophic lateral sclerosis
WO2024056856A1 (en) 2022-09-15 2024-03-21 BioNTech SE Systems and compositions comprising trans-amplifying rna vectors with mirna
WO2024068545A1 (en) 2022-09-26 2024-04-04 Glaxosmithkline Biologicals Sa Influenza virus vaccines
WO2024102954A1 (en) 2022-11-10 2024-05-16 Massachusetts Institute Of Technology Activation induced clipping system (aics)
WO2024121378A1 (en) 2022-12-09 2024-06-13 Institut National de la Santé et de la Recherche Médicale Novel human antiviral genes related to the eleos and lamassu prokaryotic systems
GB202404607D0 (en) 2024-03-29 2024-05-15 Glaxosmithkline Biologicals Sa RNA formulation

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867195B1 (en) 1989-03-21 2005-03-15 Vical Incorporated Lipid-mediated polynucleotide administration to reduce likelihood of subject's becoming infected
EP1026253B2 (en) 1989-03-21 2012-12-19 Vical Incorporated Expression of exogenous polynucleotide sequences in a vertebrate
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5279833A (en) 1990-04-04 1994-01-18 Yale University Liposomal transfection of nucleic acids into animal cells
US5693535A (en) * 1992-05-14 1997-12-02 Ribozyme Pharmaceuticals, Inc. HIV targeted ribozymes
US5750390A (en) 1992-08-26 1998-05-12 Ribozyme Pharmaceuticals, Inc. Method and reagent for treatment of diseases caused by expression of the bcl-2 gene
EP0786522A2 (en) * 1992-07-17 1997-07-30 Ribozyme Pharmaceuticals, Inc. Enzymatic RNA molecules for treatment of stenotic conditions
EP1624068A1 (en) 1993-06-01 2006-02-08 Life Technologies Inc. Genetic immunization with cationic lipids
JPH11512609A (ja) * 1995-09-27 1999-11-02 アメリカ合衆国 クローン化されたヌクレオチド配列からの感染性RSウイルス(respiratory syncytial virus)の生産
US7384923B2 (en) 1999-05-14 2008-06-10 Lipoxen Technologies Limited Liposomes
US6287591B1 (en) 1997-05-14 2001-09-11 Inex Pharmaceuticals Corp. Charged therapeutic agents encapsulated in lipid particles containing four lipid components
US6432925B1 (en) 1998-04-16 2002-08-13 John Wayne Cancer Institute RNA cancer vaccine and methods for its use
JP2004500047A (ja) * 1999-10-20 2004-01-08 ザ ジョンズ ホプキンス ユニバーシティー スクール オブ メディシン キメラ免疫原性組成物およびこれらをコードする核酸
US8541008B2 (en) * 1999-11-19 2013-09-24 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Pharmaceutical compositions and methods to vaccinate against candidiasis
US20030212022A1 (en) 2001-03-23 2003-11-13 Jean-Marie Vogel Compositions and methods for gene therapy
US7557200B2 (en) 2001-02-01 2009-07-07 Johns Hopkins University Superior molecular vaccine based on self-replicating RNA, suicidal DNA or naked DNA vector, that links antigen with polypeptide that promotes antigen presentation
US20030077251A1 (en) * 2001-05-23 2003-04-24 Nicolas Escriou Replicons derived from positive strand RNA virus genomes useful for the production of heterologous proteins
CA2449054C (en) * 2001-05-30 2011-01-04 The Scripps Research Institute Integrin targeting liposome for nucleic acid delivery
EP1432791B2 (en) * 2001-09-06 2013-10-23 Alphavax, Inc. Alphavirus replicon vector systems
AU2003211103A1 (en) 2002-02-13 2003-09-04 Northeastern University Intracellular delivery of therapeutic agents
MXPA04010548A (es) * 2002-04-26 2005-01-25 Pfizer Replicon del virus de la hepatitis c seleccionable reportero.
EP1537208A1 (en) 2002-09-13 2005-06-08 Replicor, Inc. Non-sequence complementary antiviral oligonucleotides
WO2004105774A1 (ja) * 2003-05-30 2004-12-09 Nippon Shinyaku Co., Ltd. オリゴ核酸担持複合体、当該複合体を含有する医薬組成物
WO2005007689A1 (en) 2003-07-11 2005-01-27 Alphavax, Inc. Alphavirus-based cytomegalovirus vaccines
US7368537B2 (en) * 2003-07-15 2008-05-06 Id Biomedical Corporation Of Quebec Subunit vaccine against respiratory syncytial virus infection
US7303881B2 (en) 2004-04-30 2007-12-04 Pds Biotechnology Corporation Antigen delivery compositions and methods of use
AU2005245956B2 (en) 2004-05-18 2011-05-19 Alphavax, Inc. TC-83-derived alphavirus vectors, particles and methods
EP2811027A1 (en) 2004-05-21 2014-12-10 Novartis Vaccines and Diagnostics, Inc. Alphavirus vectors for RSV and PIV vaccines
EP1781593B1 (en) 2004-06-07 2011-12-14 Protiva Biotherapeutics Inc. Cationic lipids and methods of use
CA2569664C (en) 2004-06-07 2013-07-16 Protiva Biotherapeutics, Inc. Lipid encapsulated interfering rna
CA2572439A1 (en) * 2004-07-02 2006-01-12 Protiva Biotherapeutics, Inc. Immunostimulatory sirna molecules and uses therefor
US20060051405A1 (en) * 2004-07-19 2006-03-09 Protiva Biotherapeutics, Inc. Compositions for the delivery of therapeutic agents and uses thereof
EP2357000A1 (en) 2005-10-18 2011-08-17 Novartis Vaccines and Diagnostics, Inc. Mucosal and systemic immunizations with alphavirus replicon particles
JP2007112768A (ja) * 2005-10-24 2007-05-10 Kyoto Univ 肝指向性リポソーム組成物
JP5872755B2 (ja) * 2006-07-20 2016-03-01 バイカル インコーポレイテッド 抗hsv−2ワクチン接種のための組成物および方法
EP2131848A4 (en) 2007-02-16 2012-06-27 Merck Sharp & Dohme COMPOSITIONS AND METHODS FOR POTENTIATING THE ACTIVITY OF BIOLOGICALLY ACTIVE MOLECULES
US8877206B2 (en) 2007-03-22 2014-11-04 Pds Biotechnology Corporation Stimulation of an immune response by cationic lipids
EP2157982B1 (en) 2007-05-04 2014-12-17 Marina Biotech, Inc. Amino acid lipids and uses thereof
CA2692546C (en) * 2007-07-09 2018-03-13 Esther H. Chang Methods for generating immune response using cationic-liposome-mediated nucleic acid delivery
WO2009111088A2 (en) 2008-01-02 2009-09-11 The Johns Hopkins University Antitumor immunization by liposomal delivery of vaccine to the spleen
WO2009086558A1 (en) 2008-01-02 2009-07-09 Tekmira Pharmaceuticals Corporation Improved compositions and methods for the delivery of nucleic acids
CN102119217B (zh) 2008-04-15 2015-06-03 普洛体维生物治疗公司 用于核酸递送的新型制剂
EP2279357B1 (en) 2008-04-24 2015-09-09 National Oilwell Varco, L.P. Torque member for threaded connections
US20100040650A1 (en) * 2008-05-30 2010-02-18 Crowe Jr James E Virus-Like paramyxovirus particles and vaccines
CL2008002322A1 (es) 2008-08-07 2009-06-05 Univ Concepcion Formulacion farmaceutica veterinaria que comprende un sistema vectorial viral constituido por una particula recombinante de arn que codifica una cu/zn superoxido dismutasa de la bacteria patogena de bovinos brucella abortus, y al menos un alfavirus arn perteneciente a la familia del virus semliki forest (sfv), util como vacuna.
WO2010037408A1 (en) 2008-09-30 2010-04-08 Curevac Gmbh Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof
JP4900536B2 (ja) * 2009-07-02 2012-03-21 コニカミノルタホールディングス株式会社 特定の分散剤を含有する外水相を利用する二段階乳化法による単胞リポソームの製造方法、ならびに当該単胞リポソームの製造方法を用いる単胞リポソーム分散液またはその乾燥粉末の製造方法
WO2011005799A2 (en) 2009-07-06 2011-01-13 Novartis Ag Self replicating rna molecules and uses thereof
DK3178490T3 (da) 2009-07-15 2022-06-20 Glaxosmithkline Biologicals Sa RSV F-proteinsammensætninger og fremgangsmåder til fremstilling af disse
EP2496260A1 (en) 2009-11-04 2012-09-12 Marina Biotech, Inc. Activity generating delivery molecules
NZ600616A (en) 2009-12-01 2014-11-28 Shire Human Genetic Therapies Delivery of mrna for the augmentation of proteins and enzymes in human genetic diseases
US20110200582A1 (en) 2009-12-23 2011-08-18 Novartis Ag Lipids, lipid compositions, and methods of using them
SI3243526T1 (sl) 2010-07-06 2020-02-28 Glaxosmithkline Biologicals S.A. Dostava RNA za sprožitev večih imunskih poti
EP2591114B1 (en) 2010-07-06 2016-06-08 GlaxoSmithKline Biologicals SA Immunisation of large mammals with low doses of rna
BR112013000244A2 (pt) * 2010-07-06 2016-05-17 Novartis Ag lipossomas com lipídeos apresentando pka vantajoso para administração de rna
SI4005592T1 (sl) * 2010-07-06 2023-03-31 Glaxosmithkline Biologicals S.A. Virionom podobni dostavni delci za samopodvojene molekule RNA
US9770463B2 (en) 2010-07-06 2017-09-26 Glaxosmithkline Biologicals Sa Delivery of RNA to different cell types
ES2938866T3 (es) * 2010-08-31 2023-04-17 Glaxosmithkline Biologicals Sa Liposomas pegilados para la administración de ARN que codifica para inmunógeno
AU2011296062A1 (en) 2010-08-31 2013-04-04 Novartis Ag Small liposomes for delivery of immunogen-encoding RNA
WO2012031046A2 (en) 2010-08-31 2012-03-08 Novartis Ag Lipids suitable for liposomal delivery of protein-coding rna
SG10201605537XA (en) * 2011-07-06 2016-09-29 Novartis Ag Liposomes having useful n:p ratio for delivery of rna molecules
DK2750707T3 (en) 2011-08-31 2019-02-11 Glaxosmithkline Biologicals Sa PEGYLED LIPOSOMES FOR DELIVERING IMMUNOGEN-CODING RNA
WO2014160243A1 (en) 2013-03-14 2014-10-02 The Trustees Of The University Of Pennsylvania Purification and purity assessment of rna molecules synthesized with modified nucleosides
CN108368028B (zh) 2015-10-28 2021-09-03 爱康泰生治疗公司 用于递送核酸的新型脂质和脂质纳米颗粒制剂
CA3041307A1 (en) 2016-10-21 2018-04-26 Giuseppe Ciaramella Human cytomegalovirus vaccine
WO2022137133A1 (en) 2020-12-22 2022-06-30 Curevac Ag Rna vaccine against sars-cov-2 variants
WO2022150717A1 (en) 2021-01-11 2022-07-14 Modernatx, Inc. Seasonal rna influenza virus vaccines

Also Published As

Publication number Publication date
RU2013114392A (ru) 2014-10-10
LT4066819T (lt) 2023-04-11
BR112013004879A2 (pt) 2018-04-24
FI4008357T3 (fi) 2023-01-13
EP4066819A1 (en) 2022-10-05
HUE061463T2 (hu) 2023-06-28
AU2018204178A1 (en) 2018-07-05
EP4008357B1 (en) 2022-12-28
SI4066819T1 (sl) 2023-07-31
HRP20221048T1 (hr) 2022-11-11
HUE060958T2 (hu) 2023-04-28
EP4066819B1 (en) 2023-03-01
HRP20230017T1 (hr) 2023-02-17
DK4008357T3 (da) 2023-02-20
AU2011296062A1 (en) 2013-04-04
AU2022204487A1 (en) 2022-07-14
PT4008357T (pt) 2023-01-11
WO2012030901A1 (en) 2012-03-08
AU2022271508A1 (en) 2022-12-22
FI4066819T3 (fi) 2023-05-19
HRP20230326T1 (hr) 2023-06-09
PL4008357T3 (pl) 2023-03-06
HRP20230501T1 (hr) 2023-08-04
DK4066819T3 (da) 2023-04-24
DK2611467T3 (da) 2022-08-01
AU2022204487B2 (en) 2022-12-15
EP4122451A8 (en) 2023-08-30
PL4043040T3 (pl) 2023-04-17
AU2022204491B2 (en) 2022-12-15
AU2022205179B2 (en) 2022-12-15
EP4122451A1 (en) 2023-01-25
EP2611467A1 (en) 2013-07-10
EP4008357A1 (en) 2022-06-08
ES2923634T3 (es) 2022-09-29
LT4008357T (lt) 2023-01-25
ES2935542T3 (es) 2023-03-07
EP4043040A1 (en) 2022-08-17
AU2022204491A1 (en) 2022-07-14
PT4043040T (pt) 2023-03-24
MX2013002337A (es) 2013-03-18
RU2671482C2 (ru) 2018-10-31
FI4043040T3 (fi) 2023-04-04
RS63404B1 (sr) 2022-08-31
RS64084B1 (sr) 2023-04-28
PT4066819T (pt) 2023-03-30
EP4043040B1 (en) 2023-01-11
AU2020205236A1 (en) 2020-07-30
RS63890B1 (sr) 2023-02-28
ES2941244T3 (es) 2023-05-19
AU2018204178B2 (en) 2020-04-16
PL4066819T3 (pl) 2023-06-05
SI4008357T1 (sl) 2023-04-28
EP4233841A3 (en) 2023-11-01
EP4233841A2 (en) 2023-08-30
HUE059214T2 (hu) 2022-10-28
SI4043040T1 (sl) 2023-04-28
EP2611467B1 (en) 2022-07-20
US9254265B2 (en) 2016-02-09
CA2809678A1 (en) 2012-03-08
AU2022205179A1 (en) 2022-07-28
RS63984B1 (sr) 2023-03-31
EP4043040A8 (en) 2022-09-28
PT2611467T (pt) 2022-08-01
JP2016169230A (ja) 2016-09-23
PL2611467T3 (pl) 2022-08-16
SI2611467T1 (sl) 2022-10-28
JP2013538569A (ja) 2013-10-17
MX341989B (es) 2016-09-09
AU2020205236B2 (en) 2022-11-17
HUE061275T2 (hu) 2023-06-28
LT4043040T (lt) 2023-03-27
DK4043040T3 (da) 2023-03-20
CN103179989A (zh) 2013-06-26
US20130195969A1 (en) 2013-08-01
AU2016213772A1 (en) 2016-09-01
LT2611467T (lt) 2022-08-10

Similar Documents

Publication Publication Date Title
ES2939732T3 (es) Liposomas pequeños para la administración de ARN que codifica para inmunógeno
US11850305B2 (en) Method of making lipid formulations with RNA encoding immunogens
ES2935009T3 (es) Liposomas pegilados para la administración de ARN que codifica para inmunógeno
US11026964B2 (en) Delivery of RNA to different cell types
EP4005592B1 (en) Virion-like delivery particles for self-replicating rna molecules
AU2018203680A1 (en) Lipids suitable for liposomal delivery of protein-coding RNA
US20230172858A1 (en) Jet mixing lipid nanoparticle manufacturing process