ES2747361T3 - Procedimiento para la mejora cosmética no invasiva de la celulitis - Google Patents
Procedimiento para la mejora cosmética no invasiva de la celulitis Download PDFInfo
- Publication number
- ES2747361T3 ES2747361T3 ES10185120T ES10185120T ES2747361T3 ES 2747361 T3 ES2747361 T3 ES 2747361T3 ES 10185120 T ES10185120 T ES 10185120T ES 10185120 T ES10185120 T ES 10185120T ES 2747361 T3 ES2747361 T3 ES 2747361T3
- Authority
- ES
- Spain
- Prior art keywords
- region
- treatment
- interest
- ultrasound
- transducer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 98
- 208000035484 Cellulite Diseases 0.000 title claims abstract description 43
- 206010049752 Peau d'orange Diseases 0.000 title claims abstract description 43
- 230000036232 cellulite Effects 0.000 title claims abstract description 42
- 239000002537 cosmetic Substances 0.000 title claims abstract description 19
- 230000006872 improvement Effects 0.000 title description 5
- 238000011282 treatment Methods 0.000 claims abstract description 209
- 239000000523 sample Substances 0.000 claims abstract description 130
- 238000002604 ultrasonography Methods 0.000 claims abstract description 126
- 210000004207 dermis Anatomy 0.000 claims abstract description 55
- 230000008878 coupling Effects 0.000 claims abstract description 33
- 238000010168 coupling process Methods 0.000 claims abstract description 33
- 238000005859 coupling reaction Methods 0.000 claims abstract description 33
- 210000003491 skin Anatomy 0.000 claims abstract description 33
- 230000006378 damage Effects 0.000 claims abstract description 27
- 208000027418 Wounds and injury Diseases 0.000 claims abstract description 24
- 208000014674 injury Diseases 0.000 claims abstract description 24
- 230000009471 action Effects 0.000 claims abstract description 5
- 238000006241 metabolic reaction Methods 0.000 claims abstract description 5
- 238000004891 communication Methods 0.000 claims abstract description 3
- 238000007920 subcutaneous administration Methods 0.000 claims description 8
- 239000002344 surface layer Substances 0.000 abstract description 6
- 230000001747 exhibiting effect Effects 0.000 abstract 3
- 210000001519 tissue Anatomy 0.000 description 85
- 238000012544 monitoring process Methods 0.000 description 51
- 210000004204 blood vessel Anatomy 0.000 description 47
- 238000002560 therapeutic procedure Methods 0.000 description 39
- 230000002123 temporal effect Effects 0.000 description 35
- 239000011159 matrix material Substances 0.000 description 34
- 206010040925 Skin striae Diseases 0.000 description 33
- 208000031439 Striae Distensae Diseases 0.000 description 33
- 210000003041 ligament Anatomy 0.000 description 28
- 238000003384 imaging method Methods 0.000 description 24
- 238000010361 transduction Methods 0.000 description 24
- 230000026683 transduction Effects 0.000 description 24
- 230000001225 therapeutic effect Effects 0.000 description 23
- 238000009210 therapy by ultrasound Methods 0.000 description 23
- 238000002679 ablation Methods 0.000 description 21
- 210000003195 fascia Anatomy 0.000 description 20
- 239000010410 layer Substances 0.000 description 20
- 210000003205 muscle Anatomy 0.000 description 20
- 230000000694 effects Effects 0.000 description 18
- 230000003902 lesion Effects 0.000 description 18
- 230000033001 locomotion Effects 0.000 description 16
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 15
- 210000002615 epidermis Anatomy 0.000 description 15
- 230000006870 function Effects 0.000 description 15
- 238000001514 detection method Methods 0.000 description 14
- 210000003462 vein Anatomy 0.000 description 14
- 208000035475 disorder Diseases 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- 230000004044 response Effects 0.000 description 12
- 238000001816 cooling Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- WYZWZEOGROVVHK-GTMNPGAYSA-N radicicol Chemical compound C/1=C/C=C/C(=O)CC2=C(Cl)C(O)=CC(O)=C2C(=O)O[C@H](C)C[C@H]2O[C@@H]2\1 WYZWZEOGROVVHK-GTMNPGAYSA-N 0.000 description 11
- 238000009826 distribution Methods 0.000 description 10
- 230000001815 facial effect Effects 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 9
- 208000009056 telangiectasis Diseases 0.000 description 8
- 206010046996 Varicose vein Diseases 0.000 description 7
- 230000006978 adaptation Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 7
- 210000000481 breast Anatomy 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 210000004003 subcutaneous fat Anatomy 0.000 description 7
- 239000008280 blood Substances 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 210000002808 connective tissue Anatomy 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 239000008194 pharmaceutical composition Substances 0.000 description 6
- 230000008685 targeting Effects 0.000 description 6
- 230000003044 adaptive effect Effects 0.000 description 5
- 210000001789 adipocyte Anatomy 0.000 description 5
- 230000033228 biological regulation Effects 0.000 description 5
- 210000002414 leg Anatomy 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 208000027185 varicose disease Diseases 0.000 description 5
- 230000002792 vascular Effects 0.000 description 5
- 239000011149 active material Substances 0.000 description 4
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000001934 delay Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000001926 lymphatic effect Effects 0.000 description 4
- 229960001727 tretinoin Drugs 0.000 description 4
- 241000239290 Araneae Species 0.000 description 3
- 230000017531 blood circulation Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000035935 pregnancy Effects 0.000 description 3
- 238000001243 protein synthesis Methods 0.000 description 3
- 238000007665 sagging Methods 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- 201000002282 venous insufficiency Diseases 0.000 description 3
- 208000032544 Cicatrix Diseases 0.000 description 2
- 208000004221 Multiple Trauma Diseases 0.000 description 2
- 208000023637 Multiple injury Diseases 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 208000009443 Vascular Malformations Diseases 0.000 description 2
- 230000001594 aberrant effect Effects 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000001217 buttock Anatomy 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 230000001112 coagulating effect Effects 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 210000004209 hair Anatomy 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 201000011066 hemangioma Diseases 0.000 description 2
- 230000023597 hemostasis Effects 0.000 description 2
- 210000001624 hip Anatomy 0.000 description 2
- 238000002647 laser therapy Methods 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 230000003387 muscular Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011369 optimal treatment Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 238000002600 positron emission tomography Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229930002330 retinoic acid Natural products 0.000 description 2
- 230000000250 revascularization Effects 0.000 description 2
- 231100000241 scar Toxicity 0.000 description 2
- 230000037387 scars Effects 0.000 description 2
- 238000007632 sclerotherapy Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- 230000008467 tissue growth Effects 0.000 description 2
- 210000000689 upper leg Anatomy 0.000 description 2
- 208000019553 vascular disease Diseases 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 208000032170 Congenital Abnormalities Diseases 0.000 description 1
- 206010015150 Erythema Diseases 0.000 description 1
- 208000003367 Hypopigmentation Diseases 0.000 description 1
- 206010021118 Hypotonia Diseases 0.000 description 1
- SHGAZHPCJJPHSC-UHFFFAOYSA-N Panrexin Chemical compound OC(=O)C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-UHFFFAOYSA-N 0.000 description 1
- 229920001363 Polidocanol Polymers 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 208000028990 Skin injury Diseases 0.000 description 1
- 206010043189 Telangiectasia Diseases 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 210000000617 arm Anatomy 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- DUPIXUINLCPYLU-UHFFFAOYSA-N barium lead Chemical compound [Ba].[Pb] DUPIXUINLCPYLU-UHFFFAOYSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 230000008081 blood perfusion Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000009693 chronic damage Effects 0.000 description 1
- 235000019506 cigar Nutrition 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002828 effect on organs or tissue Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 231100000321 erythema Toxicity 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 210000001097 facial muscle Anatomy 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 208000017561 flaccidity Diseases 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 208000000069 hyperpigmentation Diseases 0.000 description 1
- 230000003810 hyperpigmentation Effects 0.000 description 1
- 229940036998 hypertonic sodium chloride Drugs 0.000 description 1
- 230000003425 hypopigmentation Effects 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000006651 lactation Effects 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 238000007443 liposuction Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 238000000838 magnetophoresis Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000012014 optical coherence tomography Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 238000001126 phototherapy Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- ONJQDTZCDSESIW-UHFFFAOYSA-N polidocanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO ONJQDTZCDSESIW-UHFFFAOYSA-N 0.000 description 1
- 229960002226 polidocanol Drugs 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000001314 profilometry Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 238000007674 radiofrequency ablation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229940002683 retin-a Drugs 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 231100000245 skin permeability Toxicity 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 231100000378 teratogenic Toxicity 0.000 description 1
- 230000003390 teratogenic effect Effects 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 230000008364 tissue synthesis Effects 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
- 230000007556 vascular defect Effects 0.000 description 1
- 208000020854 vein disease Diseases 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N7/02—Localised ultrasound hyperthermia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/13—Tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/13—Tomography
- A61B8/14—Echo-tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4272—Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
- A61B8/4281—Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4272—Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
- A61B8/429—Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by determining or monitoring the contact between the transducer and the tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/461—Displaying means of special interest
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/483—Diagnostic techniques involving the acquisition of a 3D volume of data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5223—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/54—Control of the diagnostic device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H23/00—Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
- A61H23/02—Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive
- A61H23/0245—Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive with ultrasonic transducers, e.g. piezoelectric
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
- A61B8/4455—Features of the external shape of the probe, e.g. ergonomic aspects
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/02—Characteristics of apparatus not provided for in the preceding codes heated or cooled
- A61H2201/0214—Characteristics of apparatus not provided for in the preceding codes heated or cooled cooled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
- A61H2201/5064—Position sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2201/00—Characteristics of apparatus not provided for in the preceding codes
- A61H2201/50—Control means thereof
- A61H2201/5058—Sensors or detectors
- A61H2201/5082—Temperature sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H2207/00—Anti-cellulite devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0004—Applications of ultrasound therapy
- A61N2007/0008—Destruction of fat cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0004—Applications of ultrasound therapy
- A61N2007/0034—Skin treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0052—Ultrasound therapy using the same transducer for therapy and imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0056—Beam shaping elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0073—Ultrasound therapy using multiple frequencies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0078—Ultrasound therapy with multiple treatment transducers
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Acoustics & Sound (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Epidemiology (AREA)
- Physical Education & Sports Medicine (AREA)
- General Physics & Mathematics (AREA)
- Rehabilitation Therapy (AREA)
- Pain & Pain Management (AREA)
- Gynecology & Obstetrics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physiology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Primary Health Care (AREA)
- Surgical Instruments (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Un procedimiento para el tratamiento cosmético no invasivo de la celulitis, comprendiendo el procedimiento usar un sistema, que está caracterizado por: una sonda de ultrasonidos (202) configurada para proporcionar una acción mecánica de ultrasonidos para romper cúmulos de grasa y estirar enlaces fibrosos dentro de una región de interés (210) que comprende una porción inferior de una dermis y una protuberancia proximal de lóbulos de grasa, y en el que la sonda de ultrasonidos (202) está configurada para suministrar energía conformada de ultrasonidos dentro de la región de interés (210) para crear una lesión térmica y coagular la protuberancia proximal de lóbulos de grasa, eliminando de ese modo las protuberancias de grasa hacia la dermis, lo que da como resultado un aspecto mejorado de las capas superficiales de piel superpuestas que presentan celulitis; y un controlador (204) acoplado a, y en comunicación con, la sonda de ultrasonidos (202) y configurado para controlar la sonda de ultrasonidos (202); en el que el procedimiento comprende además: acoplar la sonda de ultrasonidos (202) a la región de interés (210) que comprende por debajo de una superficie de piel que presenta celulitis; aplicar la energía conformada de ultrasonidos a la región de interés (210), en el que la aplicación de la energía de ultrasonidos comprende: aumentar una temperatura en al menos una porción de la región de interés (210); lo que aumenta de ese modo la reacción metabólica de la grasa en la al menos una porción de la región de interés (210); lo que reduce de ese modo una cantidad de la grasa en la al menos una porción de la región de interés (210) y mejora cosméticamente la superficie de la piel que presenta celulitis.
Description
DESCRIPCIÓN
Procedimiento para la mejora cosmética no invasiva de la celulitis
Campo de la invención
La presente invención se refiere a un procedimiento para tratar la celulitis.
Antecedentes de la invención
La flacidez de la piel y la musculatura facial se produce gradualmente a lo largo del tiempo debido a la gravedad y a cambios crónicos en el tejido conjuntivo asociados al envejecimiento. El tratamiento quirúrgico invasivo para tensar tales tejidos es habitual, por ejemplo, mediante estiramientos faciales. En estos tratamientos para la flacidez del tejido conjuntivo, normalmente se retira una porción del tejido y se usan suturas u otros medios de sujeción para suspender las estructuras de tejido flácidas. En las mamas, la fascia muscular y los ligamentos forman una capa superficial a los músculos y por debajo de la piel y la grasa subcutánea. La flacidez mamaria se debe a un proceso en el que los ligamentos suspensorios (de Cooper) se vuelven laxos. Se necesita la tensión quirúrgica de la fascia muscular subyacente y los ligamentos para la corrección quirúrgica mediante un procedimiento denominado mastopexia, o conocido más habitualmente como elevación mamaria.
Los dispositivos de radiofrecuencia (RF) se han usado para producir el calentamiento y la contracción de la piel del rostro y la mama, con algo de éxito como alternativa no invasiva a los procedimientos de elevación quirúrgicos. Sin embargo, la RF es una forma dispersiva de deposición de energía. Es imposible controlar con precisión el volumen y la profundidad del tejido calentado, ya que el calentamiento resistivo de tejidos mediante energía de RF se produce a lo largo de toda la trayectoria de conducción eléctrica a través de los tejidos. Otra restricción de la energía de RF para la tensión no invasiva de los ligamentos de Cooper es la destrucción no deseada de la grasa y capas de la piel subyacentes. La alta impedancia a la RF dentro de la grasa, que se superpone a las estructuras conjuntivas suspensorias que se pretenden contraer, conduce a temperaturas superiores en la grasa que en las estructuras supensorias objetivo. Similarmente, se han usado láseres del infrarrojo medio y otras fuentes de luz como intentos para calentar y contraer no invasivamente tejidos conjuntivos de la dermis. Sin embargo, la luz no es capaz de realizar el tratamiento no invasivo de los ligamentos de Cooper, ya que la luz no penetra tan profundamente como para producir el calentamiento local ahí. Por debajo de una profundidad de aproximadamente 1 mm, la energía de la luz se dispersa múltiplemente y no se puede focalizar para conseguir un calentamiento local preciso.
La celulitis es un trastorno cutáneo común que se presenta como una irregularidad del contorno de la piel, con frecuencia caracterizada por un aspecto ondulado de la piel. Esta afección afecta al 80 % de mujeres a escala mundial y tiende a concentrarse superficialmente alrededor de los muslos, las caderas y las nalgas.
La celulitis se desarrolla en el cuerpo cuando se deposita grasa inmediatamente debajo de la dermis y queda contenida en cámaras de grasa (lóbulos) que se pueden hinchar. A medida que los adipocitos aumentan de tamaño, los lóbulos tienden a sobresalir hacia una capa de la dermis, el tejido circundante se comprime y endurece, lo que dificulta la circulación sanguínea en los fluidos retenidos. La elasticidad reducida del tejido adiposo produce una tensión no deseada entre las capas. Las protuberancias y depresiones resultantes de los puntos de anclaje del tejido conjuntivo crean el aspecto de la celulitis.
Esta afección responde con resultados variables a los procedimientos invasivos, tales como liposucción. Las tecnologías no invasivas, tales como dispositivos de masaje y diatermia por ultrasonidos de baja frecuencia, presentan resultados marginales. Los resultados preliminares presentados por la combinación de luz infrarroja y energía de RF prometen algo de mejora de los contornos de la piel, pero se necesitan avances significativos.
Las venas varicosas (telangiectasia) son la manifestación clínica de insuficiencia venosa subyacente. La insuficiencia venosa, especialmente en las venas de las piernas, permite que la sangre venosa fluya en la dirección retrógrada en las venas de las piernas congestionadas. Las venas finalmente se dilatan debido a la presión venosa aumentada. El flujo venoso aberrante da como resultado en las venas de las piernas el fallo de las válvulas presentes normalmente en las venas, así como la reducción del tono muscular de los músculos de las piernas. Además, las varicosidades de las venas de las piernas son consecuencia de presión venosa elevada de forma crónica. La insuficiencia venosa puede estar presente en las venas superficiales o profundas, tendiendo cada patología su propio conjunto de secuelas. Las venas varicosas y las arañas vasculares son más prevalentes en la población femenina.
La escleroterapia, terapia láser y con luz pulsada intensa, ablación por radiofrecuencia y extirpación quirúrgica son las técnicas modernas usadas para extirpar varicosidades. Durante la escleroterapia, se inyecta un agente
esclerosante (p. ej., polidocanol, cloruro sódico hipertónico, etc.) en la vena dilatada. Se requiere un alto grado de destreza para este procedimiento. El tratamiento es ineficaz en casos donde se ha perdido una vena aberrante más profunda. Además, la técnica tiene una morbilidad significativa en casos donde el agente se extravasa fuera del vaso sanguíneo. El láser transcutáneo o la luz pulsada intensa (LPI) son relevantes solo para malformaciones vasculares pequeñas (tal como) en el rostro. Sin embargo, la terapia láser endovenosa, mediante la cual se inserta una fibra desnuda en el segmento de vena varicosa de la vena para coagular y sellar la vena, ha demostrado ser bastante eficaz para venas que no son muy profundas. Los catéteres a base de energía de RF extirpan la vena de una manera similar a los dispositivos láser en la coagulación del segmento de vaso sanguíneo afectado. En ocasiones se usan técnicas quirúrgicas tales como la safenectomía para ligar la parte dilatada de las venas, pero pueden resultar costosas y pueden provocar muchas complicaciones.
La enfermedad proliferativa del tejido capilar en la región facial también provoca defectos por hemangiomas y angiomas. Estas afecciones normalmente se tratan con láseres. Sin embargo, los tratamientos con láser pueden dar como resultado la formación de cicatrices, hiper/hipopigmentación y otros problemas después del tratamiento. Por tanto, se necesitan procedimientos y sistemas más eficaces y no invasivos para tratar trastornos de los vasos sanguíneos.
Las estrías, o la enfermedad por formación de estrías, son las cicatrices permanentes desfigurantes que quedan en la piel normalmente provocadas por un estiramiento excesivo, tal como durante y después de la ganancia de peso rápida o el embarazo. Estas marcas se producen en el 50-90 % de todas las mujeres embarazadas, y normalmente se presentan en la última mitad del embarazo como líneas rojas o amoratadas brillantes. Mientras que la mayoría estarán en el abdomen inferior, también se pueden encontrar en los muslos, las caderas, las nalgas, las mamas y los brazos de las mujeres. Durante el periodo posparto, las líneas rojizas típicamente se convierten en cicatrices plateadas poco profundas.
La hidratación de la piel por medio de lociones y cremas puede ayudar a reducir la creación de estrías y sus efectos en algunos casos, pero no puede prevenirlas en mujeres propensas a la afección. Los estudios investigaron el efecto de aplicar crema de tretinoína (ácido retinoico o Retin-A) al 0,1 por ciento a las estrías (S Kang y col. Topical tretinoin (retinoic acid) improves early stretch marks. Arch Dermatol 1996; 132:519-526.) Tanto la longitud como la profundidad de las marcas disminuyeron, pero los efectos secundarios incluyen piel seca y pruriginosa y eritema de moderado a grave. Este tratamiento funciona mejor cuando se aplica durante los primeros días posparto; sin embargo, sus efectos sobre la lactancia no se conocen. Es tóxico y teratogénico, y no se debe usar nunca durante el embarazo.
El tratamiento con luz posparto puede ser útil para reducir el aspecto de las estrías. Para el alivio cosmético temporal, se puede usar exposición a luz ultravioleta (UVA) para broncear las áreas de piel más claras representadas por las estrías. En los casos limitados donde las estrías son más oscuras que la piel circundante, se puede usar luz pulsada intensa para retirar el pigmento. También se usan láseres de colorante pulsado.
Los patrones de ablación térmica a la epidermis y/o dermis y/o fascia fibrosa son eficaces para el tratamiento de diversas afecciones cutáneas. Recientemente, se notificó que la «fototermólisis fraccional», que usa láseres del infrarrojo medio para producir una matriz microscópica de zonas de lesión térmica que incluyen tanto la epidermis como la dermis, es eficaz y bien tolerada para el tratamiento de remodelación cutánea. Una ventaja principal de la fototermólisis fraccional es que cada zona de lesión cutánea es menor de que lo que se puede observar fácilmente a simple vista y está rodeada por una zona de tejido sano que inicia una respuesta de curación rápida. Los tratamientos repetitivos, que son bien tolerados, se pueden realizar hasta que se obtiene un resultado deseado. Sin embargo, de forma similar a cualquier tratamiento a base de luz, la fototermólisis fraccional presenta la desventaja de que está limitada intrínsecamente a regiones de aproximadamente el 1 milímetro superior de la piel, ya que la luz que se propaga más de aproximadamente 1 mm a través de la piel se ha dispersado múltiplemente y ya no se puede focalizar o suministrar eficazmente al área de tratamiento. Las estrías implican capas tanto superficiales como profundas de la dermis, así como fascia fibrosa. Por lo tanto, es imprescindible tratar no solo cerca de la superficie de la piel, sino toda la trayectoria descendente hacia la dermis profunda y la fascia fibrosa.
El documento US 2003/036706 A1 describe un sistema ultrasónico para proporcionar adquisición de imágenes, terapia y monitorización de la temperatura. El sistema ultrasónico comprende una estructura de transductor acústico configurada para permitir que el sistema de ultrasonidos realice funciones de adquisición de imágenes, terapia y monitorización de la temperatura. La estructura del transductor acústico comprende un único transductor que está conectado a un subsistema de adquisición de imágenes, un subsistema de terapia y un subsistema de monitorización de la temperatura.
El documento WO 2004/000116 A1 describe un sistema para la lisis o inducción de la apoptosis en celulitis y grasa. La energía ultrasónica se dirige a una multiplicidad de volúmenes objetivo dentro de la región, cuyos volúmenes
objetivo contienen celulitis y grasa, con el fin de lisar o inducir la apoptosis selectivamente en la celulitis y grasa en los volúmenes objetivo y, generalmente, no lisar o no inducir la apoptosis en tejido sin celulitis y sin grasa en los volúmenes objetivo. El seguimiento computerizado de la multiplicidad de volúmenes objetivo se usa a pesar del movimiento del cuerpo.
El documento EP 1374944 A1 describe un procedimiento no invasivo para mejorar la permeabilidad de la piel a un permeante o compuesto biológicamente activo que utiliza una combinación de sonoforesis y potenciadores químicos. También se describe la preparación previa de la piel usando una acción de depuración cutánea mecánica generada ultrasónicamente. La sinergia aportada al aplicar simultáneamente iontoforesis, electroporación, vibraciones mecánicas y magnetoforesis se usa para optimizar la permeación transcutánea activa de compuestos, lo que reduce considerablemente el tiempo de tratamiento. El procedimiento está destinado también a, entre otros, el tratamiento indoloro no invasivo de la celulitis, la grasa localizada, las estrías y la piel flácida.
El documento US6361531 B1 describe un dispositivo de ablación por ultrasonidos focalizados que incluye un miembro emisor de ultrasonidos y un eje de manipulación que tiene un extremo distal en el que se dispone el miembro emisor de ultrasonido. El eje de manipulación es dúctil para permitir la configuración manual y selectiva del eje de manipulación para acceder a un punto operativo anatómico seleccionado desde una posición remota y/o para orientar el miembro emisor de ultrasonidos para que se ponga en contacto con el tejido anatómico en el punto operativo seleccionado.
Resumen de la invención
Por lo tanto, hay una necesidad de proporcionar un procedimiento mejorado para tratar la celulitis. Esta necesidad se satisface mediante el objeto de la reivindicación independiente. Las realizaciones preferidas son objeto de las reivindicaciones dependientes.
La invención no se define por las reivindicaciones del aparato. La etapa de proporcionar la actuación mecánica de ondas ultrasónicas para romper físicamente masas de células adiposas y estirar los enlaces de fibra no es parte de la invención reivindicada. Lo mismo se aplica a la etapa de coagular tejido o crear una lesión térmica en tejido, tal como una lesión.
En los ejemplos comparativos, que no representan la invención, se proporcionan procedimientos y sistemas para elevaciones mamarias no invasivas mediante tensión del tejido profundo con ultrasonidos. Uno de tales ejemplos de un procedimiento y sistema comprende un sistema terapéutico de ultrasonidos configurado para proporcionar el tratamiento por ultrasonidos a una región de tejido profundo, tal como una región que comprende fascia muscular y ligamentos.
Según diversos ejemplos que no representan la invención, un sistema terapéutico de ultrasonidos puede estar configurado para alcanzar la profundidad de 1 mm a 4 cm con una deposición conformada selectiva de energía de ultrasonidos sin dañar un tejido intermedio en el intervalo de frecuencias de 1 a 15 MHz. Según una realización, un ultrasonido terapéutico también puede estar configurado en combinación con funciones de adquisición de imágenes por ultrasonidos o adquisición de imágenes/monitorización, configurado independientemente con sistemas de adquisición de imágenes, terapia y monitorización o cualquier nivel de integración de los mismos.
Según diversos aspectos de la presente invención, se proporciona un procedimientos para el tratamiento no invasivo de la celulitis con ultrasonidos. El procedimiento según la invención comprende un sistema terapéutico de ultrasonidos para proporcionar el tratamiento por ultrasonidos a una región de tejido profundo que contiene una parte inferior de dermis y protuberancias proximales de lóbulos de grasa hacia la dermis. Según un ejemplo, que no representa la invención, un sistema de tratamiento suministra energía terapéutica de ultrasonidos conformada a la región que crea una lesión térmica y coagula las protuberancias proximales de lóbulos de grasa, eliminando de ese modo las protuberancias de grasa hacia la dermis, lo que da como resultado un aspecto mejorado de las capas superficiales superpuestas de la piel.
Según ejemplos adicionales, que no representan la invención, se proporcionan un sistema y procedimiento no invasivos para usar energía de ultrasonidos para el tratamiento de afecciones que son consecuencia de trastornos vasculares, tales como, por ejemplo, en las extremidades periféricas y el rostro. La energía de ultrasonidos se puede usar para el tratamiento de arañas vasculares/venas congestionadas que son de varios milímetros de diámetro y hasta 70 mm de profundidad, así como para tratar otros defectos vasculares en el rostro y el cuerpo. En un ejemplo, que no representa la invención, se puede usar una estrategia de tratamiento de imágenes para localizar el vaso sanguíneo que se va a tratar y a continuación extirparlo no invasivamente, a la vez que se monitoriza el progreso del tratamiento.
En otro ejemplo, que no representa la invención, un sistema y procedimiento de ultrasonidos comprende un transductor y sistema configurados para suministrar energía de ultrasonidos a las regiones del tejido superficial (p. ej., piel) de tal forma que la energía se puede depositar a la profundidad particular a la que se sitúan las malformaciones vasculares (tal como, pero no limitadas a venas varicosas) por debajo de la superficie de la piel. En un ejemplo que no representa la invención, se proporcionan un sistema y procedimiento para el tratamiento por ultrasonidos de estrías. Un procedimiento y sistema según un ejemplo que no representa la invención están configurados para tratar estrías con solo terapia, terapia y monitorización, adquisición de imágenes y terapia, o terapia, adquisición de imágenes y monitorización usando ultrasonidos focalizados, no focalizados o desfocalizados con diversas configuraciones espaciales y temporales de energía para el tratamiento guiado de estrías y tejidos circundantes. Un procedimiento y sistema según un ejemplo que no representa la invención están configurados para producir regiones de ablación dentro de una zona de tratamiento en patrones definidos espacialmente, en lugar de calentar y destruir todo el volumen de la capa objetivo de tejido. Otro procedimiento y sistema según un ejemplo, que no representa la invención, están configurados para dirigirse específicamente a tales regiones de ablación dentro de una zona de tratamiento, para que actúen en la misma posición que las estrías.
Un sistema terapéutico de ultrasonidos ejemplar según la invención puede ser sustancialmente capaz de realizar la deposición conformada y localizada de energía de ultrasonidos, así como de funciones de guiado y/o monitorización. Además, un ultrasonido terapéutico en ejemplos que no representan la invención también puede evitar el calentamiento, la cavitación u otros eventos distractores en el tejido intermedio que contiene estructuras vitales, así como en tejido posterior a la lesión conformada para evitar lo mismo.
La presente solicitud incluye además las cláusulas numeradas siguientes, que representan ejemplos que no representan la invención o realizaciones que representan la invención:
1. Un sistema de ultrasonidos, que es un ejemplo que no representa la invención y que está configurado para mastopexia no invasiva que comprende: un sistema de control configurado para el control de dicho sistema de tratamiento por ultrasonidos; un sistema de adquisición de imágenes acoplado a dicho sistema de control, dicho sistema de adquisición de imágenes configurado para la adquisición de imágenes de una región de interés, comprendiendo dicha región de interés un ligamento de Cooper; una sonda de ultrasonidos configurada para generar una lesión conformada dentro de dicha región de interés para facilitar la mastopexia, estando dicho sistema de control y dicha sonda configurados para el control espacial y temporal para generar dicha lesión conformada, y dicha sonda configurada para funcionar en un intervalo de frecuencias de aproximadamente 1 MHz a aproximadamente 15 MHz.
2. El sistema de ultrasonidos de la cláusula 1, en el que dicha sonda de ultrasonidos está configurada además para el control espacial y temporal para generar dicha lesión conformada.
3. El sistema de ultrasonidos según la cláusula 1, en el que dicha sonda de ultrasonidos comprende un transductor, comprendiendo dicho transductor al menos una de una matriz curvilínea, una matriz anular, una matriz lineal y una matriz plana.
4. El sistema de ultrasonidos según la cláusula 1, en el que dicha sonda de ultrasonidos comprende una matriz y al menos dos elementos de transducción focalizados, en el que dicha matriz es al menos una de una matriz lineal, una matriz plana y matriz anular.
5. El sistema de ultrasonidos según la cláusula 1, en el que dicha región de interés comprende adicionalmente al menos uno de fascia muscular, ligamentos, ligamentos supensorios y una región de tejido profundo.
6. Un procedimiento para mastopexia no invasiva, que es un ejemplo, que no representa la invención, comprendiendo dicho procedimiento: seleccionar una configuración de sonda en base a un parámetro espacial y uno temporal; adquirir imágenes de una región de tratamiento que comprende al menos uno de una región de tejido profundo, fascia muscular, ligamentos y un ligamento de Cooper; verificar dichos parámetros temporales y espaciales de dicha sonda; confirmar el acoplamiento acústico de dicha sonda a dicha región de tratamiento; y aplicar energía de ultrasonidos para extirpar una porción de dicha región de tratamiento para facilitar la mastopexia.
7. El procedimiento de la cláusula 6, en el que dicha etapa de aplicar energía de ultrasonidos incluye aplicar energía conformada de ultrasonidos en el intervalo de aproximadamente 1 MHz a aproximadamente 15 MHz.
8. Un sistema de ultrasonidos configurado para el tratamiento de la celulitis y que se puede usar en el procedimiento según la invención, que comprende: un sistema de control configurado para el control de dicho sistema de tratamiento por ultrasonidos; una sonda de ultrasonidos para generar una lesión conformada dentro de una región de interés, comprendiendo dicha región de interés al menos uno de una parte inferior de dermis, protuberancias
proximales de lóbulos de grasa hacia dicha dermis y una capa subcutánea para facilitar el tratamiento de la celulitis; estando dicho sistema de control y dicha sonda configurados para funcionar en un intervalo de frecuencias de aproximadamente 750 kHz a aproximadamente 20 MHz.
9. El sistema de ultrasonidos de la cláusula 8, en el que dicha sonda de ultrasonidos está configurada además para el control espacial y temporal para generar dicha lesión conformada.
10. El sistema de ultrasonidos de la cláusula 8, en el que dicha lesión conformada proporciona al menos uno de romper físicamente agrupaciones de adipocitos y estirar enlaces fibrosos.
11. El sistema de ultrasonidos según la cláusula 8, en el que dicha sonda transductora está configurada además para inducir al menos uno de intensificación del drenaje linfático, evacuación de productos de la descomposición de la grasa, creación de una lesión térmica y coagulación de protuberancias de lóbulos de grasa.
12. Un procedimiento para el tratamiento de la celulitis según una realización de la invención, comprendiendo dicho procedimiento: seleccionar una configuración de sonda basada en un parámetro espacial y uno temporal; verificar dichos parámetros temporal y espacial de dicha sonda; confirmar el acoplamiento acústico de dicha sonda a una región de tratamiento, comprendiendo dicha región de tratamiento al menos uno de una parte inferior de la dermis, protuberancias proximales de lóbulos de grasa hacia dicha dermis y una capa subcutánea; y aplicar energía de ultrasonidos para extirpar una porción de dicha región de tratamiento para facilitar el tratamiento de la celulitis.
13. El procedimiento de la cláusula 12, en el que dicha etapa de aplicar energía de ultrasonidos incluye aplicar energía conformada de ultrasonidos en el intervalo de aproximadamente 750 kHz a aproximadamente 20 MHz. 14. Un sistema de ultrasonidos que es un ejemplo, que no representa la invención y que está configurado para el tratamiento de vasos sanguíneos que comprende: un sistema de control configurado para el control de dicho sistema de tratamiento por ultrasonidos; un sistema de adquisición de imágenes acoplado a dicho sistema de control, dicho sistema de adquisición de imágenes configurado para la adquisición de imágenes de una región de interés, comprendiendo dicha región de interés al menos uno de arañas vasculares, vasos sanguíneos congestionados, vasos sanguíneos faciales y una oclusión dentro de un vaso sanguíneo; una sonda de ultrasonidos configurada para generar una lesión conformada dentro de dicha región de interés para facilitar el tratamiento de trastornos de los vasos sanguíneos, estando dicho sistema de control y dicha sonda configurados para funcionar en un intervalo de frecuencias de aproximadamente 2 MHz a aproximadamente 20 MHz.
15. El sistema de ultrasonidos de la cláusula 14, en el que dicha sonda de ultrasonidos está configurada para al menos una de ablación sustancial y ablación completa de dicha región de interés.
16. El sistema de ultrasonidos según la cláusula 14, en el que dicha sonda de ultrasonidos está configurada para ser combinada con una formulación farmacéutica.
17. El sistema de ultrasonidos según la cláusula 16, en el que dicha sonda de ultrasonidos y dicha formulación farmacéutica están configuradas para facilitar al menos uno de actividad aumentada de dicha formulación farmacéutica, dosificación reducida de dicha formulación farmacéutica, toxicidad reducida de dicha formulación farmacéutica y efecto local aumentado de dicha formulación farmacéutica selectivamente de forma selectiva en un punto.
18. El sistema de tratamiento por ultrasonidos según la cláusula 14, en el que dicho sistema de tratamiento comprende al menos dos de un sistema de adquisición de imágenes, un sistema de terapia y un sistema de monitorización, en el que dichos al menos dos sistemas están combinados con un aparato auxiliar de adquisición de imágenes y monitorización del tratamiento y un sistema de terapia secundario.
19. El sistema de tratamiento por ultrasonidos según la cláusula 18, en el que dicho aparato auxiliar de adquisición de imágenes comprende al menos uno de un dispositivo fotográfico y una modalidad óptica.
20. Un procedimiento para el tratamiento no invasivo de trastornos de los vasos sanguíneos, que es un ejemplo, que no representa la invención, comprendiendo dicho procedimiento: seleccionar una configuración de sonda en base a un parámetro espacial y uno temporal; adquirir imágenes de una región de tratamiento que comprende al menos uno de arañas vasculares, vasos sanguíneos congestionados, vasos sanguíneos faciales y una oclusión dentro de un vaso sanguíneo; verificar dichos parámetros temporales y espaciales de dicha sonda; confirmar el acoplamiento acústico de dicha sonda a dicha región de tratamiento; y aplicar energía de ultrasonidos para extirpar una porción de dicha región de tratamiento para facilitar el tratamiento de los vasos sanguíneos.
21. El procedimiento de la cláusula 20, en el que dicha etapa de aplicar energía de ultrasonidos incluye aplicar energía conformada de ultrasonidos en el intervalo de aproximadamente 2 MHz a aproximadamente 20 MHz.
22. Un sistema de ultrasonidos configurado para tratar estrías, que es un ejemplo, que no representa la invención, comprendiendo el sistema: un sistema de control configurado para el control de dicho sistema de tratamiento por ultrasonidos; un sistema de adquisición de imágenes acoplado a dicho sistema de control, dicho sistema de adquisición de imágenes configurado para la adquisición de imágenes de una región de interés, comprendiendo dicha región de interés al menos una de una epidermis, una dermis, una dermis profunda y una fascia fibrosa; una sonda de ultrasonidos configurada para generar una lesión conformada dentro de dicha región de interés para facilitar la eliminación sustancial de las estrías, estando dicho sistema de control y dicha sonda configurados para funcionar en un intervalo de frecuencias de aproximadamente 2 MHz a aproximadamente 50 MHz.
23. El sistema de ultrasonidos de la cláusula 22, en el que dicha sonda de ultrasonidos está configurada además para el control espacial y temporal para generar dicha lesión conformada.
24. El sistema de ultrasonidos de la cláusula 22, en el que dicha región de interés varía en profundidad de aproximadamente 0 a aproximadamente 10 mm.
25. El sistema de ultrasonidos de la cláusula 22, en el que dicha sonda de ultrasonidos está configurada para tratar dicha región de interés, y en el que dicha región de interés está situada en al menos una de paralela y perpendicular a una estría.
26. El sistema de ultrasonidos de la cláusula 22, en el que dicha sonda de ultrasonidos está configurada para facilitar la creación de un patrón anisotrópico de daño tisular.
27. El sistema de ultrasonidos de la cláusula 22, en el que dicha sonda de ultrasonidos sirve para proporcionar dos efectos de la energía a una región de interés; en el que dichos al menos dos efectos de la energía están configurados para facilitar una respuesta en dicha región de interés, y en el que dichos al menos dos efectos de la energía incluyen al menos dos de efectos tisulares térmicos, cavitacionales, hidrodinámicos e inducidos por resonancia y en el que dicha respuesta incluye al menos uno de hemostasia, revascularización/angiogénesis posterior, crecimiento de tejido interconjuntivo, reforma tisular, ablación de tejido existente, administración y activación mejorada de medicamentos, estimulación de la síntesis de proteínas y permeabilidad celular aumentada.
28. El sistema de tratamiento por ultrasonidos según la cláusula 22, en el que dicho sistema de control comprende un sistema de adquisición de imágenes configurado para facilitar al menos uno de adquisición de imágenes unidimensionales, tratamiento unidimensional, adquisición de imágenes bidimensionales, tratamiento bidimensional, adquisición de imágenes tridimensionales y tratamiento tridimensional.
29. Un procedimiento para tratar estrías, que es un ejemplo, que no representa la invención, comprendiendo dicho procedimiento: seleccionar una configuración de sonda en base a un parámetro espacial y uno temporal; adquirir imágenes de una región de tratamiento que comprende al menos una de una epidermis, una dermis, una dermis profunda y una fascia fibrosa; verificar dichos parámetros temporales y espaciales de dicha sonda; confirmar el acoplamiento acústico de dicha sonda a dicha región de tratamiento; y aplicar energía de ultrasonidos para extirpar una porción de dicha región de tratamiento para facilitar el tratamiento de las estrías.
30. El procedimiento de la cláusula 29, en el que dicha etapa de aplicar energía de ultrasonidos incluye aplicar energía conformada de ultrasonidos en el intervalo de aproximadamente 2 MHz a aproximadamente 50 MHz.
31. Un procedimiento para proporcionar el tratamiento no invasivo de trastornos de los vasos sanguíneos, que es un ejemplo, que no representa la invención, comprendiendo dicho procedimiento: localizar al menos uno de una araña vascular, un vaso sanguíneo congestionado, un vaso sanguíneo facial y una oclusión dentro de un vaso sanguíneo dentro de una región de interés; guiar el suministro de energía ablativa de ultrasonidos desde una sonda transductora a dicho al menos uno de dicha araña vascular, dicho vaso sanguíneo congestionado, dicho vaso sanguíneo facial y dicha oclusión dentro de dicho vaso sanguíneo; y monitorizar los resultados de dicho suministro guiado dentro de dicho al menos uno de dicha araña vascular, dicho vaso sanguíneo congestionado, dicho vaso sanguíneo facial y dicha oclusión dentro de dicho vaso sanguíneo durante y después de dicho suministro guiado para la planificación continua del tratamiento.
32. Un procedimiento para proporcionar el tratamiento de la celulitis, que es una realización ejemplar de la invención, comprendiendo dicho procedimiento: localizar al menos una de una parte inferior de una parte inferior de una dermis, una protuberancia proximal de lóbulos de grasa hacia dicha dermis y una capa subcutánea dentro de una región de interés; guiar el suministro de energía ablativa de ultrasonidos desde una sonda transductora a dicha al menos una
de dicha parte inferior de dicha dermis, dicha protuberancia proximal de lóbulos de grasa hacia dicha dermis y dicha capa subcutánea; y monitorizar los resultados de dicho suministro guiado dentro de dicha al menos una de dicha parte inferior de dicha dermis, dicha protuberancia de lóbulos de grasa hacia dicha dermis, y dicha capa subcutánea durante y después de dicho suministro guiado para la planificación continua del tratamiento.
33. Un procedimiento para proporcionar el tratamiento de estrías, que es un ejemplo, que no representa la invención, comprendiendo dicho procedimiento: localizar al menos una de una epidermis, una dermis, una dermis profunda y una fascia fibrosa dentro de una región de interés; guiar el suministro de energía ablativa de ultrasonidos desde una sonda transductora a dicha al menos una de dicha epidermis, dicha dermis, dicha dermis profunda y dicha fascia fibrosa; y monitorizar los resultados de dicho suministro guiado dentro de dicha al menos una de dicha epidermis, dicha dermis, dicha dermis profunda y dicha fascia fibrosa durante y después de dicho suministro guiado para la planificación continua del tratamiento.
34. Un procedimiento para proporcionar mastopexia no invasiva, que es una realización ejemplar, que no representa la invención, comprendiendo dicho procedimiento: localizar al menos uno de una fascia muscular, un ligamento y un ligamento de Cooper dentro de una región de interés; guiar el suministro de energía ablativa de ultrasonidos desde una sonda transductora a dicho al menos uno de dicha fascia muscular, dicho ligamento y dicho ligamento de Cooper; y monitorizar los resultados de dicho suministro guiado dentro de dicho al menos uno de dicha fascia muscular, dicho ligamento y dicho ligamento de Cooper durante y después de dicho suministro guiado para la planificación continua del tratamiento.
Breve descripción de los dibujos
El objetivo de la invención se puntualiza particularmente en la parte final de la memoria descriptiva. La invención, sin embargo, en lo que respecta tanto a organización y procedimiento de funcionamiento, se puede entender mejor por referencia a la descripción siguiente tomada junto con una parte de las cifras de los dibujos adjuntos, en los que las partes similares se pueden denominar mediante números similares:
la FIG. 1 ilustra un diagrama de bloques de un sistema de tratamiento por ultrasonidos ejemplar para uso en un procedimiento de mejora cosmética según una realización ejemplar de la presente invención;
las FIG. 2A-2F ilustran diagramas transversales de sistemas de sonda, en el que las figuras 2A y 2C ilustran sistemas de sonda según un ejemplo, que no representa la invención, y la figuras 2B y 2D a 2F ilustran sondas para uso en procedimientos ejemplares según la invención;
las FIG. 3A y 3B ilustran diagramas de bloques de un sistema de control ejemplar para uso en un procedimiento según realizaciones ejemplares de la presente invención;
las FIG. 4A y 4B ilustran diagramas de bloques de un sistema de sonda ejemplar para uso en un procedimiento según realizaciones ejemplares de la presente invención;
la FIG. 5 ilustra un diagrama transversal de un transductor ejemplar para uso en un procedimiento según una realización ejemplar de la presente invención;
las FIG. 6A y 6B ilustran diagramas transversales de un transductor ejemplar para uso en un procedimiento según realizaciones ejemplares de la presente invención;
la FIG. 7 ilustra configuraciones de transductor ejemplares para el tratamiento por ultrasonidos según diversas realizaciones ejemplares de la presente invención;
las FIG. 8A y 8B ilustran diagramas transversales de un transductor ejemplar para uso en un procedimiento según otra realización ejemplar de la presente invención;
la FIG. 9 ilustra un transductor configurado como una matriz bidimensional para uso en un tratamiento por ultrasonidos según una realización ejemplar de la presente invención;
las FIG. 10A-10F ilustran diagramas transversales de transductores ejemplares para uso en un procedimiento según otras realizaciones ejemplares de la presente invención;
la FIG. 11 ilustra un diagrama esquemático de un sistema de acoplamiento acústico y refrigeración para uso en un procedimiento según una realización ejemplar de la presente invención;
la FIG. 12 ilustra un diagrama de bloques de un sistema de tratamiento que comprende un subsistema de tratamiento por ultrasonidos combinado con subsistemas adicionales y procedimientos para la monitorización del tratamiento y/o la adquisición de imágenes del tratamiento, así como un subsistema de tratamiento secundario para uso en un procedimiento según una realización ejemplar de la presente invención; y
las FIG. 13A y 13B ilustran diagramas esquemáticos de regiones de tratamiento según ejemplos, que no representan la invención.
Descripción detallada
La presente invención se puede describir en la presente memoria en términos de diversos componentes funcionales y etapas de procesamiento. Se debe entender que tales componentes y etapas se pueden realizar mediante cualquier número de componentes de hardware configurados para realizar las funciones especificadas. Por ejemplo, la presente invención puede emplear diversos dispositivos de tratamiento médico, dispositivos de adquisición de imágenes visuales y visualización, terminales de entrada y similares, que pueden llevar a cabo una variedad de funciones bajo el control de uno o más sistemas de control u otros dispositivos de control. Además, la presente invención se puede poner en práctica en cualquier número de contextos médicos y las realizaciones ejemplares relativas a sistemas de tratamiento de mejora cosmética, sistemas de adquisición de imágenes y sistemas de monitorización como se describen en la presente memoria son únicamente indicativas de aplicaciones ejemplares de la invención. Por ejemplo, los principios, las características y los procedimientos expuestos se pueden aplicar a cualquier aplicación médica. Además, diversos aspectos de la presente invención se pueden aplicar adecuadamente a otras aplicaciones.
Según diversos aspectos de la presente invención, se proporcionan procedimientos y sistemas para uso en el procedimiento para mejora cosmética mediante ablación por ultrasonidos. Por ejemplo, según una realización ejemplar de un procedimiento, en lo que respecta a la FIG. 1, un sistema ejemplar de tratamiento (100) configurado para uso en el procedimiento ejemplar para tratar una región de interés (106) comprende un sistema de control (102), una sonda de adquisición de imágenes/terapia con acoplamiento acústico (104) y un sistema de visualización (108).
El sistema de control (102) y el sistema de visualización (108) pueden comprender diversas configuraciones para controlar la funcionalidad de la sonda (104) y el sistema integral (100), tal como, por ejemplo, un microprocesador con software y una pluralidad de dispositivos de entrada/salida, sistema y dispositivos para controlar el examen electrónico y/o mecánico y/o la multiplexación de los transductores, un sistema para el suministro de potencia, sistemas para monitorizar, sistemas para detectar la posición espacial de la sonda y/o los transductores, y/o sistemas para manipular la entrada del usuario y registrar los resultados del tratamiento, entre otros. La sonda de adquisición de imágenes/terapia (104) puede comprender diversas configuraciones de sonda y/o transductor. Por ejemplo, la sonda (104) puede estar configurada para un transductor de adquisición de imágenes/terapia bimodal combinado, transductores de adquisición de imágenes/terapia acoplados o coalojados, o simplemente una individual de terapia y una sonda de adquisición de imágenes individuales.
Como se emplea en la presente memoria, «mejora cosmética» se refiere a regímenes de terapia no esenciales y/o esenciales para tejido humano. La terapia de mejora cosmética incluye, pero no se limita a, por ejemplo, mastopexia (en ejemplos que no representan la invención), tratar la celulitis (según la invención), tratar trastornos de los vasos sanguíneos (en ejemplos que no representan la invención) y tratar estrías (en ejemplos que no representan la invención). Como se emplea en la presente memoria, las expresiones «trastornos de los vasos sanguíneos», «trastornos vasculares» y similares incluyen, pero no se limitan a, deformidades vasculares periféricas tales como, por ejemplo, venas varicosas, arañas vasculares, trastornos de venas profundas, hemangiomas o angiomas faciales y/o similares.
Según una realización ejemplar, el sistema de tratamiento (100) está configurado para tratar una región de interés, primero, adquiriendo imágenes de la región de interés (106) para la localización del área de tratamiento y estructuras circundantes, segundo, para el suministro de energía de ultrasonidos a una profundidad, una distribución, una regulación del tiempo y un nivel de energía para conseguir el efecto terapéutico deseado y, tercero, para monitorizar el área de tratamiento antes, durante y después de la terapia para planificar y evaluar los resultados y/o proporcionar retroalimentación.
En cuanto al tratamiento de la región de interés (106), el sistema (100) puede estar configurado en ejemplos que no representan la invención para tratar una o más de las capas superficiales de tejido de una mama, p. ej., una región de tejido profundo, tal como una región que comprende fascia muscular y ligamentos, y/o regiones de músculo, grasa o dermis. En procedimientos ejemplares según la invención, el sistema (100) está configurado para tratar una región de tejido profundo que contiene una parte inferior de dermis y protuberancias proximales de lóbulos de grasa
hacia la dermis. En ejemplos adicionales, que no representan la invención, el sistema (100) está configurado para tratar una región de tejido profundo que comprende al menos uno de arañas vasculares, vasos sanguíneos congestionados, vasos sanguíneos faciales y una oclusión dentro de un vaso sanguíneo; y/o las estructuras fibrosas (fascia) dentro de las capas subcutáneas y/o superficiales de la piel. Como se emplea en la presente memoria, el término dermis se refiere a cualquier parte de la dermis y/o la epidermis.
En cuanto al tratamiento de una o más de estas regiones de interés, en los ejemplos, que no representan la invención, el tejido conjuntivo se puede tensar permanentemente mediante tratamiento térmico a temperaturas de aproximadamente 60 °C que provoca que el tejido se contraiga inmediatamente en aproximadamente 30 % de longitud. La contracción del tejido da como resultado la tensión deseada para la corrección de una o más de estas regiones de interés. El tratamiento mediante calentamiento localizado de regiones de estrías a temperaturas de aproximadamente 60-90 °C, sin daño significativo al tejido superpuesto, subyacente o circundante, así como el suministro preciso de energía terapéutica a las estrías y la obtención de retroalimentación de la región de interés antes, durante y después del tratamiento se pueden lograr adecuadamente en los ejemplos, que no representan la invención, mediante el sistema de tratamiento (100). La tensión posterior del tejido en la RDI (106) da como resultado la minimización de los defectos cosméticos en la región objetivo de la RDI (106) y un aspecto mejorado de las capas superficiales superpuestas de la piel.
La región de interés (106) puede variar de un tratamiento de mejora cosmética a otro.
Por ejemplo, la RDI (106) para mastopexia según el ejemplo, que no representa la invención, incluye, por ejemplo, la fascia muscular, los ligamentos de Cooper, los ligamentos suspensorios y/u otros ligamentos. Estos son típicamente de aproximadamente 0,5 - 2,5 cm de profundidad y varían en profundidad y espesor en posiciones diferentes.
Según la invención, en el procedimiento para tratar la celulitis, mediante tratamiento de la RDI (106), el sistema de transductor (102) está configurado para suministrar uno o más campos de energía a una parte inferior de dermis y protuberancias proximales de lóbulos de grasa hacia dicha dermis. Adicionalmente, el uno o más campos de energía se pueden suministrar a una capa subcutánea. Esta energía puede favorecer uno o más efectos, por ejemplo, ablación de tejido existente y síntesis de proteínas. En realizaciones ejemplares, que no representan la invención, la energía puede favorecer efectos, tales como la ruptura de cúmulos de adipocitos y el estiramiento de los enlaces fibrosos. En realizaciones ejemplares adicionales de la invención, la energía puede favorecer efectos, tales como mejora del drenaje linfático, estimulación de la evacuación de productos de la descomposición de la grasa y/o permeabilidad celular mejorada con el fin de tratar la celulitis.
En otros ejemplos más, que no representan la invención, la RDI (106) para el tratamiento de trastornos de los vasos sanguíneos puede ser, por ejemplo, arañas vasculares, vasos sanguíneos congestionados, vasos sanguíneos faciales y/o una oclusión dentro de un vaso sanguíneo que sea de varios milímetros de tamaño y hasta 70 mm de profundidad. La RDI (106) también puede incluir otros defectos de los vasos sanguíneos en el rostro y el cuerpo.
En cuanto al tratamiento de estrías en los ejemplos, que no representan la invención, la RDI (106) puede incluir tejido conjuntivo que se puede tensar permanentemente mediante tratamiento térmico a temperaturas de aproximadamente 60 °C que provoca que el tejido se contraiga inmediatamente en aproximadamente 30 % de longitud. La contracción del tejido da como resultado la tensión y reconfiguración deseadas para la corrección de estrías. El tratamiento mediante calentamiento localizado de regiones de estrías a temperaturas de aproximadamente 60-90 °C, sin daño significativo al tejido superpuesto, subyacente o circundante, así como el suministro preciso de energía terapéutica a las estrías y la obtención de retroalimentación de la región de interés antes, durante y después del tratamiento se pueden lograr adecuadamente a través del sistema de tratamiento (100). La tensión posterior del tejido en la RDI (106) da como resultado la minimización de las estrías en la región objetivo de la RDI (106) y un aspecto mejorado de las capas superficiales superpuestas de la piel.
En otra realización, el sistema de transductor ejemplar (100) también puede estar configurado para, primero, la adquisición de imágenes y visualización de la región de interés (106) para la localización del área de tratamiento y estructuras circundantes, segundo, el suministro de energía de ultrasonidos focalizada, no focalizada o desfocalizada a una profundidad, una distribución, una regulación del tiempo y un nivel de energía para conseguir el efecto terapéutico deseado de ablación térmica para tratar la celulitis y, tercero, para monitorizar el área de tratamiento y estructuras circundantes antes durante y después de la terapia para planificar y evaluar los resultados y/o proporcionar retroalimentación al sistema de control (102) y/o un operador.
Los sistemas de tratamiento de mejora cosmética ejemplares (100) están configurados para proporcionar el tratamiento específico adaptado al resultado cosmético específico deseado. Por ejemplo, en lo que respecta a un ejemplo, que no representa la invención y que se ilustra en la FIG. 2A, un sistema de mastopexia no invasivo (200) puede comprender un sistema de transductor de terapia (202), un sistema de control (204) y una pantalla (206) para
proporcionar tratamiento a una región de interés (RDI) (210).
La sonda transductora (202) puede estar configurada en una disposición de sonda para proporcionar tratamiento. La sonda transductora (202) también puede estar configurada con diversos dispositivos mecánicos para permitir el tratamiento y terapia óptimos, por ejemplo, para proporcionar el posicionamiento controlado del transductor de terapia por ultrasonidos (202), tal como mediante una configuración no invasiva y mediante control por el sistema de control (204). Además, la sonda transductora (202) también puede estar configurada para matrices unidimensionales, bidimensionales y/o anulares y/o para aplicaciones de tratamiento tridimensionales tales como la descrita en la presente memoria.
La soda de transductor ejemplar (202) puede estar configurada para que se controle y/o haga funcionar adecuadamente de diversas formas. Por ejemplo, la sonda transductora (202) puede estar configurada para uso dentro de un sistema de tratamiento por ultrasonidos, un sistema de adquisición de imágenes por ultrasonidos, un sistema de monitorización por ultrasonidos, y/o cualquier combinación de un sistema de tratamiento, adquisición de imágenes y/o monitorización por ultrasonidos que incluye susbsitemas de control del movimiento.
El sistema de control (204) puede estar configurado con uno o más subsistemas, procesadores, dispositivos de entrada, pantallas y/o similares. La pantalla (206) puede estar configurada para adquirir imágenes y/o monitorizar la RDI (210) y/o cualquier subregión particular dentro de la RDI (210). La pantalla (206) puede estar configurada para la adquisición de imágenes bidimensionales, tridimensionales, en tiempo real, analógicas y/o de cualquier otro tipo. Las realizaciones ejemplares del sistema de control (204) y la pantalla (206) se describen con más detalle en la presente memoria.
La región de interés (210) puede comprender una capa superficial, tal como, por ejemplo, la epidermis y/o dermis y grasa subcutánea. En realizaciones ejemplares, que no representan la invención, la región de tejido (210) puede comprender ligamentos de Cooper y/o músculo. Como los ligamentos de Cooper son típicamente de aproximadamente 0,5 - 2,5 cm de profundidad, la RDI (210) puede comprender, en los ejemplos que no representan la invención, un área de interés extensa. Además, como los ligamentos de Cooper varían en profundidad y espesor en posiciones diferentes, el sistema de transductor (200) está configurado para facilitar la adquisición de imágenes y el tratamiento en profundidades y posiciones de tejido diferentes.
Es decir, el sistema de transductor ejemplar (200) puede estar configurado para proporcionar la adquisición de imágenes transversales bidimensionales de una región (207), presentadas como una imagen (205), con una lesión térmica controlada (209), confinada dentro de la RDI (210). Por ejemplo, mediante tal control espacial y/o temporal, un sistema de tratamiento ejemplar (200) puede permitir que las regiones de lesión térmica posean una forma y tamaño arbitrarios y que el tejido se trate de una forma controlada.
Según una realización ejemplar, la sonda transductora (202) puede comprender un transductor de profundidad variable que incluye un elemento de transducción que tiene una capa piezoeléctricamente activa, capas de adaptación y/u otros materiales para generar radiación o energía acústica. En otras palabras, la sonda transductora (202) puede estar configurada para funcionar a frecuencias moderadas para proporcionar el tratamiento a una profundidad variable dentro de la RDI (210). Asimismo, la sonda transductora (202) también puede estar configurada como un transductor multidireccional. En la presente memoria se describen con detalle diversas configuraciones de la sonda transductora (202).
La sonda transductora de ultrasonidos ejemplar (202) puede estar configurada de diversas formas para proporcionar diversas funciones. En una realización, la sonda transductora (202) puede estar configurada para generar potencia acústica alta con fines de tratamiento y a la vez proporcionar buenas funciones de adquisición de imágenes. Por ejemplo, para permitir que el tamaño del lugar de tratamiento se controle óptimamente a diversas profundidades de tratamiento, una realización ejemplar de la presente invención puede comprender un transductor configurado en una matriz de subelementos, cada subelemento configurado para procesar ondas acústicas con un ancho de banda suficiente para una resolución axial buena.
Por ejemplo, un sistema de transductor de terapia por ultrasonidos puede estar configurado para el control espacial y/o control temporal cambiando la posición del transductor, su frecuencia de transmisión, profundidad focal, amplitud de transmisión y la regulación del tiempo del transductor ejemplar. Según diversas realizaciones ejemplares, la sonda transductora (202) puede estar configurada para el control espacial, tal como cambiando la distancia de la sonda transductora (202) a una superficie reflectante, o cambiando los ángulos de la energía focalizada o no focalizada a regiones de tejido (205 y/o 207) y/o configurada para el control temporal, tal como controlando cambios en la frecuencia, amplitud de transmisión y regulación del tiempo de la sonda transductora (202) mediante el sistema de control (204). Como resultado, los cambios en la posición de la región de tratamiento, la forma y el tamaño y/o volumen del lugar o región de interés, así como en las condiciones térmicas, se pueden controlar dinámicamente
frente al tiempo.
Además del control espacial, el sistema de control (204) y/o la sonda transductora (202) también pueden estar configurados para el control temporal, tal como mediante el ajuste y la optimización de los niveles de amplitud de transmisión, las selecciones de frecuencia/forma de onda y las secuencias de regulación del tiempo y otras características de la transmisión de energía para controlar el tratamiento del tejido. El control espacial y/o temporal también se puede facilitar mediante disposiciones de retroalimentación de circuito abierto y circuito cerrado, tal como mediante la monitorización de diversas características posicionales y temporales.
Según otra realización ejemplar de la presente invención, el sistema de control (204) y/o la sonda transductora (202) también pueden estar configurados para generar potencia acústica alta con fines de tratamiento y a la vez proporcionar también buenas funciones de adquisición de imágenes. Por ejemplo, para permitir que el tamaño del lugar de tratamiento se controle óptimamente a diversas profundidades de tratamiento, una realización ejemplar de la presente invención puede comprender un transductor configurado en una matriz de subelementos, cada subelemento configurado para procesar ondas acústicas con un ancho de banda suficiente para una resolución axial buena tal como se describe en la solicitud de EE. UU. con n.° de serie 10/944.500, SYsTe MAND METHOD FOR VARIABLE DEPTH ULTRASOUND TREATMENT, presentada el 16 de septiembre de 2004, que tiene al menos un inventor en común.
Según otro aspecto de la presente invención, el sistema ejemplar de tratamiento terapéutico por ultrasonidos (200) también puede estar configurado para proporcionar calentamiento, enfriamiento y/o adquisición de imágenes terapéuticos de una región de tratamiento, así como para monitorizar acústicamente el perfil de temperatura o monitorizar otro parámetro del tejido de la región de tratamiento y las proximidades generales de la misma. Por ejemplo, según una realización ejemplar, el sistema de tratamiento terapéutico por ultrasonidos (200) puede estar configurado con una disposición de retroalimentación dinámica basada en monitorizar la temperatura u otros parámetros del tejido, y/o basada en información de la adquisición de imágenes para ajustar adecuadamente las características espaciales y/o temporales del transductor de terapia por ultrasonidos.
Con el fin de facilitar la adquisición de imágenes, la monitorización, el tratamiento y/o el control de temperatura en la RDI (210), el sistema de control (204) puede estar configurado con diversos componentes y dispositivos. Por ejemplo, la sonda transductora (202) puede estar configurada para proporcionar la adquisición de imágenes transversales bidimensionales de una región (207), por ejemplo, como se presentan en una imagen (205) dentro de una pantalla (206). En realizaciones ejemplares, que no representan la invención, la sonda transductora (202) puede estar configurada para generar una lesión térmica controlada (209), confinada proximalmente a los ligamentos de Cooper y la parte superior del músculo. El sistema terapéutico de ultrasonidos (200) puede estar configurado para evitar el tejido intermedio que contiene estructuras vitales, así como tejido posterior a la lesión conformada (209). Una terapia del sistema de tratamiento de la celulitis ejemplar se ilustra en una realización ejemplar en la FIG. 2B. El sistema de transductor para celulitis (200) incluye una sonda transductora (202) conectada a un sistema de control (204) y una pantalla (206), en combinación puede proporcionar terapia, adquisición de imágenes y/o monitorización de la temperatura u otros parámetros del tejido a una región de interés (210).
La región de interés (210) puede estar compuesta por capa superficial (epidermis/dermis), grasa subcutánea, lóbulos y músculo. El sistema de transductor ejemplar (200) está configurado para proporcionar la adquisición de imágenes transversales bidimensionales de la región (207), presentadas como una imagen (205), con una lesión térmica controlada (209), confinada aproximadamente a la porción proximal de lóbulos de grasa y la porción inferior de dermis.
En los ejemplos, que no representan la invención, el sistema de transductor (200) se puede usar para proporcionar una acción mecánica de ultrasonidos para romper físicamente cúmulos de adipocitos y estirar los enlaces fibrosos. Esta acción mecánica también mejorará el drenaje linfático, lo que estimula la evacuación de productos de la descomposición de la grasa. Es decir, los ultrasonidos pueden facilitar el movimiento de los músculos y tejidos blandos dentro de la RDI (210), lo que facilita de ese modo el aflojamiento de los depósitos de grasa y/o la ruptura del tejido fibroso que circunda los depósitos de grasa.
Además, según la invención, el sistema de transductor (200) suministra diversos niveles terapéuticos de ultrasonidos para aumentar la velocidad a la que se metaboliza la grasa, según la ley de Arrhenius: Y = A • e-B/T, donde Y es el rendimiento de la reacción metabólica, A y B son constantes, y T es la temperatura en grados Kelvin. Según la invención, el sistema de transductor (200) suministra diversos niveles terapéuticos de ultrasonidos para aumentar la velocidad a la que se metaboliza la grasa. Es decir, según la ley de Arrhenius, el rendimiento, Y, de una reacción metabólica es función de la temperatura, T. Y = A • e-B/T, donde A y B son constantes y T es la temperatura en grados Kelvin. Por tanto, el tratamiento por ultrasonidos del sistema de transductor (200), que varía de
aproximadamente 750 kHz a 20 MHz, puede aumentar la temperatura en el área de tratamiento, lo que aumenta de ese modo el rendimiento de la reacción metabólica para ese área de tratamiento.
Un sistema de tratamiento de trastornos de los vasos sanguíneos, que es un ejemplo, que no representa la invención, se ilustra en una realización ejemplar en la FIG. 2C. El sistema de tratamiento de trastornos de los vasos sanguíneos (200) incluye un transductor/sonda (202) conectado a un sistema de control (204) y una pantalla (206), en combinación puede proporcionar terapia, adquisición de imágenes y/o monitorización de la temperatura u otros parámetros del tejido a una región de interés (210).
La región de interés (210) puede comprender cualquier vaso o grupo de vasos particular y/o cualquier porción dentro de un vaso. El sistema de transductor (200) del ejemplo, que no representa la invención, está configurado para proporcionar la adquisición de imágenes transversales bidimensionales de la región (207), presentadas como una imagen (205), con una lesión térmica controlada confinada aproximadamente a aproximadamente 1 a 5 mm de diámetro con el fin de facilitar la ablación del vaso y aproximadamente 3 a 20 mm de diámetro con el fin de facilitar la ablación del vaso. La lesión puede ser de cualquier forma para proporcionar la ablación del vaso sanguíneo. Por ejemplo, las lesiones esféricas, elipsoidales y/o en forma de puro pueden ser eficaces para fines de ablación. Los procedimientos para tratar vasos sanguíneos se describen adicionalmente en la presente memoria.
Un sistema ejemplar de tratamiento de la celulitis (200) se ilustra en las FIG. 2D-2F. El sistema ejemplar de tratamiento de la celulitis (200), en lo que respecta a la FIG. 2D, comprende un área de adquisición de imágenes (222) y una pantalla (206) de la región de interés (210) para la localización del área de tratamiento y estructuras circundantes. El sistema ejemplar de tratamiento de la celulitis (200) está configurado para suministrar al menos una de energía de ultrasonidos focalizada, no focalizada o desfocalizada (220) a una profundidad, una distribución, una regulación del tiempo y un nivel de energía para conseguir el efecto terapéutico deseado de ablación térmica para tratar la estría (232), y para monitorizar el área de tratamiento y estructuras circundantes antes, durante y después de la terapia para planificar y evaluar los resultados y/o proporcionar retroalimentación al sistema de control (204) y el operador. La sonda (202) y/o los transductores ejemplares pueden realizar un examen mecánica y/o electrónicamente (226) para identificar zonas de tratamiento a lo largo de un área extensa, y la profundidad de tratamiento (220) se puede ajustar entre un intervalo de aproximadamente 0 a 10 mm, o la profundidad máxima de las estrías o la dermis profunda.
La región de interés (210) puede comprender una capa superficial, tal como, por ejemplo, la epidermis y/o dermis, grasa subcutánea y/o músculo. El sistema de transductor ejemplar (200) puede estar configurado para proporcionar la adquisición de imágenes transversales bidimensionales (222) de una RDI (210), presentadas como una imagen (224), con una lesión térmica controlada (220).
Con el fin de suministrar energía a la RDI (210), la sonda transductora (202) y/o cualesquiera otros transductores pueden realizar un examen mecánica y/o electrónicamente (226) para identificar zonas de tratamiento a lo largo de un área extensa. En una realización, una profundidad de tratamiento (220) se puede ajustar entre un intervalo de aproximadamente 0 a 10 mm, o la profundidad máxima de las estrías o la dermis profunda.
En una realización, el componente de adquisición de imágenes (222) puede comprender una pantalla (206) de la RDI (210) para facilitar la localización del área de tratamiento y estructuras circundantes. La energía (220) se puede suministrar a la RDI (210) usando una sonda transductora (202) configurada para suministrar energía de ultrasonidos focalizada, no focalizada y/o desfocalizada (220) a uno o más parámetros del tratamiento. En la presente memoria se describen diversas configuraciones de la sonda transductora (202). Como se emplea en la presente memoria, la expresión «parámetros del tratamiento» incluye, por ejemplo, una profundidad, una distribución, una regulación del tiempo y/o un nivel de energía usados para conseguir un efecto terapéutico deseado de ablación térmica a la estría (232).
Según otro aspecto de la presente invención, en lo que respecta a la FIG. 2E, un sistema ejemplar de tratamiento de la celulitis (200) puede estar configurado para monitorizar el perfil de temperatura u otros parámetros del tejido de la región de interés (210) y/o zona de tratamiento (220), tales como atenuación, velocidad del sonido, o propiedades mecánicas tales como rigidez y tensión, y ajustar adecuadamente las características espaciales y/o temporales y los niveles de energía del transductor de terapia por ultrasonidos. Los resultados de tales procedimientos de monitorización se pueden indicar en la pantalla (206) por medio de imágenes uni-, bi- o tridimensionales de los resultados de la monitorización (250), o pueden ser tan sencillos como un indicador de tipo acierto o fallo (252), o combinaciones de los mismos. Los procedimientos adicionales de monitorización del tratamiento pueden estar basados en uno o más de temperatura, vídeo, profilometría y/o indicadores de rigidez o tensión o cualquier otro procedimiento de detección adecuado.
Según otra realización ejemplar, en lo que respecta a la FIG. 2F, el sistema ejemplar de tratamiento de la celulitis
(200) puede estar configurado para proporcionar tratamiento a una región de interés de tratamiento extensa (252), que incluye una combinación de tejidos, tales como grasa subcutánea/tejido adiposo (216) y músculo (218), entre otros. Se pueden tratar múltiples de tales tejidos, que incluyen estrías en combinación con al menos uno de epidermis (212), dermis (214), tejido adiposo (216), fascia muscular, músculo (218), pelo, glándulas y vasos sanguíneos dentro de la dermis (214), u otro tejido de interés. Por ejemplo, el tratamiento (220) de estrías se puede realizar en combinación con tratamiento de grasa subcutánea (216) mediante el ajuste adecuado de los parámetros de tratamiento y/o transductores en la sonda (202).
Como se describió anteriormente, los sistemas de control (102 y 204) pueden estar configurados de diversas formas con diversos subsistemas y subcomponentes. En lo que respecta a las FIG. 3A y 3B, según realizaciones ejemplares, un sistema de control ejemplar (300) puede estar configurado para la coordinación y el control de todo el procedimiento de tratamiento terapéutico según la configuración ajustable realizada por un usuario del sistema de tratamiento terapéutico. Por ejemplo, el sistema de control (300) puede comprender adecuadamente componentes de fuente de potencia (302), componentes de detección y monitorización (304), controles de enfriamiento y acoplamiento (306), y/o componentes de procesamiento y lógica de control (308). El sistema de control (300) puede estar configurado y optimizado de una variedad de formas con más o menos subsistemas y componentes para implementar el sistema terapéutico para mastopexia no invasiva, y la realización en las FIG. 3a y 3B sirve únicamente para fines ilustrativos.
Por ejemplo, para los componentes de abastecimiento de potencia (302), el sistema de control (300) puede comprender una o más fuentes de alimentación de corriente continua (CC) (303) configuradas para proporcionar energía eléctrica para todo el sistema de control (300), lo que incluye la potencia requerida por un amplificador/transmisor electrónico del transductor (312). También se puede proporcionar un dispositivo de detección de corriente CC (305) para confirmar el nivel de potencia que va a los amplificadores/transmisores (312) con fines de seguridad y monitorización.
Los amplificadores/transmisores (312) pueden comprender amplificadores y/o transmisores de potencia multicanal o monocanal. Según una realización ejemplar para configuraciones de la matriz del transductor, los amplificadores/transmisores (312) también pueden estar configurados con un formador de haz para facilitar la focalización de la matriz. Un formador de haz ejemplar se puede excitar eléctricamente mediante un sintetizador de forma de onda controlada por oscilador/digitalmente (310) con lógica de conmutación relacionada.
Los componentes de abastecimiento de potencia también pueden incluir diversas configuraciones de filtrado (314). Por ejemplo, se pueden usar filtros armónicos conmutables y/o adaptación a la salida del amplificador/transmisor (312) para aumentar la eficacia y eficiencia de transmisión. También se pueden incluir componentes de detección de potencia (316) para confirmar el funcionamiento y la calibración apropiados. Por ejemplo, se pueden usar componentes de detección de potencia eléctrica y otra energía (316) para monitorizar la cantidad de potencia que va a un sistema de sonda ejemplar.
También se pueden implementar adecuadamente diversos componentes de detección y monitorización (304) dentro del sistema de control (300). Por ejemplo, según una realización ejemplar, los componentes de monitorización, detección y control de interfaz (324) pueden estar configurados para funcionar con diversos sistemas de detección de movimiento implementados dentro de la sonda transductora (104) para recibir y procesar información tal como información acústica u otra información espacial y temporal de una región de interés. Los componentes de detección y monitorización también pueden incluir diversos controles, interconexiones y conmutadores (309) y/o detectores de potencia (316). Tales componentes de detección y monitorización (304) pueden facilitar sistemas de retroalimentación de circuito abierto y/o circuito cerrado dentro del sistema de tratamiento (100).
Por ejemplo, en tal sistema de circuito abierto, un usuario del sistema puede monitorizar adecuadamente la adquisición de imágenes y/u otros parámetros espaciales o temporales y a continuación ajustar o modificar los mismos para lograr un objetivo de tratamiento particular. En lugar de, o en combinación con, las configuraciones de retroalimentación de circuito abierto, un sistema de tratamiento ejemplar puede comprender un sistema de retroalimentación de circuito cerrado, en el que las imágenes y/o los parámetros espaciales/temporales se pueden monitorizar adecuadamente dentro del componente de monitorización para generar señales.
Durante el funcionamiento del sistema de tratamiento (100) de un ejemplo, que no representa la invención, se determina una configuración de la lesión de un tamaño, una forma y una orientación seleccionados. Con base en esa configuración de la lesión, se seleccionan uno o más parámetros espaciales, junto con parámetros temporales adecuados, cuya combinación genera la lesión conformada deseada. El funcionamiento del transductor se puede iniciar a continuación para proporcionar la lesión o lesiones conformadas. También se pueden implementar sistemas de retroalimentación de circuito abierto y/o cerrado para monitorizar las características espaciales y/o temporales, y/u otra monitorización de parámetros del tejido, para controlar adicionalmente las lesiones conformadas.
Se pueden proporcionar sistemas de control del enfriamiento/acoplamiento (306) para retirar calor residual de la sonda ejemplar (104), proporcionar una temperatura controlada en la interfaz del tejido superficial y más profundo, por ejemplo, a sangre y/o tejido, y/o proporcionar acoplamiento acústico de la sonda transductora (104) a la región de interés (106). Tales sistemas de enfriamiento/acoplamiento (306) también pueden estar configurados para funcionar en disposiciones de retroalimentación de circuito tanto abierto como cerrado con diversos componentes de acoplamiento y retroalimentación.
Los componentes de procesamiento y lógica de control (308) pueden comprender diversos procesadores de sistema y lógica de control digital (307), tales como uno o más microcontroladores, microprocesadores, matrices de puertas programables in situ (FPGA), placas de ordenador y componentes asociados, que incluyen firmware y software de control (326), con interfaces para controles del usuario y circuitos de interconexión, así como circuitos de entrada/salida y sistemas para comunicaciones, pantallas, interconexiones, almacenamiento, documentación y otras funciones útiles. El software y firmware del sistema (326) controla toda la inicialización, regulación del tiempo, configuración de niveles, monitorización, monitorización de la seguridad y todas las demás funciones del sistema requeridas para lograr objetivos de tratamiento definidos por el usuario. Además, también se pueden configurar adecuadamente diversos conmutadores de control (308) para controlar el funcionamiento.
Una sonda ejemplar de transductor (104) también puede estar configurada de diversas formas y comprender un número de componentes y piezas reutilizables y/o desechables, en diversas realizaciones, para facilitar su funcionamiento. Por ejemplo, la sonda transductora (104) puede estar configurada dentro de cualquier tipo de carcasa o disposición de sonda transductora para facilitar el acoplamiento del transductor a una interfaz de tejido, comprendiendo tal carcasa diversas formas, contornos y configuraciones en función de la aplicación particular del tratamiento. Por ejemplo, según una realización ejemplar, la sonda transductora (104) se puede presionar contra una interfaz de tejido, mediante lo cual se interrumpe parcial o totalmente la perfusión sanguínea y el tejido se aplana en la región de interés de tratamiento superficial (106). La sonda transductora (104) puede comprender cualquier tipo de adaptación tal como, por ejemplo, adaptación eléctrica, que puede ser conmutable eléctricamente; circuitos de multiplexor y/o circuitos de selección de apertura/elemento; y/o dispositivos de identificación de la sonda, para certificar la manipulación de la sonda, la adaptación eléctrica, el historial de uso y la calibración del transductor, tal como una o más (memorias) EEPROM en serie. La sonda transductora (104) también puede comprender cables y conectores; mecanismos de movimiento, sensores y codificadores de movimiento; sensores de monitorización térmica; y/o conmutadores de control del usuario y relacionados con el estado, e indicadores tales como LED. Por ejemplo, un mecanismo de movimiento en la sonda (104) se puede usar para crear controlablemente múltiples lesiones, o la detección del propio movimiento de la sonda se puede usar para crear controlablemente múltiples lesiones y/o detener la creación de lesiones, p. ej., por motivos de seguridad si la sonda (104) se sacude o cae repentinamente. Además, se puede usar un brazo codificador de movimiento externo para sujetar la sonda durante el uso, mediante el cual la posición espacial y postura de la sonda (104) se envían al sistema de control para ayudar a crear lesiones controlablemente. Asimismo, según diversas realizaciones ejemplares, se puede integrar otra funcionalidad de detección, tal como perfilómetros u otras modalidades de adquisición de imágenes, en la sonda.
En lo que respecta a las FIG. 4A y 4B, según una realización ejemplar, una sonda transductora (400) puede comprender una interfaz de control (402), un transductor (404), componentes de acoplamiento (406) y componentes de monitorización/detección (408), y/o mecanismo de movimiento (410). Sin embargo, en ejemplos que no representan la invención, la sonda transductora (400) puede estar configurada y optimizada de una variedad de formas con más o menos piezas y componentes para proporcionar energía de ultrasonidos para mastopexia no invasiva, y la realización de las FIG. 4A y 4b sirve únicamente para fines ilustrativos.
Según una realización ejemplar de la presente invención, la sonda transductora (400) está configurada para suministrar energía a lo largo de distribuciones temporales y/o espaciales variables con el fin de proporcionar efectos de la energía e iniciar respuestas en una región de interés. Estos efectos pueden incluir, por ejemplo, efectos térmicos, cavitacionales, hidrodinámicos e inducidos por resonancia sobre el tejido. Por ejemplo, la sonda transductora ejemplar (400) se puede hacer funcionar en uno o más intervalos de frecuencia para proporcionar dos o más efectos de la energía e iniciar una o más respuestas en la región de interés. Además, la sonda transductora (400) también puede estar configurada para suministrar energía plana, desfocalizada y/o focalizada a una región de interés para proporcionar dos o más efectos de la energía e iniciar una o más reacciones. Estas respuestas pueden incluir, por ejemplo, diatermia, hemostasia, revascularización, angiogénesis, crecimiento de tejido interconjuntivo, reforma tisular, ablación de tejido existente, síntesis de proteínas y/o permeabilidad celular mejorada. Estas y otras diversas realizaciones ejemplares para tales tratamiento combinado por ultrasonidos, efectos y respuestas se exponen más a fondo en la solicitud de patente de EE. UU. con n.° de serie 10/950.112, titulada «METHOD AND SYSTEM FOR COMBINED ULTRASOUND TREATMENT», presentada el 24 de septiembre de 2004.
La interfaz de control (402) está configurada para la interconexión con el sistema de control (300) para facilitar el
control de la sonda transductora (400). Los componentes de la interfaz de control (402) pueden comprender selección de multiplexor/apertura (424), redes de adaptación eléctrica conmutables (426), EEPROM en serie y/u otros componentes de procesamiento e información de la adaptación y el uso de la sonda (430) y conectores de la interfaz (432).
Los componentes de acoplamiento (406) pueden comprender diversos dispositivos para facilitar el acoplamiento de la sonda transductora (400) a una región de interés. Por ejemplo, los componentes de acoplamiento (406) pueden comprender un sistema de enfriamiento y acoplamiento acústico (420) configurado para el acoplamiento acústico de energía y señales de ultrasonidos. El sistema de enfriamiento/acoplamiento acústico (420) con posibles conexiones tales como distribuidores se puede utilizar para acoplar el sonido a la región de interés, controlar la temperatura en la interfaz y más profunda, por ejemplo, en sangre y/o tejido, proporcionar la focalización de lentes llenas de líquido, y/o para retirar calor residual del transductor. El sistema de acoplamiento (420) puede facilitar tal acoplamiento mediante el uso de diversos medios de acoplamiento, que incluyen aire y otros gases, agua y otros fluidos, geles, sólidos y/o cualquier combinación de los mismos, o cualquier otro medio que permita que se transmitan señales entre los elementos activos del transductor (412) y una región de interés. Además de proporcionar una función de acoplamiento, según una realización ejemplar, el sistema de acoplamiento (420) también puede estar configurado para proporcionar control de la temperatura durante la aplicación del tratamiento. Por ejemplo, el sistema de acoplamiento (420) puede estar configurado para el enfriamiento controlado de una superficie o región de la interfaz entre la sonda transductora (400) y una región de interés y más allá de la misma controlando adecuadamente la temperatura del medio de acoplamiento. La temperatura adecuada para tal medio de acoplamiento se puede conseguir de diversas formas, y utilizar diversos sistemas de retroalimentación, tales como termopares, termistores o cualquier otro dispositivo o sistema configurado para la medición de la temperatura de un medio de acoplamiento. Tal enfriamiento controlado puede estar configurado para facilitar además el control espacial y/o térmico de la energía de la sonda transductora (400).
Según una realización ejemplar, en lo que respecta adicionalmente a la FIG. 11, se puede proporcionar acoplamiento y enfriamiento acústico (1140) para acoplar acústicamente la energía y las señales de adquisición de imágenes de la sonda transductora (1104) a, y desde, la región de interés (1106), para proporcionar control térmico en la sonda a la interfaz de la región de interés (1110) y más profundo, por ejemplo, en sangre y/o tejido y más profundo, por ejemplo, en sangre y/o tejido, y para retirar el potencial calor residual de la sonda transductora en la región (1144). Se puede proporcionar monitorización de la temperatura en la interfaz de acoplamiento por medio de un sensor térmico (1146) para proporcionar un mecanismo de medición de la temperatura (1148) y control mediante el sistema de control (1102) y un sistema de control térmico (1142). El control térmico puede consistir en enfriamiento pasivo, tal como por medio de disipadores de calor o conducción y convección natural, o por medio de enfriamiento activo, tal como con refrigeradores termoeléctricos Peltier, refrigerantes, o sistemas a base de fluidos compuestos por bomba, depósito de fluido, detección de burbujas, sensor de flujo, canales/tuberías de flujo (1144) y control térmico (1142).
Los componentes de monitorización y detección (408) pueden comprender diversos sensores de movimiento y/o posición (416), sensores de monitorización de la temperatura (418), conmutadores de control del usuario y retroalimentación (414) y otros componentes similares para facilitar el control por el sistema de control (300), p. ej., para facilitar el control espacial y/o temporal mediante disposiciones de retroalimentación de circuito abierto y circuito cerrado que monitorizan diversas características espaciales y temporales.
El mecanismo de movimiento (410) puede comprender funcionamiento manual, disposiciones mecánicas o cualquier combinación de los mismos. Por ejemplo, un mecanismo de movimiento (422) se puede controlar adecuadamente mediante el sistema de control (300), tal como mediante el uso de acelerómetros, codificadores u otros dispositivos de posición/orientación (416), para determinar y permitir el movimiento y las posiciones de la sonda transductora (400). Se puede facilitar movimiento lineal, rotacional o variable, p. ej., en función de la aplicación del tratamiento y la superficie del contorno del tejido.
El transductor (404) puede comprender uno o más transductores. En los ejemplos, que no representan la invención, el uno o más transductores están configurados para producir lesiones conformadas de lesión térmica en tejido humano superficial dentro de una región de interés mediante el control espacial y temporal preciso de la deposición de energía acústica. En realizaciones ejemplares, el transductor (404) puede comprender uno o más elementos de transducción y/o lentes (412). Los elementos de transducción pueden comprender un material piezoeléctricamente activo, tal como zirconato-titanato de plomo (PZT), o cualquier otro material piezoeléctricamente activo, tal como cerámica, cristal, plástico y/o materiales compuestos piezoeléctricos, así como niobato de litio, titanato de plomo, titanato de bario y/o metaniobato de plomo. Además de, o en lugar de, un material piezoeléctricamente activo, el transductor (404) puede comprender cualesquiera otros materiales configurados para generar radiación y/o energía acústica. El transductor (404) también puede comprender una o más capas de adaptación configuradas junto con el elemento de transducción, tal como acopladas al material piezoeléctricamente activo. Se pueden emplear capas de
adaptación acústica y/o amortiguación, según sea necesario, para conseguir la respuesta electroacústica deseada.
Según una realización ejemplar, el espesor del elemento de transducción del transductor (404) puede estar configurado para que sea uniforme. Es decir, un elemento de transducción (412) puede estar configurado para que tenga un espesor que es sustancialmente el mismo en todo él. Según otra realización ejemplar, el espesor de un elemento de transducción (412) también puede estar configurado para que sea variable. Por ejemplo, el(los) elemento(s) de transducción (412) del transductor (404) pueden estar configurados para que tengan un primer espesor seleccionado para proporcionar una frecuencia de funcionamiento central de aproximadamente 2 MHz a 50 MHz, tal como para aplicaciones de adquisición de imágenes. El elemento de transducción (412) también puede estar configurado con un segundo espesor seleccionado para proporcionar una frecuencia de funcionamiento central de aproximadamente 7 kHz a 50 MHz, y típicamente entre 1 MHz y 25 MHz para la aplicación de terapia. El transductor (404) puede estar configurado como un transductor de banda ancha único excitado con al menos dos o más frecuencias para proporcionar una salida adecuada para generar una respuesta deseada. El transductor (404) también puede estar configurado como dos o más transductores individuales, en el que cada transductor comprende uno o más elementos de transducción. El espesor de los elementos de transducción puede estar configurado para proporcionar frecuencias de funcionamiento central en un intervalo de tratamiento deseado.
El transductor (404) puede estar compuesto por uno o más transductores individuales en cualquier combinación de transductores monoelemento, multielemento o de matriz focalizados, planos o no focalizados, que incluyen matrices 1D, 2D y anulares; matrices lineales, curvilíneas, sectoriales o esféricas; fuentes esféricamente, cilíndricamente y/o electrónicamente focalizadas, desfocalizadas y/o lenticulares. Por ejemplo, en lo que respecta a una realización ejemplar representada en la FIG. 5, el transductor (500) puede estar configurado como una matriz acústica para facilitar la focalización por desfase. Es decir, el transductor (500) puede estar configurado como una matriz de aperturas electrónicas que se pueden hacer funcionar mediante una variedad de fases por medio de retardos electrónicos variables. Mediante el término «hacer funcionar», las aperturas electrónicas del transductor (500) se pueden manipular, transmitir, usar y/o configurar para producir y/o suministrar un haz de energía correspondiente a la variación de fase provocada por el retardo electrónico. Por ejemplo, estas variaciones de fase se pueden usar para suministrar haces desfocalizados, haces planos y/o haces focalizados, cada uno de los cuales se puede usar en combinación para conseguir efectos fisiológicos diferentes en una región de interés (510). El transductor (500) puede comprender adicionalmente cualquier software y/u otro hardware para generar, producir y/o transmitir una matriz de aperturas en fase con uno o más retardos electrónicos.
El transductor (500) también puede estar configurado para proporcionar tratamiento focalizado a una o más regiones de interés usando diversas frecuencias. Con el fin de proporcionar tratamiento focalizado, el transductor (500) puede estar configurado con uno o más dispositivos de profundidad variable para facilitar el tratamiento. Por ejemplo, el transductor (500) puede estar configurado con dispositivos de profundidad variable descritos en la solicitud de patente de EE. UU. 10/944.500, titulada «System and Method for Variable Depth Ultrasound», presentada el 16 de septiembre de 2004, que tiene al menos un inventor en común y un cesionario en común con la presente solicitud. Además, el transductor (500) también puede estar configurado para tratar una o más RDI (510) adicionales mediante la activación de la adquisición de imágenes subarmónicas o de eco de impulsos, como se describe en la solicitud de patente de EE. UU. 10/944,499, titulada «Method and System for Ultrasound Treatment with a Multi-directional Transducer», presentada el 16 de septiembre de 2004, que tiene al menos un inventor en común y un cesionario en común con la presente solicitud.
Asimismo, también se puede usar cualquier variedad de lentes mecánicas o lentes de enfoque variable, p. ej., lentes llenas de líquido, para enfocar y/o desenfocar el campo de sonido. Por ejemplo, en lo que respecta a realizaciones ejemplares representadas en las FIG. 6A y 6B, el transductor (600) también puede estar configurado con una matriz de focalización electrónica (604) en combinación con uno o más elementos de transducción (606) para facilitar flexibilidad aumentada en el tratamiento de la RDI (610). La matriz (604) puede estar configurada de una forma similar al transductor (502). Es decir, el transductor (604) puede estar configurado como una matriz de aperturas electrónicas que se pueden hacer funcionar mediante una variedad de fases por medio de retardos electrónicos variables, por ejemplo, T1, T2...Tj. Mediante el término «hacer funcionar», las aperturas electrónicas de la matriz (604) se pueden manipular, transmitir, usar y/o configurar para producir y/o suministrar energía de una forma correspondiente a la variación de fase provocada por el retardo electrónico. Por ejemplo, estas variaciones de fase se pueden usar para suministrar haces desfocalizados, haces planos y/o haces focalizados, cada uno de los cuales se puede usar en combinación para conseguir efectos fisiológicos diferentes en la región de interés (610).
Los elementos de transducción (606) pueden estar configurados para que sean cóncavos, convexos y/o planos. Por ejemplo, en una realización ejemplar representada en la FIG. 6A, los elementos de transducción (606) están configurados para que sean cóncavos con el fin de proporcionar energía focalizada para el tratamiento de la RDI (610). Realizaciones adicionales se describen en la solicitud de patente de EE. UU. 10/944.500, titulada «Variable Depth Transducer System and Method».
En otra realización ejemplar, representada en la FIG. 6B, los elementos de transducción (606) pueden estar configurados para que sean sustancialmente planos con el fin de proporcionar energía sustancialmente uniforme a la RDI (610). Mientras que las FIG. 6A y 6B representan realizaciones ejemplares con elementos de transducción (604) configurados como cóncavos y sustancialmente planos, respectivamente, los elementos de transducción (604) pueden estar configurados para que sean cóncavos, convexos y/o sustancialmente planos. Además, los elementos de transducción (604) pueden estar configurados para que sean cualquier combinación de estructuras cóncavas, convexas y/o sustancialmente planas. Por ejemplo, un primer elemento de transducción puede estar configurado para que sea cóncavo, mientras que un segundo elemento de transducción puede estar configurado para que sea sustancialmente plano.
En lo que respecta a las FIG. 8A y 8B, el transductor (404) puede estar configurado como matrices de un único elemento, en el que un único elemento (802), p. ej., un elemento de transducción de diversas estructuras y materiales, puede estar configurado con una pluralidad de máscaras (804), comprendiendo tales máscaras cerámica, metal o cualquier otro material o estructura para enmascarar o alterar la distribución de energía desde el elemento (802), lo que crea una matriz de distribuciones de energía (808). Las máscaras (804) se pueden acoplar directamente al elemento (802) o separar mediante un separador (806), tal como cualquier material adecuadamente sólido o líquido.
Un transductor ejemplar (404) también puede estar configurado como una matriz anular para proporcionar energía acústica plana, focalizada y/o desfocalizada. Por ejemplo, en lo que respecta a las FIG. 10A y 10B, según una realización ejemplar, una matriz anular (1000) puede comprender una pluralidad de anillos (1012, 1014, 1016 a N). Los anillos (1012, 1014, 1016 a N) se pueden aislar mecánica o eléctricamente en un conjunto de elementos individuales y pueden crear ondas planas, focalizadas o desfocalizadas. Por ejemplo, tales ondas se pueden centrar sobre ejes, tal como mediante procedimientos de ajuste de los retardos de transmisión y/o recepción correspondientes, T1, T2, T3... Tn. Un enfoque electrónico se puede mover adecuadamente a lo largo de diversas posiciones de profundidad, y puede permitir la fuerza o firmeza del haz variable, mientras que un desenfoque electrónico puede tener cantidades variables de desenfoque. Según una realización ejemplar, también se puede proporcionar una lente y/o matriz anular de forma convexa o cóncava (1000) para ayudar a focalizar o desfocalizar de tal forma que se pueda reducir retardo diferencial. Se puede implementar el movimiento de la matriz anular (1000) en una, dos o tres dimensiones, o a lo largo de cualquier trayectoria, tal como mediante el uso de sondas y/o cualquier mecanismo de brazo robótico, para examinar y/o tratar un volumen o cualquier espacio correspondiente dentro de una región de interés.
El transductor (404) también puede estar configurado en otras configuraciones anulares o no matriciales para funciones de adquisición de imágenes/terapia. Por ejemplo, en lo que respecta a las FIG. 10C-10F, un transductor puede comprender un elemento de adquisición de imágenes (1012) configurado con elemento(s) de terapia (1014). Los elementos (1012 y 1014) pueden comprender un elemento de transducción único, p. ej., un elemento de adquisición de imágenes/transductor combinado, o se pueden aislar eléctricamente (1022) elementos individuales dentro del mismo elemento de transducción o entre elementos de adquisición de imágenes y terapia individuales, y/o pueden comprender un separador (1024) u otras capas de adaptación, o cualquier combinación de los mismos. Por ejemplo, en lo que respecta en particular a la FIG. 10F, un transductor puede comprender un elemento de adquisición de imágenes (1012) que tiene una superficie (1028) configurada para la focalización, desfocalización o distribución de energía plana, con elementos de terapia (1014) que incluyen una lente de configuración graduada configurada para la focalización, desfocalización o distribución de energía plana.
Según otro aspecto de la invención, la sonda transductora (400) puede estar configurada para proporcionar aplicaciones del tratamiento uni-, bi- o tridimensionales para focalizar la energía acústica a una o más regiones de interés. Por ejemplo, como se comentó anteriormente, la sonda transductora (400) se puede fragmentar adecuadamente para formar una matriz unidimensional, p. ej., un transductor que comprende una única matriz de elementos de subtransducción.
Según otra realización ejemplar, la sonda transductora (400) se puede fragmentar adecuadamente en dos dimensiones para formar una matriz bidimensional. Por ejemplo, en lo que respecta a la FIG. 9, una matriz bidimensional ejemplar (900) se puede fragmentar adecuadamente en una pluralidad de porciones bidimensionales (902). Las porciones bidimensionales (902) pueden estar adecuadamente configuradas para enfocar sobre la región de tratamiento a una cierta profundidad y, por tanto, proporcionar los cortes correspondientes (904) de la región de tratamiento. Como resultado, la matriz bidimensional (900) puede proporcionar un corte bidimensional del lugar de la imagen de una región de tratamiento, lo que proporciona, por tanto, un tratamiento bidimensional.
Según otra realización ejemplar, la sonda transductora (400) puede estar adecuadamente configurada para proporcionar tratamiento tridimensional. Por ejemplo, para proporcionar tratamiento tridimensional de una región de
interés, en lo que respecta de nuevo a la FIG. 3, un sistema tridimensional puede comprender una sonda transductora (400) configurada con un algoritmo adaptativo, tal como, por ejemplo, uno que utiliza software gráfico tridimensional, contenido en un sistema de control, tal como el sistema de control (300). El algoritmo adaptativo está configurado adecuadamente para recibir información de la adquisición de imágenes tridimensionales, la temperatura y/o el tratamiento relativa a la región de interés, procesar la información recibida y a continuación proporcionar la información correspondiente de la adquisición de imágenes tridimensionales, la temperatura y/o el tratamiento.
Según una realización ejemplar, en lo que respecta de nuevo a la FIG. 9, un sistema tridimensional ejemplar puede comprender una matriz bidimensional (900) configurada con un algoritmo adaptativo para recibir adecuadamente (904) cortes de diferentes planos de la imagen de la región de tratamiento, procesar la información recibida y a continuación proporcionar información volumétrica (906), p. ej., información de la adquisición de imágenes tridimensionales, la temperatura y/o el tratamiento. Asimismo, después de procesar la información recibida con el algoritmo adaptativo, la matriz bidimensional (900) puede proporcionar adecuadamente calentamiento terapéutico a la región volumétrica (906) según se desee.
Alternativamente, en lugar de utilizar un algoritmo adaptativo, tal como software tridimensional, para proporcionar información de la adquisición de imágenes tridimensionales y/o la temperatura, un sistema tridimensional ejemplar puede comprender un único transductor (404) configurado dentro de una disposición de sonda para que funcione desde diversas posiciones rotacionales y/o translacionales con respecto a una región objetivo.
Para ilustrar adicionalmente las diversas estructuras para el transductor (404), en lo que respecta a la FIG. 7, el transductor de terapia por ultrasonidos (700) puede estar configurado para un único enfoque, una matriz de enfoques, un locus de enfoques, un enfoque lineal y/o patrones de difracción. El transductor (700) también puede comprender elementos únicos, elementos múltiples, matrices anulares, matrices uni-, bi- o tridimensionales, transductores de banda ancha y/o combinaciones de los mismos, con o sin lentes, componentes acústicos y focalización mecánica y/o electrónica. Los transductores configurados como elementos únicos focalizados esféricamente (702), matrices anulares (704), matrices anulares con regiones amortiguadas (706), elementos únicos focalizados en línea (708), matrices lineales 1D (710), matrices curvilíneas 1D de forma cóncava o convexa, con o sin focalización de elevación, matrices 2D y disposiciones espaciales 3D de transductores se pueden usar para realizar funciones de terapia y/o adquisición de imágenes y monitorización acústica. Para cualquier configuración de transductor, la focalización y/o desfocalización puede darse en un plano o dos planos por medio de enfoque mecánico (720), lentes convexas (722), lentes cóncavas (724), lentes compuestas o múltiples (726), de forma plana (728) o forma gradual, tal como se ilustra en la FIG. 10F. Se puede utilizar cualquier transductor o combinación de transductores para tratamiento. Por ejemplo, un transductor anular se puede usar con una porción exterior dedicada a terapia y el disco interior dedicado a la adquisición de imágenes de banda ancha, en el que tal transductor de adquisición de imágenes y transductor de terapia tienen diferentes lentes y diseño acústico, tal como se ilustra en las FIG. 10C-10F.
Se pueden producir lesiones de tratamiento de diversas formas usando las diversas lentes acústicas y diseños de las FIG. 10A-10F. Por ejemplo, se pueden producir lesiones con forma de puro a partir de una fuente focalizada esféricamente y/o lesiones planas a partir de una fuente plana. Las fuentes y matrices planas cóncavas pueden producir una lesión «en forma de V» o elipsoidal. Las matrices electrónicas, tales como una matriz lineal, pueden producir haces acústicos desfocalizados, planos o focalizados que se pueden emplear para formar una amplia variedad de formas de lesión adicionales a diversas profundidades. Una matriz se puede emplear sola o junto con uno o más transductores planos o focalizados. Tales transductores y matrices en combinación producen un intervalo muy amplio de campos acústicos y sus beneficios asociados. Se puede usar una lente o lentes de enfoque fijo y/o enfoque variable para aumentar adicionalmente la flexibilidad del tratamiento. Se puede utilizar una lente de forma convexa, con velocidad acústica inferior a la del tejido superficial, tal como una lente llena de líquido, lente llena de gel o de gel sólido, lente de caucho o material compuesto, con capacidad adecuada de manipulación de la potencia, o se puede utilizar una lente de forma cóncava y perfil bajo compuesta por cualquier material o material compuesto con velocidad mayor que la del tejido. A pesar de que la estructura de la fuente transductora y la configuración pueden facilitar una lesión de una forma particular como se sugirió anteriormente, tales estructuras no se limitan a esas formas particulares, ya que los otros parámetros espaciales, así como los parámetros temporales, pueden facilitar formas adicionales dentro de cualquier estructura y fuente transductora.
Mediante el funcionamiento del sistema de ultrasonidos (100), se pueden realizar procedimientos para mastopexia, tratamiento de la celulitis, tratamiento de trastornos de los vasos sanguíneos y/o tratamiento de la celulitis que pueden facilitar una terapia eficaz y efectiva sin crear una lesión crónica al tejido humano. Por ejemplo, un usuario puede seleccionar primero una o más configuraciones de sonda transductora para tratar una región de interés. El usuario puede seleccionar cualquier configuración de sonda descrita en la presente memoria. Como la región de tratamiento varía de aproximadamente 1 mm a 4 cm para la mastopexia (en procedimientos ejemplares que no representan la invención), de aproximadamente 0 mm a 3,5 cm para el tratamiento de la celulitis (en procedimientos
ejemplares de la invención), de aproximadamente 0 mm a 7cm para el tratamiento de trastornos de los vasos sanguíneos (en procedimientos ejemplares que no representan la invención) y de aproximadamente 0 mm a 1 cm para tratar estrías (en ejemplos que no representan la invención), las sondas transductoras ejemplares pueden incluir, por ejemplo, una matriz anular, un transductor de profundidad variable, un transductor movible mecánicamente, un transductor de forma cilíndrica, una matriz lineal, una matriz 1D, una matriz 2D, una matriz curvilínea, un elemento enmascarado y/o cualquier otra configuración de transductor o combinación de configuraciones de transductor descritas en la presente memoria. Como se emplea en la presente memoria, el término usuario puede incluir una persona, un empleado, un doctor, una enfermera y/o un técnico que utiliza cualquier hardware y/o software u otros sistemas de control.
Una vez que se seleccionan uno o más transductores, el usuario puede adquirir imágenes a continuación de una región de interés con el fin de planificar un protocolo de tratamiento. Adquiriendo imágenes de una región de interés, el usuario puede usar la misma sonda transductora de tratamiento y/o uno o más transductores adicionales para adquirir imágenes de alta resolución de la región de interés. En una realización, el transductor puede estar configurado para facilitar la adquisición de imágenes a alta velocidad a lo largo de una región de interés grande para permitir la adquisición exacta de imágenes a lo largo de una región de interés grande. En otra realización, la adquisición de imágenes de ultrasonidos puede incluir el uso de monitorización del flujo Doppler y/o monitorización del flujo de color. Además, se pueden utilizar otros medios de adquisición de imágenes, tales como IRM, rayos X, TEP, infrarrojos u otros, individualmente o en combinación para la adquisición de imágenes y retroalimentación del tejido superficial y el tejido vascular en la región de interés.
Según otra realización ejemplar, en lo que respecta a la FIG. 12, un sistema de tratamiento ejemplar (200) se puede combinar con diversos sistemas auxiliares para proporcionar funciones adicionales. Por ejemplo, un sistema de tratamiento ejemplar (1200) para tratar una región de interés (1206) puede comprender un sistema de control (1202), una sonda (1204) y una pantalla (1208). El sistema de tratamiento (1200) comprende además una modalidad auxiliar de adquisición de imágenes (1274) y/o una modalidad auxiliar de monitorización (1272) puede estar basada en al menos uno de fotografía u otros procedimientos visuales ópticos, adquisición de imágenes de resonancia magnética (IRM), tomografía computerizada (TC), tomografía de coherencia óptica (TCO), procedimientos electromagnéticos, de microondas o radiofrecuencia (RF), tomografía de emisión de positrones (TEP), procedimientos de visualización, localización o monitorización de la región de interés (1206) por infrarrojos, ultrasonidos, acústicos u otros adecuados, que incluyen mejoras en la adquisición de imágenes/monitorización. Tal mejora en la adquisición de imágenes/monitorización para la adquisición de imágenes por medio de sonda (1204) y sistema de control (1202) podría comprender la adquisición de imágenes de modo M, persistencia, filtrado, color, Doppler y armónicas, entre otras; además, un sistema de tratamiento por ultrasonidos (1270), como fuente de tratamiento primaria, se puede combinar con una fuente de tratamiento secundaria (1276), que incluye una fuente de energía de radiofrecuencia (RF), luz pulsada intensa (LPI), láser, láser infrarrojo, microondas o cualquier otra adecuada.
Como la posición de los ligamentos de Cooper, los vasos sanguíneos, la celulitis y/o las estrías varía de un paciente a otro (debido a la genética, el peso, la edad, etc.), la adquisición de imágenes usando un transductor puede facilitar el seguimiento de la profundidad de tratamiento en un paciente, la adquisición de imágenes de la región de interés y/o la determinación de la longitud y/o posición de uno o más objetivos de tratamiento (es decir, ligamento de Cooper, vaso sanguíneo y/u oclusión de vaso sanguíneo, celulitis y/o estría) en un paciente. Esta información de adquisición de imágenes/seguimiento/determinación también se puede usar para calcular los parámetros de tratamiento por ultrasonidos óptimos para facilitar el nivel deseado de resultados cosméticos.
Es decir, un usuario puede utilizar la información de la adquisición de imágenes para facilitar la planificación de un protocolo de tratamiento. Para planificar el protocolo de tratamiento, el usuario puede elegir una o más características espaciales y/o temporales para proporcionar energía conformada de ultrasonidos a una región de interés. Por ejemplo, el usuario puede seleccionar una o más características espaciales que controlar, que incluyen, por ejemplo, el uso de uno o más transductores, uno o más mecanismos de focalización mecánica y/o electrónica, uno o más elementos de transducción, una o más posiciones de colocación del transductor con respecto a la región de interés, uno o más sistemas de retroalimentación, uno o más brazos mecánicos, una o más orientaciones del transductor, una o más temperaturas de tratamiento, uno o más mecanismos de acoplamiento y/o similares.
Además, el usuario puede elegir una o más características temporales que controlar con el fin de facilitar el tratamiento de la región de interés. Por ejemplo, el usuario puede seleccionar y/o variar el tiempo de tratamiento, la frecuencia, potencia, energía, amplitud y/o similares con el fin de facilitar el control temporal. Para obtener más información acerca de la selección y el control de las características espaciales y temporales de los ultrasonidos, véase la solicitud de EE. UU. con n.° de serie 11/163.148, titulada «Method and System for Controlled Thermal Injury», presentada el 6 de octubre de 2005.
Después de finalizar la planificación de un protocolo de tratamiento, el protocolo de tratamiento se puede
implementar. Es decir, se puede usar un sistema de transductor para suministrar energía de ultrasonidos a una región de tratamiento para extirpar el tejido seleccionado con el fin de facilitar el tratamiento cosmético. Suministrando energía, el transductor se puede accionar a una frecuencia seleccionada, una matriz en fase se puede accionar con ciertas distribuciones temporales y/o espaciales, un transductor se puede configurar con uno o más elementos de transducción para proporcionar energía focalizada, desfocalizada y/o plana, y/o el transductor se puede configurar y/o accionar de cualquier otra forma diseñada en adelante en la presente memoria.
En un ejemplo, que no representa la invención, para facilitar la mastopexia, la energía se suministra a una profundidad de tratamiento de aproximadamente 1 mm a 4 cm. La energía puede variar de 1 MHz a aproximadamente 15 MHz, con aplicaciones típicas que varían de 2 MHz a 8 MHz. Con el fin de suministrar energía en este intervalo de tratamiento, el transductor se puede accionar a niveles de energía que varían de 10 W a 150 W o más. Debido al tratamiento focalizado y de alta potencia que proporciona el transductor, los tiempos de tratamiento para una región de interés pueden variar de 20 milisegundos a 2000 milisegundos o más. Como el tiempo de tratamiento y la potencia de tratamiento están interrelacionados, estas variables pueden diferir de un paciente a otro y/o de una región de interés a otra.
En otra realización ejemplar para facilitar el tratamiento de la celulitis, la energía se suministra a una profundidad de tratamiento de aproximadamente 0 mm a 3,5 cm. La energía puede variar de 750 kHz a aproximadamente 10 MHz, con aplicaciones típicas que varían de 2 MHz a 10 MHz. Con el fin de suministrar energía en este intervalo de tratamiento, el transductor se puede accionar a niveles de potencia que varían de 20 W a 200 W. Como el tiempo de tratamiento y la potencia de tratamiento están interrelacionados, estas variables pueden diferir de un paciente a otro y/o de una región de interés a otra.
En un ejemplo, que no representa la invención, para tratar trastornos de los vasos sanguíneos, la energía de ultrasonidos se puede suministrar o depositar a una profundidad selectiva para facilitar la ablación de un vaso. La deposición de energía de ultrasonidos es preferentemente seleccionable, pero no se limita a una superficie de tejido cutáneo que varía de 1 a 5 mm de diámetro a una profundidad de hasta 7 mm. La potencia usada para suministrar la fuente de ultrasonidos en una posición puede variar de, por ejemplo, aproximadamente 5 W a aproximadamente 50 W, y una frecuencia de sonido correspondiente puede variar de aproximadamente 2 MHz a aproximadamente 5 MHz.
En otro ejemplo, que no representa la invención, para tratar trastornos de los vasos sanguíneos, la energía de ultrasonidos se suministra a una profundidad selectiva para facilitar la ablación de una oclusión dentro de un vaso. La deposición de energía de ultrasonidos es preferentemente seleccionable, pero no se limita a una superficie de tejido cutáneo que varía de 3 a 20 mm de diámetro a una profundidad de hasta 70 mm. La potencia usada para suministrar la fuente de ultrasonidos en una posición puede variar de, por ejemplo, aproximadamente 5 W a aproximadamente 200 W, y una frecuencia de sonido correspondiente puede variar de aproximadamente 2 MHz a aproximadamente 20 MHz. Si el tratamiento de la oclusión no aumenta el flujo sanguíneo a través de la región de interés, el sistema de transductor ejemplar se puede usar para extirpar además la oclusión.
En un ejemplo para tratar estrías, que no representa la invención, y en lo que respecta a la FIG. 13A, una o más zonas tratadas (1340) están configuradas para producir regiones de ablación dentro de un volumen de tratamiento en patrones definidos espacialmente. Estos patrones definidos espacialmente incluyen, por ejemplo, un locus discreto de lugares de tratamiento y/o una matriz uni-, bi- o tridimensional de daño. Se pueden desear estos patrones definidos espacialmente en lugar de calentar y destruir un volumen total de tejido. En tal tratamiento, el tejido circundante no dañado ayuda a la curación y recuperación rápidas.
La sonda transductora (204) y/o cualesquiera otros transductores (no mostrados) pueden realizar un examen mecánica y/o eléctricamente (1326) para ampliar la zona de tratamiento a lo largo de un área grande, y la sonda transductora (204) puede escanear o moverse (1328) adicionalmente para ampliar adicionalmente la zona de tratamiento. Las zonas de tratamiento pueden estar situadas a profundidades que varían de aproximadamente 0 a 10 mm, o la profundidad máxima de las estrías o la dermis profunda. Las zonas de tratamiento pueden prolongarse paralelas y/o perpendiculares a estrías y/o tejido circundante para crear patrones anisotrópicos de daño tisular, y/o pueden cubrir una matriz bidimensional que se extiende a lo largo del patrón desfigurante de estrías.
Según otro ejemplo para tratar estrías, que no representa la invención, y en lo que respecta a la FIG. 13B, una zona tratada (1360) se puede extender a lo largo de regiones de la dermis, e incluso se puede extender a la epidermis (1362). Además, a medida que la zona tratada (1360) aumenta en profundidad, su sección transversal puede aumentar de un tamaño pequeño (1364) (aproximadamente un submilímetro) en una región poco profunda cercana a, o en, la epidermis, a un tamaño medio (1366) (aproximadamente un submilímetro a un milímetro) en una zona media cerca de y/o en la dermis media, a tamaño grande (1368) (aproximadamente un milímetro) en zonas profundas cerca de y/o en la dermis profunda. Además, una única zona tratada puede tener una forma que se
expande en sección transversal con la profundidad, y/o estar compuesta por la fusión de varias zonas de tratamiento más pequeñas. La separación de las zonas de tratamiento puede ser del orden del tamaño de la zona de tratamiento, o se puede fusionar horizontalmente zonas o macrozonas.
Una vez que se ha implementado el protocolo de tratamiento, la región de tejido puede tener una o más respuestas como reacción al tratamiento. Por ejemplo, en un ejemplo, que no representa la invención, el tejido responde provocando la contracción adicional de los ligamentos de Cooper y/u otros tejidos de tratamiento. En otra realización, el tejido responde mediante la mejora del drenaje linfático, la evacuación de los productos de descomposición de la grasa. En un ejemplo, que no representa la invención, el tejido responde mediante la creación de una lesión térmica y/o la coagulación de protuberancias proximales de lóbulos de grasa. Como resultado, también puede haber una tensión y/o un alisamiento de la epidermis. En otro ejemplo, que no representa la invención, un vaso sanguíneo responde mediante un flujo sanguíneo aumentado a medida que se desobstruye una oclusión dentro del vaso. En otro ejemplo, que no representa la invención, un vaso sanguíneo responde a la ablación desintegrándose dentro del cuerpo.
Tras el tratamiento, las etapas indicadas anteriormente se pueden repetir una o más veces adicionales para proporcionar resultados óptimos del tratamiento. Las series de tratamientos también pueden permitir que el usuario personalice tratamientos adicionales en respuesta a las respuestas de un paciente al tratamiento por ultrasonidos.
Claims (5)
1. Un procedimiento para el tratamiento cosmético no invasivo de la celulitis, comprendiendo el procedimiento usar un sistema, que está caracterizado por:
una sonda de ultrasonidos (202) configurada para proporcionar una acción mecánica de ultrasonidos para romper cúmulos de grasa y estirar enlaces fibrosos dentro de una región de interés (210) que comprende una porción inferior de una dermis y una protuberancia proximal de lóbulos de grasa, y
en el que la sonda de ultrasonidos (202) está configurada para suministrar energía conformada de ultrasonidos dentro de la región de interés (210) para crear una lesión térmica y coagular la protuberancia proximal de lóbulos de grasa, eliminando de ese modo las protuberancias de grasa hacia la dermis, lo que da como resultado un aspecto mejorado de las capas superficiales de piel superpuestas que presentan celulitis; y
un controlador (204) acoplado a, y en comunicación con, la sonda de ultrasonidos (202) y configurado para controlar la sonda de ultrasonidos (202);
en el que el procedimiento comprende además:
acoplar la sonda de ultrasonidos (202) a la región de interés (210) que comprende por debajo de una superficie de piel que presenta celulitis;
aplicar la energía conformada de ultrasonidos a la región de interés (210), en el que la aplicación de la energía de ultrasonidos comprende:
aumentar una temperatura en al menos una porción de la región de interés (210); lo que
aumenta de ese modo la reacción metabólica de la grasa en la al menos una porción de la región de interés (210); lo que
reduce de ese modo una cantidad de la grasa en la al menos una porción de la región de interés (210) y
mejora cosméticamente la superficie de la piel que presenta celulitis.
2. El procedimiento para la mejora cosmética no invasiva según la reivindicación 1, que comprende además aplicar energía de ultrasonidos a una segunda porción de la región de interés (210).
3. El procedimiento para la mejora cosmética no invasiva según la reivindicación 1, que comprende además adquirir imágenes de al menos una porción de la región de interés (210).
4. El procedimiento para la mejora cosmética no invasiva según la reivindicación 1, en el que la región de interés (210) comprende además al menos una de una parte inferior de una dermis, la protuberancia proximal de lóbulos de grasa hacia una dermis y una capa subcutánea.
5. El procedimiento según la reivindicación 1, en el que la aplicación de la energía de ultrasonidos comprende además suministrar la energía conformada de ultrasonidos en un intervalo de 750 kHz a 20 MHz.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61635504P | 2004-10-06 | 2004-10-06 | |
US61675304P | 2004-10-06 | 2004-10-06 | |
US61729404P | 2004-10-07 | 2004-10-07 | |
US61733804P | 2004-10-07 | 2004-10-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2747361T3 true ES2747361T3 (es) | 2020-03-10 |
Family
ID=43332610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES10185120T Active ES2747361T3 (es) | 2004-10-06 | 2005-10-06 | Procedimiento para la mejora cosmética no invasiva de la celulitis |
Country Status (8)
Country | Link |
---|---|
US (3) | US7615016B2 (es) |
EP (5) | EP1879502A2 (es) |
JP (1) | JP2008522642A (es) |
KR (1) | KR101328103B1 (es) |
CA (1) | CA2583600A1 (es) |
ES (1) | ES2747361T3 (es) |
IL (1) | IL182189A (es) |
WO (1) | WO2006042163A2 (es) |
Families Citing this family (163)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6050943A (en) | 1997-10-14 | 2000-04-18 | Guided Therapy Systems, Inc. | Imaging, therapy, and temperature monitoring ultrasonic system |
US7914453B2 (en) | 2000-12-28 | 2011-03-29 | Ardent Sound, Inc. | Visual imaging system for ultrasonic probe |
US7846096B2 (en) | 2001-05-29 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Method for monitoring of medical treatment using pulse-echo ultrasound |
US20030032898A1 (en) | 2001-05-29 | 2003-02-13 | Inder Raj. S. Makin | Method for aiming ultrasound for medical treatment |
JP4472996B2 (ja) * | 2002-03-15 | 2010-06-02 | ザ・ジェネラル・ホスピタル・コーポレイション | 脂肪組織を選択的に破壊する医療装置を制御する方法 |
US8840608B2 (en) | 2002-03-15 | 2014-09-23 | The General Hospital Corporation | Methods and devices for selective disruption of fatty tissue by controlled cooling |
US8235909B2 (en) | 2004-05-12 | 2012-08-07 | Guided Therapy Systems, L.L.C. | Method and system for controlled scanning, imaging and/or therapy |
US7806839B2 (en) | 2004-06-14 | 2010-10-05 | Ethicon Endo-Surgery, Inc. | System and method for ultrasound therapy using grating lobes |
US7393325B2 (en) | 2004-09-16 | 2008-07-01 | Guided Therapy Systems, L.L.C. | Method and system for ultrasound treatment with a multi-directional transducer |
US7824348B2 (en) | 2004-09-16 | 2010-11-02 | Guided Therapy Systems, L.L.C. | System and method for variable depth ultrasound treatment |
US9011336B2 (en) | 2004-09-16 | 2015-04-21 | Guided Therapy Systems, Llc | Method and system for combined energy therapy profile |
US8444562B2 (en) | 2004-10-06 | 2013-05-21 | Guided Therapy Systems, Llc | System and method for treating muscle, tendon, ligament and cartilage tissue |
US10864385B2 (en) | 2004-09-24 | 2020-12-15 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US8535228B2 (en) | 2004-10-06 | 2013-09-17 | Guided Therapy Systems, Llc | Method and system for noninvasive face lifts and deep tissue tightening |
US7758524B2 (en) | 2004-10-06 | 2010-07-20 | Guided Therapy Systems, L.L.C. | Method and system for ultra-high frequency ultrasound treatment |
EP2409729A1 (en) | 2004-10-06 | 2012-01-25 | Guided Therapy Systems, L.L.C. | Method and system for ultrasound tissue treatment |
US8133180B2 (en) | 2004-10-06 | 2012-03-13 | Guided Therapy Systems, L.L.C. | Method and system for treating cellulite |
US7530356B2 (en) * | 2004-10-06 | 2009-05-12 | Guided Therapy Systems, Inc. | Method and system for noninvasive mastopexy |
US11235179B2 (en) | 2004-10-06 | 2022-02-01 | Guided Therapy Systems, Llc | Energy based skin gland treatment |
US9694212B2 (en) | 2004-10-06 | 2017-07-04 | Guided Therapy Systems, Llc | Method and system for ultrasound treatment of skin |
US8690778B2 (en) | 2004-10-06 | 2014-04-08 | Guided Therapy Systems, Llc | Energy-based tissue tightening |
US20060111744A1 (en) | 2004-10-13 | 2006-05-25 | Guided Therapy Systems, L.L.C. | Method and system for treatment of sweat glands |
US11883688B2 (en) | 2004-10-06 | 2024-01-30 | Guided Therapy Systems, Llc | Energy based fat reduction |
US9827449B2 (en) | 2004-10-06 | 2017-11-28 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
CA2583600A1 (en) | 2004-10-06 | 2006-04-20 | Guided Therapy Systems, L.L.C. | Method and system for noninvasive cosmetic enhancement |
US11207548B2 (en) | 2004-10-07 | 2021-12-28 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US11724133B2 (en) | 2004-10-07 | 2023-08-15 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US7571336B2 (en) | 2005-04-25 | 2009-08-04 | Guided Therapy Systems, L.L.C. | Method and system for enhancing safety with medical peripheral device by monitoring if host computer is AC powered |
US20070106307A1 (en) * | 2005-09-30 | 2007-05-10 | Restoration Robotics, Inc. | Methods for implanting follicular units using an automated system |
US7962192B2 (en) | 2005-09-30 | 2011-06-14 | Restoration Robotics, Inc. | Systems and methods for aligning a tool with a desired location or object |
US10299871B2 (en) | 2005-09-30 | 2019-05-28 | Restoration Robotics, Inc. | Automated system and method for hair removal |
US8357095B2 (en) * | 2005-10-20 | 2013-01-22 | The General Hospital Corporation | Non-invasive treatment of fascia |
US8133191B2 (en) * | 2006-02-16 | 2012-03-13 | Syneron Medical Ltd. | Method and apparatus for treatment of adipose tissue |
IL300268A (en) * | 2006-04-12 | 2023-03-01 | Lumenis Be Ltd | System and method for microablation of embroidery |
US9078680B2 (en) * | 2006-04-12 | 2015-07-14 | Lumenis Ltd. | System and method for microablation of tissue |
JP4703724B2 (ja) | 2006-04-28 | 2011-06-15 | ゼルティック エステティックス インコーポレイテッド | 皮下の脂質リッチ細胞の冷却が改善された治療装置に使用する凍結防止剤 |
US8246611B2 (en) * | 2006-06-14 | 2012-08-21 | Candela Corporation | Treatment of skin by spatial modulation of thermal heating |
US9566454B2 (en) | 2006-09-18 | 2017-02-14 | Guided Therapy Systems, Llc | Method and sysem for non-ablative acne treatment and prevention |
US9132031B2 (en) | 2006-09-26 | 2015-09-15 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
US20080077201A1 (en) | 2006-09-26 | 2008-03-27 | Juniper Medical, Inc. | Cooling devices with flexible sensors |
US8192474B2 (en) | 2006-09-26 | 2012-06-05 | Zeltiq Aesthetics, Inc. | Tissue treatment methods |
US9241683B2 (en) | 2006-10-04 | 2016-01-26 | Ardent Sound Inc. | Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid |
US20080183077A1 (en) * | 2006-10-19 | 2008-07-31 | Siemens Corporate Research, Inc. | High intensity focused ultrasound path determination |
WO2008051639A2 (en) | 2006-10-25 | 2008-05-02 | Maui Imaging, Inc. | Method and apparatus to produce ultrasonic images using multiple apertures |
US20100056925A1 (en) * | 2006-11-28 | 2010-03-04 | Chongqing Ronghai Medical Ultrasound Industry Ltd. | Ultrasonic Therapeutic Device Capable of Multipoint Transmitting |
WO2008137948A1 (en) * | 2007-05-07 | 2008-11-13 | Guided Therapy Systems, Llc. | Method and system for combined energy therapy profile |
US20150174388A1 (en) | 2007-05-07 | 2015-06-25 | Guided Therapy Systems, Llc | Methods and Systems for Ultrasound Assisted Delivery of a Medicant to Tissue |
WO2008137944A1 (en) | 2007-05-07 | 2008-11-13 | Guided Therapy Systems, Llc. | Methods and systems for coupling and focusing acoustic energy using a coupler member |
US9216276B2 (en) | 2007-05-07 | 2015-12-22 | Guided Therapy Systems, Llc | Methods and systems for modulating medicants using acoustic energy |
US20080287839A1 (en) | 2007-05-18 | 2008-11-20 | Juniper Medical, Inc. | Method of enhanced removal of heat from subcutaneous lipid-rich cells and treatment apparatus having an actuator |
US8523927B2 (en) | 2007-07-13 | 2013-09-03 | Zeltiq Aesthetics, Inc. | System for treating lipid-rich regions |
US8285390B2 (en) | 2007-08-21 | 2012-10-09 | Zeltiq Aesthetics, Inc. | Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue |
US20090062724A1 (en) * | 2007-08-31 | 2009-03-05 | Rixen Chen | System and apparatus for sonodynamic therapy |
US9282945B2 (en) * | 2009-04-14 | 2016-03-15 | Maui Imaging, Inc. | Calibration of ultrasound probes |
US9788813B2 (en) | 2010-10-13 | 2017-10-17 | Maui Imaging, Inc. | Multiple aperture probe internal apparatus and cable assemblies |
US10226234B2 (en) | 2011-12-01 | 2019-03-12 | Maui Imaging, Inc. | Motion detection using ping-based and multiple aperture doppler ultrasound |
BRPI0822017A2 (pt) * | 2008-04-11 | 2015-07-21 | Gp Investimenti S R L | Manopla para tratamento de ultrassom em tecido humano. |
JP5229473B2 (ja) | 2008-06-04 | 2013-07-03 | 財団法人ヒューマンサイエンス振興財団 | 超音波医療装置 |
HUE027536T2 (en) | 2008-06-06 | 2016-10-28 | Ulthera Inc | Cosmetic treatment and imaging system |
US8545517B2 (en) * | 2008-06-06 | 2013-10-01 | Restoration Robotics, Inc. | Systems and methods for improving follicular unit harvesting |
US12102473B2 (en) | 2008-06-06 | 2024-10-01 | Ulthera, Inc. | Systems for ultrasound treatment |
US8323220B2 (en) * | 2008-09-19 | 2012-12-04 | Eilaz Babaev | Spider vein treatment apparatus |
US8801615B2 (en) | 2008-09-30 | 2014-08-12 | Koninklijke Philips N.V. | System and method for ultrasound therapy treatment |
US8603073B2 (en) | 2008-12-17 | 2013-12-10 | Zeltiq Aesthetics, Inc. | Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells |
WO2010075547A2 (en) | 2008-12-24 | 2010-07-01 | Guided Therapy Systems, Llc | Methods and systems for fat reduction and/or cellulite treatment |
MX2011010013A (es) | 2009-03-23 | 2011-10-11 | Medicis Technologies Corp | Analisis de datos de retrodispersion en tiempo real para generacion de señal de falla en un dispositivo hifu (ultrasonido enfocado de alta intensidad) medico. |
BRPI1014623B1 (pt) | 2009-04-30 | 2020-01-07 | Zeltiq Aesthetics, Inc. | Sistema para tratamento de celulas subcutâneas ricas em lipídeos em uma área alvo |
US20100286520A1 (en) * | 2009-05-11 | 2010-11-11 | General Electric Company | Ultrasound system and method to determine mechanical properties of a target region |
US20100286518A1 (en) * | 2009-05-11 | 2010-11-11 | General Electric Company | Ultrasound system and method to deliver therapy based on user defined treatment spaces |
US20100286519A1 (en) * | 2009-05-11 | 2010-11-11 | General Electric Company | Ultrasound system and method to automatically identify and treat adipose tissue |
US9414889B2 (en) | 2009-09-04 | 2016-08-16 | Restoration Robotics, Inc. | Follicular unit harvesting tool |
US8152904B2 (en) * | 2009-09-29 | 2012-04-10 | Liposonix, Inc. | Liquid degas system |
US8715186B2 (en) | 2009-11-24 | 2014-05-06 | Guided Therapy Systems, Llc | Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy |
US20110144544A1 (en) * | 2009-12-15 | 2011-06-16 | General Electric Company | Ultrasound transducer assembly and methods of using |
AU2011207506A1 (en) | 2010-01-25 | 2012-08-09 | Zeltiq Aesthetics, Inc. | Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associated devices, systems and methods |
JP6274724B2 (ja) | 2010-02-18 | 2018-02-07 | マウイ イマギング,インコーポレーテッド | 多開口超音波撮像を用いた点音源送信及び音速補正 |
WO2011101039A1 (en) * | 2010-02-22 | 2011-08-25 | Universite Pierre Et Marie Curie (Paris 6) | Apparatus for the treatment of brain affections and method implementing thereof |
RU2584127C2 (ru) | 2010-03-23 | 2016-05-20 | Конинклейке Филипс Электроникс Н.В. | Данные ультразвукового объемного изображения, переформатированные в виде последовательности плоских изображений |
US9668714B2 (en) | 2010-04-14 | 2017-06-06 | Maui Imaging, Inc. | Systems and methods for improving ultrasound image quality by applying weighting factors |
RU2579737C2 (ru) * | 2010-06-24 | 2016-04-10 | Конинклейке Филипс Электроникс Н.В. | Мониторинг и управление hifu терапией в реальном времени во множестве измерений |
US8676338B2 (en) | 2010-07-20 | 2014-03-18 | Zeltiq Aesthetics, Inc. | Combined modality treatment systems, methods and apparatus for body contouring applications |
WO2012018390A2 (en) | 2010-08-02 | 2012-02-09 | Guided Therapy Systems, Llc | Systems and methods for treating acute and/or chronic injuries in soft tissue |
US9504446B2 (en) | 2010-08-02 | 2016-11-29 | Guided Therapy Systems, Llc | Systems and methods for coupling an ultrasound source to tissue |
JP6092109B2 (ja) | 2010-10-13 | 2017-03-08 | マウイ イマギング,インコーポレーテッド | 凹面超音波トランスデューサ及び3dアレイ |
US9566456B2 (en) | 2010-10-18 | 2017-02-14 | CardioSonic Ltd. | Ultrasound transceiver and cooling thereof |
US20130211396A1 (en) * | 2010-10-18 | 2013-08-15 | CardioSonic Ltd. | Tissue treatment |
US8696581B2 (en) * | 2010-10-18 | 2014-04-15 | CardioSonic Ltd. | Ultrasound transducer and uses thereof |
US9028417B2 (en) | 2010-10-18 | 2015-05-12 | CardioSonic Ltd. | Ultrasound emission element |
US8857438B2 (en) | 2010-11-08 | 2014-10-14 | Ulthera, Inc. | Devices and methods for acoustic shielding |
US20120179035A1 (en) * | 2011-01-07 | 2012-07-12 | General Electric Company | Medical device with motion sensing |
US10722395B2 (en) | 2011-01-25 | 2020-07-28 | Zeltiq Aesthetics, Inc. | Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells |
KR101340967B1 (ko) * | 2011-02-10 | 2013-12-13 | 이선기 | 초음파 열 응고에 의한 주름살 성형 장치 |
EP2494925A1 (en) * | 2011-03-03 | 2012-09-05 | Koninklijke Philips Electronics N.V. | Calculating the speed of ultrasound in at least two tissue types |
EP2739357B1 (en) | 2011-07-10 | 2023-09-06 | Guided Therapy Systems, L.L.C. | Systems for improving an outside appearance of skin using ultrasound as an energy source |
US9011337B2 (en) | 2011-07-11 | 2015-04-21 | Guided Therapy Systems, Llc | Systems and methods for monitoring and controlling ultrasound power output and stability |
KR20130012297A (ko) | 2011-07-25 | 2013-02-04 | 삼성전자주식회사 | 병변 검출 장치, 병변 검출 방법 및 병변 진단 장치 |
WO2013017778A1 (fr) | 2011-07-27 | 2013-02-07 | Universite Pierre Et Marie Curie (Paris 6) | Dispositif de traitement de la capacite sensorielle d'une personne et procede de traitement a l'aide d'un tel dispositif |
JP6219835B2 (ja) | 2011-10-28 | 2017-10-25 | ディスィジョン サイエンシズ インターナショナル コーポレーション | 超音波イメージングにおけるスペクトル拡散符号化波形 |
US9265484B2 (en) | 2011-12-29 | 2016-02-23 | Maui Imaging, Inc. | M-mode ultrasound imaging of arbitrary paths |
CN104135937B (zh) | 2012-02-21 | 2017-03-29 | 毛伊图像公司 | 使用多孔超声确定材料刚度 |
US9263663B2 (en) | 2012-04-13 | 2016-02-16 | Ardent Sound, Inc. | Method of making thick film transducer arrays |
US10357304B2 (en) | 2012-04-18 | 2019-07-23 | CardioSonic Ltd. | Tissue treatment |
US8603549B1 (en) | 2012-05-25 | 2013-12-10 | Svetlana Baker | Systems and methods for inhibiting formation of stretch marks |
WO2013178830A1 (es) * | 2012-05-29 | 2013-12-05 | Mailin Auxiliadora Franco Lissot | Procedimiento y aparato para el tratamiento de contracturas capsulares periprotesicas |
US11357447B2 (en) | 2012-05-31 | 2022-06-14 | Sonivie Ltd. | Method and/or apparatus for measuring renal denervation effectiveness |
CN104620128B (zh) | 2012-08-10 | 2017-06-23 | 毛伊图像公司 | 多孔径超声探头的校准 |
CN104582582B (zh) | 2012-08-21 | 2017-12-15 | 毛伊图像公司 | 超声成像系统存储器架构 |
JP2015529131A (ja) | 2012-09-20 | 2015-10-05 | コーニンクレッカ フィリップス エヌ ヴェ | 皮膚治療方法及び装置 |
US9510802B2 (en) | 2012-09-21 | 2016-12-06 | Guided Therapy Systems, Llc | Reflective ultrasound technology for dermatological treatments |
CN113648552A (zh) | 2013-03-08 | 2021-11-16 | 奥赛拉公司 | 用于多焦点超声治疗的装置和方法 |
US9510806B2 (en) | 2013-03-13 | 2016-12-06 | Maui Imaging, Inc. | Alignment of ultrasound transducer arrays and multiple aperture probe assembly |
US9844460B2 (en) | 2013-03-14 | 2017-12-19 | Zeltiq Aesthetics, Inc. | Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same |
US9545523B2 (en) | 2013-03-14 | 2017-01-17 | Zeltiq Aesthetics, Inc. | Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue |
US10561862B2 (en) | 2013-03-15 | 2020-02-18 | Guided Therapy Systems, Llc | Ultrasound treatment device and methods of use |
EP2999411B1 (en) | 2013-05-23 | 2020-10-07 | Cardiosonic Ltd. | Devices for renal denervation and assessment thereof |
JP6200246B2 (ja) * | 2013-09-08 | 2017-09-20 | キヤノン株式会社 | 探触子 |
US9883848B2 (en) | 2013-09-13 | 2018-02-06 | Maui Imaging, Inc. | Ultrasound imaging using apparent point-source transmit transducer |
US9844359B2 (en) | 2013-09-13 | 2017-12-19 | Decision Sciences Medical Company, LLC | Coherent spread-spectrum coded waveforms in synthetic aperture image formation |
US9949889B2 (en) | 2013-11-11 | 2018-04-24 | Joylux, Inc. | At-home light-emitting diode and massage device for vaginal rejuvenation |
ES2974899T3 (es) | 2014-01-31 | 2024-07-02 | Zeltiq Aesthetics Inc | Composiciones y sistemas de tratamiento para el enfriamiento mejorado de tejido rico en lípidos |
US10675176B1 (en) | 2014-03-19 | 2020-06-09 | Zeltiq Aesthetics, Inc. | Treatment systems, devices, and methods for cooling targeted tissue |
USD777338S1 (en) | 2014-03-20 | 2017-01-24 | Zeltiq Aesthetics, Inc. | Cryotherapy applicator for cooling tissue |
CN106470735B (zh) | 2014-04-18 | 2019-09-20 | 奥赛拉公司 | 带式换能器超声治疗 |
US10952891B1 (en) | 2014-05-13 | 2021-03-23 | Zeltiq Aesthetics, Inc. | Treatment systems with adjustable gap applicators and methods for cooling tissue |
KR101811351B1 (ko) * | 2014-08-11 | 2017-12-26 | 주식회사 하이로닉 | 고강도 집속 초음파 시술 장치 |
CN106794007B (zh) | 2014-08-18 | 2021-03-09 | 毛伊图像公司 | 基于网络的超声成像系统 |
US10568759B2 (en) | 2014-08-19 | 2020-02-25 | Zeltiq Aesthetics, Inc. | Treatment systems, small volume applicators, and methods for treating submental tissue |
US10935174B2 (en) | 2014-08-19 | 2021-03-02 | Zeltiq Aesthetics, Inc. | Stress relief couplings for cryotherapy apparatuses |
WO2016097867A2 (en) | 2014-12-19 | 2016-06-23 | Université Pierre Et Marie Curie (Paris 6) | Implantable ultrasound generating treating device for brain treatment, apparatus comprising such device and method implementing such device |
CN107635470B (zh) | 2015-02-25 | 2021-02-02 | 决策科学医疗有限责任公司 | 声学信号传输联接和联接介质 |
CN107530061A (zh) * | 2015-03-18 | 2018-01-02 | 决策科学医疗有限责任公司 | 合成孔径超声波系统 |
US20160367830A1 (en) * | 2015-06-22 | 2016-12-22 | Syneron Medical Ltd. | System For Visualizing Treated Skin Temperature |
US10179085B2 (en) | 2015-10-02 | 2019-01-15 | Joylux, Inc. | Light-emitting diode and massage device for delivering focused light for vaginal rejuvenation |
WO2017062890A1 (en) | 2015-10-08 | 2017-04-13 | Decision Sciences Medical Company, LLC | Acoustic orthopedic tracking system and methods |
WO2017070112A1 (en) | 2015-10-19 | 2017-04-27 | Zeltiq Aesthetics, Inc. | Vascular treatment systems, cooling devices, and methods for cooling vascular structures |
US10524956B2 (en) | 2016-01-07 | 2020-01-07 | Zeltiq Aesthetics, Inc. | Temperature-dependent adhesion between applicator and skin during cooling of tissue |
AU2017208980B2 (en) | 2016-01-18 | 2022-03-31 | Ulthera, Inc. | Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof |
CN113729764A (zh) | 2016-01-27 | 2021-12-03 | 毛伊图像公司 | 具有稀疏阵列探测器的超声成像 |
US10765552B2 (en) | 2016-02-18 | 2020-09-08 | Zeltiq Aesthetics, Inc. | Cooling cup applicators with contoured heads and liner assemblies |
CN109414595A (zh) | 2016-03-11 | 2019-03-01 | 索邦大学 | 用于脊髓和/或脊神经治疗的可植入超声产生治疗装置、包括该装置的设备及方法 |
US11253729B2 (en) | 2016-03-11 | 2022-02-22 | Sorbonne Universite | External ultrasound generating treating device for spinal cord and/or spinal nerve treatment, apparatus comprising such device and method |
CN107343818A (zh) * | 2016-05-07 | 2017-11-14 | 湖南夏龙医疗器械制造有限公司 | 一种医用妊娠纹修复手术3d打印机 |
US10682297B2 (en) | 2016-05-10 | 2020-06-16 | Zeltiq Aesthetics, Inc. | Liposomes, emulsions, and methods for cryotherapy |
US10555831B2 (en) | 2016-05-10 | 2020-02-11 | Zeltiq Aesthetics, Inc. | Hydrogel substances and methods of cryotherapy |
US11382790B2 (en) | 2016-05-10 | 2022-07-12 | Zeltiq Aesthetics, Inc. | Skin freezing systems for treating acne and skin conditions |
US11095868B1 (en) | 2016-07-01 | 2021-08-17 | Cognex Corporation | Vision systems and methods of making and using the same |
SG11201809850QA (en) | 2016-08-16 | 2018-12-28 | Ulthera Inc | Systems and methods for cosmetic ultrasound treatment of skin |
WO2018173047A1 (en) | 2017-03-20 | 2018-09-27 | Sonivie Ltd. | Method for treating heart failure by improving ejection fraction of a patient |
US11076879B2 (en) | 2017-04-26 | 2021-08-03 | Zeltiq Aesthetics, Inc. | Shallow surface cryotherapy applicators and related technology |
WO2018225040A1 (en) * | 2017-06-08 | 2018-12-13 | Gunnar Myhr | System for the rejuvenation and removal of wrinkles of the skin |
CN118787381A (zh) | 2017-09-13 | 2024-10-18 | 奥卓霍姆有限责任公司 | 具有cmut阵列和固态冷却的医疗设备以及相关方法和系统 |
TWI640301B (zh) * | 2017-10-31 | 2018-11-11 | 財團法人工業技術研究院 | 具適應性溢滿與增益控制之超音波系統及其方法 |
TWI797235B (zh) | 2018-01-26 | 2023-04-01 | 美商奧賽拉公司 | 用於多個維度中的同時多聚焦超音治療的系統和方法 |
US11944849B2 (en) | 2018-02-20 | 2024-04-02 | Ulthera, Inc. | Systems and methods for combined cosmetic treatment of cellulite with ultrasound |
EP3829496A1 (en) | 2018-07-31 | 2021-06-09 | Zeltiq Aesthetics, Inc. | Methods, devices, and systems for improving skin characteristics |
US12017389B2 (en) | 2019-03-06 | 2024-06-25 | Decision Sciences Medical Company, LLC | Methods for manufacturing and distributing semi-rigid acoustic coupling articles and packaging for ultrasound imaging |
US11154274B2 (en) | 2019-04-23 | 2021-10-26 | Decision Sciences Medical Company, LLC | Semi-rigid acoustic coupling articles for ultrasound diagnostic and treatment applications |
WO2020223359A1 (en) * | 2019-04-30 | 2020-11-05 | Mechanobiologics Llc | Systems and methods for immersion mechanotherapy |
US20220175357A1 (en) * | 2019-05-13 | 2022-06-09 | Covidien Lp | System and method for selectively sealing small vessels |
CN114025841A (zh) * | 2019-06-10 | 2022-02-08 | 台湾卫生研究院 | 皮肤治疗用的聚焦超音波装置与方法 |
EP4243696A4 (en) | 2020-11-13 | 2024-09-04 | Decision Sciences Medical Company Llc | SYSTEMS AND METHODS FOR ULTRASOUND IMAGING OF AN OBJECT WITH SYNTHETIC APERTURE |
WO2022256388A1 (en) * | 2021-06-01 | 2022-12-08 | Orchard Ultrasound Innovation Llc | Tissue treatment system |
EP4419024A1 (en) * | 2021-10-20 | 2024-08-28 | The Children's Medical Center Corporation | Subcutaneous abrasion treatment for stretch marks |
Family Cites Families (827)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2427348A (en) | 1941-08-19 | 1947-09-16 | Bell Telephone Labor Inc | Piezoelectric vibrator |
FR2190364B1 (es) | 1972-07-04 | 1975-06-13 | Patru Marcel | |
FR2214378A5 (es) | 1973-01-16 | 1974-08-09 | Commissariat Energie Atomique | |
FR2254030B1 (es) | 1973-12-10 | 1977-08-19 | Philips Massiot Mat Medic | |
US3965455A (en) | 1974-04-25 | 1976-06-22 | The United States Of America As Represented By The Secretary Of The Navy | Focused arc beam transducer-reflector |
US4059098A (en) | 1975-07-21 | 1977-11-22 | Stanford Research Institute | Flexible ultrasound coupling system |
AT353506B (de) | 1976-10-19 | 1979-11-26 | List Hans | Piezoelektrischer resonator |
JPS5353393A (en) | 1976-10-25 | 1978-05-15 | Matsushita Electric Ind Co Ltd | Ultrasonic probe |
US4213344A (en) | 1978-10-16 | 1980-07-22 | Krautkramer-Branson, Incorporated | Method and apparatus for providing dynamic focussing and beam steering in an ultrasonic apparatus |
US4211949A (en) | 1978-11-08 | 1980-07-08 | General Electric Company | Wear plate for piezoelectric ultrasonic transducer arrays |
US4211948A (en) | 1978-11-08 | 1980-07-08 | General Electric Company | Front surface matched piezoelectric ultrasonic transducer array with wide field of view |
US4276491A (en) | 1979-10-02 | 1981-06-30 | Ausonics Pty. Limited | Focusing piezoelectric ultrasonic medical diagnostic system |
US4343301A (en) | 1979-10-04 | 1982-08-10 | Robert Indech | Subcutaneous neural stimulation or local tissue destruction |
US4325381A (en) | 1979-11-21 | 1982-04-20 | New York Institute Of Technology | Ultrasonic scanning head with reduced geometrical distortion |
JPS5686121A (en) * | 1979-12-14 | 1981-07-13 | Teijin Ltd | Antitumor proten complex and its preparation |
US4315514A (en) | 1980-05-08 | 1982-02-16 | William Drewes | Method and apparatus for selective cell destruction |
US4381787A (en) | 1980-08-15 | 1983-05-03 | Technicare Corporation | Ultrasound imaging system combining static B-scan and real-time sector scanning capability |
FR2490786A1 (fr) * | 1980-09-25 | 1982-03-26 | Centre Nat Rech Scient | Procede de commande d'une flamme de combustion et sonde microphonique permettant sa mise en oeuvre |
US4372296A (en) * | 1980-11-26 | 1983-02-08 | Fahim Mostafa S | Treatment of acne and skin disorders and compositions therefor |
JPS6336171Y2 (es) | 1981-03-12 | 1988-09-26 | ||
US4484569A (en) | 1981-03-13 | 1984-11-27 | Riverside Research Institute | Ultrasonic diagnostic and therapeutic transducer assembly and method for using |
US4381007A (en) | 1981-04-30 | 1983-04-26 | The United States Of America As Represented By The United States Department Of Energy | Multipolar corneal-shaping electrode with flexible removable skirt |
EP0068961A3 (fr) | 1981-06-26 | 1983-02-02 | Thomson-Csf | Dispositif d'échauffement localisé de tissus biologiques |
US4409839A (en) | 1981-07-01 | 1983-10-18 | Siemens Ag | Ultrasound camera |
US4397314A (en) | 1981-08-03 | 1983-08-09 | Clini-Therm Corporation | Method and apparatus for controlling and optimizing the heating pattern for a hyperthermia system |
US4441486A (en) | 1981-10-27 | 1984-04-10 | Board Of Trustees Of Leland Stanford Jr. University | Hyperthermia system |
DE3300121A1 (de) | 1982-01-07 | 1983-07-14 | Technicare Corp., 80112 Englewood, Col. | Verfahren und geraet zum abbilden und thermischen behandeln von gewebe mittels ultraschall |
US4528979A (en) | 1982-03-18 | 1985-07-16 | Kievsky Nauchno-Issledovatelsky Institut Otolaringologii Imeni Professora A.S. Kolomiiobenka | Cryo-ultrasonic surgical instrument |
US4431008A (en) * | 1982-06-24 | 1984-02-14 | Wanner James F | Ultrasonic measurement system using a perturbing field, multiple sense beams and receivers |
US4534221A (en) | 1982-09-27 | 1985-08-13 | Technicare Corporation | Ultrasonic diagnostic imaging systems for varying depths of field |
US4507582A (en) * | 1982-09-29 | 1985-03-26 | New York Institute Of Technology | Matching region for damped piezoelectric ultrasonic apparatus |
US4452084A (en) | 1982-10-25 | 1984-06-05 | Sri International | Inherent delay line ultrasonic transducer and systems |
EP0111386B1 (en) | 1982-10-26 | 1987-11-19 | University Of Aberdeen | Ultrasound hyperthermia unit |
US4513749A (en) | 1982-11-18 | 1985-04-30 | Board Of Trustees Of Leland Stanford University | Three-dimensional temperature probe |
US4527550A (en) | 1983-01-28 | 1985-07-09 | The United States Of America As Represented By The Department Of Health And Human Services | Helical coil for diathermy apparatus |
JPH064074B2 (ja) * | 1983-02-14 | 1994-01-19 | 株式会社日立製作所 | 超音波診断装置およびこれを用いる音速計測方法 |
FR2543437B1 (fr) | 1983-03-30 | 1987-07-10 | Duraffourd Alain | Composition pour regenerer le collagene du tissu conjonctif de la peau et son procede de preparation |
JPS605133A (ja) | 1983-05-26 | 1985-01-11 | アドバンスト・テクノロジ−・ラボラトリ−ズ・インコ−ポレイテツド | 振動モ−ドを改良した超音波変換器 |
US4900540A (en) * | 1983-06-20 | 1990-02-13 | Trustees Of The University Of Massachusetts | Lipisomes containing gas for ultrasound detection |
US4637256A (en) * | 1983-06-23 | 1987-01-20 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic probe having dual-motion transducer |
FR2551611B1 (fr) | 1983-08-31 | 1986-10-24 | Labo Electronique Physique | Nouvelle structure de transducteur ultrasonore et appareil d'examen de milieux par echographie ultrasonore comprenant une telle structure |
US4601296A (en) | 1983-10-07 | 1986-07-22 | Yeda Research And Development Co., Ltd. | Hyperthermia apparatus |
US5143074A (en) | 1983-12-14 | 1992-09-01 | Edap International | Ultrasonic treatment device using a focussing and oscillating piezoelectric element |
US5150711A (en) | 1983-12-14 | 1992-09-29 | Edap International, S.A. | Ultra-high-speed extracorporeal ultrasound hyperthermia treatment device |
US4513750A (en) * | 1984-02-22 | 1985-04-30 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for thermal monitoring subcutaneous tissue |
US4567895A (en) | 1984-04-02 | 1986-02-04 | Advanced Technology Laboratories, Inc. | Fully wetted mechanical ultrasound scanhead |
US4620546A (en) | 1984-06-30 | 1986-11-04 | Kabushiki Kaisha Toshiba | Ultrasound hyperthermia apparatus |
DE3447440A1 (de) | 1984-12-27 | 1986-07-03 | Siemens AG, 1000 Berlin und 8000 München | Stosswellenrohr fuer die zertruemmerung von konkrementen |
DE3501808A1 (de) | 1985-01-21 | 1986-07-24 | Siemens AG, 1000 Berlin und 8000 München | Ultraschallwandler |
JPS61209643A (ja) | 1985-03-15 | 1986-09-17 | 株式会社東芝 | 超音波診断治療装置 |
DE3611669A1 (de) | 1985-04-10 | 1986-10-16 | Hitachi Medical Corp., Tokio/Tokyo | Ultraschallwandler |
JPH0678460B2 (ja) | 1985-05-01 | 1994-10-05 | 株式会社バイオマテリアル・ユニバース | 多孔質透明ポリビニルアルユールゲル |
DE3678635D1 (de) | 1985-05-20 | 1991-05-16 | Matsushita Electric Ind Co Ltd | Ultraschallwandler. |
US4865042A (en) | 1985-08-16 | 1989-09-12 | Hitachi, Ltd. | Ultrasonic irradiation system |
US5054310A (en) | 1985-09-13 | 1991-10-08 | The California Province Of The Society Of Jesus | Test object and method of measurement of an ultrasonic beam |
US5304169A (en) | 1985-09-27 | 1994-04-19 | Laser Biotech, Inc. | Method for collagen shrinkage |
US4976709A (en) | 1988-12-15 | 1990-12-11 | Sand Bruce J | Method for collagen treatment |
EP0226466B1 (en) * | 1985-12-13 | 1993-07-14 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic diagnostic apparatus based on variations of acoustic characteristic |
JPS6323126A (ja) | 1986-02-13 | 1988-01-30 | Bio Material Yunibaasu:Kk | ソフトコンタクトレンズおよびその製造法 |
JPS62249644A (ja) | 1986-04-22 | 1987-10-30 | 日石三菱株式会社 | 擬似生体構造物 |
JPS62258597A (ja) | 1986-04-25 | 1987-11-11 | Yokogawa Medical Syst Ltd | 超音波トランスデユ−サ |
US4875487A (en) | 1986-05-02 | 1989-10-24 | Varian Associates, Inc. | Compressional wave hyperthermia treating method and apparatus |
US4807633A (en) | 1986-05-21 | 1989-02-28 | Indianapolis Center For Advanced Research | Non-invasive tissue thermometry system and method |
US4803625A (en) | 1986-06-30 | 1989-02-07 | Buddy Systems, Inc. | Personal health monitor |
US4867169A (en) | 1986-07-29 | 1989-09-19 | Kaoru Machida | Attachment attached to ultrasound probe for clinical application |
US4801459A (en) * | 1986-08-05 | 1989-01-31 | Liburdy Robert P | Technique for drug and chemical delivery |
JPS63122923A (ja) | 1986-11-13 | 1988-05-26 | Agency Of Ind Science & Technol | 超音波測温装置 |
US4865041A (en) | 1987-02-04 | 1989-09-12 | Siemens Aktiengesellschaft | Lithotripter having an ultrasound locating system integrated therewith |
JPS63220847A (ja) * | 1987-03-10 | 1988-09-14 | 松下電器産業株式会社 | 超音波探触子 |
US5178135A (en) * | 1987-04-16 | 1993-01-12 | Olympus Optical Co., Ltd. | Therapeutical apparatus of extracorporeal type |
BG46024A1 (en) | 1987-05-19 | 1989-10-16 | Min Na Narodnata Otbrana | Method and device for treatment of bone patology |
US4891043A (en) * | 1987-05-28 | 1990-01-02 | Board Of Trustees Of The University Of Illinois | System for selective release of liposome encapsulated material via laser radiation |
JPH0348299Y2 (es) | 1987-05-29 | 1991-10-15 | ||
US4932414A (en) | 1987-11-02 | 1990-06-12 | Cornell Research Foundation, Inc. | System of therapeutic ultrasound and real-time ultrasonic scanning |
US5040537A (en) | 1987-11-24 | 1991-08-20 | Hitachi, Ltd. | Method and apparatus for the measurement and medical treatment using an ultrasonic wave |
US4860732A (en) | 1987-11-25 | 1989-08-29 | Olympus Optical Co., Ltd. | Endoscope apparatus provided with endoscope insertion aid |
US4917096A (en) | 1987-11-25 | 1990-04-17 | Laboratory Equipment, Corp. | Portable ultrasonic probe |
US5163421A (en) | 1988-01-22 | 1992-11-17 | Angiosonics, Inc. | In vivo ultrasonic system with angioplasty and ultrasonic contrast imaging |
US5251127A (en) | 1988-02-01 | 1993-10-05 | Faro Medical Technologies Inc. | Computer-aided surgery apparatus |
US5143063A (en) | 1988-02-09 | 1992-09-01 | Fellner Donald G | Method of removing adipose tissue from the body |
US5036855A (en) | 1988-03-02 | 1991-08-06 | Laboratory Equipment, Corp. | Localization and therapy system for treatment of spatially oriented focal disease |
US4955365A (en) | 1988-03-02 | 1990-09-11 | Laboratory Equipment, Corp. | Localization and therapy system for treatment of spatially oriented focal disease |
US4951653A (en) | 1988-03-02 | 1990-08-28 | Laboratory Equipment, Corp. | Ultrasound brain lesioning system |
US4858613A (en) | 1988-03-02 | 1989-08-22 | Laboratory Equipment, Corp. | Localization and therapy system for treatment of spatially oriented focal disease |
US5054470A (en) | 1988-03-02 | 1991-10-08 | Laboratory Equipment, Corp. | Ultrasonic treatment transducer with pressurized acoustic coupling |
US5665141A (en) | 1988-03-30 | 1997-09-09 | Arjo Hospital Equipment Ab | Ultrasonic treatment process |
JP2615132B2 (ja) * | 1988-05-19 | 1997-05-28 | 富士通株式会社 | 超音波探触子 |
US4947046A (en) | 1988-05-27 | 1990-08-07 | Konica Corporation | Method for preparation of radiographic image conversion panel and radiographic image conversion panel thereby |
US4966953A (en) | 1988-06-02 | 1990-10-30 | Takiron Co., Ltd. | Liquid segment polyurethane gel and couplers for ultrasonic diagnostic probe comprising the same |
US5018508A (en) * | 1988-06-03 | 1991-05-28 | Fry Francis J | System and method using chemicals and ultrasound or ultrasound alone to replace more conventional surgery |
US4938216A (en) | 1988-06-21 | 1990-07-03 | Massachusetts Institute Of Technology | Mechanically scanned line-focus ultrasound hyperthermia system |
US4938217A (en) | 1988-06-21 | 1990-07-03 | Massachusetts Institute Of Technology | Electronically-controlled variable focus ultrasound hyperthermia system |
US4893624A (en) | 1988-06-21 | 1990-01-16 | Massachusetts Institute Of Technology | Diffuse focus ultrasound hyperthermia system |
US4896673A (en) | 1988-07-15 | 1990-01-30 | Medstone International, Inc. | Method and apparatus for stone localization using ultrasound imaging |
US5265614A (en) | 1988-08-30 | 1993-11-30 | Fujitsu Limited | Acoustic coupler |
US5159931A (en) | 1988-11-25 | 1992-11-03 | Riccardo Pini | Apparatus for obtaining a three-dimensional reconstruction of anatomic structures through the acquisition of echographic images |
FR2643770B1 (fr) | 1989-02-28 | 1991-06-21 | Centre Nat Rech Scient | Sonde microechographique de collimation a ultrasons a travers une surface deformable |
EP0390311B1 (en) * | 1989-03-27 | 1994-12-28 | Kabushiki Kaisha Toshiba | Mechanical ultrasonic scanner |
DE3914619A1 (de) * | 1989-05-03 | 1990-11-08 | Kontron Elektronik | Vorrichtung zur transoesophagealen echokardiographie |
US6016255A (en) * | 1990-11-19 | 2000-01-18 | Dallas Semiconductor Corp. | Portable data carrier mounting system |
US5057104A (en) | 1989-05-30 | 1991-10-15 | Cyrus Chess | Method and apparatus for treating cutaneous vascular lesions |
US5212671A (en) | 1989-06-22 | 1993-05-18 | Terumo Kabushiki Kaisha | Ultrasonic probe having backing material layer of uneven thickness |
US5435311A (en) | 1989-06-27 | 1995-07-25 | Hitachi, Ltd. | Ultrasound therapeutic system |
US5115814A (en) | 1989-08-18 | 1992-05-26 | Intertherapy, Inc. | Intravascular ultrasonic imaging probe and methods of using same |
US4973096A (en) | 1989-08-21 | 1990-11-27 | Joyce Patrick H | Shoe transporting device |
WO1991003267A1 (en) | 1989-08-28 | 1991-03-21 | Sekins K Michael | Lung cancer hyperthermia via ultrasound and/or convection with perfluorocarbon liquids |
JPH03123559A (ja) | 1989-10-09 | 1991-05-27 | Ya Man Ltd | 超音波美容装置 |
US5240003A (en) | 1989-10-16 | 1993-08-31 | Du-Med B.V. | Ultrasonic instrument with a micro motor having stator coils on a flexible circuit board |
US5156144A (en) | 1989-10-20 | 1992-10-20 | Olympus Optical Co., Ltd. | Ultrasonic wave therapeutic device |
JPH03136642A (ja) | 1989-10-20 | 1991-06-11 | Olympus Optical Co Ltd | 超音波治療装置 |
DE69019289T2 (de) | 1989-10-27 | 1996-02-01 | Storz Instr Co | Verfahren zum Antreiben eines Ultraschallwandlers. |
ES2085885T3 (es) | 1989-11-08 | 1996-06-16 | George S Allen | Brazo mecanico para sistema interactivo de cirugia dirigido por imagenes. |
US5070879A (en) | 1989-11-30 | 1991-12-10 | Acoustic Imaging Technologies Corp. | Ultrasound imaging method and apparatus |
CA2032204C (en) | 1989-12-14 | 1995-03-14 | Takashi Mochizuki | Three-dimensional ultrasonic scanner |
US5305757A (en) | 1989-12-22 | 1994-04-26 | Unger Evan C | Gas filled liposomes and their use as ultrasonic contrast agents |
US5580575A (en) | 1989-12-22 | 1996-12-03 | Imarx Pharmaceutical Corp. | Therapeutic drug delivery systems |
US5469854A (en) | 1989-12-22 | 1995-11-28 | Imarx Pharmaceutical Corp. | Methods of preparing gas-filled liposomes |
US5209720A (en) | 1989-12-22 | 1993-05-11 | Unger Evan C | Methods for providing localized therapeutic heat to biological tissues and fluids using gas filled liposomes |
US5149319A (en) | 1990-09-11 | 1992-09-22 | Unger Evan C | Methods for providing localized therapeutic heat to biological tissues and fluids |
US5012797A (en) | 1990-01-08 | 1991-05-07 | Montefiore Hospital Association Of Western Pennsylvania | Method for removing skin wrinkles |
JP3015481B2 (ja) | 1990-03-28 | 2000-03-06 | 株式会社東芝 | 超音波プローブ・システム |
IN172208B (es) * | 1990-04-02 | 1993-05-01 | Sint Sa | |
JPH03297475A (ja) * | 1990-04-16 | 1991-12-27 | Ken Ishihara | 共振音波により薬物の放出を制御する方法 |
US5205287A (en) * | 1990-04-26 | 1993-04-27 | Hoechst Aktiengesellschaft | Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents |
DE4117638A1 (de) | 1990-05-30 | 1991-12-05 | Toshiba Kawasaki Kk | Stosswellengenerator mit einem piezoelektrischen element |
US5215680A (en) | 1990-07-10 | 1993-06-01 | Cavitation-Control Technology, Inc. | Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles |
US5191880A (en) | 1990-07-31 | 1993-03-09 | Mcleod Kenneth J | Method for the promotion of growth, ingrowth and healing of bone tissue and the prevention of osteopenia by mechanical loading of the bone tissue |
JP3044054B2 (ja) | 1990-07-31 | 2000-05-22 | ヤーマン株式会社 | 接触温度を可変できる超音波美容装置 |
US5174929A (en) | 1990-08-31 | 1992-12-29 | Ciba-Geigy Corporation | Preparation of stable polyvinyl alcohol hydrogel contact lens |
DE4029175C2 (de) | 1990-09-13 | 1993-10-28 | Lauerer Friedrich | Elektrische Schutzeinrichtung |
SE501045C2 (sv) | 1990-09-17 | 1994-10-24 | Roofer Int Ab | Sätt vid läggning av takpapp och anordning för genomförande av förfarandet |
US5117832A (en) | 1990-09-21 | 1992-06-02 | Diasonics, Inc. | Curved rectangular/elliptical transducer |
JPH04150847A (ja) | 1990-10-12 | 1992-05-25 | Katsuya Takasu | わきが手術装置およびその手術用チップ |
US5685820A (en) | 1990-11-06 | 1997-11-11 | Partomed Medizintechnik Gmbh | Instrument for the penetration of body tissue |
GB9025431D0 (en) * | 1990-11-22 | 1991-01-09 | Advanced Tech Lab | Three dimensional ultrasonic imaging |
US5957882A (en) | 1991-01-11 | 1999-09-28 | Advanced Cardiovascular Systems, Inc. | Ultrasound devices for ablating and removing obstructive matter from anatomical passageways and blood vessels |
US5997497A (en) | 1991-01-11 | 1999-12-07 | Advanced Cardiovascular Systems | Ultrasound catheter having integrated drug delivery system and methods of using same |
FR2672486A1 (fr) | 1991-02-11 | 1992-08-14 | Technomed Int Sa | Appareil ultrasonore de traitement therapeutique extracorporel des varicoses et des varices superficielles. |
US5255681A (en) | 1991-03-20 | 1993-10-26 | Olympus Optical Co., Ltd. | Ultrasonic wave diagnosing apparatus having an ultrasonic wave transmitting and receiving part transmitting and receiving ultrasonic waves |
US5150714A (en) | 1991-05-10 | 1992-09-29 | Sri International | Ultrasonic inspection method and apparatus with audible output |
US5429582A (en) * | 1991-06-14 | 1995-07-04 | Williams; Jeffery A. | Tumor treatment |
US5383917A (en) * | 1991-07-05 | 1995-01-24 | Jawahar M. Desai | Device and method for multi-phase radio-frequency ablation |
US5327895A (en) | 1991-07-10 | 1994-07-12 | Kabushiki Kaisha Toshiba | Ultrasonic probe and ultrasonic diagnosing system using ultrasonic probe |
JP3095835B2 (ja) | 1991-10-30 | 2000-10-10 | 株式会社町田製作所 | 内視鏡用重力方向指示装置 |
US5704361A (en) * | 1991-11-08 | 1998-01-06 | Mayo Foundation For Medical Education And Research | Volumetric image ultrasound transducer underfluid catheter system |
US5524620A (en) | 1991-11-12 | 1996-06-11 | November Technologies Ltd. | Ablation of blood thrombi by means of acoustic energy |
ATE144124T1 (de) | 1991-12-20 | 1996-11-15 | Technomed Medical Systems | Schallwellen aussendende,thermische effekte und kavitationseffekte erzeugende vorrichtung fur die ultraschalltherapie |
US5230334A (en) | 1992-01-22 | 1993-07-27 | Summit Technology, Inc. | Method and apparatus for generating localized hyperthermia |
AU3727993A (en) | 1992-02-21 | 1993-09-13 | Diasonics Inc. | Ultrasound intracavity system for imaging therapy planning and treatment of focal disease |
US5269297A (en) | 1992-02-27 | 1993-12-14 | Angiosonics Inc. | Ultrasonic transmission apparatus |
JP3386488B2 (ja) | 1992-03-10 | 2003-03-17 | 株式会社東芝 | 超音波治療装置 |
WO1993019705A1 (en) | 1992-03-31 | 1993-10-14 | Massachusetts Institute Of Technology | Apparatus and method for acoustic heat generation and hyperthermia |
US5690608A (en) * | 1992-04-08 | 1997-11-25 | Asec Co., Ltd. | Ultrasonic apparatus for health and beauty |
US5257970A (en) | 1992-04-09 | 1993-11-02 | Health Research, Inc. | In situ photodynamic therapy |
US5295484A (en) | 1992-05-19 | 1994-03-22 | Arizona Board Of Regents For And On Behalf Of The University Of Arizona | Apparatus and method for intra-cardiac ablation of arrhythmias |
JPH0773576B2 (ja) | 1992-05-27 | 1995-08-09 | アロカ株式会社 | 三次元データ取込み用超音波探触子 |
JP3257640B2 (ja) | 1992-06-09 | 2002-02-18 | オリンパス光学工業株式会社 | 立体視内視鏡装置 |
US5321520A (en) | 1992-07-20 | 1994-06-14 | Automated Medical Access Corporation | Automated high definition/resolution image storage, retrieval and transmission system |
DE4229817C2 (de) | 1992-09-07 | 1996-09-12 | Siemens Ag | Verfahren zur zerstörungsfreien und/oder nichtinvasiven Messung einer Temperaturänderung im Inneren eines insbesondere lebenden Objektes |
US5523058A (en) | 1992-09-16 | 1996-06-04 | Hitachi, Ltd. | Ultrasonic irradiation apparatus and processing apparatus based thereon |
JP3224286B2 (ja) | 1992-11-02 | 2001-10-29 | 株式会社日本自動車部品総合研究所 | 超音波を用いた温度測定装置 |
US5391197A (en) * | 1992-11-13 | 1995-02-21 | Dornier Medical Systems, Inc. | Ultrasound thermotherapy probe |
US6537306B1 (en) * | 1992-11-13 | 2003-03-25 | The Regents Of The University Of California | Method of manufacture of a transurethral ultrasound applicator for prostate gland thermal therapy |
US5620479A (en) | 1992-11-13 | 1997-04-15 | The Regents Of The University Of California | Method and apparatus for thermal therapy of tumors |
US5370122A (en) | 1992-11-18 | 1994-12-06 | Kunig; Horst E. | Method and apparatus for measuring myocardial impairment, dysfunctions, sufficiency, and insufficiency |
DE4241161C2 (de) * | 1992-12-07 | 1995-04-13 | Siemens Ag | Akustische Therapieeinrichtung |
JP3272792B2 (ja) | 1992-12-15 | 2002-04-08 | フクダ電子株式会社 | 超音波カプラ製造方法 |
US5573497A (en) | 1994-11-30 | 1996-11-12 | Technomed Medical Systems And Institut National | High-intensity ultrasound therapy method and apparatus with controlled cavitation effect and reduced side lobes |
DE4302538C1 (de) | 1993-01-29 | 1994-04-07 | Siemens Ag | Therapiegerät zur Ortung und Behandlung einer im Körper eines Lebewesens befindlichen Zone mit akustischen Wellen |
US5423220A (en) | 1993-01-29 | 1995-06-13 | Parallel Design | Ultrasonic transducer array and manufacturing method thereof |
DE4302537C1 (de) | 1993-01-29 | 1994-04-28 | Siemens Ag | Therapiegerät zur Ortung und Behandlung einer Zone im Körper eines Lebewesens mit akustischen Wellen |
US5453575A (en) | 1993-02-01 | 1995-09-26 | Endosonics Corporation | Apparatus and method for detecting blood flow in intravascular ultrasonic imaging |
US5267985A (en) | 1993-02-11 | 1993-12-07 | Trancell, Inc. | Drug delivery by multiple frequency phonophoresis |
DE69431741T2 (de) | 1993-03-12 | 2003-09-11 | Kabushiki Kaisha Toshiba, Kawasaki | Vorrichtung zur medizinischen Behandlung mit Ultraschall |
US5307812A (en) | 1993-03-26 | 1994-05-03 | General Electric Company | Heat surgery system monitored by real-time magnetic resonance profiling |
US5305756A (en) * | 1993-04-05 | 1994-04-26 | Advanced Technology Laboratories, Inc. | Volumetric ultrasonic imaging with diverging elevational ultrasound beams |
US5817021A (en) * | 1993-04-15 | 1998-10-06 | Siemens Aktiengesellschaft | Therapy apparatus for treating conditions of the heart and heart-proximate vessels |
DE9422172U1 (de) | 1993-04-26 | 1998-08-06 | St. Louis University, St. Louis, Mo. | Angabe der Position einer chirurgischen Sonde |
DE4318237A1 (de) | 1993-06-01 | 1994-12-08 | Storz Medical Ag | Vorrichtung zur Behandlung von biologischem Gewebe und Körperkonkrementen |
US5460595A (en) | 1993-06-01 | 1995-10-24 | Dynatronics Laser Corporation | Multi-frequency ultrasound therapy systems and methods |
US5392259A (en) * | 1993-06-15 | 1995-02-21 | Bolorforosh; Mir S. S. | Micro-grooves for the design of wideband clinical ultrasonic transducers |
US5398689A (en) * | 1993-06-16 | 1995-03-21 | Hewlett-Packard Company | Ultrasonic probe assembly and cable therefor |
US5526812A (en) | 1993-06-21 | 1996-06-18 | General Electric Company | Display system for enhancing visualization of body structures during medical procedures |
US5413550A (en) * | 1993-07-21 | 1995-05-09 | Pti, Inc. | Ultrasound therapy system with automatic dose control |
CA2167917C (en) | 1993-07-26 | 2002-11-19 | Jacques Dory | Therapy and imaging probe and therapeutic treatment apparatus utilizing it |
JP2998505B2 (ja) | 1993-07-29 | 2000-01-11 | 富士写真光機株式会社 | ラジアル超音波走査装置 |
US5503320A (en) | 1993-08-19 | 1996-04-02 | United States Surgical Corporation | Surgical apparatus with indicator |
US5438998A (en) | 1993-09-07 | 1995-08-08 | Acuson Corporation | Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof |
US5792058A (en) | 1993-09-07 | 1998-08-11 | Acuson Corporation | Broadband phased array transducer with wide bandwidth, high sensitivity and reduced cross-talk and method for manufacture thereof |
JPH0780087A (ja) | 1993-09-16 | 1995-03-28 | Aaku Techno Res Kk | 顔面しわ除去装置 |
US5379773A (en) * | 1993-09-17 | 1995-01-10 | Hornsby; James J. | Echographic suction cannula and electronics therefor |
US5661235A (en) | 1993-10-01 | 1997-08-26 | Hysitron Incorporated | Multi-dimensional capacitive transducer |
US20050288748A1 (en) | 1993-10-04 | 2005-12-29 | Huan-Chen Li | Medical device for treating skin problems |
IL107523A (en) | 1993-11-07 | 2000-01-31 | Ultraguide Ltd | Articulated needle guide for ultrasound imaging and method of using same |
US5526814A (en) | 1993-11-09 | 1996-06-18 | General Electric Company | Automatically positioned focussed energy system guided by medical imaging |
US5380280A (en) | 1993-11-12 | 1995-01-10 | Peterson; Erik W. | Aspiration system having pressure-controlled and flow-controlled modes |
US20020169394A1 (en) | 1993-11-15 | 2002-11-14 | Eppstein Jonathan A. | Integrated tissue poration, fluid harvesting and analysis device, and method therefor |
US5814599A (en) | 1995-08-04 | 1998-09-29 | Massachusetts Insitiute Of Technology | Transdermal delivery of encapsulated drugs |
US5609562A (en) | 1993-11-16 | 1997-03-11 | Worldwide Optical Trocar Licensing Corporation | Visually directed trocar and method |
JPH07136162A (ja) | 1993-11-17 | 1995-05-30 | Fujitsu Ltd | 超音波カプラ |
US5842473A (en) | 1993-11-29 | 1998-12-01 | Life Imaging Systems | Three-dimensional imaging system |
US5371483A (en) | 1993-12-20 | 1994-12-06 | Bhardwaj; Mahesh C. | High intensity guided ultrasound source |
US5471988A (en) | 1993-12-24 | 1995-12-05 | Olympus Optical Co., Ltd. | Ultrasonic diagnosis and therapy system in which focusing point of therapeutic ultrasonic wave is locked at predetermined position within observation ultrasonic scanning range |
JPH07184907A (ja) | 1993-12-28 | 1995-07-25 | Toshiba Corp | 超音波治療装置 |
DE4443947B4 (de) | 1994-01-14 | 2005-09-22 | Siemens Ag | Endoskop |
JP3378336B2 (ja) | 1994-02-08 | 2003-02-17 | 株式会社アバン | 美容器具 |
US5507790A (en) | 1994-03-21 | 1996-04-16 | Weiss; William V. | Method of non-invasive reduction of human site-specific subcutaneous fat tissue deposits by accelerated lipolysis metabolism |
US5511296A (en) | 1994-04-08 | 1996-04-30 | Hewlett Packard Company | Method for making integrated matching layer for ultrasonic transducers |
US5492126A (en) | 1994-05-02 | 1996-02-20 | Focal Surgery | Probe for medical imaging and therapy using ultrasound |
WO1995029737A1 (en) | 1994-05-03 | 1995-11-09 | Board Of Regents, The University Of Texas System | Apparatus and method for noninvasive doppler ultrasound-guided real-time control of tissue damage in thermal therapy |
US5524624A (en) | 1994-05-05 | 1996-06-11 | Amei Technologies Inc. | Apparatus and method for stimulating tissue growth with ultrasound |
US5458596A (en) | 1994-05-06 | 1995-10-17 | Dorsal Orthopedic Corporation | Method and apparatus for controlled contraction of soft tissue |
US5549638A (en) | 1994-05-17 | 1996-08-27 | Burdette; Everette C. | Ultrasound device for use in a thermotherapy apparatus |
US5396143A (en) * | 1994-05-20 | 1995-03-07 | Hewlett-Packard Company | Elevation aperture control of an ultrasonic transducer |
US5496256A (en) | 1994-06-09 | 1996-03-05 | Sonex International Corporation | Ultrasonic bone healing device for dental application |
US5575807A (en) | 1994-06-10 | 1996-11-19 | Zmd Corporation | Medical device power supply with AC disconnect alarm and method of supplying power to a medical device |
US5560362A (en) | 1994-06-13 | 1996-10-01 | Acuson Corporation | Active thermal control of ultrasound transducers |
US5714599A (en) * | 1994-06-24 | 1998-02-03 | Novartis Corporation | Process for the preparation of ste specific 1'-spiro-nucleosides |
US5540235A (en) | 1994-06-30 | 1996-07-30 | Wilson; John R. | Adaptor for neurophysiological monitoring with a personal computer |
FR2722358B1 (fr) * | 1994-07-08 | 1996-08-14 | Thomson Csf | Transducteur acoustique multifrequences a larges bandes |
NO300407B1 (no) | 1994-08-30 | 1997-05-26 | Vingmed Sound As | Apparat for endoskop- eller gastroskopundersökelse av pasienter |
US5829444A (en) | 1994-09-15 | 1998-11-03 | Visualization Technology, Inc. | Position tracking and imaging system for use in medical applications |
US5694936A (en) | 1994-09-17 | 1997-12-09 | Kabushiki Kaisha Toshiba | Ultrasonic apparatus for thermotherapy with variable frequency for suppressing cavitation |
US5443068A (en) * | 1994-09-26 | 1995-08-22 | General Electric Company | Mechanical positioner for magnetic resonance guided ultrasound therapy |
US5810009A (en) | 1994-09-27 | 1998-09-22 | Kabushiki Kaisha Toshiba | Ultrasonic probe, ultrasonic probe device having the ultrasonic probe, and method of manufacturing the ultrasonic probe |
US5503152A (en) | 1994-09-28 | 1996-04-02 | Tetrad Corporation | Ultrasonic transducer assembly and method for three-dimensional imaging |
US5487388A (en) | 1994-11-01 | 1996-01-30 | Interspec. Inc. | Three dimensional ultrasonic scanning devices and techniques |
US5520188A (en) | 1994-11-02 | 1996-05-28 | Focus Surgery Inc. | Annular array transducer |
US5577507A (en) | 1994-11-21 | 1996-11-26 | General Electric Company | Compound lens for ultrasound transducer probe |
DE4446429C1 (de) | 1994-12-23 | 1996-08-22 | Siemens Ag | Vorrichtung zur Behandlung eines Objektes mit fokussierten Ultraschallwellen |
US5999843A (en) | 1995-01-03 | 1999-12-07 | Omnicorder Technologies, Inc. | Detection of cancerous lesions by their effect on the spatial homogeneity of skin temperature |
US5626554A (en) | 1995-02-21 | 1997-05-06 | Exogen, Inc. | Gel containment structure |
US6019724A (en) * | 1995-02-22 | 2000-02-01 | Gronningsaeter; Aage | Method for ultrasound guidance during clinical procedures |
WO1996028107A1 (de) | 1995-03-10 | 1996-09-19 | Forschungszentrum Karlsruhe Gmbh | Vorrichtung zur führung chirurgischer instrumente für die endoskopische chirurgie |
US6246898B1 (en) | 1995-03-28 | 2001-06-12 | Sonometrics Corporation | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system |
US5658328A (en) | 1995-03-30 | 1997-08-19 | Johnson; Gerald W. | Endoscopic assisted mastopexy |
EP0734742B1 (en) | 1995-03-31 | 2005-05-11 | Kabushiki Kaisha Toshiba | Ultrasound therapeutic apparatus |
US5655535A (en) | 1996-03-29 | 1997-08-12 | Siemens Medical Systems, Inc. | 3-Dimensional compound ultrasound field of view |
US5873902A (en) | 1995-03-31 | 1999-02-23 | Focus Surgery, Inc. | Ultrasound intensity determining method and apparatus |
US5899861A (en) | 1995-03-31 | 1999-05-04 | Siemens Medical Systems, Inc. | 3-dimensional volume by aggregating ultrasound fields of view |
US5644085A (en) | 1995-04-03 | 1997-07-01 | General Electric Company | High density integrated ultrasonic phased array transducer and a method for making |
US5577502A (en) | 1995-04-03 | 1996-11-26 | General Electric Company | Imaging of interventional devices during medical procedures |
US5924989A (en) | 1995-04-03 | 1999-07-20 | Polz; Hans | Method and device for capturing diagnostically acceptable three-dimensional ultrasound image data records |
US5701900A (en) | 1995-05-01 | 1997-12-30 | Cedars-Sinai Medical Center | Ultrasonic transducer orientation sensing and display apparatus and method |
US5735280A (en) | 1995-05-02 | 1998-04-07 | Heart Rhythm Technologies, Inc. | Ultrasound energy delivery system and method |
US6430446B1 (en) * | 1995-05-05 | 2002-08-06 | Thermage, Inc. | Apparatus for tissue remodeling |
US6425912B1 (en) * | 1995-05-05 | 2002-07-30 | Thermage, Inc. | Method and apparatus for modifying skin surface and soft tissue structure |
US5755753A (en) | 1995-05-05 | 1998-05-26 | Thermage, Inc. | Method for controlled contraction of collagen tissue |
US6241753B1 (en) * | 1995-05-05 | 2001-06-05 | Thermage, Inc. | Method for scar collagen formation and contraction |
US5660836A (en) | 1995-05-05 | 1997-08-26 | Knowlton; Edward W. | Method and apparatus for controlled contraction of collagen tissue |
US5558092A (en) * | 1995-06-06 | 1996-09-24 | Imarx Pharmaceutical Corp. | Methods and apparatus for performing diagnostic and therapeutic ultrasound simultaneously |
US5755228A (en) | 1995-06-07 | 1998-05-26 | Hologic, Inc. | Equipment and method for calibration and quality assurance of an ultrasonic bone anaylsis apparatus |
AU6276696A (en) | 1995-06-15 | 1997-01-15 | Regents Of The University Of Michigan, The | Method and apparatus for composition and display of three-dimensional image from two-dimensional ultrasound |
US5655538A (en) | 1995-06-19 | 1997-08-12 | General Electric Company | Ultrasonic phased array transducer with an ultralow impedance backfill and a method for making |
US6248073B1 (en) | 1995-06-29 | 2001-06-19 | Teratech Corporation | Ultrasound scan conversion with spatial dithering |
CA2226938A1 (en) | 1995-07-16 | 1997-02-06 | Yoav Paltieli | Free-hand aiming of a needle guide |
US5706564A (en) * | 1995-07-27 | 1998-01-13 | General Electric Company | Method for designing ultrasonic transducers using constraints on feasibility and transitional Butterworth-Thompson spectrum |
DE19528754A1 (de) | 1995-08-04 | 1997-02-06 | Trw Repa Gmbh | Gassack-Rückhaltemodul |
JPH0947458A (ja) | 1995-08-09 | 1997-02-18 | Toshiba Corp | 超音波治療装置及びアプリケータ |
US5638819A (en) | 1995-08-29 | 1997-06-17 | Manwaring; Kim H. | Method and apparatus for guiding an instrument to a target |
US5662116A (en) | 1995-09-12 | 1997-09-02 | Fuji Photo Optical Co., Ltd. | Multi-plane electronic scan ultrasound probe |
US5622175A (en) | 1995-09-29 | 1997-04-22 | Hewlett-Packard Company | Miniaturization of a rotatable sensor |
US5615091A (en) | 1995-10-11 | 1997-03-25 | Biochem International, Inc. | Isolation transformer for medical equipment |
US5618275A (en) | 1995-10-27 | 1997-04-08 | Sonex International Corporation | Ultrasonic method and apparatus for cosmetic and dermatological applications |
US6135971A (en) * | 1995-11-09 | 2000-10-24 | Brigham And Women's Hospital | Apparatus for deposition of ultrasound energy in body tissue |
US5895356A (en) | 1995-11-15 | 1999-04-20 | American Medical Systems, Inc. | Apparatus and method for transurethral focussed ultrasound therapy |
US6350276B1 (en) | 1996-01-05 | 2002-02-26 | Thermage, Inc. | Tissue remodeling apparatus containing cooling fluid |
US7473251B2 (en) | 1996-01-05 | 2009-01-06 | Thermage, Inc. | Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient |
US7115123B2 (en) | 1996-01-05 | 2006-10-03 | Thermage, Inc. | Handpiece with electrode and non-volatile memory |
US20040000316A1 (en) | 1996-01-05 | 2004-01-01 | Knowlton Edward W. | Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient |
US7006874B2 (en) | 1996-01-05 | 2006-02-28 | Thermage, Inc. | Treatment apparatus with electromagnetic energy delivery device and non-volatile memory |
US7189230B2 (en) | 1996-01-05 | 2007-03-13 | Thermage, Inc. | Method for treating skin and underlying tissue |
US20030212393A1 (en) | 1996-01-05 | 2003-11-13 | Knowlton Edward W. | Handpiece with RF electrode and non-volatile memory |
US5715823A (en) | 1996-02-27 | 1998-02-10 | Atlantis Diagnostics International, L.L.C. | Ultrasonic diagnostic imaging system with universal access to diagnostic information and images |
US5603323A (en) | 1996-02-27 | 1997-02-18 | Advanced Technology Laboratories, Inc. | Medical ultrasonic diagnostic system with upgradeable transducer probes and other features |
US6190323B1 (en) | 1996-03-13 | 2001-02-20 | Agielnt Technologies | Direct contact scanner and related method |
US5817013A (en) | 1996-03-19 | 1998-10-06 | Enable Medical Corporation | Method and apparatus for the minimally invasive harvesting of a saphenous vein and the like |
US5676692A (en) | 1996-03-28 | 1997-10-14 | Indianapolis Center For Advanced Research, Inc. | Focussed ultrasound tissue treatment method |
US5673699A (en) | 1996-05-31 | 1997-10-07 | Duke University | Method and apparatus for abberation correction in the presence of a distributed aberrator |
US5749364A (en) | 1996-06-21 | 1998-05-12 | Acuson Corporation | Method and apparatus for mapping pressure and tissue properties |
US5746762A (en) | 1996-06-24 | 1998-05-05 | Bass; Lawrence S. | Device and method for surgical flap dissection |
EP0925088A2 (en) | 1996-06-28 | 1999-06-30 | Sontra Medical, L.P. | Ultrasound enhancement of transdermal transport |
US5671746A (en) | 1996-07-29 | 1997-09-30 | Acuson Corporation | Elevation steerable ultrasound transducer array |
US5763886A (en) | 1996-08-07 | 1998-06-09 | Northrop Grumman Corporation | Two-dimensional imaging backscatter probe |
US5971949A (en) | 1996-08-19 | 1999-10-26 | Angiosonics Inc. | Ultrasound transmission apparatus and method of using same |
US5984882A (en) | 1996-08-19 | 1999-11-16 | Angiosonics Inc. | Methods for prevention and treatment of cancer and other proliferative diseases with ultrasonic energy |
US20020002345A1 (en) * | 1996-08-22 | 2002-01-03 | Marlinghaus Ernest H. | Device and therapeutic method for treatment of the heart or pancreas |
US6605041B2 (en) | 1996-08-22 | 2003-08-12 | Synthes (U.S.A.) | 3-D ultrasound recording device |
US5844140A (en) | 1996-08-27 | 1998-12-01 | Seale; Joseph B. | Ultrasound beam alignment servo |
DE19635593C1 (de) | 1996-09-02 | 1998-04-23 | Siemens Ag | Ultraschallwandler für den diagnostischen und therapeutischen Einsatz |
US5795297A (en) | 1996-09-12 | 1998-08-18 | Atlantis Diagnostics International, L.L.C. | Ultrasonic diagnostic imaging system with personal computer architecture |
US5727554A (en) | 1996-09-19 | 1998-03-17 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Apparatus responsive to movement of a patient during treatment/diagnosis |
US5879303A (en) | 1996-09-27 | 1999-03-09 | Atl Ultrasound | Ultrasonic diagnostic imaging of response frequency differing from transmit frequency |
US5957941A (en) | 1996-09-27 | 1999-09-28 | Boston Scientific Corporation | Catheter system and drive assembly thereof |
US6283919B1 (en) | 1996-11-26 | 2001-09-04 | Atl Ultrasound | Ultrasonic diagnostic imaging with blended tissue harmonic signals |
US5665053A (en) * | 1996-09-27 | 1997-09-09 | Jacobs; Robert A. | Apparatus for performing endermology with ultrasound |
US5746005A (en) | 1996-10-22 | 1998-05-05 | Powerhorse Corporation | Angular position sensor |
US6719755B2 (en) | 1996-10-22 | 2004-04-13 | Epicor Medical, Inc. | Methods and devices for ablation |
US5769790A (en) | 1996-10-25 | 1998-06-23 | General Electric Company | Focused ultrasound surgery system guided by ultrasound imaging |
EP0840139B1 (fr) | 1996-10-29 | 2005-02-16 | Koninklijke Philips Electronics N.V. | Procédé de traitement de signaux relatifs à un objet ayant des parties en mouvement et dispositif échographique mettant en oeuvre ce procédé |
US5827204A (en) | 1996-11-26 | 1998-10-27 | Grandia; Willem | Medical noninvasive operations using focused modulated high power ultrasound |
US5810008A (en) | 1996-12-03 | 1998-09-22 | Isg Technologies Inc. | Apparatus and method for visualizing ultrasonic images |
FR2756741B1 (fr) | 1996-12-05 | 1999-01-08 | Cird Galderma | Utilisation d'un chromophore dans une composition destinee a etre appliquee sur la peau avant un traitement laser |
US5820564A (en) | 1996-12-16 | 1998-10-13 | Albatross Technologies, Inc. | Method and apparatus for surface ultrasound imaging |
IL120079A (en) | 1997-01-27 | 2001-03-19 | Technion Res & Dev Foundation | Ultrasound system and cosmetic methods utilizing same |
US7108663B2 (en) | 1997-02-06 | 2006-09-19 | Exogen, Inc. | Method and apparatus for cartilage growth stimulation |
US7789841B2 (en) | 1997-02-06 | 2010-09-07 | Exogen, Inc. | Method and apparatus for connective tissue treatment |
US5904659A (en) | 1997-02-14 | 1999-05-18 | Exogen, Inc. | Ultrasonic treatment for wounds |
US5853367A (en) | 1997-03-17 | 1998-12-29 | General Electric Company | Task-interface and communications system and method for ultrasound imager control |
JP4322322B2 (ja) * | 1997-03-31 | 2009-08-26 | 株式会社東芝 | 超音波治療装置 |
US5938612A (en) | 1997-05-05 | 1999-08-17 | Creare Inc. | Multilayer ultrasonic transducer array including very thin layer of transducer elements |
US5840032A (en) | 1997-05-07 | 1998-11-24 | General Electric Company | Method and apparatus for three-dimensional ultrasound imaging using transducer array having uniform elevation beamwidth |
US6183426B1 (en) * | 1997-05-15 | 2001-02-06 | Matsushita Electric Works, Ltd. | Ultrasonic wave applying apparatus |
EP0998217B1 (en) | 1997-05-23 | 2009-01-07 | ProRhythm, Inc. | Disposable high intensity focused ultrasound applicator |
US5931805A (en) | 1997-06-02 | 1999-08-03 | Pharmasonics, Inc. | Catheters comprising bending transducers and methods for their use |
JP3783339B2 (ja) * | 1997-06-13 | 2006-06-07 | 松下電工株式会社 | 超音波美容器 |
US5857970A (en) * | 1997-06-20 | 1999-01-12 | Siemens Medical Systems, Inc. | Method and apparatus for cardiac-synchronized peripheral magnetic resonance angiography |
EP1018955A4 (en) * | 1997-06-24 | 2001-06-20 | Laser Aesthetics Inc | PULSATING ACTUATED BULB FOR TREATMENT |
US5810888A (en) | 1997-06-26 | 1998-09-22 | Massachusetts Institute Of Technology | Thermodynamic adaptive phased array system for activating thermosensitive liposomes in targeted drug delivery |
US5876341A (en) * | 1997-06-30 | 1999-03-02 | Siemens Medical Systems, Inc. | Removing beam interleave effect on doppler spectrum in ultrasound imaging |
US20030040442A1 (en) * | 1997-07-02 | 2003-02-27 | Nsk Ltd. | Rolling bearing |
US6547788B1 (en) | 1997-07-08 | 2003-04-15 | Atrionx, Inc. | Medical device with sensor cooperating with expandable member |
US6093883A (en) * | 1997-07-15 | 2000-07-25 | Focus Surgery, Inc. | Ultrasound intensity determining method and apparatus |
TW370458B (en) * | 1997-08-11 | 1999-09-21 | Matsushita Electric Works Ltd | Ultrasonic facial apparatus |
US20020169442A1 (en) | 1997-08-12 | 2002-11-14 | Joseph Neev | Device and a method for treating skin conditions |
CA2300152A1 (en) | 1997-08-13 | 1999-02-25 | Surx, Inc. | Noninvasive devices, methods, and systems for shrinking of tissues |
US6413253B1 (en) * | 1997-08-16 | 2002-07-02 | Cooltouch Corporation | Subsurface heating of material |
US6126619A (en) | 1997-09-02 | 2000-10-03 | Transon Llc | Multiple transducer assembly and method for coupling ultrasound energy to a body |
US5990598A (en) | 1997-09-23 | 1999-11-23 | Hewlett-Packard Company | Segment connections for multiple elevation transducers |
US6113558A (en) | 1997-09-29 | 2000-09-05 | Angiosonics Inc. | Pulsed mode lysis method |
US5923099A (en) | 1997-09-30 | 1999-07-13 | Lam Research Corporation | Intelligent backup power controller |
US6049159A (en) | 1997-10-06 | 2000-04-11 | Albatros Technologies, Inc. | Wideband acoustic transducer |
US6500121B1 (en) | 1997-10-14 | 2002-12-31 | Guided Therapy Systems, Inc. | Imaging, therapy, and temperature monitoring ultrasonic system |
US6623430B1 (en) | 1997-10-14 | 2003-09-23 | Guided Therapy Systems, Inc. | Method and apparatus for safety delivering medicants to a region of tissue using imaging, therapy and temperature monitoring ultrasonic system |
US6050943A (en) | 1997-10-14 | 2000-04-18 | Guided Therapy Systems, Inc. | Imaging, therapy, and temperature monitoring ultrasonic system |
US6071239A (en) | 1997-10-27 | 2000-06-06 | Cribbs; Robert W. | Method and apparatus for lipolytic therapy using ultrasound energy |
US6325758B1 (en) | 1997-10-27 | 2001-12-04 | Nomos Corporation | Method and apparatus for target position verification |
US6007499A (en) | 1997-10-31 | 1999-12-28 | University Of Washington | Method and apparatus for medical procedures using high-intensity focused ultrasound |
US20080027328A1 (en) * | 1997-12-29 | 2008-01-31 | Julia Therapeutics, Llc | Multi-focal treatment of skin with acoustic energy |
US6113559A (en) | 1997-12-29 | 2000-09-05 | Klopotek; Peter J. | Method and apparatus for therapeutic treatment of skin with ultrasound |
US20020040199A1 (en) | 1997-12-29 | 2002-04-04 | Klopotek Peter J. | Method and apparatus for therapeutic treatment of skin |
US6325769B1 (en) * | 1998-12-29 | 2001-12-04 | Collapeutics, Llc | Method and apparatus for therapeutic treatment of skin |
US20060184071A1 (en) | 1997-12-29 | 2006-08-17 | Julia Therapeutics, Llc | Treatment of skin with acoustic energy |
US6575956B1 (en) | 1997-12-31 | 2003-06-10 | Pharmasonics, Inc. | Methods and apparatus for uniform transcutaneous therapeutic ultrasound |
US6171244B1 (en) | 1997-12-31 | 2001-01-09 | Acuson Corporation | Ultrasonic system and method for storing data |
JPH11244386A (ja) * | 1998-01-01 | 1999-09-14 | Ge Yokogawa Medical Systems Ltd | 血行阻止方法及び加温装置 |
DE19800416C2 (de) * | 1998-01-08 | 2002-09-19 | Storz Karl Gmbh & Co Kg | Vorrichtung zur Behandlung von Körpergewebe, insbesondere von oberflächennahem Weichgewebe, mittels Ultraschall |
CN1058905C (zh) | 1998-01-25 | 2000-11-29 | 重庆海扶(Hifu)技术有限公司 | 高强度聚焦超声肿瘤扫描治疗系统 |
CA2286107C (en) | 1998-02-10 | 2007-01-09 | Biosense, Inc. | Improved catheter calibration |
US20020055702A1 (en) | 1998-02-10 | 2002-05-09 | Anthony Atala | Ultrasound-mediated drug delivery |
US6101407A (en) | 1998-02-13 | 2000-08-08 | Eastman Kodak Company | Method and system for remotely viewing and configuring output from a medical imaging device |
US6325798B1 (en) | 1998-02-19 | 2001-12-04 | Curon Medical, Inc. | Vacuum-assisted systems and methods for treating sphincters and adjoining tissue regions |
US6039689A (en) * | 1998-03-11 | 2000-03-21 | Riverside Research Institute | Stripe electrode transducer for use with therapeutic ultrasonic radiation treatment |
US6013032A (en) * | 1998-03-13 | 2000-01-11 | Hewlett-Packard Company | Beamforming methods and apparatus for three-dimensional ultrasound imaging using two-dimensional transducer array |
EP1066086B1 (en) | 1998-03-27 | 2013-01-02 | The General Hospital Corporation | Method and apparatus for the selective targeting of lipid-rich tissues |
US6685640B1 (en) | 1998-03-30 | 2004-02-03 | Focus Surgery, Inc. | Ablation system |
WO1999049788A1 (en) | 1998-03-30 | 1999-10-07 | Focus Surgery, Inc. | Ablation system |
US6432057B1 (en) | 1998-03-31 | 2002-08-13 | Lunar Corporation | Stabilizing acoustic coupler for limb densitometry |
US6030374A (en) | 1998-05-29 | 2000-02-29 | Mcdaniel; David H. | Ultrasound enhancement of percutaneous drug absorption |
US6039048A (en) * | 1998-04-08 | 2000-03-21 | Silberg; Barry | External ultrasound treatment of connective tissue |
US6022327A (en) * | 1998-05-04 | 2000-02-08 | Chang; Henry Ping | Facial steamer machine with detachable function units |
US6004262A (en) | 1998-05-04 | 1999-12-21 | Ad-Tech Medical Instrument Corp. | Visually-positioned electrical monitoring apparatus |
US5977538A (en) | 1998-05-11 | 1999-11-02 | Imarx Pharmaceutical Corp. | Optoacoustic imaging system |
US6186951B1 (en) | 1998-05-26 | 2001-02-13 | Riverside Research Institute | Ultrasonic systems and methods for fluid perfusion and flow rate measurement |
US6432101B1 (en) * | 1998-05-28 | 2002-08-13 | Pearl Technology Holdings, Llc | Surgical device for performing face-lifting using electromagnetic radiation |
US7494488B2 (en) | 1998-05-28 | 2009-02-24 | Pearl Technology Holdings, Llc | Facial tissue strengthening and tightening device and methods |
US6440121B1 (en) * | 1998-05-28 | 2002-08-27 | Pearl Technology Holdings, Llc. | Surgical device for performing face-lifting surgery using radiofrequency energy |
US6077294A (en) | 1998-06-11 | 2000-06-20 | Cynosure, Inc. | Method for non-invasive wrinkle removal and skin treatment |
US6425865B1 (en) | 1998-06-12 | 2002-07-30 | The University Of British Columbia | Robotically assisted medical ultrasound |
US6322532B1 (en) | 1998-06-24 | 2001-11-27 | 3M Innovative Properties Company | Sonophoresis method and apparatus |
US6036646A (en) | 1998-07-10 | 2000-03-14 | Guided Therapy Systems, Inc. | Method and apparatus for three dimensional ultrasound imaging |
US6889089B2 (en) | 1998-07-28 | 2005-05-03 | Scimed Life Systems, Inc. | Apparatus and method for treating tumors near the surface of an organ |
US20030009153A1 (en) * | 1998-07-29 | 2003-01-09 | Pharmasonics, Inc. | Ultrasonic enhancement of drug injection |
AU754022B2 (en) | 1998-07-29 | 2002-10-31 | Pharmasonics, Inc. | Ultrasonic enhancement of drug injection |
US6443914B1 (en) * | 1998-08-10 | 2002-09-03 | Lysonix, Inc. | Apparatus and method for preventing and treating cellulite |
US6042556A (en) * | 1998-09-04 | 2000-03-28 | University Of Washington | Method for determining phase advancement of transducer elements in high intensity focused ultrasound |
JP4828699B2 (ja) | 1998-09-11 | 2011-11-30 | ジーアール インテレクチュアル リザーブ リミティド ライアビリティ カンパニー | 構造を検出しおよび/または作用させるための共鳴音響および/または共鳴音響−emエネルギーの使用方法 |
IL126236A0 (en) | 1998-09-16 | 1999-05-09 | Ultra Cure Ltd | A method device and system for skin peeling |
US7686763B2 (en) * | 1998-09-18 | 2010-03-30 | University Of Washington | Use of contrast agents to increase the effectiveness of high intensity focused ultrasound therapy |
US6425867B1 (en) * | 1998-09-18 | 2002-07-30 | University Of Washington | Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy |
JP3330092B2 (ja) | 1998-09-30 | 2002-09-30 | 松下電器産業株式会社 | 超音波診断装置 |
JP4460691B2 (ja) | 1998-09-30 | 2010-05-12 | 株式会社東芝 | 超音波治療装置 |
US6302848B1 (en) | 1999-07-01 | 2001-10-16 | Sonotech, Inc. | In vivo biocompatible acoustic coupling media |
IL126505A0 (en) | 1998-10-09 | 1999-08-17 | Ultra Cure Ltd | A method and device for hair removal |
JP4095729B2 (ja) | 1998-10-26 | 2008-06-04 | 株式会社日立製作所 | 治療用超音波装置 |
US6540700B1 (en) | 1998-10-26 | 2003-04-01 | Kabushiki Kaisha Toshiba | Ultrasound treatment apparatus |
US6948843B2 (en) | 1998-10-28 | 2005-09-27 | Covaris, Inc. | Method and apparatus for acoustically controlling liquid solutions in microfluidic devices |
US6719449B1 (en) | 1998-10-28 | 2004-04-13 | Covaris, Inc. | Apparatus and method for controlling sonic treatment |
US6080108A (en) | 1998-11-17 | 2000-06-27 | Atl Ultrasound, Inc. | Scanning aid for quantified three dimensional ultrasonic diagnostic imaging |
WO2000030554A1 (en) | 1998-11-20 | 2000-06-02 | Jones Joie P | Methods for selectively dissolving and removing materials using ultra-high frequency ultrasound |
US6159150A (en) | 1998-11-20 | 2000-12-12 | Acuson Corporation | Medical diagnostic ultrasonic imaging system with auxiliary processor |
US6142946A (en) * | 1998-11-20 | 2000-11-07 | Atl Ultrasound, Inc. | Ultrasonic diagnostic imaging system with cordless scanheads |
US6887260B1 (en) | 1998-11-30 | 2005-05-03 | Light Bioscience, Llc | Method and apparatus for acne treatment |
US6936044B2 (en) * | 1998-11-30 | 2005-08-30 | Light Bioscience, Llc | Method and apparatus for the stimulation of hair growth |
US6676655B2 (en) | 1998-11-30 | 2004-01-13 | Light Bioscience L.L.C. | Low intensity light therapy for the manipulation of fibroblast, and fibroblast-derived mammalian cells and collagen |
JP4089058B2 (ja) | 1998-12-10 | 2008-05-21 | ソニー株式会社 | 印刷用スクリーンの清掃装置及び清掃方法 |
US6309355B1 (en) | 1998-12-22 | 2001-10-30 | The Regents Of The University Of Michigan | Method and assembly for performing ultrasound surgery using cavitation |
US6428532B1 (en) * | 1998-12-30 | 2002-08-06 | The General Hospital Corporation | Selective tissue targeting by difference frequency of two wavelengths |
US6296619B1 (en) | 1998-12-30 | 2001-10-02 | Pharmasonics, Inc. | Therapeutic ultrasonic catheter for delivering a uniform energy dose |
US6183773B1 (en) | 1999-01-04 | 2001-02-06 | The General Hospital Corporation | Targeting of sebaceous follicles as a treatment of sebaceous gland disorders |
JP2000214966A (ja) | 1999-01-20 | 2000-08-04 | Ricoh Co Ltd | 携帯型情報処理装置 |
US6200308B1 (en) | 1999-01-29 | 2001-03-13 | Candela Corporation | Dynamic cooling of tissue for radiation treatment |
US6139499A (en) | 1999-02-22 | 2000-10-31 | Wilk; Peter J. | Ultrasonic medical system and associated method |
KR20000059516A (ko) | 1999-03-04 | 2000-10-05 | 임영환 | 멀티미디어 프리젠테이션 메일을 전송 및 실행시키는 방법 및 장치 |
JP4102031B2 (ja) | 1999-03-09 | 2008-06-18 | サーメイジ インコーポレイテッド | 組織を治療するのための装置および方法 |
US6508774B1 (en) | 1999-03-09 | 2003-01-21 | Transurgical, Inc. | Hifu applications with feedback control |
US6775404B1 (en) | 1999-03-18 | 2004-08-10 | University Of Washington | Apparatus and method for interactive 3D registration of ultrasound and magnetic resonance images based on a magnetic position sensor |
US6375672B1 (en) * | 1999-03-22 | 2002-04-23 | Board Of Trustees Of Michigan State University | Method for controlling the chemical and heat induced responses of collagenous materials |
US6488626B1 (en) | 1999-04-07 | 2002-12-03 | Riverside Research Institute | Ultrasonic sensing by induced tissue motion |
US6408212B1 (en) | 1999-04-13 | 2002-06-18 | Joseph Neev | Method for treating acne |
US6210327B1 (en) | 1999-04-28 | 2001-04-03 | General Electric Company | Method and apparatus for sending ultrasound image data to remotely located device |
US6268405B1 (en) | 1999-05-04 | 2001-07-31 | Porex Surgical, Inc. | Hydrogels and methods of making and using same |
US6251088B1 (en) | 1999-05-12 | 2001-06-26 | Jonathan J. Kaufman | Ultrasonic plantar fasciitis therapy: apparatus and method |
US6666835B2 (en) | 1999-05-14 | 2003-12-23 | University Of Washington | Self-cooled ultrasonic applicator for medical applications |
US20030060736A1 (en) | 1999-05-14 | 2003-03-27 | Martin Roy W. | Lens-focused ultrasonic applicator for medical applications |
US6217530B1 (en) | 1999-05-14 | 2001-04-17 | University Of Washington | Ultrasonic applicator for medical applications |
US6233476B1 (en) | 1999-05-18 | 2001-05-15 | Mediguide Ltd. | Medical positioning system |
US7399279B2 (en) | 1999-05-28 | 2008-07-15 | Physiosonics, Inc | Transmitter patterns for multi beam reception |
US20040015079A1 (en) | 1999-06-22 | 2004-01-22 | Teratech Corporation | Ultrasound probe with integrated electronics |
US6193658B1 (en) | 1999-06-24 | 2001-02-27 | Martin E Wendelken | Method and kit for wound evaluation |
US6287257B1 (en) | 1999-06-29 | 2001-09-11 | Acuson Corporation | Method and system for configuring a medical diagnostic ultrasound imaging system |
JP2005512671A (ja) | 1999-06-30 | 2005-05-12 | サーメイジ インコーポレイテッド | 流体投与器械 |
GB9915707D0 (en) | 1999-07-05 | 1999-09-08 | Young Michael J R | Method and apparatus for focused treatment of subcutaneous blood vessels |
US20030216795A1 (en) | 1999-07-07 | 2003-11-20 | Yoram Harth | Apparatus and method for high energy photodynamic therapy of acne vulgaris, seborrhea and other skin disorders |
CA2377583A1 (en) | 1999-07-19 | 2001-01-25 | Epicor, Inc. | Apparatus and method for ablating tissue |
US6307302B1 (en) | 1999-07-23 | 2001-10-23 | Measurement Specialities, Inc. | Ultrasonic transducer having impedance matching layer |
EP1217947A4 (en) | 1999-07-23 | 2005-01-19 | Univ Florida | ULTRASOUND MANAGEMENT OF TARGET STRUCTURES FOR MEDICAL PROCEDURES |
US6451007B1 (en) | 1999-07-29 | 2002-09-17 | Dale E. Koop | Thermal quenching of tissue |
US6533726B1 (en) | 1999-08-09 | 2003-03-18 | Riverside Research Institute | System and method for ultrasonic harmonic imaging for therapy guidance and monitoring |
US20020173721A1 (en) | 1999-08-20 | 2002-11-21 | Novasonics, Inc. | User interface for handheld imaging devices |
AU7362400A (en) | 1999-09-10 | 2001-04-10 | Transurgical, Inc. | Occlusion of tubular anatomical structures by energy application |
US7510536B2 (en) | 1999-09-17 | 2009-03-31 | University Of Washington | Ultrasound guided high intensity focused ultrasound treatment of nerves |
US6123081A (en) | 1999-09-22 | 2000-09-26 | Durette; Jean-Francois | Ocular surgical protective shield |
US6301989B1 (en) | 1999-09-30 | 2001-10-16 | Civco Medical Instruments, Inc. | Medical imaging instrument positioning device |
US20040158150A1 (en) | 1999-10-05 | 2004-08-12 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device for tissue remodeling |
US6287304B1 (en) | 1999-10-15 | 2001-09-11 | Neothermia Corporation | Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes |
JP2003512103A (ja) | 1999-10-18 | 2003-04-02 | フォーカス サージェリー,インコーポレイテッド | 分割ビーム変換器 |
US6440071B1 (en) | 1999-10-18 | 2002-08-27 | Guided Therapy Systems, Inc. | Peripheral ultrasound imaging system |
AU2619301A (en) | 1999-10-25 | 2001-06-06 | Therus Corporation | Use of focused ultrasound for vascular sealing |
US20050240170A1 (en) | 1999-10-25 | 2005-10-27 | Therus Corporation | Insertable ultrasound probes, systems, and methods for thermal therapy |
US20030229331A1 (en) | 1999-11-05 | 2003-12-11 | Pharmasonics, Inc. | Methods and apparatus for uniform transcutaneous therapeutic ultrasound |
US6338716B1 (en) * | 1999-11-24 | 2002-01-15 | Acuson Corporation | Medical diagnostic ultrasonic transducer probe and imaging system for use with a position and orientation sensor |
US6626855B1 (en) | 1999-11-26 | 2003-09-30 | Therus Corpoation | Controlled high efficiency lesion formation using high intensity ultrasound |
US6325540B1 (en) | 1999-11-29 | 2001-12-04 | General Electric Company | Method and apparatus for remotely configuring and servicing a field replaceable unit in a medical diagnostic system |
US6356780B1 (en) | 1999-12-22 | 2002-03-12 | General Electric Company | Method and apparatus for managing peripheral devices in a medical imaging system |
EP1241994A4 (en) | 1999-12-23 | 2005-12-14 | Therus Corp | ULTRASONIC ENGINE FOR IMAGING AND THERAPY |
US6436061B1 (en) * | 1999-12-29 | 2002-08-20 | Peter D. Costantino | Ultrasound treatment of varicose veins |
US6699237B2 (en) | 1999-12-30 | 2004-03-02 | Pearl Technology Holdings, Llc | Tissue-lifting device |
US8241274B2 (en) | 2000-01-19 | 2012-08-14 | Medtronic, Inc. | Method for guiding a medical device |
US6413254B1 (en) * | 2000-01-19 | 2002-07-02 | Medtronic Xomed, Inc. | Method of tongue reduction by thermal ablation using high intensity focused ultrasound |
US6447443B1 (en) | 2001-01-13 | 2002-09-10 | Medtronic, Inc. | Method for organ positioning and stabilization |
US7706882B2 (en) | 2000-01-19 | 2010-04-27 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area |
US6692450B1 (en) | 2000-01-19 | 2004-02-17 | Medtronic Xomed, Inc. | Focused ultrasound ablation devices having selectively actuatable ultrasound emitting elements and methods of using the same |
US6409720B1 (en) * | 2000-01-19 | 2002-06-25 | Medtronic Xomed, Inc. | Methods of tongue reduction using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US6451013B1 (en) | 2000-01-19 | 2002-09-17 | Medtronic Xomed, Inc. | Methods of tonsil reduction using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US6595934B1 (en) | 2000-01-19 | 2003-07-22 | Medtronic Xomed, Inc. | Methods of skin rejuvenation using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US7338434B1 (en) | 2002-08-21 | 2008-03-04 | Medtronic, Inc. | Method and system for organ positioning and stabilization |
US6361531B1 (en) * | 2000-01-21 | 2002-03-26 | Medtronic Xomed, Inc. | Focused ultrasound ablation devices having malleable handle shafts and methods of using the same |
US6517484B1 (en) * | 2000-02-28 | 2003-02-11 | Wilk Patent Development Corporation | Ultrasonic imaging system and associated method |
US6428477B1 (en) * | 2000-03-10 | 2002-08-06 | Koninklijke Philips Electronics, N.V. | Delivery of theraputic ultrasound by two dimensional ultrasound array |
US6511427B1 (en) * | 2000-03-10 | 2003-01-28 | Acuson Corporation | System and method for assessing body-tissue properties using a medical ultrasound transducer probe with a body-tissue parameter measurement mechanism |
US6419648B1 (en) * | 2000-04-21 | 2002-07-16 | Insightec-Txsonics Ltd. | Systems and methods for reducing secondary hot spots in a phased array focused ultrasound system |
AU2001257328A1 (en) | 2000-04-28 | 2001-11-12 | Focus Surgery, Inc. | Ablation system with visualization |
AU2001255724A1 (en) | 2000-04-29 | 2001-11-12 | Focus Surgery, Inc. | Non-invasive tissue characterization |
US6312385B1 (en) | 2000-05-01 | 2001-11-06 | Ge Medical Systems Global Technology Company, Llc | Method and apparatus for automatic detection and sizing of cystic objects |
JP4799795B2 (ja) | 2000-05-22 | 2011-10-26 | 有限会社三輪サイエンス研究所 | 超音波照射装置 |
WO2002003873A2 (en) | 2000-07-10 | 2002-01-17 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTMENT OF HEALTH & HUMAN SERVICES, THE NATIONAL INSTITUTES OF HEALTH | Radiofrequency probes for tissue treatment and methods of use |
US6506171B1 (en) | 2000-07-27 | 2003-01-14 | Insightec-Txsonics, Ltd | System and methods for controlling distribution of acoustic energy around a focal point using a focused ultrasound system |
WO2002009813A1 (en) | 2000-07-31 | 2002-02-07 | El. En. S.P.A. | Method and device for epilation by ultrasound |
JP3556582B2 (ja) | 2000-08-02 | 2004-08-18 | 松下電器産業株式会社 | 超音波診断装置 |
EP2269645A3 (en) | 2000-08-16 | 2011-01-12 | The General Hospital Corporation doing business as Massachusetts General Hospital | Topical aminolevulinic acid-photodynamic therapy for acne vulgaris |
US20040073115A1 (en) | 2000-08-24 | 2004-04-15 | Timi 3 Systems, Inc. | Systems and methods for applying ultrasound energy to increase tissue perfusion and/or vasodilation without substantial deep heating of tissue |
US7335169B2 (en) | 2000-08-24 | 2008-02-26 | Timi 3 Systems, Inc. | Systems and methods for delivering ultrasound energy at an output power level that remains essentially constant despite variations in transducer impedance |
US20020082529A1 (en) | 2000-08-24 | 2002-06-27 | Timi 3 Systems, Inc. | Systems and methods for applying pulsed ultrasonic energy |
US20020072691A1 (en) | 2000-08-24 | 2002-06-13 | Timi 3 Systems, Inc. | Systems and methods for applying ultrasonic energy to the thoracic cavity |
US6790187B2 (en) | 2000-08-24 | 2004-09-14 | Timi 3 Systems, Inc. | Systems and methods for applying ultrasonic energy |
JP2002078764A (ja) | 2000-09-06 | 2002-03-19 | Purotec Fuji:Kk | 携帯美容マッサージ機 |
EP1339311A4 (en) | 2000-09-19 | 2008-04-30 | Focus Surgery Inc | METHOD AND APPARATUS FOR PERFORMING TISSUE TREATMENT |
US6524250B1 (en) | 2000-09-19 | 2003-02-25 | Pearl Technology Holdings, Llc | Fat layer thickness mapping system to guide liposuction surgery |
US6910139B2 (en) | 2000-10-02 | 2005-06-21 | Fujitsu Limited | Software processing apparatus with a switching processing unit for displaying animation images in an environment operating base on type of power supply |
KR100400870B1 (ko) | 2000-10-10 | 2003-10-08 | 김영애 | 원격 피부진단 및 치료기 |
US6882884B1 (en) | 2000-10-13 | 2005-04-19 | Soundskin, L.L.C. | Process for the stimulation of production of extracellular dermal proteins in human tissue |
JP2001170068A (ja) | 2000-10-16 | 2001-06-26 | Toshiba Corp | 超音波治療装置 |
EP1341443B1 (en) | 2000-10-18 | 2010-12-29 | Paieon Inc. | System for positioning a device in a tubular organ |
US6540685B1 (en) | 2000-11-09 | 2003-04-01 | Koninklijke Philips Electronics N.V. | Ultrasound diagnostic device |
US6821274B2 (en) | 2001-03-07 | 2004-11-23 | Gendel Ltd. | Ultrasound therapy for selective cell ablation |
WO2002043564A2 (en) | 2000-11-28 | 2002-06-06 | Allez Physionix Limited | Systems and methods for making non-invasive physiological assessments |
US6618620B1 (en) | 2000-11-28 | 2003-09-09 | Txsonics Ltd. | Apparatus for controlling thermal dosing in an thermal treatment system |
GB0030449D0 (en) | 2000-12-13 | 2001-01-24 | Deltex Guernsey Ltd | Improvements in or relating to doppler haemodynamic monitors |
US6746444B2 (en) | 2000-12-18 | 2004-06-08 | Douglas J. Key | Method of amplifying a beneficial selective skin response to light energy |
US6761729B2 (en) | 2000-12-22 | 2004-07-13 | Advanced Medicalapplications, Inc. | Wound treatment method and device with combination of ultrasound and laser energy |
US6626854B2 (en) | 2000-12-27 | 2003-09-30 | Insightec - Txsonics Ltd. | Systems and methods for ultrasound assisted lipolysis |
US6645162B2 (en) | 2000-12-27 | 2003-11-11 | Insightec - Txsonics Ltd. | Systems and methods for ultrasound assisted lipolysis |
US7914453B2 (en) * | 2000-12-28 | 2011-03-29 | Ardent Sound, Inc. | Visual imaging system for ultrasonic probe |
US6540679B2 (en) | 2000-12-28 | 2003-04-01 | Guided Therapy Systems, Inc. | Visual imaging system for ultrasonic probe |
US6997923B2 (en) | 2000-12-28 | 2006-02-14 | Palomar Medical Technologies, Inc. | Method and apparatus for EMR treatment |
US6607498B2 (en) * | 2001-01-03 | 2003-08-19 | Uitra Shape, Inc. | Method and apparatus for non-invasive body contouring by lysing adipose tissue |
US7347855B2 (en) | 2001-10-29 | 2008-03-25 | Ultrashape Ltd. | Non-invasive ultrasonic body contouring |
AU2002217412B2 (en) | 2001-01-03 | 2006-09-14 | Ultrashape Ltd. | Non-invasive ultrasonic body contouring |
RU2003124631A (ru) | 2001-01-05 | 2005-02-27 | Бьёрн А. Дж. АНГЕЛЬСЕН (NO) АНГЕЛЬСЕН Бьёрн А. Дж. (NO) | Широкополосный преобразователь |
US6569099B1 (en) | 2001-01-12 | 2003-05-27 | Eilaz Babaev | Ultrasonic method and device for wound treatment |
JP2002209905A (ja) | 2001-01-22 | 2002-07-30 | Hitachi Medical Corp | 超音波治療プローブ及び超音波治療装置 |
US6626834B2 (en) | 2001-01-25 | 2003-09-30 | Shane Dunne | Spiral scanner with electronic control |
US6740040B1 (en) | 2001-01-30 | 2004-05-25 | Advanced Cardiovascular Systems, Inc. | Ultrasound energy driven intraventricular catheter to treat ischemia |
JP2002238919A (ja) | 2001-02-20 | 2002-08-27 | Olympus Optical Co Ltd | 医療システム用制御装置及び医療システム |
JP2002248153A (ja) | 2001-02-23 | 2002-09-03 | Matsushita Electric Works Ltd | 超音波美容器 |
US6569108B2 (en) | 2001-03-28 | 2003-05-27 | Profile, Llc | Real time mechanical imaging of the prostate |
US6804327B2 (en) | 2001-04-03 | 2004-10-12 | Lambda Physik Ag | Method and apparatus for generating high output power gas discharge based source of extreme ultraviolet radiation and/or soft x-rays |
US20020165529A1 (en) | 2001-04-05 | 2002-11-07 | Danek Christopher James | Method and apparatus for non-invasive energy delivery |
US6478754B1 (en) | 2001-04-23 | 2002-11-12 | Advanced Medical Applications, Inc. | Ultrasonic method and device for wound treatment |
US6663627B2 (en) | 2001-04-26 | 2003-12-16 | Medtronic, Inc. | Ablation system and method of use |
WO2002087692A1 (en) | 2001-04-26 | 2002-11-07 | The Procter & Gamble Company | A method and apparatus for the treatment of cosmetic skin conditioins |
GB0111440D0 (en) | 2001-05-10 | 2001-07-04 | Procter & Gamble | Method and kit for the treatment or prevention of cosmetic skin conditions |
JP3937755B2 (ja) | 2001-05-28 | 2007-06-27 | 松下電工株式会社 | 超音波美容器 |
US7846096B2 (en) | 2001-05-29 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Method for monitoring of medical treatment using pulse-echo ultrasound |
US20030032898A1 (en) | 2001-05-29 | 2003-02-13 | Inder Raj. S. Makin | Method for aiming ultrasound for medical treatment |
US7058440B2 (en) | 2001-06-28 | 2006-06-06 | Koninklijke Philips Electronics N.V. | Dynamic computed tomography imaging using positional state modeling |
US7056331B2 (en) | 2001-06-29 | 2006-06-06 | Quill Medical, Inc. | Suture method |
US6659956B2 (en) | 2001-06-29 | 2003-12-09 | Barzell-Whitmore Maroon Bells, Inc. | Medical instrument positioner |
US6932771B2 (en) | 2001-07-09 | 2005-08-23 | Civco Medical Instruments Co., Inc. | Tissue warming device and method |
FR2827149B1 (fr) | 2001-07-13 | 2003-10-10 | Technomed Medical Systems | Sonde de traitement par ultrasons focalises |
JP2003050298A (ja) | 2001-08-06 | 2003-02-21 | Fuji Photo Film Co Ltd | 放射線像変換パネルおよびその製造方法 |
US7018396B2 (en) | 2001-08-07 | 2006-03-28 | New England Medical Center Hospitals, Inc. | Method of treating acne |
US20030032900A1 (en) | 2001-08-08 | 2003-02-13 | Engii (2001) Ltd. | System and method for facial treatment |
DE10140064A1 (de) | 2001-08-16 | 2003-03-13 | Rainer Weismueller | Vorrichtung zur Behandlung subkutaner Zellbereiche |
US7094252B2 (en) | 2001-08-21 | 2006-08-22 | Cooltouch Incorporated | Enhanced noninvasive collagen remodeling |
US6773409B2 (en) * | 2001-09-19 | 2004-08-10 | Surgrx Llc | Surgical system for applying ultrasonic energy to tissue |
US6638226B2 (en) | 2001-09-28 | 2003-10-28 | Teratech Corporation | Ultrasound imaging system |
US6974417B2 (en) | 2001-10-05 | 2005-12-13 | Queen's University At Kingston | Ultrasound transducer array |
US6709397B2 (en) | 2001-10-16 | 2004-03-23 | Envisioneering, L.L.C. | Scanning probe |
US6920883B2 (en) | 2001-11-08 | 2005-07-26 | Arthrocare Corporation | Methods and apparatus for skin treatment |
US7115093B2 (en) | 2001-11-21 | 2006-10-03 | Ge Medical Systems Global Technology Company, Llc | Method and system for PDA-based ultrasound system |
US7317818B2 (en) | 2001-11-26 | 2008-01-08 | L'ORéAL S.A. | Method of enabling an analysis of an external body portion |
CN100401986C (zh) | 2001-11-30 | 2008-07-16 | 彼得罗·莫伊拉宁 | 用于骨骼非侵害性评价的方法和装置 |
US6554771B1 (en) | 2001-12-18 | 2003-04-29 | Koninklijke Philips Electronics N.V. | Position sensor in ultrasound transducer probe |
US6746402B2 (en) | 2002-01-02 | 2004-06-08 | E. Tuncay Ustuner | Ultrasound system and method |
JP2003204982A (ja) | 2002-01-09 | 2003-07-22 | Byeong Gon Kim | 腹部温熱振動ベルト |
AU2003209287A1 (en) | 2002-01-15 | 2003-07-30 | The Regents Of The University Of California | System and method providing directional ultrasound therapy to skeletal joints |
SE520857C2 (sv) | 2002-01-15 | 2003-09-02 | Ultrazonix Dnt Ab | Anordning med såväl terapeutiska som diagnostiska givare för mini-invasiv ultraljudsbehandling av ett objekt, där den terapeuti ska givaren är termiskt isolerad |
TWI220386B (en) * | 2002-01-21 | 2004-08-21 | Matsushita Electric Works Ltd | Ultrasonic transdermal permeation device |
EP1503685B1 (en) | 2002-01-23 | 2012-10-31 | The Regents of The University of California | Implantable thermal treatment apparatus |
EP1470546B1 (en) * | 2002-01-29 | 2013-11-27 | SRA Developments Limited | Method and apparatus for focussing ultrasonic energy |
JP4265139B2 (ja) | 2002-02-18 | 2009-05-20 | コニカミノルタホールディングス株式会社 | 放射線画像変換パネル及び放射線画像読み取り装置 |
CA2476873A1 (en) | 2002-02-20 | 2003-08-28 | Liposonix, Inc. | Ultrasonic treatment and imaging of adipose tissue |
JP2003248097A (ja) | 2002-02-25 | 2003-09-05 | Konica Corp | 放射線画像変換パネル及び放射線画像変換パネルの製造方法 |
US6648839B2 (en) | 2002-02-28 | 2003-11-18 | Misonix, Incorporated | Ultrasonic medical treatment device for RF cauterization and related method |
US20030171701A1 (en) | 2002-03-06 | 2003-09-11 | Eilaz Babaev | Ultrasonic method and device for lypolytic therapy |
US6824516B2 (en) | 2002-03-11 | 2004-11-30 | Medsci Technologies, Inc. | System for examining, mapping, diagnosing, and treating diseases of the prostate |
US8840608B2 (en) | 2002-03-15 | 2014-09-23 | The General Hospital Corporation | Methods and devices for selective disruption of fatty tissue by controlled cooling |
IL148791A0 (en) | 2002-03-20 | 2002-09-12 | Yoni Iger | Method and apparatus for altering activity of tissue layers |
US6662054B2 (en) | 2002-03-26 | 2003-12-09 | Syneron Medical Ltd. | Method and system for treating skin |
US7534211B2 (en) | 2002-03-29 | 2009-05-19 | Sonosite, Inc. | Modular apparatus for diagnostic ultrasound |
US6887239B2 (en) | 2002-04-17 | 2005-05-03 | Sontra Medical Inc. | Preparation for transmission and reception of electrical signals |
JP2003309890A (ja) | 2002-04-17 | 2003-10-31 | Matsushita Electric Ind Co Ltd | 超音波探触子 |
US7000126B2 (en) | 2002-04-18 | 2006-02-14 | Intel Corporation | Method for media content presentation in consideration of system power |
DE10219297A1 (de) | 2002-04-25 | 2003-11-06 | Laser & Med Tech Gmbh | Verfahren und Vorrichtung zur Verfestigung biologischen Weichgewebes |
US20030236487A1 (en) | 2002-04-29 | 2003-12-25 | Knowlton Edward W. | Method for treatment of tissue with feedback |
DE10219217B3 (de) | 2002-04-29 | 2004-02-12 | Creative-Line Gmbh | Gegenstand mit Linienbild und Verfahren zum Herstellen eines Gegenstands mit Linienbild |
US6992305B2 (en) | 2002-05-08 | 2006-01-31 | Konica Corporation | Radiation image converting panel and production method of the same |
US20030212129A1 (en) | 2002-05-13 | 2003-11-13 | Liu Kay Miyakawa | System and method for revitalizing human skin |
US6846290B2 (en) * | 2002-05-14 | 2005-01-25 | Riverside Research Institute | Ultrasound method and system |
US7359745B2 (en) | 2002-05-15 | 2008-04-15 | Case Western Reserve University | Method to correct magnetic field/phase variations in proton resonance frequency shift thermometry in magnetic resonance imaging |
WO2003096883A2 (en) | 2002-05-16 | 2003-11-27 | Barbara Ann Karmanos Cancer Institute | Combined diagnostic and therapeutic ultrasound system |
US7967839B2 (en) | 2002-05-20 | 2011-06-28 | Rocky Mountain Biosystems, Inc. | Electromagnetic treatment of tissues and cells |
US6958043B2 (en) | 2002-05-21 | 2005-10-25 | Medtronic Xomed, Inc. | Apparatus and method for displacing the partition between the middle ear and the inner ear using a manually powered device |
US7179238B2 (en) | 2002-05-21 | 2007-02-20 | Medtronic Xomed, Inc. | Apparatus and methods for directly displacing the partition between the middle ear and inner ear at an infrasonic frequency |
US20070213696A1 (en) | 2006-03-10 | 2007-09-13 | Palomar Medical Technologies, Inc. | Photocosmetic device |
JP2005526579A (ja) * | 2002-05-23 | 2005-09-08 | ジェンデル・リミテッド | 焼灼デバイス |
CA2484515A1 (en) | 2002-05-30 | 2003-12-11 | University Of Washington | Solid hydrogel coupling for ultrasound imaging and therapy |
US20030233085A1 (en) * | 2002-06-18 | 2003-12-18 | Pedro Giammarusti | Optimization of transcutaneous active permeation of compounds through the synergistic use of ultrasonically generated mechanical abrasion of the skin, chemical enhancers and simultaneous application of sonophoresis, iontophoresis, electroporation, mechanical vibrations and magnetophoresis through single application devices |
JP2005535370A (ja) | 2002-06-19 | 2005-11-24 | パロマー・メディカル・テクノロジーズ・インコーポレイテッド | 皮膚および皮下の症状を治療する方法および装置 |
CA2490725A1 (en) | 2002-06-25 | 2003-12-31 | Ultrashape Inc. | Devices and methodologies useful in body aesthetics |
US20040001809A1 (en) * | 2002-06-26 | 2004-01-01 | Pharmasonics, Inc. | Methods and apparatus for enhancing a response to nucleic acid vaccines |
US20040082859A1 (en) | 2002-07-01 | 2004-04-29 | Alan Schaer | Method and apparatus employing ultrasound energy to treat body sphincters |
US20040049134A1 (en) * | 2002-07-02 | 2004-03-11 | Tosaya Carol A. | System and methods for treatment of alzheimer's and other deposition-related disorders of the brain |
KR100872242B1 (ko) * | 2002-08-29 | 2008-12-05 | 엘지전자 주식회사 | 휴대 가능한 복합형 컴퓨터 |
JP3728283B2 (ja) * | 2002-08-30 | 2005-12-21 | キヤノン株式会社 | 記録装置 |
US20040122493A1 (en) | 2002-09-09 | 2004-06-24 | Kabushiki Kaisha Toshiba | Ultrasonic irradiation apparatus |
JP2004147719A (ja) | 2002-10-29 | 2004-05-27 | Toshiba Corp | 超音波照射装置 |
US7234106B2 (en) * | 2002-09-10 | 2007-06-19 | Simske Steven J | System for and method of generating image annotation information |
US20070219604A1 (en) | 2006-03-20 | 2007-09-20 | Palomar Medical Technologies, Inc. | Treatment of tissue with radiant energy |
US6669638B1 (en) | 2002-10-10 | 2003-12-30 | Koninklijke Philips Electronics N.V. | Imaging ultrasound transducer temperature control system and method |
US7004940B2 (en) | 2002-10-10 | 2006-02-28 | Ethicon, Inc. | Devices for performing thermal ablation having movable ultrasound transducers |
US6709392B1 (en) | 2002-10-10 | 2004-03-23 | Koninklijke Philips Electronics N.V. | Imaging ultrasound transducer temperature control system and method using feedback |
US6921371B2 (en) | 2002-10-14 | 2005-07-26 | Ekos Corporation | Ultrasound radiating members for catheter |
US6860852B2 (en) | 2002-10-25 | 2005-03-01 | Compex Medical S.A. | Ultrasound therapeutic device |
WO2004042424A1 (en) | 2002-11-06 | 2004-05-21 | Koninklijke Philips Electronics N.V. | Phased array acoustic system for 3d imaging of moving parts_____ |
US7676047B2 (en) | 2002-12-03 | 2010-03-09 | Bose Corporation | Electroacoustical transducing with low frequency augmenting devices |
US8088067B2 (en) | 2002-12-23 | 2012-01-03 | Insightec Ltd. | Tissue aberration corrections in ultrasound therapy |
US20040143297A1 (en) | 2003-01-21 | 2004-07-22 | Maynard Ramsey | Advanced automatic external defibrillator powered by alternative and optionally multiple electrical power sources and a new business method for single use AED distribution and refurbishment |
US7150716B2 (en) | 2003-02-20 | 2006-12-19 | Siemens Medical Solutions Usa, Inc. | Measuring transducer movement methods and systems for multi-dimensional ultrasound imaging |
US20030191396A1 (en) | 2003-03-10 | 2003-10-09 | Sanghvi Narendra T | Tissue treatment method and apparatus |
CN1758891B (zh) | 2003-03-13 | 2012-10-10 | 自然美有限公司 | 脂肪团的超声处理 |
US6918907B2 (en) | 2003-03-13 | 2005-07-19 | Boston Scientific Scimed, Inc. | Surface electrode multiple mode operation |
US6733449B1 (en) | 2003-03-20 | 2004-05-11 | Siemens Medical Solutions Usa, Inc. | System and method for real-time streaming of ultrasound data to a diagnostic medical ultrasound streaming application |
JP2004297951A (ja) | 2003-03-27 | 2004-10-21 | Olympus Corp | 超音波振動子及び超音波モータ |
US9149322B2 (en) | 2003-03-31 | 2015-10-06 | Edward Wells Knowlton | Method for treatment of tissue |
US20040206365A1 (en) | 2003-03-31 | 2004-10-21 | Knowlton Edward Wells | Method for treatment of tissue |
US7273459B2 (en) | 2003-03-31 | 2007-09-25 | Liposonix, Inc. | Vortex transducer |
DE602004017248D1 (de) | 2003-05-19 | 2008-12-04 | Ust Inc | Geometrisch geformte Kopplungskörper aus Hydrogel für die Behandlung mit fokussiertem Ultraschall von hoher Intensität |
EP1628577A2 (de) | 2003-05-21 | 2006-03-01 | Dietrich, René | Ultraschall-koppelmedium für die medizinische diagnostik |
ITSV20030023A1 (it) | 2003-05-22 | 2004-11-23 | Esaote Spa | Metodo per l'ottimizzazione di impulsi ad ultrasuoni in |
US6896657B2 (en) | 2003-05-23 | 2005-05-24 | Scimed Life Systems, Inc. | Method and system for registering ultrasound image in three-dimensional coordinate system |
JP4041014B2 (ja) | 2003-06-06 | 2008-01-30 | オリンパス株式会社 | 超音波手術装置 |
CA2526166C (en) | 2003-06-12 | 2014-04-15 | Bracco Research Sa | Blood flow estimates through replenishment curve fitting in ultrasound contrast imaging |
EP1633439B1 (en) | 2003-06-13 | 2006-12-13 | Matsushita Electric Works, Ltd. | Ultrasound applying skin care device |
US7074218B2 (en) | 2003-06-30 | 2006-07-11 | Ethicon, Inc. | Multi-modality ablation device |
US7303555B2 (en) | 2003-06-30 | 2007-12-04 | Depuy Products, Inc. | Imaging and therapeutic procedure for carpal tunnel syndrome |
US20050033316A1 (en) * | 2003-07-14 | 2005-02-10 | M. Glen Kertz | Ultrasonic skin cleaner |
US20050070961A1 (en) | 2003-07-15 | 2005-03-31 | Terumo Kabushiki Kaisha | Energy treatment apparatus |
US20050102009A1 (en) | 2003-07-31 | 2005-05-12 | Peter Costantino | Ultrasound treatment and imaging system |
JP4472395B2 (ja) | 2003-08-07 | 2010-06-02 | オリンパス株式会社 | 超音波手術システム |
WO2005015728A1 (ja) | 2003-08-08 | 2005-02-17 | Matsushita Electric Industrial Co., Ltd. | 超音波モータ駆動装置及び超音波診断装置 |
US7398116B2 (en) | 2003-08-11 | 2008-07-08 | Veran Medical Technologies, Inc. | Methods, apparatuses, and systems useful in conducting image guided interventions |
US7294125B2 (en) | 2003-08-22 | 2007-11-13 | Scimed Life Systems, Inc. | Methods of delivering energy to body portions to produce a therapeutic response |
US20080086056A1 (en) | 2003-08-25 | 2008-04-10 | Industrial Technology Research Institute | Micro ultrasonic transducers |
US20050080469A1 (en) | 2003-09-04 | 2005-04-14 | Larson Eugene A. | Treatment of cardiac arrhythmia utilizing ultrasound |
EP1663394B1 (en) | 2003-09-08 | 2014-05-21 | The Board Of Trustees Of The University Of Arkansas | Ultrasound apparatus for augmented clot lysis |
US20050055018A1 (en) | 2003-09-08 | 2005-03-10 | Michael Kreindel | Method and device for sub-dermal tissue treatment |
DE20314479U1 (de) | 2003-09-13 | 2004-02-12 | Peter Krauth Gmbh | Gerät für die Behandlung von Erkrankungen mit Ultraschallwellen im Niederfrequenzbereich |
FR2859983B1 (fr) * | 2003-09-22 | 2006-03-10 | Valois Sas | Dispositif de fixation et procede de montage pour fixer un organe de distribution sur une ouverture de reservoir |
US20050074407A1 (en) | 2003-10-01 | 2005-04-07 | Sonotech, Inc. | PVP and PVA as in vivo biocompatible acoustic coupling medium |
US7358831B2 (en) * | 2003-10-30 | 2008-04-15 | Avago Technologies Wireless Ip (Singapore) Pte. Ltd. | Film bulk acoustic resonator (FBAR) devices with simplified packaging |
DE602004020252D1 (de) | 2003-11-04 | 2009-05-07 | Univ Washington | Zahnbürste mit einsatz eines akustischen wellenleiters |
US20050113689A1 (en) | 2003-11-21 | 2005-05-26 | Arthur Gritzky | Method and apparatus for performing multi-mode imaging |
US20050131302A1 (en) | 2003-12-16 | 2005-06-16 | Poland Mckee D. | Ultrasonic probe having a selector switch |
US20110040171A1 (en) * | 2003-12-16 | 2011-02-17 | University Of Washington | Image guided high intensity focused ultrasound treatment of nerves |
US20050137656A1 (en) | 2003-12-23 | 2005-06-23 | American Environmental Systems, Inc. | Acoustic-optical therapeutical devices and methods |
US20050154308A1 (en) | 2003-12-30 | 2005-07-14 | Liposonix, Inc. | Disposable transducer seal |
CN1901837B (zh) | 2003-12-30 | 2010-05-12 | 利普索尼克斯股份有限公司 | 组成式超声波换能器 |
BRPI0417022A (pt) | 2003-12-30 | 2007-02-21 | Liposonix Inc | sistemas para a aplicação de energia a uma região de corpo, para produzir um mapa de tecido subcutáneo topográfico, e para posicionar um dispositivo médico, aparelho para guiar o movimento de um emissor de energia sobre um corpo de paciente, métodos para aplicar energia a uma região de corpo, para executar um procedimento de terapia de lipoplastia , para destruir tecido gorduroso, para criar um mapa de corpo 3d com os locais de volumes de tecido gorduroso, para escultura de corpo utilizando um mapa de corpo 3d, e para posicionar uma cabeça de terapia de ultra-som no espaço |
US20050193451A1 (en) | 2003-12-30 | 2005-09-01 | Liposonix, Inc. | Articulating arm for medical procedures |
US8343051B2 (en) | 2003-12-30 | 2013-01-01 | Liposonix, Inc. | Apparatus and methods for the destruction of adipose tissue |
US7532201B2 (en) | 2003-12-30 | 2009-05-12 | Liposonix, Inc. | Position tracking device |
CN1897907B (zh) | 2003-12-30 | 2012-06-20 | 麦迪斯技术公司 | 带有移动控制的超声治疗头 |
US7857773B2 (en) | 2003-12-30 | 2010-12-28 | Medicis Technologies Corporation | Apparatus and methods for the destruction of adipose tissue |
US8337407B2 (en) | 2003-12-30 | 2012-12-25 | Liposonix, Inc. | Articulating arm for medical procedures |
US20050154332A1 (en) | 2004-01-12 | 2005-07-14 | Onda | Methods and systems for removing hair using focused acoustic energy |
CA2555396C (en) | 2004-02-06 | 2016-03-15 | Daniel Barolet | Method and device for the treatment of mammalian tissues |
JP2007520307A (ja) | 2004-02-06 | 2007-07-26 | テクニオン リサーチ アンド ディベロップメント ファウンデーション リミティド | 微小気泡局所形成方法、強化超音波の使用によるキャビテーション効果制御および加熱効果制御 |
JP2005245521A (ja) | 2004-03-01 | 2005-09-15 | Japan Natural Laboratory Co Ltd | イオン導入器、超音波美顔器並びに化粧品添加物を使用する美肌又は美容システム。 |
WO2005083881A1 (ja) * | 2004-03-02 | 2005-09-09 | Murata Manufacturing Co., Ltd. | 弾性表面波装置 |
US7662114B2 (en) | 2004-03-02 | 2010-02-16 | Focus Surgery, Inc. | Ultrasound phased arrays |
CA2559260C (en) | 2004-03-12 | 2015-05-12 | University Of Virginia Patent Foundation | Electron transfer dissociation for biopolymer sequence analysis |
US20050228281A1 (en) | 2004-03-31 | 2005-10-13 | Nefos Thomas P | Handheld diagnostic ultrasound system with head mounted display |
BRPI0509744A (pt) | 2004-04-09 | 2007-09-25 | Palomar Medical Tech Inc | métodos e produtos para produção de látices de ilhotas tratadas com emr em tecidos e seus usos |
JP4100372B2 (ja) | 2004-05-10 | 2008-06-11 | 松下電工株式会社 | 超音波美容器具 |
US8235909B2 (en) * | 2004-05-12 | 2012-08-07 | Guided Therapy Systems, L.L.C. | Method and system for controlled scanning, imaging and/or therapy |
DE602005007888D1 (de) | 2004-05-14 | 2008-08-14 | Medtronic Inc | System zur verwendung von hochintensivem fokussiertem ultraschall zur bildung eines ablatierten gewebebereiches |
US7951095B2 (en) | 2004-05-20 | 2011-05-31 | Ethicon Endo-Surgery, Inc. | Ultrasound medical system |
US7806839B2 (en) | 2004-06-14 | 2010-10-05 | Ethicon Endo-Surgery, Inc. | System and method for ultrasound therapy using grating lobes |
US7837675B2 (en) | 2004-07-22 | 2010-11-23 | Shaser, Inc. | Method and device for skin treatment with replaceable photosensitive window |
EP1789137B1 (fr) | 2004-07-23 | 2013-09-04 | Inserm | Dispositif de traitement par ultrasons |
US7699780B2 (en) * | 2004-08-11 | 2010-04-20 | Insightec—Image-Guided Treatment Ltd. | Focused ultrasound system with adaptive anatomical aperture shaping |
US7310928B2 (en) | 2004-08-24 | 2007-12-25 | Curry Janine V | Retractable spurs |
US7105986B2 (en) | 2004-08-27 | 2006-09-12 | General Electric Company | Ultrasound transducer with enhanced thermal conductivity |
US9011336B2 (en) | 2004-09-16 | 2015-04-21 | Guided Therapy Systems, Llc | Method and system for combined energy therapy profile |
US7393325B2 (en) | 2004-09-16 | 2008-07-01 | Guided Therapy Systems, L.L.C. | Method and system for ultrasound treatment with a multi-directional transducer |
US7824348B2 (en) | 2004-09-16 | 2010-11-02 | Guided Therapy Systems, L.L.C. | System and method for variable depth ultrasound treatment |
CA2580710A1 (en) | 2004-09-19 | 2006-03-23 | Bioscan Technologies, Ltd. | Intravascular ultrasound imaging device |
US20130096471A1 (en) | 2010-08-02 | 2013-04-18 | Guided Therapy Systems, Llc | Systems and methods for treating injuries to joints and connective tissue |
US8535228B2 (en) | 2004-10-06 | 2013-09-17 | Guided Therapy Systems, Llc | Method and system for noninvasive face lifts and deep tissue tightening |
US8444562B2 (en) | 2004-10-06 | 2013-05-21 | Guided Therapy Systems, Llc | System and method for treating muscle, tendon, ligament and cartilage tissue |
US7530958B2 (en) | 2004-09-24 | 2009-05-12 | Guided Therapy Systems, Inc. | Method and system for combined ultrasound treatment |
US20150165243A1 (en) | 2004-09-24 | 2015-06-18 | Guided Therapy Systems, Llc | System and Method for Treating Cartilage and Injuries to Joints and Connective Tissue |
EP2409729A1 (en) | 2004-10-06 | 2012-01-25 | Guided Therapy Systems, L.L.C. | Method and system for ultrasound tissue treatment |
CA2583600A1 (en) | 2004-10-06 | 2006-04-20 | Guided Therapy Systems, L.L.C. | Method and system for noninvasive cosmetic enhancement |
US8133180B2 (en) | 2004-10-06 | 2012-03-13 | Guided Therapy Systems, L.L.C. | Method and system for treating cellulite |
US20060111744A1 (en) | 2004-10-13 | 2006-05-25 | Guided Therapy Systems, L.L.C. | Method and system for treatment of sweat glands |
US7530356B2 (en) | 2004-10-06 | 2009-05-12 | Guided Therapy Systems, Inc. | Method and system for noninvasive mastopexy |
JP5932195B2 (ja) | 2004-10-06 | 2016-06-08 | ガイデッド セラピー システムズ, エル.エル.シー. | ヒト表面組織の制御された熱処理のためのシステム |
US7758524B2 (en) | 2004-10-06 | 2010-07-20 | Guided Therapy Systems, L.L.C. | Method and system for ultra-high frequency ultrasound treatment |
US20120046547A1 (en) | 2004-10-06 | 2012-02-23 | Guided Therapy Systems, Llc | System and method for cosmetic treatment |
US8690778B2 (en) | 2004-10-06 | 2014-04-08 | Guided Therapy Systems, Llc | Energy-based tissue tightening |
US20060079868A1 (en) | 2004-10-07 | 2006-04-13 | Guided Therapy Systems, L.L.C. | Method and system for treatment of blood vessel disorders |
US7235592B2 (en) | 2004-10-12 | 2007-06-26 | Zimmer Gmbh | PVA hydrogel |
US20060089688A1 (en) | 2004-10-25 | 2006-04-27 | Dorin Panescu | Method and apparatus to reduce wrinkles through application of radio frequency energy to nerves |
US20060094988A1 (en) | 2004-10-28 | 2006-05-04 | Tosaya Carol A | Ultrasonic apparatus and method for treating obesity or fat-deposits or for delivering cosmetic or other bodily therapy |
US20060122509A1 (en) | 2004-11-24 | 2006-06-08 | Liposonix, Inc. | System and methods for destroying adipose tissue |
US20060116583A1 (en) | 2004-11-26 | 2006-06-01 | Yoichi Ogasawara | Ultrasonic diagnostic apparatus and control method thereof |
US8162858B2 (en) | 2004-12-13 | 2012-04-24 | Us Hifu, Llc | Ultrasonic medical treatment device with variable focal zone |
JP4095639B2 (ja) * | 2004-12-22 | 2008-06-04 | キヤノン株式会社 | 画像処理装置及び画像処理装置の制御方法 |
CN100542635C (zh) | 2005-01-10 | 2009-09-23 | 重庆海扶(Hifu)技术有限公司 | 高强度聚焦超声治疗装置和方法 |
US7553284B2 (en) | 2005-02-02 | 2009-06-30 | Vaitekunas Jeffrey J | Focused ultrasound for pain reduction |
US7918795B2 (en) | 2005-02-02 | 2011-04-05 | Gynesonics, Inc. | Method and device for uterine fibroid treatment |
EP1843818A4 (en) | 2005-02-06 | 2008-03-19 | Ultrashape Inc | NON-THERMAL ACOUSTIC TISSUE MODIFICATION |
US20060241440A1 (en) | 2005-02-07 | 2006-10-26 | Yoram Eshel | Non-thermal acoustic tissue modification |
US7771418B2 (en) | 2005-03-09 | 2010-08-10 | Sunnybrook Health Sciences Centre | Treatment of diseased tissue using controlled ultrasonic heating |
US7931611B2 (en) | 2005-03-23 | 2011-04-26 | Misonix, Incorporated | Ultrasonic wound debrider probe and method of use |
US7335997B2 (en) | 2005-03-31 | 2008-02-26 | Ethicon Endo-Surgery, Inc. | System for controlling ultrasonic clamping and cutting instruments |
US7571336B2 (en) | 2005-04-25 | 2009-08-04 | Guided Therapy Systems, L.L.C. | Method and system for enhancing safety with medical peripheral device by monitoring if host computer is AC powered |
US8454511B2 (en) * | 2005-05-27 | 2013-06-04 | Board Of Regents, The University Of Texas System | Magneto-motive ultrasound detection of magnetic nanoparticles |
US7785277B2 (en) | 2005-06-23 | 2010-08-31 | Celleration, Inc. | Removable applicator nozzle for ultrasound wound therapy device |
US7330578B2 (en) | 2005-06-23 | 2008-02-12 | Accuray Inc. | DRR generation and enhancement using a dedicated graphics device |
US8182428B2 (en) | 2005-07-26 | 2012-05-22 | Surf Technology As | Dual frequency band ultrasound transducer arrays |
US7955262B2 (en) | 2005-07-26 | 2011-06-07 | Syneron Medical Ltd. | Method and apparatus for treatment of skin using RF and ultrasound energies |
JP4945769B2 (ja) | 2005-07-26 | 2012-06-06 | サーフ テクノロジー アクティーゼルスカブ | 二重周波数帯域の超音波送受波器アレイ |
US8128618B2 (en) * | 2005-08-03 | 2012-03-06 | Massachusetts Eye & Ear Infirmary | Targeted muscle ablation for reducing signs of aging |
US7621873B2 (en) * | 2005-08-17 | 2009-11-24 | University Of Washington | Method and system to synchronize acoustic therapy with ultrasound imaging |
US20070065420A1 (en) * | 2005-08-23 | 2007-03-22 | Johnson Lanny L | Ultrasound Therapy Resulting in Bone Marrow Rejuvenation |
US7517315B2 (en) | 2005-08-26 | 2009-04-14 | Boston Scientific Scimed, Inc. | System and method for determining the proximity between a medical probe and a tissue surface |
US20090093737A1 (en) | 2007-10-09 | 2009-04-09 | Cabochon Aesthetics, Inc. | Ultrasound apparatus with treatment lens |
US8057408B2 (en) | 2005-09-22 | 2011-11-15 | The Regents Of The University Of Michigan | Pulsed cavitational ultrasound therapy |
US20070083120A1 (en) | 2005-09-22 | 2007-04-12 | Cain Charles A | Pulsed cavitational ultrasound therapy |
EP1937150A4 (en) | 2005-09-27 | 2010-01-20 | Medison Co Ltd | PROBE FOR ULTRASOUND DIAGNOSIS AND THIS USING ULTRASONIC DIAGNOSTIC SYSTEM |
US20070088346A1 (en) | 2005-10-14 | 2007-04-19 | Mirizzi Michael S | Method and apparatus for varicose vein treatment using acoustic hemostasis |
US8357095B2 (en) | 2005-10-20 | 2013-01-22 | The General Hospital Corporation | Non-invasive treatment of fascia |
NZ568721A (en) | 2005-11-07 | 2011-01-28 | Signostics Ltd | Portable ultrasound system with probe and handheld display linked by a cable to locate around a user's neck |
DE102005053918A1 (de) | 2005-11-11 | 2007-05-16 | Zimmer Elektromedizin Gmbh | Verfahren und Vorrichtung zur Einstrahlung von Ultraschall in Gewebe |
US20080146970A1 (en) | 2005-12-06 | 2008-06-19 | Julia Therapeutics, Llc | Gel dispensers for treatment of skin with acoustic energy |
US8287337B2 (en) | 2006-01-11 | 2012-10-16 | Hcr Incorporated | Cold storage doorway with airflow control system and method |
US9017717B2 (en) | 2006-01-16 | 2015-04-28 | Peach Technologies Llc | Bandage for facilitating transdermal respiration and healing |
JP2009527262A (ja) | 2006-01-17 | 2009-07-30 | エンディメド メディカル リミテッド | 位相制御された無線周波数エネルギを使用する電気外科的な方法および装置 |
US8133191B2 (en) | 2006-02-16 | 2012-03-13 | Syneron Medical Ltd. | Method and apparatus for treatment of adipose tissue |
US7828734B2 (en) | 2006-03-09 | 2010-11-09 | Slender Medical Ltd. | Device for ultrasound monitored tissue treatment |
US9107798B2 (en) | 2006-03-09 | 2015-08-18 | Slender Medical Ltd. | Method and system for lipolysis and body contouring |
US20110251524A1 (en) | 2006-03-09 | 2011-10-13 | Slender Medical, Ltd. | Device for ultrasound treatment and monitoring tissue treatment |
US20090048514A1 (en) | 2006-03-09 | 2009-02-19 | Slender Medical Ltd. | Device for ultrasound monitored tissue treatment |
US8920320B2 (en) | 2006-03-10 | 2014-12-30 | Liposonix, Inc. | Methods and apparatus for coupling a HIFU transducer to a skin surface |
ITBO20060221A1 (it) | 2006-03-30 | 2006-06-29 | Massimo Santangelo | Metodo ed apparecchiatura per indurre l'osteogenesi in una regione ossea del paziente. |
US20070239079A1 (en) | 2006-04-07 | 2007-10-11 | The General Hospital Corporation | Method and apparatus for selective treatment of biological tissue using ultrasound energy |
JP3123559U (ja) | 2006-05-10 | 2006-07-20 | ニチハ株式会社 | 化粧コーナー材 |
WO2007134256A2 (en) | 2006-05-11 | 2007-11-22 | Reliant Technologies, Inc. | Apparatus and method for ablation-related dermatological treatment of selected targets |
FR2903316B1 (fr) | 2006-07-05 | 2009-06-26 | Edap S A | Sonde de therapie et appareil de therapie incluant une telle sonde |
US20100030076A1 (en) | 2006-08-01 | 2010-02-04 | Kobi Vortman | Systems and Methods for Simultaneously Treating Multiple Target Sites |
US20080039724A1 (en) * | 2006-08-10 | 2008-02-14 | Ralf Seip | Ultrasound transducer with improved imaging |
US20080097214A1 (en) | 2006-09-05 | 2008-04-24 | Capistrano Labs, Inc. | Ophthalmic ultrasound probe assembly |
US20080183110A1 (en) | 2006-09-06 | 2008-07-31 | Davenport Scott A | Ultrasound system and method for hair removal |
US20080195000A1 (en) | 2006-09-06 | 2008-08-14 | Spooner Gregory J R | System and Method for Dermatological Treatment Using Ultrasound |
US8262591B2 (en) | 2006-09-07 | 2012-09-11 | Nivasonix, Llc | External ultrasound lipoplasty |
US7955281B2 (en) | 2006-09-07 | 2011-06-07 | Nivasonix, Llc | External ultrasound lipoplasty |
US9566454B2 (en) | 2006-09-18 | 2017-02-14 | Guided Therapy Systems, Llc | Method and sysem for non-ablative acne treatment and prevention |
US7652411B2 (en) | 2006-09-18 | 2010-01-26 | Medicis Technologies Corporation | Transducer with shield |
US8334637B2 (en) | 2006-09-18 | 2012-12-18 | Liposonix, Inc. | Transducer with shield |
EP3103522A1 (en) | 2006-09-19 | 2016-12-14 | Guided Therapy Systems, L.L.C. | System for treating muscle, tendon, ligament and cartilage tissue |
US9241683B2 (en) | 2006-10-04 | 2016-01-26 | Ardent Sound Inc. | Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid |
US20080183077A1 (en) | 2006-10-19 | 2008-07-31 | Siemens Corporate Research, Inc. | High intensity focused ultrasound path determination |
US8758253B2 (en) | 2006-11-08 | 2014-06-24 | Hitachi Medical Corporation | Ultrasonic probe and ultrasonic diagnostic apparatus using the same |
US20080114250A1 (en) | 2006-11-10 | 2008-05-15 | Penrith Corporation | Transducer array imaging system |
US20100056925A1 (en) | 2006-11-28 | 2010-03-04 | Chongqing Ronghai Medical Ultrasound Industry Ltd. | Ultrasonic Therapeutic Device Capable of Multipoint Transmitting |
US9492686B2 (en) | 2006-12-04 | 2016-11-15 | Koninklijke Philips N.V. | Devices and methods for treatment of skin conditions |
US8382689B2 (en) | 2007-02-08 | 2013-02-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Device and method for high intensity focused ultrasound ablation with acoustic lens |
US20120046553A9 (en) | 2007-01-18 | 2012-02-23 | General Electric Company | Ultrasound catheter housing with electromagnetic shielding properties and methods of manufacture |
US9706976B2 (en) | 2007-02-08 | 2017-07-18 | Siemens Medical Solutions Usa, Inc. | Ultrasound imaging systems and methods of performing ultrasound procedures |
US8231533B2 (en) | 2007-02-16 | 2012-07-31 | Buchalter Neal | Ultrasound coupling device |
ATE449602T1 (de) | 2007-03-12 | 2009-12-15 | Dobavet Gmbh | Arzneimittel mit dobesilat-calcium zur behandlung und prophylaxe von sehnenerkrankungen |
WO2008114255A1 (en) | 2007-03-19 | 2008-09-25 | Syneron Medical Ltd. | Method and device for soft tissue destruction |
US8142200B2 (en) | 2007-03-26 | 2012-03-27 | Liposonix, Inc. | Slip ring spacer and method for its use |
US9149331B2 (en) | 2007-04-19 | 2015-10-06 | Miramar Labs, Inc. | Methods and apparatus for reducing sweat production |
US20090012394A1 (en) * | 2007-04-30 | 2009-01-08 | General Electric Company | User interface for ultrasound system |
WO2008137944A1 (en) | 2007-05-07 | 2008-11-13 | Guided Therapy Systems, Llc. | Methods and systems for coupling and focusing acoustic energy using a coupler member |
US9216276B2 (en) | 2007-05-07 | 2015-12-22 | Guided Therapy Systems, Llc | Methods and systems for modulating medicants using acoustic energy |
US20150174388A1 (en) | 2007-05-07 | 2015-06-25 | Guided Therapy Systems, Llc | Methods and Systems for Ultrasound Assisted Delivery of a Medicant to Tissue |
WO2008144274A2 (en) | 2007-05-14 | 2008-11-27 | Sono Esthetx, Inc. | Method, system, and apparatus for line-focused ultrasound therapy |
JP5676252B2 (ja) | 2007-06-01 | 2015-02-25 | コーニンクレッカ フィリップス エヌ ヴェ | 軽量無線超音波プローブ |
ES2688610T3 (es) | 2007-07-26 | 2018-11-05 | Syneron Medical Ltd. | Equipo para el tratamiento de tejido con ultrasonido |
AU2008286980A1 (en) | 2007-08-10 | 2009-02-19 | Eleme Medical Inc. | Multi-module skin or body treatment device and the method of using |
US7631611B1 (en) | 2007-08-21 | 2009-12-15 | The United States Of America As Represented By The Secretary Of The Navy | Underwater vehicle |
US8235902B2 (en) | 2007-09-11 | 2012-08-07 | Focus Surgery, Inc. | System and method for tissue change monitoring during HIFU treatment |
WO2009043046A1 (en) | 2007-09-28 | 2009-04-02 | Nivasonix, Llc | Handheld transducer scanning speed guides and position detectors |
WO2009050719A2 (en) | 2007-10-15 | 2009-04-23 | Slender Medical, Ltd. | Implosion techniques for ultrasound |
CN101969764B (zh) | 2007-12-06 | 2014-06-04 | 精量电子(美国)有限公司 | 用于超声波换能器的多层背衬吸收器 |
US20090177123A1 (en) | 2007-12-28 | 2009-07-09 | Celleration, Inc. | Methods for treating inflammatory disorders |
US20090177122A1 (en) | 2007-12-28 | 2009-07-09 | Celleration, Inc. | Methods for treating inflammatory skin disorders |
US20090198157A1 (en) | 2008-02-01 | 2009-08-06 | Eilaz Babaev | Ultrasound moxibustion method and device |
AU2009208982B2 (en) | 2008-02-01 | 2013-07-04 | Solta Medical, Inc. | Therapy head for use with an ultrasound system |
WO2009111793A2 (en) | 2008-03-07 | 2009-09-11 | Myoscience, Inc. | Subdermal tissue remodeling using myostatin, methods and related systems |
US20090230823A1 (en) | 2008-03-13 | 2009-09-17 | Leonid Kushculey | Operation of patterned ultrasonic transducers |
HUE027536T2 (en) | 2008-06-06 | 2016-10-28 | Ulthera Inc | Cosmetic treatment and imaging system |
US20090312693A1 (en) | 2008-06-13 | 2009-12-17 | Vytronus, Inc. | System and method for delivering energy to tissue |
US20100022919A1 (en) * | 2008-07-22 | 2010-01-28 | Celleration, Inc. | Methods of Skin Grafting Using Ultrasound |
US20100042020A1 (en) | 2008-08-13 | 2010-02-18 | Shmuel Ben-Ezra | Focused energy delivery apparatus method and system |
US20110178541A1 (en) | 2008-09-12 | 2011-07-21 | Slender Medical, Ltd. | Virtual ultrasonic scissors |
US20100113983A1 (en) | 2008-10-31 | 2010-05-06 | Microsoft Corporation | Utilizing ultrasound to disrupt pathogens |
US20100130891A1 (en) | 2008-11-21 | 2010-05-27 | Taggart Rebecca M | Wearable Therapeutic Ultrasound Article |
US8585618B2 (en) | 2008-12-22 | 2013-11-19 | Cutera, Inc. | Broad-area irradiation of small near-field targets using ultrasound |
WO2010075547A2 (en) * | 2008-12-24 | 2010-07-01 | Guided Therapy Systems, Llc | Methods and systems for fat reduction and/or cellulite treatment |
US20100191120A1 (en) | 2009-01-28 | 2010-07-29 | General Electric Company | Apparatus and method for controlling an ultrasound system based on contact with an ultrasound probe |
AR076081A1 (es) | 2009-03-04 | 2011-05-18 | Medicis Technologies Corp | Disposicion para el tratamiento por ultrasonido de tejido adiposo a profundidades multiples |
US7905007B2 (en) | 2009-03-18 | 2011-03-15 | General Electric Company | Method for forming a matching layer structure of an acoustic stack |
US8208346B2 (en) | 2009-03-23 | 2012-06-26 | Liposonix, Inc. | Selectable tuning transformer |
US8298163B1 (en) | 2009-05-01 | 2012-10-30 | Body Beam Research Inc. | Non-invasive ultrasonic soft-tissue treatment apparatus |
US20100286518A1 (en) | 2009-05-11 | 2010-11-11 | General Electric Company | Ultrasound system and method to deliver therapy based on user defined treatment spaces |
KR20120036871A (ko) | 2009-06-16 | 2012-04-18 | 와보메드 리미티드 | 이동식 정상파 장치 및 방법 |
EP2461752B1 (en) | 2009-08-07 | 2017-03-15 | Thayer Intellectual Property Inc. | Systems for treatment of compressed nerves |
WO2011020104A2 (en) | 2009-08-14 | 2011-02-17 | University Of Southern California | Extended depth-of-focus high intensity ultrasonic transducer |
US9061131B2 (en) * | 2009-08-17 | 2015-06-23 | Histosonics, Inc. | Disposable acoustic coupling medium container |
US8264126B2 (en) | 2009-09-01 | 2012-09-11 | Measurement Specialties, Inc. | Multilayer acoustic impedance converter for ultrasonic transducers |
US8152904B2 (en) | 2009-09-29 | 2012-04-10 | Liposonix, Inc. | Liquid degas system |
US8715186B2 (en) | 2009-11-24 | 2014-05-06 | Guided Therapy Systems, Llc | Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy |
US20110190745A1 (en) | 2009-12-04 | 2011-08-04 | Uebelhoer Nathan S | Treatment of sweat glands |
US20110144490A1 (en) | 2009-12-10 | 2011-06-16 | General Electric Company | Devices and methods for adipose tissue reduction and skin contour irregularity smoothing |
US20110270137A1 (en) | 2010-04-29 | 2011-11-03 | Applisonix Ltd. | Method and system for treating skin tissue |
WO2011138722A1 (en) | 2010-05-03 | 2011-11-10 | Andrey Rybyanets | Resonantly amplified shear waves |
FR2960789B1 (fr) | 2010-06-07 | 2013-07-19 | Image Guided Therapy | Transducteur d'ultrasons a usage medical |
WO2012006053A1 (en) | 2010-06-29 | 2012-01-12 | Kullervo Henrik Hynynen | Thermal therapy apparatus and method using focused ultrasonic sound fields |
WO2012018390A2 (en) | 2010-08-02 | 2012-02-09 | Guided Therapy Systems, Llc | Systems and methods for treating acute and/or chronic injuries in soft tissue |
US9504446B2 (en) * | 2010-08-02 | 2016-11-29 | Guided Therapy Systems, Llc | Systems and methods for coupling an ultrasound source to tissue |
US8686335B2 (en) | 2011-12-31 | 2014-04-01 | Seno Medical Instruments, Inc. | System and method for adjusting the light output of an optoacoustic imaging system |
US8573392B2 (en) | 2010-09-22 | 2013-11-05 | Liposonix, Inc. | Modified atmosphere packaging for ultrasound transducer cartridge |
US8857438B2 (en) | 2010-11-08 | 2014-10-14 | Ulthera, Inc. | Devices and methods for acoustic shielding |
US20120191020A1 (en) | 2011-01-25 | 2012-07-26 | Shuki Vitek | Uniform thermal treatment of tissue interfaces |
US8968205B2 (en) | 2011-02-10 | 2015-03-03 | Siemens Medical Solutions Usa, Inc. | Sub-aperture control in high intensity focused ultrasound |
US20120271202A1 (en) | 2011-03-23 | 2012-10-25 | Cutera, Inc. | Ultrasonic therapy device with diffractive focusing |
FR2973250B1 (fr) | 2011-03-29 | 2015-01-02 | Edap Tms France | Sonde de therapie pour le traitement de tissus par l'intermediaire d'ondes ultrasonores focalisees croisees |
US20120296240A1 (en) | 2011-05-20 | 2012-11-22 | Slender Medical Ltd. | Ultrasound eye bag treatment |
KR20120131552A (ko) | 2011-05-25 | 2012-12-05 | 삼성전자주식회사 | 초음파를 이용한 치료 및 진단 방법 및 시스템 |
US20120330284A1 (en) | 2011-06-23 | 2012-12-27 | Elwha LLC, a limited liability corporation of the State of Delaware | Systems, devices, and methods to induce programmed cell death in adipose tissue |
US8746123B2 (en) | 2011-06-30 | 2014-06-10 | Elwha Llc | Wearable air blast protection device having at least two reflective regions |
EP2739357B1 (en) | 2011-07-10 | 2023-09-06 | Guided Therapy Systems, L.L.C. | Systems for improving an outside appearance of skin using ultrasound as an energy source |
US9011337B2 (en) * | 2011-07-11 | 2015-04-21 | Guided Therapy Systems, Llc | Systems and methods for monitoring and controlling ultrasound power output and stability |
KR20130009138A (ko) | 2011-07-14 | 2013-01-23 | 삼성전자주식회사 | 집속 초음파 치료 장치 및 이의 초점 제어 방법 |
US8583211B2 (en) | 2011-08-10 | 2013-11-12 | Siemens Aktiengesellschaft | Method for temperature control in magnetic resonance-guided volumetric ultrasound therapy |
KR20130026327A (ko) | 2011-09-05 | 2013-03-13 | 삼성전자주식회사 | 초음파 의료 장치 및 이의 제어 방법 |
US20130066237A1 (en) * | 2011-09-09 | 2013-03-14 | Palomar Medical Technologies, Inc. | Methods and devices for inflammation treatment |
US20130338475A1 (en) | 2012-06-13 | 2013-12-19 | Seno Medical Instruments, Inc. | Optoacoustic imaging system with fiber optic cable |
US9392992B2 (en) | 2012-02-28 | 2016-07-19 | Siemens Medical Solutions Usa, Inc. | High intensity focused ultrasound registration with imaging |
US8836203B2 (en) | 2012-03-30 | 2014-09-16 | Measurement Specialties, Inc. | Signal return for ultrasonic transducers |
US9263663B2 (en) * | 2012-04-13 | 2016-02-16 | Ardent Sound, Inc. | Method of making thick film transducer arrays |
JP2015529131A (ja) | 2012-09-20 | 2015-10-05 | コーニンクレッカ フィリップス エヌ ヴェ | 皮膚治療方法及び装置 |
US9510802B2 (en) | 2012-09-21 | 2016-12-06 | Guided Therapy Systems, Llc | Reflective ultrasound technology for dermatological treatments |
WO2014055708A1 (en) | 2012-10-02 | 2014-04-10 | Ardent Sound, Inc. | Motion mechanisms for ultrasound transducer modules |
RU2650598C2 (ru) | 2012-10-12 | 2018-04-16 | Профаунд Медикал Инк. | Мультифокусные соникации для гипертермических лечебных воздействий с использованием ультразвука, сфокусированного под контролем магнитно-резонансной томографии |
KR102189678B1 (ko) | 2013-02-15 | 2020-12-11 | 삼성전자주식회사 | 의료 영상을 이용하여 관심 영역 내에 다중 초점들을 형성하는 초음파를 생성하는 방법, 장치 및 hifu 시스템 |
CN113648552A (zh) | 2013-03-08 | 2021-11-16 | 奥赛拉公司 | 用于多焦点超声治疗的装置和方法 |
US20150164734A1 (en) | 2013-12-12 | 2015-06-18 | Guided Therapy Systems, Llc | System and Method for Cosmetic Enhancement of Lips |
WO2015089425A1 (en) | 2013-12-13 | 2015-06-18 | Guided Therapy Systems, Llc | System and method for non-invasive treatment with improved efficiency |
-
2005
- 2005-10-06 CA CA002583600A patent/CA2583600A1/en not_active Abandoned
- 2005-10-06 EP EP05805833A patent/EP1879502A2/en not_active Withdrawn
- 2005-10-06 EP EP10185100.4A patent/EP2279696A3/en not_active Withdrawn
- 2005-10-06 EP EP10185120.2A patent/EP2279699B1/en active Active
- 2005-10-06 ES ES10185120T patent/ES2747361T3/es active Active
- 2005-10-06 EP EP10185112.9A patent/EP2279697A3/en not_active Withdrawn
- 2005-10-06 WO PCT/US2005/036253 patent/WO2006042163A2/en active Application Filing
- 2005-10-06 EP EP10185117.8A patent/EP2279698A3/en not_active Withdrawn
- 2005-10-06 JP JP2007535860A patent/JP2008522642A/ja active Pending
- 2005-10-06 KR KR1020077007966A patent/KR101328103B1/ko active IP Right Grant
- 2005-10-07 US US11/163,178 patent/US7615016B2/en active Active
-
2007
- 2007-03-26 IL IL182189A patent/IL182189A/en active IP Right Grant
-
2009
- 2009-10-06 US US12/574,512 patent/US8915870B2/en active Active
-
2014
- 2014-11-26 US US14/554,668 patent/US9440096B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US7615016B2 (en) | 2009-11-10 |
EP2279696A2 (en) | 2011-02-02 |
WO2006042163A3 (en) | 2006-07-13 |
KR20070104878A (ko) | 2007-10-29 |
EP2279696A3 (en) | 2014-02-26 |
US20150088040A1 (en) | 2015-03-26 |
KR101328103B1 (ko) | 2013-11-13 |
EP2279697A2 (en) | 2011-02-02 |
EP1879502A2 (en) | 2008-01-23 |
US20100022922A1 (en) | 2010-01-28 |
US9440096B2 (en) | 2016-09-13 |
EP2279697A3 (en) | 2014-02-19 |
JP2008522642A (ja) | 2008-07-03 |
CA2583600A1 (en) | 2006-04-20 |
US8915870B2 (en) | 2014-12-23 |
EP2279699B1 (en) | 2019-07-24 |
US20060079816A1 (en) | 2006-04-13 |
EP2279699A2 (en) | 2011-02-02 |
EP2279698A2 (en) | 2011-02-02 |
EP2279699A3 (en) | 2014-02-19 |
EP2279698A3 (en) | 2014-02-19 |
IL182189A0 (en) | 2007-07-24 |
WO2006042163A2 (en) | 2006-04-20 |
IL182189A (en) | 2015-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2747361T3 (es) | Procedimiento para la mejora cosmética no invasiva de la celulitis | |
US11179580B2 (en) | Energy based fat reduction | |
US11751932B2 (en) | Ultrasound treatment device and methods of use | |
ES2797784T3 (es) | Sistema de tratamiento de tejidos por ultrasonido | |
US20060079868A1 (en) | Method and system for treatment of blood vessel disorders | |
ES2685745T3 (es) | Sistema para un perfil combinado de terapia de energía | |
IL281624B2 (en) | Ultrasound system for medical treatment | |
US11883688B2 (en) | Energy based fat reduction | |
JP2012024601A5 (es) |