ES2330153T3 - Instrumento de cierre de vasos con un mecanismo de corte electrico. - Google Patents

Instrumento de cierre de vasos con un mecanismo de corte electrico. Download PDF

Info

Publication number
ES2330153T3
ES2330153T3 ES07009029T ES07009029T ES2330153T3 ES 2330153 T3 ES2330153 T3 ES 2330153T3 ES 07009029 T ES07009029 T ES 07009029T ES 07009029 T ES07009029 T ES 07009029T ES 2330153 T3 ES2330153 T3 ES 2330153T3
Authority
ES
Spain
Prior art keywords
tissue
cutting
jaw
closing
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES07009029T
Other languages
English (en)
Inventor
Kristin D. Johnson
Gary M. Couture
Jeff Unger
Robert Sharp
David M. Garrison
Sean T. Dycus
David Hixson
Craig Weinberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien AG
Original Assignee
Covidien AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38226344&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2330153(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Covidien AG filed Critical Covidien AG
Application granted granted Critical
Publication of ES2330153T3 publication Critical patent/ES2330153T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00026Conductivity or impedance, e.g. of tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00084Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2945Curved jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00404Blood vessels other than those in or around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/1432Needle curved
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/033Abutting means, stops, e.g. abutting on tissue or skin
    • A61B2090/034Abutting means, stops, e.g. abutting on tissue or skin abutting on parts of the device itself
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Surgical Instruments (AREA)

Abstract

Un conjunto ejecutador (3005) de extremo para usar con un instrumento para cerrar y/o cortar tejido, el conjunto ejecutador final comprende: un par de miembros opuestos primero y segundo (3110, 3120) de mandíbula al menos uno de los cuales es movible con relación al otro desde una primera posición en la que los miembros de mandíbula están dispuestos con una relación relativa separada entre sí hasta una segunda posición en la que los miembros de mandíbula cooperan para agarrar tejido entre ellos; cada miembro de mandíbula incluye un par de superficies eléctricamente conductivas separadas de cierre de tejido que se extienden a lo largo de su longitud, cada superficie de cierre de tejido está adaptada para conectarse a una fuente de energía electro-quirúrgica de forma que las superficie de cierre de tejido son capaces de conducir energía electroquirúrgica a través del tejido sostenido entre ellas para efectuar un cierre; un aislante (3113) dispuesto entre cada par de superficies eléctricamente conductivas de cierre; al menos el primer miembro de mandíbula incluye un elemento eléctricamente conductivo (3127) de corte en el aislante del primer miembro de mandíbula, el elemento eléctricamente conductivo de corte dispuesto en coincidencia general vertical con relación al aislante en el segundo miembro de mandíbula; y caracterizado porque el elemento eléctricamente conductivo de corte está construido de un material expansible para proporcionar al menos un mecanismo de tensión de tejido configurado para proporcionar tensión al tejido sostenido entre los miembros de mandíbula, en el que el material expansible es una aleación con memoria de forma (SMA).

Description

Instrumento de cierre de vasos con un mecanismo de corte eléctrico.
Antecedentes
La presente descripción se refiere a un fórceps usado tanto para procedimientos quirúrgicos abiertos como endoscópicos, que incluye un conjunto de electrodos que permite a un usuario cerrar y/o cortar tejido selectivamente. Más particularmente, la presente descripción se refiere a un fórceps que incluye un primer grupo de superficies eléctricamente conductivas que aplican una combinación única de energía electro-quirúrgica y presión de sujeción mecánica para cerrar con efectividad tejido y un segundo grupo de superficies eléctricamente conductivas que se puede excitar selectivamente para separar tejido por corte entre zonas de tejido cerrado.
Ámbito técnico
El documento EP 1 62 192 describe un instrumento de cierre de vasos con un mecanismo eléctrico de corte. Esta descripción se citó como una descripción relevante de la técnica anterior durante el examen de esta patente. El preámbulo de la reivindicación 1 está basado en este documento.
Los fórceps electro-quirúrgicos endoscópicos o abiertos utilizan tanto energía eléctrica como acción de sujeción mecánica para efectuar hemostasis. El electrodo de cada miembro de mandíbula opuesto está cargado con un potencial eléctrico diferente de manera que cuando los miembros de mandíbula agarran tejido, la energía eléctrica puede ser transferida selectivamente a través del tejido. Un cirujano puede cauterizar, coagular/desecar y/o simplemente reducir o ralentizar el sangrado, controlando la intensidad, frecuencia y duración de la energía electro-quirúrgica aplicada entre los electrodos y a través del tejido.
Determinados procedimientos quirúrgicos requieren más que simplemente cauterizar tejido y se basan en la combinación de presión de sujeción, energía electro-quirúrgica y distancia de separación para "cerrar" tejido, vasos y determinados paquetes vasculares. Más particularmente, el cierre de vasos o cierre de tejido es una tecnología desarrollada recientemente que utiliza una combinación única de energía de radiofrecuencia, presión de sujeción y control preciso de distancia de separación (es decir, distancia entre miembros opuestos de mandíbula cuando están cerrados alrededor de tejido) para fundir u cerrar con efectividad tejido entre dos miembros de mandíbula opuestos o placas de cierre. El cierre de tejido o vasos es más que "cauterización", que conlleva el uso de calor para destrozar tejido (llamado también "diatermia" o "electro-diatermia"). El cierre de vasos es también más que "coagulación", que es el proceso de desecar tejido en el que las celdas de tejido son rotas y secadas. "El cierre de vasos" se define como el proceso de licuar el colágeno, elastina y sustancias fundamentales en el tejido de manera que el tejido cambia de forma hasta una masa fundida con delimitación significativamente reducida entre las estructuras opuestas de tejido.
Para cerrar con efectividad tejido o vasos, especialmente tejido grueso y vasos grandes, se deben controlar con precisión dos parámetros mecánicos predominantes: 1) la presión aplicada al vaso; y 2) la distancia de separación entre las superficies conductivas (electrodos) que hacen contacto con el tejido. Como se puede apreciar, estos dos parámetros están afectados por el grosor del vaso o tejido a cerrar. La aplicación precisa de presión es importante por varias razones: oponer las paredes del vaso; reducir la impedancia del tejido a un valor suficientemente bajo que permita suficiente energía electro-quirúrgica a través del tejido; vencer las fuerzas de expansión durante el calentamiento del tejido; y contribuir al grosor final del tejido, lo que es una indicación de un buen cierre. Se ha determinado que una separación típica de instrumento es óptima entre aproximadamente 0,0254 y aproximadamente 0,1524 mm. Por debajo de este intervalo, el cierre se puede desfibrar o desgarrar y las mandíbulas pueden "cortocircuitarse" y no entregar la energía apropiada al tejido. Por encima de este intervalo, estructuras pequeñas o delgadas de tejido no pueden ser cerradas apropiadamente o con efectividad.
Con respecto a vasos más pequeños, la presión aplicada se vuelve menos relevante y la distancia de separación entre las superficies eléctricamente conductivas se hace más significativa para un cierre efectivo. En otras palabras, las posibilidades de que las dos superficies eléctricamente conductivas se toquen durante la activación aumentan cuando el grosor del tejido y los vasos se hace más pequeño.
Típica y particularmente con respecto a procedimientos endoscópicos electro-quirúrgicos, una vez que un vaso está cerrado, el cirujano tiene que retirar el instrumento de cierre del lugar de la operación, sustituir un nuevo instrumento por medio de la cánula y separar por corte con precisión el vaso a lo largo del nuevo cierre de tejido formado recientemente. Esta etapa adicional puede llevar tiempo (particularmente cuando se cierra un número significativo de vasos) y puede contribuir a la separación imprecisa del tejido a lo largo de la línea de cierre debido a la desalineación o mala colocación del instrumento de separación por corte a lo largo del centro del cierre de tejido.
Sumario
La presente descripción se refiere a un conjunto realizador de extremo para usar con un instrumento para cerrar y cortar vasos y/o tejido. Un conjunto realizador de extremo para usar con un instrumento para cerrar vasos y cortar vasos incluye un par de miembros opuestos de mandíbula primero y segundo que se pueden mover relativamente entre sí desde una primera posición de inicio separados hacia una segunda posición para agarrar el tejido entre ellos. Cada miembro de mandíbula incluye una superficie eléctricamente conductiva de contacto con el tejido conectada a una fuente de energía electro-quirúrgica. Al menos uno de los miembros de mandíbula incluye un elemento eléctricamente conductivo de corte dispuesto en un aislante definido en el miembro de mandíbula. Se incluye un soporte estructural rígido que está configurado para soportar la superficie eléctricamente conductiva de cierre de tejido e incluye al menos un canal de flujo definido en él. Dicho realizador de extremo no se narra en las reivindicaciones.
En una realización de la presente descripción se incluye una capa de material aislante que está dispuesta entre la superficie eléctricamente conductiva de cierre de tejido y el soporte estructural rígido. Este soporte estructural rígido o respaldo estructural puede incluir perforaciones. El aislante puede estar situado entre las perforaciones del respaldo estructural.
En incluso otra realización de la presente descripción el elemento eléctricamente conductivo de corte puede incluir al menos una superficie de interfaz mecánica configurada para emparejarse con el material aislante para retener el elemento eléctricamente conductivo de corte dentro del aislante.
En una realización acorde con la presente descripción las superficies eléctricamente conductivas de cierre de tejido son atacadas fotoquímicamente o son formadas con un proceso de estampación. Al menos uno de los aislantes puede estar configurado para extenderse al menos parcialmente hacia una posición que está al menos sustancialmente a nivel con el elemento de corte.
Se puede proporcionar un segundo elemento eléctricamente conductivo de corte que está dispuesto dentro del aislante del segundo miembro de mandíbula. El segundo elemento eléctricamente conductivo de corte puede estar dispuesto en relación generalmente opuesta al primer elemento eléctricamente conductivo de corte.
De acuerdo con la presente invención, se proporciona un conjunto de realizador de extremo para el uso con un instrumento para cerrar y cortar vasos y/o tejido. El conjunto de realizador de extremo para el uso con un instrumento para cerrar y/o cortar tejido, el conjunto realizador extremo comprende: un par de miembros opuestos de mandíbula primero y segundo, al menos uno de los cuales se puede mover con relación al otro desde una primera posición en la que los miembros de mandíbula están dispuestos entre sí en una relación separada hacia una segunda posición en la que los miembros de mandíbula cooperan para agarrar tejido entre ellos; cada miembro de mandíbula incluye un par de superficies eléctricamente conductivas separadas de cierre de tejido que se extienden a lo largo de su longitud, cada superficie de cierre de tejido está adaptada para conectarse a una fuente de energía electro-quirúrgica de forma que la superficie de cierre de tejido son capaces de conducir energía electro-quirúrgica a través del tejido sostenido entre ellas para efectuar un cierre; un aislante dispuesto entre cada par de superficies eléctricamente conductivas de cierre; al menos el primer miembro de mandíbula incluye un elemento eléctricamente conductivo de corte dispuesto en el aislante del primer miembro de mandíbula, el elemento eléctricamente conductivo de corte dispuesto en coincidencia general vertical con relación al aislante en el segundo miembro de mandíbula; y está caracterizado por el elemento eléctricamente conductivo de corte que está construido de un material expansible para proporcionar al menos un mecanismo de tensado de tejido para proporcionar tensión al tejido sostenido entre los miembros de mandíbula, en el que el material expansible es una aleación con memoria de forma (SMA: Shape Memory Alloy).
En otra realización de la presente descripción se incluye una ranura definida dentro del segundo miembro de mandíbula, la ranura está configurada para recibir el elemento eléctricamente conductivo de corte y crear tensión sobre el tejido.
En incluso otra realización de la presente descripción las superficies eléctricamente conductivas de cierre de tejido están dispuestas con relación relativa angular entre ellas o pueden incluir un dispositivo similar a un resorte. El material expansible de una aleación con memoria de forma puede ser Nitinol.
Breve descripción de los dibujos
Varias realizaciones del instrumento objeto se describen en esta memoria haciendo referencia a los dibujos, en los que:
La figura 1A es una vista en perspectiva del lado derecho de un fórceps bipolar endoscópico que tiene un alojamiento, una lanza y un par de miembros de mandíbula fijados a un extremo distal suyo, los miembros de mandíbula incluyen un conjunto de electrodos dispuestos entre ellos;
La figura 1B es una vista en perspectiva del lado izquierdo de un fórceps bipolar abierto que muestra un par de ejes primero y segundo, que cada uno tiene un miembro de mandíbula fijado al extremo distal suyo con un conjunto de electrodos dispuesto entre ellos;
La figura 2 es una vista agrandada de la zona de detalle de la figura 1B;
Las figuras 3A-3F son vistas esquemáticas agrandadas de extremo que muestran una variedad de diferentes conjuntos de electrodos acordes con la presente descripción con potenciales eléctricos identificados para el corte eléctrico;
La figura 4A es una vista esquemática agrandada de extremo que muestra una configuración de conjunto de electrodos con tejido dispuesto entre los miembros de mandíbula;
La figura 4B es una vista esquemática de extremo que muestra el área de detalle de la figura 4A;
Las figuras 4C-4J son vistas esquemáticas agrandadas de extremo que muestran varias configuraciones para un miembro superior de mandíbula para propiciar el corte eléctrico;
La figura 5 es una vista esquemática de extremo que muestra una configuración alternativa de un conjunto de electrodos acorde con la presente descripción con potenciales eléctricos identificados tanto para la fase de cierre como para la fase de corte;
Las figuras 6A-6D son vistas esquemáticas agrandadas de extremo que muestran configuraciones alternativas del conjunto de electrodos acorde con la presente descripción con los potenciales eléctricos identificados tanto para el modo de cierre como el modo de corte;
Las figuras 7A-7E son vistas esquemáticas agrandadas de extremo que muestran varias configuraciones para el miembro inferior de mandíbula para propiciar el corte eléctrico;
Las figuras 8A-8D son vistas esquemáticas agrandadas de extremo que muestran configuraciones alternativas del conjunto de electrodos acorde con la presente descripción;
Las figuras 8E-8F son vistas esquemáticas agrandadas de extremo que muestran configuraciones alternativas del conjunto de electrodos acorde con la presente descripción;
Las figuras 9A-9B son vistas agrandadas que muestran configuraciones alternativas de electrodos que tienen una mandíbula curvada;
Las figuras 10-10B son vistas agrandadas que muestran configuraciones alternativas de electrodos que tienen una mandíbula curvada; y
Las figuras 11A-11C son vistas agrandadas que muestran configuraciones alternativas de electrodos de la presente descripción.
\vskip1.000000\baselineskip
Descripción detallada
Para la finalidad de esta memoria, se cree que el corte de vaso/tejido o la división de vaso/tejido sucede cuando el calentamiento del vaso/tejido lleva a la expansión del fluido intracelular y/o extracelular, que puede ser acompañado por vaporización, desecación, fragmentación, aplastamiento y/o contracción celular a lo largo de una denominada "zona de corte" en el vaso/tejido. Al concentrar la energía electro-quirúrgica y calentar la zona de corte, las reacciones celulares son localizadas creando una fisura. La localización se consigue regulando la entrega de energía y el estado del tejido/vaso, que puede ser controlado utilizando una o más de los varias configuraciones geométricas de aislante y electrodos descritas en esta memoria. El proceso de corte puede ser controlado también utilizando un algoritmo generador y de realimentación (y una o más de las configuraciones geométricas descritas en esta memoria de los conjuntos de aislantes y electrodos), lo que aumenta la localización y maximiza el denominado "efecto de corte".
Por ejemplo, los factores descritos más adelante pueden contribuir y/o mejorar la división del vaso/tejido usando energía electro-quirúrgica. Cada uno de los factores descrito más adelante puede ser empleado individualmente o en cualquier combinación para conseguir un efecto de corte deseado. Para los fines de esta memoria el término "efecto de corte" o "efecto cortante" se refiere a la división actual de tejido por uno o más de los mecanismos o métodos eléctricos o electro-mecánicos descritos más adelante. El término "zona de corte" se refiere a la zona del vaso/tejido en la que tiene lugar el corte. El término "proceso de corte" se refiere a las etapas que son implementadas antes, durante y/o después de la división del vaso/tejido que tiende a influir en el vaso/tejido como parte de la consecución del efecto de corte.
Para los fines de esta memoria en los términos "tejido" y "vaso" pueden ser usados de forma intercambiable ya que se cree que la presente descripción puede ser empleada para cerrar y cortar tejido o cerrar y cortar vasos utilizando los mismos principios inventivos descritos en esta memoria.
Se cree que los siguientes factores bien solos o en combinación, juegan un papel importante en la división del tejido:
\bullet
Localizar o concentrar energía electro-quirúrgica en la zona de corte durante el proceso de corte a la vez que se minimizan los efectos de la energía en tejidos circundantes;
\bullet
Concentrar la densidad de potencia en la zona de corte durante el proceso de corte;
\global\parskip0.900000\baselineskip
\bullet
Crear una zona de temperatura aumentada en la zona de corte durante el proceso de corte (por ejemplo el calentamiento que ocurre dentro del tejido o el calentamiento del tejido directamente con una fuente de calor);
\bullet
Enviar la entrega de energía en impulsos para influir en el tejido en o alrededor de la zona de corte. "Enviar impulsos" se implementa como una combinación de tiempo "activado" y tiempo "desactivado" durante el que se aplica energía y después se retira de manera repetida en cualquier número de intervalos durante cualquier cantidad de tiempo. El tiempo de impulso "activado" y "desactivado" puede variar entre impulsos. El impulso "activado" se refiere típicamente a un estado de mayor entrega de potencia y el impulso "desactivado" se refiere típicamente a un estado de menor entrega de potencia;
\bullet
Aumentar la entrega de energía crea un estado momentáneo de aplicación de alta energía con un intento de influir en el tejido de la zona de corte o alrededores durante el proceso de corte. El estado momentáneo puede ser variado para crear períodos de alta aplicación de energía;
\bullet
Acondicionar el tejido antes o durante el proceso de corte para crear condiciones más favorables del tejido para el corte. Esto incluye precalentar el tejido antes de los procedimientos de corte y rehidratación del tejido durante el proceso de corte;
\bullet
Controlar el volumen de tejido en la zona de corte o alrededores para crear condiciones más favorables para el corte del tejido;
\bullet
Controlar la entrega de potencia y energía para permitir la vaporización para mejorar y/o contribuir al proceso de corte. Por ejemplo, controlar la entrega de energía para vaporizar los fluidos tanto intracelulares como extracelulares y/u otros materiales celulares y fluidos extraños en la zona de corte;
\bullet
Fragmentar el tejido o material celular durante el procedimiento de corte para mejorar la división del tejido en la zona de corte;
\bullet
Fundir o desplomar del tejido o material celular durante el procedimiento de corte para mejorar la división del tejido en la zona de corte. Por ejemplo, fundir el tejido para crear tensión interna en el tejido para inducir el desgarro del tejido;
\bullet
Controlar la temperatura del tejido, la formación de arco, la densidad de potencia y/o densidad de corriente durante el proceso de corte para mejorar la división del tejido en la zona de corte;
\bullet
Aplicar varios elementos mecánicos al tejido, tal como presión, tensión y/o fatiga (bien interna o externamente) para mejorar el procedimiento de corte;
\bullet
Utilizar otros varios tratamientos de tejido antes o durante el proceso de corte para mejorar el corte del tejido, por ejemplo, cierre, cauterización y/o coagulación de tejido, y
\bullet
Movimiento/desplazamiento de uno o más miembros eléctricamente cargados o aislantes.
Muchos de los conjuntos de electrodos descritos en esta memoria emplean uno o más de los factores indicados antes para mejorar la división del tejido. Por ejemplo, muchos de los conjuntos de electrodos descritos en esta memoria utilizan varias configuraciones geométricas de electrodos, elementos de corte, aislantes, materiales parcialmente conductivos y semiconductores para producir o mejorar el efecto de corte. Además, controlando o regulando la energía electro-quirúrgica desde el generador de cualquiera de las maneras descritas antes, el corte del tejido puede ser iniciado, mejorado o facilitado dentro de la zona de corte del tejido. Por ejemplo, la configuración geométrica de los electrodos y aislantes puede ser configurada para producir un denominado "efecto de corte", que puede estar relacionado directamente con la cantidad de vaporización o fragmentación en un punto en el tejido o la densidad de potencia, densidad de temperatura y/o fatiga mecánica aplicada a un punto del tejido. La geometría de los electrodos puede ser configurada de forma que la relación de área de superficie entre los polos eléctricos concentra la energía eléctrica en el tejido. Además de esto, las configuraciones geométricas de los electrodos y aislantes pueden ser diseñada de forma que actúen como aislantes o sumideros eléctricos (o térmicos) para influir en el efecto de calor dentro y alrededor del tejido durante los procesos de cierre o corte.
Con referencia ahora a las figuras 1A y 1B, la figura 1A representa un fórceps bipolar 10 para el uso con relación a procedimientos quirúrgicos endoscópicos y la figura 1B representa un fórceps abierto 10 pensado para el uso con relación a procedimientos quirúrgicos abiertos tradicionales. Para los fines de esta memoria, pueden ser utilizados bien un instrumento endoscópico o un instrumento abierto con el conjunto de electrodos descrito en esta memoria. Diferentes consideraciones y conexiones eléctricas y mecánicas se pueden aplicar a cada tipo particular de instrumento; sin embargo, los aspectos nuevos con respecto al conjunto de electrodos y sus características de funcionamiento permanecen generalmente consistentes con relación a ambos diseños endoscópico o abierto.
La figura 1A muestra un fórceps bipolar 10 para el uso con varios procedimientos quirúrgicos endoscópicos y generalmente incluye un alojamiento 20, un conjunto 30 de mango, un conjunto giratorio 80, un conjunto 70 de conmutador y un conjunto 105 de electrodos, que tiene miembros opuestos 110 y 120 de mandíbula que cooperan mutuamente para agarrar, cerrar y dividir vasos tubulares y tejido vascular. Más particularmente, el fórceps 10 incluye una lanza 12 que tiene un extremo distal 16 dimensionado para acoplarse mecánicamente al conjunto 105 de electrodos y un extremo proximal 14 que se acopla mecánicamente al alojamiento 20. La lanza 12 puede incluir uno o más componentes conocidos de acoplamiento mecánico que están diseñados para acoplarse y recibir con seguridad al conjunto 105 de electrodos de forma que los miembros 110 y 120 de mandíbulas pueden girar uno con relación a otro para acoplarse y agarrar tejido entre ellos.
\global\parskip1.000000\baselineskip
El extremo proximal 14 de la lanza 12 se acopla mecánicamente al conjunto giratorio 80 (no mostrado) para facilitar el giro del conjunto 105 de electrodos. En los dibujos y en las descripciones que siguen, el término "proximal", como es tradicional, se referirá al extremo del fórceps 10 que está más cerca del usuario, mientras que el término "distal" se referirá al extremo que está más alejado del usuario.
El conjunto 30 de mango incluye un mango fijo 50 y un mango movible 40. El mango fijo 50 está asociado integralmente con el alojamiento 20 y el mango 40 es movible con relación al mango fijo 50 para accionar los miembros opuestos 110 y 120 de mandíbula del conjunto 105 de electrodos como se explica con más detalle después. El mango movible 40 y el conjunto 70 de conmutador son de construcción unitaria y están conectados funcionalmente al alojamiento 20 y al mango fijo 50 durante el proceso de montaje. El alojamiento 20 está construido de dos mitades 20a y 20b de componente, que son ensambladas alrededor del extremo proximal de la lanza 12 durante el montaje. El conjunto de conmutador está configurado para proporcionar selectivamente energía eléctrica al conjunto 105 de electrodos.
Como se ha mencionado antes, el conjunto 105 de electrodos está unido al extremo distal 16 de la lanza 12 e incluye los miembros opuestos 110 y 120 de mandíbula. El mango movible 40 del conjunto 30 de mango imparte movimiento a los miembros 110 y 120 de mandíbula desde una posición abierta en la que los miembros 110 y 120 de mandíbula están dispuestos separados entre sí, hasta una posición cerrada o de sujeción en la que los miembros 110 y 120 de mandíbula cooperan para agarrar tejido entre ellos.
Con referencia ahora a la figura 1B, un fórceps abierto 100 incluye un par de partes alargadas 112a y 112b de lanza, que cada una tiene un extremo proximal 114a y 114b, respectivamente, y un extremo distal 116a y 116b, respectivamente. El fórceps 100 incluye miembros 120 y 110 de mandíbula que se unen a los extremos distales 116a y 116b de las lanzas 112a y 112b, respectivamente. Los miembros 110 y 120 de mandíbula están conectados alrededor del pasador 119 de giro, que permite que los miembros 110 y 120 de mandíbula giren relativamente entre si desde la posición primera a la segunda para tratar el tejido. El conjunto 105 de electrodos está conectado a miembros opuestos 110 y 120 de mandíbula y puede incluir conexiones eléctricas a través o alrededor del pasador 119 de giro.
Cada lanza 112a y 112b incluye un mango 117a y 117b dispuesto en su extremo proximal 114a y 114b, que cada uno define un agujero 118a y 118b de dedo, respectivamente, para recibir a través un dedo de un usuario. Como se puede apreciar, los agujeros 118a y 118b de dedo facilitan el movimiento de las lanzas 112a y 112b una con relación a la otra, lo que, a su vez, hace girar los miembros 110 y 120 de mandíbula desde la posición abierta en la que los miembros 110 y 120 de mandíbula están dispuestos separados entre sí hacia la posición cerrada o de sujeción en la que los miembros 110 y 120 de mandíbula cooperan para agarrar tejido entre ellos. Se puede incluir un trinquete 130 para bloquear selectivamente los miembros 110 y 120 de mandíbula relativamente entre sí en varias posiciones durante el giro.
Más particularmente, el trinquete 130 incluye una primera interfaz mecánica 130 asociada con la lanza 112a y una segunda interfaz mecánica de emparejamiento asociada con la lanza 112b. Cada posición asociada con las interfaces cooperantes 130a y 130b de trinquete sostiene una específica, es decir, constante, energía de deformación en los miembros 112a y 112b de lanza, que, a su vez, trasmite una fuerza de cierre específica a los miembros 110 y 120 de mandíbula. El trinquete 130 puede incluir graduaciones u otras marcas visuales que permitan al usuario averiguar y controlar fácil y rápidamente la cantidad de fuerza de cierre deseada entre los miembros 110 y 120 de mandí-
bula.
Como se ve mejor en la figura 1B, el fórceps 100 incluye también un enchufe o interfaz eléctrica 200 que conecta el fórceps 100 a una fuente de energía electro-quirúrgica, por ejemplo un generador electro-quirúrgico (no mostrado explícitamente). El enchufe 200 incluye al menos dos miembros 202a y 202b de clavija que están dimensionados para conectar eléctrica y mecánicamente el fórceps 100 al generador electro-quirúrgico 500 (véase la figura 1A). Un cable eléctrico 210 se extiende desde el enchufe 200 y conecta fijamente el cable 210 al fórceps 100. El cable 210 está dividido internamente dentro de la lanza 112b para transmitir energía electro-quirúrgica a través de varios recorridos de alimentación eléctrica al conjunto 105 de electrodos.
Una de las lanzas, por ejemplo la 112b, incluye un conector/reborde proximal 119 de lanza que está diseñado para conectar el fórceps 100 a una fuente de energía electro-quirúrgica tal como un generador electro-quirúrgico 500. Más particularmente, el reborde 119 fija mecánicamente el cable electro-quirúrgico 210 al fórceps 100 de forma que el usuario puede aplicar selectivamente energía electro-quirúrgica según se necesite.
Como se muestra mejor en la ilustración esquemática de la figura 2, los miembros 110 y 120 de mandíbula de ambas versiones, la endoscópica de la figura 1A y la abierta de la figura 1B, son generalmente simétricos e incluyen características similares de componentes que cooperan para permitir el giro fácil alrededor del pivote 19, 119 para efectuar el agarre y cierre del tejido. Cada miembro 110 y 120 de mandíbula incluye una superficie eléctricamente conductiva 112 y 122 de contacto con el tejido, respectivamente, que coopera para aplicarse al tejido durante el cierre y el corte. Al menos uno de los miembros de mandíbula, por ejemplo el miembro 120 de mandíbula, incluye un elemento 127 de corte dispuesto en él que se puede excitar eléctricamente, lo que se explica con detalle más adelante. Juntos, como se muestra en varios de los dibujos de las figuras descritos después en esta memoria, el conjunto 105 de electrodos incluye la combinación de electrodos 112 y 122 de cierre y el elemento o elementos 127 de corte.
Las diversas conexiones eléctricas del conjunto 105 de electrodos están configuradas para proporcionar continuidad eléctrica a las superficies 110 y 120 de contacto con el tejido y al elemento o elementos 127 de corte por medio del conjunto 105 de electrodos. Por ejemplo, el cable conductor 210 puede estar configurado para incluir tres conductores diferentes, a saber, los conductores 207, 208 y 209, que llevan diferentes potenciales eléctricos. Los cables conductores 207, 208 y 209 son alimentados por medio de la lanza 112b y se conectan a varios conectores eléctricos (no mostrados) dispuestos dentro del extremo proximal del miembro 110 de mandíbula, que en último lugar se conecta a las superficies eléctricamente conductivas 112 y 122 de cierre y al elemento o elementos 127 de corte. Como se puede apreciar, las conexiones eléctricas pueden estar soldadas permanentemente a la lanza 112b durante el proceso de montaje de un instrumento desechable o, alternativamente, de forma desmontable selectivamente para usar con un instrumento limitado a varios usos.
Las varias conexiones eléctricas del conductor 210 están típicamente aisladas entre sí de modo dieléctrico para permitir la activación independiente y selectiva de cualquiera de las superficies 112 y 122 de contacto con el tejido o el elemento 127 de corte como se explica con más detalle más adelante. Alternativamente, el conjunto 105 de electrodos puede incluir un solo conector que incluye un conmutador interno (no mostrado) para permitir la activación independiente y selectiva de las superficies 112, 122 de contacto con el tejido y el elemento 127 de corte. Los conductores 207, 208 y 209 (y/o los recorridos conductivos) no estorban al movimiento de los miembros 110 y 120 de mandíbula con relación entre sí durante la manipulación y agarre del tejido. Igualmente, el movimiento de los miembros 110 y 120 de mandíbula no deforma innecesariamente las conexiones del conductor.
Como se ve mejor en las figuras 2-3F, varias configuraciones eléctricas del conjunto 105 de electrodos se muestran que están diseñadas para cerrar y cortar con efectividad tejido dispuesto entre las superficies 112 y 122 de cierre y los elementos 127 de corte de los miembros opuestos 110 y 120 de mandíbula, respectivamente. Más particularmente, y con respecto a las figuras 2 y 3A, los miembros 110 y 120 de mandíbula incluyen superficies conductivas 112 y 122 de contacto con el tejido, respectivamente, dispuestas a lo largo de sustancialmente toda su longitud completa (por ejemplo se extienden sustancialmente desde el extremo proximal al distal del miembro respectivo 110 y 120 de mandíbula). Las superficies 112 y 122 de contacto con el tejido pueden estar unidas al miembro 110, 120 de mandíbula por estampación, moldeo encima, fundición, moldeo encima de una fundición, revestimiento de una fundición, moldeo encima de una placa eléctricamente conductiva de cierre estampada y/o moldeo encima de una placa de cierre de metal moldeada por inyección o de otras maneras adecuadas. Todas estas técnicas de fabricación pueden ser empleadas para producir el miembro 110 y 120 de mandíbula que tiene una superficie eléctricamente conductiva 112 y 122 de contacto con el tejido dispuesta en él para hacer contacto con el tejido y tratarlo.
Con respecto a la figura 3A, los miembros 110 y 120 de mandíbula incluyen ambos un material aislante 113 y 123, respectivamente, dispuesto entre cada par de superficies eléctricamente conductivas de cierre en cada miembro 110 y 120 de mandíbula, es decir, entre pares 112a y 112b y entre pares 122a y 122b. Cada aislante 113 y 123 está centrado generalmente entre sus respectivas superficies 112a, 112b y 122a, 122b de contacto con tejido a lo largo sustancialmente de toda la longitud del miembro respectivo 110 y 120 de mandíbula de forma que los dos aislantes 113 y 123 están generalmente opuestos uno a otro.
Uno o ambos de los aislantes 113, 123 pueden estar hechos de un material cerámico debido a su dureza y capacidad inherente para soportar altas fluctuaciones de temperatura. Alternativamente, uno o ambos de los aislantes 113, 123 puede estar hecho de un material que tenga un alto índice de resistencia al encaminamiento eléctrico (IRE) (CTI: Comparative Tracking Index) que tenga un valor en el intervalo de aproximadamente a 300 aproximadamente 600 voltios. Ejemplos de materiales con alto IRE incluyen nilón y poliestirenos syndiotactic. Otros materiales adecuados que pueden ser utilizados bien solos o en combinación, por ejemplo nilón, poliestireno syndiotactic (SPS), Poli(tereftalato de butileno) (PBT), policarbonato (PC), acrilonitrilo butadieno estireno (ABS), poliamida de alto rendimiento (PPA polyphthalamide), poliamida, poli(tereftalato de etileno) (PET), poliamidaimida (PAI), acrílico (PMMA), poliestireno (PS y HIPS), poli(sulfota de éter) (PES), poli(cetona alifática), acetal (POM), poliuretano (PU y TPU), nilón con dispersión de Poli(óxido de fenileno) y acrilonitrilo estireno acrilato.
Al menos un miembro 110 y/o 120 de mandíbula incluye un elemento eléctricamente conductivo 127 de corte dispuesto sustancialmente dentro o dispuesto en el aislante 113, 123. Como se describe con detalle más adelante, el elemento 127 de corte (en muchas de las realizaciones descritas en esta memoria más adelante) juega un doble papel durante los procedimientos de cierre y corte, a saber: 1) proporcionar la distancia de separación necesaria entre superficies conductivas 112a, 112b y 122a, 122b durante el procedimiento de cierre; y 2) activar eléctricamente el tejido a lo largo del cierre de tejido formado anteriormente para cortar el tejido a lo largo del cierre. Con respecto a la figura 3A, los elementos 127a, 127b de corte son eléctricamente conductivos; sin embargo, uno o ambos de los elementos 127a, 127b de corte puede estar hechos de un material aislante con un revestimiento conductivo dispuesto en él o uno (o ambos) de los elementos de corte puede ser no conductivo (véase, por ejemplo la figura 4A). La distancia entre los elementos 127a de corte y el elemento opuesto 127b de corte (o los electrodos opuestos de retorno en algunos casos) puede estar dispuesto en el intervalo de aproximadamente 0 mm a aproximadamente 1,016 mm para optimizar el efecto de corte.
Las características generales de los miembros 110 y 120 de mandíbula y el conjunto 105 de electrodos se describirán inicialmente con respecto a la figura 3A mientras que los cambios a las otras realizaciones contempladas descritas en esta memoria se harán claros durante la descripción de cada realización individual. Además de esto, todas las figuras siguientes muestran las diversas configuraciones eléctricas y polaridades solo durante la fase de corte. Durante la denominada "fase de cierre", los miembros 110 y 120 de mandíbula son cerrados alrededor de tejido y los elementos 127a y 127b de corte pueden formar la separación requerida entre las superficies opuestas 112a, 122a y 112b, 122b de cierre. Durante la activación de la fase de cierre, los elementos 127a y 127b de corte no son excitados necesariamente de forma que la mayoría de la corriente se concentra entre superficies de cierre opuestas, 112a y 122a y 112b y 122b, para cerrar con efectividad el tejido. Miembros 1160a y 1160b de tope pueden ser empleados también para regular la distancia de separación entre las superficies de cierre en vez de los elementos 127a y 127b de corte. Los miembros 1160a y 1160b de tope pueden estar dispuestos en las superficies 1112a, 1122a y 1112b, 1122b de cierre (véase la figura 4E), junto a las superficies 1112a, 1122a y 1112b, 1122b de cierre o en el aislante o aislantes 1113, 1123.
Los elementos 127a y 127b de corte están configurados para extenderse desde sus respectivos aislantes 113 y 123, respectivamente, y extenderse más allá de las superficies 112a, 112b y 122a y 122b de contacto con el tejido de forma que los elementos 127a y 127b de corte actúan como miembros de tope (es decir, crean una distancia de separación "G" (véase la figura 3A) entre las superficies opuestas conductivas 112a, 122a y 112b, 122b de cierre), que como se ha mencionado antes incentivan un cierre de tejido preciso, consistente y efectivo. Como se puede apreciar, los elementos 127a y 127b de corte evitan también que las superficies opuestas 112a, 122a y 112b, 122b de contacto con el tejido se toquen, lo que elimina las posibilidades de que el fórceps 10, 100 se cortocircuite durante el procedimiento de cierre.
Como se ha mencionado antes, dos factores mecánicos juegan un papel importante para determinar el grosor resultante del tejido cerrado y la efectividad de un cierre de tejido, es decir la presión aplicada entre miembros opuestos 110 y 120 de mandíbula y la distancia de separación "G" entre las superficies opuestas 112a, 122a 112b, 122b de contacto con el tejido durante el procedimiento de cierre. Con consideración especial a los vasos, los elementos 127 de corte (o elementos 127a y 127b de corte) se extiende más allá de las superficies 112a, 112b y/o 122a, 122b de contacto con el tejido para producir una distancia de separación consistente y precisa "G" durante el cierre dentro del intervalo de aproximadamente 0,0254 mm a aproximadamente 0,1524 mm y, más preferiblemente, en el intervalo de aproximadamente 0,0508 mm y aproximadamente 0,0762 mm. Otros intervalos de separación pueden ser preferibles con otros tipos de tejido tales como intestino o estructuras vasculares grandes. Como se puede apreciar, cuando se utiliza un elemento de corte (como con alguna de las realizaciones descritas en esta memoria), por ejemplo, 127, el elemento 127 de corte está configurado para extenderse más allá de las superficies 112a, 112b y 122a, 122b de cierre para producir una distancia de separación el intervalo de trabajo anterior. Cuando se utilizan dos elementos opuestos de corte, por ejemplo, 127a y 127b, la combinación de estos elementos 127a y 127b de corte produce una distancia de separación en el intervalo de trabajo anterior durante el proceso de cierre.
Con respecto a la figura 3A, los elementos constructivos 127a y 127b de corte están orientados opuestos en coincidencia vertical, en los aislantes respectivos 113 y 123 de los miembros 110 y 120 de mandíbula. Los elementos 127a y 127b de corte pueden ser sustancialmente romos para no inhibir el procedimiento de cierre (por ejemplo, corte prematuro) durante la fase de cierre de la invención electro-quirúrgica. En otras palabras, el cirujano es libre para manipular, agarrar y sujetar el tejido con fines de cierre sin que los elementos 127a y 127b de corte corten mecánicamente el tejido. Además de esto, en este caso, el corte del tejido sólo se puede conseguir por medio de: 1) una combinación de sujeción mecánica del tejido entre los elementos 127a y 127b de corte y la aplicación de energía electro-quirúrgica desde los elementos 127a y 127b de corte, a través del tejido y hacia los electrodos de retorno, es decir, las superficies eléctricamente conductivas 112b y 122b de contacto con el tejido como se muestra en la figura 3A; ó 2) aplicar energía electro-quirúrgica desde los elementos 127a y 127b de corte a través del tejido y hacia las superficies 112b y 122b de retorno de contacto con tejido.
La configuración geométrica de los elementos 127a y 127b de corte puede jugar un papel importante al determinar la efectividad global del corte del tejido. Por ejemplo, la densidad de potencia y/o la concentración de corriente alrededor de los elementos 127a y 127b de corte se basada en la configuración geométrica particular de los elementos 127a y 127b de corte y la proximidad de los elementos 127a y 127b de corte a los electrodos de retorno, es decir, las superficies 112b y 122b de contacto con el tejido. Determinadas geometrías de los elementos 117a y 127b de corte pueden crear mayores áreas de densidad de potencia que otras geometrías. Además de esto, la separación de los electrodos 112a y 112b de retorno con estas concentraciones de corriente afecta a los campos eléctricos a través del tejido. Por lo tanto, configurando los elementos 127a y 127b de corte y los aislantes respectivos 113 y 123 en proximidad cercana uno de otro, la densidad de potencia eléctrica permanece alta, lo que es ideal para cortar y el instrumento no se cortocircuitará debido al contacto accidental entre superficies conductivas. El tamaño relativo de los elementos 127a y 127b de corte y/o el tamaño del aislante 113 y 123 puede ser alterado selectivamente dependiendo de una finalidad particular o deseada para producir un efecto quirúrgico particular.
Además, el elemento 127a de corte (y/o 127b) puede ser activado independientemente por el cirujano o activado automáticamente por el generador una vez que el cierre está completo. Se puede emplear un algoritmo de seguridad para asegurar que se ha formado un cierre de tejido completo y preciso antes de cortar. Se puede emplear un indicador (no mostrado) audible o visual para asegurar al cirujano de que se ha formado un cierre preciso y el cirujano puede ser requerido para activar un gatillo (o desactivar un seguro) antes de cortar. Por ejemplo, se puede emplear un sensor inteligente o un algoritmo de retroinformación para determinar la calidad del cierre antes de cortar. El sensor inteligente o bucle de retroinformación puede estar configurado también para conmutar automáticamente la energía electro-quirúrgica hacia el elemento 127a de corte (y/o 127b) una vez que el sensor inteligente determina que el tejido está cerrado apropiadamente. La configuración eléctrica de las superficies eléctricamente conductivas 112a, 112b y 122a, 122b de cierre puede ser alterada también automática o manualmente durante los procesos de cierre y de corte para efectuar un cierre y corte del tejido preciso y consistente.
Volviendo ahora a las realizaciones del conjunto 105 de electrodos, como se describe en esta memoria, que muestra las diversas polaridades durante la fase de corte del tejido, la figura 3A, como se ha mencionado antes, incluye miembros primero y segundo 110 y 120 de mandíbula que tienen un conjunto 105 de electrodo dispuestos en ellos. Más particularmente, el conjunto 105 de electrodos incluye primeras superficies eléctricamente conductivas 112a y 112b de cierre dispuestas cada una en coincidencia opuesta con segundas superficies eléctricamente conductivas 122a y 122b de cierre en los miembros 110 y 120 de mandíbula, respectivamente. El aislante 113 aísla eléctricamente entre sí las superficies 112a y 112b de cierre permitiendo la activación independiente selectiva de las superficies 112a y 112b de cierre. El aislante 123 separa entre sí las superficies 122a y 122b de cierre de una manera similar por lo que permite la activación selectiva de las superficies 122a y 122b de cierre.
Cada aislante 113 y 123 está retrasado una distancia predeterminada entre las superficies 112a, 112b y 122a, 122b de cierre para definir un rebaje 149a, 149b y 159a, 159b, respectivamente, que, como se ha mencionado antes, afecta a las densidades de potencia global entre superficies activadas eléctricamente tanto durante la fase de corte como la de cierre. El elemento 127 de corte está dispuesto y/o depositado en el aislante 113 y se extiende hacia dentro desde él para extenderse más allá de las superficies 112a, 112b de cierre una distancia predeterminada. En las realizaciones en las que sólo se muestra un elemento de corte, por ejemplo, 127a, el elemento 127a de corte se extiende más allá de las superficies 112a, 112b y 122a y 122b de cierre para definir el intervalo de separación mencionado antes entre las superficies opuestas 112a, 122a y 112b y 122b de cierre. Cuando se emplean dos (o más) elementos 127a y 127b de corte (por ejemplo, al menos uno dispuesto en cada aislante 113 y 123) la combinación de elementos 127a y 127b de corte produce la distancia de separación deseada en el intervalo de separación del trabajo.
Durante el cierre, las superficies opuestas 112a, 122a y 112b, 122b son activadas para cerrar el tejido dispuesto entre ellas para crear dos cierres de tejido en cada lado de los aislantes 113 y 123. Durante la fase de corte, los elementos 127a y 127b de corte son excitados con un primer potencial eléctrico "+" y las superficies opuestas derechas 112b y 122b de cierre son excitadas con un segundo potencial "-". Esto crea un recorrido eléctrico concentrado entre los potenciales "+" y "-" a través del tejido para cortar el tejido entre los cierres de tejido formados anteriormente. Una vez que el tejido está cortado, los miembros 110 y 120 de mandíbula son abiertos para liberar las dos mitades de tejido.
La figura 3B describe otra realización acorde con la presente descripción que incluye elementos similares a los descritos antes con respecto a la figura 3A, a saber, las superficies 312a, 312b y 322a, 322b de cierre, los aislantes 313 y 323 y los elementos 327a y 327b de corte con las excepción de que el lado izquierdo de cada aislante 313 y 323 se extiende más allá de las superficies 312a y 322a hacia una posición que está a nivel con los elementos 327a y 327b de corte. El lado derecho de cada aislante 313 y 323 está retrasado desde las superficies 312a y 312b de cierre, respectivamente. Configurando el conjunto 305 de electrodos de esta manera se pueden reducir las concentraciones de corriente pérdida entre las superficies eléctricamente conductivas 312a, 312b y, 322a, 322b y los elementos 327a y 327b de corte especialmente durante la fase de corte.
La figura 3C describe incluso otra realización acorde con la presente descripción e incluye elementos similares a los de antes, particularmente, las superficies 412a, 412b y 422a, 422b de cierre, los aislantes 413 y 423 y los elementos 327a y 327b de corte. Con esta realización particular, durante la fase de corte, ambos grupos de superficies opuestas 412a, 422a y 412b, 422b de cierre son excitadas con el segundo potencial eléctrico "-" y los elementos 427a y 427b de corte son excitados con el primer potencial eléctrico "+". Se cree que este conjunto 405 de electrodos puede crear recorridos eléctricos concentrados entre los potenciales "+" y "-" a través del tejido para cortar el tejido entre los cierres de tejido formados anteriormente.
La figura 3D muestra un conjunto 505 de electrodos de configuración similar a la figura 3B con una configuración eléctrica similar a la realización de la figura 3C. El conjunto 505 de electrodos incluye componentes similares a los descritos antes, particularmente, las superficies 512a, 512b y 522a, 522b de cierre, los aislantes 513 y 523 y los elementos 527a y 527b de corte. Los electrodos opuestos 512a, 522b y 512b, 512b de cierre son excitados al segundo potencial eléctrico "-" durante la fase de corte, que como se describe antes se cree que mejora el corte del tejido. Con realizaciones particulares como las figuras 3C y 3D, puede ser más fácil fabricar el conjunto 505 de electrodos de forma que todas las superficies 512a, 512b y 522a, 522b de cierre son excitadas al mismo potencial eléctrico en vez de emplear circuitos y/o algoritmos de conmutación complicados para excitar sólo las superficies de cierre como en las figuras 3A y 3B.
La figura 3E muestra incluso otra realización del conjunto 605 de electrodos e incluye superficies opuestas 612a, 622a y 612b, 622b, elemento 627 de corte y aislantes 613 y 623. Con esta realización particular, el conjunto 605 de electrodos sólo incluye un elemento 627 de corte dispuesto en el aislante 613 para cortar tejido. El elemento 627 de corte está dispuesto opuesto al aislante 623, lo que proporciona una función dual durante la activación del conjunto 605 de electrodos: 1) proporciona una separación uniforme entre las superficies 612a, 622a y 612b, 622b de cierre durante la fase de cierre: y 2) evita que el conjunto 605 de electrodos se cortocircuite durante las fases de cierre y corte. Durante la activación, el elemento 627 de corte es excitado a un primer potencial "+" y las superficies opuestas 612a, 622a y 612b, 622b de cierre son excitadas a un segundo potencial eléctrico "-" que crea una zona de alta densidad de potencia entre los dos cierres de tejido formados anteriormente y corta el tejido.
La figura 3F muestra incluso otra realización alternativa del conjunto 705 de electrodos que incluye elementos similares a los descritos antes, a saber, superficies 712a, 712b y 722a, 722b de cierre, elementos 727a y 727b de corte y aislantes 713 y 723. Durante la activación, sólo tres de las cuatro superficies de cierre son excitadas al segundo potencial "-", por ejemplo, superficies 712a, 712b de cierre y 722b mientras los elementos 727a y 727b de corte son excitados al primer potencial "+".
Las figuras 4A y 4B muestran incluso otra realización del conjunto 805 de electrodos de acuerdo con la presente descripción que muestra tejido dispuesto entre dos miembros 810 y 820 de mandíbula antes de la activación de las superficies 812a, 812b y 822a, 822b de cierre. Con esta realización particular, los aislantes 813 y 823 están configurados para tener secciones transversales opuestas similares a un triángulo, que esencialmente "pellizcan" el tejido entre los aislantes 813 y 823 cuando el tejido está agarrado entre los miembros 810 y 820 de mandíbula. Durante el cierre, se aplica energía al tejido a través de las placas opuestas 812a, 822a y 812b, 822b de cierre para efectuar dos cierres de tejido en cada lado de los aislantes 813 y 823. Durante la fase de corte, los electrodos 812a y 822a de cierre son excitados con un primer potencial "+" y las placas 812b y 822b de cierre son excitadas al segundo potencial eléctrico "-" de forma que fluye energía en la dirección en la fecha indicada "A". En otras palabras, se cree que el pellizcado del tejido tiende a controlar o dirigir la concentración de energía a zonas específicas de tejido para efectuar el corte del tejido.
Volviendo ahora a las figuras 4C-4J, varias configuraciones geométricas para el miembro superior 910 de mandíbula para el conjunto 905 de electrodos, que pueden ser utilizadas con un miembro inferior de mandíbula (no mostrado) simétrico o asimétrico (no mostrado) para cerrar con efectividad y a continuación cortar tejido. El uso de varias geometrías de los miembros de mandíbula tiende a "pellizcar" el tejido durante el cierre antes de la separación, lo que puede mejorar el proceso de corte del tejido especialmente cuando las zonas de tejido pellizcado son sometidas a altas densidades de potencia. Con los fines de esta memoria, el pellizco puede ser descrito como la zona de menor volumen de tejido en cualquier sitio entre los polos de tejido activo. Típicamente, la zona de tejido pellizcado está asociada con alta presión. Muchas de las configuraciones de mandíbulas descritas en lo sucesivo ilustran el concepto de pellizco y se vislumbra que utilizan una variedad de configuraciones de polaridad para mejorar o facilitar el corte. Con los fines de clarificación, en cada figura sólo se representa la polaridad asociada con la fase de corte.
Además de esto, puede ser utilizada cualquier combinación de potencial eléctrico como se ha descrito antes en esta memoria con los diversos miembros de mandíbula (y cada miembro opuesto de mandíbula al miembro de mandíbula) para cerrar tejido con efectividad durante una primera fase eléctrica y cortar tejido durante una fase eléctrica siguiente. Así pues, los miembros de mandíbula ilustrados están etiquetados con un primer potencial eléctrico "+", sin embargo, el miembro inferior de mandíbula incluida las superficies de cierre y los elementos de corte (que pueden ser o no una imagen reflejada del miembro superior de mandíbula) pueden ser excitados con cualquier combinación de los potenciales o potencial eléctrico primero y segundo (u otros potenciales eléctricos) para cerrar con efectividad y cortar a continuación tejido dispuesto entre los miembros de mandíbula.
La figura 4C muestra un miembro superior particular 910 de mandíbula que incluye una superficie 912 de cierre que tiene un rebaje 921 con forma de U definido en ella para alojar el aislante 913. Un elemento 927 de corte está dispuesto dentro del aislante 913 y está dimensionado para extenderse más allá de la superficie 912 de cierre. El elemento 927 de corte puede ser un electrodo o puede estar hecho de un material parcialmente conductivo. La figura 4D muestra un miembro 1010 de mandíbula que forma parte de un conjunto 1005 de electrodos incluye dos superficies 1012a y 1012b de cierre con un aislante 1013 y dispuesto entre ellas. El aislante 1013 incluye un elemento 1027 de corte dispuesto en él que se extienden más allá de las superficies 1012a y 1012b de cierre muy parecido a las realizaciones descritas antes con relación a las figuras 3A-3F. De nuevo, el elemento 1027 de corte puede ser un electrodo o puede estar hecho de un material semiconductor. Sin embargo, como se ha mencionado antes, se puede disponer un miembro de mandíbula configurado geométricamente de forma diferente opuesto al miembro 1010 de mandíbula con diferentes potenciales eléctricos para producir un cierre y un efecto de corte particulares.
Las figuras 4E-4J muestran varias configuraciones geométricas de al menos un miembro de mandíbula que está configurado tanto para cerrar tejido durante una primera fase de cierre como cortar tejido durante una fase de corte siguiente. En cada caso, la configuración geométrica particular del aislante está diseñada para concentrar corriente en grandes áreas de densidad de potencia para producir un efecto de corte y/o reducir la probabilidad de que la corriente se desvíe al tejido adyacente, lo que en último lugar puede dañar a las estructuras de tejido adyacente.
Por ejemplo, la figura 4E muestra un miembro 1110 de mandíbula que puede ser utilizado con el conjunto 1105 de electrodos que incluye superficies 1112a y 1112b de cierre que están separadas por un material parcialmente conductivo 1113. Un miembro 1120 de mandíbula como un reflejo se muestra opuesto al miembro 1110 de mandíbula e incluye elementos similares, a saber, superficies 1122a y 1122b de cierre y material parcialmente conductivo 1123. En esta realización particular, los materiales parcialmente conductivos 1113 y 1123 son generalmente redondeados para incluir unos ápices 1151a y 1151b, respectivamente, que se extienden más allá de las superficies 1112a, 1112b y 1122a, 1122b de cierre. Los materiales parcialmente conductivos 1113 y 1123 están hechos típicamente de un material que tiene propiedades conductivas que con el tiempo generan áreas de alta densidad de potencia en los ápices 1151a y 1151b para cortar tejido dispuesto bajo ellos. Una serie de miembros 1160a y 1160b de tope pueden estar dispuestos en las superficies 1112a y 1112b y evitan que los ápices 1151a y 1151b se toquen y cortocircuiten.
Durante la fase (no mostrada) de cierre los materiales parcialmente conductivos 1113 y 1123 no son excitados y actuarán generalmente más como materiales aislantes ya que por su naturaleza son sólo semiconductors y no son tan conductivos como las superficies 1112a, 1112b y 1122a, 1122b de cierre. En otras palabras, la corriente puede ser suministrada a las placas 1112a, 1112b y 1122a, 1122b de cierre y no directamente a los materiales parcialmente conductivos 1113 y 1123, produciendo por tanto la mayoría del efecto eléctrico entre las placas opuestas 1112a, 1122a y 1112b, 1122b de cierre de los miembros 1110 y 1120 de mandíbula. Durante la fase de corte (como se muestra), un potencial eléctrico es suministrado directamente a los materiales parcialmente conductivos 1113 y 1123, que se cree que los hará más conductivos y que producirá áreas de alta densidad de potencia en la proximidad de los ápices 1151a y 1151b para cortar el tejido.
Por ejemplo, el material parcialmente conductivo 1113 es suministrado con un primer potencial y el material parcialmente conductivo 1123 es suministrado con un segundo potencial para facilitar el corte. El miembro 1120 de mandíbula puede ser configurado también para incluir una configuración geométrica diferente a la del miembro 1110 de mandíbula para producir un efecto de corte particular. Además de esto, un aislante (no mostrado) puede estar dispuesto entre uno o ambos de los materiales parcialmente conductivos 1113 y 1123 y su respectiva superficie de cierre para reducir la conducción eléctrica o la transferencia de calor entre o a través de estos elementos.
La figura 4F muestra un conjunto similar 1205 de electrodos que tiene superficies 1212a, 1212b de cierre que están separadas por un material parcialmente conductivo 1213 y en las que el material parcialmente conductivo 1213 está generalmente redondeado pero no se extienden más allá de las superficies 1112a y 1212b de cierre. El material parcialmente conductivo 1213 puede estar hecho de un material tal como los identificados antes que produce un área de alta densidad de potencia en el ápice 1251 para cortar tejido dispuesto más abajo durante la fase de corte. De nuevo, el miembro opuesto de mandíbula (no mostrado) puede estar configurado como una imagen reflejo del miembro 1210 de mandíbula o puede incluir una configuración geométrica diferente.
La figura 4G muestra otra configuración geométrica de un miembro 1310 de mandíbula que incluye superficies 1312a y 1312b de cierre separadas por un material parcialmente conductivo 1313 en el que el material parcialmente conductivo está retrasado entre la superficie 1312a y 1312b de cierre para definir ahí un rebaje 1349. La figura 4H muestra incluso otra configuración geométrica de un miembro 1410 de mandíbula que forma parte de un conjunto 1405 de electrodos y que incluye la superficie 1412 de cierre y un material parcialmente conductivo 1413. Como se puede apreciar, esta disposición particular no incluye una segunda superficie de cierre en el miembro superior 1410 de mandíbula sino en cambio el material parcialmente conductivo 1413 incluye un rebaje 1449 como una muesca definido en él que tiene una punta 1451 de corte, que se extiende más allá de la superficie 1412 de cierre. La punta 1451 de corte se extiende más allá de la superficie 1412 de cierre lo suficiente como para mantener la distancia de separación necesaria durante la fase de cierre y para facilitar eventualmente el corte del tejido durante la fase de corte al producir una zona de alta densidad de potencia en la punta 1451. De nuevo, el miembro opuesto de mandíbula (no mostrado) puede estar configurado como una imagen reflejo del miembro 1410 de mandíbula o puede incluir una configuración geométrica diferente.
La figura 4I incluye incluso otra configuración geométrica del miembro superior 1510 de mandíbula que forma parte de un conjunto 1505 de electrodos y que incluye superficies 1512a y 1512b de cierre que están separadas por un aislante 1513. El aislante 1513 incluye dispuesto en él un elemento semiconductor 1527 de corte con forma generalmente rectilínea, que se extiende más allá de las superficies 1512a y 1512b de cierre. Durante la fase de corte, el elemento semiconductor 1527 de corte es excitado por un primer potencial "+" y las placas 1512a, 1512b de cierre están excitadas a un segundo potencial "-". El aislante 1513 aísla los potenciales entre el material parcialmente conductivo 1527 y las superficies 1512a y 1512b de cierre durante la activación.
La figura 4J muestra todavía otra configuración geométrica que muestra un miembro 1610 de mandíbula para un conjunto 1605 de electrodos que es similar a la figura 4C anterior e incluye una placa 1612 de cierre con forma de C que tiene un rebaje 1621 definido en ella para alojar un aislante 1613. El aislante 1613 incluye un elemento semiconductor 1627 de corte alojado en ella para cortar tejido. Durante la fase de corte, el elemento semiconductor 1627 de corte es excitado a un primer potencial "+" y la placa 1612 de cierre es excitada a un segundo potencial "-" para efectuar el corte del tejido. De nuevo, el miembro segundo o inferior de mandíbula (no mostrado) puede incluir la misma configuración geométrica para mejorar el procedimiento de corte.
La figura 5 muestra un ejemplo ilustrado esquemáticamente del circuito eléctrico para un conjunto 1905 de electrodos, que puede ser utilizado para cerrar inicialmente tejido entre las placas de cierre y a continuación cortar tejido una vez que se ha formado el cierre o cierres de tejido. Más particularmente, el miembro 1910 de mandíbula incluye un alojamiento aislante 1916 que está dimensionado para alojar placas conductivas 1912a y 1912b de cierre con un aislante o material parcialmente conductivo 1913 dispuesto entre ellas. El material parcialmente conductivo o aislante 1913 incluye un rebaje 1921 definido ahí, dimensionado para retener un elemento 1927 de corte con forma generalmente triangular y que se extiende más allá de las superficies 1912a y 1912b de cierre. El miembro 1920 de mandíbula incluye un alojamiento aislante externo 1926 que está dimensionado para alojar la superficie eléctricamente conductiva 1922 de cierre. La superficie 1922 de cierre incluye un rebaje 1933 definido en ella que complementa generalmente el perfil en sección transversal del elemento 1927 de corte. El elemento 1927 de corte está dimensionado ligeramente mayor que el rebaje 1923 de forma que se forma una separación cuando los miembros de mandíbula son cerrados alrededor del tejido, esta separación está en el intervalo de trabajo indicado antes.
Durante el cierre (Vcierre), las placas 1912a y 1912b de cierre son excitadas con un primer potencial "+_{1}" y la placa 1922 de cierre es excitada a un segundo potencial "-". El elemento de corte no es excitado. Como el aislante o semiconductor no conduce energía además de las placas conductivas 1912a y 1912b de cierre, el primer potencial no es transferido eficientemente o con efectividad al elemento 1927 de corte y el tejido no es necesariamente calentado o dañado durante la fase de cierre. Durante la fase de cierre se transfiere energía desde las placas 1912a y 1912b de cierre a través del tejido y hacia el electrodo 1922 de retorno (Vretorno). Se cree que incluso algo de energía es transferida con efectividad al elemento 1927 de corte durante la fase de cierre. Simplemente calentará o tratará previamente el tejido antes de la separación y no debe afectar a la fase de corte. Durante la fase de corte, el elemento 1927 de corte actúa principalmente como un miembro de tope para crear y mantener una separación entre las superficies opuestas 1912a, 1912b y 1922 de cierre.
Durante la fase de corte (Vcorte), un primer potencial "+_{2}" es suministrado al elemento 1927 de corte y el segundo potencial "-" es suministrado a la superficie 1922 de cierre. Los parámetros eléctricos (potencia, corriente, forma de onda, etc.) asociados con esta fase pueden ser los mismos o diferentes a los potenciales usados para la fase de cierre. Se cree que se pueden utilizar potenciales similares primero y segundo ya que se van a excitar diferentes componentes con geometrías variables, lo que por ellos mismos pueden crear diferentes efectos eléctricos. Como se puede apreciar, durante la fase de corte se transfiere energía desde el elemento 1927 de corte a través del tejido y hacia el electrodo 1922 de retorno (Vretorno). Se cree incluso si algo de energía es transferida a las placas 1912a y 1912b de cierre durante la fase de corte a través del aislante/semiconductor 1912, no afectará en detrimento a los cierres de tejido ya formados. Además de esto, se cree que se pueden emplear uno o más sensores (no mostrado), algoritmos de ordenador y/o controles de retroinformación asociados con el generador o dispuestos internamente en el fórceps para evitar un sobrecalentamiento del tejido durante las fases de cierre y corte.
Las figuras 6A-6D muestran realizaciones adicionales de miembros de mandíbula que tienen varios conjuntos de electrodos que pueden ser utilizados para cerrar y cortar tejido dispuesto entre los miembros de mandíbula. Por ejemplo, la figura 6A muestra un miembro primero o superior 2010 para el uso con un conjunto 2005 de electrodos que incluye una superficie eléctricamente conductiva 2012 de cierre que tiene un rebaje 2021 definido en ella dimensionado para alojar un aislante 2013. El aislante incluye también una muestra 2049 dispuesta en él que aloja parcialmente un electrodo 2027 de corte configurado generalmente de forma rectilínea. El electrodo 2027 está rebajado o retrasado dentro de la muesca 2049. El miembro 2020 de mandíbula incluye una superficie eléctricamente conductiva 2022 de cierre que está dispuesta en sustancial coincidencia vertical con la superficie opuesta 2012 de cierre. La superficie 2022 de cierre incluye un aislante 2023 generalmente configurado de forma rectilínea que se extiende hacia el miembro 2010 de mandíbula y está configurado para apoyarse en el electrodo 2027 cuando los miembros 2010 y 2020 de mandíbula son movidos a una posición cerrada alrededor del tejido. Como se puede apreciar, el aislante 2023 actúa como un miembro de tope y crear una distancia de separación dentro del intervalo de trabajo anterior durante el proceso de cierre. Además, los aislantes 2013 y 2023 aíslan el miembro superior 2010 de mandíbula durante la fase de corte y dirigen generalmente la corriente de corte desde el elemento 2027 de corte de una forma intensa hacia el electrodo 2022 de retorno (Vretorno) para cortar tejido con efectividad.
La figura 6B muestra incluso otra realización de un conjunto 2015 de electrodos dispuesto en los miembros 2110 y 2120 de mandíbula. Más particularmente, los miembros 2110 y 2120 de mandíbula incluyen superficies eléctricamente conductivas 2112 y 2122 de cierre, respectivamente, dispuestas en coincidencia general vertical entre sí y que están configuradas para cerrar tejido durante la fase de cierre. Muy similar a la realización descrita antes con referencia a la figura 6A, el miembro 2110 de mandíbula incluye un rebaje 2121 definido en él dimensionado para alojar un aislante 2113. El miembro 2120 de mandíbula incluye una superficie eléctricamente conductiva 2122 de cierre que está dispuesta en coincidencia sustancialmente vertical con la superficie opuesta 2112 de cierre. El miembro 2120 de mandíbula incluye un aislante 2123 dispuesto en él que está dispuesto opuesto al rebaje 2121.
El aislante 2113 incluye también un elemento 2127 de corte con forma de T alojado en él que define dos muescas 2149a y 2149b en cada lado de una pata o extensión 2127a que se extiende hacia el miembro 2120 de mandíbula. El elemento 2127 de corte puede estar hecho de material relativamente poco conductivo e incluye una zona de material altamente conductivo 2139 dispuesta en el extremo distal de la pata 2127a. El material altamente conductivo 2139 está dispuesto en coincidencia vertical con el aislante 2123 dispuesto en el miembro 2120 de mandíbula. Durante la activación de la fase de corte, se cree que el material altamente conductivo 2139 concentrará la corriente de corte de una forma intensa hacia el electrodo 2122 de retorno (Vretorno) para cortar el tejido dispuesto entre los miembros 2110 y 2120 de mandíbula.
La figura 6C muestra incluso otro grupo de miembros 2210 y 2220 de mandíbula con un conjunto 2205 de electrodos dispuesto en ellos para cerrar y cortar tejido. Más particularmente, el miembro 2210 de mandíbula incluye una superficie eléctricamente conductiva 2212 de cierre que tiene una parte rebajada 2221 dispuesta en ella para alojar un aislante 2213 que, a su vez, aloja en él un elemento 2227 de corte con forma generalmente de V. El miembro 2220 de mandíbula incluye una superficie eléctricamente conductiva 2222 de cierre que se opone a la superficie 2212 de cierre en el miembro 2210 de mandíbula. Durante la fase de cierre, las superficies 2212 y 2222 de cierre conducen energía electro-quirúrgica a través del tejido sostenido entre ellas para efectuar un cierre de tejido. El elemento 2227 de corte con forma de V actúa como un miembro de tope durante la fase de cierre.
Durante la fase de corte, el elemento 2227 de corte con forma de V pellizca el tejido sostenido entre los miembros 2210 y 2220 de mandíbula y cuando se activa dirige energía electro-quirúrgica a través del tejido de una forma intensa alrededor del aislante 2213 y hacia las superficies 2212 de cierre. El miembro 2220 de mandíbula permanece neutral durante la fase de corte y no se cree que altere significativamente la dirección del recorrido eléctrico para afectar adversamente al proceso de corte.
La figura 6D muestran incluso otra realización de los miembros 2310 y 2320 de mandíbula que tienen un conjunto alternativo 2305 de electrodos para cerrar y cortar tejido. Más particularmente, el conjunto 2305 de electrodos es similar a la configuración de electrodos de la realización descrita con respecto a la figura 6C con la excepción de que el miembro inferior 2320 de mandíbula incluye un aislante 2323 dispuesto en coincidencia vertical con el elemento 2327 de corte dispuesto dentro del rebaje 2321 del miembro superior 2310 de mandíbula. En este caso, el elemento 2327 de corte está dimensionado para ser más ancho que el aislante 2323 de forma que las partes traseras del elemento de corte con forma de V se extienden lateralmente más allá del aislante 2323 cuando los miembros 2310 y 2320 de mandíbula están dispuestos en la posición cerrada. En otras palabras, el elemento 2327 de corte incluye una parte saliente que está dispuesta en coincidencia vertical opuesta con el electrodo 2322 de retorno. El aislante 2313 dispuesto en el rebaje 2321 del miembro superior 2310 de mandíbula ayuda a dirigir la energía electro-quirúrgica hacia el electrodo 2322 de retorno durante el corte y reduce las corrientes perdidas hacia las estructuras adyacentes de tejido.
Durante la fase de cierre, las superficies 2312 y 2322 de cierre conducen energía electro-quirúrgica a través del tejido sostenido entre ellas para efectuar dos cierres de tejido en lados opuestos del aislante 2313. El elemento 2327 de corte con forma de V actúa como un miembro de tope durante la fase de cierre. Durante la fase de corte el miembro 2310 de mandíbula está neutralizado y el elemento 2327 de corte es excitado de forma que se dirige energía electro-quirúrgica desde el elemento 2327 de corte a través del tejido sostenido entre los miembros 2310 y 2320 de mandíbula y hacia el electrodo 2322 de retorno (Vretorno). Se cree que el elemento 2327 de corte con forma de V dirigirá energía hacia el electrodo 2322 de retorno de una forma intensa alrededor del aislante 2323 y hacia la superficie 2212 de cierre para cortar con efectividad tejido entre los cierres ya formados de tejido.
Las figuras 7A-7D muestran varias configuraciones geométricas de los aislantes y elementos de corte para usar con los conjuntos de electrodos del fórceps 10, 100 de acuerdo con la presente descripción. Por ejemplo, la figura 7A muestra una realización en la que uno de los conjuntos 2405 de electrodos incluye miembros 2420 de mandíbula que tienen superficies eléctricamente conductiva primera y segunda 2422a y 2422b de cierre que son de potenciales eléctricos opuestos y que están separadas por el aislante 2423 con forma trapezoidal que se extiende más allá de cada superficie respectiva 2422a y 2422b de cierre. Como se puede apreciar la forma particular del aislante 2423 con forma frustocónica forma dos partes rebajadas 2459a y 2459b entre las superficies 2422a, 2422b de cierre y el aislante 2423 que se contempla que pellizque el tejido entre el aislante 2423 y la superficie opuesta (por ejemplo, otro aislante o superficies conductiva) y controle la energía electro-quirúrgica durante la activación para facilitar el corte.
La figura 7B muestra otra realización similar que incluye un aislante 2523 con forma frustocónica que no se extiende más allá de las superficies 2522a y 2522b de cierre pero realmente está retrasado ligeramente de las superficies 2522a y 2522b de cierre. De nuevo, la forma particular del aislante 2523 con forma trapezoidal forma dos partes rebajadas 2559a y 2559b entre las superficie 2522a, 2522b de cierre y el aislante 2523 que se contempla que controle la energía electro-quirúrgica durante la activación para mejorar el procedimiento de corte.
La figura 7C muestra otra configuración geométrica de un conjunto 2605 de electrodos que incluye una superficie eléctricamente conductiva activa 2622a y una superficie eléctricamente conductiva neutral 2622b durante la fase de corte. Un elemento 2627 de corte está dispuesto entre las dos superficies 2622a y 2622b y está separado de las superficies por un aislante 2623 que está rebajado entre las dos superficies 2622a y 2622b para formar muescas o zonas retrasadas 2659a y 2659b. El elemento 2627 de corte está diseñado con un radio de curvatura más pequeño que el electrodo activo 2622a de forma que durante la fase de corte, se intensifica la energía electro-quirúrgica para crear una densidad de potencia suficiente para cortar con efectividad tejido próximo al elemento 2627 de corte.
La figura 7D muestra otra configuración geométrica de un conjunto 2705 de electrodos similar al de realización mostrada en la figura 7C anterior en la que el aislante 2723 está configurado para estar generalmente a nivel con las superficies 2722a y 2722b. El elemento 2727 de corte está dispuesto en el aislante 2723 y se extiende tanto desde el aislante 2723 como desde las superficies 2722a y 2722b hacia una superficie opuesta en el miembro en el otro miembro de mandíbula (no mostrado). Se cree que la forma del aislante 2723 dirigirá corriente electro-quirúrgica intensificada entre el elemento 2727 de corte y la superficie conductiva activa 2722a.
La figura 7E muestra incluso otro conjunto 2805 de electrodos que tiene un miembro 2820 de mandíbula con una configuración geométrica similar a la figura 7C anterior en la que el aislante 2823 está rebajado entre dos superficies 2822a y 2822b de cierre. Un elemento 2827 de corte generalmente redondeado está dispuesto en el aislante 2823. El elemento 2827 de corte incluye un radio de curvatura más grande que el radio de curvatura de la superficie activa 2822a de forma que durante la fase de de corte se intensifica la energía eléctroquirúrgica para cortar con efectividad tejido próximo al elemento 2827 de corte.
Como se puede apreciar, las diversas configuraciones geométricas disposiciones eléctricas de los conjuntos de electrodos permiten al cirujano activar inicialmente los dos superficies opuestas eléctricamente conductivas de contacto con el tejido y cerrar el tejido y, a continuación, activar selectiva e independientemente el elemento de corte y una o más superficies de contacto con tejido para cortar el tejido utilizando las varias configuraciones mostradas de conjunto de electrodos. Por tanto, el tejido es cerrado inicialmente y después cortado sin volver a agarrar el tejido.
Sin embargo, el elemento de corte y una o más superficies de contacto con tejido pueden ser activados también para simplemente cortar tejido/vasos sin cierre inicial. Por ejemplo, los miembros de mandíbula pueden ser situados alrededor de tejido y el elemento de corte puede ser activado selectivamente para separar o simplemente coagular el tejido. Este tipo de realización alternativa puede ser particularmente útil durante determinados procedimientos endoscópicos en los que un lápiz electro-quirúrgico es introducido típicamente para coagular y/o desecar tejido durante el procedimiento de operación.
Se puede emplear un conmutador 70 para permitir al cirujano activar selectivamente una o más superficies de contacto con tejido o el elemento de corte independientemente uno del otro. Como se puede apreciar, esto permite al cirujano cerrar inicialmente tejido y después activar el elemento de corte simplemente girando el conmutador. Conmutadores oscilantes, conmutadores de palanca, conmutadores basculantes, conmutadores giratorios, etc., son tipos de conmutadores que pueden ser empleados comúnmente para conseguir esta finalidad. El conmutador puede cooperar también con el sensor inteligente (o circuito inteligente, ordenador, bucle de retroinformación, etc.) lo que dispara automáticamente el conmutador para cambiarse entre el modo "cierre" y el modo "corte" tras la satisfacción de un parámetro particular. Por ejemplo, el sensor inteligente puede incluir un bucle de retroinformación que indica cuando está completo el cierre de tejido basándose en uno o más de los siguientes parámetros: temperatura del tejido, impedancia del tejido en el cierre, cambio de impedancia del tejido durante el tiempo y/o cambios en la potencia o corriente aplicada al tejido durante el tiempo. Se puede emplear un monitor de retroinformación visual o audible para llevar información al cirujano con relación a la calidad global del cierre o la conclusión de un cierre efectivo de tejido. Un conductor separado puede estar conectado entre el sensor inteligente y el generador para finalidades de retroinformación audible y/o visual.
El generador 500 entrega energía al tejido con una forma de onda similar a impulsos. Se ha determinado que entregar la energía en impulsos aumenta la cantidad de energía de cierre que puede ser entregada con efectividad al tejido y reduce efectos no deseados en el tejido tales como el achicharrado. Además de esto, el bucle de retroinformación del sensor inteligente puede estar configurado para medir automáticamente varios parámetros de tejido durante el cierre (es decir, temperatura del tejido, impedancia del tejido, corriente a través del tejido) y ajusta automáticamente la intensidad de energía y el número de impulsos según se necesite para reducir varios efectos en el tejido tales como achicharrado y expansión térmica.
También se ha determinado que los impulsos de RF pueden ser usados para cortar tejido con más efectividad. Por ejemplo, un impulso inicial desde el elemento de corte a través del tejido (o la superficie de contacto con tejido a través del tejido) puede ser entregado para proporcionar retroinformación al sensor inteligente para la selección del número ideal de impulsos siguientes y la intensidad de impulso siguiente para cortar consistentemente y con efectividad la cantidad o tipo de tejido con mínimo efecto en el cierre del tejido. Si la energía no va en impulsos, el tejido puede no cortarse inicialmente sino desecarse ya que la impedancia del tejido permanece alta durante las etapas iniciales del corte.
Al proporcionar la energía en impulsos cortos de energía alta, se ha encontrado que el tejido es más fácil de cortar.
Alternativamente, se puede configurar un conmutador para activarse basándose en un parámetro de corte deseado y/o después que se ha creado o se ha verificado un cierre efectivo. Por ejemplo, después de cerrar con efectividad el tejido, el elemento de corte puede ser activado automáticamente basándose en un grosor deseado final de tejido en el cierre.
Como se ha mencionado en muchas de las realizaciones anteriores, tras la compresión del tejido, el elemento de corte actúa como un miembro de tope y crea una separación "G" entre las superficies conductivas opuestas de contacto con tejido. Particularmente con respecto al cierre de vasos, la distancia de separación está en el intervalo de aproximadamente 0,0254 a aproximadamente 0,1524 mm. Como se ha mencionado antes, controlar tanto la distancia de separación "G" como la presión de sujeción entre las superficies conductivas son dos parámetros mecánicos importantes que necesitan ser controlados apropiadamente para asegurar un cierre de tejido consistente y efectivo. El cirujano activa el generador para transmitir energía electro-quirúrgica a las superficies de contacto con el tejido y a través del tejido para efectuar un cierre. Como resultado de la combinación única de presión de sujeción, distancia de separación "G" y energía electro-quirúrgica, el colágeno del tejido se funde en una masa fundida con una demarcación limitada entre paredes opuestas del vaso.
Una vez cerrado, el cirujano activa el elemento de corte para cortar el tejido. Como se ha mencionado antes, el cirujano no necesita obligatoriamente volver a agarrar el tejido para cortar, es decir, el elemento de corte ya está situado próximo a la línea central de corte ideal del cierre. Durante la fase de corte, la energía electro-quirúrgica altamente concentrada viaja desde el elemento de corte a través del tejido para cortar el tejido en dos mitades distintas. Como se ha mencionado antes, el número de impulsos requeridos para cortar con efectividad el tejido y la intensidad de la energía de corte puede ser determinado midiendo el espesor del cierre y/o la impedancia del tejido y/o basándose en el impulso inicial de energía de calibración que mide parámetros similares. Un sensor inteligente (no mostrado) usted de retroinformación puede ser empleado con esta finalidad.
Como se puede apreciar, el fórceps puede ser configurado para cortar automáticamente el tejido una vez cerrado o el instrumento puede ser configurado para permitir al cirujano dividir selectivamente el tejido una vez cerrado. Además de esto, se contempla que un indicador visual o audible (no mostrado) pueda ser disparado con un sensor (no mostrado) para alertar al cirujano cuando se ha creado un cierre efectivo. El sensor puede, por ejemplo, determinar si un cierre está completo midiendo uno de entre la impedancia del tejido, opacidad del tejido y/o temperatura del tejido.
La intensidad electro-quirúrgica desde cada una de las superficies eléctricamente conductivas y los elementos de corte puede ser controlada selectiva o automáticamente para asegurar un corte consistente y preciso a lo largo de la línea central del tejido con vistas a variaciones inherentes en el tipo de tejido y/o espesor del tejido. Además de esto, se contempla que todo el proceso quirúrgico puede ser controlado automáticamente de forma que después de que el tejido es agarrado inicialmente el cirujano puede simplemente activar el fórceps y cerrar y a continuación cortar el tejido. En este caso, el generador puede estar configurado para comunicarse con uno o más sensores (no mostrado) para proporcionar retroinformación positiva al generador durante los procedimientos de cierre y corte para asegurar un cierre preciso y consistente y la división del tejido. Se puede emplear cualquier mecanismo de retroinformación con esta finalidad.
De lo anterior y con referencia a las diversas figuras de los dibujos, los expertos en la técnica apreciarán que también se pueden hacer determinadas modificaciones a la presente descripción sin apartarse del alcance de la presente descripción, por ejemplo, el elemento de corte puede ser dimensionado como un cable de corte que puede ser activado selectivamente por el cirujano para dividir el tejido después del cierre. Más particularmente, un cable está montado en el aislante entre los miembros de mandíbula y se puede excitar selectivamente tras la activación del conmutador.
El fórceps puede estar diseñado de forma que sea completa o parcialmente desechable dependiendo de una finalidad particular o para conseguir un resultado particular. Por ejemplo, el conjunto de electrodos puede ser acoplable selectivamente o de forma liberable con el extremo distal de la lanza y/o el extremo proximal de la lanza puede ser acoplado de forma selectiva y liberable con el alojamiento y el conjunto de mango. En cualquiera de estos dos casos, el fórceps sería considerado "parcialmente desechable" o "limitado a varios usos", es decir, un nuevo o diferente conjunto de electrodos (o conjunto de electrodos y lanza) sustituye selectivamente el conjunto de electrodos viejo según se necesite.
El conjunto de electrodos puede ser desmontable selectivamente (es decir, con uso limitado a un número de veces) desde la lanza que depende en una finalidad particular, por ejemplo, un fórceps específico puede ser configurado para diferentes tipos de tejido o espesores. Además de esto, un fórceps reutilizable puede ser soldado como un tipo que tenga diferentes conjuntos de electrodos para diferentes tipos de tejido. El cirujano simplemente selecciona el conjunto de electrodos apropiado para un tipo de tejido particular.
El fórceps puede incluir también un mecanismo de bloqueo eléctrico o mecánico que evite las superficies de cierre y/o el elemento de corte se activen involuntariamente cuando los miembros de mandíbula están dispuestos en la configuración abierta.
Aunque el fórceps objeto y los conjuntos de electrodos han sido descritos con respecto a realizaciones preferidas, será fácilmente claro para los que tengan una preparación ordinaria en la técnica a la que pertenecen que se pueden hacer cambios y modificaciones a esas sin apartarse del espíritu o alcance de los dispositivos objeto. Por ejemplo, aunque la especificación y los dibujos describen esas superficies eléctricamente conductivas, se puede emplear para cerrar tejido antes de cortar eléctricamente tejido de una de las muchas formas descritas en esta memoria, las superficies eléctricamente conductivas pueden ser configuradas y diseñadas eléctricamente para realizar cualquier función monopolar o bipolar conocida tal como electro-cauterización, hemostasis y/o desecación utilizando uno o ambos miembros de mandíbula para tratar el tejido. Además, los miembros de mandíbula en su formación ilustrada y descrita actualmente pueden ser excitados para cortar simplemente el tejido sin cerrar inicialmente el tejido lo que puede probarse como beneficioso durante procedimientos quirúrgicos particulares. Además de esto, las varias geometrías de los miembros de mandíbula, elementos de corte, aislantes y materiales semiconductores y las varias configuraciones eléctricas asociadas con ellos pueden ser utilizadas para otros instrumentos quirúrgicos dependiendo de una finalidad particular, por ejemplo, instrumentos de corte, instrumentos de coagulación, tijeras electro-quirúrgicas, etcétera.
Se pueden utilizar varias disposiciones para ayudar al corte del tejido. Una de dichas disposiciones conlleva la colocación del tejido bajo una fuerza de tensión, lo que por tanto facilita la separación del tejido. La tensión, como se define en esta memoria, incluye aunque no está limitada al movimiento, fuerza, presión, fatiga y/o deformación que es iniciada por energía aplicada externamente y/o energía generada internamente. Esta división del tejido ayudada por tensión puede ser conseguida de varias formas incluyendo pero no estando limitada a rasgos de agarre, rasgos de expansión de mandíbula, rasgos de desgarre, rasgos de compresión, electrodos de expansión, efectos de pellizco, miembros movibles, instrumentos movibles, tensión o deformación externa o interna. Alguno de los tipos posibles de energía incluyen, pero no están limitados a mecánica, ultrasónica, armónica, termal, láser o microondas. Algunas realizaciones contempladas se describen más adelante en esta memoria con referencia a las figuras 8A-8F.
La figura 8A muestra incluso otra realización de miembros 2910 y 2920 de mandíbula que tienen un conjunto alternativo 2905 de electrodos para cerrar y cortar tejido. Más particularmente, el conjunto 2905 de electrodos es similar a la configuración de electrodos de la realización descrita con respecto a la figura 6D con la excepción de que los agarradores 2981 están dispuestos para ayudar a cortar el tejido al crear tensión en el tejido. Los agarradores 2981 sostienen el tejido y proporcionan tensión añadida en la zona de corte para ayudar a la división del tejido. Los agarradores 2981 pueden estar construidos de cualquier número de materiales incluyendo cerámico, poliméricos, etcétera. Cuando el tejido es calentado se contrae o encoge creando tensión entre los agarradores de 2981, lo que, a su vez, estira el tejido y permite una separación más limpia del tejido. Se contempla que los agarradores 2981 puedan ser usados junto con cualquier otra de las realizaciones descritas en esta memoria.
La figura 8B muestra otra realización de los miembros 3010 y 3020 de mandíbula que tienen un conjunto alternativo 3005 de electrodos para cerrar y cortar tejido. Más particularmente, el conjunto 3005 de electrodos es similar al que se muestra en la figura 8A, sin embargo, se incluye un electrodo expansible 3083 de corte o rasgo de mandíbula para proporcionar tensión adicional al tejido. Se contempla que el electrodo expansible 3083 de corte sea construido de una aleación con memoria de forma (SMA) tal como un Nitinol. Una aleación con forma de memoria es un metal que, después de ser estirado, a cierta temperatura vuelve a su forma original. Tipos diferentes de materiales comprensibles expansible pueden ser utilizados para producir tensión en el tejido (por ejemplo silicio con un durómetro shore A).
La figura 8C muestra una realización de la presente invención en la que los miembros 3110 y 3120 de mandíbula tienen un conjunto alternativo 3105 de electrodos para cerrar y cortar tejido. Más particularmente, el conjunto 3105 de electrodos es similar al que se muestra en la figura 8A, sin embargo, una ranura 3185 definida en el miembro 3120 de mandíbula está incluida adicionalmente, lo que puede trabajar con los agarradores (no mostrados) o, de acuerdo con la presente invención, el material expansible 3083 mencionado antes para crear una fuerza de tensión en el tejido durante el agarre. Este diseño utiliza un efecto de cizalla mecánico para crear tensión sobre el tejido.
La figura 8D muestra incluso otra realización de los miembros 3210 y 3220 de mandíbula que tienen un conjunto alternativo 3205 de electrodos para cerrar y cortar tejido. Más particularmente, el conjunto 3205 de electrodos es similar al que se muestra en la figura 8A, sin embargo un resorte o dispositivo similar al resorte 3287 está conectado al electrodo 3227 de corte y una ranura 3285 está incluido para crear tensión de tejido cuando está agarrado. Aunque la ranura 3285 se muestra sin un aislante, se puede incluir un aislante junto a la ranura 3285. El resorte 3287 puede ser construido de un material expansible tal como Nitinol u otras conocidas aleaciones con memoria de forma. El uso de agarradores 2981, materiales expansibles 3083 y otros métodos para mover los electrodos 3227 de corte en la zona de corte también se contempla. Como se ha mencionado antes en esta memoria, el electrodo 3227 de corte puede tomar una variedad de configuraciones geométricas adecuadas incluyendo, pero no estando limitado, cuadrado, triangular, redondeado, espiral, etc.
Las figuras 8E y 8F muestran realizaciones alternativas de miembros 3310 y 3320 de mandíbula que tienen un conjunto alternativo 3305 de electrodos para cerrar y cortar tejido. En la figura 8E el tejido está sometido a tensión tras el cierre de las mandíbulas. Más específicamente, los miembros 3310, 3320 de mandíbula y los electrodos 3327 están situados con una relación angular entre sí para proporcionar un efecto de tensión cuando los miembros 3310, 3320 de mandíbula están cerrados. Se contemplan diferentes tamaños y formas para los electrodos 3327. Las numerosas geometrías y configuraciones de los electrodos 3327 y los miembros 3310, 3320 de mandíbula descritas en esta memoria pueden ser utilizados de acuerdo con esta realización.
La figura 8F muestra el miembro 3420 de mandíbula que tiene un mecanismo 3489 de tensión de tejido dispuesto entre los electrodos 3427. Cuando aparece un encogimiento de tejido, el tejido entra en contacto con el mecanismo 3489 de tensión, estirando adicionalmente el tejido y proporcionando tensión adicional. Como se muestra en la figura 8F, el mecanismo 3489 de tensión puede tener una junta afilada o triangular que ayuda a la división del tejido. Sin embargo, son posibles múltiples configuraciones geométricas. El mecanismo 3489 de tensión puede ser redondeado, rectangular, cuadrado, espiral, frustocónico, etc. En la figura 8F el mecanismo 3489 de tensión es mostrado en la mandíbula inferior 3420, sin embargo, el mecanismo también puede estar en la mandíbula superior 3410, la mandíbula inferior 3420, o ambas. Además de esto, los mecanismos 3489 tensión pueden ser situados en ubicaciones diferentes y variadas en las mandíbulas 3410, 3420.
El conjunto 3505 de electrodos, como se muestra la figura 9A, puede estar formado con una variedad de formas adecuadas. Las figuras 9A y 9B muestran electrodos formados usando procesos de estampación o ataque fotoquímico o deposición de metal. En cambio, sólo se muestra un miembro 3510 de mandíbula en las figuras, se contempla que el miembro opuesto 3520 de mandíbula tenga una configuración similar o complementaria. La figura 9A muestra una placa 3591 de cierre que tiene una superficie eléctricamente conductiva 3593 de cierre de tejido y un electrodo de corte o un elemento eléctricamente conductivo 3527 de corte. La placa 3591 de cierre puede ser atacada fotoquímicamente o estampada y después conformada en su forma final en etapas en una matriz de estampación progresiva. La matriz de estampación subirá el electrodo 3527 de corte por encima de las superficies 3593 de cierre. Soportes múltiples delgados 3595 pueden ser utilizados para mantener el electrodo 3527 de corte en su sitio, solo para ser abierto con lanza después de la etapa de moldeo para asegurar el aislamiento eléctrico. La placa 3591 de cierre puede ser respaldada por la estructura un soporte estructural rígido 3599 que puede ser perforado para que el material moldeado encima fluya a través. La placa 3591 de cierre puede ser moldeada encima después o unida hasta la forma final de mandíbula. Los terminales 3590 de arruga pueden ser incluidos para sostener los cables o conexiones eléctricas en comunicación eléctrica con las placas 3591 de cierre. Las conexiones eléctricas también pueden ser soldadas o fundidas.
La figura 9B muestra una vista en sección transversal de la placa 3591 de cierre de la figura 9A. El electrodo 3527 de corte elevado es mostrado que tiene un surco 3593 de abrasión química u otros métodos. Este surco 3593 está situado en el lado de electrodo 3527 de corte y sirve para sostener el electrodo 3527 en su sitio una vez embebido un plástico u otro material aislante. El respaldo estructural 3599 (que puede ser perforador para permitir que el material de moldeo encima fluya a través) es mostrado por debajo de la placa 3591 de cierre. La placa 3591 de cierre es mostrada rodeada por una estructura aislante 397 moldeada encima.
La figura 10A muestra una realización alternativa de la placa 3791 de cierre de la presente descripción. En esta realización se muestra una forma de mandíbula curvada que tiene un recorrido 3799 de corriente o puente situado en el extremo distal de la placa 3791 de cierre. Como se muestra antes la placa 3791 de cierre puede extenderse más allá del miembro 3710 de soporte de mandíbula y el electrodo 3727 de corte puede extenderse a través del centro del miembro 3710 de mandíbula. Los bordes externos de la mandíbula 3710 pueden ser usados para manipular y cerrar tejido.
La figura 10B es similar a la mostrada en la figura 9B que muestra una vista en sección transversal de la placa 3791 de cierre de la figura 10A. La figura 10B muestra un canal 3780 de flujo con perforaciones situadas por debajo del electrodo 3727 de corte. Una capa aislante opcional 3782 puede ser dispuesta entre la placa 3791 de cierre y el soporte estructural rígido o respaldo 3795. El soporte estructural rígido 3795 puede contener perforaciones que permitan que la estructura aislante moldeada encima 3797 fluya a través durante el proceso de fabricación. Esto proporciona apoyo adicional para la placa 3791 de cierre. Como se ha mencionado antes en esta memoria, las superficies eléctricamente conductivas de cierre de tejido pueden ser formadas usando una variedad de técnicas adecuadas que incluyen, pero no estando limitadas, procesos de estampación y ataque fotoquímico.
La figura 10C muestra el miembro 3710 de mandíbula de acuerdo con otra realización de la presente descripción que tiene un puente 3799. El puente 3799 puede sobresalir hacia fuera desde la mandíbula 3710 para proporcionar funciones adicionales tales como disección mecánica. Alternativamente, el puente 3799 puede ser doblado abajo y cubierto por una estructura moldeada encima 3797. La figura 10D muestra el miembro 3710 de mandíbula en su forma doblada final.
La figura 11A muestra el miembro 3910 de mandíbula acorde con incluso otra realización de la presente descripción. El miembro 3910 de mandíbula incluye el punto de giro 3984 situado en el extremo proximal del miembro 3910 de mandíbula. El miembro 3910 de mandíbula está configurado para girar alrededor del punto de giro 3984 y puede estar fijado con un pasador, perno, tornillo o mecanismo alternativo. El agujero 3997 puede ser usado para abrir/cerrar o mover de otra manera el miembro de mandíbula. El miembro 3910 de mandíbula puede incluir además agujeros 3986 de flujo y una placa 3991 de cierre o un soporte 3795 de placa de cierre. Un aislante similar al 3782 puede ser usado y estar construido de varios materiales diferentes incluyen, pero esta limitado, poliméricos, cerámicos u otros materiales.
La figura 11B muestra un ejemplo de respaldo estructural 4095 que puede ser usado para soportar los miembros de mandíbula. El respaldo estructural 4095 puede ser perforado para permitir que el material moldeado encima fluya a través durante la fabricación con fines de seguridad. El respaldo 4095 puede ser recto o curvado, dependiendo de la forma del miembro de mandíbula. El respaldo 4095 puede ser formado también por estampación, ataque fotoquímico, mecanizado, etc.
La figura 11C muestra incluso otra realización del miembro 4110 de mandíbula acorde con la presente descripción sin los agujeros 3986 de flujo mostrados en la figura 11A. Sin embargo, en esta realización el miembro 4110 de mandíbula incluye además una ranura 4188 de leva definida en él además del agujero 4184 de giro 4184 de la figura 11A. La ranura 4188 está configurada y dimensionada para regular el movimiento del miembro 4110 de mandíbula desde la posición abierta a posiciones cerradas.
Aunque varias realizaciones de la descripción han sido mostradas en los dibujos, no se pretende que la descripción esté limitada a ellas, ya que se pretende que la descripción sea de alcance tan amplio como permita la técnica y que la especificación se lea igualmente. Por lo tanto, la descripción anterior no debe ser construida como limitativa, sino meramente como ejemplificaciones de realizaciones preferidas.

Claims (4)

1. Un conjunto ejecutador (3005) de extremo para usar con un instrumento para cerrar y/o cortar tejido, el conjunto ejecutador final comprende:
un par de miembros opuestos primero y segundo (3110, 3120) de mandíbula al menos uno de los cuales es movible con relación al otro desde una primera posición en la que los miembros de mandíbula están dispuestos con una relación relativa separada entre sí hasta una segunda posición en la que los miembros de mandíbula cooperan para agarrar tejido entre ellos;
cada miembro de mandíbula incluye un par de superficies eléctricamente conductivas separadas de cierre de tejido que se extienden a lo largo de su longitud, cada superficie de cierre de tejido está adaptada para conectarse a una fuente de energía electro-quirúrgica de forma que las superficie de cierre de tejido son capaces de conducir energía electro-quirúrgica a través del tejido sostenido entre ellas para efectuar un cierre;
un aislante (3113) dispuesto entre cada par de superficies eléctricamente conductivas de cierre;
al menos el primer miembro de mandíbula incluye un elemento eléctricamente conductivo (3127) de corte en el aislante del primer miembro de mandíbula, el elemento eléctricamente conductivo de corte dispuesto en coincidencia general vertical con relación al aislante en el segundo miembro de mandíbula; y caracterizado porque
el elemento eléctricamente conductivo de corte está construido de un material expansible para proporcionar al menos un mecanismo de tensión de tejido configurado para proporcionar tensión al tejido sostenido entre los miembros de mandíbula, en el que el material expansible es una aleación con memoria de forma (SMA).
2. Un conjunto ejecutor de extremo acorde con la reivindicación 1, que incluye además una ranura (3185) definida dentro del segundo miembro de mandíbula, la ranura está configurada para recibir un elemento eléctricamente conductivo de corte y crear tensión en el tejido.
3. Un conjunto ejecutor de extremo acorde con cualquiera de las reivindicaciones anteriores, en el que las superficies eléctricamente conductivas de cierre de tejido están dispuestas con una relación angular relativa entre sí.
4. Un conjunto ejecutador de extremo acorde con cualquiera de las reivindicaciones anteriores, en el que el elemento eléctricamente conductivo de corte incluye un dispositivo (3287) similar a un resorte.
ES07009029T 2006-05-05 2007-05-04 Instrumento de cierre de vasos con un mecanismo de corte electrico. Active ES2330153T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US418876 2006-05-05
US11/418,876 US7270664B2 (en) 2002-10-04 2006-05-05 Vessel sealing instrument with electrical cutting mechanism

Publications (1)

Publication Number Publication Date
ES2330153T3 true ES2330153T3 (es) 2009-12-04

Family

ID=38226344

Family Applications (1)

Application Number Title Priority Date Filing Date
ES07009029T Active ES2330153T3 (es) 2006-05-05 2007-05-04 Instrumento de cierre de vasos con un mecanismo de corte electrico.

Country Status (6)

Country Link
US (3) US7270664B2 (es)
EP (4) EP2409653B1 (es)
AU (1) AU2007202005B2 (es)
CA (1) CA2587573C (es)
DE (1) DE602007002102D1 (es)
ES (1) ES2330153T3 (es)

Families Citing this family (288)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267761B1 (en) * 1997-09-09 2001-07-31 Sherwood Services Ag Apparatus and method for sealing and cutting tissue
US6726686B2 (en) 1997-11-12 2004-04-27 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US7435249B2 (en) * 1997-11-12 2008-10-14 Covidien Ag Electrosurgical instruments which reduces collateral damage to adjacent tissue
US6228083B1 (en) 1997-11-14 2001-05-08 Sherwood Services Ag Laparoscopic bipolar electrosurgical instrument
US7582087B2 (en) 1998-10-23 2009-09-01 Covidien Ag Vessel sealing instrument
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7267677B2 (en) 1998-10-23 2007-09-11 Sherwood Services Ag Vessel sealing instrument
US7118570B2 (en) 2001-04-06 2006-10-10 Sherwood Services Ag Vessel sealing forceps with disposable electrodes
US7887535B2 (en) 1999-10-18 2011-02-15 Covidien Ag Vessel sealing wave jaw
US20030109875A1 (en) 1999-10-22 2003-06-12 Tetzlaff Philip M. Open vessel sealing forceps with disposable electrodes
US20030229344A1 (en) * 2002-01-22 2003-12-11 Dycus Sean T. Vessel sealer and divider and method of manufacturing same
ES2240723T3 (es) * 2001-04-06 2005-10-16 Sherwood Services Ag Bisagra aislante moldeada para instrumentos bipolares.
EP1372506B1 (en) 2001-04-06 2006-06-28 Sherwood Services AG Electrosurgical instrument which reduces collateral damage to adjacent tissue
US7473253B2 (en) 2001-04-06 2009-01-06 Covidien Ag Vessel sealer and divider with non-conductive stop members
US10849681B2 (en) 2001-04-06 2020-12-01 Covidien Ag Vessel sealer and divider
AU2001249937B2 (en) * 2001-04-06 2006-02-09 Covidien Ag Vessel sealing instrument
US20090292282A9 (en) * 2001-04-06 2009-11-26 Dycus Sean T Movable handle for vessel sealer
US7101371B2 (en) 2001-04-06 2006-09-05 Dycus Sean T Vessel sealer and divider
US20040115296A1 (en) * 2002-04-05 2004-06-17 Duffin Terry M. Retractable overmolded insert retention apparatus
DE60325283D1 (de) * 2002-06-06 2009-01-22 Covidien Ag Bipolares Elektrochirurgisches Laparoskopieinstrument
US7931649B2 (en) * 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US7270664B2 (en) 2002-10-04 2007-09-18 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7276068B2 (en) 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7033354B2 (en) * 2002-12-10 2006-04-25 Sherwood Services Ag Electrosurgical electrode having a non-conductive porous ceramic coating
US20060052779A1 (en) * 2003-03-13 2006-03-09 Hammill Curt D Electrode assembly for tissue fusion
US7776036B2 (en) 2003-03-13 2010-08-17 Covidien Ag Bipolar concentric electrode assembly for soft tissue fusion
AU2004237772B2 (en) 2003-05-01 2009-12-10 Covidien Ag Electrosurgical instrument which reduces thermal damage to adjacent tissue
US8128624B2 (en) 2003-05-01 2012-03-06 Covidien Ag Electrosurgical instrument that directs energy delivery and protects adjacent tissue
US7160299B2 (en) 2003-05-01 2007-01-09 Sherwood Services Ag Method of fusing biomaterials with radiofrequency energy
ES2368488T3 (es) 2003-05-15 2011-11-17 Covidien Ag Sellador de tejidos con miembros de tope variables de forma selectiva y no conductores.
US7857812B2 (en) 2003-06-13 2010-12-28 Covidien Ag Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US7150749B2 (en) 2003-06-13 2006-12-19 Sherwood Services Ag Vessel sealer and divider having elongated knife stroke and safety cutting mechanism
US7597693B2 (en) * 2003-06-13 2009-10-06 Covidien Ag Vessel sealer and divider for use with small trocars and cannulas
US7156846B2 (en) 2003-06-13 2007-01-02 Sherwood Services Ag Vessel sealer and divider for use with small trocars and cannulas
USD956973S1 (en) 2003-06-13 2022-07-05 Covidien Ag Movable handle for endoscopic vessel sealer and divider
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7232440B2 (en) * 2003-11-17 2007-06-19 Sherwood Services Ag Bipolar forceps having monopolar extension
US7367976B2 (en) 2003-11-17 2008-05-06 Sherwood Services Ag Bipolar forceps having monopolar extension
US7500975B2 (en) * 2003-11-19 2009-03-10 Covidien Ag Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US7811283B2 (en) 2003-11-19 2010-10-12 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US7131970B2 (en) 2003-11-19 2006-11-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism
US7442193B2 (en) 2003-11-20 2008-10-28 Covidien Ag Electrically conductive/insulative over-shoe for tissue fusion
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
WO2005090478A2 (de) * 2004-03-15 2005-09-29 Siemens Aktiengesellschaft Wärmeleitfähiges material für elektronische und/oder elektronische bauteile sowie verwendung dazu
US7195631B2 (en) 2004-09-09 2007-03-27 Sherwood Services Ag Forceps with spring loaded end effector assembly
US7540872B2 (en) 2004-09-21 2009-06-02 Covidien Ag Articulating bipolar electrosurgical instrument
US7955332B2 (en) 2004-10-08 2011-06-07 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
US20060190035A1 (en) * 2004-10-08 2006-08-24 Sherwood Services Ag Latching mechanism for forceps
US20060079933A1 (en) * 2004-10-08 2006-04-13 Dylan Hushka Latching mechanism for forceps
US7686827B2 (en) 2004-10-21 2010-03-30 Covidien Ag Magnetic closure mechanism for hemostat
US7909823B2 (en) 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US7491202B2 (en) 2005-03-31 2009-02-17 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US7942874B2 (en) * 2005-05-12 2011-05-17 Aragon Surgical, Inc. Apparatus for tissue cauterization
US7803156B2 (en) 2006-03-08 2010-09-28 Aragon Surgical, Inc. Method and apparatus for surgical electrocautery
US9339323B2 (en) 2005-05-12 2016-05-17 Aesculap Ag Electrocautery method and apparatus
US8696662B2 (en) * 2005-05-12 2014-04-15 Aesculap Ag Electrocautery method and apparatus
US8728072B2 (en) * 2005-05-12 2014-05-20 Aesculap Ag Electrocautery method and apparatus
US7837685B2 (en) 2005-07-13 2010-11-23 Covidien Ag Switch mechanisms for safe activation of energy on an electrosurgical instrument
US7628791B2 (en) * 2005-08-19 2009-12-08 Covidien Ag Single action tissue sealer
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
US7789878B2 (en) 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
AU2006225175B2 (en) 2005-09-30 2012-08-30 Covidien Ag Insulating boot for electrosurgical forceps
CA2561034C (en) 2005-09-30 2014-12-09 Sherwood Services Ag Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue
US7594916B2 (en) * 2005-11-22 2009-09-29 Covidien Ag Electrosurgical forceps with energy based tissue division
US20070118115A1 (en) * 2005-11-22 2007-05-24 Sherwood Services Ag Bipolar electrosurgical sealing instrument having an improved tissue gripping device
US8241282B2 (en) 2006-01-24 2012-08-14 Tyco Healthcare Group Lp Vessel sealing cutting assemblies
US7766910B2 (en) 2006-01-24 2010-08-03 Tyco Healthcare Group Lp Vessel sealer and divider for large tissue structures
US8882766B2 (en) 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US8734443B2 (en) 2006-01-24 2014-05-27 Covidien Lp Vessel sealer and divider for large tissue structures
US8574229B2 (en) 2006-05-02 2013-11-05 Aesculap Ag Surgical tool
US7641653B2 (en) * 2006-05-04 2010-01-05 Covidien Ag Open vessel sealing forceps disposable handswitch
US7846158B2 (en) 2006-05-05 2010-12-07 Covidien Ag Apparatus and method for electrode thermosurgery
US20070260238A1 (en) * 2006-05-05 2007-11-08 Sherwood Services Ag Combined energy level button
US20070265616A1 (en) * 2006-05-10 2007-11-15 Sherwood Services Ag Vessel sealing instrument with optimized power density
JP4157574B2 (ja) * 2006-07-04 2008-10-01 オリンパスメディカルシステムズ株式会社 外科用処置具
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US20080015575A1 (en) * 2006-07-14 2008-01-17 Sherwood Services Ag Vessel sealing instrument with pre-heated electrodes
US7744615B2 (en) 2006-07-18 2010-06-29 Covidien Ag Apparatus and method for transecting tissue on a bipolar vessel sealing instrument
US7731717B2 (en) * 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US8597297B2 (en) 2006-08-29 2013-12-03 Covidien Ag Vessel sealing instrument with multiple electrode configurations
US20080058851A1 (en) * 2006-09-01 2008-03-06 Edelstein Peter Seth Method and apparatus for assisting in the introduction of surgical implements into a body
US8070746B2 (en) 2006-10-03 2011-12-06 Tyco Healthcare Group Lp Radiofrequency fusion of cardiac tissue
US7951149B2 (en) 2006-10-17 2011-05-31 Tyco Healthcare Group Lp Ablative material for use with tissue treatment device
US7785060B2 (en) * 2006-10-27 2010-08-31 Applied Materials, Inc. Multi-directional mechanical scanning in an ion implanter
USD649249S1 (en) 2007-02-15 2011-11-22 Tyco Healthcare Group Lp End effectors of an elongated dissecting and dividing instrument
US8267935B2 (en) 2007-04-04 2012-09-18 Tyco Healthcare Group Lp Electrosurgical instrument reducing current densities at an insulator conductor junction
US20110046659A1 (en) * 2007-07-09 2011-02-24 Immersion Corporation Minimally Invasive Surgical Tools With Haptic Feedback
US7877853B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing end effector assembly for sealing tissue
US7877852B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing an end effector assembly for sealing tissue
US8235993B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with exohinged structure
US8241283B2 (en) 2007-09-28 2012-08-14 Tyco Healthcare Group Lp Dual durometer insulating boot for electrosurgical forceps
US8235992B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot with mechanical reinforcement for electrosurgical forceps
US8236025B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Silicone insulated electrosurgical forceps
US9023043B2 (en) 2007-09-28 2015-05-05 Covidien Lp Insulating mechanically-interfaced boot and jaws for electrosurgical forceps
US8267936B2 (en) 2007-09-28 2012-09-18 Tyco Healthcare Group Lp Insulating mechanically-interfaced adhesive for electrosurgical forceps
US8251996B2 (en) 2007-09-28 2012-08-28 Tyco Healthcare Group Lp Insulating sheath for electrosurgical forceps
US8221416B2 (en) 2007-09-28 2012-07-17 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with thermoplastic clevis
WO2009064808A1 (en) * 2007-11-13 2009-05-22 Boston Scientific Scimed, Inc. Apparatus system and method for coagulating and cutting tissue
US8221417B2 (en) * 2007-11-13 2012-07-17 Boston Scientific Scimed, Inc. Disposable electro-surgical cover elements and electro-surgical instrument
US10660690B2 (en) * 2007-12-28 2020-05-26 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for measurement of an impedance using a catheter such as an ablation catheter
US8870867B2 (en) 2008-02-06 2014-10-28 Aesculap Ag Articulable electrosurgical instrument with a stabilizable articulation actuator
US8764748B2 (en) 2008-02-06 2014-07-01 Covidien Lp End effector assembly for electrosurgical device and method for making the same
US8623276B2 (en) 2008-02-15 2014-01-07 Covidien Lp Method and system for sterilizing an electrosurgical instrument
US9192427B2 (en) * 2008-03-11 2015-11-24 Covidien Lp Bipolar cutting end effector
CN102065781B (zh) 2008-03-27 2014-05-07 梅奥医学教育和研究基金会 导航和组织俘获系统
WO2009124097A1 (en) 2008-03-31 2009-10-08 Applied Medical Resources Corporation Electrosurgical system
JP5079085B2 (ja) * 2008-04-21 2012-11-21 オリンパスメディカルシステムズ株式会社 治療用処置システム、および、治療用処置具
US9265567B2 (en) * 2008-06-30 2016-02-23 Intuitive Surgical Operations, Inc. Vessel sealing instrument with stepped jaw
US8469956B2 (en) 2008-07-21 2013-06-25 Covidien Lp Variable resistor jaw
GB2462453B (en) * 2008-08-06 2012-05-09 Gyrus Medical Ltd Electrosurgical instrument and system
US8162973B2 (en) * 2008-08-15 2012-04-24 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US8257387B2 (en) 2008-08-15 2012-09-04 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US9603652B2 (en) 2008-08-21 2017-03-28 Covidien Lp Electrosurgical instrument including a sensor
GB0815515D0 (en) * 2008-08-26 2008-10-01 Gyrus Medical Ltd Electrosurgical instrument and system
US8784417B2 (en) 2008-08-28 2014-07-22 Covidien Lp Tissue fusion jaw angle improvement
US8795274B2 (en) 2008-08-28 2014-08-05 Covidien Lp Tissue fusion jaw angle improvement
US8317787B2 (en) 2008-08-28 2012-11-27 Covidien Lp Tissue fusion jaw angle improvement
US20100063500A1 (en) * 2008-09-05 2010-03-11 Tyco Healthcare Group Lp Apparatus, System and Method for Performing an Electrosurgical Procedure
US8303582B2 (en) 2008-09-15 2012-11-06 Tyco Healthcare Group Lp Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US7896214B2 (en) * 2008-09-23 2011-03-01 Tyco Healthcare Group Lp Tissue stop for surgical instrument
US8360298B2 (en) 2008-09-23 2013-01-29 Covidien Lp Surgical instrument and loading unit for use therewith
US8215532B2 (en) 2008-09-23 2012-07-10 Tyco Healthcare Group Lp Tissue stop for surgical instrument
US8535312B2 (en) 2008-09-25 2013-09-17 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US9375254B2 (en) 2008-09-25 2016-06-28 Covidien Lp Seal and separate algorithm
US8968314B2 (en) 2008-09-25 2015-03-03 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8469957B2 (en) 2008-10-07 2013-06-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8636761B2 (en) 2008-10-09 2014-01-28 Covidien Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US8016827B2 (en) 2008-10-09 2011-09-13 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8486107B2 (en) 2008-10-20 2013-07-16 Covidien Lp Method of sealing tissue using radiofrequency energy
US8197479B2 (en) 2008-12-10 2012-06-12 Tyco Healthcare Group Lp Vessel sealer and divider
US8114122B2 (en) 2009-01-13 2012-02-14 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8632564B2 (en) 2009-01-14 2014-01-21 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8858547B2 (en) * 2009-03-05 2014-10-14 Intuitive Surgical Operations, Inc. Cut and seal instrument
US20100249769A1 (en) * 2009-03-24 2010-09-30 Tyco Healthcare Group Lp Apparatus for Tissue Sealing
EP2412328A4 (en) * 2009-03-27 2016-12-28 Micron Shiga Inc MEDICAL TREATMENT DEVICE
US8444642B2 (en) * 2009-04-03 2013-05-21 Device Evolutions, Llc Laparoscopic nephrectomy device
US8277446B2 (en) * 2009-04-24 2012-10-02 Tyco Healthcare Group Lp Electrosurgical tissue sealer and cutter
DE102009002768A1 (de) * 2009-04-30 2010-11-04 Celon Ag Medical Instruments Materialschicht und Elektrochirurgiesystem für die elektrochirurgische Gewebefusion
US20100280508A1 (en) * 2009-05-01 2010-11-04 Joseph Charles Eder Method and Apparatus for RF Anastomosis
US8187273B2 (en) 2009-05-07 2012-05-29 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
US9955858B2 (en) 2009-08-21 2018-05-01 Maquet Cardiovascular Llc Surgical instrument and method for use
US20110054471A1 (en) * 2009-08-27 2011-03-03 Tyco Healthcare Group Lp Apparatus for Performing an Electrosurgical Procedure
US8430876B2 (en) 2009-08-27 2013-04-30 Tyco Healthcare Group Lp Vessel sealer and divider with knife lockout
US8133254B2 (en) * 2009-09-18 2012-03-13 Tyco Healthcare Group Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8266783B2 (en) * 2009-09-28 2012-09-18 Tyco Healthcare Group Lp Method and system for manufacturing electrosurgical seal plates
US8112871B2 (en) 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
US9024237B2 (en) * 2009-09-29 2015-05-05 Covidien Lp Material fusing apparatus, system and method of use
EP2482735A4 (en) 2009-09-30 2017-03-29 Mayo Foundation For Medical Education And Research Enhanced signal navigation and capture systems and methods
US9198683B2 (en) * 2009-09-30 2015-12-01 Aegis Medical Innovations, Inc. Tissue capture and occlusion systems and methods
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
EP2520243B1 (en) * 2009-12-28 2015-03-25 National University Corporation Shiga University OF Medical Science Medical treatment device
US8556929B2 (en) * 2010-01-29 2013-10-15 Covidien Lp Surgical forceps capable of adjusting seal plate width based on vessel size
WO2011097469A2 (en) 2010-02-04 2011-08-11 Aragon Surgical, Inc. Laparoscopic radiofrequency surgical device
US20110218604A1 (en) * 2010-03-02 2011-09-08 Sen Ji Cardiac Lead for Epicardial, Endocardial and Trans-Coronary Sinus Placement
US8827992B2 (en) 2010-03-26 2014-09-09 Aesculap Ag Impedance mediated control of power delivery for electrosurgery
US8419727B2 (en) 2010-03-26 2013-04-16 Aesculap Ag Impedance mediated power delivery for electrosurgery
US8439913B2 (en) 2010-04-29 2013-05-14 Covidien Lp Pressure sensing sealing plate
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8647343B2 (en) 2010-06-23 2014-02-11 Covidien Lp Surgical forceps for sealing and dividing tissue
US8617154B2 (en) 2010-06-25 2013-12-31 Covidien Lp Current-fed push-pull converter with passive voltage clamp
US8641712B2 (en) 2010-07-28 2014-02-04 Covidien Lp Local optimization of electrode current densities
US8888775B2 (en) * 2010-08-10 2014-11-18 Covidien Lp Surgical forceps including shape memory cutter
EP2417925B1 (en) 2010-08-12 2016-12-07 Immersion Corporation Electrosurgical tool having tactile feedback
US8663222B2 (en) 2010-09-07 2014-03-04 Covidien Lp Dynamic and static bipolar electrical sealing and cutting device
US8734445B2 (en) 2010-09-07 2014-05-27 Covidien Lp Electrosurgical instrument with sealing and dissection modes and related methods of use
US9498278B2 (en) 2010-09-08 2016-11-22 Covidien Lp Asymmetrical electrodes for bipolar vessel sealing
US9173698B2 (en) 2010-09-17 2015-11-03 Aesculap Ag Electrosurgical tissue sealing augmented with a seal-enhancing composition
US8899461B2 (en) * 2010-10-01 2014-12-02 Covidien Lp Tissue stop for surgical instrument
ES2912092T3 (es) 2010-10-01 2022-05-24 Applied Med Resources Instrumentos electroquirúrgicos y conexiones a los mismos
US8906018B2 (en) 2010-10-18 2014-12-09 Covidien Lp Surgical forceps
US8801710B2 (en) * 2010-12-07 2014-08-12 Immersion Corporation Electrosurgical sealing tool having haptic feedback
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US9326787B2 (en) * 2011-02-07 2016-05-03 Olympus Corporation Energy treatment instrument
DE102011076071A1 (de) * 2011-05-18 2012-11-22 Olympus Winter & Ibe Gmbh Elektrochirurgisches Greifelement
US9339327B2 (en) 2011-06-28 2016-05-17 Aesculap Ag Electrosurgical tissue dissecting device
US8845667B2 (en) 2011-07-18 2014-09-30 Immersion Corporation Surgical tool having a programmable rotary module for providing haptic feedback
PL2554133T3 (pl) * 2011-08-02 2014-05-30 Erbe Elektromedizin Instrument do łączenia i rozdzielania naczyń
JP6270030B2 (ja) * 2011-08-10 2018-01-31 国立大学法人滋賀医科大学 マイクロ波手術器具
DE102011053682A1 (de) * 2011-09-16 2013-03-21 Aesculap Ag Elektrochirurgisches Instrument
US9283027B2 (en) 2011-10-24 2016-03-15 Ethicon Endo-Surgery, Llc Battery drain kill feature in a battery powered device
US8968309B2 (en) 2011-11-10 2015-03-03 Covidien Lp Surgical forceps
DE102012100040A1 (de) 2012-01-04 2013-07-04 Aesculap Ag Elektrochirurgisches Instrument und Maulteil hierfür
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US9113897B2 (en) 2012-01-23 2015-08-25 Covidien Lp Partitioned surgical instrument
DE102012101257A1 (de) 2012-02-16 2013-08-22 Aesculap Ag Elektrochirurgisches Instrument
US8747434B2 (en) 2012-02-20 2014-06-10 Covidien Lp Knife deployment mechanisms for surgical forceps
US8887373B2 (en) 2012-02-24 2014-11-18 Covidien Lp Vessel sealing instrument with reduced thermal spread and method of manufacture therefor
US9011435B2 (en) 2012-02-24 2015-04-21 Covidien Lp Method for manufacturing vessel sealing instrument with reduced thermal spread
US20130231661A1 (en) * 2012-03-01 2013-09-05 Hasan M. Sh. Sh. Alshemari Electrosurgical midline clamping scissors
US9820765B2 (en) 2012-05-01 2017-11-21 Covidien Lp Surgical instrument with stamped double-flange jaws
US8968311B2 (en) 2012-05-01 2015-03-03 Covidien Lp Surgical instrument with stamped double-flag jaws and actuation mechanism
US9668807B2 (en) 2012-05-01 2017-06-06 Covidien Lp Simplified spring load mechanism for delivering shaft force of a surgical instrument
US9375258B2 (en) 2012-05-08 2016-06-28 Covidien Lp Surgical forceps
US9039731B2 (en) 2012-05-08 2015-05-26 Covidien Lp Surgical forceps including blade safety mechanism
US9113901B2 (en) 2012-05-14 2015-08-25 Covidien Lp Modular surgical instrument with contained electrical or mechanical systems
US9084606B2 (en) 2012-06-01 2015-07-21 Megadyne Medical Products, Inc. Electrosurgical scissors
ES2660397T3 (es) 2012-09-26 2018-03-22 Aesculap Ag Aparato para corte y sellado de tejido
US9526564B2 (en) * 2012-10-08 2016-12-27 Covidien Lp Electric stapler device
US9265566B2 (en) 2012-10-16 2016-02-23 Covidien Lp Surgical instrument
US9044242B2 (en) 2013-01-15 2015-06-02 Kogent Surgical, LLC Bipolar forceps
US10265119B2 (en) 2013-02-15 2019-04-23 Covidien Lp Electrosurgical forceps
WO2014158613A1 (en) * 2013-03-14 2014-10-02 Saphena Medical, Inc. Unitary endoscopic vessel harvesting devices
US9649151B2 (en) * 2013-05-31 2017-05-16 Covidien Lp End effector assemblies and methods of manufacturing end effector assemblies for treating and/or cutting tissue
US9554845B2 (en) * 2013-07-18 2017-01-31 Covidien Lp Surgical forceps for treating and cutting tissue
US10966779B2 (en) 2013-08-07 2021-04-06 Covidien Lp Bipolar surgical instrument
CN105451670B (zh) 2013-08-07 2018-09-04 柯惠有限合伙公司 外科手术钳
JP5840326B2 (ja) * 2013-08-16 2016-01-06 オリンパス株式会社 処置具及び処置システム
US9445865B2 (en) 2013-09-16 2016-09-20 Covidien Lp Electrosurgical instrument with end-effector assembly including electrically-conductive, tissue-engaging surfaces and switchable bipolar electrodes
US10610289B2 (en) 2013-09-25 2020-04-07 Covidien Lp Devices, systems, and methods for grasping, treating, and dividing tissue
USD788302S1 (en) 2013-10-01 2017-05-30 Covidien Lp Knife for endoscopic electrosurgical forceps
US10231776B2 (en) 2014-01-29 2019-03-19 Covidien Lp Tissue sealing instrument with tissue-dissecting electrode
USD748787S1 (en) * 2014-02-26 2016-02-02 Gyrus Acmi, Inc. Electrosurgical cutting forceps
US10278768B2 (en) 2014-04-02 2019-05-07 Covidien Lp Electrosurgical devices including transverse electrode configurations
US10342601B2 (en) 2014-04-02 2019-07-09 Covidien Lp Electrosurgical devices including transverse electrode configurations
EP4197469A1 (en) 2014-05-16 2023-06-21 Applied Medical Resources Corporation Electrosurgical system
AU2015266619B2 (en) 2014-05-30 2020-02-06 Applied Medical Resources Corporation Electrosurgical instrument for fusing and cutting tissue and an electrosurgical generator
US11364066B2 (en) 2014-06-25 2022-06-21 Kogent Surgical, LLC Irrigating bipolar forceps
US20160038224A1 (en) 2014-08-11 2016-02-11 Covidien Lp Surgical instruments and methods for performing tonsillectomy and adenoidectomy procedures
US20160038220A1 (en) 2014-08-11 2016-02-11 Covidien Lp Surgical instruments and methods for performing tonsillectomy and adenoidectomy procedures
US10231777B2 (en) 2014-08-26 2019-03-19 Covidien Lp Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument
US9877777B2 (en) 2014-09-17 2018-01-30 Covidien Lp Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly
US10080605B2 (en) 2014-09-17 2018-09-25 Covidien Lp Deployment mechanisms for surgical instruments
US9987076B2 (en) 2014-09-17 2018-06-05 Covidien Lp Multi-function surgical instruments
US9918785B2 (en) 2014-09-17 2018-03-20 Covidien Lp Deployment mechanisms for surgical instruments
US10039592B2 (en) 2014-09-17 2018-08-07 Covidien Lp Deployment mechanisms for surgical instruments
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US10420603B2 (en) 2014-12-23 2019-09-24 Applied Medical Resources Corporation Bipolar electrosurgical sealer and divider
USD748259S1 (en) 2014-12-29 2016-01-26 Applied Medical Resources Corporation Electrosurgical instrument
US10172612B2 (en) 2015-01-21 2019-01-08 Covidien Lp Surgical instruments with force applier and methods of use
US10092290B2 (en) 2015-03-17 2018-10-09 Covidien Lp Surgical instrument, loading unit for use therewith and related methods
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
USD844139S1 (en) 2015-07-17 2019-03-26 Covidien Lp Monopolar assembly of a multi-function surgical instrument
USD844138S1 (en) 2015-07-17 2019-03-26 Covidien Lp Handle assembly of a multi-function surgical instrument
US9987078B2 (en) 2015-07-22 2018-06-05 Covidien Lp Surgical forceps
US10987159B2 (en) 2015-08-26 2021-04-27 Covidien Lp Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
EP3386408A1 (en) 2016-01-11 2018-10-17 Gyrus ACMI, Inc. (D.B.A. Olympus Surgical Technologies America) Advanced energy device with bipolar dissection capability
US10413350B2 (en) * 2016-01-11 2019-09-17 Gyrus Acmi, Inc. Electrosurgical device vessel sealing and cutting
US11523860B2 (en) * 2016-01-11 2022-12-13 Gyrus Acmi, Inc. Electrosurgical device for vessel sealing and cutting
US10098689B2 (en) 2016-02-24 2018-10-16 Covidien Lp Methods of manufacturing jaw members of surgical forceps
US10537381B2 (en) 2016-02-26 2020-01-21 Covidien Lp Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly
JP6691231B2 (ja) * 2016-04-15 2020-04-28 ジャストライト サージカル,リミティド ライアビリティ カンパニー 電気外科手術用シーラー及び分割器
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10772676B2 (en) 2016-05-31 2020-09-15 Kogent Surgical, LLC Microsurgical bipolar forceps
US11464561B2 (en) 2016-06-02 2022-10-11 Gyrus Acmi, Inc. Two-stage electrosurgical device for vessel sealing
US11076908B2 (en) 2016-06-02 2021-08-03 Gyrus Acmi, Inc. Two-stage electrosurgical device for vessel sealing
WO2018009354A1 (en) * 2016-07-07 2018-01-11 Intuitive Surgical Operations, Inc. Electrode configurations for electrical flux delivery instruments, and related systems
US10682154B2 (en) 2016-08-02 2020-06-16 Covidien Lp Cutting mechanisms for surgical end effector assemblies, instruments, and systems
US10856933B2 (en) 2016-08-02 2020-12-08 Covidien Lp Surgical instrument housing incorporating a channel and methods of manufacturing the same
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10918407B2 (en) 2016-11-08 2021-02-16 Covidien Lp Surgical instrument for grasping, treating, and/or dividing tissue
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US11166759B2 (en) 2017-05-16 2021-11-09 Covidien Lp Surgical forceps
JP2020520748A (ja) * 2017-05-25 2020-07-16 コヴィディエン リミテッド パートナーシップ ロボット手術システムのための機能選択制御部のイベント開始による解放
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US11154348B2 (en) 2017-08-29 2021-10-26 Covidien Lp Surgical instruments and methods of assembling surgical instruments
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US11065049B2 (en) 2017-11-10 2021-07-20 Gyrus Acmi, Inc. Electrosurgical device with asymmetric seal compression
US11241275B2 (en) 2018-03-21 2022-02-08 Covidien Lp Energy-based surgical instrument having multiple operational configurations
US11123132B2 (en) 2018-04-09 2021-09-21 Covidien Lp Multi-function surgical instruments and assemblies therefor
US10828756B2 (en) 2018-04-24 2020-11-10 Covidien Lp Disassembly methods facilitating reprocessing of multi-function surgical instruments
US11324544B2 (en) 2018-07-25 2022-05-10 Gyrus Acmi, Inc. Medical instrument
KR20210055073A (ko) 2018-09-05 2021-05-14 어플라이드 메디컬 리소시스 코포레이션 전기수술용 발전기 제어 시스템
USD904611S1 (en) 2018-10-10 2020-12-08 Bolder Surgical, Llc Jaw design for a surgical instrument
EP3880099A1 (en) 2018-11-16 2021-09-22 Applied Medical Resources Corporation Electrosurgical system
DE102019108140A1 (de) * 2019-03-28 2020-10-01 Karl Storz Se & Co. Kg Bipolares elektrochirurgisches Werkzeug
US11529186B2 (en) 2019-07-22 2022-12-20 Covidien Lp Electrosurgical forceps including thermal cutting element
US11534163B2 (en) 2019-11-21 2022-12-27 Covidien Lp Surgical stapling instruments
US20210186587A1 (en) 2019-12-21 2021-06-24 Covidien Lp Thermal cutting elements, electrosurgical instruments including thermal cutting elements, and methods of manufacturing
US11779386B2 (en) 2020-04-16 2023-10-10 Covidien Lp Two-part seal plate for vessel sealer and method of manufacturing same
US11925406B2 (en) 2020-09-14 2024-03-12 Covidien Lp End effector assemblies for surgical instruments
CN117320644A (zh) 2021-05-17 2023-12-29 柯惠有限合伙公司 包括超声和三相电外科功能的外科器械和系统
US11957342B2 (en) 2021-11-01 2024-04-16 Cilag Gmbh International Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation
GB202213942D0 (en) * 2022-09-23 2022-11-09 Creo Medical Ltd Electrosurgical instrument and electrosurgical apparatus

Family Cites Families (786)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US371664A (en) 1887-10-18 stone
US702472A (en) 1898-08-08 1902-06-17 Louis M Pignolet Surgical forceps.
US728883A (en) 1902-07-29 1903-05-26 Andrew J Downes Electrothermic instrument.
US1586645A (en) 1925-07-06 1926-06-01 Bierman William Method of and means for treating animal tissue to coagulate the same
US1813902A (en) 1928-01-18 1931-07-14 Liebel Flarsheim Co Electrosurgical apparatus
US1852542A (en) 1929-12-26 1932-04-05 Sklar Mfg Co Inc J Cutlery
US1822330A (en) 1930-01-13 1931-09-08 Ainslie George Suturing instrument
US2011169A (en) 1932-04-13 1935-08-13 Wappler Frederick Charles Forcipated surgical electrode
US2031682A (en) 1932-11-18 1936-02-25 Wappler Frederick Charles Method and means for electrosurgical severance of adhesions
US2002594A (en) 1933-03-24 1935-05-28 Wappler Frederick Charles Instrument for electro-surgical treatment of tissue
US2054149A (en) 1935-03-25 1936-09-15 Wappler Frederick Charles Surgical snare
US2176479A (en) 1937-03-20 1939-10-17 David A Willis Apparatus for finding and removing metal particles from human and animal bodies
US2279753A (en) 1940-03-25 1942-04-14 Knapp Monarch Co Switch
US2327353A (en) 1940-12-12 1943-08-24 Singer Mfg Co Instrument for suturing
US2305156A (en) 1941-04-17 1942-12-15 Weck & Co Edward Box lock pivot and method of assembling same
GB623316A (en) 1947-04-29 1949-05-16 Thomas Wallace Parker Improvements in and relating to building units
US2632661A (en) 1948-08-14 1953-03-24 Cristofv Cristjo Joint for surgical instruments
US2668538A (en) 1952-01-30 1954-02-09 George P Pilling & Son Company Surgical clamping means
US2796065A (en) 1955-05-12 1957-06-18 Karl A Kapp Surgical clamping means
US3073311A (en) * 1958-11-07 1963-01-15 Nat Res Dev Sewing device
US3372288A (en) * 1964-08-24 1968-03-05 Singer Co Sequential switching with delay for controlled rectifier circuits
US3459187A (en) 1967-03-09 1969-08-05 Weck & Co Inc Edward Surgical instrument and method of manufacture
US3866610A (en) 1967-08-28 1975-02-18 Harold D Kletschka Cardiovascular clamps
US3636943A (en) 1967-10-27 1972-01-25 Ultrasonic Systems Ultrasonic cauterization
DE1922756B2 (de) 1968-05-04 1973-09-27 Sumitomo Electric Industries, Ltd., Osaka (Japan) Verbessern der Abriebsbeständigkeit und Gleitfähigkeit von Kunststofformkörpern durch Zusatz von Schmieröl
US3643663A (en) 1968-10-16 1972-02-22 F L Fischer Coagulating instrument
US3651811A (en) 1969-10-10 1972-03-28 Aesculap Werke Ag Surgical cutting instrument
US3648001A (en) * 1969-12-11 1972-03-07 Robert K Anderson Compact hand held switching device with insertable switching means
DE7023433U (de) * 1970-06-23 1974-07-11 Siemens Ag Handstück für Hochfrequenz-Elektroden
DE2061539C3 (de) 1970-12-15 1973-09-20 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen Zange fur medizinische Zwecke und Verfahren zu deren Herstellung
SU401367A1 (ru) 1971-10-05 1973-10-12 Тернопольский государственный медицинский институт Биактивный электрохирургическнп инструмент
US3678229A (en) 1971-10-13 1972-07-18 Mc Gill Mfg Co Spring mounted key for electrical switch
GB1365225A (en) * 1972-05-26 1974-08-29 Stanley Tools Ltd Retractable blade knife
US3801766A (en) 1973-01-22 1974-04-02 Valleylab Inc Switching means for an electro-surgical device including particular contact means and particular printed-circuit mounting means
DE2324658B2 (de) 1973-05-16 1977-06-30 Richard Wolf Gmbh, 7134 Knittlingen Sonde zum koagulieren von koerpergewebe
US4016881A (en) 1973-07-04 1977-04-12 Centre De Recherche Industrielle Du Quebec Instrument for use in laparoscopic tubal cauterization
CA1018419A (en) 1973-07-04 1977-10-04 Gerald Turp Instrument for laparoscopic tubal cauterization
US3921641A (en) 1973-12-14 1975-11-25 Research Corp Controlling forceps
DE2415263A1 (de) 1974-03-29 1975-10-02 Aesculap Werke Ag Chirurgische hf-koagulationssonde
US3911766A (en) 1974-05-15 1975-10-14 Pilling Co Box lock surgical instrument and method of its manufacture
US3952749A (en) 1974-05-15 1976-04-27 Pilling Co. Box lock surgical instrument
DE7418576U (de) 1974-05-30 1974-09-12 Richard Wolf Gmbh Katheter mit an eine Spannung legbarer Schlinge
US4043342A (en) 1974-08-28 1977-08-23 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
US3987795A (en) 1974-08-28 1976-10-26 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
DE2514501A1 (de) 1975-04-03 1976-10-21 Karl Storz Bipolares coagulationsinstrument fuer endoskope
US4005714A (en) 1975-05-03 1977-02-01 Richard Wolf Gmbh Bipolar coagulation forceps
FR2315286A2 (fr) 1975-06-26 1977-01-21 Lamidey Marcel Pince a dissequer, hemostatique, haute frequence
US4041952A (en) 1976-03-04 1977-08-16 Valleylab, Inc. Electrosurgical forceps
US4074718A (en) 1976-03-17 1978-02-21 Valleylab, Inc. Electrosurgical instrument
US4088134A (en) 1976-08-05 1978-05-09 Joseph A. Caprini Forceps
US4080820A (en) * 1976-09-02 1978-03-28 Walter Kidde & Company, Inc. In-line crimping tool
DE2642489C3 (de) 1976-09-22 1979-04-19 Richard Wolf Gmbh, 7134 Knittlingen Unipolare Koagulationszange
US4076028A (en) * 1976-10-07 1978-02-28 Concept Inc. Forceps spacing device
US4112950A (en) 1976-10-22 1978-09-12 Aspen Laboratories Medical electronic apparatus and components
US4127222A (en) 1976-11-26 1978-11-28 Adams Roberta V Sewing thimble
US4165746A (en) 1977-06-30 1979-08-28 Burgin Kermit H Plastic forceps
US4187420A (en) * 1978-05-17 1980-02-05 Eaton Corporation Rocker switch with selective lockout means shiftable transversely of the pivotal axis
JPS5563638A (en) 1978-11-09 1980-05-13 Olympus Optical Co Renal pelvis forceps
US4418692A (en) 1978-11-17 1983-12-06 Guay Jean Louis Device for treating living tissue with an electric current
US4236470A (en) 1979-01-17 1980-12-02 Stenson Thomas K Portable stitching device
US4233734A (en) 1979-01-22 1980-11-18 The Stanley Works Retractable blade knife
US4315510A (en) 1979-05-16 1982-02-16 Cooper Medical Devices Corporation Method of performing male sterilization
US4311145A (en) * 1979-07-16 1982-01-19 Neomed, Inc. Disposable electrosurgical instrument
USD263020S (en) * 1980-01-22 1982-02-16 Rau Iii David M Retractable knife
US5026370A (en) 1981-03-11 1991-06-25 Lottick Edward A Electrocautery instrument
US4370980A (en) 1981-03-11 1983-02-01 Lottick Edward A Electrocautery hemostat
CA1192465A (en) 1981-03-11 1985-08-27 Edward A. Lottick Removable switch electrocautery instruments
US5116332A (en) 1981-03-11 1992-05-26 Lottick Edward A Electrocautery hemostat
US4375218A (en) * 1981-05-26 1983-03-01 Digeronimo Ernest M Forceps, scalpel and blood coagulating surgical instrument
US4470786A (en) 1981-07-28 1984-09-11 Omron Tateisi Electronics Co. Molding apparatus with retractable preform support pins
US4452246A (en) 1981-09-21 1984-06-05 Bader Robert F Surgical instrument
US4416276A (en) 1981-10-26 1983-11-22 Valleylab, Inc. Adaptive, return electrode monitoring system
DE3247793C2 (de) * 1981-12-31 1986-01-09 Harald 7200 Tuttlingen Maslanka Hochfrequenz-chirurgische Schlingenelektrode
US4509518A (en) 1982-02-17 1985-04-09 United States Surgical Corporation Apparatus for applying surgical clips
US4443935A (en) 1982-03-01 1984-04-24 Trident Surgical Corporation Process for making electrosurgical scalpel pencil
US4493320A (en) * 1982-04-02 1985-01-15 Treat Michael R Bipolar electrocautery surgical snare
US4492231A (en) 1982-09-17 1985-01-08 Auth David C Non-sticking electrocautery system and forceps
US4506669A (en) * 1982-09-22 1985-03-26 Blake Joseph W Iii Skin approximator
US4827929A (en) 1983-08-29 1989-05-09 Joseph Hodge Angulated surgical instrument
CH662263A5 (de) 1983-09-13 1987-09-30 Gegauf Fritz Ag Hysterektomium.
JPS61501068A (ja) 1984-01-30 1986-05-29 ハルコフスキイ ナウチノ−イススレドワテルスキイ インスチチユ−ト オブスチエイ イ ネオトロジノイ ヒルルギイ 二極性電気外科用器械
US4574804A (en) 1984-02-27 1986-03-11 Board Of Regents, The University Of Texas System Optic nerve clamp
HU192884B (en) 1984-05-14 1987-07-28 Pal Gal Method for cohesive bonding metal pieces by deformation indirect material particularly for members of small material thickness
US4657016A (en) 1984-08-20 1987-04-14 Garito Jon C Electrosurgical handpiece for blades, needles and forceps
US4829313A (en) 1984-11-15 1989-05-09 Chaparral Communications Drive system and filament for a twistable septum in a feedhorn
US4655215A (en) 1985-03-15 1987-04-07 Harold Pike Hand control for electrosurgical electrodes
DE3511107A1 (de) 1985-03-27 1986-10-02 Fischer MET GmbH, 7800 Freiburg Vorrichtung zur bipolaren hochfrequenzkoagulation von biologischem gewebe
US4655216A (en) 1985-07-23 1987-04-07 Alfred Tischer Combination instrument for laparoscopical tube sterilization
US4662372A (en) 1985-08-12 1987-05-05 Acme United Corporation Disposable surgical instrument and method of forming
US4750488A (en) 1986-05-19 1988-06-14 Sonomed Technology, Inc. Vibration apparatus preferably for endoscopic ultrasonic aspirator
USD295893S (en) 1985-09-25 1988-05-24 Acme United Corporation Disposable surgical clamp
USD295894S (en) 1985-09-26 1988-05-24 Acme United Corporation Disposable surgical scissors
US4763669A (en) 1986-01-09 1988-08-16 Jaeger John C Surgical instrument with adjustable angle of operation
AU6757187A (en) 1986-01-22 1987-07-23 Retief, C.T. Closure for a container
US4846171A (en) 1986-10-06 1989-07-11 Gv Medical, Inc. Laser catheter adjustable control apparatus
US4733662A (en) * 1987-01-20 1988-03-29 Minnesota Mining And Manufacturing Company Tissue gripping and cutting assembly for surgical instrument
DE3722142A1 (de) 1987-06-17 1989-01-05 S & T Spingler Tritt Chirurgis Federzange oder pinzette, insbesondere koagulationspinzette
DE8712328U1 (es) 1987-09-11 1988-02-18 Jakoubek, Franz, 7201 Emmingen-Liptingen, De
US4947009A (en) 1987-10-28 1990-08-07 Mcgill Manufacturing Company, Inc. Conscious effort safety switch
US5035695A (en) 1987-11-30 1991-07-30 Jaroy Weber, Jr. Extendable electrocautery surgery apparatus and method
GB2213416B (en) 1987-12-11 1991-12-18 Stanley Works Ltd Blade-carriers for retractable-blade knives
US5084057A (en) 1989-07-18 1992-01-28 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
GB8801177D0 (en) 1988-01-20 1988-02-17 Goble N M Diathermy unit
EP0325456B1 (en) 1988-01-20 1995-12-27 G2 Design Limited Diathermy unit
US4887612A (en) 1988-04-27 1989-12-19 Esco Precision, Inc. Endoscopic biopsy forceps
US5047046A (en) 1988-07-13 1991-09-10 Bodoia Rodger D Surgical forceps
CA1308782C (en) 1988-10-13 1992-10-13 Gyrus Medical Limited Screening and monitoring instrument
US4938761A (en) 1989-03-06 1990-07-03 Mdt Corporation Bipolar electrosurgical forceps
US5425739A (en) 1989-03-09 1995-06-20 Avatar Design And Development, Inc. Anastomosis stent and stent selection system
DE3917328A1 (de) 1989-05-27 1990-11-29 Wolf Gmbh Richard Bipolares koagulationsinstrument
US6190400B1 (en) * 1991-10-22 2001-02-20 Kensey Nash Corporation Blood vessel sealing device and method of sealing an opening in a blood vessel
US5151102A (en) 1989-05-31 1992-09-29 Kyocera Corporation Blood vessel coagulation/stanching device
IN177831B (es) 1989-07-13 1997-02-22 Nat Res Dev
US5007908A (en) 1989-09-29 1991-04-16 Everest Medical Corporation Electrosurgical instrument having needle cutting electrode and spot-coag electrode
US5665100A (en) * 1989-12-05 1997-09-09 Yoon; Inbae Multifunctional instrument with interchangeable operating units for performing endoscopic procedures
US5984938A (en) 1989-12-05 1999-11-16 Yoon; Inbae Surgical instrument with jaws and movable internal scissors and method for use thereof
US5984939A (en) 1989-12-05 1999-11-16 Yoon; Inbae Multifunctional grasping instrument with cutting member and operating channel for use in endoscopic and non-endoscopic procedures
US6099550A (en) 1989-12-05 2000-08-08 Yoon; Inbae Surgical instrument having jaws and an operating channel and method for use thereof
US5797958A (en) 1989-12-05 1998-08-25 Yoon; Inbae Endoscopic grasping instrument with scissors
US5893863A (en) 1989-12-05 1999-04-13 Yoon; Inbae Surgical instrument with jaws and movable internal hook member for use thereof
US5244462A (en) 1990-03-15 1993-09-14 Valleylab Inc. Electrosurgical apparatus
US5217457A (en) 1990-03-15 1993-06-08 Valleylab Inc. Enhanced electrosurgical apparatus
US5151978A (en) 1990-03-22 1992-09-29 Square D Company Lan interface which permits a host computer to obtain data without interrupting a ladder program executing in the interface
US5215101A (en) 1990-05-10 1993-06-01 Symbiosis Corporation Sharply angled kelly (Jacobs's) clamp
US5439478A (en) 1990-05-10 1995-08-08 Symbiosis Corporation Steerable flexible microsurgical instrument with rotatable clevis
US5078716A (en) * 1990-05-11 1992-01-07 Doll Larry F Electrosurgical apparatus for resecting abnormal protruding growth
US5037433A (en) 1990-05-17 1991-08-06 Wilk Peter J Endoscopic suturing device and related method and suture
CA2039088A1 (en) 1990-07-20 1992-01-21 Mark A. Rydell Polypectome snare with bipolar electrodes
US5282799A (en) 1990-08-24 1994-02-01 Everest Medical Corporation Bipolar electrosurgical scalpel with paired loop electrodes
US5100430A (en) * 1990-08-31 1992-03-31 Cordis Corporation Biopsy forceps device having a ball and socket flexible coupling
US5391183A (en) 1990-09-21 1995-02-21 Datascope Investment Corp Device and method sealing puncture wounds
US5026371A (en) 1990-10-01 1991-06-25 Everest Medical Corporation Handle for polypectome snare with bipolar electrodes
US5626609A (en) 1990-10-05 1997-05-06 United States Surgical Corporation Endoscopic surgical instrument
US5509922A (en) 1990-10-05 1996-04-23 United States Surgical Corporation Endoscopic surgical instrument
US5042707A (en) 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
US5190541A (en) 1990-10-17 1993-03-02 Boston Scientific Corporation Surgical instrument and method
US5085659A (en) * 1990-11-21 1992-02-04 Everest Medical Corporation Biopsy device with bipolar coagulation capability
US5209747A (en) 1990-12-13 1993-05-11 Knoepfler Dennis J Adjustable angle medical forceps
JPH06505654A (ja) 1991-02-06 1994-06-30 ラパロームド コーポレイション 電気外科手術装置
DE4104755A1 (de) 1991-02-15 1992-08-20 Heidmueller Harald Chirurgisches instrument
US5147357A (en) 1991-03-18 1992-09-15 Rose Anthony T Medical instrument
US5217460A (en) 1991-03-22 1993-06-08 Knoepfler Dennis J Multiple purpose forceps
US5396900A (en) 1991-04-04 1995-03-14 Symbiosis Corporation Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery
US5112343A (en) 1991-04-05 1992-05-12 Edward Weck Incorporated Endoscopic clip appliers
US5324289A (en) 1991-06-07 1994-06-28 Hemostatic Surgery Corporation Hemostatic bi-polar electrosurgical cutting apparatus and methods of use
US5391166A (en) 1991-06-07 1995-02-21 Hemostatic Surgery Corporation Bi-polar electrosurgical endoscopic instruments having a detachable working end
US5472443A (en) 1991-06-07 1995-12-05 Hemostatic Surgery Corporation Electrosurgical apparatus employing constant voltage and methods of use
US5484436A (en) 1991-06-07 1996-01-16 Hemostatic Surgery Corporation Bi-polar electrosurgical instruments and methods of making
US5176695A (en) 1991-07-08 1993-01-05 Davinci Medical, Inc. Surgical cutting means
DE59204778D1 (de) * 1991-07-23 1996-02-01 Karlsruhe Forschzent Chirurgisches nähinstrument
US5258001A (en) 1991-09-05 1993-11-02 Baylor College Of Medicine Retractable scalpel with blade-activated lock
US5196009A (en) 1991-09-11 1993-03-23 Kirwan Jr Lawrence T Non-sticking electrosurgical device having nickel tips
GB2287196B (en) 1991-09-30 1995-11-15 Philip Richardson A surgical incision member for use in suturing
USD348930S (en) 1991-10-11 1994-07-19 Ethicon, Inc. Endoscopic stapler
US5366477A (en) 1991-10-17 1994-11-22 American Cyanamid Company Actuating forces transmission link and assembly for use in surgical instruments
US5250047A (en) 1991-10-21 1993-10-05 Everest Medical Corporation Bipolar laparoscopic instrument with replaceable electrode tip assembly
US5531744A (en) 1991-11-01 1996-07-02 Medical Scientific, Inc. Alternative current pathways for bipolar surgical cutting tool
US5282827A (en) 1991-11-08 1994-02-01 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5411520A (en) 1991-11-08 1995-05-02 Kensey Nash Corporation Hemostatic vessel puncture closure system utilizing a plug located within the puncture tract spaced from the vessel, and method of use
US5197964A (en) 1991-11-12 1993-03-30 Everest Medical Corporation Bipolar instrument utilizing one stationary electrode and one movable electrode
US5433725A (en) 1991-12-13 1995-07-18 Unisurge, Inc. Hand-held surgical device and tools for use therewith, assembly and method
JP3156863B2 (ja) 1991-12-26 2001-04-16 日本ジーイープラスチックス株式会社 強化難燃ポリエステル系樹脂組成物
US5683366A (en) 1992-01-07 1997-11-04 Arthrocare Corporation System and method for electrosurgical tissue canalization
US5681282A (en) 1992-01-07 1997-10-28 Arthrocare Corporation Methods and apparatus for ablation of luminal tissues
US5300082A (en) 1992-01-08 1994-04-05 Sharpe Endosurgical Corporation Endoneedle holder surgical instrument
US6963792B1 (en) 1992-01-21 2005-11-08 Sri International Surgical method
EP1356781A3 (en) 1992-01-21 2013-07-24 SRI International Teleoperation surgical system
US5250063A (en) 1992-01-24 1993-10-05 Leonard Bloom Surgical scalpel with retractable guard
GB9204218D0 (en) 1992-02-27 1992-04-08 Goble Nigel M A surgical cutting tool
GB9204217D0 (en) 1992-02-27 1992-04-08 Goble Nigel M Cauterising apparatus
US5282826A (en) * 1992-03-05 1994-02-01 Quadtello Corporation Dissector for endoscopic and laparoscopic use
JPH05258641A (ja) 1992-03-16 1993-10-08 Matsushita Electric Ind Co Ltd パネルスイッチ
US5217458A (en) 1992-04-09 1993-06-08 Everest Medical Corporation Bipolar biopsy device utilizing a rotatable, single-hinged moving element
US5499997A (en) 1992-04-10 1996-03-19 Sharpe Endosurgical Corporation Endoscopic tenaculum surgical instrument
DE69325936T2 (de) 1992-04-14 2000-03-30 Hitachi Chemical Co Ltd Verfahren zur Herstellung von Platten für gedruckte Schaltungen
US5620459A (en) * 1992-04-15 1997-04-15 Microsurge, Inc. Surgical instrument
US5318589A (en) 1992-04-15 1994-06-07 Microsurge, Inc. Surgical instrument for endoscopic surgery
US5417203A (en) 1992-04-23 1995-05-23 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5261918A (en) 1992-04-27 1993-11-16 Edward Weck Incorporated Sheathed surgical instrument and applicator kit
US5443463A (en) * 1992-05-01 1995-08-22 Vesta Medical, Inc. Coagulating forceps
US5277201A (en) 1992-05-01 1994-01-11 Vesta Medical, Inc. Endometrial ablation apparatus and method
US5562720A (en) 1992-05-01 1996-10-08 Vesta Medical, Inc. Bipolar/monopolar endometrial ablation device and method
US5211655A (en) 1992-05-08 1993-05-18 Hasson Harrith M Multiple use forceps for endoscopy
US5389098A (en) 1992-05-19 1995-02-14 Olympus Optical Co., Ltd. Surgical device for stapling and/or fastening body tissues
CA2094220A1 (en) 1992-05-21 1993-11-22 Mark A. Rydell Surgical scissors with bipolar coagulation feature
US5217480A (en) * 1992-06-09 1993-06-08 Habley Medical Technology Corporation Capillary blood drawing device
US5478351A (en) 1992-06-24 1995-12-26 Microsurge, Inc. Endoscopic surgical tool with handle and detachable tool assembly
US5413571A (en) 1992-07-16 1995-05-09 Sherwood Medical Company Device for sealing hemostatic incisions
US5601641A (en) * 1992-07-21 1997-02-11 Tse Industries, Inc. Mold release composition with polybutadiene and method of coating a mold core
US5258006A (en) 1992-08-21 1993-11-02 Everest Medical Corporation Bipolar electrosurgical forceps
US5308357A (en) 1992-08-21 1994-05-03 Microsurge, Inc. Handle mechanism for manual instruments
CA2104423A1 (en) 1992-08-24 1994-02-25 Boris Zvenyatsky Handle for endoscopic instruments and jaw structure
US5342393A (en) 1992-08-27 1994-08-30 Duke University Method and device for vascular repair
US5308353A (en) 1992-08-31 1994-05-03 Merrimac Industries, Inc. Surgical suturing device
US6010515A (en) * 1993-09-03 2000-01-04 University College London Device for use in tying knots
US5275615A (en) 1992-09-11 1994-01-04 Anthony Rose Medical instrument having gripping jaws
US5282800A (en) * 1992-09-18 1994-02-01 Edward Weck, Inc. Surgical instrument
CA2106126A1 (en) 1992-09-23 1994-03-24 Ian M. Scott Bipolar surgical instruments
US5411519A (en) 1992-09-23 1995-05-02 United States Surgical Corporation Surgical apparatus having hinged jaw structure
US5374277A (en) 1992-10-09 1994-12-20 Ethicon, Inc. Surgical instrument
US5601224A (en) 1992-10-09 1997-02-11 Ethicon, Inc. Surgical instrument
US5336220A (en) 1992-10-09 1994-08-09 Symbiosis Corporation Tubing for endoscopic electrosurgical suction-irrigation instrument
US5330502A (en) 1992-10-09 1994-07-19 Ethicon, Inc. Rotational endoscopic mechanism with jointed drive mechanism
US5415657A (en) 1992-10-13 1995-05-16 Taymor-Luria; Howard Percutaneous vascular sealing method
US5336221A (en) 1992-10-14 1994-08-09 Premier Laser Systems, Inc. Method and apparatus for applying thermal energy to tissue using a clamp
US5350391A (en) 1992-10-19 1994-09-27 Benedetto Iacovelli Laparoscopic instruments
US5383897A (en) 1992-10-19 1995-01-24 Shadyside Hospital Method and apparatus for closing blood vessel punctures
US5304203A (en) 1992-10-20 1994-04-19 Numed Technologies, Inc. Tissue extracting forceps for laparoscopic surgery
US5578052A (en) 1992-10-27 1996-11-26 Koros; Tibor Insulated laparoscopic grasper with removable shaft
US5389104A (en) 1992-11-18 1995-02-14 Symbiosis Corporation Arthroscopic surgical instruments
US5325592A (en) 1992-11-30 1994-07-05 Fiskars Oy Ab Pivoted tool having integral pivot member and method of producing same
US5558671A (en) 1993-07-22 1996-09-24 Yates; David C. Impedance feedback monitor for electrosurgical instrument
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5807393A (en) * 1992-12-22 1998-09-15 Ethicon Endo-Surgery, Inc. Surgical tissue treating device with locking mechanism
JP3343381B2 (ja) 1992-12-25 2002-11-11 住友化学工業株式会社 長繊維強化ポリオレフィン樹脂構造体からなる成形品
US5540706A (en) 1993-01-25 1996-07-30 Aust; Gilbert M. Surgical instrument
DE69409565T2 (de) 1993-01-29 1998-10-01 Smith & Nephew Inc Schwenkbares gekrümmtes Instrument
US5514134A (en) 1993-02-05 1996-05-07 Everest Medical Corporation Bipolar electrosurgical scissors
US5462546A (en) 1993-02-05 1995-10-31 Everest Medical Corporation Bipolar electrosurgical forceps
US5342359A (en) 1993-02-05 1994-08-30 Everest Medical Corporation Bipolar coagulation device
DE4303882C2 (de) 1993-02-10 1995-02-09 Kernforschungsz Karlsruhe Kombinationsinstrument zum Trennen und Koagulieren für die minimal invasive Chirurgie
US5342381A (en) 1993-02-11 1994-08-30 Everest Medical Corporation Combination bipolar scissors and forceps instrument
US5443464A (en) 1993-02-16 1995-08-22 Memphis Orthopaedic Design, Inc. External fixator apparatus
US5425705A (en) 1993-02-22 1995-06-20 Stanford Surgical Technologies, Inc. Thoracoscopic devices and methods for arresting the heart
US5643294A (en) 1993-03-01 1997-07-01 United States Surgical Corporation Surgical apparatus having an increased range of operability
US5445638B1 (en) 1993-03-08 1998-05-05 Everest Medical Corp Bipolar coagulation and cutting forceps
US5344424A (en) 1993-03-12 1994-09-06 Roberts Philip L Selectively retractable, disposable surgical knife
DE59301475D1 (de) 1993-03-16 1996-02-29 Krupp Koppers Gmbh Vergasungsapparat für die Druckvergasung von feinteiligen Brennstoffen
US5496347A (en) 1993-03-30 1996-03-05 Olympus Optical Co., Ltd. Surgical instrument
GB9309142D0 (en) 1993-05-04 1993-06-16 Gyrus Medical Ltd Laparoscopic instrument
CA2121194A1 (en) 1993-05-06 1994-11-07 Corbett Stone Bipolar electrosurgical instruments
GB9314391D0 (en) 1993-07-12 1993-08-25 Gyrus Medical Ltd A radio frequency oscillator and an electrosurgical generator incorporating such an oscillator
US5569243A (en) 1993-07-13 1996-10-29 Symbiosis Corporation Double acting endoscopic scissors with bipolar cautery capability
US5356408A (en) 1993-07-16 1994-10-18 Everest Medical Corporation Bipolar electrosurgical scissors having nonlinear blades
US5792165A (en) 1993-07-21 1998-08-11 Charles H. Klieman Endoscopic instrument with detachable end effector
US5827323A (en) 1993-07-21 1998-10-27 Charles H. Klieman Surgical instrument for endoscopic and general surgery
JPH09501333A (ja) 1993-07-21 1997-02-10 エイチ. クリーマン,チャールズ 内視鏡検査及び外科手術用の外科的器具
US5582617A (en) 1993-07-21 1996-12-10 Charles H. Klieman Surgical instrument for endoscopic and general surgery
GR940100335A (el) 1993-07-22 1996-05-22 Ethicon Inc. Ηλεκτροχειρουργικη συσκευη τοποθετησης συρραπτικων αγκυλων.
US5693051A (en) 1993-07-22 1997-12-02 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device with adaptive electrodes
US5688270A (en) 1993-07-22 1997-11-18 Ethicon Endo-Surgery,Inc. Electrosurgical hemostatic device with recessed and/or offset electrodes
US5810811A (en) * 1993-07-22 1998-09-22 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
US5709680A (en) 1993-07-22 1998-01-20 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
US5817093A (en) 1993-07-22 1998-10-06 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US5368600A (en) 1993-07-23 1994-11-29 Ethicon, Inc. Steerable bulldog clamp applier
US5376089A (en) 1993-08-02 1994-12-27 Conmed Corporation Electrosurgical instrument
US5354271A (en) 1993-08-05 1994-10-11 Voda Jan K Vascular sheath
JPH0757586A (ja) 1993-08-09 1995-03-03 Sumitomo Wiring Syst Ltd 押し釦スイッチのラバーコンタクト
US5562619A (en) 1993-08-19 1996-10-08 Boston Scientific Corporation Deflectable catheter
US5431674A (en) 1993-09-07 1995-07-11 Pa Consulting Group Compound motion cutting device
US5334215A (en) 1993-09-13 1994-08-02 Chen Shih Chieh Pincers having disposable end members
US5415656A (en) 1993-09-28 1995-05-16 American Medical Systems, Inc. Electrosurgical apparatus
US5405344A (en) 1993-09-30 1995-04-11 Ethicon, Inc. Articulable socket joint assembly for an endoscopic instrument for surgical fastner track therefor
DE4333983A1 (de) * 1993-10-05 1995-04-06 Delma Elektro Med App Elektrochirurgisches Hochfrequenz-Instrument
US5496312A (en) * 1993-10-07 1996-03-05 Valleylab Inc. Impedance and temperature generator control
US5478344A (en) * 1993-10-08 1995-12-26 United States Surgical Corporation Surgical suturing apparatus with loading mechanism
CA2133377C (en) 1993-10-08 2004-09-14 H. Jonathan Tovey Surgical suturing apparatus with loading mechanism
US5571100B1 (en) 1993-11-01 1998-01-06 Gyrus Medical Ltd Electrosurgical apparatus
GB9322464D0 (en) 1993-11-01 1993-12-22 Gyrus Medical Ltd Electrosurgical apparatus
US5620453A (en) 1993-11-05 1997-04-15 Nallakrishnan; Ravi Surgical knife with retractable blade and depth of cut control
US5527322A (en) * 1993-11-08 1996-06-18 Perclose, Inc. Device and method for suturing of internal puncture sites
DE69408268T2 (de) 1993-11-09 1998-05-14 Ricoh Kk Bilderzeugungsgerät mit einem Kontaktteil in Kontakt mit einem Bildträger
US5437292A (en) 1993-11-19 1995-08-01 Bioseal, Llc Method for sealing blood vessel puncture sites
US5458598A (en) 1993-12-02 1995-10-17 Cabot Technology Corporation Cutting and coagulating forceps
US5422567A (en) 1993-12-27 1995-06-06 Valleylab Inc. High frequency power measurement
US5597107A (en) * 1994-02-03 1997-01-28 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
DE4403252A1 (de) 1994-02-03 1995-08-10 Michael Hauser Instrumentenschaft für die minimalinvasive Chirurgie
US5501698A (en) 1994-02-14 1996-03-26 Heartport, Inc. Endoscopic microsurgical instruments and methods
US5352222A (en) 1994-03-15 1994-10-04 Everest Medical Corporation Surgical scissors with bipolar coagulation feature
US5472442A (en) 1994-03-23 1995-12-05 Valleylab Inc. Moveable switchable electrosurgical handpiece
DE4411099C2 (de) 1994-03-30 1998-07-30 Wolf Gmbh Richard Chirurgisches Instrument
US5528833A (en) 1994-04-19 1996-06-25 Kabushiki Kaisha Sangi Scissors with ceramic coated replaceable cutting blades
US5425690A (en) 1994-04-20 1995-06-20 Chang; Sreter Wrist exerciser
US5431672A (en) 1994-05-09 1995-07-11 Becton, Dickinson And Company Surgical scalpel with retractable blade
US5782749A (en) 1994-05-10 1998-07-21 Riza; Erol D. Laparoscopic surgical instrument with adjustable grip
US5480409A (en) 1994-05-10 1996-01-02 Riza; Erol D. Laparoscopic surgical instrument
US5454827A (en) 1994-05-24 1995-10-03 Aust; Gilbert M. Surgical instrument
US5429616A (en) 1994-05-31 1995-07-04 Schaffer; David I. Occludable catheter
US5383875A (en) * 1994-05-31 1995-01-24 Zimmer, Inc. Safety device for a powered surgical instrument
US5766196A (en) 1994-06-06 1998-06-16 Tnco, Inc. Surgical instrument with steerable distal end
US6024743A (en) * 1994-06-24 2000-02-15 Edwards; Stuart D. Method and apparatus for selective treatment of the uterus
US5505730A (en) 1994-06-24 1996-04-09 Stuart D. Edwards Thin layer ablation apparatus
GB9413070D0 (en) 1994-06-29 1994-08-17 Gyrus Medical Ltd Electrosurgical apparatus
AU3075895A (en) 1994-07-07 1996-02-09 Ueth & Haug Gmbh Endoscope
DE4423881C1 (de) 1994-07-07 1995-10-26 Karlsruhe Forschzent Chirurgisches Nähgerät
US5540684A (en) 1994-07-28 1996-07-30 Hassler, Jr.; William L. Method and apparatus for electrosurgically treating tissue
EP0694289B1 (en) 1994-07-29 2003-05-07 Olympus Optical Co., Ltd. Medical instrument for use in combination with endoscopes
AU694225B2 (en) 1994-08-02 1998-07-16 Ethicon Endo-Surgery, Inc. Ultrasonic hemostatic and cutting instrument
US5766130A (en) 1994-08-16 1998-06-16 Selmonosky; Carlos A. Vascular testing method
US5529067A (en) 1994-08-19 1996-06-25 Novoste Corporation Methods for procedures related to the electrophysiology of the heart
US5456684A (en) 1994-09-08 1995-10-10 Hutchinson Technology Incorporated Multifunctional minimally invasive surgical instrument
US5573535A (en) 1994-09-23 1996-11-12 United States Surgical Corporation Bipolar surgical instrument for coagulation and cutting
US6142994A (en) 1994-10-07 2000-11-07 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body
USD384413S (en) 1994-10-07 1997-09-30 United States Surgical Corporation Endoscopic suturing instrument
JP3128443B2 (ja) 1994-10-07 2001-01-29 アルプス電気株式会社 2段動作シーソースイッチ装置
US5575805A (en) 1994-10-07 1996-11-19 Li Medical Technologies, Inc. Variable tip-pressure surgical grasper
US5893875A (en) 1994-10-07 1999-04-13 Tnco, Inc. Surgical instrument with replaceable jaw assembly
US5480406A (en) * 1994-10-07 1996-01-02 United States Surgical Corporation Method of employing surgical suturing apparatus to tie knots
US5579781A (en) 1994-10-13 1996-12-03 Cooke; Thomas H. Wireless transmitter for needle electrodes as used in electromyography
US5752973A (en) 1994-10-18 1998-05-19 Archimedes Surgical, Inc. Endoscopic surgical gripping instrument with universal joint jaw coupler
US5921984A (en) 1994-11-30 1999-07-13 Conmed Corporation Bipolar electrosurgical instrument with coagulation feature
EP2314244A1 (en) 1994-12-13 2011-04-27 Torben Lorentzen An electrosurgical instrument for tissue ablation, an apparatus, and a method for providing a lesion in damaged and diseased tissue from a mammal
GB9425781D0 (en) 1994-12-21 1995-02-22 Gyrus Medical Ltd Electrosurgical instrument
US5540685A (en) 1995-01-06 1996-07-30 Everest Medical Corporation Bipolar electrical scissors with metal cutting edges and shearing surfaces
US5603723A (en) 1995-01-11 1997-02-18 United States Surgical Corporation Surgical instrument configured to be disassembled for cleaning
US6051751A (en) 1995-01-20 2000-04-18 Spire Corporation Arthroplasty process for securely anchoring prostheses to bone, and arthroplasty products therefor
US5603711A (en) 1995-01-20 1997-02-18 Everest Medical Corp. Endoscopic bipolar biopsy forceps
US5637110A (en) 1995-01-31 1997-06-10 Stryker Corporation Electrocautery surgical tool with relatively pivoted tissue engaging jaws
CA2168404C (en) 1995-02-01 2007-07-10 Dale Schulze Surgical instrument with expandable cutting element
US5573424A (en) 1995-02-09 1996-11-12 Everest Medical Corporation Apparatus for interfacing a bipolar electrosurgical instrument to a monopolar generator
US5649959A (en) 1995-02-10 1997-07-22 Sherwood Medical Company Assembly for sealing a puncture in a vessel
US5715832A (en) 1995-02-28 1998-02-10 Boston Scientific Corporation Deflectable biopsy catheter
US5611798A (en) * 1995-03-02 1997-03-18 Eggers; Philip E. Resistively heated cutting and coagulating surgical instrument
US6179837B1 (en) 1995-03-07 2001-01-30 Enable Medical Corporation Bipolar electrosurgical scissors
US5766166A (en) 1995-03-07 1998-06-16 Enable Medical Corporation Bipolar Electrosurgical scissors
US6464701B1 (en) * 1995-03-07 2002-10-15 Enable Medical Corporation Bipolar electrosurgical scissors
US5647871A (en) 1995-03-10 1997-07-15 Microsurge, Inc. Electrosurgery with cooled electrodes
US5575799A (en) 1995-03-30 1996-11-19 United States Surgical Corporation Articulating surgical apparatus
US5599350A (en) * 1995-04-03 1997-02-04 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with coagulation feedback
US5624452A (en) 1995-04-07 1997-04-29 Ethicon Endo-Surgery, Inc. Hemostatic surgical cutting or stapling instrument
US5569300A (en) * 1995-04-12 1996-10-29 Redmon; Henry A. Dilating surgical forceps having illumination means on blade inner surface
US6602248B1 (en) * 1995-06-07 2003-08-05 Arthro Care Corp. Methods for repairing damaged intervertebral discs
US5957923A (en) * 1995-04-20 1999-09-28 Symbiosis Corporation Loop electrodes for electrocautery probes for use with a resectoscope
US5707369A (en) 1995-04-24 1998-01-13 Ethicon Endo-Surgery, Inc. Temperature feedback monitor for hemostatic surgical instrument
US5779701A (en) 1995-04-27 1998-07-14 Symbiosis Corporation Bipolar endoscopic surgical scissor blades and instrument incorporating the same
DE19515914C1 (de) 1995-05-02 1996-07-25 Aesculap Ag Zangen- oder scherenförmiges chirurgisches Instrument
US5626578A (en) 1995-05-08 1997-05-06 Tihon; Claude RF valvulotome
DE19518388C2 (de) * 1995-05-19 1997-07-03 Wolf Gmbh Richard Medizinisches Instrument mit einem abwinkelbaren distalen Endstück
US5638003A (en) 1995-05-23 1997-06-10 Underwriters Laboratories, Inc. Method and apparatus for testing surface breakdown of dielectric materials caused by electrical tracking
US5720744A (en) 1995-06-06 1998-02-24 Valleylab Inc Control system for neurosurgery
US7179255B2 (en) * 1995-06-07 2007-02-20 Arthrocare Corporation Methods for targeted electrosurgery on contained herniated discs
WO1997000646A1 (en) 1995-06-23 1997-01-09 Gyrus Medical Limited An electrosurgical instrument
GB9604770D0 (en) 1995-06-23 1996-05-08 Gyrus Medical Ltd An electrosurgical generator and system
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
GB9526627D0 (en) 1995-12-29 1996-02-28 Gyrus Medical Ltd An electrosurgical instrument and an electrosurgical electrode assembly
BR9609421A (pt) 1995-06-23 1999-05-18 Gyrus Medical Ltd Instrumento eletrocirúrgico
US6458125B1 (en) 1995-07-10 2002-10-01 I. C. Medical, Inc. Electro-surgical unit pencil apparatus and method therefor
US5667526A (en) 1995-09-07 1997-09-16 Levin; John M. Tissue retaining clamp
US5611808A (en) * 1995-09-12 1997-03-18 Cabot Technology Corporation Blade assembly receptacle and method
US5722421A (en) * 1995-09-15 1998-03-03 Symbiosis Corporation Clevis having deflection limiting stops for use in an endoscopic biopsy forceps instrument
US6887240B1 (en) 1995-09-19 2005-05-03 Sherwood Services Ag Vessel sealing wave jaw
US5776130A (en) 1995-09-19 1998-07-07 Valleylab, Inc. Vascular tissue sealing pressure control
US5662667A (en) 1995-09-19 1997-09-02 Ethicon Endo-Surgery, Inc. Surgical clamping mechanism
US5827271A (en) 1995-09-19 1998-10-27 Valleylab Energy delivery system for vessel sealing
US5797927A (en) 1995-09-22 1998-08-25 Yoon; Inbae Combined tissue clamping and suturing instrument
USH1745H (en) 1995-09-29 1998-08-04 Paraschac; Joseph F. Electrosurgical clamping device with insulation limited bipolar electrode
US5674220A (en) 1995-09-29 1997-10-07 Ethicon Endo-Surgery, Inc. Bipolar electrosurgical clamping device
ES2098198B1 (es) * 1995-10-18 1998-01-01 Bofill Brosa Ramon Pinza para la introduccion quirurgica de cateteres y similares.
US5700270A (en) 1995-10-20 1997-12-23 United States Surgical Corporation Surgical clip applier
AU703455B2 (en) 1995-10-20 1999-03-25 Ethicon Endo-Surgery, Inc. Self protecting knife for curved jaw surgical instruments
US6095149A (en) 1996-08-13 2000-08-01 Oratec Interventions, Inc. Method for treating intervertebral disc degeneration
US5792137A (en) 1995-10-27 1998-08-11 Lacar Microsystems, Inc. Coagulating microsystem
US5803083A (en) 1995-11-09 1998-09-08 Cordis Corporation Guiding catheter with ultrasound imaging capability
US6059782A (en) * 1995-11-20 2000-05-09 Storz Endoskop Gmbh Bipolar high-frequency surgical instrument
US5658281A (en) 1995-12-04 1997-08-19 Valleylab Inc Bipolar electrosurgical scissors and method of manufacture
US5827281A (en) 1996-01-05 1998-10-27 Levin; John M. Insulated surgical scissors
US7115123B2 (en) * 1996-01-05 2006-10-03 Thermage, Inc. Handpiece with electrode and non-volatile memory
US5755717A (en) * 1996-01-16 1998-05-26 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with improved coagulation feedback
US6126656A (en) * 1996-01-30 2000-10-03 Utah Medical Products, Inc. Electrosurgical cutting device
IL125415A (en) 1996-02-02 2004-02-19 Transvascular Inc A device and system for intervening in a continuous tubular space
US5810805A (en) 1996-02-09 1998-09-22 Conmed Corporation Bipolar surgical devices and surgical methods
US5882567A (en) * 1996-02-16 1999-03-16 Acushnet Company Method of making a golf ball having multiple layers
US5797537A (en) 1996-02-20 1998-08-25 Richard-Allan Medical Industries, Inc. Articulated surgical instrument with improved firing mechanism
US5725536A (en) * 1996-02-20 1998-03-10 Richard-Allen Medical Industries, Inc. Articulated surgical instrument with improved articulation control mechanism
DE19608716C1 (de) 1996-03-06 1997-04-17 Aesculap Ag Bipolares chirurgisches Faßinstrument
US6325795B1 (en) 1996-03-12 2001-12-04 Sherwood Services Ag Replaceable accessory cord and handswitch
US5702390A (en) 1996-03-12 1997-12-30 Ethicon Endo-Surgery, Inc. Bioplar cutting and coagulation instrument
US5700261A (en) 1996-03-29 1997-12-23 Ethicon Endo-Surgery, Inc. Bipolar Scissors
JP2873366B2 (ja) 1996-04-01 1999-03-24 ▼しずか▲ 加▼せ▲田 鉗 子
US5960544A (en) 1996-04-03 1999-10-05 Beyers; Greg L. Double-ended dual mechanism retractable blade utility knife
US5893877A (en) 1996-04-10 1999-04-13 Synergetics, Inc. Surgical instrument with offset handle
US5788710A (en) 1996-04-30 1998-08-04 Boston Scientific Corporation Calculus removal
US6066139A (en) 1996-05-14 2000-05-23 Sherwood Services Ag Apparatus and method for sterilization and embolization
AUPO044596A0 (en) * 1996-06-14 1996-07-11 Skop Gmbh Ltd Improved electrical signal supply
US6620155B2 (en) 1996-07-16 2003-09-16 Arthrocare Corp. System and methods for electrosurgical tissue contraction within the spine
DE19632298B4 (de) 1996-08-10 2004-09-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Greifeinrichtung zum Einsatz in der Minimal-Invasiven-Chirurgie
US5814043A (en) 1996-09-06 1998-09-29 Mentor Ophthalmics, Inc. Bipolar electrosurgical device
DE29616210U1 (de) 1996-09-18 1996-11-14 Winter & Ibe Olympus Handhabe für chirurgische Instrumente
US7112199B2 (en) 1996-09-20 2006-09-26 Ioan Cosmescu Multifunctional telescopic monopolar/bipolar surgical device and method therefore
US5814054A (en) 1996-09-23 1998-09-29 Symbiosis Corporation Automatic needle-passer suturing instrument
US5843080A (en) 1996-10-16 1998-12-01 Megadyne Medical Products, Inc. Bipolar instrument with multi-coated electrodes
US5820630A (en) 1996-10-22 1998-10-13 Annex Medical, Inc. Medical forceps jaw assembly
US5954720A (en) 1996-10-28 1999-09-21 Endoscopic Concepts, Inc. Bipolar electrosurgical end effectors
US5923475A (en) 1996-11-27 1999-07-13 Eastman Kodak Company Laser printer using a fly's eye integrator
US5759188A (en) 1996-11-27 1998-06-02 Yoon; Inbae Suturing instrument with rotatably mounted needle driver and catcher
US5957937A (en) 1996-11-27 1999-09-28 Yoon; Inbae Suturing instrument with spreadable needle holder mounted for arcuate movement
US5993466A (en) 1997-06-17 1999-11-30 Yoon; Inbae Suturing instrument with multiple rotatably mounted spreadable needle holders
US5993467A (en) 1996-11-27 1999-11-30 Yoon; Inbae Suturing instrument with rotatably mounted spreadable needle holder
US5984932A (en) 1996-11-27 1999-11-16 Yoon; Inbae Suturing instrument with one or more spreadable needle holders mounted for arcuate movement
US5891142A (en) 1996-12-06 1999-04-06 Eggers & Associates, Inc. Electrosurgical forceps
US5827279A (en) 1996-12-06 1998-10-27 Ethicon Endo-Surgery, Inc. Knife coupler mechanism for an endoscopic instrument
US5951549A (en) 1996-12-20 1999-09-14 Enable Medical Corporation Bipolar electrosurgical scissors
US6113596A (en) 1996-12-30 2000-09-05 Enable Medical Corporation Combination monopolar-bipolar electrosurgical instrument system, instrument and cable
US5827548A (en) 1997-01-14 1998-10-27 Lisco, Inc. Golf ball injection mold
JP3311287B2 (ja) 1997-01-16 2002-08-05 旭光学工業株式会社 内視鏡観察下手術用鉗子
FR2759165A1 (fr) 1997-01-31 1998-08-07 Canon Kk Procede et dispositif de determination de la quantite de produit present dans un reservoir, reservoir de produit et dispositif de traitement de signaux electriques destines a un tel dispositif de determination
US5882329A (en) 1997-02-12 1999-03-16 Prolifix Medical, Inc. Apparatus and method for removing stenotic material from stents
US5928136A (en) 1997-02-13 1999-07-27 Karl Storz Gmbh & Co. Articulated vertebra for endoscopes and method to make it
US6626901B1 (en) 1997-03-05 2003-09-30 The Trustees Of Columbia University In The City Of New York Electrothermal instrument for sealing and joining or cutting tissue
US5800449A (en) 1997-03-11 1998-09-01 Ethicon Endo-Surgery, Inc. Knife shield for surgical instruments
US6033399A (en) 1997-04-09 2000-03-07 Valleylab, Inc. Electrosurgical generator with adaptive power control
US5925043A (en) * 1997-04-30 1999-07-20 Medquest Products, Inc. Electrosurgical electrode with a conductive, non-stick coating
US6126665A (en) 1997-05-01 2000-10-03 Yoon; Inbae Surgical instrument with arcuately movable offset end effectors and method of using the same
US6143005A (en) 1997-05-01 2000-11-07 Yoon; Inbae Suturing instrument with rotatably mounted offset needle holder and method of using the same
US6017358A (en) 1997-05-01 2000-01-25 Inbae Yoon Surgical instrument with multiple rotatably mounted offset end effectors
US6080180A (en) 1997-05-01 2000-06-27 Yoon; Inbae Surgical instrument with rotatably mounted offset end effector and method of using the same
US6004332A (en) 1997-05-01 1999-12-21 Yoon; Inbae Suturing instrument with multiple rotatably mounted offset needle holders and method of using the same
USH2037H1 (en) 1997-05-14 2002-07-02 David C. Yates Electrosurgical hemostatic device including an anvil
USH1904H (en) 1997-05-14 2000-10-03 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic method and device
US5961514A (en) 1997-05-14 1999-10-05 Ethicon Endo-Surger, Inc. Cordless electrosurgical instrument
US5911719A (en) * 1997-06-05 1999-06-15 Eggers; Philip E. Resistively heating cutting and coagulating surgical instrument
US5876412A (en) * 1997-06-06 1999-03-02 Piraka; Hadi A. Surgical suturing device
US5899914A (en) 1997-06-11 1999-05-04 Endius Incorporated Surgical instrument
US6059783A (en) 1997-06-26 2000-05-09 Kirwan Surgical Products, Inc. Electro-surgical forceps which minimize or prevent sticking of tissue
US5824978A (en) 1997-06-26 1998-10-20 Ut Automotive, Inc. Multiple detent membrane switch
US6096037A (en) * 1997-07-29 2000-08-01 Medtronic, Inc. Tissue sealing electrosurgery device and methods of sealing tissue
US6402747B1 (en) 1997-07-21 2002-06-11 Sherwood Services Ag Handswitch cord and circuit
US6280458B1 (en) 1997-07-22 2001-08-28 Karl Storz Gmbh & Co. Kg Surgical grasping and holding forceps
US5954731A (en) 1997-07-29 1999-09-21 Yoon; Inbae Surgical instrument with multiple rotatably mounted spreadable end effectors
US6102909A (en) 1997-08-26 2000-08-15 Ethicon, Inc. Scissorlike electrosurgical cutting instrument
US6024744A (en) 1997-08-27 2000-02-15 Ethicon, Inc. Combined bipolar scissor and grasper
US6083223A (en) 1997-08-28 2000-07-04 Baker; James A. Methods and apparatus for welding blood vessels
US5891141A (en) 1997-09-02 1999-04-06 Everest Medical Corporation Bipolar electrosurgical instrument for cutting and sealing tubular tissue structures
DE19738457B4 (de) 1997-09-03 2009-01-02 Celon Ag Medical Instruments Verfahren und Vorrichtung für die In-vivo-Tiefenkoagulation biologischer Gewebevolumina bei gleichzeitiger Schonung der Gewebeoberfläche mit hochfrequentem Wechselstrom
DE19739699A1 (de) * 1997-09-04 1999-03-11 Laser & Med Tech Gmbh Elektrodenanordnung zur elektro-thermischen Behandlung des menschlichen oder tierischen Körpers
US6267761B1 (en) * 1997-09-09 2001-07-31 Sherwood Services Ag Apparatus and method for sealing and cutting tissue
EP1011493B1 (en) 1997-09-10 2005-03-23 Sherwood Services AG Bipolar instrument for vessel fusion
US5964758A (en) 1997-09-18 1999-10-12 Dresden; Scott Laparoscopic electrosurgical instrument
US5913874A (en) 1997-09-25 1999-06-22 Cabot Technology Corporation Cartridge for a surgical instrument
US6139563A (en) 1997-09-25 2000-10-31 Allegiance Corporation Surgical device with malleable shaft
US5908420A (en) 1997-10-03 1999-06-01 Everest Medical Corporation Surgical scissors with bipolar distal electrodes
US5897563A (en) 1997-10-08 1999-04-27 Ethicon Endo-Surgery, Inc. Method for using a needle holder to assist in suturing
WO1999018869A1 (en) * 1997-10-09 1999-04-22 Camran Nezhat Methods and systems for organ resection
US5976132A (en) 1997-10-10 1999-11-02 Morris; James R. Bipolar surgical shears
US6171316B1 (en) * 1997-10-10 2001-01-09 Origin Medsystems, Inc. Endoscopic surgical instrument for rotational manipulation
US6178628B1 (en) * 1997-10-22 2001-01-30 Aavid Thermalloy, Llc Apparatus and method for direct attachment of heat sink to surface mount
US6352536B1 (en) 2000-02-11 2002-03-05 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US7435249B2 (en) 1997-11-12 2008-10-14 Covidien Ag Electrosurgical instruments which reduces collateral damage to adjacent tissue
US6050996A (en) 1997-11-12 2000-04-18 Sherwood Services Ag Bipolar electrosurgical instrument with replaceable electrodes
US6726686B2 (en) 1997-11-12 2004-04-27 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US6187003B1 (en) 1997-11-12 2001-02-13 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US6228083B1 (en) 1997-11-14 2001-05-08 Sherwood Services Ag Laparoscopic bipolar electrosurgical instrument
US20030014052A1 (en) 1997-11-14 2003-01-16 Buysse Steven P. Laparoscopic bipolar electrosurgical instrument
DE19751108A1 (de) 1997-11-18 1999-05-20 Beger Frank Michael Dipl Desig Elektrochirurgisches Operationswerkzeug
US6007552A (en) 1997-12-18 1999-12-28 Minumys Vascular clamps and surgical retractors with directional filaments for tissue engagement
EP0923907A1 (en) 1997-12-19 1999-06-23 Gyrus Medical Limited An electrosurgical instrument
US6106542A (en) 1998-01-23 2000-08-22 Microsurgical Laboratories, Inc. Surgical forceps
US6736813B2 (en) * 1998-01-23 2004-05-18 Olympus Optical Co., Ltd. High-frequency treatment tool
US6273887B1 (en) 1998-01-23 2001-08-14 Olympus Optical Co., Ltd. High-frequency treatment tool
US5989277A (en) 1998-01-30 1999-11-23 Lemaire, Iii; Norman J. Surgical instrument with offset jaw actuator
US6562037B2 (en) 1998-02-12 2003-05-13 Boris E. Paton Bonding of soft biological tissues by passing high frequency electric current therethrough
AU2769399A (en) 1998-02-17 1999-08-30 James A. Baker Jr. Radiofrequency medical instrument for vessel welding
US6126658A (en) 1998-02-19 2000-10-03 Baker; James A. Radiofrequency medical instrument and methods for vessel welding
US5902301A (en) 1998-02-23 1999-05-11 Everest Medical Corporation Cutting/coagulating forceps with interleaved electrodes
US6692485B1 (en) 1998-02-24 2004-02-17 Endovia Medical, Inc. Articulated apparatus for telemanipulator system
US6010516A (en) 1998-03-20 2000-01-04 Hulka; Jaroslav F. Bipolar coaptation clamps
US5908432A (en) 1998-03-27 1999-06-01 Pan; Huai C. Scalpel with retractable blade
US6086601A (en) 1998-04-29 2000-07-11 Yoon; Inbae Instrument and method for suturing anatomical tissue and tying suture material
US6514252B2 (en) * 1998-05-01 2003-02-04 Perfect Surgical Techniques, Inc. Bipolar surgical instruments having focused electrical fields
US6030384A (en) 1998-05-01 2000-02-29 Nezhat; Camran Bipolar surgical instruments having focused electrical fields
US6508815B1 (en) * 1998-05-08 2003-01-21 Novacept Radio-frequency generator for powering an ablation device
US6027522A (en) * 1998-06-02 2000-02-22 Boston Scientific Corporation Surgical instrument with a rotatable distal end
US6193718B1 (en) 1998-06-10 2001-02-27 Scimed Life Systems, Inc. Endoscopic electrocautery instrument
WO1999065398A1 (en) 1998-06-17 1999-12-23 Inbae Yoon Suturing instrument with angled needle holder and method for use thereof
US6679882B1 (en) * 1998-06-22 2004-01-20 Lina Medical Aps Electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue
US6053914A (en) 1998-06-29 2000-04-25 Ethicon, Inc. Pivot screw for bipolar surgical instruments
US5906630A (en) 1998-06-30 1999-05-25 Boston Scientific Limited Eccentric surgical forceps
DE19833600A1 (de) 1998-07-25 2000-03-02 Storz Karl Gmbh & Co Kg Medizinische Zange mit zwei unabhängig voneinander beweglichen Maulteilen
JP4225624B2 (ja) 1998-08-27 2009-02-18 オリンパス株式会社 高周波処置装置
US6086586A (en) * 1998-09-14 2000-07-11 Enable Medical Corporation Bipolar tissue grasping apparatus and tissue welding method
US6021693A (en) * 1998-09-21 2000-02-08 Chang Feng-Sing Method of manufacturing blades for scissors
JP3351352B2 (ja) 1998-09-24 2002-11-25 ヤマハ株式会社 映像切換装置
US6090107A (en) 1998-10-20 2000-07-18 Megadyne Medical Products, Inc. Resposable electrosurgical instrument
US6511480B1 (en) 1998-10-23 2003-01-28 Sherwood Services Ag Open vessel sealing forceps with disposable electrodes
US7267677B2 (en) 1998-10-23 2007-09-11 Sherwood Services Ag Vessel sealing instrument
US7582087B2 (en) 1998-10-23 2009-09-01 Covidien Ag Vessel sealing instrument
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
USD449886S1 (en) 1998-10-23 2001-10-30 Sherwood Services Ag Forceps with disposable electrode
USD425201S (en) 1998-10-23 2000-05-16 Sherwood Services Ag Disposable electrode assembly
US20040167508A1 (en) 2002-02-11 2004-08-26 Robert Wham Vessel sealing system
US6398779B1 (en) 1998-10-23 2002-06-04 Sherwood Services Ag Vessel sealing system
US6585735B1 (en) 1998-10-23 2003-07-01 Sherwood Services Ag Endoscopic bipolar electrosurgical forceps
US6796981B2 (en) 1999-09-30 2004-09-28 Sherwood Services Ag Vessel sealing system
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US6277117B1 (en) 1998-10-23 2001-08-21 Sherwood Services Ag Open vessel sealing forceps with disposable electrodes
WO2000024331A1 (en) 1998-10-23 2000-05-04 Sherwood Services Ag Endoscopic bipolar electrosurgical forceps
USD424694S (en) 1998-10-23 2000-05-09 Sherwood Services Ag Forceps
US7118570B2 (en) 2001-04-06 2006-10-10 Sherwood Services Ag Vessel sealing forceps with disposable electrodes
US20040249374A1 (en) 1998-10-23 2004-12-09 Tetzlaff Philip M. Vessel sealing instrument
US6221039B1 (en) 1998-10-26 2001-04-24 Scimed Life Systems, Inc. Multi-function surgical instrument
US6270508B1 (en) 1998-10-26 2001-08-07 Charles H. Klieman End effector and instrument for endoscopic and general surgery needle control
DE19850068C1 (de) 1998-10-30 2000-06-08 Storz Karl Gmbh & Co Kg Medizinisches Instrument zum Präparieren von Gewebe
US6319451B1 (en) 1998-12-17 2001-11-20 Acushnet Company Method of molding a layer around a body
DE19858512C1 (de) 1998-12-18 2000-05-25 Storz Karl Gmbh & Co Kg Bipolares medizinisches Instrument
US6224593B1 (en) 1999-01-13 2001-05-01 Sherwood Services Ag Tissue sealing using microwaves
US20030171747A1 (en) * 1999-01-25 2003-09-11 Olympus Optical Co., Ltd. Medical treatment instrument
US6174309B1 (en) 1999-02-11 2001-01-16 Medical Scientific, Inc. Seal & cut electrosurgical instrument
US6248124B1 (en) 1999-02-22 2001-06-19 Tyco Healthcare Group Arterial hole closure apparatus
FR2790173A1 (fr) 1999-02-24 2000-08-25 Canon Kk Dispositif et procede de transformation de signal numerique
GB9905209D0 (en) 1999-03-05 1999-04-28 Gyrus Medical Ltd Electrosurgery system
GB9905211D0 (en) 1999-03-05 1999-04-28 Gyrus Medical Ltd Electrosurgery system and instrument
JP2003530131A (ja) 1999-03-07 2003-10-14 ディスクレ リミテッド コンピューターを利用する手術方法及び装置
US6110171A (en) 1999-03-09 2000-08-29 Everest Medical Corporation Electrosurgical cutting and coagulating instrument for open surgery
US6190386B1 (en) 1999-03-09 2001-02-20 Everest Medical Corporation Electrosurgical forceps with needle electrodes
JP3286619B2 (ja) 1999-04-06 2002-05-27 株式会社日立製作所 自動車の動力伝達装置
US6726694B2 (en) 1999-04-16 2004-04-27 Integrated Vascular Interventional Technologies, L.C. (Ivit, Lc) Intraluminally directed anvil apparatus and related methods and systems
US6152923A (en) 1999-04-28 2000-11-28 Sherwood Services Ag Multi-contact forceps and method of sealing, coagulating, cauterizing and/or cutting vessels and tissue
US6461352B2 (en) 1999-05-11 2002-10-08 Stryker Corporation Surgical handpiece with self-sealing switch assembly
GB9911954D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and instrument
GB9911956D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and method
GB9912625D0 (en) 1999-05-28 1999-07-28 Gyrus Medical Ltd An electrosurgical generator and system
GB9912627D0 (en) 1999-05-28 1999-07-28 Gyrus Medical Ltd An electrosurgical instrument
GB9913652D0 (en) 1999-06-11 1999-08-11 Gyrus Medical Ltd An electrosurgical generator
US6494888B1 (en) 1999-06-22 2002-12-17 Ndo Surgical, Inc. Tissue reconfiguration
US6835200B2 (en) 1999-06-22 2004-12-28 Ndo Surgical. Inc. Method and devices for tissue reconfiguration
US6663639B1 (en) 1999-06-22 2003-12-16 Ndo Surgical, Inc. Methods and devices for tissue reconfiguration
US6821285B2 (en) 1999-06-22 2004-11-23 Ndo Surgical, Inc. Tissue reconfiguration
US6506196B1 (en) * 1999-06-22 2003-01-14 Ndo Surgical, Inc. Device and method for correction of a painful body defect
FR2795301B1 (fr) 1999-06-25 2001-08-31 Prec Instrument de chirurgie endoscopique
US6117158A (en) 1999-07-07 2000-09-12 Ethicon Endo-Surgery, Inc. Ratchet release mechanism for hand held instruments
US6692445B2 (en) * 1999-07-27 2004-02-17 Scimed Life Systems, Inc. Biopsy sampler
DE19935478C1 (de) 1999-07-28 2001-04-19 Karlsruhe Forschzent Endoskopisch einsetzbares chirurgisches Instrument zur Koagulation mittels Hochfrequenz und zur Durchführung koagulierter Gewebebereiche
US6517539B1 (en) * 1999-08-06 2003-02-11 Scimed Life Systems, Inc. Polypectomy snare having ability to actuate through tortuous path
US6235026B1 (en) 1999-08-06 2001-05-22 Scimed Life Systems, Inc. Polypectomy snare instrument
GB9919722D0 (en) 1999-08-20 1999-10-20 Surgical Innovations Ltd Laparoscopic forceps handle
US6685724B1 (en) 1999-08-24 2004-02-03 The Penn State Research Foundation Laparoscopic surgical instrument and method
US6409728B1 (en) 1999-08-25 2002-06-25 Sherwood Services Ag Rotatable bipolar forceps
DE19940689A1 (de) * 1999-08-27 2001-04-05 Storz Karl Gmbh & Co Kg Bipolares medizinisches Instrument
ES2261392T3 (es) 1999-09-01 2006-11-16 Sherwood Services Ag Instrumento electroquirurgico que reduce la dispersion termica.
US6419675B1 (en) 1999-09-03 2002-07-16 Conmed Corporation Electrosurgical coagulating and cutting instrument
DE19946020A1 (de) * 1999-09-25 2001-03-29 Eaton Corp Wippenschalter für jeweils einen zweistufigen Betätigungshub
US6485489B2 (en) 1999-10-02 2002-11-26 Quantum Cor, Inc. Catheter system for repairing a mitral valve annulus
US20030069570A1 (en) 1999-10-02 2003-04-10 Witzel Thomas H. Methods for repairing mitral valve annulus percutaneously
JP4233742B2 (ja) 1999-10-05 2009-03-04 エシコン・エンド−サージェリィ・インコーポレイテッド 超音波外科用器具と共に使用される湾曲クランプアームと組織パッドの連結
US6514215B1 (en) * 1999-10-13 2003-02-04 Pentax Corporation Endoscopic tissue collecting instrument
US6773432B1 (en) 1999-10-14 2004-08-10 Applied Medical Resources Corporation Electrosurgical snare
US7887535B2 (en) 1999-10-18 2011-02-15 Covidien Ag Vessel sealing wave jaw
US20030109875A1 (en) 1999-10-22 2003-06-12 Tetzlaff Philip M. Open vessel sealing forceps with disposable electrodes
JP2001157661A (ja) 1999-12-02 2001-06-12 Asahi Optical Co Ltd 内視鏡用操作ワイヤの連結構造
US6635057B2 (en) * 1999-12-02 2003-10-21 Olympus Optical Co. Ltd. Electric operation apparatus
US6302424B1 (en) 1999-12-09 2001-10-16 Holland Hitch Company Force-sensing fifth wheel
DE10003020C2 (de) 2000-01-25 2001-12-06 Aesculap Ag & Co Kg Bipolares Faßinstrument
US6620184B2 (en) 2001-02-28 2003-09-16 Microline Inc. Release mechanism for grasping device
US6689131B2 (en) * 2001-03-08 2004-02-10 Tissuelink Medical, Inc. Electrosurgical device having a tissue reduction sensor
US6358268B1 (en) * 2000-03-06 2002-03-19 Robert B. Hunt Surgical instrument
DE60134391D1 (de) * 2000-03-06 2008-07-24 Salient Surgical Technologies Flüssigkeitsabgabesystem und steuerung für elektrochirurgische geräte
US6953461B2 (en) 2002-05-16 2005-10-11 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US6558385B1 (en) 2000-09-22 2003-05-06 Tissuelink Medical, Inc. Fluid-assisted medical device
US6391035B1 (en) 2000-03-24 2002-05-21 Timothy Appleby Hemostatic clip removal instrument
DE20007177U1 (de) 2000-04-19 2000-08-03 Storz Karl Gmbh & Co Kg Medizinisches Instrument mit sperrbarem Kraftübertragungselement
US20020107514A1 (en) * 2000-04-27 2002-08-08 Hooven Michael D. Transmural ablation device with parallel jaws
JP3791893B2 (ja) 2000-04-27 2006-06-28 オリンパス株式会社 外科用処置具
US6743239B1 (en) 2000-05-25 2004-06-01 St. Jude Medical, Inc. Devices with a bendable tip for medical procedures
DE10027727C1 (de) 2000-06-03 2001-12-06 Aesculap Ag & Co Kg Scheren- oder zangenförmiges chirurgisches Instrument
CA2420227A1 (en) 2000-09-01 2002-03-14 Glenn Kanner Wound site management and wound closure device
US6569105B1 (en) 2000-09-14 2003-05-27 Syntheon, Llc Rotatable and deflectable biopsy forceps
US6755843B2 (en) 2000-09-29 2004-06-29 Olympus Optical Co., Ltd. Endoscopic suturing device
JP4014792B2 (ja) 2000-09-29 2007-11-28 株式会社東芝 マニピュレータ
US6809508B2 (en) 2000-10-20 2004-10-26 Ethicon Endo-Surgery, Inc. Detection circuitry for surgical handpiece system
US6500176B1 (en) 2000-10-23 2002-12-31 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US6656177B2 (en) * 2000-10-23 2003-12-02 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US20030139741A1 (en) 2000-10-31 2003-07-24 Gyrus Medical Limited Surgical instrument
US6716226B2 (en) 2001-06-25 2004-04-06 Inscope Development, Llc Surgical clip
WO2002060523A2 (en) 2000-12-15 2002-08-08 Brown Tony R Atrial fibrillation rf treatment device and method
US6620161B2 (en) 2001-01-24 2003-09-16 Ethicon, Inc. Electrosurgical instrument with an operational sequencing element
US6652521B2 (en) 2001-01-24 2003-11-25 Ethicon, Inc. Surgical instrument with a bi-directional cutting element
US6464702B2 (en) 2001-01-24 2002-10-15 Ethicon, Inc. Electrosurgical instrument with closing tube for conducting RF energy and moving jaws
US6443970B1 (en) 2001-01-24 2002-09-03 Ethicon, Inc. Surgical instrument with a dissecting tip
US6458128B1 (en) 2001-01-24 2002-10-01 Ethicon, Inc. Electrosurgical instrument with a longitudinal element for conducting RF energy and moving a cutting element
US20020111624A1 (en) 2001-01-26 2002-08-15 Witt David A. Coagulating electrosurgical instrument with tissue dam
US20020107517A1 (en) 2001-01-26 2002-08-08 Witt David A. Electrosurgical instrument for coagulation and cutting
US6997931B2 (en) * 2001-02-02 2006-02-14 Lsi Solutions, Inc. System for endoscopic suturing
US6533784B2 (en) * 2001-02-24 2003-03-18 Csaba Truckai Electrosurgical working end for transecting and sealing tissue
US6775575B2 (en) 2001-02-26 2004-08-10 D. Bommi Bommannan System and method for reducing post-surgical complications
US6682527B2 (en) 2001-03-13 2004-01-27 Perfect Surgical Techniques, Inc. Method and system for heating tissue with a bipolar instrument
USD457958S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer and divider
US7083618B2 (en) * 2001-04-06 2006-08-01 Sherwood Services Ag Vessel sealer and divider
USD457959S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer
ES2240723T3 (es) 2001-04-06 2005-10-16 Sherwood Services Ag Bisagra aislante moldeada para instrumentos bipolares.
EP1372506B1 (en) 2001-04-06 2006-06-28 Sherwood Services AG Electrosurgical instrument which reduces collateral damage to adjacent tissue
US7101373B2 (en) * 2001-04-06 2006-09-05 Sherwood Services Ag Vessel sealer and divider
US7118587B2 (en) * 2001-04-06 2006-10-10 Sherwood Services Ag Vessel sealer and divider
CA2442681C (en) 2001-04-06 2011-03-22 Sherwood Services Ag Vessel sealer and divider
US7101372B2 (en) * 2001-04-06 2006-09-05 Sherwood Sevices Ag Vessel sealer and divider
US20030229344A1 (en) 2002-01-22 2003-12-11 Dycus Sean T. Vessel sealer and divider and method of manufacturing same
US7101371B2 (en) 2001-04-06 2006-09-05 Dycus Sean T Vessel sealer and divider
US7090673B2 (en) * 2001-04-06 2006-08-15 Sherwood Services Ag Vessel sealer and divider
US7473253B2 (en) 2001-04-06 2009-01-06 Covidien Ag Vessel sealer and divider with non-conductive stop members
US20090292282A9 (en) 2001-04-06 2009-11-26 Dycus Sean T Movable handle for vessel sealer
AU2001249937B2 (en) 2001-04-06 2006-02-09 Covidien Ag Vessel sealing instrument
US6726068B2 (en) 2001-04-09 2004-04-27 Dennis J. Miller Elastomeric thimble
JP2002311387A (ja) * 2001-04-17 2002-10-23 Minebea Co Ltd 多段反射型ファラデー回転子
US7090689B2 (en) 2001-04-18 2006-08-15 Olympus Corporation Surgical instrument
US6676676B2 (en) * 2001-05-02 2004-01-13 Novare Surgical Systems Clamp having bendable shaft
US6544274B2 (en) 2001-05-02 2003-04-08 Novare Surgical Systems, Inc. Clamp having bendable shaft
US20030018332A1 (en) 2001-06-20 2003-01-23 Schmaltz Dale Francis Bipolar electrosurgical instrument with replaceable electrodes
US6545239B2 (en) 2001-08-09 2003-04-08 Illinois Tool Works Inc. Rocker switch with snap dome contacts
US6966907B2 (en) 2001-08-27 2005-11-22 Gyrus Medical Limited Electrosurgical generator and system
US6808525B2 (en) 2001-08-27 2004-10-26 Gyrus Medical, Inc. Bipolar electrosurgical hook probe for cutting and coagulating tissue
US6994709B2 (en) * 2001-08-30 2006-02-07 Olympus Corporation Treatment device for tissue from living tissues
WO2003020339A2 (en) 2001-09-05 2003-03-13 Tissuelink Medical, Inc. Fluid assisted medical devices, fluid delivery systems and controllers for such devices, and methods
US6652514B2 (en) 2001-09-13 2003-11-25 Alan G. Ellman Intelligent selection system for electrosurgical instrument
US6802843B2 (en) * 2001-09-13 2004-10-12 Csaba Truckai Electrosurgical working end with resistive gradient electrodes
US6773434B2 (en) * 2001-09-18 2004-08-10 Ethicon, Inc. Combination bipolar forceps and scissors instrument
US6773409B2 (en) 2001-09-19 2004-08-10 Surgrx Llc Surgical system for applying ultrasonic energy to tissue
US6527771B1 (en) 2001-09-28 2003-03-04 Ethicon, Inc. Surgical device for endoscopic vein harvesting
US6616661B2 (en) 2001-09-28 2003-09-09 Ethicon, Inc. Surgical device for clamping, ligating, and severing tissue
US7070597B2 (en) 2001-10-18 2006-07-04 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US6929644B2 (en) * 2001-10-22 2005-08-16 Surgrx Inc. Electrosurgical jaw structure for controlled energy delivery
US7011657B2 (en) 2001-10-22 2006-03-14 Surgrx, Inc. Jaw structure for electrosurgical instrument and method of use
US6770072B1 (en) * 2001-10-22 2004-08-03 Surgrx, Inc. Electrosurgical jaw structure for controlled energy delivery
US7354440B2 (en) * 2001-10-22 2008-04-08 Surgrx, Inc. Electrosurgical instrument and method of use
US20030216732A1 (en) * 2002-05-20 2003-11-20 Csaba Truckai Medical instrument with thermochromic or piezochromic surface indicators
US7311709B2 (en) 2001-10-22 2007-12-25 Surgrx, Inc. Electrosurgical instrument and method of use
US7041102B2 (en) 2001-10-22 2006-05-09 Surgrx, Inc. Electrosurgical working end with replaceable cartridges
US7083619B2 (en) 2001-10-22 2006-08-01 Surgrx, Inc. Electrosurgical instrument and method of use
US6926716B2 (en) 2001-11-09 2005-08-09 Surgrx Inc. Electrosurgical instrument
JP3971159B2 (ja) 2001-11-07 2007-09-05 株式会社東海理化電機製作所 スイッチ装置
US6616658B2 (en) 2001-11-08 2003-09-09 Leonard Ineson Electrosurgical pencil
US6757977B2 (en) 2001-11-20 2004-07-06 Jai Surgicals Limited Disposable surgical safety scalpel
US7753908B2 (en) 2002-02-19 2010-07-13 Endoscopic Technologies, Inc. (Estech) Apparatus for securing an electrophysiology probe to a clamp
US7024033B2 (en) * 2001-12-08 2006-04-04 Microsoft Corp. Method for boosting the performance of machine-learning classifiers
US7052496B2 (en) 2001-12-11 2006-05-30 Olympus Optical Co., Ltd. Instrument for high-frequency treatment and method of high-frequency treatment
US6656175B2 (en) 2001-12-11 2003-12-02 Medtronic, Inc. Method and system for treatment of atrial tachyarrhythmias
US20030114851A1 (en) 2001-12-13 2003-06-19 Csaba Truckai Electrosurgical jaws for controlled application of clamping pressure
US6660072B2 (en) 2001-12-21 2003-12-09 Hewlett-Packard Development Company, L.P. Reduced-corrosion inkjet inks and methods for making same
US6942662B2 (en) 2001-12-27 2005-09-13 Gyrus Group Plc Surgical Instrument
US6602252B2 (en) 2002-01-03 2003-08-05 Starion Instruments Corporation Combined dissecting, cauterizing, and stapling device
US6676660B2 (en) * 2002-01-23 2004-01-13 Ethicon Endo-Surgery, Inc. Feedback light apparatus and method for use with an electrosurgical instrument
US6932816B2 (en) 2002-02-19 2005-08-23 Boston Scientific Scimed, Inc. Apparatus for converting a clamp into an electrophysiology device
US6733498B2 (en) 2002-02-19 2004-05-11 Live Tissue Connect, Inc. System and method for control of tissue welding
US20030158548A1 (en) 2002-02-19 2003-08-21 Phan Huy D. Surgical system including clamp and apparatus for securing an energy transmission device to the clamp and method of converting a clamp into an electrophysiology device
JP4089252B2 (ja) 2002-03-11 2008-05-28 オムロン株式会社 直流負荷用接点構成および該構成を有した開閉器
US20040115296A1 (en) 2002-04-05 2004-06-17 Duffin Terry M. Retractable overmolded insert retention apparatus
JP4131011B2 (ja) * 2002-04-09 2008-08-13 Hoya株式会社 内視鏡用嘴状処置具
US20040030330A1 (en) * 2002-04-18 2004-02-12 Brassell James L. Electrosurgery systems
ES2377483T3 (es) 2002-04-25 2012-03-28 Tyco Healthcare Group Lp Instrumentos quirúrgicos que incluyen sistemas microelectromecánicos (MEMS)
WO2003096918A1 (en) 2002-05-15 2003-11-27 Kevin Marchitto Method and device for anastomoses
US7967839B2 (en) 2002-05-20 2011-06-28 Rocky Mountain Biosystems, Inc. Electromagnetic treatment of tissues and cells
US20030236325A1 (en) 2002-05-30 2003-12-25 Michela Bonora Agricultural articles
DE60325283D1 (de) * 2002-06-06 2009-01-22 Covidien Ag Bipolares Elektrochirurgisches Laparoskopieinstrument
US7033356B2 (en) 2002-07-02 2006-04-25 Gyrus Medical, Inc. Bipolar electrosurgical instrument for cutting desiccating and sealing tissue
JP4373146B2 (ja) 2002-07-11 2009-11-25 オリンパス株式会社 内視鏡用縫合装置
JP3964754B2 (ja) 2002-07-30 2007-08-22 アルプス電気株式会社 スイッチ装置
US6987244B2 (en) * 2002-07-31 2006-01-17 Illinois Tool Works Inc. Self-contained locking trigger assembly and systems which incorporate the assembly
AU2003264012A1 (en) 2002-08-09 2004-02-25 Stephen T. Flock Activated surgical fasteners, devices therefor and uses thereof
US7223264B2 (en) 2002-08-21 2007-05-29 Resect Medical, Inc. Thermal coagulation of tissue during tissue resection
US20040260281A1 (en) 2002-09-19 2004-12-23 Baxter Chester O. Finger tip electrosurgical medical device
US20040064151A1 (en) 2002-09-27 2004-04-01 Starion Instruments Corporation Ultrasonic forceps
US7087054B2 (en) 2002-10-01 2006-08-08 Surgrx, Inc. Electrosurgical instrument and method of use
US7276068B2 (en) * 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7270664B2 (en) 2002-10-04 2007-09-18 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
DE60312348T2 (de) * 2002-10-04 2008-01-24 Covidien Ag Elektrodenanordnung zum versiegeln und schneiden von gewebe
US7931649B2 (en) 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
ES2280841T3 (es) 2002-10-04 2007-09-16 Covidien Ag Instrumento electroquirurgico para cerrar vasos.
US7083620B2 (en) 2002-10-30 2006-08-01 Medtronic, Inc. Electrosurgical hemostat
US7244257B2 (en) 2002-11-05 2007-07-17 Sherwood Services Ag Electrosurgical pencil having a single button variable control
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7314471B2 (en) * 2002-11-18 2008-01-01 Trevor John Milton Disposable scalpel with retractable blade
DE60329625D1 (de) 2002-11-27 2009-11-19 Pulmonx Corp Einführbesteck für implantierbare bronchiale isolationsvorrichtungen
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US7033354B2 (en) * 2002-12-10 2006-04-25 Sherwood Services Ag Electrosurgical electrode having a non-conductive porous ceramic coating
US7087051B2 (en) 2003-01-15 2006-08-08 Boston Scientific Scimed, Inc. Articulating radio frequency probe handle
USD493888S1 (en) 2003-02-04 2004-08-03 Sherwood Services Ag Electrosurgical pencil with pistol grip
US7169146B2 (en) * 2003-02-14 2007-01-30 Surgrx, Inc. Electrosurgical probe and method of use
JP4829100B2 (ja) 2003-02-20 2011-11-30 コヴィディエン・アクチェンゲゼルシャフト 電気外科用機器を発電機に接続するためのシステムおよび方法
US7909820B2 (en) * 2003-03-06 2011-03-22 Salient Surgical Technologies, Inc. Electrosurgical generator and bipolar electrosurgical device adaptors
US7776036B2 (en) 2003-03-13 2010-08-17 Covidien Ag Bipolar concentric electrode assembly for soft tissue fusion
US20060064086A1 (en) * 2003-03-13 2006-03-23 Darren Odom Bipolar forceps with multiple electrode array end effector assembly
US20060052779A1 (en) * 2003-03-13 2006-03-09 Hammill Curt D Electrode assembly for tissue fusion
JP4131014B2 (ja) 2003-03-18 2008-08-13 Hoya株式会社 内視鏡用嘴状処置具
US20040224590A1 (en) 2003-03-31 2004-11-11 George Rawa Thermoplastic/fiber material composites, composite/metallic articles and methods for making composite/metallic articles
DE10330604A1 (de) 2003-04-01 2004-10-28 Tuebingen Scientific Surgical Products Gmbh Chirurgisches Instrument
US20040199181A1 (en) 2003-04-02 2004-10-07 Knodel Bryan D. Surgical device for anastomosis
US7128741B1 (en) * 2003-04-04 2006-10-31 Megadyne Medical Products, Inc. Methods, systems, and devices for performing electrosurgical procedures
AU2004234014C1 (en) * 2003-04-25 2010-09-16 Covidien Lp Surgical access apparatus
US7160299B2 (en) 2003-05-01 2007-01-09 Sherwood Services Ag Method of fusing biomaterials with radiofrequency energy
AU2004237772B2 (en) 2003-05-01 2009-12-10 Covidien Ag Electrosurgical instrument which reduces thermal damage to adjacent tissue
US8128624B2 (en) * 2003-05-01 2012-03-06 Covidien Ag Electrosurgical instrument that directs energy delivery and protects adjacent tissue
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
ES2368488T3 (es) 2003-05-15 2011-11-17 Covidien Ag Sellador de tejidos con miembros de tope variables de forma selectiva y no conductores.
USD496997S1 (en) 2003-05-15 2004-10-05 Sherwood Services Ag Vessel sealer and divider
USD499181S1 (en) 2003-05-15 2004-11-30 Sherwood Services Ag Handle for a vessel sealer and divider
JP4217546B2 (ja) 2003-06-12 2009-02-04 株式会社東海理化電機製作所 スイッチ
CA2528918C (en) 2003-06-13 2014-06-10 Sherwood Services Ag Vessel sealer and divider for use with small trocars and cannulas
US7597693B2 (en) 2003-06-13 2009-10-06 Covidien Ag Vessel sealer and divider for use with small trocars and cannulas
US7156846B2 (en) 2003-06-13 2007-01-02 Sherwood Services Ag Vessel sealer and divider for use with small trocars and cannulas
US7857812B2 (en) 2003-06-13 2010-12-28 Covidien Ag Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US7150097B2 (en) 2003-06-13 2006-12-19 Sherwood Services Ag Method of manufacturing jaw assembly for vessel sealer and divider
US7150749B2 (en) 2003-06-13 2006-12-19 Sherwood Services Ag Vessel sealer and divider having elongated knife stroke and safety cutting mechanism
JP3850818B2 (ja) 2003-06-30 2006-11-29 小島プレス工業株式会社 スイッチ装置
US7344268B2 (en) 2003-07-07 2008-03-18 Xenonics, Inc. Long-range, handheld illumination system
DE10330699B3 (de) 2003-07-08 2005-02-17 Aesculap Ag & Co. Kg Chirurgisches Instrument zum Handhaben eines Implantats
US6981628B2 (en) * 2003-07-09 2006-01-03 Ethicon Endo-Surgery, Inc. Surgical instrument with a lateral-moving articulation control
JP2005032491A (ja) * 2003-07-09 2005-02-03 Matsushita Electric Ind Co Ltd スイッチ
USD509297S1 (en) 2003-10-17 2005-09-06 Tyco Healthcare Group, Lp Surgical instrument
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US20050096645A1 (en) 2003-10-31 2005-05-05 Parris Wellman Multitool surgical device
US7232440B2 (en) 2003-11-17 2007-06-19 Sherwood Services Ag Bipolar forceps having monopolar extension
US7367976B2 (en) 2003-11-17 2008-05-06 Sherwood Services Ag Bipolar forceps having monopolar extension
US7500975B2 (en) 2003-11-19 2009-03-10 Covidien Ag Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US7811283B2 (en) 2003-11-19 2010-10-12 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US7252667B2 (en) 2003-11-19 2007-08-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism and distal lockout
US7131970B2 (en) 2003-11-19 2006-11-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7442193B2 (en) * 2003-11-20 2008-10-28 Covidien Ag Electrically conductive/insulative over-shoe for tissue fusion
US7156842B2 (en) * 2003-11-20 2007-01-02 Sherwood Services Ag Electrosurgical pencil with improved controls
US7300435B2 (en) 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US6914201B2 (en) 2003-11-26 2005-07-05 Methode Electronics, Inc. Multiple detent switch
US7052489B2 (en) 2003-12-05 2006-05-30 Scimed Life Systems, Inc. Medical device with deflecting shaft and related methods of manufacture and use
US7145757B2 (en) 2004-01-13 2006-12-05 Eaton Corporation System for eliminating arcing faults and power distribution system employing the same
JP4436698B2 (ja) 2004-02-25 2010-03-24 オリンパス株式会社 高周波処置具
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7342754B2 (en) 2004-03-02 2008-03-11 Eaton Corporation Bypass circuit to prevent arcing in a switching device
US6979786B2 (en) 2004-03-18 2005-12-27 Delphi Technologies, Inc. Contact structures for sliding switches
USD541938S1 (en) 2004-04-09 2007-05-01 Sherwood Services Ag Open vessel sealer with mechanical cutter
USD533942S1 (en) 2004-06-30 2006-12-19 Sherwood Services Ag Open vessel sealer with mechanical cutter
US7195631B2 (en) 2004-09-09 2007-03-27 Sherwood Services Ag Forceps with spring loaded end effector assembly
US7540872B2 (en) * 2004-09-21 2009-06-02 Covidien Ag Articulating bipolar electrosurgical instrument
USD525361S1 (en) 2004-10-06 2006-07-18 Sherwood Services Ag Hemostat style elongated dissecting and dividing instrument
USD535027S1 (en) 2004-10-06 2007-01-09 Sherwood Services Ag Low profile vessel sealing and cutting mechanism
USD541418S1 (en) 2004-10-06 2007-04-24 Sherwood Services Ag Lung sealing device
US7384421B2 (en) 2004-10-06 2008-06-10 Sherwood Services Ag Slide-activated cutting assembly
USD531311S1 (en) 2004-10-06 2006-10-31 Sherwood Services Ag Pistol grip style elongated dissecting and dividing instrument
US20060079933A1 (en) 2004-10-08 2006-04-13 Dylan Hushka Latching mechanism for forceps
US7628792B2 (en) 2004-10-08 2009-12-08 Covidien Ag Bilateral foot jaws
US20060190035A1 (en) * 2004-10-08 2006-08-24 Sherwood Services Ag Latching mechanism for forceps
USD567943S1 (en) 2004-10-08 2008-04-29 Sherwood Services Ag Over-ratchet safety for a vessel sealing instrument
US7955332B2 (en) 2004-10-08 2011-06-07 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
USD564662S1 (en) 2004-10-13 2008-03-18 Sherwood Services Ag Hourglass-shaped knife for electrosurgical forceps
US20060084973A1 (en) 2004-10-14 2006-04-20 Dylan Hushka Momentary rocker switch for use with vessel sealing instruments
US7686827B2 (en) 2004-10-21 2010-03-30 Covidien Ag Magnetic closure mechanism for hemostat
US7909823B2 (en) * 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
US7686804B2 (en) * 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US7491202B2 (en) 2005-03-31 2009-02-17 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
JP4534004B2 (ja) 2005-04-07 2010-09-01 学校法人慶應義塾 マニピュレータ
US20060253126A1 (en) 2005-05-04 2006-11-09 Bernard Medical, Llc Endoluminal suturing device and method
US20060283093A1 (en) 2005-06-15 2006-12-21 Ivan Petrovic Planarization composition
US20060287641A1 (en) 2005-06-16 2006-12-21 Alfred Perlin Laparoscopic surgical instrument for in situ tool exchange
US7837685B2 (en) * 2005-07-13 2010-11-23 Covidien Ag Switch mechanisms for safe activation of energy on an electrosurgical instrument
US7628791B2 (en) 2005-08-19 2009-12-08 Covidien Ag Single action tissue sealer
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
CA2561034C (en) 2005-09-30 2014-12-09 Sherwood Services Ag Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
AU2006225175B2 (en) 2005-09-30 2012-08-30 Covidien Ag Insulating boot for electrosurgical forceps
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
US7789878B2 (en) 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
US20070118115A1 (en) 2005-11-22 2007-05-24 Sherwood Services Ag Bipolar electrosurgical sealing instrument having an improved tissue gripping device
US7594916B2 (en) 2005-11-22 2009-09-29 Covidien Ag Electrosurgical forceps with energy based tissue division
US7246734B2 (en) 2005-12-05 2007-07-24 Ethicon Endo-Surgery, Inc. Rotary hydraulic pump actuated multi-stroke surgical instrument
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US7766910B2 (en) 2006-01-24 2010-08-03 Tyco Healthcare Group Lp Vessel sealer and divider for large tissue structures
US8241282B2 (en) 2006-01-24 2012-08-14 Tyco Healthcare Group Lp Vessel sealing cutting assemblies
US8734443B2 (en) * 2006-01-24 2014-05-27 Covidien Lp Vessel sealer and divider for large tissue structures
US8882766B2 (en) 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
JP4441496B2 (ja) 2006-02-20 2010-03-31 Hoya株式会社 内視鏡用バイポーラ型高周波処置具
US7641653B2 (en) 2006-05-04 2010-01-05 Covidien Ag Open vessel sealing forceps disposable handswitch
US20070260238A1 (en) 2006-05-05 2007-11-08 Sherwood Services Ag Combined energy level button
US7846158B2 (en) 2006-05-05 2010-12-07 Covidien Ag Apparatus and method for electrode thermosurgery
US20070265616A1 (en) 2006-05-10 2007-11-15 Sherwood Services Ag Vessel sealing instrument with optimized power density
US7776037B2 (en) * 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US20080015575A1 (en) * 2006-07-14 2008-01-17 Sherwood Services Ag Vessel sealing instrument with pre-heated electrodes
US7744615B2 (en) * 2006-07-18 2010-06-29 Covidien Ag Apparatus and method for transecting tissue on a bipolar vessel sealing instrument
US20080033428A1 (en) * 2006-08-04 2008-02-07 Sherwood Services Ag System and method for disabling handswitching on an electrosurgical instrument
US7731717B2 (en) * 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US8597297B2 (en) * 2006-08-29 2013-12-03 Covidien Ag Vessel sealing instrument with multiple electrode configurations
US8070746B2 (en) 2006-10-03 2011-12-06 Tyco Healthcare Group Lp Radiofrequency fusion of cardiac tissue
US7951149B2 (en) 2006-10-17 2011-05-31 Tyco Healthcare Group Lp Ablative material for use with tissue treatment device
USD575395S1 (en) 2007-02-15 2008-08-19 Tyco Healthcare Group Lp Hemostat style elongated dissecting and dividing instrument
US8267935B2 (en) 2007-04-04 2012-09-18 Tyco Healthcare Group Lp Electrosurgical instrument reducing current densities at an insulator conductor junction
USD575401S1 (en) 2007-06-12 2008-08-19 Tyco Healthcare Group Lp Vessel sealer
US20090024126A1 (en) * 2007-07-19 2009-01-22 Ryan Artale Tissue fusion device
US7877853B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing end effector assembly for sealing tissue
US20090082766A1 (en) 2007-09-20 2009-03-26 Tyco Healthcare Group Lp Tissue Sealer and End Effector Assembly and Method of Manufacturing Same
US7877852B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing an end effector assembly for sealing tissue
US20090088748A1 (en) 2007-09-28 2009-04-02 Tyco Healthcare Group Lp Insulating Mesh-like Boot for Electrosurgical Forceps
US8235992B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot with mechanical reinforcement for electrosurgical forceps
US8241283B2 (en) 2007-09-28 2012-08-14 Tyco Healthcare Group Lp Dual durometer insulating boot for electrosurgical forceps
US8235993B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with exohinged structure
US8221416B2 (en) 2007-09-28 2012-07-17 Tyco Healthcare Group Lp Insulating boot for electrosurgical forceps with thermoplastic clevis
US8251996B2 (en) 2007-09-28 2012-08-28 Tyco Healthcare Group Lp Insulating sheath for electrosurgical forceps
US8267936B2 (en) 2007-09-28 2012-09-18 Tyco Healthcare Group Lp Insulating mechanically-interfaced adhesive for electrosurgical forceps
US20090088750A1 (en) 2007-09-28 2009-04-02 Tyco Healthcare Group Lp Insulating Boot with Silicone Overmold for Electrosurgical Forceps
US9023043B2 (en) 2007-09-28 2015-05-05 Covidien Lp Insulating mechanically-interfaced boot and jaws for electrosurgical forceps
US20090088745A1 (en) 2007-09-28 2009-04-02 Tyco Healthcare Group Lp Tapered Insulating Boot for Electrosurgical Forceps
US8236025B2 (en) 2007-09-28 2012-08-07 Tyco Healthcare Group Lp Silicone insulated electrosurgical forceps

Also Published As

Publication number Publication date
EP1852081B1 (en) 2009-08-26
US7270664B2 (en) 2007-09-18
DE602007002102D1 (de) 2009-10-08
EP2409653A3 (en) 2012-11-21
US8333765B2 (en) 2012-12-18
CA2587573C (en) 2015-10-13
EP3078342B1 (en) 2018-12-26
EP2409653A2 (en) 2012-01-25
EP2110093A1 (en) 2009-10-21
AU2007202005B2 (en) 2013-04-18
EP1852081A1 (en) 2007-11-07
EP2409653B1 (en) 2016-04-13
US20120233844A1 (en) 2012-09-20
EP3078342A1 (en) 2016-10-12
US8192433B2 (en) 2012-06-05
EP2110093B1 (en) 2012-12-26
US20060271038A1 (en) 2006-11-30
CA2587573A1 (en) 2007-11-04
AU2007202005A1 (en) 2007-11-22
US20080045947A1 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
ES2330153T3 (es) Instrumento de cierre de vasos con un mecanismo de corte electrico.
ES2321415T3 (es) Instrumento para el sellado de vasos con mecanismo de corte electrico.
JP5460967B2 (ja) 電気的切除メカニズムを有する血管密封器具
ES2349436T3 (es) Conmutador manual desechable para un fórceps para obturar vasos abiertos.
ES2729552T3 (es) Instrumento electroquirúrgico y parte de mordaza para ello
ES2283808T3 (es) Conjunto de electrodo para sellar y cortar tejidos.
ES2364666T3 (es) Obturador y divisor de vasos con miembros de tope no conductivos.
ES2438172T3 (es) Instrumento de sellado vascular
ES2329571T3 (es) Metodo de fabricar un conjunto de mordazas.
ES2241369T3 (es) Forceps bipolar electroquirurgico endoscopico.
ES2297579T3 (es) Forceps con conjunto de accionador extremo cargado por resorte.
AU2011226909B2 (en) Vessel sealing instrument with electrical cutting mechanism