EP3666931B1 - Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung - Google Patents
Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung Download PDFInfo
- Publication number
- EP3666931B1 EP3666931B1 EP19206950.8A EP19206950A EP3666931B1 EP 3666931 B1 EP3666931 B1 EP 3666931B1 EP 19206950 A EP19206950 A EP 19206950A EP 3666931 B1 EP3666931 B1 EP 3666931B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrolysis
- chromium
- electrolyte solution
- chromium oxide
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000576 coating method Methods 0.000 title claims description 125
- 239000011248 coating agent Substances 0.000 title claims description 107
- 229910000423 chromium oxide Inorganic materials 0.000 title claims description 106
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 title claims description 103
- 229910052751 metal Inorganic materials 0.000 title claims description 75
- 239000002184 metal Substances 0.000 title claims description 75
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 title claims description 68
- 239000011651 chromium Substances 0.000 title claims description 59
- 229910052804 chromium Inorganic materials 0.000 title claims description 45
- 238000000034 method Methods 0.000 title claims description 43
- 239000003792 electrolyte Substances 0.000 title description 14
- 238000005868 electrolysis reaction Methods 0.000 claims description 272
- 239000008151 electrolyte solution Substances 0.000 claims description 92
- 239000000203 mixture Substances 0.000 claims description 18
- 150000001845 chromium compounds Chemical class 0.000 claims description 17
- 150000003839 salts Chemical class 0.000 claims description 7
- -1 alkali metal carboxylate Chemical class 0.000 claims description 6
- 239000008139 complexing agent Substances 0.000 claims description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 6
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 claims description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 4
- 235000011152 sodium sulphate Nutrition 0.000 claims description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 3
- 229910052936 alkali metal sulfate Inorganic materials 0.000 claims description 3
- 235000019253 formic acid Nutrition 0.000 claims description 3
- 229910052939 potassium sulfate Inorganic materials 0.000 claims description 3
- 235000011151 potassium sulphates Nutrition 0.000 claims description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 239000004280 Sodium formate Substances 0.000 claims description 2
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 2
- 239000004327 boric acid Substances 0.000 claims description 2
- 239000000872 buffer Substances 0.000 claims description 2
- 239000006172 buffering agent Substances 0.000 claims description 2
- BFGKITSFLPAWGI-UHFFFAOYSA-N chromium(3+) Chemical compound [Cr+3] BFGKITSFLPAWGI-UHFFFAOYSA-N 0.000 claims description 2
- 150000004675 formic acid derivatives Chemical class 0.000 claims description 2
- 150000004820 halides Chemical class 0.000 claims description 2
- WFIZEGIEIOHZCP-UHFFFAOYSA-M potassium formate Chemical compound [K+].[O-]C=O WFIZEGIEIOHZCP-UHFFFAOYSA-M 0.000 claims description 2
- 235000019254 sodium formate Nutrition 0.000 claims description 2
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 claims 1
- 239000001120 potassium sulphate Substances 0.000 claims 1
- 229910021653 sulphate ion Inorganic materials 0.000 claims 1
- 229940021013 electrolyte solution Drugs 0.000 description 74
- 239000010410 layer Substances 0.000 description 49
- 229910000831 Steel Inorganic materials 0.000 description 23
- 239000010959 steel Substances 0.000 description 23
- 230000007797 corrosion Effects 0.000 description 13
- 238000005260 corrosion Methods 0.000 description 13
- 230000008021 deposition Effects 0.000 description 11
- 239000000758 substrate Substances 0.000 description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000004922 lacquer Substances 0.000 description 6
- 229920006254 polymer film Polymers 0.000 description 6
- 239000005029 tin-free steel Substances 0.000 description 6
- 238000004806 packaging method and process Methods 0.000 description 5
- 238000009533 lab test Methods 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000005028 tinplate Substances 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- UOUJSJZBMCDAEU-UHFFFAOYSA-N chromium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Cr+3].[Cr+3] UOUJSJZBMCDAEU-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- VQWFNAGFNGABOH-UHFFFAOYSA-K chromium(iii) hydroxide Chemical class [OH-].[OH-].[OH-].[Cr+3] VQWFNAGFNGABOH-UHFFFAOYSA-K 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- GVEHJMMRQRRJPM-UHFFFAOYSA-N chromium(2+);methanidylidynechromium Chemical compound [Cr+2].[Cr]#[C-].[Cr]#[C-] GVEHJMMRQRRJPM-UHFFFAOYSA-N 0.000 description 1
- KZYOZXGUWRHMHN-UHFFFAOYSA-N chromium(3+) oxygen(2-) Chemical compound [O-2].[Cr+3].[O-2].[Cr+3] KZYOZXGUWRHMHN-UHFFFAOYSA-N 0.000 description 1
- DSHWASKZZBZKOE-UHFFFAOYSA-K chromium(3+);hydroxide;sulfate Chemical compound [OH-].[Cr+3].[O-]S([O-])(=O)=O DSHWASKZZBZKOE-UHFFFAOYSA-K 0.000 description 1
- OGDYVWQEAVKKDI-UHFFFAOYSA-N chromium(3+);oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Cr+3].[Cr+3] OGDYVWQEAVKKDI-UHFFFAOYSA-N 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 1
- 229910000356 chromium(III) sulfate Inorganic materials 0.000 description 1
- 235000015217 chromium(III) sulphate Nutrition 0.000 description 1
- 239000011696 chromium(III) sulphate Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/38—Chromatising
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
- C25D7/0614—Strips or foils
- C25D7/0628—In vertical cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/04—Electroplating: Baths therefor from solutions of chromium
- C25D3/06—Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/16—Apparatus for electrolytic coating of small objects in bulk
- C25D17/28—Apparatus for electrolytic coating of small objects in bulk with means for moving the objects individually through the apparatus during treatment
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/02—Heating or cooling
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/12—Process control or regulation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
- C25D7/0614—Strips or foils
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/10—Agitating of electrolytes; Moving of racks
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
- C25D5/12—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
- C25D5/14—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
Definitions
- the invention relates to a method for producing a metal strip coated with a coating of chromium and chromium oxide according to the preamble of claim 1.
- tin-free steel sheet steel sheets which are electrolytically coated with a coating of chromium and chromium oxide are known from the prior art, which are referred to as tin-free steel sheet ("Tin Free Steel", TFS) or as “Electrolytic Chromium Coated Steel (ECCS)" and a Represent an alternative to tinplate.
- TFS Tin Free Steel
- ECCS Electrolytic Chromium Coated Steel
- tin-free steel sheets are particularly characterized by good adhesion for paints or organic protective coatings (such as, for example, polymer coatings made of PP or PET).
- these chromium-coated steel sheets have good corrosion resistance and good processability in forming processes for the production of packaging, e.g. in deep-drawing and ironing processes.
- electrolytic coating processes are known from the prior art, with which the coating is applied in a strip coating system to a strip-shaped steel sheet using an electrolyte containing chromium VI.
- these coating processes due to the properties of the chromium VI-containing electrolytes used in the electrolysis process, which are hazardous to the environment and health, these coating processes have considerable disadvantages and will have to be replaced by alternative coating processes in the foreseeable future, as the use of chromium VI-containing materials will be prohibited in the future.
- a method for the electrolytic coating of an electrically conductive substrate which is in particular a black sheet (uncoated steel sheet) or a tinplate (tinned steel sheet) can act, known with a chrome metal-chromium oxide (Cr-CrOx) layer, in which the substrate connected as a cathode is brought into contact with an electrolyte solution which contains a trivalent chromium compound (Cr-III), with an anode is provided that prevents or at least reduces the oxidation of chromium (III) ions to chromium (VI) ions and hydrogen bubbles that arise during the electrolytic deposition of the coating on the surface of the substrate are removed.
- Cr-CrOx chrome metal-chromium oxide
- Cr-III trivalent chromium compound
- the deposition reaction and the surface properties of the electrolytically deposited coating depend on the temperature of the electrolyte solution and that temperatures of the electrolyte solution between 30 ° C and 70 ° C are suitable for producing coatings with a good surface appearance.
- a preferred temperature range between 40 ° C. and 60 ° C. has been recognized as advantageous with regard to an efficient deposition reaction because the electrolyte solution has good conductivity at these temperatures.
- a method for the electrolytic coating of a strip-shaped steel sheet with a chromium metal / chromium oxide (Cr-CrOx) layer in a strip coating system in which the steel sheet, connected as a cathode, is passed through an electrolyte solution at high strip speeds of more than 100 m / min, which contains a trivalent chromium compound (Cr-III).
- composition of the coating which, depending on the components still contained in the electrolyte solution in addition to the trivalent chromium compound (Cr-III), can also contain chromium sulfate and chromium carbide in addition to the constituents chromium metal and chromium oxide, depends to a large extent on the current densities of the electrolysis depends, which are set at the anodes during the electrolytic deposition process in the electrolysis tanks in which the electrolyte solution is contained.
- the coating contains a higher one Chromium oxide content, which makes up between 1 ⁇ 4 and 1/3 of the total weight of the coating in the area of higher current densities.
- the values of the current density thresholds that delimit the areas (regime I to III) depend on the belt speed with which the steel sheet is moved through the electrolyte solution.
- Another method for the electrolytic coating of a black sheet with a chromium metal / chromium oxide (Cr-CrOx) layer made of an electrolyte with a trivalent chromium compound is from EP 3 378 973-A1 known, in which the black plate connected as cathode is passed at a speed of at least 50 m / min in a coating line through the electrolyte, which has a temperature between 30 and 70 ° C and preferably at least 40 ° C.
- the object of the present invention is to provide a method that is as efficient as possible and can be carried out on an industrial scale in a coil coating system for producing a metal strip coated with a coating of chromium and chromium oxide based on an electrolyte solution with a trivalent chromium compound, the coating having the highest possible proportion of chromium oxide is intended to achieve adequate corrosion resistance of the coated metal strip and a good adhesive base for organic coatings, such as paints or polymer films made of PET or PP.
- a coating containing chromium metal and chromium oxide is applied electrolytically from an electrolyte solution containing a trivalent chromium compound to a metal strip, in particular a steel strip, by bringing the metal strip into contact with the electrolyte solution connected as a cathode , the metal strip successively at a predetermined strip speed in a strip running direction at least through a first electrolysis tank (1a) or a front group of electrolysis tanks (1a, 1b) and through a last electrolysis tank (1c) or a rear group of electrolysis tanks (1g) as seen in the strip running direction , 1h), the temperature of the electrolyte solution in the first electrolysis tank (1a) or the front group of electrolysis tanks (1a, 1b) averaged over the volume of the electrolysis tank being greater than the average temperature of the electrolyte solution in the last electrolysis tank (1c) or the rear group of E electrolysis tanks (1g, 1h) and in the last electrolysis tank seen in the direction
- chromium oxide all oxide forms of chromium (CrOx), including chromium hydroxides, in particular chromium (III) hydroxide and chromium (III) oxide hydrate, as well as mixtures thereof are meant.
- the electrolysis time in which the metal strip is in effective electrolytic contact with the electrolyte solution is expediently less than 2 seconds in each of the electrolysis tanks, so that the metal strip moves at a constant belt speed through the several electrolysis tanks arranged one behind the other in the direction of belt travel, which are expediently designed in the same way are, can be guided.
- the electrolysis time in each of the electrolysis tanks is preferably between 0.5 and 2.0 seconds, in particular between 0.6 seconds and 1.8 seconds.
- the electrolysis time in each of the electrolysis tanks can also be between 0.3 and 2.0 seconds and preferably between 0.5 seconds and 1.4 seconds.
- the total electrolysis time (t E ) in which the metal strip is in effective electrolytic contact with the electrolyte solution is preferably between 2 and 16 seconds and in particular between 4 seconds and 14 seconds across all electrolysis tanks.
- the temperature of the electrolyte solution in the first electrolysis tank or in the front group of electrolysis tanks can be higher than in the last electrolysis tank.
- the temperature of the electrolyte solution in the first electrolysis tank or in the front group of electrolysis tanks is expediently more than 50 ° C and in particular between 53 ° C and 70 ° C, since in this temperature range a more efficient deposition of chromium, in particular in the form of chromium metal , can be observed.
- a coating can be deposited on the surface of the metal strip, at least one lower and one upper Layer comprises, wherein the lower layer is deposited in the first electrolysis tank or in the front group of electrolysis tanks and the upper layer in the last electrolysis tank or in the rear group of electrolysis tanks and the lower layer has a low proportion of chromium oxide and the upper layer a higher one Has proportion of chromium oxide.
- the proportion by weight of chromium oxide in the lower layer facing the surface of the metal strip is preferably less than 15% and in the upper layer preferably more than 40%.
- a uniform temperature of the electrolyte solution in the electrolysis tanks which (averaged over the volume of the respective electrolysis tank) in all electrolysis tanks is preferably between 20 ° C and less than 40 ° C and particularly preferably between 25 ° C and 38 ° C. Due to the exothermic deposition process, the electrolyte solution in the electrolysis tanks must be cooled in order to maintain the preferred temperatures. This is made more difficult by the fact that the circulation systems of the electrolysis tanks are usually coupled. Therefore, for reasons of apparatus, it can be expedient to maintain the same temperature in each case in the electrolysis tanks in order to avoid different settings that are expensive in terms of apparatus.
- the metal strip is guided at least through a first electrolysis tank or a front group of electrolysis tanks and then through a second electrolysis tank or a rear group of electrolysis tanks, the average temperature of the electrolyte solution in the first electrolysis tank or the front group of Electrolysis tanks is greater than the average temperature of the electrolyte solution in the second electrolysis tank or the rear group of electrolysis tanks.
- the metal strip is first guided through a first electrolysis tank or a front group of electrolysis tanks, then through a second electrolysis tank or a middle group of electrolysis tanks and finally through a last electrolysis tank or a rear group of electrolysis tanks, the average temperature being the Electrolyte solution in the first electrolysis tank or the front group of electrolysis tanks and / or in the second electrolysis tank or the middle group of electrolysis tanks is greater than the average temperature of the electrolyte solution in the last electrolysis tank or the rear group of electrolysis tanks.
- composition of the coating deposited electrolytically on the metal strip depends not only on the temperature of the electrolyte solution but also on the current density of the electrolysis process. It has been shown that at higher current densities, which are in the range of regime III, where (partial) decomposition of the applied coating already takes place, a higher proportion of chromium oxide is generated in the coating, compared to the lower current densities in regime II, where a linear relationship between the deposited weight of the chromium and the current density can be observed.
- a low current density j 1 or j 2 should be applied in the first electrolysis tank or in the front group of electrolysis tanks and, if necessary, in the second electrolysis tank following in the direction of strip travel or in the middle group of electrolysis tanks, and in the last electrolysis tank or in In the rear group of electrolysis tanks, a high current density j 3 must be provided in regime III, where j 1 and j 2 are less than j 3 and, for example, at a belt speed of 100 m / min, the low current densities j 1 and j 2 are each greater than 20 A / dm 2 (and thus are above the first current density threshold of approx.
- the current densities j 1 , j 2 and j 3 are increased, so that for example Belt speed of 300 m / min, the current densities j 1 and j 2 are greater than 70 A / dm 2 and the high current density j 3 is greater than 130 A / dm 2 .
- a particularly preferred embodiment provides that a lower current density is present in the first electrolysis tank or in the front group of electrolysis tanks compared to the second electrolysis tank following in the direction of belt travel or in the middle group of electrolysis tanks, so that the ratio 20 A / dm 2 ⁇ j 1 ⁇ j 2 ⁇ j 3 applies.
- a coating can be deposited on the surface of the metal strip, which is composed of three layers with different compositions in terms of their proportion of chromium metal and chromium oxide, the lower layer facing the metal strip having an average weight proportion of chromium oxide, which is in particular in the range of 10% to 15%, the middle layer has a low percentage by weight of chromium oxide, which is in particular in the range from 2% to 10%, and the upper layer has a high percentage by weight of chromium oxide, which is in particular more than 30%, preferably at is more than 50%.
- the coating having the proportion of chromium oxide required for adequate corrosion resistance of at least 5 mg / m 2 , preferably more than 7 mg / m 2 .
- the total weight of the chromium oxide does not exceed 15 mg / m 2 , since with higher weight of the chromium oxide, reduced adhesion of organic coatings made of lacquers or thermoplastic polymer materials is observed.
- a preferred range for the weight of the chromium oxide is between 5 and 15 mg / m 2 .
- a certain weight proportion of the total amount of the deposited coating which is approx. 9 to 15%, is made up of chromium oxide Chromium oxide crystals develop on the surface of the metal strip already in the first electrolysis tank or in the front group of electrolysis tanks and in the second electrolysis tank or in the middle group of electrolysis tanks.
- chromium oxide crystals act in the last electrolysis tank and / or in the rear group of electrolysis tanks as a nucleus for the growth of further oxide crystals, which is why this increases the efficiency of the deposition of chromium oxide or the proportion of chromium oxide in the total application of the coating in the last electrolysis tank or in the rear group of electrolysis tanks increases.
- a sufficiently high level of chromium oxide of preferably more than 5 mg / m 2 on the surface of the Metal bands are produced.
- the proportion of chromium oxide generated in the first electrolysis tank or in the front group of electrolysis tanks and in the second electrolysis tank or in the middle group of electrolysis tanks forms due to the higher oxygen content in the coating compared to electrolytic deposition with higher current densities (and consequently a lower oxide content ) a denser coating, which leads to improved corrosion resistance.
- a current density of at least 20 A / dm 2 is required so that a chromium-chromium oxide layer can be deposited on at least one surface of the metal strip.
- This current density of 20 A / dm 2 represents the first current density threshold value at a belt speed of approx. 100 m / min, which corresponds to regime I (no chromium deposition) of regime II (chromium deposition with a linear relationship between current density and the chromium weight of the deposited coating ) delimits.
- the current densities (j 1 , j 2 , j 3 ) in the electrolysis tanks are each adapted to the belt speed, with at least an essentially linear relationship between the belt speed and the respective current density (j 1 , j 2 , j 3 ). It is advantageous if the current density in the first electrolysis tank or in the front group of electrolysis tanks is smaller than in the second electrolysis tank or in the middle group of electrolysis tanks. A lower current density in the first electrolysis tank or in the front group of electrolysis tanks produces a dense and therefore corrosion-resistant chromium-chromium oxide coating with a relatively high chromium oxide content, which is preferably more than 8%, in particular between 8 and 15%, directly on the surface of the metal strip particularly preferably more than 10% by weight.
- At least one anode pair with two opposing anodes is expediently arranged in each electrolysis tank, the metal strip running through between the opposing anodes of an anode pair. This allows an even current density distribution around the Metal band can be achieved.
- the anode pairs of each electrolysis tank can be supplied with electrical current independently of one another, so that different current densities (j 1 , j 2 , j 3 ) can be set in the electrolysis tanks.
- the belt speed of the metal belt is expediently chosen so that the electrolysis time (t E ) in which the metal belt is in effective electrolytic contact with the electrolyte solution is less than 1.0 seconds in each of the electrolysis tanks and in particular between 0.5 and 1, 0 seconds and is preferably between 0.6 seconds and 0.9 seconds.
- the coating deposited on the metal strip with the method according to the invention preferably has a chromium weight of at least 40 mg / m 2 and in particular 70 mg / m 2 to 180 mg / m 2 to achieve adequate corrosion resistance of the coated metal strip.
- the proportion by weight of chromium oxide contained in the coating in relation to the total weight of the coating is preferably at least 5%, in particular more than 10% and, for example, between 11 and 16%.
- the chromium oxide portion of the coating has a weight of the chromium bound as chromium oxide of at least 3 mg Cr per m 2 , in particular from 3 to 15 mg / m 2 and preferably of at least 7 mg Cr per m 2 .
- a single electrolyte solution is expediently used in the method according to the invention, i.e. the electrolysis tanks are all filled with the same electrolyte solution.
- a preferred composition of the electrolyte solution comprises basic Cr (III) sulfate (Cr 2 (SO 4 ) 3 ) as a trivalent chromium compound.
- concentration of the trivalent chromium compound in the electrolyte solution is at least 10 g / l and preferably more than 15 g / l and is in particular 20 g / l or more.
- Further useful constituents of the electrolyte solution can be complexing agents, in particular an alkali metal carboxylate, preferably a salt of formic acid, in particular potassium format or sodium format.
- the ratio of the proportion by weight of the trivalent chromium compound to the proportion by weight of the complexing agents, in particular the formates, is preferably between 1: 1.1 and 1: 1.4 and preferably between 1: 1.2 and 1: 1.3 and in particular 1: 1 , 25.
- the electrolyte solution can be an alkali metal sulfate, preferably potassium or sodium sulfate.
- the electrolyte solution is preferably free from halides, in particular free from chloride and bromide ions and free from a buffering agent and in particular free from a boric acid buffer.
- the pH of the electrolyte solution (measured at a temperature of 20 ° C.) is preferably between 2.0 and 3.0 and particularly preferably between 2.5 and 2.9 and in particular 2.7.
- an acid for example sulfuric acid, can be added.
- an organic coating in particular a lacquer or a thermoplastic, for example a polymer film made of PET, PE, PP or a mixture thereof, can be applied to the surface of the coating made of chrome metal and chrome oxide in order to provide additional protection against corrosion and to form a barrier against acidic contents of packaging.
- the metal strip can be a (initially uncoated) steel strip (black plate strip) or a tinned steel strip (tin plate strip).
- FIG. 1 a coil coating system for carrying out the method according to the invention is shown schematically in a first embodiment.
- the coil coating system comprises three electrolysis tanks 1a, 1b, 1c arranged next to one another or one behind the other, each of which is filled with an electrolyte solution E.
- An initially uncoated metal strip M in particular a steel strip, is passed through the electrolysis tanks 1a-1c one after the other.
- the metal strip M is pulled through the electrolysis tanks 1a-1c by a transport device (not shown here) in a strip running direction v at a predetermined strip speed.
- Current rollers S are arranged above the electrolysis tanks 1a-1c, via which the metal strip M is connected as a cathode.
- In each electrolysis tank there is also a deflection roller U, around which the metal strip M is guided and is thereby directed into and out of the electrolysis tank.
- each electrolysis tank 1a-1c at least one pair of anodes AP is arranged below the liquid level of the electrolyte solution E.
- two pairs of anodes AP arranged one behind the other in the direction of travel of the strip are provided in each electrolysis tank 1a-1c.
- the metal strip M is passed between the opposing anodes of an anode pair AP.
- two pairs of anodes AP are arranged in each electrolysis tank 1a, 1b, 1c in such a way that the metal strip M is passed through these pairs of anodes AP one after the other.
- the last pair of anodes APc in the downstream direction of the last electrolysis tank 1c seen in the direction of travel v of the strip has a shorter length than the other pairs of anodes AP. As a result, a higher current density can be generated with this last pair of anodes APc when an electric current of the same level is applied.
- the metal strip M can be a cold-rolled, initially uncoated steel strip (black plate strip) or a tinned steel strip (tin plate strip).
- black plate strip black plate strip
- tinned steel strip tin plate strip.
- the belt speed at which the metal belt M is passed through the electrolysis tanks 1a-1c is at least 100 m / min and can be up to 900 m / min.
- the same electrolyte solution E is filled into each of the electrolysis tanks 1a-1c arranged one behind the other in the strip running direction v.
- the electrolyte solution E contains a trivalent chromium compound, preferably basic Cr (III) sulfate [Cr 2 (SO 4 ) 3 ].
- the electrolyte solution preferably contains at least one complexing agent, for example a salt of formic acid, in particular potassium or sodium format.
- the ratio of the proportion by weight of the trivalent chromium compound to the proportion by weight of the complexing agents, in particular the formats, is preferably between 1: 1.1 and 1: 1.4 and particularly preferably 1: 1.25.
- the electrolyte solution E can contain an alkali metal sulfate, for example potassium or sodium sulfate.
- concentration of the trivalent chromium compound in the electrolyte solution E is at least 10 g / l and particularly preferably 20 g / l or more.
- the temperature of the electrolyte solution E can be the same in all electrolysis tanks 1a-1c and, according to the invention, is at most 40.degree. In preferred exemplary embodiments of the method according to the invention, however, different temperatures of the electrolyte solution can also be set in the electrolysis tanks 1a-1c.
- the temperature of the electrolyte solution in the last electrolysis tank 1c can be at most 40 ° C., and a higher temperature can be present in the upstream electrolysis tanks 1a and 1b.
- the temperature of the electrolyte solution in the last electrolysis tank 1c is preferably between 25 ° C and 37 ° C and in particular 35 ° C.
- the temperature of the electrolyte solution in the first two electrolysis tanks 1a, 1b is preferably between 50.degree. C. and 75.degree. C. and in particular 55.degree.
- the lower temperature of the electrolyte solution E promotes the deposition of a chromium / chromium oxide layer with a higher proportion of chromium oxide in the last electrolysis tank 1c.
- the metal belt M connected as a cathode and guided through the electrolysis tanks 1a-1c is in electrolytically effective contact with the electrolyte solution E during an electrolysis period t E.
- the electrolysis period is in each of the electrolysis tanks 1a, 1b, 1c preferably between 0.5 and 2.0 seconds.
- belt speeds are set so high that the electrolysis time t E in each electrolysis tank 1a, 1b, 1c is less than 2 seconds and in particular between 0.6 seconds and 1.8 seconds.
- the total electrolysis time in which the metal strip M over all electrolysis tanks 1a-1c is in electrolytically effective contact with the electrolyte solution E away, is accordingly between 1.8 and 5.4 seconds.
- the anode pairs AP arranged in the electrolysis tanks 1a-1c can be supplied with electrical direct current in such a way that the same current density is present in each of the electrolysis tanks 1a, 1b, 1c.
- a coating B with a plurality of layers B1, B2, B3 of different composition on the metal strip M it is also possible to set different current densities in the electrolysis tanks 1a, 1b, 1c.
- a low current density j 1 can be set in the first electrolysis tank 1a upstream as seen in the strip running direction v, an average current density j 2 in the second electrolysis tank 1b following in the strip running direction and a high current density j 3 in the last electrolysis tank 1c as seen in the strip running direction so that the relation j 1 ⁇ j 2 ⁇ j 3 applies and the low current density is j 1 > 20 A / dm 2 .
- each electrolytically applied layer B1, B2, B3 has a different composition, which differs in particular through the proportion of chromium oxide.
- FIG 3 a schematic sectional view of a metal strip M which is electrolytically coated on one side using the method according to the invention is shown.
- a coating B which is composed of the individual layers B1, B2, B3, is applied to one side of the metal strip M.
- Each individual layer B1, B2, B3 is applied to the surface in one of the electrolysis tanks 1a, 1b, 1c.
- the coating B which is composed of the individual layers B1, B2, B3, contains metallic chromium (chromium metal) and chromium oxides (CrOx) as essential components, the composition of the individual layers B1, B2, B3 in relation to their respective weight fraction of Chromium metal and chromium oxide due to the different current densities j 1 , j 2 , j 3 in the electrolysis tanks 1a, 1b, 1c is different. Furthermore, a possibly different temperature of the electrolyte solution in the electrolysis tanks 1a, 1b, 1c contribute to the fact that the individual layers differ in terms of their composition, since (as above based on Figure 5 explained) at lower temperatures of 40 ° C or less, the formation of chromium oxide is promoted.
- a high current density j 3 (which is higher than the current density j 1 , j 2 in the preceding electrolysis tanks) and, at the same time, a low temperature of the electrolyte solution of 40 ° C. is preferred in the last electrolysis tank 1c or less.
- a current density j3 is set which is in regime III, in which an increased chromium oxide content is generated in the coating, which is preferably more than 40% by weight and particularly preferably more than 50% by weight.
- the current density j 1 of the first electrolysis tank 1a is expediently selected so that it is close to the first current density threshold which delimits regime I (in which no chromium is yet deposited) from regime II.
- a chromium metal-chromium oxide coating (layer B1) is deposited on the surface of the metal strip M with a higher chromium oxide content than at higher current densities within regime II B1 has a higher chromium oxide content than the layer B2 deposited in the second electrolysis tank 1b.
- a current density j 3 is preferably set which is above the second current density threshold which delimits regime II from regime III.
- the current density j 3 of the last electrolysis tank 1c is therefore in regime III, in which the chromium metal-chromium oxide coating is partially decomposed and a significantly higher proportion of chromium oxide is deposited than with the current densities in regime II.
- the im Layer B3 deposited in the last electrolysis tank 1c has a high chromium oxide content, which is higher than the chromium oxide content in layers B1 and B2.
- the metal strip M provided with the coating B is rinsed, dried and oiled (for example with DOS).
- the metal strip M electrolytically coated with the coating B can then be provided with an organic layer on the surface of the coating B.
- the organic coating can be, for example, an organic lacquer or polymer films made from thermoplastic polymers such as PET, PP, PE or mixtures thereof.
- the organic coating can be applied either in a "coil coating" process or in a panel process, the coated metal strip being first divided into panels in the panel process, which are then coated with an organic lacquer or coated with a polymer film will.
- FIG 2 shows a second embodiment of a coil coating system with eight electrolysis tanks 1a-1h arranged one behind the other in the direction of travel v of the coil.
- the electrolysis tanks 1a-1h are grouped into three groups, namely a front group with the first two electrolysis tanks 1a, 1b, a middle group with the subsequent electrolysis tanks 1c-1f in the direction of belt travel and a rear group with the last two electrolysis tanks 1g and 1h.
- the temperature of the electrolyte solution is 40 ° C. or less.
- either the same or at least approximately the same temperature or also a higher temperature can be present.
- higher temperatures of more than 50 ° C. and in particular of approx. 55 ° C. are preferred in the electrolysis tanks 1a, 1b of the front group and the electrolysis tanks 1c-1f of the middle group.
- the groups of electrolysis tanks there are preferably different current densities j 1 , j 2 , j 3 , with a low current density j 1 in the front group of electrolysis tanks 1a, 1b and an average current density j 2 in the middle group of electrolysis tanks 1c-1f and in the rear group of electrolysis tanks 1g, 1h there is a high current density j 3 , where j 1 ⁇ j 2 ⁇ j 3 and the low current density is j 1 > 20 A / dm 2 .
- table 2 shows examples of suitable current densities j 1 , j 2 , j 3 in the individual electrolysis tanks 1a to 1h at different belt speeds, with a current density j 1 in each of the electrolysis tanks 1a, 1b in the front group and a current density j 1 in the electrolysis tanks 1c to 1f of the middle group each have a current density j 2 and a current density j 3 is set in each of the electrolysis tanks 1g, 1h of the rear group, where j 1 ⁇ j 2 ⁇ j 3 .
- a first layer B1 containing chromium metal and chromium oxide is electrolytically applied to the metal strip, in the second group of electrolysis tanks 1c-1f a second layer B2 and in the rear group of electrolysis tanks 1g, 1h a third layer B3 M applied.
- Layers B1, B2, B3 have different compositions due to the different current densities j 1 , j 2 , j 3 and possibly different temperatures in the groups of electrolysis tanks arranged one behind the other, with layer B1 containing a higher chromium oxide content than the second Layer B2 and the third layer B3 contain a higher proportion of chromium oxide than the two layers B1 and B2.
- Coating B applied to the surface of the metal strip M thus has essentially the same composition and structure as in FIG Figure 3 shown.
- the entire electrolysis time in which the metal strip M is in electrolytically effective contact with the electrolyte solution E is in the embodiment of FIG Figure 2 across all electrolysis tanks 1a-1h, preferably for less than 16 seconds and in particular between 4 and 16 seconds.
- the coatings B preferably have a total weight of the chromium of at least 40 mg / m 2 and particularly preferably from 70 mg / m 2 to 180 mg / m 2 .
- the coating B expediently has a total of chromium oxide with a weight add-on of the chromium bound as chromium oxide of at least 3 mg chromium per m 2 and in particular from 3 to 15 mg / m 2 .
- the amount by weight of the chromium bound as chromium oxide, averaged over the entire amount of coating B, is preferably at least 7 mg of chromium per m 2 .
- Good adhesion of organic lacquers or thermoplastic polymer materials on the surface of the coating B can be achieved with weight of the chromium oxide of up to approx. 15 mg / m 2 .
- a preferred range for the weight of the chromium oxide in coating B is therefore between 5 and 15 mg / m 2 .
- Table 3 shows an example of the composition of an electrolyte solution which contains a Cr (III) salt (Cr 2 (SO 4 ) 3 ) and has been used for coating tests in laboratory apparatus for the electrolytic coating of a metal strip.
- the parameters of the electrolyte solution used can be found in Table 4.
- the Cr (III) salt used as a component of the electrolyte solution should be as free of organic residues as possible.
- the preparation of the Cr (III) salts can be carried out on an industrial scale by means of reduction from Cr (VI) salts be performed.
- the reducing agent used is preferably a less noble metal than chromium (variant 1), or alternatively an organic component (variant 2).
- the pH of the electrolyte solution was adjusted by adding sulfuric acid followed by topping up with deionized water.
- a steel sheet already coated with a chromium / chromium oxide layer was used as the substrate for the coating tests.
- This material was electrolytically coated at 55 ° C. with a chromium (III) electrolyte and Table 5 below describes the existing coating of the steel sheet with chromium metal and chromium oxide. It can be seen that mainly chromium metal and only a little chromium oxide was formed.
- the chromium metal determination was carried out according to the EURO norm EN 10202 (Cr-metal photometric (euro-norm) step 2: 120 ml NaCO 3 and 15 mA / plane; successfull dissolution visible by potential step, oxidation with 10 ml 6% H 2 O 2 , photometric @ 370 nm).
- the chromium oxide determination was also carried out according to the EURO standard EN 10202 (Cr-oxides photometric: (euro-norm) step 1: 40 ml NaOH (330g / L), reaction at 90 ° C for 10 minutes, oxidation with 10 ml 6% H 2 O 2 , photometric @ 370 nm).
- the substrate was degreased (2.5 A / dm 2 connected to the cathode, 30 seconds, 70 ° C. in sodium hydroxide solution) and then rinsed with deionized water.
- the subsequent pickling process was dispensed with due to the existing metallic coating.
- Tables 6 and 7 summarize the parameters and the results of the coating tests.
- a large-scale coating of a steel belt with a belt speed of 100 m / min was simulated. At this speed, the selected current density of 60 A / dm 2, which was kept constant during the test, is in regime III (see Table 2) and thus mainly generates chromium oxide (at least at the lower temperatures).
- both the temperatures of the electrolyte solutions and the holding times (electrolysis time) were varied in regime III.
- the underside of the substrate was coated in each case.
- the duration of the electrolysis in the relevant regime III is given in Table 5 as “time (s) segment 1”.
- the electrolysis times in the respective regime were less than 2 seconds. With increasing electrolysis time, a higher oxide coating was observed in the laboratory tests. However, short electrolysis times of less than 2 seconds are to be preferred in terms of efficiency in a large-scale process, since high belt speeds of preferably more than 100 m / min are used here.
- Temperature TCCT tank [° C] pH value VA08 Conductance VA08 [mS / cm] pH value (55 ° C) Conductivity 55 ° C [mS / cm] Chromium concentration electrolyte (g / L) Iron concentration electrolyte (mg / L) Chloride concentration electrolyte (mg / l) Electrolyte surface explosion 1st cycle at ⁇ 55 ° C ( ⁇ C / cm 2 ) Electrolyte surface explosion 2nd cycle at ⁇ 55 ° C ( ⁇ C / cm 2 ) 13th 02/28/2017 55 2.4 88.5 2.3 158.3 22.6 270 182 348.8 327.8 Serial no.
- chromium metal OS (mg / m 2 ) ⁇ chromium metal US (mg / m 2 ) ⁇ chromium oxide OS (mg / m 2 ) ⁇ chromium oxide US (mg / m 2 ) 11 63 111 3 1
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Automation & Control Theory (AREA)
- Electroplating Methods And Accessories (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Description
- Die Erfindung betrifft ein Verfahren zur Herstellung eines mit einer Beschichtung aus Chrom und Chromoxid beschichteten Metallbands nach dem Oberbegriff des Anspruchs 1.
- Zur Herstellung von Verpackungen sind aus dem Stand der Technik elektrolytisch mit einer Beschichtung aus Chrom und Chromoxid beschichtete Stahlbleche bekannt, welche als zinnfreies Stahlblech ("Tin Free Steel", TFS) oder als "Electrolytic Chromium Coated Steel (ECCS)" bezeichnet werden und eine Alternative zu Weißblechen darstellen. Diese zinnfreien Stahlbleche zeichnen sich besonders durch ein gutes Haftvermögen für Lacke oder organische Schutzbeschichtungen (wie bspw. Polymerbeschichtungen aus PP oder PET) aus. Trotz der geringen Dicke der Beschichtung aus Chrom und Chromoxid, die in der Regel weniger als 20 nm beträgt, weisen diese chrombeschichteten Stahlbleche eine gute Korrosionsbeständigkeit sowie eine gute Verarbeitbarkeit in Umformverfahren zur Herstellung von Verpackungen, bspw. in Tiefzieh- und Abstreckziehverfahren, auf.
- Zur Beschichtung des Stahlsubstrats mit einer metallisches Chrom und Chromoxid enthaltenden Beschichtung sind aus dem Stand der Technik elektrolytische Beschichtungsverfahren bekannt, mit denen die Beschichtung in einer Bandbeschichtungsanlage auf ein bandförmiges Stahlblech unter Verwendung eines Chrom-VI-haltigen Elektrolyten appliziert wird. Diese Beschichtungsverfahren weisen allerdings aufgrund der umwelt- und gesundheitsgefährdenden Eigenschaften der im Elektrolyseverfahren verwendeten Chrom-VI-haltigen Elektrolyten erhebliche Nachteile auf und müssen in absehbarer Zeit durch alternative Beschichtungsverfahren ersetzt werden, da die Verwendung von Chrom-VI-haltigen Materialien zukünftig verboten sein wird.
- Aus diesem Grund wurden im Stand der Technik bereits elektrolytische Beschichtungsverfahren entwickelt, die auf den Einsatz von Chrom-VI-haltigen Elektrolyten verzichten können. So ist bspw. aus der
WO 2015/177315-A1 ein Verfahren zur elektrolytischen Beschichtung eines elektrisch leitenden Substrats, bei dem es sich insbesondere um ein Schwarzblech (unbeschichtetes Stahlblech) oder um ein Weißblech (verzinntes Stahlblech) handeln kann, mit einer Chrommetall-Chromoxid (Cr-CrOx)-Schicht bekannt, in dem das Substrat als Kathode geschaltet in Kontakt mit einer Elektrolytlösung gebracht wird, welche eine dreiwertige Chromverbindung (Cr-III) enthält, wobei eine Anode vorgesehen ist, die die Oxidation von Chrom(III)-Ionen zu Chrom(VI)-Ionen unterbindet oder zumindest reduziert und Wasserstoffblasen, die während der elektrolytischen Abscheidung der Beschichtung auf der Oberfläche des Substrats entstehen, entfernt werden. Dabei wurde fest gestellt, dass die Abscheidereaktion und die Oberflächenbeschaffenheit der elektrolytisch abgeschieden Beschichtung von der Temperatur der Elektrolytlösung abhängt und dass Temperaturen der Elektrolytlösung zwischen 30°C und 70°C geeignet sind, um Beschichtungen mit einer guten Oberflächenerscheinung zu erzeugen. Ein bevorzugter Temperaturbereich zwischen 40°C und 60°C ist dabei als in Bezug auf eine effiziente Abscheidungsreaktion vorteilhaft erkannt worden, weil die Elektrolytlösung bei diesen Temperaturen eine gute Leitfähigkeit aufweist. - Aus der
WO 2015/177314-A1 ist ein Verfahren zur elektrolytischen Beschichtung eines bandförmigen Stahlblechs mit einer Chrommetall-/Chromoxid (Cr-CrOx)-Schicht in einer Bandbeschichtungsanlage bekannt, in dem das Stahlblech als Kathode geschaltet mit hohen Bandgeschwindigkeiten von mehr als 100 m/min durch eine Elektrolytlösung geleitet wird, welche eine dreiwertige Chromverbindung (Cr-III) enthält. Dabei wurde beobachtet, dass die Zusammensetzung der Beschichtung, die je nach den in der Elektrolytlösung neben der dreiwertigen Chromverbindung (Cr-III) noch enthaltenen Komponenten außer den Bestandteilen Chrommetall und Chromoxid auch noch Chromsulfate und Chromcarbide enthalten kann, ganz wesentlich von den Stromdichten der Elektrolyse abhängt, die beim elektrolytischen Abscheideprozess in den Elektrolysetanks, in denen die Elektrolytlösung enthalten ist, an den Anoden eingestellt werden. Es wurde fest gestellt, dass sich in Abhängigkeit der Stromdichte drei Bereiche (Regime I, Regime II und Regime III) ausbilden, wobei in einem ersten Bereich mit niedriger Stromdichte bis zu einer ersten Stromdichteschwelle (Regime I) noch keine chromhaltige Abscheidung auf dem Stahlsubstrat erfolgt, in einem zweiten Bereich mit mittlerer Stromdichte (Regime II) ein linearer Zusammenhang zwischen der Stromdichte und der Gewichtsauflage der abgeschiedenen Beschichtung besteht und bei Stromdichten oberhalb einer zweiten Stromdichteschwelle (Regime III) eine teilweise Zersetzung der applizierten Beschichtung erfolgt, so dass die Gewichtsauflage des Chrom der applizierten Beschichtung in diesem Bereich bei ansteigender Stromdichte zunächst abfällt und sich dann bei höheren Stromdichten auf einen gleichbleibenden Wert einstellt. Dabei wird in dem Bereich mit mittlerer Stromdichte (Regime II) im Wesentlichen metallisches Chrom mit einem Gewichtsanteil von bis zu 80% (bezogen auf das Gesamtgewicht der Beschichtung) auf dem Stahlsubstrat abgeschieden und oberhalb der zweiten Stromdichteschwelle (Regime III) enthält die Beschichtung einen höheren Anteil an Chromoxid, der in dem Bereich der höheren Stromdichten zwischen ¼ und ein 1/3 der Gesamtgewichtsauflage der Beschichtung ausmacht. Die Werte der Stromdichteschwellen, die die Bereiche (Regime I bis III) voneinander abgrenzen, sind dabei abhängig von der Bandgeschwindigkeit, mit der das Stahlblech durch die Elektrolytlösung bewegt wird. - Ein weiteres Verfahren zur elektrolytischen Beschichtung eines Schwarzblechs mit einer Chrommetall-/Chromoxid (Cr-CrOx)-Schicht aus einem Elektrolyten mit einer dreiwertigen Chromverbindung ist aus der
EP 3 378 973-A1 bekannt, in dem das als Kathode geschaltete Schwarzblech mit einer Geschwindigkeit von mindestens 50 m/min in einer Beschichtungslinie durch den Elektrolyten, der eine Temperatur zwischen 30 und 70°C und bevorzugt von mindestens 40°C aufweist, geleitet wird. - In der
WO 2014/079909 A1 ist erwähnt, dass zur Erzielung einer für Verpackungsanwendungen ausreichenden Korrosionsbeständigkeit eines mit einer Chrom-Chromoxid-Beschichtung beschichteten Schwarzblechs (Stahlblech) eine Mindestauflage der Beschichtung von wenigstens 20 mg/m2 erforderlich ist, um eine mit herkömmlichem ECCS vergleichbare Korrosionsbeständigkeit zu erzielen. Es hat sich ferner gezeigt, dass zur Erzielung einer für Verpackungsanwendungen ausreichenden Korrosionsbeständigkeit eine Mindestauflage von Chromoxid von wenigstens 5 mg/m2 in der Beschichtung erforderlich ist. - Die Aufgabe der vorliegenden Erfindung besteht in der Bereitstellung eines möglichst effizienten und großtechnisch in einer Bandbeschichtungsanlage durchführbaren Verfahrens zur Herstellung eines mit einer Beschichtung aus Chrom und Chromoxid beschichteten Metallbands auf Basis einer Elektrolytlösung mit einer dreiwertigen Chromverbindung, wobei die Beschichtung einen möglichst hohen Anteil von Chromoxid aufweisen soll, um eine ausreichende Korrosionsbeständigkeit des beschichteten Metallbands sowie eine gut Haftgrundlage für organische Auflagen, wie z.B. Lacke oder Polymerfolien aus PET oder PP, zu erzielen.
- Gelöst wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Anspruchs 1. Bevorzugte Ausführungsformen dieses Verfahrens sind den Unteransprüchen zu entnehmen.
- In dem Verfahren gemäß der Erfindung wird eine Beschichtung, die Chrommetall und Chromoxid enthält, elektrolytisch aus einer Elektrolytlösung, die eine dreiwertige Chromverbindung enthält, auf ein Metallband, insbesondere ein Stahlband, aufgebracht, indem das Metallband als Kathode geschaltet in Kontakt mit der Elektrolytlösung gebracht wird, wobei das Metallband nacheinander mit einer vorgegebenen Bandgeschwindigkeit in einer Bandlaufrichtung zumindest durch einen ersten Elektrolysetank (1a) oder eine vordere Gruppe von Elektrolysetanks (1a, 1b) und durch einen in Bandlaufrichtung gesehen letzten Elektrolysetank (1c) oder eine hintere Gruppe von Elektrolysetanks (1g, 1h) geführt wird, wobei die über das Volumen des Elektrolysetanks gemittelte Temperatur der Elektrolytlösung in dem ersten Elektrolysetank (1a) oder der vorderen Gruppe von Elektrolysetanks (1a, 1b) größer als die gemittelte Temperatur der Elektrolytlösung in dem letzten Elektrolysetank (1c) oder der hinteren Gruppe von Elektrolysetanks (1g, 1h) ist und in dem in Bandlaufrichtung gesehen letzten Elektrolysetank oder in einer hinteren Gruppe von Elektrolysetanks die Elektrolytlösung eine über das Volumen des Elektrolysetanks gemittelte Temperatur von weniger als 40°C aufweist und die Elektrolysedauer, in der das Metallband elektrolytisch wirksam in Kontakt mit der Elektrolytlösung steht, in dem letzten Elektrolysetank oder in der hinteren Gruppe von Elektrolysetanks kleiner als 2,0 Sekunden ist. Bevorzugt liegt die Temperatur der Elektrolytlösung in dem in Bandlaufrichtung gesehen letzten Elektrolysetank oder in der hinteren Gruppe von Elektrolysetanks zwischen 25 und 38 °C.
- Wenn von der Temperatur der Elektrolytlösung bzw. von der Temperatur in einem Elektrolysetank gesprochen wird, ist jeweils die mittlere Temperatur gemeint, die sich gemittelt über das gesamte Volumen eines Elektrolysetanks ergibt. In der Regel liegt in den Elektrolysetanks ein Temperaturgradient mit einer Temperaturzunahme von oben nach unten vor. Wenn von Chromoxid gesprochen wird, sind dabei alle Oxidformen des Chrom (CrOx), einschließlich Chromhydroxide, insbesondere Chrom(III)-Hydroxid und Chrom(III)-oxidHydrat, sowie Mischungen davon gemeint.
- Es hat sich gezeigt, dass bei Temperaturen der Elektrolytlösung von 40°C oder weniger die Ausbildung von Chromoxid gefördert wird. Daher können bei Temperaturen der Elektrolytlösung von unter 40°C Beschichtungen mit einem höheren Anteil von Chromoxid erzeugt werden. Ein höherer Anteil von Chromoxid in der Beschichtung erweist sich als verteilhaft in Bezug auf eine verbesserte Korrosionsbeständigkeit des beschichteten Metallbands. Durch die geringe Elektrolysedauer zumindest in dem letzten Elektrolysetank oder in der hinteren Gruppe von Elektrolysetanks mit 2,0 Sekunden oder weniger lässt sich ebenfalls der Anteil des Chromoxid in der Beschichtung erhöhen. Außerdem wird durch die geringe Elektrolysedauer in dem letzten Elektrolysetank oder in der hinteren Gruppe von Elektrolysetanks die Durchführung der elektrolytischen Beschichtung in einem kontinuierlichen Prozess in einer Bandbeschichtungsanlage bei hohen Bandgeschwindigkeiten, die bevorzugt bei mehr als 100 m/min liegen, ermöglicht.
- Zweckmäßig liegt dabei die Elektrolysedauer, in der das Metallband elektrolytisch wirksam in Kontakt mit der Elektrolytlösung steht, in jedem der Elektrolysetanks bei unter 2 Sekunden, so dass das Metallband mit gleichbleibender Bandgeschwindigkeit durch die mehreren, in Bandlaufrichtung hintereinander angeordneten Elektrolysetanks, die zweckmäßig jeweils gleich ausgebildet sind, geführt werden kann. Bei bevorzugten Bandgeschwindigkeiten von mehr als 100 m/min liegt die Elektrolysedauer in jedem der Elektrolysetanks bevorzugt zwischen 0,5 und 2,0 Sekunden, insbesondere zwischen 0,6 Sekunden und 1,8 Sekunden. Je nach gewählter Bandgeschwindigkeit kann die Elektrolysedauer in jedem der Elektrolysetanks auch zwischen 0,3 und 2,0 Sekunden und bevorzugt zwischen 0,5 Sekunden und 1,4 Sekunden liegen.
- Je nach Anzahl der hintereinander angeordneten Elektrolysetanks liegt die gesamte Elektrolysedauer (tE), in der das Metallband elektrolytisch wirksam in Kontakt mit der Elektrolytlösung steht, über alle Elektrolysetanks hinweg bevorzugt zwischen 2 und 16 Sekunden und insbesondere zwischen 4 Sekunden und 14 Sekunden.
- Aus Gründen einer besseren Abscheidungseffizienz kann es vorteilhaft sein, die Temperatur der Elektrolytlösung in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks größer zu wählen als in dem letzten Elektrolysetank. Zweckmäßig liegt die Temperatur der Elektrolytlösung in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks bei mehr als 50°C ist und insbesondere zwischen 53°C und 70°C, da in diesem Temperaturbereich eine effizientere Abscheidung von Chrom, insbesondere in Form von Chrommetall, beobachtet werden kann. Bei Einstellung einer höheren Temperatur der Elektrolytlösung in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks von mehr als 50°C und gleichzeitiger Einstellung der Temperatur der Elektrolytlösung in dem letzten Elektrolysetank oder in der hinteren Gruppe von Elektrolysetanks von weniger als 40°C, kann eine Beschichtung auf der Oberfläche des Metallbands abgeschieden werden, die zumindest eine untere und eine obere Schicht umfasst, wobei die untere Schicht in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks und die obere Schicht in dem letzten Elektrolysetank oder in der hinteren Gruppe von Elektrolysetanks abgeschieden wird und die untere Schicht einen geringen Anteil von Chromoxid und die obere Schicht einen höheren Anteil von Chromoxid aufweist. Dabei liegt der Gewichtsanteil des Chromoxids in der unteren Schicht, die der Oberfläche des Metallbands zugewandt ist, bevorzugt bei weniger als 15 % und in der oberen Schicht bevorzugt bei mehr als 40 %.
- Im Rahmen einer nicht erfindungsgemäßen Ausführungsform kann es jedoch aus apparativen Gründen auch zweckmäßig sein, in den Elektrolysetanks eine einheitliche Temperatur der Elektrolytlösung einzustellen, die (über das Volumen des jeweiligen Elektrolysetanks gemittelt) in allen Elektrolysetanks bevorzugt zwischen 20°C und weniger als 40°C und besonders bevorzugt zwischen 25°C und 38°C liegt.
Aufgrund des exothermen Abscheideprozesses muss die Elektrolytlösung in den Elektrolysetanks gekühlt werden, um die bevorzugten Temperaturen einzuhalten. Dies wird dadurch erschwert, dass die Kreislaufsysteme der Elektrolysetanks in der Regel gekoppelt sind. Deshalb kann es aus apparativen Gründen zweckmäßig sein, in den Elektrolysetanks jeweils dieselbe Temperatur aufrecht zu erhalten, um eine apparativ aufwendige unterschiedliche Einstellung zu vermeiden. Aus ergebnisorientierter Sicht, insbesondere in Bezug auf eine verbesserte Korrosionsbeständigkeit des beschichteten Metallbands, ist es jedoch von Vorteil, in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks eine höhere Temperatur als in dem letzten Elektrolysetank oder in der hinteren Gruppe von Elektrolysetanks einzustellen. - Erfindungsgemäß ist daher vorgesehen, dass das Metallband zumindest durch einen ersten Elektrolysetank oder eine vordere Gruppe von Elektrolysetanks und anschließend durch einen zweiten Elektrolysetank oder eine hintere Gruppe von Elektrolysetanks geführt wird, wobei die gemittelte Temperatur der Elektrolytlösung in dem ersten Elektrolysetank oder der vorderen Gruppe von Elektrolysetanks größer ist als die gemittelte Temperatur der Elektrolytlösung in dem zweiten Elektrolysetank oder der hinteren Gruppe von Elektrolysetanks.
- In einer weiterhin bevorzugten Ausführungsform wird das Metallband zunächst durch einen ersten Elektrolysetank oder eine vordere Gruppe von Elektrolysetanks, anschließend durch einen zweiten Elektrolysetank oder eine mittlere Gruppe von Elektrolysetanks und abschließend durch einen letzten Elektrolysetank oder eine hintere Gruppe von Elektrolysetanks geführt, wobei die gemittelte Temperatur der Elektrolytlösung in dem ersten Elektrolysetank oder der vorderen Gruppe von Elektrolysetanks und/oder in dem zweiten Elektrolysetank oder der mittleren Gruppe von Elektrolysetanks größer ist als die gemittelte Temperatur der Elektrolytlösung in dem letzten Elektrolysetank oder der hinteren Gruppe von Elektrolysetanks.
- Die Zusammensetzung der elektrolytisch auf dem Metallband abgeschiedenen Beschichtung ist neben der Temperatur der Elektrolytlösung auch von der Stromdichte des Elektrolyseprozesses abhängig. Es hat sich gezeigt, dass bei höheren Stromdichten, die im Bereich des Regime III liegen, wo bereits eine (teilweise) Zersetzung der aufgebrachten Beschichtung erfolgt, ein höherer Anteil des Chromoxids in der Beschichtung erzeugt wird, verglichen mit den niedrigeren Stromdichten im Regime II, wo ein linearer Zusammenhang zwischen der abgeschiedenen Gewichtsauflage des Chrom und der Stromdichte zu beobachten ist. Zur Erzeugung einer Beschichtung mit einer unteren Schicht, die einen hohen Anteil von Chrommetall aufweist, und einer oberen Schicht mit einem hohen Chromoxid-Anteil, der bevorzugt bei mehr als 40 Gew.% der Gesamtauflage der Schicht liegt, ist es daher vorteilhaft, in dem in Bandlaufrichtung gesehen ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks sowie ggf. in dem in Bandlaufrichtung folgenden zweiten Elektrolysetank oder in der mittleren Gruppe von Elektrolysetanks eine niedrige Stromdichte j1 bzw. j2 anzulegen, und in dem in Bandlaufrichtung gesehen letzten Elektrolysetank oder in der hinteren Gruppe von Elektrolysetanks eine hohe Stromdichte j3 im Regime III vorzusehen, wobei j1 und j2 kleiner als j3 ist und bspw. bei einer Bandgeschwindigkeit von 100 m/min die niedrigen Stromdichten j1 und j2 jeweils größer als 20 A/dm2 (und damit oberhalb der ersten Stromdichteschwelle von ca. 20 A/dm2 liegen und deshalb im Bereich des Regime II sind) sind und die hohe Stromdichte j3 größer als 50 A/dm2 (und damit oberhalb der zweiten Stromdichteschwelle liegen und deshalb im Bereich des Regime III sind). Je nach Bandgeschwindigkeit werden die Stromdichten j1, j2 und j3 angehoben, so dass bspw. bei einer Bandgeschwindigkeit von 300 m/min die Stromdichten j1 und j2 größer als 70 A/dm2 sind und die hohe Stromdichte j3 größer als 130 A/dm2 ist.
- Eine besonders bevorzugte Ausführungsform sieht dabei vor, dass in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks im Vergleich zu dem in Bandlaufrichtung folgenden zweiten Elektrolysetank oder in der mittleren Gruppe von Elektrolysetanks eine niedrigere Stromdichte vorliegt, so dass die Relation 20 A/dm2 < j1 ≤ j2 <j3 gilt.
- Dadurch kann auf der Oberfläche des Metallbands eine Beschichtung abgeschieden werden, die sich aus drei Schichten mit unterschiedlicher Zusammensetzung in Bezug auf ihren Anteil an Chrommetall und Chromoxid zusammensetzt, wobei die dem Metallband zugewandte untere Schicht einen mittleren Gewichtsanteil von Chromoxid aufweist, der insbesondere im Bereich von 10% bis 15 % liegt, die mittlere Schicht einen niedrigen Gewichtsanteil von Chromoxid aufweist, der insbesondere im Bereich von 2% bis 10 % liegt, und die obere Schicht einen hohen Gewichtsanteil von Chromoxid aufweist, der insbesondere bei mehr als 30 %, bevorzugt bei mehr als 50% liegt. Dabei ist es in Bezug auf die Haftung von organischen Auflagen, wie z.B. organische Lacken oder Polymerfolien aus PET oder PP, vorteilhaft, wenn die Schicht mit dem hohen Oxidanteil außen liegt, da sich gezeigt hat, dass Chromoxid im Vergleich zu Chrommetall eine bessere Haftgrundlage für organische Materialien bildet.
- Durch die Aufteilung der in Bandlaufrichtung hintereinander angeordneten Elektrolysetanks und Einstellung unterschiedlicher, in Bandlaufrichtung ansteigender Stromdichte in den einzelnen Elektrolysetanks ist es möglich, einerseits hohe Bandgeschwindigkeiten von mehr als 100 m/min einzuhalten, und andererseits eine genügend hohe Gewichtsauflage der Beschichtung auf wenigstens einer Seite des Metallbands abzuscheiden, wobei die Beschichtung den für eine ausreichende Korrosionsbeständigkeit erforderlichen Anteil des Chromoxids von wenigstens 5 mg/m2, bevorzugt von mehr als 7 mg/m2 aufweist. Bevorzugt übersteigt die gesamte Gewichtsauflage des Chromoxids 15 mg/m2 nicht, da bei höheren Gewichtsauflagen des Chromoxids eine verminderte Haftung von organischen Auflagen aus Lacken oder thermoplastischen Polymermaterialien beobachtet wird. Aus diesem Grund liegt ein bevorzugter Bereich für die Gewichtsauflage des Chromoxids zwischen 5 und 15 mg/ m2. Dadurch, dass in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks und in dem zweiten Elektrolysetank oder in der mittleren Gruppe von Elektrolysetanks eine, verglichen mit dem in Bandlaufrichtung gesehen letzten Elektrolysetank oder in der hinteren Gruppe von Elektrolysetanks, niedrigere Stromdichte j1 bzw. j2 eingesetzt wird, kann außerdem Energie gespart werden, da für die Beaufschlagung der Anoden in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks und in dem zweiten Elektrolysetank oder in der mittleren Gruppe von Elektrolysetanks geringere elektrische Ströme benötigt werden. Dennoch wird eine genügend hohe Gewichtsauflage von Chromoxid in der Beschichtung erzeugt, da auch bei den niedrigeren Stromdichten j1 und j2, die in dem ersten bzw. dem zweiten Elektrolysetank bzw. der vorderen und der mittleren Gruppe von Elektrolysetanks eingestellt werden, bereits zu einem gewissen Anteil Chromoxid auf dem Metallsubstrat abgeschieden wird. Der größere Anteil von Chromoxid wird in dem in Bandlaufrichtung gesehen letzten Elektrolysetank oder in der hinteren Gruppe von Elektrolysetanks abgeschieden, weil darin die hohe Stromdichte j3 eingestellt wird, bei der der Anteil des Chromoxids an der Gesamtauflage der Beschichtung höher ausfällt.
- Da bereits in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks und in dem zweiten Elektrolysetank oder in der mittleren Gruppe von Elektrolysetanks ein gewisser Gewichtsanteil der Gesamtauflage der abgeschiedenen Beschichtung, der bei ca. 9 bis 15 % liegt, auf das Chromoxid entfällt, bilden sich bereits in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks und in dem zweiten Elektrolysetank oder in der mittleren Gruppe von Elektrolysetanks Chromoxidkristalle auf der Oberfläche des Metallbands aus. Diese Chromoxidkristalle wirken in dem letzten Elektrolysetank und/oder in der hinteren Gruppe von Elektrolysetanks als Keimzelle für das Anwachsen weiterer Oxidkristalle, weshalb dadurch die Effizienz der Abscheidung von Chromoxid bzw. der Anteil des Chromoxids an der Gesamtauflage der Beschichtung in dem letzten Elektrolysetank oder in der hinteren Gruppe von Elektrolysetanks zunimmt. Somit kann, unter energiesparender Verwendung von niedrigeren Stromdichten j1 und j2 in dem ersten und dem zweiten Elektrolysetank bzw. der vorderen und mittleren Gruppe von Elektrolysetanks, eine genügend hohe Auflage von Chromoxid von bevorzugt mehr als 5 mg/m2 auf der Oberfläche des Metallbands erzeugt werden.
- Der in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks und in dem zweiten Elektrolysetank oder in der mittleren Gruppe von Elektrolysetanks erzeugte Anteil des Chromoxids bildet aufgrund des höheren Sauerstoffanteils in der Beschichtung im Vergleich zu einem elektrolytischen Abscheiden mit höheren Stromdichten (und folglich geringerem Oxidanteil) eine dichtere Beschichtung aus, die zu einer verbesserten Korrosionsbeständigkeit führt.
- Die Verwendung von wenigstens zwei, bevorzugt von drei hintereinander angeordneten Elektrolysetanks oder Gruppen von Elektrolysetanks ermöglicht die Einhaltung einer hohen Bandgeschwindigkeit bei möglichst niedrigen Stromdichten, wodurch die Effizienz des Verfahrens gesteigert wird. Es hat sich gezeigt, dass zur Einhaltung einer bevorzugten Bandgeschwindigkeit von mindestens 100 m/min eine Stromdicht von wenigstens 20 A/dm2 benötigt wird, damit eine Abscheidung einer Chrom-Chromoxidschicht auf wenigstens einer Oberfläche des Metallbands erfolgen kann. Diese Stromdicht von 20 A/dm2 stellt den ersten Stromdichteschwellwert bei einer Bandgeschwindigkeit von ca. 100 m/min dar, der das Regime I (keine Chromabscheidung) von Regime II (Chromabscheidung mit linearen Zusammenhang zwischen Stromdichte und der Chrom-Gewichtsauflage der abgeschiedenen Beschichtung) abgrenzt.
- Die Stromdichten (j1, j2, j3) in den Elektrolysetanks werden dabei jeweils an die Bandgeschwindigkeit angepasst, wobei zumindest im Wesentlichen ein linearer Zusammenhang zwischen der Bandgeschwindigkeit und der jeweiligen Stromdichte (j1, j2, j3) vorliegt. Dabei ist es von Vorteil, wenn die Stromdichte in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks kleiner ist als in dem zweiten Elektrolysetank oder in der mittleren Gruppe von Elektrolysetanks. Eine geringere Stromdichte in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks erzeugt unmittelbar auf der Oberfläche des Metallbands eine dichte und damit korrosionsbeständige Chrom-Chromoxidbeschichtung mit einem relativ hohen Chromoxidanteil, der bevorzugt bei mehr als 8%, insbesondere zwischen 8 und 15% und besonders bevorzugt bei mehr als 10 Gew.% liegt.
- Zur Erzeugung der Stromdichten (j1, j2, j3) in den Elektrolysetanks ist zweckmäßig in jedem Elektrolysetank wenigstens ein Anodenpaar mit zwei gegenüberliegenden Anoden angeordnet, wobei das Metallband zwischen den gegenüberliegenden Anoden eines Anodenpaars durchläuft. Dadurch kann eine gleichmäßige Stromdichteverteilung um das Metallband erzielt werden. Zweckmäßig sind die Anodenpaare jedes Elektrolysetanks dabei unabhängig voneinander mit elektrischem Strom beaufschlagbar, so dass in den Elektrolysetanks unterschiedliche Strom dichten (j1, j2, j3) eingestellt werden können.
- Die Bandgeschwindigkeit des Metallbands wird zweckmäßig so gewählt, dass die Elektrolysedauer (tE), in der das Metallband elektrolytisch wirksam in Kontakt mit der Elektrolytlösung steht, in jedem der Elektrolysetanks kleiner als 1,0 Sekunden ist und insbesondere zwischen 0,5 und 1,0 Sekunden liegt und bevorzugt zwischen 0,6 Sekunden und 0,9 Sekunden liegt.
- Die mit dem erfindungsgemäßen Verfahren auf dem Metallband abgeschiedene Beschichtung weist zur Erzielung einer ausreichenden Korrosionsbeständigkeit des beschichteten Metallbands bevorzugt eine Gewichtsauflage des Chroms von wenigstens 40 mg/m2 und insbesondere von 70 mg/m2 bis 180 mg/m2 auf. Der in der Beschichtung enthaltene Gewichtsanteil des Chromoxids an der gesamten Gewichtsauflage der Beschichtung liegt dabei bevorzugt bei wenigstens 5%, insbesondere bei mehr als 10% und bspw. zwischen 11 und 16%. Der Chromoxidanteil der Beschichtung weist dabei eine Gewichtsauflage des als Chromoxid gebundenen Chroms von wenigstens 3 mg Cr pro m2, insbesondere von 3 bis 15 mg/m2 und bevorzugt von wenigstens 7 mg Cr pro m2 auf.
- Zweckmäßig wird in dem erfindungsgemäßen Verfahren eine einzige Elektrolytlösung verwendet, d.h. die Elektrolysetanks sind alle mit derselben Elektrolytlösung befüllt.
- Eine bevorzugte Zusammensetzung der Elektrolytlösung umfasst basisches Cr(III)-Sulfat (Cr2(SO4)3) als dreiwertige Chromverbindung. Die Konzentration der dreiwertigen Chromverbindung in der Elektrolytlösung beträgt sowohl bei dieser bevorzugten Zusammensetzung als auch in anderen Kompositionen wenigstens 10g/l und bevorzugt mehr als 15 g/l beträgt und liegt insbesondere bei 20 g/l oder mehr. Weitere zweckmäßige Bestandteile der Elektrolytlösung können Komplexbildner, insbesondere ein Alkalimetallcarboxylat, bevorzugt ein Salz der Ameisensäure, insbesondere Kaliumformat oder Natriumformat, sein. Bevorzugt liegt das Verhältnis des Gewichtsanteils der dreiwertigen Chromverbindung zum Gewichtsanteil der Komplexbildner, insbesondere der Formiate, zwischen 1:1,1 und 1:1,4 und bevorzugt zwischen 1:1,2 und 1:1,3 und insbesondere bei 1:1,25. Zur Erhöhung der Leitfähigkeit kann die Elektrolytlösung ein Alkalimetallsulfat, bevorzugt Kalium- oder Natriumsulfat, umfassen. Bevorzugt ist die Elektrolytlösung frei von Halogeniden, insbesondere frei von Chlorid- und Bromid-Ionen sowie frei von einem Pufferungsmittel und insbesondere frei von einem Borsäure-Puffer.
- Der pH-Wert der Elektrolytlösung (gemessen bei einer Temperatur von 20°C) liegt bevorzugt zwischen 2,0 und 3,0 und besonders bevorzugt zwischen 2,5 und 2,9 und insbesondere bei 2,7. Zur Einstellung des pH-Werts der Elektrolytlösung kann dieser eine Säure, bspw. Schwefelsäure, zugegeben werden.
- Nach dem elektrolytischen Aufbringen der Beschichtung kann auf die Oberfläche der Beschichtung aus Chrommetall und Chromoxid eine organische Beschichtung, insbesondere ein Lack oder ein thermoplastischer Kunststoff, bspw. eine Polymerfolie aus PET, PE, PP oder einer Mischung davon, aufgebracht werden, um einen zusätzlichen Schutz gegen Korrosion und eine Barriere gegen säurehaltige Füllgüter von Verpackungen auszubilden.
- Bei dem Metallband kann es sich um ein (zunächst unbeschichtetes) Stahlband (Schwarzblechband) oder um ein verzinntes Stahlband (Weißblechband) handeln.
- Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Bezugnahme auf die begleitenden Zeichnungen näher erläutert, wobei diese Ausführungsbeispiele die Erfindung lediglich beispielhaft erläutern und in Bezug auf den durch die nachfolgenden Ansprüche definierten Schutzbereich nicht beschränken. Die Zeichnungen zeigen:
- Figur 1:
- schematische Darstellung einer Bandbeschichtungsanlage zur Durchführung des erfindungsgemäßen Verfahrens in einer ersten Ausführungsform mit drei in Bandlaufrichtung v hintereinander angeordneten Elektrolysetanks;
- Figur 2:
- schematische Darstellung einer Bandbeschichtungsanlage zur Durchführung des erfindungsgemäßen Verfahrens in einer zweiten Ausführungsform mit acht in Bandlaufrichtung v hintereinander angeordneten Elektrolysetanks;
- Figur 3:
- Schnittdarstellung eines mit dem erfindungsgemäßen Verfahren in der ersten Ausführungsform beschichteten Metallbands;
- Figur 4:
- GDOES-Spektrum einer elektrolytisch auf einem Stahlband abgeschiedenen Schicht, welche Chrommetall, Chromoxid und Chrom-Carbide enthält, wobei das Chromoxid an der Oberfläche der Schicht liegt;
- Figur 5:
- Graphische Darstellung der auf einem Metallband abgeschieden Gewichtsauflage einer Beschichtung, welche Chrommetall und Chromoxid enthält, in Abhängigkeit der Temperatur der Elektrolytlösung und der Elektrolysedauer.
- In
Figur 1 ist schematisch eine Bandbeschichtungsanlage zur Durchführung des erfindungsgemäßen Verfahrens in einer ersten Ausführungsform gezeigt. Die Bandbeschichtungsanlage umfasst drei neben- bzw. hintereinander angeordnete Elektrolysetanks 1a, 1b, 1c, die jeweils mit einer Elektrolytlösung E befüllt sind. Durch die Elektrolysetanks 1a-1c wird nacheinander ein zunächst unbeschichtetes Metallband M, insbesondere ein Stahlband, geleitet. Das Metallband M wird hierzu von einer hier nicht dargestellten Transporteinrichtung in eine Bandlaufrichtung v mit einer vorgegebenen Bandgeschwindigkeit durch die Elektrolysetanks 1a-1c gezogen. Oberhalb der Elektrolysetanks 1a-1c sind Stromrollen S angeordnet, über die das Metallband M als Kathode geschaltet wird. In jedem Elektrolysetank ist weiterhin eine Umlenkrolle U angeordnet, um die das Metallband M geführt ist und dadurch in den bzw. aus dem Elektrolysetank gelenkt wird. - Innerhalb jedes Elektrolysetanks 1a-1c ist jeweils unterhalb des Flüssigkeitsspiegels der Elektrolytlösung E mindestens ein Anodenpaar AP angeordnet. In dem gezeigten Ausführungsbeispiel sind in jedem Elektrolysetank 1a-1c zwei in Bandlaufrichtung hintereinander angeordnete Anodenpaare AP vorgesehen. Das Metallband M wird dabei zwischen den gegenüberliegenden Anoden eines Anodenpaars AP hindurchgeführt. In dem Ausführungsbeispiel von
Figur 1 sind somit in jedem Elektrolysetank 1a, 1b, 1c zwei Anodenpaare AP so angeordnet, dass das Metallband M nacheinander durch diese Anodenpaare AP durchgeführt wird. Das in stromabwärtiger Richtung letzte Anodenpaar APc des in Bandlaufrichtung v gesehen letzten Elektrolysetanks 1c weist dabei im Vergleich zu den übrigen Anodenpaaren AP eine verkürzte Länge auf. Dadurch kann mit diesem letzten Anodenpaar APc bei Beaufschlagung mit einem gleich hohen elektrischen Strom eine höhere Stromdichte erzeugt werden. - Bei dem Metallband M kann es sich um ein kaltgewalztes, zunächst unbeschichtetes Stahlband (Schwarzblechband) oder auch um ein verzinntes Stahlband (Weißblechband) handeln. Zur Vorbereitung des Elektrolyseverfahrens wird das Metallband M zunächst entfettet, gespült, gebeizt und nochmals gespült und in dieser vorbehandelten Form nacheinander durch die Elektrolysetanks la -1c geleitet, wobei das Metallband M als Kathode geschaltet wird, indem über die Stromrollen S elektrischer Strom zugeführt wird. Die Bandgeschwindigkeit, mit der das Metallband M durch die Elektrolysetanks 1a-1c geleitet wird, beträgt mindestens 100 m/min und kann bis zu 900 m/min betragen.
- In den in Bandlaufrichtung v hintereinander angeordneten Elektrolysetanks 1a-1c ist jeweils dieselbe Elektrolytlösung E eingefüllt. Die Elektrolytlösung E enthält eine dreiwertige Chromverbindung, bevorzugt basisches Cr(III)-Sulfat [Cr2(SO4)3]. Neben der dreiwertigen Chromverbindung enthält die Elektrolytlösung bevorzugt wenigstens einen Komplexbildner, beispielsweise ein Salz der Ameisensäure, insbesondere Kalium- oder Natriumformat. Das Verhältnis des Gewichtsanteils der dreiwertigen Chromverbindung zum Gewichtsanteil der Komplexbildner, insbesondere der Formate, liegt dabei bevorzugt zwischen 1:1,1 und 1:1,4 und besonders bevorzugt bei 1:1,25. Zur Erhöhung der Leitfähigkeit kann die Elektrolytlösung E ein Alkalimetallsulfat, beispielsweise Kalium- oder Natriumsulfat, enthalten. Die Konzentration der dreiwertigen Chromverbindung in der Elektrolytlösung E liegt dabei bei wenigstens 10g/l und besonders bevorzugt bei 20g/l oder mehr. Der pH-Wert der Elektrolytlösung wird durch Zugabe einer Säure, beispielsweise Schwefelsäure, auf einen bevorzugten Wert zwischen 2,0 und 3,0 und insbesondere auf pH=2,7 eingestellt.
- Die Temperatur der Elektrolytlösung E kann in allen Elektrolysetanks 1a-1c gleich hoch sein und liegt erfindungsgemäß bei höchstens 40°C. In bevorzugten Ausführungsbeispielen des erfindungsgemäßen Verfahrens können jedoch in den Elektrolysetanks 1a-1c auch unterschiedliche Temperaturen der Elektrolytlösung eingestellt werden. So kann beispielsweise die Temperatur der Elektrolytlösung in dem letzten Elektrolysetank 1c bei höchstens 40°C liegen und in den stromaufwärtig angeordneten Elektrolysetanks 1a und 1b kann eine höhere Temperatur vorliegen. In dieser Ausführungsform des erfindungsgemäßen Verfahrens liegt die Temperatur der Elektrolytlösung in dem letzten Elektrolysetank 1c bevorzugt zwischen 25°C und 37°C und insbesondere bei 35°C. Die Temperatur der Elektrolytlösung in den ersten beiden Elektrolysetanks 1a, 1b liegt bei diesem Ausführungsbeispiel bevorzugt zwischen 50°C und 75°C und insbesondere bei 55°C. Durch die niedrigere Temperatur der Elektrolytlösung E wird in dem letzten Elektrolysetank 1c die Abscheidung einer Chrom-/Chromoxid-Schicht mit einem höheren Anteil von Chromoxid gefördert.
- Dies wird aus dem Diagramm der
Figur 5 deutlich, welches die auf dem Metallband abgeschiedene Gewichtsauflage des Chromoxidanteils (CrOx in mg/m2) einer Beschichtung B in Abhängigkeit der Temperatur (T in °C) der Elektrolytlösung und der Elektrolysedauer (tE in Sekunden) zeigt. Aus dem Diagramm ist ersichtlich, dass bei einer vorgegebenen Elektrolysedauer (von bspw. tE = 0,5 Sekunden) bei Temperaturen T unterhalb von 40°C eine höhere Gewichtsauflage von Chromoxid (CrOx) abgeschieden wird als bei höheren Temperaturen. Bei einer Temperatur T der Elektrolytlösung von ca. 35°C ist ein Maximum der Gewichtsauflage des Chromoxids zu beobachten. Daraus ergibt sich, dass in dem erfindungsgemäßen Temperaturbereich von bis zu 40°C und bevorzugt im Bereich von 20 bis 40 °C die Abscheidung von Beschichtungen mit einem hohen Chromoxidanteil gefördert wird. - Weiterhin ist aus
Figur 5 zu erkennen, dass mit zunehmender Elektrolysedauer tE die Gewichtsauflage des Chromoxids zunimmt. Zur Erzielung eines möglichst effizienten Beschichtungsverfahrens, welches in einem Bandbeschichtungsverfahren mit möglichst hohen Bandgeschwindigkeiten von bevorzugt mehr als 100 m/min durchführbar ist, sind niedrige Elektrolysedauern von weniger als 2 Sekunden in jedem der Elektrolysetanks 1a-1c zu bevorzugen. Das Diagramm derFigur 5 zeigt dabei, dass auch bereits bei geringen Elektrolysedauern von weniger als 1 Sekunde ausreichend hohe Gewichtsauflagen des Chromoxids von mehr als 20 mg/m2 erzielt werden können, wenn die Temperatur der Elektrolytlösung in dem erfindungsgemäßen Bereich von 40 °C oder weniger und insbesondere zwischen 20 °C und 38 °C liegt. - Je nach Bandgeschwindigkeit steht das als Kathode geschaltete und durch die Elektrolysetanks 1a-1c geleitete Metallband M während einer Elektrolysedauer tE elektrolytisch wirksam in Kontakt mit der Elektrolytlösung E. Bei Bandgeschwindigkeiten zwischen 100 und 700 m/min liegt die Elektrolysedauer in jedem der Elektrolysetanks 1a, 1b, 1c bevorzugt zwischen 0,5 und 2,0 Sekunden. Gemäß der Erfindung werden zur Erzielung einer hohen Beschichtungseffizienz und eines hohen Durchsatzes so hohe Bandgeschwindigkeiten eingestellt, dass die Elektrolysedauer tE in jedem Elektrolysetank 1a, 1b, 1c kleiner als 2 Sekunden ist und insbesondere zwischen 0,6 Sekunden und 1,8 Sekunden liegt. Die gesamte Elektrolysedauer in der das Metallband M über alle Elektrolysetanks 1a-1c hinweg elektrolytisch wirksam in Kontakt mit der Elektrolytlösung E steht, beträgt entsprechend zwischen 1,8 und 5,4 Sekunden.
- Die in den Elektrolysetanks 1a-1c angeordneten Anodenpaare AP können so mit elektrischem Gleichstrom beaufschlagt werden, dass in den Elektrolysetanks 1a, 1b, 1c jeweils die gleiche Stromdichte vorliegt. Um eine Beschichtung B mit mehreren Schichten B1, B2, B3 unterschiedlicher Zusammensetzung auf dem Metallband M abzuscheiden, ist es jedoch auch möglich, unterschiedliche Stromdichten in den Elektrolysetanks 1a, 1b, 1c einzustellen. So kann bspw. in dem in Bandlaufrichtung v gesehen stromaufwärtigen, ersten Elektrolysetank 1a eine niedrige Stromdichte j1, in dem in Bandlaufrichtung folgenden zweiten Elektrolysetank 1b eine mittlere Stromdichte j2 und in dem in Bandlaufrichtung gesehen letzten Elektrolysetank 1c eine hohe Stromdichte j3 eingestellt werden, so dass die Relation j1 <j2<j3 gilt und die niedrige Stromdichte j1 > 20 A/dm2 ist.
- Durch die eingestellten Stromdichten in den Elektrolysetanks 1a-1c wird auf wenigstens eine Seite des Metallbands M eine Chrommetall und Chromoxid enthaltende Schicht elektrolytisch abgeschieden, wobei in jedem der Elektrolysetanks 1a, 1b, 1c eine Schicht B1, B2, B3 erzeugt wird. Aufgrund der unterschiedlichen Stromdichten j1, j2, j3 in den einzelnen Elektrolysetanks 1a, 1b, 1c weist jede elektrolytisch aufgebrachte Schicht B1, B2, B3 dabei eine unterschiedliche Zusammensetzung auf, die sich insbesondere durch den Anteil des Chromoxids unterscheidet.
- In
Figur 3 ist schematisch eine Schnittdarstellung eines einseitig mit dem erfindungsgemäßen Verfahren elektrolytisch beschichteten Metallbands M gezeigt. Auf einer Seite des Metallbands M ist dabei eine Beschichtung B aufgebracht, die sich aus den einzelnen Schichten B1, B2, B3 zusammensetzt. Jede einzelne Schicht B1, B2, B3 wird dabei in einem der Elektrolysetanks 1a, 1b, 1c auf die Oberfläche appliziert. - Die Beschichtung B, die sich aus den einzelnen Schichten B1, B2, B3 zusammensetzt, enthält als wesentliche Bestandteile metallisches Chrom (Chrommetall) sowie Chromoxide (CrOx), wobei die Zusammensetzung der einzelnen Schichten B1, B2, B3 in Bezug auf ihren jeweiligen Gewichtsanteil von Chrommetall und Chromoxid aufgrund der unterschiedlichen Stromdichten j1, j2, j3 in den Elektrolysetanks 1a, 1b, 1c unterschiedlich ist. Weiterhin trägt auch eine ggf. unterschiedliche Temperatur der Elektrolytlösung in den Elektrolysetanks 1a, 1b, 1c dazu bei, dass sich die einzelnen Schichten in Bezug auf ihre Zusammensetzung unterscheiden, da (wie oben anhand
Figur 5 erläutert) bei niedrigeren Temperaturen von 40°C oder weniger die Ausbildung von Chromoxid gefördert wird. Zur Erzielung eines möglichst hohen Oxidanteils in der Schicht B3 wird in dem letzten Elektrolysetank 1c bevorzugt eine hohe Stromdichte j3 (die höher als die Stromdichte j1, j2 in den vorangehenden Elektrolysetanks ist) und gleichzeitig eine niedrige Temperatur der Elektrolytlösung von 40°C oder weniger eingestellt. - Aufgrund der niedrigen Stromdichte j1 in dem ersten Elektrolysetank 1a weist die in dem ersten Elektrolysetank 1a aufgebrachte Schicht B1 im Vergleich zu der Schicht B2, die in dem zweiten (mittleren) Elektrolysetank 1b aufgebracht wird, einen höheren Oxidanteil auf, da sich bei kleineren Stromdichten, die sich innerhalb des Regime II befinden, höhere Oxidanteile in der Beschichtung ausbilden. Im letzten Elektrolysetank 1c wird eine Stromdichte j3 eingestellt, die im Regime III liegt, in dem ein erhöhter Chromoxidanteil in der Beschichtung erzeugt wird, der bevorzugt bei mehr als 40 Gew.% und besonders bevorzugt bei mehr als 50 Gew.% liegt.
- In Tabelle 1 sind beispielhaft geeignete Stromdichten j1, j2, j3 in den einzelnen Elektrolysetanks 1a, 1b, 1c bei verschiedenen Bandgeschwindigkeiten dargestellt. Aus Tabelle 1 ist ersichtlich, dass die Stromdichten j1 im ersten Elektrolysetank 1a im Vergleich zu den Stromdichten j2 in dem zweiten Elektrolysetank 1b geringfügig kleiner sind und oberhalb eines unteren Grenzwerts von j0 = 20 A/dm2 liegen. Die in den ersten beiden Elektrolysetanks 1a, 1b vorliegenden Stromdichten j1, j2 befinden sich damit jeweils im Regime II, in dem ein linearer Zusammenhang zwischen der Stromdichte und der elektrolytisch abgeschiedenen Menge des Chroms (bzw. der abgeschiedenen Gewichtsauflage von Chrom) vorliegt. Die Stromdichte j1 des ersten Elektrolysetanks 1a ist dabei zweckmäßig so ausgewählt, dass sie nahe an der ersten Stromdichteschwelle liegt, die das Regime I (in dem noch keine Chromabscheidung erfolgt) von dem Regime II abgrenzt. Bei diesen niedrigen Stromdichten j1 wird eine Chrommetall-Chromoxid-Beschichtung (Schicht B1) auf der Oberfläche des Metallbands M mit einem höheren Chromoxid-Anteil abgeschieden, als bei höheren Stromdichten innerhalb des Regime II. Deshalb weist die in dem ersten Elektrolysetank 1a abgeschiedene Schicht B1 im Vergleich zu der im zweiten Elektrolysetank 1b abgeschiedenen Schicht B2 einen höheren Chromoxid-Anteil auf.
- In dem letzten Elektrolysetank 1a wird bevorzugt eine Stromdichte j3 eingestellt, die oberhalb der zweiten Stromdichteschwelle liegt, welche das Regime II von dem Regime III abgrenzt. Die Stromdichte j3 des letzten Elektrolysetanks 1c liegt also in dem Regime III, in dem eine teilweise Zersetzung der Chrommetall-Chromoxid-Beschichtung erfolgt und ein wesentlich höherer Chromoxid-Anteil abgeschieden wird als bei den Stromdichten im Regime II. Aus diesem Grund weist die im letzten Elektrolysetank 1c abgeschiedene Schicht B3 einen hohen Chromoxid-Anteil auf, der höher ist, als die Chromoxid-Anteile in den Schichten B1 und B2.
- Nach der elektrolytischen Beschichtung wird das mit der Beschichtung B versehene Metallband M gespült, getrocknet und eingeölt (beispielsweise mit DOS). Danach kann das elektrolytisch mit der Beschichtung B beschichtete Metallband M mit einer organischen Auflage auf die Oberfläche der Beschichtung B versehen werden. Bei der organischen Auflage kann es sich beispielsweise um einen organischen Lack oder um Polymerfilme aus thermoplastischen Polymeren wie PET, PP, PE oder Mischungen davon handeln. Die organische Auflage kann entweder in einem "Coil-Coating"-Verfahren oder in einem Tafel-Verfahren appliziert werden, wobei das beschichtete Metallband in dem Tafel-Verfahren zunächst in Tafeln zerteilt wird, die anschließend mit einem organischen Lack lackiert oder mit einem Polymerfilm beschichtet werden.
- In
Figur 2 ist eine zweite Ausführungsform einer Bandbeschichtungsanlage mit acht in Bandlaufrichtung v hintereinander angeordneten Elektrolysetanks 1a-1h gezeigt. Die Elektrolysetanks 1a-1h sind dabei in drei Gruppen gruppiert, nämlich eine vordere Gruppe mit den beiden ersten Elektrolysetanks 1a, 1b, eine mittlere Gruppe mit den in Bandlaufrichtung nachfolgenden Elektrolysetanks 1c-1f und eine hintere Gruppe mit den beiden letzten Elektrolysetanks 1g und 1h. Erfindungsgemäß liegt in der hinteren Gruppe der Elektrolysetanks 1g und 1h eine Temperatur der Elektrolytlösung von 40°C oder weniger vor. In der vorderen Gruppe mit den beiden ersten Elektrolysetanks 1a, 1b und der mittleren Gruppe mit den Elektrolysetanks 1c-1f kann entweder dieselbe oder zumindest annähernd dieselbe Temperatur oder auch eine höhere Temperatur vorliegen. Zur Erhöhung der Abscheideeffizienz sind höhere Temperaturen von mehr als 50°C und insbesondere von ca. 55°C in den Elektrolysetanks 1a, 1b der vorderen Gruppe und den Elektrolysetanks 1c-1f der mittleren Gruppe zu bevorzugen. Aus apparativen Gründen kann es jedoch auch zweckmäßig sein, dieselbe Temperatur in allen Elektrolysetanks 1a bis 1h einzustellen und durch Kühlung der Elektrolytlösung während des Elektrolyseprozesses aufrecht zu erhalten. - In den Gruppen von Elektrolysetanks liegen bevorzugt unterschiedlich hohe Stromdichten j1, j2, j3 vor, wobei in der vorderen Gruppe von Elektrolysetanks 1a, 1b eine niedrige Stromdichte j1, in der mittleren Gruppe von Elektrolysetanks 1c-1f eine mittlere Stromdichte j2 und in der hinteren Gruppe von Elektrolysetanks 1g, 1h eine hohe Stromdichte j3 vorliegt, wobei j1 < j2 < j3 ist und die niedrige Stromdichte j1 > 20 A/dm2 ist.
- In Tabelle 2 sind analog zur Tabelle 1 beispielhaft geeignete Stromdichten j1, j2, j3 in den einzelnen Elektrolysetanks 1a bis 1h bei verschiedenen Bandgeschwindigkeiten dargestellt, wobei in den Elektrolysetanks 1a, 1b der vorderen Gruppe jeweils eine Stromdichte j1, in den Elektrolysetanks 1c bis 1f der mittleren Gruppe jeweils eine Stromdichte j2 und in den Elektrolysetanks 1g, 1h der hinteren Gruppe jeweils eine Stromdichte j3 eingestellt ist, wobei j1 < j2 < j3 ist.
- In der vorderen Gruppe von Elektrolysetanks 1a, 1b wird elektrolytisch eine Chrommetall und Chromoxid enthaltende erste Schicht B1 und in der zweiten Gruppe von Elektrolysetanks 1c-1f eine zweite Schicht B2 und in der hinteren Gruppe von Elektrolysetanks 1g, 1h eine dritte Schicht B3 auf das Metallband M appliziert. Wie bei dem Ausführungsbeispiel von
Figur 1 weisen die Schichten B1, B2, B3 dabei aufgrund der unterschiedlichen Stromdichten j1, j2, j3 und ggf. unterschiedlicher Temperatur in den hintereinander angeordneten Gruppen von Elektrolysetanks unterschiedliche Zusammensetzungen auf, wobei die Schicht B1 einen höheren Chromoxid-Anteil enthält als die zweite Schicht B2 und die dritte Schicht B3 einen höheren Chromoxid-Anteil enthält als die beiden Schichten B1 und B2. - Die mit dem erfindungsgemäßen Verfahren in der Bandbeschichtungsanlage von
Figur 2 auf der Oberfläche des Metallbands M applizierte Beschichtung B weist damit im Wesentlichen die gleiche Zusammensetzung und Struktur auf wie inFigur 3 dargestellt. - Die gesamte Elektrolysedauer, in der das Metallband M elektrolytisch wirksam in Kontakt mit der Elektrolytlösung E steht, liegt in dem Ausführungsbeispiel von
Figur 2 über alle Elektrolysetanks 1a-1h hinweg bevorzugt bei weniger als 16 Sekunden und insbesondere zwischen 4 und 16 Sekunden. - Mit der Bandbeschichtungsanlage von
Figur 2 können wegen der höheren Anzahl der Elektrolysetanks und der damit einhergehenden höheren Gesamt-Elektrolysedauer, in der sich das als Kathode geschaltete Metallband elektrolytisch wirksam in Kontakt mit der Elektrolytlösung E befindet, Beschichtungen B mit höheren Gewichtsauflagen erzeugt werden. - Zur Erzielung einer ausreichenden Korrosionsbeständigkeit weisen die Beschichtungen B bevorzugt eine gesamte Gewichtsauflage des Chroms von wenigstens 40 mg/m2 und besonders bevorzugt von 70 mg/m2 bis 180 mg/m2 auf. Der im Chromoxid enthaltenen Anteil der gesamten Gewichtsauflage des Chroms liegt dabei, gemittelt über die gesamte Auflage der Schicht B, bei wenigstens 5% und bevorzugt zwischen 10% und 15%. Zweckmäßig weist die Beschichtung B insgesamt einen Chromoxid-Anteil mit einer Gewichtsauflage des als Chromoxid gebundenen Chroms von wenigstens 3 mg Chrom pro m2 und insbesondere von 3 bis 15 mg/m2 auf. Bevorzugt beträgt die Gewichtsauflage des als Chromoxid gebundenen Chroms, gemittelt über die gesamte Auflage der Beschichtung B, wenigstens 7 mg Chrom pro m2. Eine gute Haftung von organischen Lacken oder thermoplastischen Polymermaterialien auf der Oberfläche der Beschichtung B kann bei Gewichtsauflagen des Chromoxids bis ca. 15 mg/m2 erzielt werden. Bei höheren Chromoxidauflagen ist eine Verschlechterung der Haftung organischer Auflagen wie Lacke oder Polymerfolien zu beobachten. Ein bevorzugter Bereich für die Gewichtsauflage des Chromoxids in der Beschichtung B liegt daher zwischen 5 und 15 mg/ m2.
- Nachfolgend werden zur Erläuterung der Ausführung der Erfindung Laborversuche zur Beschichtung von Stahlblechen mit einer Chrom-/Chromoxidbeschichtung im Detail dargestellt:
In Tabelle 3 ist ein Beispiel für die Zusammensetzung einer Elektrolytlösung angegeben, die ein Cr(III)-Salz (Cr2(SO4)3) enthält und für Beschichtungsversuche in einer Laborapparatur zur elektrolytischen Beschichtung eines Metallbands eingesetzt worden ist. Die Parameter der verwendeten Elektrolytlösung können Tabelle 4 entnommen werden. Das als Bestandteil der Elektrolytlösung verwendete Cr(III)-Salz sollte möglichst frei von organischen Rückständen sein. Die Darstellung der Cr(III)-Salze kann großtechnisch mittels Reduktion aus Cr(VI)-Salzen durchgeführt werden. Als Reduktionsmittel wird bevorzugt ein unedleres Metall als Chrom (Variante 1), oder alternativ eine organische Komponente verwendet (Variante 2). Der pH-Wert der Elektrolytlösung wurde mittels Zugabe von Schwefelsäure mit abschließendem Auffüllen mit deionisiertem Wasser eingestellt. - Als Substrat für die Beschichtungsversuche wurde ein bereits mit einer Chrom-/ChromoxidSchicht beschichtetes Stahlblech verwendet. Dieses Material wurde bei 55 °C elektrolytisch mit einem Chrom(III)-Elektrolyten beschichtet und die nachstehende Tabelle 5 beschreibt die bereits vorhandene Beschichtung des Stahlblechs mit Chrommetall und Chromoxid. Es ist erkennbar, dass hauptsächlich Chrommetall und nur wenig Chromoxid entstand.
- Die Chrommetallbestimmung erfolgte dabei nach EURO Norm EN 10202 (Cr-metal photometric (euro-norm) step 2: 120 ml NaCO3 and 15 mA/plane; successfull dissolution visible by potential step, oxidation with 10 ml 6% H2O2, photometric @ 370 nm). Die Chromoxidbestimmung erfolgte ebenfalls nach EURO Norm EN 10202 (Cr-oxides photometric: (euro-norm) step 1: 40 ml NaOH (330g/L), reaction at 90 °C for 10 minutes, oxidation with 10 ml 6% H2O2, photometric @ 370 nm) .
- Als Vorbereitung für die Laborbeschichtung wurde das Substrat entfettet (2.5 A/dm2 kathodisch geschaltet, 30 sek. , 70 °C in Natronlauge) und anschließend mit deionisertem Wasser gespült. Auf den anschließenden Beizvorgang wurde aufgrund der schon vorhandenen metallischen Beschichtung verzichtet.
- Die Tabellen 6 und 7 fassen die Parameter und die Ergebnisse der Beschichtungsversuche zusammen. Dabei wurde eine großtechnische Beschichtung eines Stahlbands mit einer Bandgeschwindigkeit von 100 m/min simuliert. Bei dieser Geschwindigkeit liegt die gewählte und während des Versuches jeweils konstant gehaltene Stromdichte von 60 A/dm2 in Regime III (vgl. Tabelle 2) und erzeugt so (jedenfalls bei den niedrigeren Temperaturen) hauptsächlich Chromoxid. In den Laborversuchen wurden sowohl die Temperaturen der Elektrolytlösungen als auch die Haltezeiten (Elektrolysedauer) im Regime III variiert. Beschichtet wurde jeweils die Unterseite des Substrats. Die Elektrolysedauer im betreffenden Regime III ist in Tabelle 5 mit "Zeit (s) Segment 1" angegeben.
- Es ist zu beobachten, dass bei Temperaturen der Elektrolytlösung im Bereich von 22 °C bis ca. 37°C eine Erhöhung des Chromoxidanteils der Beschichtung und bei Temperaturen ab ca. 40°C ein wesentlich geringerer Anteil des Chromoxids in der Beschichtung vorhanden ist. Zur Erzielung von chromhaltigen Beschichtungen mit einem hohen Anteil an Chromoxid werden daher erfindungsgemäß Elektrolyttemperaturen von höchstens 40°C eingesetzt. Um eine Beschichtung zu erzeugen, die an der Oberfläche einen möglichst hohen Chromoxidgehalt aufweist, erfolgt die Beschichtung bei Elektrolyttemperaturen unterhalb von 40°C dabei erfindungsgemäß in dem letzten Elektrolysetank oder in einer hinteren Gruppe von Elektrolysetanks.
- In den Laborversuchen lagen die Elektrolysedauern im jeweiligen Regime (Segment) bei weniger als 2 Sekunden. Mit zunehmender Elektrolysedauer wurde in den Laborversuchen eine höhere Oxidbelegungen beobachtet. Allerdings sind kurze Elektrolysedauern von weniger als 2 Sekunden hinsichtlich der Effizienz in einer großtechnischen Verfahrensführung zu bevorzugen, da hier mit hohen Bandgeschwindigkeiten von bevorzugt mehr als 100 m/min gearbeitet wird.
Tabelle 1: Stromdichten j1, j2, j3 in den einzelnen Elektrolysetanks des ersten Ausführungsbeispiels (mit 3 Elektrolysetanks 1a - 1c) bei verschiedenen Bandgeschwindigkeiten v: Tank 1a 1b 1c v [m/min] J1/ [A/dm2] J2/ [A/dm2] J3/ [A/dm2] 100 25 29 75 150 41 45 91 200 57 61 107 300 73 77 133 400 89 93 149 500 105 109 165 Tabelle 2: Stromdichten j1, j2, j3 in den einzelnen Elektrolysetanks des zweiten Ausführungsbeispiels (mit 8 Elektrolysetanks 1a - 1h, die zu drei Gruppen gruppiert sind) bei verschiedenen Bandgeschwindigkeiten v: Tank 1a 1b 1c 1d 1e 1f 1g 1h v [m/min] J1/ [A/dm2] J1/ [A/dm2] J2/ [A/dm2] J2/ [A/dm2] J2/ [A/dm2] J2/ [A/dm2] J3/ [A/dm2] J3/ [A/dm2] 100 25 25 29 29 29 29 75 75 150 41 41 45 45 45 45 91 91 200 57 57 61 61 61 61 107 107 300 73 73 77 77 77 77 133 133 400 89 89 93 93 93 93 149 149 500 105 105 109 109 109 109 165 165 Tabelle 3: Zusammensetzung der Elektrolytlösung Substanz eingesetzte Menge / L Natriumformiat 41,4 g basisches Chromsulfat 120 g Schwefelsäure 96% ∼7.5 ml Natriumsulfat 100 g Tabelle 4: Parameter der Elektrolytlösung Lfd Nr. Produktionsdatum Temperatur TCCT Tank [°C] pH-Wert VA08 Leitwert VA08 [mS/cm] pH-Wert (55°C) Leitwert 55°C [mS/cm] Chrom Konzentration Elektrolyt (g/L) Eisen Konzentration Elektrolyt (mg/L) Chlorid Konzentration Elektrolyt (mg/l) Elektrolyt surface explosion 1.Zyklus bei ∼55°C (µC/cm2) Elektrolyt surface explosion 2.Zyklus bei ∼55 °C (µC/cm2) 13 28.02.2016 55 2,4 88,5 2,3 158,3 22,6 270 182 348,8 327,8 Tabelle 5: Chrommetall und Chromoxidbestimmung des Substrats Lfd Nr. Ø Chrom-Metall OS (mg/m2) Ø Chrom-Metall US (mg/m2) Ø Chrom-Oxid OS (mg/m2) Ø Chrom-Oxid US (mg/m2) 11 63 111 3 1
Claims (14)
- Verfahren zur Herstellung eines mit einer Beschichtung (B) beschichteten Metallbands (M), wobei die Beschichtung (B) Chrommetall und Chromoxid enthält und elektrolytisch aus einer Elektrolytlösung (E), welche eine dreiwertige Chromverbindung enthält, auf das Metallband (M) aufgebracht wird, indem das Metallband (M) als Kathode geschaltet während einer Elektrolysedauer in Kontakt mit der Elektrolytlösung (E) gebracht wird, dadurch gekennzeichnet, dass das Metallband (M) mit einer vorgegebenen Bandgeschwindigkeit (v) in einer Bandlaufrichtung nacheinander zumindest durch einen ersten Elektrolysetank (1a) oder eine vordere Gruppe von Elektrolysetanks (1a, 1b) und durch einen in Bandlaufrichtung gesehen letzten Elektrolysetank (1c) oder eine hintere Gruppe von Elektrolysetanks (1g, 1h) geführt wird, wobei die über das Volumen des Elektrolysetanks gemittelte Temperatur der Elektrolytlösung in dem ersten Elektrolysetank (1a) oder der vorderen Gruppe von Elektrolysetanks (1a, 1b) größer ist als die gemittelte Temperatur der Elektrolytlösung in dem letzten Elektrolysetank (1c) oder der hinteren Gruppe von Elektrolysetanks (1g, 1h) und in dem letzten Elektrolysetank (1c; 1h) oder in der hinteren Gruppe von Elektrolysetanks (1g, 1h) die Elektrolytlösung (E) eine gemittelte Temperatur von weniger als 40°C aufweist, und die Elektrolysedauer (tE), in der das Metallband (M) elektrolytisch wirksam in Kontakt mit der Elektrolytlösung (E) steht, in dem letzten Elektrolysetank (1c) oder in der hinteren Gruppe von Elektrolysetanks (1g, 1h) kleiner als 2,0 Sekunden ist.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Elektrolysedauer (tE), in der das Metallband (M) elektrolytisch wirksam in Kontakt mit der Elektrolytlösung (E) steht, in jedem der Elektrolysetanks (1a - 1h) kleiner als 2,0 Sekunden ist, und bevorzugt zwischen 0,3 und 2,0 Sekunden, insbesondere zwischen 0,6 Sekunden und 1,8 Sekunden liegt, wobei die gesamte Elektrolysedauer (tE), in der das Metallband (M) elektrolytisch wirksam in Kontakt mit der Elektrolytlösung (E) steht, bevorzugt zwischen 2 Sekunden und 16 Sekunden und besonders bevorzugt zwischen 4 Sekunden und 14 Sekunden liegt.
- Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die gemittelte Temperatur der Elektrolytlösung in dem ersten Elektrolysetank (1a) oder in der vorderen Gruppe von Elektrolysetanks (1a, 1b) zwischen 50°C und 75°C liegt.
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die über das Volumen des jeweiligen Elektrolysetanks gemittelte Temperatur der Elektrolytlösung in dem letzten Elektrolysetank oder der hinteren Gruppe von Elektrolysetanks zwischen 20°C und weniger als 40°C und bevorzugt zwischen 25°C und 38°C liegt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in dem in Bandlaufrichtung gesehen ersten Elektrolysetank (1a) oder in der vorderen Gruppe von Elektrolysetanks (1a, 1b) eine niedrige Stromdichte (j1), in einem in Bandlaufrichtung folgenden zweiten Elektrolysetank (1b) oder in einer mittleren Gruppe von Elektrolysetanks (1c - 1f) eine mittlere Stromdichte (j2) und in dem in Bandlaufrichtung gesehen letzten Elektrolysetank (1c) oder in der hinteren Gruppe von Elektrolysetanks (1g, 1h) eine hohe Stromdichte (j3) vorliegt, wobei j1 ≤ j2 < j3 ist und die niedrige Stromdichte (j1) größer als 20 A/dm2 ist.
- Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Elektrolytlösung neben der dreiwertigen Chromverbindung, welche bevorzugt basisches Cr(III)-Sulfat (Cr2(SO4)3) umfasst, wenigstens einen Komplexbildner, insbesondere ein Alkalimetallcarboxylat, bevorzugt ein Salz der Ameisensäure, insbesondere Kaliumformat oder Natriumformat, umfasst, wobei das Verhältnis des Gewichtsanteils der dreiwertigen Chromverbindung zum Gewichtsanteil der Komplexbildner, insbesondere der Formiate, zwischen 1:1,1 und 1:1,4 und bevorzugt zwischen 1:1,2 und 1:1,3 und besonders bevorzugt bei 1:1,25 liegt.
- Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Elektrolytlösung zur Erhöhung der Leitfähigkeit ein Alkalimetallsulfat, bevorzugt Kalium- oder Natriumsulfat, umfasst, und/oder frei von Halogeniden, insbesondere frei von Chlorid- und Bromid-Ionen sowie frei von einem Pufferungsmittel und insbesondere frei von einem Borsäure-Puffer, ist.
- Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Konzentration der dreiwertigen Chromverbindung in der Elektrolytlösung wenigstens 10g/l und bevorzugt mehr als 15 g/l beträgt und besonders bevorzugt bei 20 g/l oder mehr liegt.
- Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der pH-Wert der Elektrolytlösung, gemessen bei einer Temperatur von 20°C, zwischen 2,0 und 3,0 und bevorzugt zwischen 2,5 und 2,9 und besonders bevorzugt bei 2,7 liegt.
- Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Metallband mit einer Bandgeschwindigkeit von mindestens 100 m/min durch die Elektrolytlösung bewegt wird.
- Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die aus der Elektrolytlösung aufgebrachte Beschichtung eine gesamte Gewichtsauflage des Chroms von wenigstens 40 mg/m2, bevorzugt von 70 mg/m2 bis 180 mg/m2 aufweist, wobei der im Chromoxid enthaltene Anteil der gesamten Gewichtsauflage des Chroms bei wenigstens 5%, bevorzugt bei 10 bis 15% liegt.
- Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die aus der Elektrolytlösung aufgebrachte Beschichtung einen Chromoxidanteil mit einer Gewichtsauflage des als Chromoxid gebundenen Chroms von wenigstens 5 mg Cr pro m2, bevorzugt von wenigstens 7 mg Cr pro m2 aufweist und besonders bevorzugt zwischen 5 und 15 mg/ m2 liegt.
- Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass sich die auf der Oberfläche des Metallbands (M) abgeschiedene Beschichtung (B) aus wenigstens zwei Schichten (B1, B3) mit unterschiedlicher Zusammensetzung in Bezug auf ihren Anteil an Chrommetall und Chromoxid zusammensetzt, wobei die dem Metallband zugewandte untere Schicht (B1) einen mittleren Gewichtsanteil von Chromoxid aufweist, der insbesondere im Bereich von 10% bis 15 % liegt, und die obere Schicht (B3) einen hohen Gewichtsanteil von Chromoxid aufweist, der insbesondere bei mehr als 30 %, bevorzugt bei mehr als 50% liegt.
- Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass sich die auf der Oberfläche des Metallbands (M) abgeschiedene Beschichtung aus drei Schichten (B1, B2, B3) mit unterschiedlicher Zusammensetzung in Bezug auf ihren Anteil an Chrommetall und Chromoxid zusammensetzt, wobei die dem Metallband zugewandte untere Schicht (B1) einen mittleren Gewichtsanteil von Chromoxid aufweist, der insbesondere im Bereich von 10% bis 15 % liegt, eine mittlere Schicht (B2) einen niedrigen Gewichtsanteil von Chromoxid aufweist, der insbesondere im Bereich von 2% bis 10 % liegt, und die obere Schicht (B3) einen hohen Gewichtsanteil von Chromoxid aufweist, der insbesondere bei mehr als 30 %, bevorzugt bei mehr als 50% liegt.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018132075.2A DE102018132075A1 (de) | 2018-12-13 | 2018-12-13 | Verfahren zur Herstellung eines mit einer Beschichtung aus Chrom und Chromoxid beschichteten Metallbands auf Basis einer Elektrolytlösung mit einer dreiwertigen Chromverbindung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3666931A1 EP3666931A1 (de) | 2020-06-17 |
EP3666931B1 true EP3666931B1 (de) | 2021-10-20 |
Family
ID=68426328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19206950.8A Active EP3666931B1 (de) | 2018-12-13 | 2019-11-04 | Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung |
Country Status (9)
Country | Link |
---|---|
US (1) | US11274373B2 (de) |
EP (1) | EP3666931B1 (de) |
JP (1) | JP7000405B2 (de) |
KR (1) | KR102268789B1 (de) |
CN (1) | CN111321431B (de) |
BR (1) | BR102019025858A2 (de) |
CA (1) | CA3064669C (de) |
DE (1) | DE102018132075A1 (de) |
ES (1) | ES2898373T3 (de) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018132074A1 (de) | 2018-12-13 | 2020-06-18 | thysenkrupp AG | Verfahren zur Herstellung eines mit einer Beschichtung aus Chrom und Chromoxid beschichteten Metallbands auf Basis einer Elektrolytlösung mit einer dreiwertigen Chromverbindung |
DE102019109356A1 (de) * | 2019-04-09 | 2020-10-15 | Thyssenkrupp Rasselstein Gmbh | Verfahren zur Herstellung eines mit einer Beschichtung aus Chrom und Chromoxid beschichteten Metallbands auf Basis einer Elektrolytlösung mit einer dreiwertigen Chromverbindung und Elektrolysesystem zur Durchführung des Verfahrens |
KR20230093037A (ko) * | 2020-12-21 | 2023-06-26 | 제이에프이 스틸 가부시키가이샤 | 표면 처리 강판 및 그 제조 방법 |
AU2021406790A1 (en) * | 2020-12-21 | 2023-07-13 | Jfe Steel Corporation | Surface-treated steel sheet and method of producing the same |
WO2022138006A1 (ja) * | 2020-12-21 | 2022-06-30 | Jfeスチール株式会社 | 表面処理鋼板およびその製造方法 |
WO2022138005A1 (ja) * | 2020-12-21 | 2022-06-30 | Jfeスチール株式会社 | 表面処理鋼板およびその製造方法 |
WO2023195252A1 (ja) * | 2022-04-08 | 2023-10-12 | Jfeスチール株式会社 | 表面処理鋼板およびその製造方法 |
JP7327718B1 (ja) * | 2022-04-08 | 2023-08-16 | Jfeスチール株式会社 | 表面処理鋼板およびその製造方法 |
WO2023195251A1 (ja) * | 2022-04-08 | 2023-10-12 | Jfeスチール株式会社 | 表面処理鋼板およびその製造方法 |
KR20240141805A (ko) * | 2022-04-08 | 2024-09-27 | 제이에프이 스틸 가부시키가이샤 | 표면 처리 강판 및 그 제조 방법 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE635457A (de) | 1962-08-16 | |||
ES2583372T3 (es) * | 2012-03-30 | 2016-09-20 | Tata Steel Ijmuiden Bv | Sustrato recubierto para aplicaciones de empaquetado y un método para producir dicho sustrato recubierto |
EP2922983B1 (de) | 2012-11-21 | 2019-02-20 | Tata Steel IJmuiden BV | Auf stahlsubstrate für verpackungsanwendungen angewandte chrom-chromoxid-beschichtungen und verfahren zur herstellung besagter beschichtungen |
BR112015031543B1 (pt) * | 2013-06-20 | 2021-06-29 | Tata Steel Ijmuiden Bv | Substratos revestidos de cromo-óxido de cromo, método de fabricação e seus usos |
EP3146091B1 (de) | 2014-05-21 | 2019-08-21 | Tata Steel IJmuiden BV | Verfahren zur herstellung von chrom-chromoxid beschichteten substraten |
JP6571112B2 (ja) * | 2014-05-21 | 2019-09-04 | タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv | 移動する金属ストリップのメッキ法およびそれにより製造された被覆金属ストリップ |
US10121889B2 (en) | 2014-08-29 | 2018-11-06 | Macronix International Co., Ltd. | High voltage semiconductor device |
EP3112502B1 (de) * | 2015-06-30 | 2018-08-01 | Vazzoler, Evio | Verfahren zum plattieren von metallischen drähten oder bändern und produkt hergestellt mittels diesem verfahren |
US11136685B2 (en) * | 2015-11-05 | 2021-10-05 | Topocrom Systems Ag | Method and device for the galvanic application of a surface coating |
IT201600109354A1 (it) * | 2016-10-28 | 2018-04-28 | St Zooprofilattico Sperimentale Del Piemonte Liguria E Valle Daosta | Procedimento per discernere carni fresche da carni sottoposte a congelamento mediante analisi di immagini di campioni di tessuto muscolare e corrispondente sistema predisposto per l'esecuzione di detto procedimento. |
BR112019009702B1 (pt) | 2016-11-14 | 2023-03-28 | Tata Steel Ijmuiden B.V. | Método para a eletrogalvanização de uma tira de aço não revestida com uma camada de revestimento |
RS63579B1 (sr) * | 2017-03-21 | 2022-10-31 | Tata Steel Ijmuiden Bv | Postupak za proizvodnju crnog lima obloženog hrom-hrom oksidom |
DE102018132074A1 (de) | 2018-12-13 | 2020-06-18 | thysenkrupp AG | Verfahren zur Herstellung eines mit einer Beschichtung aus Chrom und Chromoxid beschichteten Metallbands auf Basis einer Elektrolytlösung mit einer dreiwertigen Chromverbindung |
-
2018
- 2018-12-13 DE DE102018132075.2A patent/DE102018132075A1/de active Pending
-
2019
- 2019-11-04 ES ES19206950T patent/ES2898373T3/es active Active
- 2019-11-04 EP EP19206950.8A patent/EP3666931B1/de active Active
- 2019-12-06 BR BR102019025858-6A patent/BR102019025858A2/pt not_active Application Discontinuation
- 2019-12-09 JP JP2019221836A patent/JP7000405B2/ja active Active
- 2019-12-11 CA CA3064669A patent/CA3064669C/en active Active
- 2019-12-12 KR KR1020190165574A patent/KR102268789B1/ko active IP Right Grant
- 2019-12-12 US US16/711,859 patent/US11274373B2/en active Active
- 2019-12-13 CN CN201911283872.2A patent/CN111321431B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020109205A (ja) | 2020-07-16 |
EP3666931A1 (de) | 2020-06-17 |
CA3064669C (en) | 2022-04-12 |
CN111321431B (zh) | 2024-09-10 |
CA3064669A1 (en) | 2020-06-13 |
JP7000405B2 (ja) | 2022-01-19 |
KR102268789B1 (ko) | 2021-06-28 |
CN111321431A (zh) | 2020-06-23 |
BR102019025858A2 (pt) | 2020-06-23 |
US11274373B2 (en) | 2022-03-15 |
KR20200074031A (ko) | 2020-06-24 |
ES2898373T3 (es) | 2022-03-07 |
DE102018132075A1 (de) | 2020-06-18 |
US20200190679A1 (en) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3666931B1 (de) | Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung | |
DE69031905T2 (de) | Elektrobeschichtete folien mit bestimmten eigenschaften für gedruckte schaltungen sowie verfahren und elektrolysebadlösungen zu ihrer herstellung | |
DE3532808C2 (de) | Verzinntes und vernickeltes stahlblech und verfahren zu seiner herstellung | |
DE3851652T2 (de) | Stahlbleche mit einer dünnen Zinnbeschichtung, die einen ausgezeichneten Korrosionswiderstand und eine ausgezeichnete Schweissbarkeit haben. | |
DE3879826T2 (de) | Herstellung eines mit einer zn-ni-legierung plattierten stahlbleches. | |
DE3121878A1 (de) | Mit hydratisiertem chromoxid ueberzogener bandstahl fuer geschweisste blechdosen und andere behaelter | |
DE69809486T2 (de) | Mit einer zinkhaltigen Schicht versehenes Stahlblech und Verfahren zu seiner Herstellung | |
DE69933533T2 (de) | Kupferfolie mit einer glänzenden Oberfläche mit hoher Oxidationsbeständigkeit und Verfahren zur Herstellung | |
DE2600636A1 (de) | Chromatisierte, galvanisch verzinkte stahlbleche und verfahren zu ihrer herstellung | |
EP1142041A1 (de) | Batteriehülse aus umgeformtem, kaltgewalztem blech sowie verfahren zur herstellung von batteriehülsen | |
EP3666928B1 (de) | Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung | |
DE3024932C2 (de) | ||
DE69520350T2 (de) | Galvanisiertes stahlblech und verfahren zur herstellung | |
DE3606430A1 (de) | Oberflaechenbehandeltes stahlblech | |
DE102010007624A1 (de) | Separator für eine Brennstoffzelle und Verfahren zu dessen Herstellung | |
DE69617381T2 (de) | Vorbeschichtetes stahlblech für positive elektrodenummantelung einer trockenen alkalischen zelle | |
DE69109029T2 (de) | Anode für Chrom-Elektroplattierung, Verfahren zur Herstellung und Verwendung dieser Anode. | |
DE69007234T2 (de) | Überzugsmasse und Verfahren zur Herstellung eines beschichteten Metallartikels. | |
EP3733932A1 (de) | Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung und elektrolysesystem zur durchführung des verfahrens | |
EP1570115B1 (de) | Verfahren zur elektrolytischen abscheidung von magnesium oder magnesium-zink auf verzinktem blech | |
EP3415665B1 (de) | Verfahren zur galvanischen abscheidung von zink-nickel-legierungsüberzügen aus einem alkalischen zink-nickel-legierungsbad mit reduziertem abbau von additiven | |
EP3722464A1 (de) | Verfahren zur passivierung der oberfläche eines schwarzblechs oder eines weissblechs und elektrolysesystem zur durchführung des verfahrens | |
DE3106361C2 (de) | Verfahren zum Herstellen galvanisch verzinkter Stahlbänder bzw. -bleche | |
DE69324412T2 (de) | Verfahren zur Herstellung eines mit einer Metallschicht überzogenen Sandwichblechs | |
EP4159896A2 (de) | Verfahren zur passivierung der oberfläche eines weissblechs und elektrolysesystem zur durchführung des verfahrens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20201217 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THYSSENKRUPP AG Owner name: THYSSENKRUPP RASSELSTEIN GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210723 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019002544 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1440039 Country of ref document: AT Kind code of ref document: T Effective date: 20211115 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 38934 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2898373 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220220 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220221 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220120 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220121 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019002544 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211104 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220721 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211104 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20191104 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231122 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20231102 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231123 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231215 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231024 Year of fee payment: 5 Ref country code: IT Payment date: 20231130 Year of fee payment: 5 Ref country code: FR Payment date: 20231122 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231121 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240117 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211020 |