EP3666931B1 - Procédé de fabrication d'une bande métallique ayant un revêtement de chrome et d'oxyde de chrome avec un électrolyte à base de chromium trivalent - Google Patents

Procédé de fabrication d'une bande métallique ayant un revêtement de chrome et d'oxyde de chrome avec un électrolyte à base de chromium trivalent Download PDF

Info

Publication number
EP3666931B1
EP3666931B1 EP19206950.8A EP19206950A EP3666931B1 EP 3666931 B1 EP3666931 B1 EP 3666931B1 EP 19206950 A EP19206950 A EP 19206950A EP 3666931 B1 EP3666931 B1 EP 3666931B1
Authority
EP
European Patent Office
Prior art keywords
electrolysis
chromium
electrolyte solution
chromium oxide
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19206950.8A
Other languages
German (de)
English (en)
Other versions
EP3666931A1 (fr
Inventor
Andrea Dr. Marmann
Christoph Molls
Rainer Görtz
Thomas Lenz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp AG
ThyssenKrupp Rasselstein GmbH
Original Assignee
ThyssenKrupp AG
ThyssenKrupp Rasselstein GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp AG, ThyssenKrupp Rasselstein GmbH filed Critical ThyssenKrupp AG
Publication of EP3666931A1 publication Critical patent/EP3666931A1/fr
Application granted granted Critical
Publication of EP3666931B1 publication Critical patent/EP3666931B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/38Chromatising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0628In vertical cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/16Apparatus for electrolytic coating of small objects in bulk
    • C25D17/28Apparatus for electrolytic coating of small objects in bulk with means for moving the objects individually through the apparatus during treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/02Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Definitions

  • the invention relates to a method for producing a metal strip coated with a coating of chromium and chromium oxide according to the preamble of claim 1.
  • tin-free steel sheet steel sheets which are electrolytically coated with a coating of chromium and chromium oxide are known from the prior art, which are referred to as tin-free steel sheet ("Tin Free Steel", TFS) or as “Electrolytic Chromium Coated Steel (ECCS)" and a Represent an alternative to tinplate.
  • TFS Tin Free Steel
  • ECCS Electrolytic Chromium Coated Steel
  • tin-free steel sheets are particularly characterized by good adhesion for paints or organic protective coatings (such as, for example, polymer coatings made of PP or PET).
  • these chromium-coated steel sheets have good corrosion resistance and good processability in forming processes for the production of packaging, e.g. in deep-drawing and ironing processes.
  • electrolytic coating processes are known from the prior art, with which the coating is applied in a strip coating system to a strip-shaped steel sheet using an electrolyte containing chromium VI.
  • these coating processes due to the properties of the chromium VI-containing electrolytes used in the electrolysis process, which are hazardous to the environment and health, these coating processes have considerable disadvantages and will have to be replaced by alternative coating processes in the foreseeable future, as the use of chromium VI-containing materials will be prohibited in the future.
  • a method for the electrolytic coating of an electrically conductive substrate which is in particular a black sheet (uncoated steel sheet) or a tinplate (tinned steel sheet) can act, known with a chrome metal-chromium oxide (Cr-CrOx) layer, in which the substrate connected as a cathode is brought into contact with an electrolyte solution which contains a trivalent chromium compound (Cr-III), with an anode is provided that prevents or at least reduces the oxidation of chromium (III) ions to chromium (VI) ions and hydrogen bubbles that arise during the electrolytic deposition of the coating on the surface of the substrate are removed.
  • Cr-CrOx chrome metal-chromium oxide
  • Cr-III trivalent chromium compound
  • the deposition reaction and the surface properties of the electrolytically deposited coating depend on the temperature of the electrolyte solution and that temperatures of the electrolyte solution between 30 ° C and 70 ° C are suitable for producing coatings with a good surface appearance.
  • a preferred temperature range between 40 ° C. and 60 ° C. has been recognized as advantageous with regard to an efficient deposition reaction because the electrolyte solution has good conductivity at these temperatures.
  • a method for the electrolytic coating of a strip-shaped steel sheet with a chromium metal / chromium oxide (Cr-CrOx) layer in a strip coating system in which the steel sheet, connected as a cathode, is passed through an electrolyte solution at high strip speeds of more than 100 m / min, which contains a trivalent chromium compound (Cr-III).
  • composition of the coating which, depending on the components still contained in the electrolyte solution in addition to the trivalent chromium compound (Cr-III), can also contain chromium sulfate and chromium carbide in addition to the constituents chromium metal and chromium oxide, depends to a large extent on the current densities of the electrolysis depends, which are set at the anodes during the electrolytic deposition process in the electrolysis tanks in which the electrolyte solution is contained.
  • the coating contains a higher one Chromium oxide content, which makes up between 1 ⁇ 4 and 1/3 of the total weight of the coating in the area of higher current densities.
  • the values of the current density thresholds that delimit the areas (regime I to III) depend on the belt speed with which the steel sheet is moved through the electrolyte solution.
  • Another method for the electrolytic coating of a black sheet with a chromium metal / chromium oxide (Cr-CrOx) layer made of an electrolyte with a trivalent chromium compound is from EP 3 378 973-A1 known, in which the black plate connected as cathode is passed at a speed of at least 50 m / min in a coating line through the electrolyte, which has a temperature between 30 and 70 ° C and preferably at least 40 ° C.
  • the object of the present invention is to provide a method that is as efficient as possible and can be carried out on an industrial scale in a coil coating system for producing a metal strip coated with a coating of chromium and chromium oxide based on an electrolyte solution with a trivalent chromium compound, the coating having the highest possible proportion of chromium oxide is intended to achieve adequate corrosion resistance of the coated metal strip and a good adhesive base for organic coatings, such as paints or polymer films made of PET or PP.
  • a coating containing chromium metal and chromium oxide is applied electrolytically from an electrolyte solution containing a trivalent chromium compound to a metal strip, in particular a steel strip, by bringing the metal strip into contact with the electrolyte solution connected as a cathode , the metal strip successively at a predetermined strip speed in a strip running direction at least through a first electrolysis tank (1a) or a front group of electrolysis tanks (1a, 1b) and through a last electrolysis tank (1c) or a rear group of electrolysis tanks (1g) as seen in the strip running direction , 1h), the temperature of the electrolyte solution in the first electrolysis tank (1a) or the front group of electrolysis tanks (1a, 1b) averaged over the volume of the electrolysis tank being greater than the average temperature of the electrolyte solution in the last electrolysis tank (1c) or the rear group of E electrolysis tanks (1g, 1h) and in the last electrolysis tank seen in the direction
  • chromium oxide all oxide forms of chromium (CrOx), including chromium hydroxides, in particular chromium (III) hydroxide and chromium (III) oxide hydrate, as well as mixtures thereof are meant.
  • the electrolysis time in which the metal strip is in effective electrolytic contact with the electrolyte solution is expediently less than 2 seconds in each of the electrolysis tanks, so that the metal strip moves at a constant belt speed through the several electrolysis tanks arranged one behind the other in the direction of belt travel, which are expediently designed in the same way are, can be guided.
  • the electrolysis time in each of the electrolysis tanks is preferably between 0.5 and 2.0 seconds, in particular between 0.6 seconds and 1.8 seconds.
  • the electrolysis time in each of the electrolysis tanks can also be between 0.3 and 2.0 seconds and preferably between 0.5 seconds and 1.4 seconds.
  • the total electrolysis time (t E ) in which the metal strip is in effective electrolytic contact with the electrolyte solution is preferably between 2 and 16 seconds and in particular between 4 seconds and 14 seconds across all electrolysis tanks.
  • the temperature of the electrolyte solution in the first electrolysis tank or in the front group of electrolysis tanks can be higher than in the last electrolysis tank.
  • the temperature of the electrolyte solution in the first electrolysis tank or in the front group of electrolysis tanks is expediently more than 50 ° C and in particular between 53 ° C and 70 ° C, since in this temperature range a more efficient deposition of chromium, in particular in the form of chromium metal , can be observed.
  • a coating can be deposited on the surface of the metal strip, at least one lower and one upper Layer comprises, wherein the lower layer is deposited in the first electrolysis tank or in the front group of electrolysis tanks and the upper layer in the last electrolysis tank or in the rear group of electrolysis tanks and the lower layer has a low proportion of chromium oxide and the upper layer a higher one Has proportion of chromium oxide.
  • the proportion by weight of chromium oxide in the lower layer facing the surface of the metal strip is preferably less than 15% and in the upper layer preferably more than 40%.
  • a uniform temperature of the electrolyte solution in the electrolysis tanks which (averaged over the volume of the respective electrolysis tank) in all electrolysis tanks is preferably between 20 ° C and less than 40 ° C and particularly preferably between 25 ° C and 38 ° C. Due to the exothermic deposition process, the electrolyte solution in the electrolysis tanks must be cooled in order to maintain the preferred temperatures. This is made more difficult by the fact that the circulation systems of the electrolysis tanks are usually coupled. Therefore, for reasons of apparatus, it can be expedient to maintain the same temperature in each case in the electrolysis tanks in order to avoid different settings that are expensive in terms of apparatus.
  • the metal strip is guided at least through a first electrolysis tank or a front group of electrolysis tanks and then through a second electrolysis tank or a rear group of electrolysis tanks, the average temperature of the electrolyte solution in the first electrolysis tank or the front group of Electrolysis tanks is greater than the average temperature of the electrolyte solution in the second electrolysis tank or the rear group of electrolysis tanks.
  • the metal strip is first guided through a first electrolysis tank or a front group of electrolysis tanks, then through a second electrolysis tank or a middle group of electrolysis tanks and finally through a last electrolysis tank or a rear group of electrolysis tanks, the average temperature being the Electrolyte solution in the first electrolysis tank or the front group of electrolysis tanks and / or in the second electrolysis tank or the middle group of electrolysis tanks is greater than the average temperature of the electrolyte solution in the last electrolysis tank or the rear group of electrolysis tanks.
  • composition of the coating deposited electrolytically on the metal strip depends not only on the temperature of the electrolyte solution but also on the current density of the electrolysis process. It has been shown that at higher current densities, which are in the range of regime III, where (partial) decomposition of the applied coating already takes place, a higher proportion of chromium oxide is generated in the coating, compared to the lower current densities in regime II, where a linear relationship between the deposited weight of the chromium and the current density can be observed.
  • a low current density j 1 or j 2 should be applied in the first electrolysis tank or in the front group of electrolysis tanks and, if necessary, in the second electrolysis tank following in the direction of strip travel or in the middle group of electrolysis tanks, and in the last electrolysis tank or in In the rear group of electrolysis tanks, a high current density j 3 must be provided in regime III, where j 1 and j 2 are less than j 3 and, for example, at a belt speed of 100 m / min, the low current densities j 1 and j 2 are each greater than 20 A / dm 2 (and thus are above the first current density threshold of approx.
  • the current densities j 1 , j 2 and j 3 are increased, so that for example Belt speed of 300 m / min, the current densities j 1 and j 2 are greater than 70 A / dm 2 and the high current density j 3 is greater than 130 A / dm 2 .
  • a particularly preferred embodiment provides that a lower current density is present in the first electrolysis tank or in the front group of electrolysis tanks compared to the second electrolysis tank following in the direction of belt travel or in the middle group of electrolysis tanks, so that the ratio 20 A / dm 2 ⁇ j 1 ⁇ j 2 ⁇ j 3 applies.
  • a coating can be deposited on the surface of the metal strip, which is composed of three layers with different compositions in terms of their proportion of chromium metal and chromium oxide, the lower layer facing the metal strip having an average weight proportion of chromium oxide, which is in particular in the range of 10% to 15%, the middle layer has a low percentage by weight of chromium oxide, which is in particular in the range from 2% to 10%, and the upper layer has a high percentage by weight of chromium oxide, which is in particular more than 30%, preferably at is more than 50%.
  • the coating having the proportion of chromium oxide required for adequate corrosion resistance of at least 5 mg / m 2 , preferably more than 7 mg / m 2 .
  • the total weight of the chromium oxide does not exceed 15 mg / m 2 , since with higher weight of the chromium oxide, reduced adhesion of organic coatings made of lacquers or thermoplastic polymer materials is observed.
  • a preferred range for the weight of the chromium oxide is between 5 and 15 mg / m 2 .
  • a certain weight proportion of the total amount of the deposited coating which is approx. 9 to 15%, is made up of chromium oxide Chromium oxide crystals develop on the surface of the metal strip already in the first electrolysis tank or in the front group of electrolysis tanks and in the second electrolysis tank or in the middle group of electrolysis tanks.
  • chromium oxide crystals act in the last electrolysis tank and / or in the rear group of electrolysis tanks as a nucleus for the growth of further oxide crystals, which is why this increases the efficiency of the deposition of chromium oxide or the proportion of chromium oxide in the total application of the coating in the last electrolysis tank or in the rear group of electrolysis tanks increases.
  • a sufficiently high level of chromium oxide of preferably more than 5 mg / m 2 on the surface of the Metal bands are produced.
  • the proportion of chromium oxide generated in the first electrolysis tank or in the front group of electrolysis tanks and in the second electrolysis tank or in the middle group of electrolysis tanks forms due to the higher oxygen content in the coating compared to electrolytic deposition with higher current densities (and consequently a lower oxide content ) a denser coating, which leads to improved corrosion resistance.
  • a current density of at least 20 A / dm 2 is required so that a chromium-chromium oxide layer can be deposited on at least one surface of the metal strip.
  • This current density of 20 A / dm 2 represents the first current density threshold value at a belt speed of approx. 100 m / min, which corresponds to regime I (no chromium deposition) of regime II (chromium deposition with a linear relationship between current density and the chromium weight of the deposited coating ) delimits.
  • the current densities (j 1 , j 2 , j 3 ) in the electrolysis tanks are each adapted to the belt speed, with at least an essentially linear relationship between the belt speed and the respective current density (j 1 , j 2 , j 3 ). It is advantageous if the current density in the first electrolysis tank or in the front group of electrolysis tanks is smaller than in the second electrolysis tank or in the middle group of electrolysis tanks. A lower current density in the first electrolysis tank or in the front group of electrolysis tanks produces a dense and therefore corrosion-resistant chromium-chromium oxide coating with a relatively high chromium oxide content, which is preferably more than 8%, in particular between 8 and 15%, directly on the surface of the metal strip particularly preferably more than 10% by weight.
  • At least one anode pair with two opposing anodes is expediently arranged in each electrolysis tank, the metal strip running through between the opposing anodes of an anode pair. This allows an even current density distribution around the Metal band can be achieved.
  • the anode pairs of each electrolysis tank can be supplied with electrical current independently of one another, so that different current densities (j 1 , j 2 , j 3 ) can be set in the electrolysis tanks.
  • the belt speed of the metal belt is expediently chosen so that the electrolysis time (t E ) in which the metal belt is in effective electrolytic contact with the electrolyte solution is less than 1.0 seconds in each of the electrolysis tanks and in particular between 0.5 and 1, 0 seconds and is preferably between 0.6 seconds and 0.9 seconds.
  • the coating deposited on the metal strip with the method according to the invention preferably has a chromium weight of at least 40 mg / m 2 and in particular 70 mg / m 2 to 180 mg / m 2 to achieve adequate corrosion resistance of the coated metal strip.
  • the proportion by weight of chromium oxide contained in the coating in relation to the total weight of the coating is preferably at least 5%, in particular more than 10% and, for example, between 11 and 16%.
  • the chromium oxide portion of the coating has a weight of the chromium bound as chromium oxide of at least 3 mg Cr per m 2 , in particular from 3 to 15 mg / m 2 and preferably of at least 7 mg Cr per m 2 .
  • a single electrolyte solution is expediently used in the method according to the invention, i.e. the electrolysis tanks are all filled with the same electrolyte solution.
  • a preferred composition of the electrolyte solution comprises basic Cr (III) sulfate (Cr 2 (SO 4 ) 3 ) as a trivalent chromium compound.
  • concentration of the trivalent chromium compound in the electrolyte solution is at least 10 g / l and preferably more than 15 g / l and is in particular 20 g / l or more.
  • Further useful constituents of the electrolyte solution can be complexing agents, in particular an alkali metal carboxylate, preferably a salt of formic acid, in particular potassium format or sodium format.
  • the ratio of the proportion by weight of the trivalent chromium compound to the proportion by weight of the complexing agents, in particular the formates, is preferably between 1: 1.1 and 1: 1.4 and preferably between 1: 1.2 and 1: 1.3 and in particular 1: 1 , 25.
  • the electrolyte solution can be an alkali metal sulfate, preferably potassium or sodium sulfate.
  • the electrolyte solution is preferably free from halides, in particular free from chloride and bromide ions and free from a buffering agent and in particular free from a boric acid buffer.
  • the pH of the electrolyte solution (measured at a temperature of 20 ° C.) is preferably between 2.0 and 3.0 and particularly preferably between 2.5 and 2.9 and in particular 2.7.
  • an acid for example sulfuric acid, can be added.
  • an organic coating in particular a lacquer or a thermoplastic, for example a polymer film made of PET, PE, PP or a mixture thereof, can be applied to the surface of the coating made of chrome metal and chrome oxide in order to provide additional protection against corrosion and to form a barrier against acidic contents of packaging.
  • the metal strip can be a (initially uncoated) steel strip (black plate strip) or a tinned steel strip (tin plate strip).
  • FIG. 1 a coil coating system for carrying out the method according to the invention is shown schematically in a first embodiment.
  • the coil coating system comprises three electrolysis tanks 1a, 1b, 1c arranged next to one another or one behind the other, each of which is filled with an electrolyte solution E.
  • An initially uncoated metal strip M in particular a steel strip, is passed through the electrolysis tanks 1a-1c one after the other.
  • the metal strip M is pulled through the electrolysis tanks 1a-1c by a transport device (not shown here) in a strip running direction v at a predetermined strip speed.
  • Current rollers S are arranged above the electrolysis tanks 1a-1c, via which the metal strip M is connected as a cathode.
  • In each electrolysis tank there is also a deflection roller U, around which the metal strip M is guided and is thereby directed into and out of the electrolysis tank.
  • each electrolysis tank 1a-1c at least one pair of anodes AP is arranged below the liquid level of the electrolyte solution E.
  • two pairs of anodes AP arranged one behind the other in the direction of travel of the strip are provided in each electrolysis tank 1a-1c.
  • the metal strip M is passed between the opposing anodes of an anode pair AP.
  • two pairs of anodes AP are arranged in each electrolysis tank 1a, 1b, 1c in such a way that the metal strip M is passed through these pairs of anodes AP one after the other.
  • the last pair of anodes APc in the downstream direction of the last electrolysis tank 1c seen in the direction of travel v of the strip has a shorter length than the other pairs of anodes AP. As a result, a higher current density can be generated with this last pair of anodes APc when an electric current of the same level is applied.
  • the metal strip M can be a cold-rolled, initially uncoated steel strip (black plate strip) or a tinned steel strip (tin plate strip).
  • black plate strip black plate strip
  • tinned steel strip tin plate strip.
  • the belt speed at which the metal belt M is passed through the electrolysis tanks 1a-1c is at least 100 m / min and can be up to 900 m / min.
  • the same electrolyte solution E is filled into each of the electrolysis tanks 1a-1c arranged one behind the other in the strip running direction v.
  • the electrolyte solution E contains a trivalent chromium compound, preferably basic Cr (III) sulfate [Cr 2 (SO 4 ) 3 ].
  • the electrolyte solution preferably contains at least one complexing agent, for example a salt of formic acid, in particular potassium or sodium format.
  • the ratio of the proportion by weight of the trivalent chromium compound to the proportion by weight of the complexing agents, in particular the formats, is preferably between 1: 1.1 and 1: 1.4 and particularly preferably 1: 1.25.
  • the electrolyte solution E can contain an alkali metal sulfate, for example potassium or sodium sulfate.
  • concentration of the trivalent chromium compound in the electrolyte solution E is at least 10 g / l and particularly preferably 20 g / l or more.
  • the temperature of the electrolyte solution E can be the same in all electrolysis tanks 1a-1c and, according to the invention, is at most 40.degree. In preferred exemplary embodiments of the method according to the invention, however, different temperatures of the electrolyte solution can also be set in the electrolysis tanks 1a-1c.
  • the temperature of the electrolyte solution in the last electrolysis tank 1c can be at most 40 ° C., and a higher temperature can be present in the upstream electrolysis tanks 1a and 1b.
  • the temperature of the electrolyte solution in the last electrolysis tank 1c is preferably between 25 ° C and 37 ° C and in particular 35 ° C.
  • the temperature of the electrolyte solution in the first two electrolysis tanks 1a, 1b is preferably between 50.degree. C. and 75.degree. C. and in particular 55.degree.
  • the lower temperature of the electrolyte solution E promotes the deposition of a chromium / chromium oxide layer with a higher proportion of chromium oxide in the last electrolysis tank 1c.
  • the metal belt M connected as a cathode and guided through the electrolysis tanks 1a-1c is in electrolytically effective contact with the electrolyte solution E during an electrolysis period t E.
  • the electrolysis period is in each of the electrolysis tanks 1a, 1b, 1c preferably between 0.5 and 2.0 seconds.
  • belt speeds are set so high that the electrolysis time t E in each electrolysis tank 1a, 1b, 1c is less than 2 seconds and in particular between 0.6 seconds and 1.8 seconds.
  • the total electrolysis time in which the metal strip M over all electrolysis tanks 1a-1c is in electrolytically effective contact with the electrolyte solution E away, is accordingly between 1.8 and 5.4 seconds.
  • the anode pairs AP arranged in the electrolysis tanks 1a-1c can be supplied with electrical direct current in such a way that the same current density is present in each of the electrolysis tanks 1a, 1b, 1c.
  • a coating B with a plurality of layers B1, B2, B3 of different composition on the metal strip M it is also possible to set different current densities in the electrolysis tanks 1a, 1b, 1c.
  • a low current density j 1 can be set in the first electrolysis tank 1a upstream as seen in the strip running direction v, an average current density j 2 in the second electrolysis tank 1b following in the strip running direction and a high current density j 3 in the last electrolysis tank 1c as seen in the strip running direction so that the relation j 1 ⁇ j 2 ⁇ j 3 applies and the low current density is j 1 > 20 A / dm 2 .
  • each electrolytically applied layer B1, B2, B3 has a different composition, which differs in particular through the proportion of chromium oxide.
  • FIG 3 a schematic sectional view of a metal strip M which is electrolytically coated on one side using the method according to the invention is shown.
  • a coating B which is composed of the individual layers B1, B2, B3, is applied to one side of the metal strip M.
  • Each individual layer B1, B2, B3 is applied to the surface in one of the electrolysis tanks 1a, 1b, 1c.
  • the coating B which is composed of the individual layers B1, B2, B3, contains metallic chromium (chromium metal) and chromium oxides (CrOx) as essential components, the composition of the individual layers B1, B2, B3 in relation to their respective weight fraction of Chromium metal and chromium oxide due to the different current densities j 1 , j 2 , j 3 in the electrolysis tanks 1a, 1b, 1c is different. Furthermore, a possibly different temperature of the electrolyte solution in the electrolysis tanks 1a, 1b, 1c contribute to the fact that the individual layers differ in terms of their composition, since (as above based on Figure 5 explained) at lower temperatures of 40 ° C or less, the formation of chromium oxide is promoted.
  • a high current density j 3 (which is higher than the current density j 1 , j 2 in the preceding electrolysis tanks) and, at the same time, a low temperature of the electrolyte solution of 40 ° C. is preferred in the last electrolysis tank 1c or less.
  • a current density j3 is set which is in regime III, in which an increased chromium oxide content is generated in the coating, which is preferably more than 40% by weight and particularly preferably more than 50% by weight.
  • the current density j 1 of the first electrolysis tank 1a is expediently selected so that it is close to the first current density threshold which delimits regime I (in which no chromium is yet deposited) from regime II.
  • a chromium metal-chromium oxide coating (layer B1) is deposited on the surface of the metal strip M with a higher chromium oxide content than at higher current densities within regime II B1 has a higher chromium oxide content than the layer B2 deposited in the second electrolysis tank 1b.
  • a current density j 3 is preferably set which is above the second current density threshold which delimits regime II from regime III.
  • the current density j 3 of the last electrolysis tank 1c is therefore in regime III, in which the chromium metal-chromium oxide coating is partially decomposed and a significantly higher proportion of chromium oxide is deposited than with the current densities in regime II.
  • the im Layer B3 deposited in the last electrolysis tank 1c has a high chromium oxide content, which is higher than the chromium oxide content in layers B1 and B2.
  • the metal strip M provided with the coating B is rinsed, dried and oiled (for example with DOS).
  • the metal strip M electrolytically coated with the coating B can then be provided with an organic layer on the surface of the coating B.
  • the organic coating can be, for example, an organic lacquer or polymer films made from thermoplastic polymers such as PET, PP, PE or mixtures thereof.
  • the organic coating can be applied either in a "coil coating" process or in a panel process, the coated metal strip being first divided into panels in the panel process, which are then coated with an organic lacquer or coated with a polymer film will.
  • FIG 2 shows a second embodiment of a coil coating system with eight electrolysis tanks 1a-1h arranged one behind the other in the direction of travel v of the coil.
  • the electrolysis tanks 1a-1h are grouped into three groups, namely a front group with the first two electrolysis tanks 1a, 1b, a middle group with the subsequent electrolysis tanks 1c-1f in the direction of belt travel and a rear group with the last two electrolysis tanks 1g and 1h.
  • the temperature of the electrolyte solution is 40 ° C. or less.
  • either the same or at least approximately the same temperature or also a higher temperature can be present.
  • higher temperatures of more than 50 ° C. and in particular of approx. 55 ° C. are preferred in the electrolysis tanks 1a, 1b of the front group and the electrolysis tanks 1c-1f of the middle group.
  • the groups of electrolysis tanks there are preferably different current densities j 1 , j 2 , j 3 , with a low current density j 1 in the front group of electrolysis tanks 1a, 1b and an average current density j 2 in the middle group of electrolysis tanks 1c-1f and in the rear group of electrolysis tanks 1g, 1h there is a high current density j 3 , where j 1 ⁇ j 2 ⁇ j 3 and the low current density is j 1 > 20 A / dm 2 .
  • table 2 shows examples of suitable current densities j 1 , j 2 , j 3 in the individual electrolysis tanks 1a to 1h at different belt speeds, with a current density j 1 in each of the electrolysis tanks 1a, 1b in the front group and a current density j 1 in the electrolysis tanks 1c to 1f of the middle group each have a current density j 2 and a current density j 3 is set in each of the electrolysis tanks 1g, 1h of the rear group, where j 1 ⁇ j 2 ⁇ j 3 .
  • a first layer B1 containing chromium metal and chromium oxide is electrolytically applied to the metal strip, in the second group of electrolysis tanks 1c-1f a second layer B2 and in the rear group of electrolysis tanks 1g, 1h a third layer B3 M applied.
  • Layers B1, B2, B3 have different compositions due to the different current densities j 1 , j 2 , j 3 and possibly different temperatures in the groups of electrolysis tanks arranged one behind the other, with layer B1 containing a higher chromium oxide content than the second Layer B2 and the third layer B3 contain a higher proportion of chromium oxide than the two layers B1 and B2.
  • Coating B applied to the surface of the metal strip M thus has essentially the same composition and structure as in FIG Figure 3 shown.
  • the entire electrolysis time in which the metal strip M is in electrolytically effective contact with the electrolyte solution E is in the embodiment of FIG Figure 2 across all electrolysis tanks 1a-1h, preferably for less than 16 seconds and in particular between 4 and 16 seconds.
  • the coatings B preferably have a total weight of the chromium of at least 40 mg / m 2 and particularly preferably from 70 mg / m 2 to 180 mg / m 2 .
  • the coating B expediently has a total of chromium oxide with a weight add-on of the chromium bound as chromium oxide of at least 3 mg chromium per m 2 and in particular from 3 to 15 mg / m 2 .
  • the amount by weight of the chromium bound as chromium oxide, averaged over the entire amount of coating B, is preferably at least 7 mg of chromium per m 2 .
  • Good adhesion of organic lacquers or thermoplastic polymer materials on the surface of the coating B can be achieved with weight of the chromium oxide of up to approx. 15 mg / m 2 .
  • a preferred range for the weight of the chromium oxide in coating B is therefore between 5 and 15 mg / m 2 .
  • Table 3 shows an example of the composition of an electrolyte solution which contains a Cr (III) salt (Cr 2 (SO 4 ) 3 ) and has been used for coating tests in laboratory apparatus for the electrolytic coating of a metal strip.
  • the parameters of the electrolyte solution used can be found in Table 4.
  • the Cr (III) salt used as a component of the electrolyte solution should be as free of organic residues as possible.
  • the preparation of the Cr (III) salts can be carried out on an industrial scale by means of reduction from Cr (VI) salts be performed.
  • the reducing agent used is preferably a less noble metal than chromium (variant 1), or alternatively an organic component (variant 2).
  • the pH of the electrolyte solution was adjusted by adding sulfuric acid followed by topping up with deionized water.
  • a steel sheet already coated with a chromium / chromium oxide layer was used as the substrate for the coating tests.
  • This material was electrolytically coated at 55 ° C. with a chromium (III) electrolyte and Table 5 below describes the existing coating of the steel sheet with chromium metal and chromium oxide. It can be seen that mainly chromium metal and only a little chromium oxide was formed.
  • the chromium metal determination was carried out according to the EURO norm EN 10202 (Cr-metal photometric (euro-norm) step 2: 120 ml NaCO 3 and 15 mA / plane; successfull dissolution visible by potential step, oxidation with 10 ml 6% H 2 O 2 , photometric @ 370 nm).
  • the chromium oxide determination was also carried out according to the EURO standard EN 10202 (Cr-oxides photometric: (euro-norm) step 1: 40 ml NaOH (330g / L), reaction at 90 ° C for 10 minutes, oxidation with 10 ml 6% H 2 O 2 , photometric @ 370 nm).
  • the substrate was degreased (2.5 A / dm 2 connected to the cathode, 30 seconds, 70 ° C. in sodium hydroxide solution) and then rinsed with deionized water.
  • the subsequent pickling process was dispensed with due to the existing metallic coating.
  • Tables 6 and 7 summarize the parameters and the results of the coating tests.
  • a large-scale coating of a steel belt with a belt speed of 100 m / min was simulated. At this speed, the selected current density of 60 A / dm 2, which was kept constant during the test, is in regime III (see Table 2) and thus mainly generates chromium oxide (at least at the lower temperatures).
  • both the temperatures of the electrolyte solutions and the holding times (electrolysis time) were varied in regime III.
  • the underside of the substrate was coated in each case.
  • the duration of the electrolysis in the relevant regime III is given in Table 5 as “time (s) segment 1”.
  • the electrolysis times in the respective regime were less than 2 seconds. With increasing electrolysis time, a higher oxide coating was observed in the laboratory tests. However, short electrolysis times of less than 2 seconds are to be preferred in terms of efficiency in a large-scale process, since high belt speeds of preferably more than 100 m / min are used here.
  • Temperature TCCT tank [° C] pH value VA08 Conductance VA08 [mS / cm] pH value (55 ° C) Conductivity 55 ° C [mS / cm] Chromium concentration electrolyte (g / L) Iron concentration electrolyte (mg / L) Chloride concentration electrolyte (mg / l) Electrolyte surface explosion 1st cycle at ⁇ 55 ° C ( ⁇ C / cm 2 ) Electrolyte surface explosion 2nd cycle at ⁇ 55 ° C ( ⁇ C / cm 2 ) 13th 02/28/2017 55 2.4 88.5 2.3 158.3 22.6 270 182 348.8 327.8 Serial no.
  • chromium metal OS (mg / m 2 ) ⁇ chromium metal US (mg / m 2 ) ⁇ chromium oxide OS (mg / m 2 ) ⁇ chromium oxide US (mg / m 2 ) 11 63 111 3 1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Claims (14)

  1. Procédé de fabrication d'une bande métallique (M) revêtue d'un revêtement (B), dans lequel le revêtement (B) contient du chrome métal et de l'oxyde de chrome et est appliqué par voie électrolytique sur la bande métallique (M) à partir d'une solution d'électrolyte (E) contenant un composé de chrome trivalent grâce à une mise en contact de la bande métallique (M), faisant office de cathode, avec la solution d'électrolyte (E) pendant une durée d'électrolyse, caractérisé en ce que la bande métallique (M) est acheminée à une vitesse de bande (v) prédéfinie dans une direction de défilement de la bande successivement au moins à travers une première cuve d'électrolyse (1a) ou un groupe avant de cuves d'électrolyse (1a, 1b) et à travers une dernière cuve d'électrolyse (1c), lorsqu'elle est considérée dans la direction de défilement de bande, ou un groupe arrière de cuves d'électrolyse (1g, 1h), dans lequel la température, moyennée par rapport au volume de la cuve d'électrolyse, de la solution d'électrolyte est supérieure, dans la première cuve d'électrolyse (1a) ou dans le groupe avant de cuves d'électrolyse (1a, 1b), à la température moyenne de la solution d'électrolyte dans la dernière cuve d'électrolyse (1c) ou dans le groupe arrière de cuves d'électrolyse (1g, 1h), et la solution d'électrolyte (E) présente dans la dernière cuve d'électrolyse (1c, 1h) ou dans le groupe arrière de cuves d'électrolyse (1g, 1h) une température moyenne inférieure à 40 °C, et la durée d'électrolyse (tE) pendant laquelle la bande métallique (M) est en contact de manière électrolytiquement efficace avec la solution d'électrolyte (E) est inférieure à 2,0 secondes dans la dernière cuve d'électrolyse (1c) ou dans le groupe arrière de cuves d'électrolyse (1g, 1h).
  2. Procédé selon la revendication 1, caractérisé en ce que la durée d'électrolyse (tE) pendant laquelle la bande métallique (M) est en contact de manière électrolytiquement efficace avec la solution d'électrolyte (E) est inférieure à 2,0 secondes dans chacune des cuves d'électrolyse (1a à 1h), et est de préférence comprise entre 0,3 et 2,0 secondes, en particulier comprise entre 0,6 seconde et 1,8 seconde, dans lequel la durée d'électrolyse (tE) totale pendant laquelle la bande métallique (M) est en contact de manière électrolytiquement efficace avec la solution d'électrolyte (E) est de préférence comprise entre 2 secondes et 16 secondes et de manière particulièrement préférée comprise entre 4 secondes et 14 secondes.
  3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la température moyenne de la solution d'électrolyte dans la première cuve d'électrolyse (1a) ou dans le groupe avant de cuves d'électrolyse (1a, 1b) est comprise entre 50 °C et 75 °C.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la température, moyennée par rapport au volume de la cuve d'électrolyse respective, de la solution d'électrolyte dans la dernière cuve d'électrolyse ou dans le groupe arrière de cuves d'électrolyse est comprise entre 20 °C et 40 °C et de préférence comprise entre 25 °C et 38 °C.
  5. Procédé selon la revendication 1, caractérisé en ce qu'une densité de courant faible (j1) est présente dans la première cuve d'électrolyse (la), lorsqu'elle est considérée dans la direction de défilement de bande, ou dans le groupe avant de cuves d'électrolyse (1a, 1b), une densité de courant intermédiaire (j2) est présente dans une deuxième cuve d'électrolyse (1b) suivante dans la direction de défilement de bande ou dans un groupe intermédiaire de cuves d'électrolyse (1c à 1f), et une densité de courant élevée (j3) est présente dans la dernière cuve d'électrolyse (1c), lorsqu'elle est considérée dans la direction de défilement de bande, ou dans le groupe arrière de cuves d'électrolyse (1g, 1h), dans lequel j1≤j2<j3 et la densité de courant faible (j1) est supérieure à 20 A/dm2.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la solution d'électrolyse comprend, en plus du composé de chrome trivalent comprenant de manière préférée du sulfate de Cr(III) basique (Cr2(SO4)3), au moins un agent complexant, en particulier un carboxylate de métal alcalin, de préférence un sel d'acide formique, en particulier du formiate de potassium ou du formiate de sodium, dans lequel le rapport de la proportion pondérale du composé de chrome trivalent sur la proportion pondérale des agents complexants, en particulier des formiates, est compris entre 1:1,1 et 1:1,4 et de préférence compris entre 1:1,2 et 1:1,3 et de manière particulièrement préférée égal à 1:1,25.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la solution d'électrolyte permettant d'augmenter la conductivité comprend un sulfate de métal alcalin, de préférence du sulfate de potassium ou du sulfate de sodium, et/ou est exempte d'halogénures, en particulier exempte d'ions chlorure et d'ions bromure et exempte de milieu de tampon et en particulier exempte de tampon à base d'acide borique.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la concentration du composé de chrome trivalent dans la solution d'électrolyte est d'au moins 10 g/l et de préférence supérieure à 15 g/l et de manière particulièrement préférée supérieure ou égale à 20 g/l.
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le pH de la solution d'électrolyte, lorsqu'il est mesuré à une température de 20 °C, est compris entre 2,0 et 3,0 et de préférence compris entre 2,5 et 2,9 et de manière particulièrement préférée égal à 2,7.
  10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la bande métallique est déplacée à travers la solution d'électrolyte à une vitesse de bande d'au moins 100 m/min.
  11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le revêtement appliqué à partir de la solution d'électrolyte présente un poids total de chrome d'au moins 40 mg/m2, de préférence compris entre 70 mg/m2 et 180 mg/m2, dans lequel la proportion du poids total de chrome contenu dans l'oxyde de chrome est d'au moins 5 %, de préférence comprise entre 10 et 15 %.
  12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le revêtement appliqué à partir de la solution d'électrolyte présente une teneur en oxyde de chrome avec un poids de chrome lié sous forme d'oxyde de chrome d'au moins 5 mg de Cr par m2, de préférence d'au moins 7 mg de Cr par m2 et de manière particulièrement préférée comprise entre 5 et 15 mg/m2.
  13. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le revêtement (B) déposé à la surface de la bande métallique (M) est composé d'au moins deux couches (B1, B3) de compositions différentes en ce qui concerne leur proportion de chrome métal et d'oxyde de chrome, dans lequel la couche inférieure (B1) tournée vers la bande métallique présente une proportion pondérale intermédiaire d'oxyde de chrome en particulier située dans la plage comprise entre 10 % et 15 %, et la couche supérieure (B3) présente une proportion pondérale élevée d'oxyde de chrome, en particulier supérieure à 30 %, de préférence supérieure à 50 %.
  14. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le revêtement déposé à la surface de la bande métallique (M) est composé de trois couches (B1, B2, B3) de compositions différentes en ce qui concerne leur proportion de chrome métal et d'oxyde de chrome, dans lequel la couche inférieure (B1) tournée vers la bande métallique présente une proportion pondérale intermédiaire d'oxyde de chrome en particulier située dans la plage comprise entre 10 % et 15 %, une couche intermédiaire (B2) présente une proportion pondérale faible d'oxyde de chrome en particulier située dans la plage comprise entre 2 et 10 %, et la couche supérieure (B3) présente une proportion pondérale élevée d'oxyde de chrome en particulier supérieure à 30 %, de préférence supérieure à 50 %.
EP19206950.8A 2018-12-13 2019-11-04 Procédé de fabrication d'une bande métallique ayant un revêtement de chrome et d'oxyde de chrome avec un électrolyte à base de chromium trivalent Active EP3666931B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018132075.2A DE102018132075A1 (de) 2018-12-13 2018-12-13 Verfahren zur Herstellung eines mit einer Beschichtung aus Chrom und Chromoxid beschichteten Metallbands auf Basis einer Elektrolytlösung mit einer dreiwertigen Chromverbindung

Publications (2)

Publication Number Publication Date
EP3666931A1 EP3666931A1 (fr) 2020-06-17
EP3666931B1 true EP3666931B1 (fr) 2021-10-20

Family

ID=68426328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19206950.8A Active EP3666931B1 (fr) 2018-12-13 2019-11-04 Procédé de fabrication d'une bande métallique ayant un revêtement de chrome et d'oxyde de chrome avec un électrolyte à base de chromium trivalent

Country Status (9)

Country Link
US (1) US11274373B2 (fr)
EP (1) EP3666931B1 (fr)
JP (1) JP7000405B2 (fr)
KR (1) KR102268789B1 (fr)
CN (1) CN111321431A (fr)
BR (1) BR102019025858A2 (fr)
CA (1) CA3064669C (fr)
DE (1) DE102018132075A1 (fr)
ES (1) ES2898373T3 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018132074A1 (de) 2018-12-13 2020-06-18 thysenkrupp AG Verfahren zur Herstellung eines mit einer Beschichtung aus Chrom und Chromoxid beschichteten Metallbands auf Basis einer Elektrolytlösung mit einer dreiwertigen Chromverbindung
DE102019109356A1 (de) * 2019-04-09 2020-10-15 Thyssenkrupp Rasselstein Gmbh Verfahren zur Herstellung eines mit einer Beschichtung aus Chrom und Chromoxid beschichteten Metallbands auf Basis einer Elektrolytlösung mit einer dreiwertigen Chromverbindung und Elektrolysesystem zur Durchführung des Verfahrens
US20240035182A1 (en) * 2020-12-21 2024-02-01 Jfe Steel Corporation Surface-treated steel sheet and method of producing the same
MX2023007455A (es) * 2020-12-21 2023-07-04 Jfe Steel Corp Lamina de acero tratada en la superficie y metodo para producir la misma.
WO2022138006A1 (fr) * 2020-12-21 2022-06-30 Jfeスチール株式会社 Feuille d'acier traitée en surface et son procédé de production
WO2022138005A1 (fr) * 2020-12-21 2022-06-30 Jfeスチール株式会社 Feuille d'acier traitée en surface et son procédé de production
WO2023195252A1 (fr) * 2022-04-08 2023-10-12 Jfeスチール株式会社 Tôle d'acier traitée en surface et son procédé de production
JP7327719B1 (ja) 2022-04-08 2023-08-16 Jfeスチール株式会社 表面処理鋼板およびその製造方法
JP7327718B1 (ja) 2022-04-08 2023-08-16 Jfeスチール株式会社 表面処理鋼板およびその製造方法
WO2023195251A1 (fr) * 2022-04-08 2023-10-12 Jfeスチール株式会社 Tôle d'acier traitée en surface et son procédé de production

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE635457A (fr) 1962-08-16
MX350889B (es) * 2012-03-30 2017-09-25 Tata Steel Ijmuiden Bv Substrato recubierto para empacar aplicaciones y un metodo para producir dicho substrato recubierto.
CA2891605C (fr) 2012-11-21 2017-01-03 Tata Steel Ijmuiden B.V. Revetements de chrome et d'oxyde de chrome appliques a des substrats en acier pour des applications de conditionnement et procede permettant de produire lesdits revetements
DK3011080T3 (en) * 2013-06-20 2017-08-21 Tata Steel Ijmuiden Bv PROCEDURE FOR PREPARING CHROME-CHROMOXIDE COATED SUBSTRATES
EP3146092B1 (fr) * 2014-05-21 2019-08-07 Tata Steel IJmuiden BV Procédé permettant de plaquer une bande métallique mobile
RS59292B1 (sr) 2014-05-21 2019-10-31 Tata Steel Ijmuiden Bv Postupak za proizvodnju supstrata obloženih hromom-hrom oksidom
US10121889B2 (en) 2014-08-29 2018-11-06 Macronix International Co., Ltd. High voltage semiconductor device
EP3112502B1 (fr) * 2015-06-30 2018-08-01 Vazzoler, Evio Méthode pour le placage de fils ou de bandes métalliques et produit obtenu par ladite méthode
CN108350594B (zh) * 2015-11-05 2020-09-11 托普克莱姆系统公司 用于电化学施加表面涂层的方法和装置
IT201600109354A1 (it) * 2016-10-28 2018-04-28 St Zooprofilattico Sperimentale Del Piemonte Liguria E Valle Daosta Procedimento per discernere carni fresche da carni sottoposte a congelamento mediante analisi di immagini di campioni di tessuto muscolare e corrispondente sistema predisposto per l'esecuzione di detto procedimento.
RU2743357C2 (ru) 2016-11-14 2021-02-17 Тата Стил Эймейден Б.В. Способ электроплакирования непокрытой стальной полосы плакирующим слоем
EP3378973B1 (fr) * 2017-03-21 2022-06-29 Tata Steel IJmuiden B.V. Procédé de fabrication d'une tôle noire revêtue d'oxyde chrome et chrome
DE102018132074A1 (de) 2018-12-13 2020-06-18 thysenkrupp AG Verfahren zur Herstellung eines mit einer Beschichtung aus Chrom und Chromoxid beschichteten Metallbands auf Basis einer Elektrolytlösung mit einer dreiwertigen Chromverbindung

Also Published As

Publication number Publication date
US20200190679A1 (en) 2020-06-18
KR102268789B1 (ko) 2021-06-28
CA3064669A1 (fr) 2020-06-13
BR102019025858A2 (pt) 2020-06-23
US11274373B2 (en) 2022-03-15
KR20200074031A (ko) 2020-06-24
EP3666931A1 (fr) 2020-06-17
JP7000405B2 (ja) 2022-01-19
CA3064669C (fr) 2022-04-12
ES2898373T3 (es) 2022-03-07
CN111321431A (zh) 2020-06-23
DE102018132075A1 (de) 2020-06-18
JP2020109205A (ja) 2020-07-16

Similar Documents

Publication Publication Date Title
EP3666931B1 (fr) Procédé de fabrication d&#39;une bande métallique ayant un revêtement de chrome et d&#39;oxyde de chrome avec un électrolyte à base de chromium trivalent
DE3532808C2 (de) Verzinntes und vernickeltes stahlblech und verfahren zu seiner herstellung
DE2946668A1 (de) Verzinktes stahlblech
DE2611267A1 (de) Chromatisierte, galvanisch verzinkte stahlbleche und verfahren zu ihrer herstellung
DE3417844A1 (de) Mit eisen-zinklegierung elektrogalvanisiertes stahlblech mit einer mehrzahl von eisen-zinklegierung-beschichtungen
DE3121878A1 (de) Mit hydratisiertem chromoxid ueberzogener bandstahl fuer geschweisste blechdosen und andere behaelter
DE69933533T2 (de) Kupferfolie mit einer glänzenden Oberfläche mit hoher Oxidationsbeständigkeit und Verfahren zur Herstellung
DE2600636A1 (de) Chromatisierte, galvanisch verzinkte stahlbleche und verfahren zu ihrer herstellung
EP1142041A1 (fr) Gaine de pile constituee de tole laminee a froid et ayant subi un formage, et procede de production de gaines de piles
EP3666928B1 (fr) Procédé de fabrication d&#39;une bande métallique ayant un revêtement de chrome et d&#39;oxyde de chrome avec un électrolyte à base de chromium trivalent
DE3024932C2 (fr)
DE3606430A1 (de) Oberflaechenbehandeltes stahlblech
DE102010007624A1 (de) Separator für eine Brennstoffzelle und Verfahren zu dessen Herstellung
EP4010516A1 (fr) Procédé et système de revêtement électrolytique d&#39;une bande et/ou d&#39;un matériau tissé, électriquement conducteurs, au moyen d&#39;une technologie à impulsions
EP3733932A1 (fr) Procédé de fabrication d&#39;une bande métallique revêtue d&#39;un revêtement de chrome et d&#39;oxyde de chrome à base d&#39;une solution électrolytique avec un composé à base de chrome trivalent et système d&#39;électrolyse permettant la mise en oeuvre dudit procédé
EP1570115B1 (fr) Procede de depot electrolytique de magnesium sur une tole galvanisee
EP3722464A1 (fr) Procédé de passivation de la surface d&#39;une tôle noire ou d&#39;une tôle blanche et système d&#39;électrolyse permettant la mise en oeuvre dudit procédé
DE3106361C2 (de) Verfahren zum Herstellen galvanisch verzinkter Stahlbänder bzw. -bleche
EP3415665B1 (fr) Procédé de dépôt galvanique de revêtements d&#39;alliage zinc/nicel à partir d&#39;un bain d&#39;alliage nickel/zinc à élimination réduite des additifs
EP4159896A2 (fr) Procédé de passivation de la surface d&#39;une tôle étamée et système d&#39;électrolyse destiné à la mise en uvre du procédé
DE2432044A1 (de) Verfahren zur elektrolytischen nachbehandlung einer elektrolytisch chromatisierten oder metallisch verchromten stahlblechoberflaeche
WO1997035049A1 (fr) Procede et bain approprie pour deposer du nickel semi-brillant par electrolyse
DE102004037673B4 (de) Verfahren zur simultanen elektrolytischen Abscheidung von Zink und Magnesium auf einem Substrat aus Blech und Verfahren zur Herstellung eines korrosionsgeschützten lackierten Formteils aus Blech
DE1816762A1 (de) Verfahren zur Bildung einer Schutzfilmschicht auf Metallflaechen
DE102022200537A1 (de) Anode für eine Magnesium-Ionen-Batterie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201217

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP AG

Owner name: THYSSENKRUPP RASSELSTEIN GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210723

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019002544

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1440039

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 38934

Country of ref document: SK

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2898373

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019002544

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211104

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191104

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231122

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231102

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231215

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231024

Year of fee payment: 5

Ref country code: IT

Payment date: 20231130

Year of fee payment: 5

Ref country code: FR

Payment date: 20231122

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231121

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240117

Year of fee payment: 5