EP1570115B1 - Verfahren zur elektrolytischen abscheidung von magnesium oder magnesium-zink auf verzinktem blech - Google Patents

Verfahren zur elektrolytischen abscheidung von magnesium oder magnesium-zink auf verzinktem blech Download PDF

Info

Publication number
EP1570115B1
EP1570115B1 EP03767590A EP03767590A EP1570115B1 EP 1570115 B1 EP1570115 B1 EP 1570115B1 EP 03767590 A EP03767590 A EP 03767590A EP 03767590 A EP03767590 A EP 03767590A EP 1570115 B1 EP1570115 B1 EP 1570115B1
Authority
EP
European Patent Office
Prior art keywords
magnesium
zinc
layer
solvent
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP03767590A
Other languages
English (en)
French (fr)
Other versions
EP1570115A2 (de
Inventor
Horst MITTELSTÄDT
Stefan WIENSTRÖER
Cetin Nazikkol
Bernd Schuhmacher
Christian Schwerdt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=30775622&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1570115(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ThyssenKrupp Steel AG filed Critical ThyssenKrupp Steel AG
Publication of EP1570115A2 publication Critical patent/EP1570115A2/de
Application granted granted Critical
Publication of EP1570115B1 publication Critical patent/EP1570115B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals

Definitions

  • the invention relates to a method for the electrolytic magnesium deposition on a substrate made of sheet metal with zinc or zinc alloy coating, in particular steel sheet.
  • the galvanizing of steel body panels for the purpose of corrosion protection has largely prevailed in recent decades.
  • the galvanized steel plates in the hot dip process or by means of electrolytic deposition are characterized by good adhesion of the zinc layer to the steel sheet and good processability.
  • magnesium-coated steel sheet is their surface roughness increased compared to galvanized steel sheets due to the formation of the oxide layer.
  • JP 62109966 A a steel sheet is described, on the surface of which first a zinc layer and then a magnesium layer is applied in each case by vapor deposition in a vacuum chamber. Due to the formation of an oxide layer on the magnesium surface, the sheet has very good corrosion properties. However, the vacuum process is considered to be problematic because it requires a very high equipment and process engineering effort. Furthermore, vacuum-coated sheets have a non-optimal adhesion of the magnesium layer.
  • DE 100 39 375 A1 likewise describes a process for producing corrosion-protected steel sheet steel. This is similar to the method described in DE 195 27 515 C1 in that the magnesium is deposited from the vacuum phase on a galvanized or alloy-galvanized steel sheet to be subsequently heat treated. In this case, however, the heat treatment is controlled so that zinc-magnesium phase formation occurs over the entire thickness of the zinc coating. This leads to a coating with the above-described positive properties with a further improved corrosion protection. However, the mentioned disadvantages of vacuum coating are still given.
  • the microstructure of the coatings obtained is unfavorable, since the proportion of intermetallic phases in the coating as a rule is generally too high and the magnesium-containing phases are unfavorably distributed, since a targeted phase formation does not take place by means of heat treatment. This has a negative effect on both the corrosion resistance and on the forming behavior of the coatings.
  • EP 1 036 862 A1 describes the electrolytic deposition of a Zn-Mg alloy layer on a metal sheet consisting of iron, an iron alloy or copper, aluminum or titanium or their alloys, in an aqueous-acidic electrolyte nonionic or cationic surfactant is added.
  • the electrodeposited alloy layer records according to the information in this document by good formability and corrosion resistance. The latter is increased by the incorporation of carbon from the organic surfactant.
  • a disadvantage of this method is its low current efficiency, since the charge transport in the electrolyte takes place to a considerable extent via protons and thus the formation of gaseous hydrogen in the course of magnesium deposition can not be prevented. This must be compensated either by increasing the current density or the residence time of the sheet to be coated in the electrolysis cell, which leads in both cases to a reduction of the process efficiency.
  • the object of the invention is to provide a method for the electrolytic magnesium coating of zinc or zinc alloy coated sheet metal, in particular sheet steel, which is characterized by low specific costs and wherein a sheet coated according to the method should have a high surface quality and formability with simultaneously improved corrosion properties ,
  • an aprotic solvent preferably tetrahydrofuran and / or diethyl ether
  • a deposition process which is known to be efficient in terms of current efficiency and which, unlike the prior art processes based on magnesium deposition in aqueous solution, at comparatively low current density and / or Deposition time can be made.
  • the particularly high cost-effectiveness of the method according to the invention with respect to the surface-specific coating costs results from the facility-technically simple feasibility, in particular under the aspect of a possible embodiment in a continuous process.
  • magnesium salts that dissolve in the above solvents either completely or only partially ionic.
  • examples of such magnesium salts include magnesium halides, magnesium grignard compounds, magnesium alcoholates or magnesium carboxylates.
  • the electrolytically deposited magnesium layers have a significantly higher density and better adhesion than is the case with the usual vacuum coatings. This allows easy further processing in the subsequent heat treatment. Thus, e.g. In a continuous conveyor system problematic growth of magnesium on the rollers, often cause surface defects on the finished product, avoided.
  • the magnesium layer is preferably exposed to no oxidizing atmosphere.
  • the heat treatment can take place in a wide temperature range of 250 to 420 ° C, resulting in different layer structures.
  • the preferred layer structure results from the respective intended application. If the process is based on a pure solid state diffusion, it is preferably treated at a temperature of 300 ° C. If the modification is to be controlled by the formation of a eutectic, a temperature of 380 ° C. is preferred.
  • the treatment time amounts to a maximum of 60s, preferably 6s in the case of solid-state diffusion or 2s in the case of the formation of a eutectic, for a customarily customary zinc coating of 7.5 ⁇ m.
  • a sheet coated according to the invention combines the properties of conventionally galvanized sheets with the extreme corrosion resistance of a magnesium layer. At the same time, further cost savings are achieved by saving on zinc.
  • the deposition of metal on the zinc or zinc alloy coating can be extended by simultaneously zinc being deposited in metallic form in addition to the magnesium and electrolytically.
  • the magnesium layer is deposited on the galvanized sheet surface in a mass ratio of 0.1 to 10 mass%, preferably 1 to 2 mass%, to the present zinc layer, which is one in terms of material usage economic execution of the method allows.
  • the concentration of magnesium ions or magnesium-containing molecular ions in the electrolyte be kept substantially constant. This can be done procedurally in two ways. On the one hand, it is possible to introduce the magnesium ions by means of a gradually dissolving magnesium anode in the aprotic solvent. On the other hand, a constant ion concentration can also be achieved by introducing the magnesium ions into the aprotic solvent by the substantially continuous addition of a magnesium-containing substance using an inert anode.
  • electrolytically galvanized sheet metal offers the advantage that the galvanizing and the magnesium deposition and heat treatment of the coated sheet according to the invention can be carried out immediately after one another in a plant, since the electrolytic cells used for galvanizing on the one hand and for the subsequent magnesium coating on the other hand substantially can be constructed identically.
  • This advantage can be used in particular when the galvanized sheet is coated as a continuous material in a continuous process.
  • the band-shaped material for example, in this case initially passes through a plurality of cells for application of the zinc layer and then a last cell for magnesium deposition. The extension of a conventional coil coating plant for the execution of the inventive method is therefore possible with very little effort.
  • the steel strip 1 thus acts as a cathode in the electrolysis process.
  • the electrolytic cells 2 are each filled with an aqueous electrolyte 2 a, in each of which two anodes 2 a consisting of elemental zinc are immersed, which continuously release zinc ions into the electrolyte 2 a during the coating process.
  • the steel strip 1 passes through a last electrolysis cell 3, which is filled with an electrolyte 3a based on an aprotic solvent, for example a mixture of tetrahydrofuran and diethyl ether.
  • an aprotic solvent for example a mixture of tetrahydrofuran and diethyl ether.
  • Two anodes 3b of elemental magnesium are immersed in the electrolytes 3a in a manner comparable to the electrolytic cells 2, which in turn continuously emit magnesium ions into the electrolyte 3a in the course of the coating.
  • the galvanized steel strip 1 is provided with a magnesium layer having a thickness of, for example, about 0.5 .mu.m .
  • the strip 1 is fed directly to a heating device 4, which is placed in an inert gas 5a, e.g. Argon or nitrogen, filled housing 5 is arranged.
  • an inert gas 5a e.g. Argon or nitrogen
  • a strip running concept with further roller contacts between the electrolysis cell 3 and the heating device 4 is readily possible here, since the electrolytically deposited Mg layers have good adhesion to the substrate, so that magnesium does not grow on the rollers due to abrasion.
  • a heat treatment of each passing band portion is carried out at a temperature of, for example, 300 ° C and a treatment time of e.g. 6s, so that a Mg-Zn alloy layer is formed on the surface of the coated steel strip 1 by diffusion. It is understood that for the maintenance of the desired treatment time, the length of the distance on which the heat treatment takes place, and the transport speed of the belt 1 must be coordinated.
  • the coated and heat-treated steel strip 1 After leaving the housing 5, the coated and heat-treated steel strip 1, which now has a shiny metallic, highly corrosion-resistant surface, subjected to further processing steps or wound into a coil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur elektrolytischen Magnesium-Abscheidung auf einem Substrat aus Blech mit Zink- oder Zinklegierungsüberzug, insbesondere Stahlblech.
  • In der Automobilindustrie besteht großer Bedarf an Werkstoffen mit hoher Korrosionsbeständigkeit und gleichzeitig guten Verarbeitungseigenschaften. Die Verzinkung von Karosserieblechen aus Stahl (Schmelztauchverfahren oder elektrolytische Beschichtung) zum Zwecke des Korrosionsschutzes hat sich in den letzten Jahrzehnten weitgehend durchgesetzt. Die im Schmelztauchverfahren oder mittels elektrolytischer Abscheidung verzinkten Stahlbleche zeichnen sich durch eine gute Haftung der Zinkschicht auf dem Stahlblech und eine gute Verarbeitbarkeit aus.
  • Deutlich verbesserte Korrosionseigenschaften sind - alternativ zu den Verzinkungsverfahren - durch das Aufbringen einer Magnesiumschicht auf das unbeschichtete Stahlblech erreichbar. So kommt es bei Lagerung eines magnesiumbeschichteten Stahlbleches an Luft zu einer sofortigen Oxidierung der Magnesiumschicht, wodurch die Blechoberfläche passiviert wird. Demnach wird der darunter befindliche Stahl nicht weiter angegriffen. Nachteilig an magnesiumbeschichteten Blechen ist allerdings ihre gegenüber verzinkten Stahlblechen erhöhte Oberflächenrauhigkeit infolge der Ausbildung der Oxidschicht.
  • Aus dem Stand der Technik sind verschiedene Verfahren zur Magnesium-Abscheidung auf verzinktem Stahlblech bekannt.
  • In der JP 62109966 A ist ein Stahlblech beschrieben, auf dessen Oberfläche zunächst eine Zinkschicht und anschließend eine Magnesiumschicht jeweils durch Aufdampfen in einer Vakuumkammer aufgebracht ist. Durch die Ausbildung einer Oxidschicht auf der Magnesiumoberfläche weist das Blech sehr gute Korrosionseigenschaften auf. Als problematisch ist jedoch das Vakuumverfahren anzusehen, da es einen sehr hohen apparativen und prozeßtechnischen Aufwand erfordert. Weiterhin weisen vakuumbeschichtete Bleche eine nicht optimale Haftfestigkeit der Magnesiumschicht auf.
  • In der DE 195 27 515 C1 ist ein Verfahren zur Herstellung von korrosionsgeschütztem Stahlfeinblech angegeben. Auf ein verzinktes Stahlblech wird mittels Vakuumbeschichtung eine Schicht aus einem oder mehreren Metallen außer Zink oder einer zinkfreien Legierung aufgebracht. Anschließend wird das derart beschichtete Blech ohne Exposition an oxidierender Atmosphäre einer Wärmebehandlung unterworfen. Dadurch bildet sich an der Oberfläche des zweifach beschichteten Stahlbleches eine Diffusionsschicht aus dem durch Vakuumbeschichtung aufgebrachten Metall bzw. der Legierung und dem darunter liegenden Zink. Derart beschichtete Bleche zeichnen sich durch eine gute Oberflächenqualität und einen hohen Korrosionsschutz aus. Zudem ist die Diffusionsschicht infolge ihrer geringen Dicke relativ zur Dicke des Zinküberzuges hinreichend duktil, um eine weiterhin gute Umformbarkeit des Stahlbleches zu gewährleisten. Zentraler Nachteil auch dieses Verfahrens ist der mit der Vakuumbeschichtung zusammenhängende hohe apparative und prozeßtechnische Aufwand.
  • In der DE 100 39 375 A1 wird ebenfalls ein Verfahren zur Herstellung von korrosionsgeschütztem Stahlfeinblech beschrieben. Dieses ähnelt dem in DE 195 27 515 C1 beschriebenen Verfahren insoweit, daß das Magnesium aus der Vakuumphase auf einem verzinkten bzw. legierverzinkten Stahlfeinblech abgeschieden wird, um anschließend wärmebehandelt zu werden. In diesem Fall wird die Wärmebehandlung allerdings so gesteuert, dass es zu einer Zink-Magnesium Phasenbildung über die gesamte Dicke des Zinküberzuges kommt. Dies führt zu einem Überzug mit den oben beschriebenen positiven Eigenschaften bei einem weiter verbesserten Korrosionsschutz. Die angesprochenen Nachteile der Vakuumbeschichtung sind dabei allerdings weiterhin gegeben.
  • Die direkte Abscheidung von Zn-Mg- bzw. Zn-Mg-Al-Legierungsüberzügen auf der Oberfläche eines Stahlblechs als vollständige Schicht im Schmelztauchverfahren, beschrieben z.B. in EP 0 905 270 A2 und US 3,505,043, beinhaltet ebenfalls erhebliche technische Schwierigkeiten. Das Schmelzbad, insbesondere die Einhaltung eines konstanten Mg-Gehaltes, ist wegen der durch die hohe Oxidationsneigung bedingten Mg-Schlackebildung und des unvermeidbaren Abbrands nur mit hohem technischem Aufwand beherrschbar. Außerdem ist die Oberflächenqualität der Überzüge nur gering, so daß die möglichen Einsatzgebiete dieser Produkte stark eingeschränkt sind. Weiterhin ist die Mikrostruktur der erhaltenen Überzüge ungünstig, da der Anteil intermetallischer Phasen im Überzug insgesamt in der Regel zu hoch ist und die magnesiumhaltigen Phasen ungünstig verteilt sind, da eine gezielte Phasenbildung mittels Wärmebehandlung nicht erfolgt. Dies wirkt sich negativ sowohl auf die Korrosionsbeständigkeit als auch auf das Umformverhalten der Überzüge aus.
  • Der als alternative Abscheidungsmethode denkbaren elektrolytischen Abscheidung von Magnesium in einem wäßrigen Elektrolyten steht das stark negative Normalpotential von Magnesium (-2,363 V) entgegen. In einer Elektrolysezelle mit einem wäßrigen Elektrolyten erfolgt an der Kathode anstelle der Abscheidung von elementarem Magnesium somit annähernd ausschließlich die Reduktion von Protonen zu Wasserstoffgas.
  • In der EP 1 036 862 A1 wird gleichwohl die elektrolytische Abscheidung einer Zn-Mg-Legierungsschicht auf einem Metallblech, bestehend aus Eisen, einer Eisenlegierung oder aus Kupfer, Aluminium oder Titan bzw. deren Legierungen, in einem wäßrig-sauren Elektrolyten beschrieben, dem ein nichtionisches oder kationisches Tensid zugegeben ist. Die elektrolytisch abgeschiedene Legierungsschicht zeichnet sich gemäß den Angaben dieser Druckschrift durch gute Umformbarkeit und Korrosionsbeständigkeit aus. Letztere wird durch die Einlagerung von Kohlenstoff aus dem organischen Tensid noch erhöht. Nachteilig an diesem Verfahren ist jedoch seine geringe Stromausbeute, da der Ladungstransport im Elektrolyten zu einem erheblichen Teil über Protonen erfolgt und somit die Bildung gasförmigen Wasserstoffes im Zuge der Magnesiumabscheidung nicht unterbunden werden kann. Dies muß entweder durch eine Erhöhung der Stromdichte oder der Verweilzeit des zu beschichtenden Bleches in der Elektrolysezelle kompensiert werden, was in beiden Fällen zu einer Senkung der Prozeßeffizienz führt.
  • Die elektrolytische Abscheidung von Magnesium in einem aprotischen (protonenfreien) Lösungsmittel ist in der Dissertation "Galvanische Abscheidung von Aluminium- und Magnesiumlegierungen" (TH Leuna-Merseburg, 1985) offenbart. Die Abscheidung erfolgt in einem Elektrolyten auf Basis von Tetrahydrofuran (THF) auf Substraten aus Nickel, Kupfer, Platin und einem niedriglegierten Stahl. In dieser Schrift wird lediglich die prinzipielle Machbarkeit des Verfahrens im Labormaßstab nachgewiesen, ohne es jedoch im Hinblick auf mögliche industrielle Anwendungen zu optimieren.
  • In der US-Patentschrift 3,520,780 ist ebenfalls die elektrolytische Magnesiumabscheidung in THF als aprotischem Lösungsmittel beschrieben. Hierbei handelt es sich allerdings nicht um ein Beschichtungsverfahren, sondern um ein Verfahren zur Galvanoformung, d.h. zum kontrollierten Erzeugen von Körpern und Bauteilen aus elektrolytisch abgeschiedenem Magnesium.
  • Aufgabe der Erfindung ist es, ein Verfahren zur elektrolytischen Magnesiumbeschichtung von Blech mit Zink- oder Zinklegierungsüberzug, insbesondere Stahlblech, anzugeben, welches sich durch geringe spezifische Kosten auszeichnet und wobei ein entsprechend dem Verfahren beschichtetes Blech eine hohe Oberflächenqualität und Umformbarkeit bei gleichzeitig verbesserten Korrosionseigenschaften aufweisen soll.
  • Die Aufgabe wird durch ein Verfahren der eingangs genannten Art dadurch gelöst, daß
    • die elektrolytische Abscheidung in einem Lösungsmittel mit geringerer Acidität als Wasser, bevorzugt in einem im wesentlichen aprotischen Lösungsmittel, erfolgt und
    • das beschichtete Substrat anschließend einer Wärmebehandlung zur Ausbildung einer Mg-Zn-Legierungsphase in der Zinkschicht unterzogen wird.
  • Durch die Wahl eines weniger aciden Lösungsmittels (pKA > 16 mit KA: Säuredissoziationskonstante) als Wasser (pKA = 14) wird die Konzentration an Protonen im Lösungsmittel deutlich abgesenkt, so daß hauptsächlich nicht mehr die Reduktion der Protonen zu elementarem Wasserstoff an der Kathode stattfindet, sondern die Abscheidung von elementarem Magnesium. Durch Zugabe geeigneter Basen zum Lösungsmittel kann die Konzentration an Protonen im Lösungsmittel weiter gesenkt werden. Zudem kann durch Zugabe weiterer geeigneter organischer Komponenten die Abscheidung von Wasserstoffgas an der Kathode teilweise unterdrückt werden. Besonders geeignet scheinen dabei Lösungsmittel, die aufgrund ihrer äußerst geringen Acidität als aprotisch bezeichnet werden, weil sie näherungsweise keine freien Protonen enthalten.
  • Die Verwendung eines aprotischen Lösungsmittels, vorzugsweise Tetrahydrofuran und/oder Diethylether, ermöglicht einen bezogen auf die Stromausbeute bekanntermaßen effizienten Abscheidungsprozeß, der im Gegensatz zu den Verfahren des Standes der Technik, die auf einer Magnesiumabscheidung in wäßriger Lösung basieren, bei vergleichsweise geringer Stromdichte und/oder Abscheidungszeit erfolgen kann. Die besonders hohe Wirtschaftlichkeit des erfindungsgemäßen Verfahrens in bezug auf die flächenspezifischen Beschichtungskosten resultiert aus der anlagentechnisch einfachen Realisierbarkeit, insbesondere unter dem Aspekt einer möglichen Ausführung in einem kontinuierlichen Prozeß.
  • Zum Transport der Magnesiumionen aus dem Lösungsmittel zur Kathode als Folge der angelegten Spannung eignen sich prinzipiell alle Magnesiumsalze, die sich in den obengenannten Lösungsmitteln entweder vollständig oder nur teilweise ionisch lösen. Beispiele für solche Magnesiumsalze sind unter anderem die Magnesiumhalogenide, Magnesiumgrignardverbindungen, Magnesiumalkoholate oder Magnesiumcarboxylate.
  • Die elektrolytisch abgeschiedenen Magnesiumschichten weisen eine deutlich höhere Dichte und bessere Haftung auf, als dies bei den üblichen Vakuumbeschichtungen der Fall ist. Dies ermöglicht eine problemlose Weiterverarbeitung in der anschließenden Wärmebehandlung. So können z.B. in einem kontinuierlichen Bandanlagenprozess problematische Aufwachsungen des Magnesiums auf den Rollen, häufig Ursache von Oberflächenfehlern am fertigen Produkt, vermieden werden.
  • Durch die sich an die elektrolytische Magnesiumbeschichtung anschließende Wärmebehandlung des Bleches wird diffusionsbedingt eine Mg-Zn-Legierungsschicht erzeugt. Dadurch wird eine schnelle Oxidierung der elektrolytisch abgeschiedenen Magnesiumschicht, was eine rauhe Oberfläche zur Folge hätte, wirksam verhindert. Vor und während der Wärmebehandlung wird die Magnesiumschicht dabei vorzugsweise keiner oxidierenden Atmosphäre ausgesetzt. Die Wärmebehandlung kann dabei in einem großen Temperaturbereich von 250 bis 420°C erfolgen, woraus unterschiedliche Schichtstrukturen resultieren. Die bevorzugte Schichtstruktur ergibt sich dabei aus dem jeweils angestrebten Anwendungsfall. Soll der Prozeß auf einer reinen Festkörperdiffusion beruhen, so wird vorzugsweise bei einer Temperatur von 300°C behandelt. Soll die Modifikation über die Bildung eines Eutektikums gesteuert werden, so wird eine Temperatur von 380°C bevorzugt. Die Behandlungszeit beträgt dabei für eine automobilgemäß übliche Zinkauflage von 7,5µm maximal 60s, vorzugsweise 6s im Falle der Festkörperdiffusion bzw. 2s im Falle der Bildung eines Eutektikums.
  • Zusätzlich zeigt sich, daß durch die Ausbildung der Legierungsphase die Korrosionseigenschaften in so hohem Maße verbessert werden, daß für das erfindungsgemäße Verfahren Bleche mit reduzierter Stärke der Zinkauflage verwendet werden können. Dadurch ergibt sich wiederum eine verbesserte Umformbarkeit des Bleches bei nach wie vor ausreichender oder sogar verbesserter Korrosionsbeständigkeit. Demnach werden bei dem erfindungsgemäßen Verfahren die spezifischen Vorteile einer Zink- und einer Magnesiumbeschichtung in optimaler Weise kombiniert. So vereint ein erfindungsgemäß beschichtetes Blech die Eigenschaften konventionell verzinkter Bleche mit der extremen Korrosionsbeständigkeit einer Magnesiumschicht. Gleichzeitig werden durch die Einsparung von Zink weitere Kostenvorteile erzielt.
  • Nach einer ersten Ausgestaltung der Erfindung kann die Abscheidung von Metall auf dem Zink- oder Zinklegierungsüberzug dadurch erweitert werden, dass neben dem Magnesium auch Zink in metallischer Form simultan elektrolytisch abgeschieden wird.
  • Für die Erzielung der vorstehend genannten Eigenschaften ist es ausreichend, wenn die Magnesiumschicht in einem Massenverhältnis von 0,1 bis 10 Massen-%, vorzugsweise 1 bis 2 Massen-%, zur vorliegenden Zinkschicht auf der verzinkten Blechoberfläche abgeschieden wird, was eine hinsichtlich des Materialeinsatzes wirtschaftliche Ausführung des erfindungsgemäßen Verfahrens ermöglicht.
  • Für ein gleichmäßiges Beschichtungsergebnis ist es notwendig, daß die Konzentration der Magnesiumionen oder der magnesiumhaltigen Molekülionen im Elektrolyten im wesentlichen konstant gehalten wird. Dies kann verfahrenstechnisch auf zweierlei Weise erfolgen. Einerseits ist es möglich, die Magnesium-Ionen mittels einer sich nach und nach auflösenden Magnesiumanode in das aprotische Lösungsmittel einzubringen. Anderereits kann eine konstante Ionenkonzentration auch dadurch erreicht werden, daß die Magnesium-Ionen durch die im wesentlichen kontinuierliche Zugabe einer magnesiumhaltigen Substanz bei Verwendung einer inerten Anode in das aprotische Lösungsmittel eingebracht werden.
  • Die Verwendung von z.B. elektrolytisch verzinktem Blech als Substratmaterial bietet den Vorteil, daß die Verzinkung und die erfindungsgemäße Magnesiumabscheidung und Wärmebehandlung des beschichteten Bleches unmittelbar hintereinander in einer Anlage ausgeführt werden können, da die für die Verzinkung einerseits und für die anschließende Magnesiumbeschichtung andererseits verwendeten Elektrolysezellen im wesentlichen identisch aufgebaut sein können. Dieser Vorteil kann insbesondere dann genutzt werden, wenn das verzinkte Blech als Endlosmaterial in einem durchlaufenden Prozeß beschichtet wird. Das beispielsweise bandförmige Material durchläuft in diesem Falle zunächst mehrere Zellen zur Aufbringung der Zinkschicht und im Anschluß daran eine letzte Zelle zur Magnesiumabscheidung. Die Erweiterung einer konventionellen Bandbeschichtungsanlage zur Ausführung des erfindungsgemäßen Verfahrens ist daher mit sehr geringem Aufwand möglich.
  • Im folgenden wird die Erfindung anhand einer ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert, die eine Anlage zur Magnesium-Abscheidung auf einem verzinkten Stahlband in schematischer Darstellung zeigt.
  • Gemäß der Zeichnung wird ein Substrat in Form eines Stahlbandes 1 in einer Transportrichtung T über eine Rollenführung la zunächst durch drei hintereinander angeordnete, identisch aufgebaute Elektrolysezellen 2 geleitet und dabei mit einer Zinkschicht einer Dicke von insgesamt z.B. ca. 7,5 µm versehen. Das Stahlband 1 fungiert im Elektrolyseprozeß somit als Kathode. Die Elektrolysezellen 2 sind jeweils mit einem wäßrigen Elektrolyten 2a gefüllt, in den jeweils zwei aus elementarem Zink bestehende Anoden 2b getaucht sind, welche während des Beschichtungsprozesses kontinuierlich Zinkionen in den Elektrolyten 2a abgeben. Im Anschluß daran durchläuft das Stahlband 1 eine letzte Elektrolysezelle 3, die mit einem Elektrolyten 3a auf Basis eines aprotischen Lösungsmittels, z.B. eines Gemisches aus Tetrahydrofuran und Diethylether, gefüllt ist. In den Elektrolyten 3a sind in zu den Elektrolysezellen 2 vergleichbarer Weise zwei Anoden 3b aus elementarem Magnesium getaucht, welche ihrerseits im Zuge der Beschichtung kontinuierlich Magnesiumionen in den Elektrolyten 3a abgeben. In dieser Elektrolysezelle 3 wird das verzinkte Stahlband 1 mit einer Magnesiumschicht einer Dicke von z.B. ca. 0,5 µm versehen.
  • Nach Verlassen der letzten Elektrolysezelle 3 wird das Band 1 direkt einer Heizeinrichtung 4 zugeführt, die in einem mit Inertgas 5a, wie z.B. Argon oder Stickstoff, gefüllten Gehäuse 5 angeordnet ist.
  • Ein Bandlaufkonzept mit weiteren Rollenberührungen zwischen Elektrolysezelle 3 und Heizeinrichtung 4 ist hier ohne weiteres möglich, da die elektrolytisch abgeschiedenen Mg-Schichten eine gute Haftung auf dem Substrat aufweisen, so daß es nicht zu Aufwachsungen von Magnesium auf den Rollen durch Abrieb kommt. In dem mit der Heizeinrichtung 4 versehenen Gehäuse 5 erfolgt eine Wärmebehandlung des jeweils durchlaufenden Bandabschnittes bei einer Temperatur von beispielsweise 300°C und einer Behandlungsdauer von z.B. 6s, so daß sich an der Oberfläche des beschichteten Stahlbandes 1 durch Diffusion eine Mg-Zn-Legierungsschicht ausbildet. Es versteht sich, daß für die Einhaltung der gewünschten Behandlungszeit die Länge der Strecke, auf der die Wärmebehandlung erfolgt, und die Transportgeschwindigkeit des Bandes 1 aufeinander abgestimmt werden müssen.
  • Nach Verlassen des Gehäuses 5 kann das beschichtete und wärmebehandelte Stahlband 1, welches nun eine metallisch glänzende, hoch korrosionsbeständige Oberfläche aufweist, weiteren Bearbeitungsschritten unterzogen oder zu einem Coil aufgewickelt werden.

Claims (9)

  1. Verfahren zur elektrolytischen Magnesium-Abscheidung auf einem Substrat aus Blech mit Zink- oder Zinklegierungsüberzug (1), insbesondere Stahlblech, wobei
    - die elektrolytische Abscheidung in einem Lösungsmittel mit geringerer Acidität als Wasser erfolgt und
    - das beschichtete Substrat (1) anschließend einer Wärmebehandlung zur Ausbildung einer Mg-Zn-Legierungsphase in der Zinkschicht unterzogen wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, daß das bei der elektrolytischen Abscheidung verwendete Lösungsmittel ein im wesentlichen aprotisches Lösungsmittel ist.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß eine Mg-Schicht in einem Massenverhältnis von 0,1 bis 10 Massen-%, vorzugsweise 1 bis 2 Massen-%, zur vorliegenden Zinkschicht auf der verzinkten Blechoberfläche abgeschieden wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß die Magnesium-Ionen mittels einer Magnesiumanode (3b) in das Lösungsmittel (3a) eingebracht werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daβ die Magnesium-Ionen durch Zugabe einer magnesiumhaltigen Substanz in das Lösungsmittel (3a) eingebracht werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, daß das Blech (1) mit Zink- oder Zinklegierungsüberzug als Endlosmaterial in einem durchlaufenden Prozeß beschichtet wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, daß die anschließende Wärmebehandlung bei einer Temperatur von 250 bis 359°C, vorzugsweise 300°C, durchgeführt wird, mit einer Behandlungsdauer < 60s, vorzugsweise 6s.
  8. Verfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, daß die anschließende Wärmebehandlung bei einer Temperatur von 359 bis 420°C, vorzugsweise 380°C, durchgeführt wird, mit einer Behandlungsdauer < 60s, vorzugsweise 2s.
  9. Verfahren nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, daß bei der elektrolytischen Magnesiumabscheidung auch Zink in metallischer Form auf dem Zink- oder Zinklegierungsüberzug abgeschieden wird und bei der Wärmebehandlung eine Mg-Zn-Legierungsphase ausgebildet wird.
EP03767590A 2002-12-10 2003-11-21 Verfahren zur elektrolytischen abscheidung von magnesium oder magnesium-zink auf verzinktem blech Revoked EP1570115B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10257737 2002-12-10
DE10257737A DE10257737B3 (de) 2002-12-10 2002-12-10 Verfahren zur elektrolytischen Magnesium-Abscheidung auf verzinktem Blech
PCT/EP2003/013055 WO2004053203A2 (de) 2002-12-10 2003-11-21 Verfahren zur elektrolytischen abscheidung von magnesium oder magnesium-zink auf verzinktem blech

Publications (2)

Publication Number Publication Date
EP1570115A2 EP1570115A2 (de) 2005-09-07
EP1570115B1 true EP1570115B1 (de) 2006-04-12

Family

ID=30775622

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03767590A Revoked EP1570115B1 (de) 2002-12-10 2003-11-21 Verfahren zur elektrolytischen abscheidung von magnesium oder magnesium-zink auf verzinktem blech

Country Status (7)

Country Link
EP (1) EP1570115B1 (de)
AT (1) ATE323186T1 (de)
AU (1) AU2003292060A1 (de)
DE (2) DE10257737B3 (de)
ES (1) ES2261976T3 (de)
PL (1) PL375788A1 (de)
WO (1) WO2004053203A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040167B2 (en) 2009-05-25 2015-05-26 Thyssenkrupp Steel Europe Ag Method for the production of a flat steel product and flat steel product

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1829817B (zh) * 2003-07-29 2015-01-07 沃斯特阿尔派因钢铁有限责任公司 制造硬化钢零件的方法
EP1624093A1 (de) * 2004-08-04 2006-02-08 Aluminal Oberflächentechnik GmbH & Co. KG Beschichten von Substraten aus Leichtmetallen oder Leichtmetalllegierungen
DE102004037673B4 (de) 2004-08-04 2009-01-29 Thyssenkrupp Steel Ag Verfahren zur simultanen elektrolytischen Abscheidung von Zink und Magnesium auf einem Substrat aus Blech und Verfahren zur Herstellung eines korrosionsgeschützten lackierten Formteils aus Blech
DE102005036426B4 (de) * 2005-08-03 2007-08-16 Thyssenkrupp Steel Ag Verfahren zum Beschichten von Stahlprodukten
DE102008004728A1 (de) 2008-01-16 2009-07-23 Henkel Ag & Co. Kgaa Phosphatiertes Stahlblech sowie Verfahren zur Herstellung eines solchen Blechs
KR101439694B1 (ko) 2012-12-26 2014-09-12 주식회사 포스코 Zn-Mg 합금도금강판 및 그의 제조방법
DE102021200229A1 (de) 2021-01-13 2022-07-14 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines elektrolytisch beschichteten Stahlblechs

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3520780A (en) * 1967-05-11 1970-07-14 Xerox Corp Magnesium electrodeposition
US3505043A (en) * 1969-01-08 1970-04-07 Inland Steel Co Al-mg-zn alloy coated ferrous metal sheet
JPS62109966A (ja) * 1985-11-08 1987-05-21 Nippon Kokan Kk <Nkk> 耐食性めつき鋼板
DD243722A1 (de) * 1985-11-15 1987-03-11 Tech Hochschule C Schorlemmer Galvanisches bad und verfahren zum abscheiden von magnesiumueberzuegen
DE19527515C1 (de) * 1995-07-27 1996-11-28 Fraunhofer Ges Forschung Verfahren zur Herstellung von korrosionsgeschütztem Stahlblech
KR100324893B1 (ko) * 1996-12-13 2002-08-21 닛신 세이코 가부시키가이샤 내식성및표면외관이양호한융용아연-알루미늄-마그네슘도금강판및그제조법
DE19855666A1 (de) * 1998-12-01 2000-06-08 Studiengesellschaft Kohle Mbh Aluminiumorganische Elektrolyte und Verfahren zur elektrolytischen Beschichtung mit Aluminium oder Aluminium-Magnesium Legierungen
US6607844B1 (en) * 1999-03-15 2003-08-19 Kobe Steel, Ltd. Zn-Mg electroplated metal sheet and fabrication process therefor
DE10039375A1 (de) * 2000-08-11 2002-03-28 Fraunhofer Ges Forschung Korrosionsgeschütztes Stahlblech und Verfahren zu seiner Herstellung
KR100590406B1 (ko) * 2001-12-22 2006-06-15 주식회사 포스코 내식성 및 용접성이 우수한 표면처리강판 및 그 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040167B2 (en) 2009-05-25 2015-05-26 Thyssenkrupp Steel Europe Ag Method for the production of a flat steel product and flat steel product

Also Published As

Publication number Publication date
DE10257737B3 (de) 2004-02-26
PL375788A1 (en) 2005-12-12
EP1570115A2 (de) 2005-09-07
ATE323186T1 (de) 2006-04-15
ES2261976T3 (es) 2006-11-16
WO2004053203A2 (de) 2004-06-24
AU2003292060A1 (en) 2004-06-30
DE50302990D1 (de) 2006-05-24
AU2003292060A8 (en) 2004-06-30
WO2004053203A3 (de) 2004-12-23

Similar Documents

Publication Publication Date Title
EP1658390B1 (de) Verfahren zum herstellen eines gehärteten stahlbauteils
DE69606077T2 (de) Stahlblech mit korrosionsbeständiger Zweikomponentenschicht aus Zn-Mg sowie Verfahren zu dessen Herstellung
EP2235229B9 (de) Verfahren zum beschichten eines 6 - 30 gew. % mn enthaltenden warm- oder kaltgewalzten stahlflachprodukts mit einer metallischen schutzschicht
EP3666931B1 (de) Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung
WO2011067094A1 (de) Mehrstufiges vorbehandlungsverfahren für metallische bauteile mit zink- und eisenoberflächen
EP0756022B1 (de) Korrosionsgeschütztes Stahlfeinblech und Verfahren zu seiner Herstellung
DE202004021264U1 (de) Korrosionsschicht und gehärtetes Stahlbauteil
EP3749793B1 (de) Verfahren zur herstellung eines stahlbandes mit verbesserter haftung metallischer schmelztauchüberzüge
DE4202625A1 (de) Verzinktes metallmaterial
EP1570115B1 (de) Verfahren zur elektrolytischen abscheidung von magnesium oder magnesium-zink auf verzinktem blech
EP3947753B1 (de) Verfahren zur herstellung eines stahlbandes mit verbesserter haftung metallischer schmelztauchüberzüge
EP2635724B1 (de) Verfahren zur abscheidung von hartchrom aus cr(vi)-freien elektrolyten
EP0366941A1 (de) Verfahren zur elektrophoretischen Tauchlackierung von chromatierbaren Metalloberflächen
DE69027428T2 (de) Verzinktes stahlblech mit ausgezeichneter pressverformung, chemischer oberflächenumwandlung und ähnlichen eigenschaften sowie herstellung eines solchen bleches
DE69205612T2 (de) Korrosionsbeständige Reinzink- oder Teilzinkplattierte Stahlbleche sowie Verfahren zu ihrer Herstellung.
WO2022269021A1 (de) Verfahren zur herstellung eines stahlflachprodukts mit einem zink- oder aluminiumbasierten metallischen überzug und entsprechendes stahlflachprodukt
EP3947754B1 (de) Verfahren zur herstellung eines stahlbandes mit verbesserter haftung metallischer schmelztauchüberzüge
DE19817559A1 (de) Anode zur Sauerstoffentwicklung in Elektrolyten, die Fluoride oder Fluoridkomplex-Anionen enthalten
DE102004037673B4 (de) Verfahren zur simultanen elektrolytischen Abscheidung von Zink und Magnesium auf einem Substrat aus Blech und Verfahren zur Herstellung eines korrosionsgeschützten lackierten Formteils aus Blech
DE69305458T2 (de) A1-Si-Cr-BESCHICHTETE STAHLPLATTE UND DEREN HERSTELLUNG
EP2955249B1 (de) Verfahren zum Herstellen eines mit einem Korrosionsschutzsystem beschichteten Stahlblechs
EP4159896A2 (de) Verfahren zur passivierung der oberfläche eines weissblechs und elektrolysesystem zur durchführung des verfahrens
DE2223372C3 (de) Verfahren zur elektrolytischen Abscheidung von Aluminiumlegierungen auf metallischen Werkstücken
EP1574601B1 (de) Verfahren zur galvanischen Abscheidung von Zinkphosphat oder Zink-Calcium-Phosphat
WO2019243146A1 (de) Trennschicht für die warmumformung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050607

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP STEEL AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060412

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060412

REF Corresponds to:

Ref document number: 50302990

Country of ref document: DE

Date of ref document: 20060524

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060912

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

RDAD Information modified related to despatch of communication that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSCREV1

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

ET Fr: translation filed
26 Opposition filed

Opponent name: ALUMINAL OBERFLAECHENTECHNIK GMBH & CO. KG

Effective date: 20060930

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2261976

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061130

Year of fee payment: 4

NLR1 Nl: opposition has been filed with the epo

Opponent name: ALUMINAL OBERFLAECHENTECHNIK GMBH & CO. KG

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20061116

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20061116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLR2 Nl: decision of opposition

Effective date: 20061116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412