WO2023195252A1 - 表面処理鋼板およびその製造方法 - Google Patents

表面処理鋼板およびその製造方法 Download PDF

Info

Publication number
WO2023195252A1
WO2023195252A1 PCT/JP2023/006070 JP2023006070W WO2023195252A1 WO 2023195252 A1 WO2023195252 A1 WO 2023195252A1 JP 2023006070 W JP2023006070 W JP 2023006070W WO 2023195252 A1 WO2023195252 A1 WO 2023195252A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
layer
treated steel
metal
less
Prior art date
Application number
PCT/JP2023/006070
Other languages
English (en)
French (fr)
Inventor
卓嗣 植野
祐介 中川
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023532839A priority Critical patent/JP7327719B1/ja
Publication of WO2023195252A1 publication Critical patent/WO2023195252A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Definitions

  • the present invention relates to a surface-treated steel sheet, and particularly to a surface-treated steel sheet that has excellent adhesion to BPA-free paint and corrosion resistance of BPA-free paint.
  • the surface-treated steel sheet of the present invention can be suitably used for containers such as cans.
  • the present invention also relates to a method for manufacturing the surface-treated steel sheet.
  • Steel sheets such as Sn-plated steel sheets (tinplate), tin-free steel sheets (TFS), and Ni-plated steel sheets have been widely used as materials for various metal cans such as beverage cans, food cans, pail cans, and 18-liter cans. .
  • the surface of the steel plate is coated with an organic resin such as epoxy paint in order to accommodate various contents.
  • an organic resin coating an oxidized Cr layer formed on the outermost surface by subjecting the steel plate to electrolytic treatment or immersion treatment in an aqueous solution containing hexavalent Cr plays an important role. That is, the Cr oxide layer achieves excellent adhesion to the organic resin coating layer, and as a result, corrosion resistance against various contents is ensured (Patent Documents 1 to 5).
  • a surface treatment layer is formed by performing electrolytic treatment in an electrolytic solution containing a trivalent chromium compound such as basic chromium sulfate.
  • a surface treatment layer can be formed without using hexavalent chromium. According to Patent Document 8, by the method described above, a surface-treated steel sheet that has excellent adhesion to epoxy paint can be obtained.
  • the present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a surface that can be manufactured without using hexavalent chromium and has excellent adhesion with BPA-free paint and corrosion resistance of BPA-free paint. Our goal is to provide treated steel sheets.
  • the inventors of the present invention conducted intensive studies to achieve the above object, and as a result, they obtained the following findings (1) and (2).
  • the contact angle of ethylene glycol and the sum of the atomic ratios of K, Na, Mg, and Ca adsorbed on the surface to Cr are determined for each specific value. By controlling the amount within this range, it is possible to obtain a surface-treated steel sheet with excellent adhesion to BPA-free paint and corrosion resistance of BPA-free paint.
  • the above-mentioned surface-treated steel sheet is subjected to cathodic electrolysis treatment in an electrolytic solution containing trivalent chromium ions prepared by a specific method, and after being immersed in the above-mentioned electrolytic solution for a predetermined period of time or more, the electrical conductivity reaches a predetermined value. It can be manufactured by performing a final washing using water that is below the specified value.
  • the present invention has been completed based on the above findings.
  • the gist of the present invention is as follows.
  • the metal Cr layer is placed directly on the surface of the steel plate, The surface-treated steel sheet according to 1 above, wherein the metal Cr layer has a Cr adhesion amount of 40.0 mg/m 2 or more and 500.0 mg/m 2 or less per side of the steel sheet.
  • the Sn layer has a Sn adhesion amount of 2.0 mg/m 2 or more and 20.0 g/m 2 or less per one side of the steel sheet
  • the metal Cr layer has a Cr adhesion amount of 2.0 mg/m 2 or more per one side of the steel sheet. 4.
  • the Ni-containing layer has a Ni adhesion amount of 2.0 mg/m 2 or more and 2000.0 mg/m 2 or less per one side of the steel plate, and the metal Cr layer has a Cr adhesion amount of 2.0 mg/m 2 or more per one side of the steel plate. 10.
  • a method for producing a surface-treated steel sheet comprising a steel sheet, a metal Cr layer disposed on at least one surface of the steel sheet, and an oxidized Cr layer disposed on the metal Cr layer, the method comprising: an electrolytic solution preparation step of preparing an electrolytic solution containing trivalent chromium ions; a cathodic electrolytic treatment step of cathodic electrolyzing the steel plate in the electrolytic solution; an immersion step of electrolessly immersing the steel plate after the cathodic electrolytic treatment in the electrolytic solution for at least 1.0 seconds and 5.0 seconds; and a washing step of rinsing the steel plate after the cathodic electrolytic treatment at least once with water.
  • the electrolyte preparation step Mixing a trivalent chromium ion source, a carboxylic acid compound, and water,
  • the electrolytic solution is prepared by adjusting the pH to 4.0 to 7.0 and the temperature to 40 to 70°C
  • the water washing step A method for producing a surface-treated steel sheet, using water with an electrical conductivity of 100 ⁇ S/m or less in at least the final washing.
  • the present invention it is possible to provide a surface-treated steel sheet that has excellent adhesion with BPA-free paint and corrosion resistance of BPA-free paint without using hexavalent chromium.
  • the surface-treated steel sheet of the present invention can be suitably used as a material for containers and the like.
  • the surface-treated steel sheet in one embodiment of the present invention is a surface-treated steel sheet having a metal Cr layer and an oxidized Cr layer disposed on the metal Cr layer on at least one surface of the steel sheet.
  • the contact angle of ethylene glycol on the surface-treated steel sheet is 50° or less, and the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface to Cr is 5.0%. It is important that: Each of the constituent requirements of the surface-treated steel sheet will be explained below.
  • the steel plate any steel plate can be used without particular limitation.
  • the steel plate is preferably a steel plate for cans.
  • As the steel plate for example, an ultra-low carbon steel plate or a low carbon steel plate can be used.
  • the method for manufacturing the steel plate is not particularly limited either, and steel plates manufactured by any method can be used.
  • a cold-rolled steel plate may be used as the steel plate.
  • the cold-rolled steel sheet can be manufactured by a general manufacturing process that includes, for example, hot rolling, pickling, cold rolling, annealing, and temper rolling.
  • the Cr content is preferably 0.10% by mass or less, more preferably 0.08% by mass or less. If the Cr content of the steel sheet is within the above range, Cr will not be excessively concentrated on the surface of the steel sheet, and will not inhibit the formation of a metal Cr layer and an oxidized Cr layer in the cathodic electrolytic treatment process described below. , it is possible to form a dense metal Cr layer and oxidized Cr layer, which contributes to improving the corrosion resistance of BPA-free paint.
  • the atomic ratio of Fe to Cr on the surface of the finally obtained surface-treated steel sheet is When the Sn layer is present under the metal Cr layer, the atomic ratio of Sn to Cr on the surface of the finally obtained surface-treated steel sheet can be 100% or less, When a Ni-containing layer is provided under the metal Cr layer, the atomic ratio of Ni to Cr on the surface of the finally obtained surface-treated steel sheet can be 100% or less.
  • the steel plate may contain C, Mn, P, S, Si, Cu, Ni, Mo, Al, and unavoidable impurities within a range that does not impair the effects of the present invention. In this case, as the steel plate, for example, a steel plate having a composition specified in ASTM A623M-09 can be suitably used.
  • C in mass %, C: 0.0001 to 0.13%, Si: 0 to 0.020%, Mn: 0.01-0.60% P: 0 to 0.020%, S: 0 to 0.030%, Al: 0-0.20%, N: 0 to 0.040%, Cu: 0 to 0.20%, Ni: 0 to 0.15%, Cr: 0 to 0.10%, Mo: 0 to 0.05%, Ti: 0 to 0.020%, Nb: 0 to 0.020%, B: 0 to 0.020%, Ca: 0-0.020%, Sn: 0 to 0.020%, Sb: 0 to 0.020%, It is preferable to use a steel plate having a composition consisting of Fe and the remainder Fe and unavoidable impurities.
  • the lower the content of Si, P, S, Al, and N the more preferable the components are.Cu, Ni, Cr, Mo, Ti, Nb, B, Ca, Sn, and Sb are optional. It is a component that can be added.
  • the thickness of the steel plate is not particularly limited, but is preferably 0.60 mm or less.
  • “steel plate” is defined here to include “steel strip.”
  • the lower limit of the plate thickness is not particularly limited either, but it is preferably 0.10 mm or more.
  • a metal Cr layer is present on at least one surface of the steel plate.
  • the amount of the metal Cr layer deposited is not particularly limited, and can be set to any value. However, if the amount of the metal Cr layer adhered is excessive, cohesive failure may occur within the metal Cr layer, and the adhesion with the BPA-free paint may deteriorate. Therefore, from the viewpoint of more stably ensuring adhesion with BPA-free paint and BPA-free paint corrosion resistance, the amount of Cr deposited on one side of the steel plate of the metal Cr layer should be 500.0 mg/m 2 or less. is preferable, and more preferably 450.0 mg/m 2 or less.
  • the lower limit of the amount of deposited metal Cr layer is not particularly limited either, but from the viewpoint of further improving the corrosion resistance of the BPA-free coating, it is preferable that the amount of Cr deposited per one side of the steel sheet of the metal Cr layer is large.
  • the amount of Cr deposited on one side of the steel sheet in the metal Cr layer is preferably 2.0 mg/m 2 or more, more preferably 5.0 mg/m 2 or more.
  • the amount of Cr deposited on one side of the steel plate of the metal Cr layer is 40. It is more preferable to set it as .0 mg/m2 or more , and it is more preferable to set it as 50.0 mg/m2 or more .
  • the amount of Cr attached to the metal Cr layer can be measured by a fluorescent X-ray method. Specifically, first, the amount of Cr (total amount of Cr) in the surface-treated steel sheet is measured using a fluorescent X-ray device. Next, the surface-treated steel sheet is subjected to an alkaline treatment by immersing it in 7.5N-NaOH at 90° C. for 10 minutes, and then thoroughly washed with water. Thereafter, the amount of Cr (the amount of Cr after alkali treatment) is measured again using the fluorescent X-ray device. Furthermore, the Cr content (original Cr content) of the steel sheet after the metal Cr layer and the oxidized Cr layer have been peeled off is measured using a fluorescent X-ray apparatus.
  • a commercially available hydrochloric acid-based chromium plating remover can be used to remove the metal Cr layer and the oxidized Cr layer.
  • the value obtained by subtracting the original plate Cr amount from the Cr amount after alkali treatment is defined as the Cr adhesion amount per one side of the steel sheet of the metal Cr layer. Note that the total amount of Cr is used to calculate the amount of Cr deposited as the oxidized Cr layer, which will be described later.
  • the metal Cr constituting the metal Cr layer may be amorphous Cr or crystalline Cr. That is, the metal Cr layer can contain one or both of amorphous Cr and crystalline Cr.
  • the metal Cr layer manufactured by the method described below generally contains amorphous Cr, and may further contain crystalline Cr. Although the formation mechanism of the metallic Cr layer is not clear, it is thought that when amorphous Cr is formed, crystallization progresses partially, resulting in a metallic Cr layer containing both amorphous and crystalline phases.
  • Cr oxide layer A Cr oxide layer is present on the metal Cr layer.
  • the amount of the Cr oxide layer deposited is not particularly limited, and can be set to any value. However, from the viewpoint of further improving the corrosion resistance of the BPA-free coating, it is preferable that the amount of Cr oxide layer deposited is 0.1 mg/m 2 or more in terms of the amount of Cr deposited per one side of the steel sheet.
  • the upper limit of the amount of the Cr oxide layer deposited is not particularly limited, but if the amount of the Cr oxide layer deposited is excessive, cohesive failure will occur within the Cr oxide layer, and the adhesion with the BPA-free paint will deteriorate.
  • the content is preferably 15.0 mg/m 2 or less.
  • the amount of Cr attached to the oxidized Cr layer can be measured by a fluorescent X-ray method. Specifically, the amount of Cr deposited in the oxidized Cr layer can be determined by subtracting the amount of Cr after the alkali treatment from the total amount of Cr measured using the aforementioned fluorescent X-ray device.
  • the metal Cr layer and the oxidized Cr layer may contain C.
  • the C content in the metal Cr layer is preferably 50% or less, more preferably 45% or less, as an atomic ratio to Cr.
  • the C content in the Cr oxide layer is preferably 50% or less, more preferably 45% or less, as an atomic ratio to Cr.
  • the metal Cr layer and the oxidized Cr layer do not need to contain C. Therefore, the lower limit of the atomic ratio of C to Cr contained in the metal Cr layer and the oxidized Cr layer is not particularly limited and may be 0%. .
  • the C content in the metal Cr layer and the C content in the oxidized Cr layer can each be measured by X-ray photoelectron spectroscopy (XPS). Specifically, to measure the C content by XPS, the C atomic ratio and Cr atomic ratio are determined by the relative sensitivity coefficient method from the integrated intensities of the narrow spectra of Cr2p and C1s measured by XPS, and the C atomic ratio/Cr atomic ratio is calculated. This can be done by calculating the ratio.
  • XPS X-ray photoelectron spectroscopy
  • C derived from contamination is detected from the outermost layer of the surface-treated steel sheet
  • C content in the Cr oxide layer for example, 0.2 nm in terms of SiO 2 is removed from the outermost layer. Measurement may be performed after sputtering to a depth greater than or equal to the depth.
  • the C content in the metal Cr layer may be measured after sputtering is performed from the outermost layer after the alkali treatment described above to a depth of 1/2 of the thickness of the metal Cr layer.
  • the thickness of the metal Cr layer used in the above measurement can be determined by the following procedure. First, XPS measurements are performed every 1 nm in the depth direction from the outermost layer after alkali treatment to measure the Cr atomic ratio and the Ni atomic ratio. Next, a cubic equation that approximates the relationship between the Ni atomic ratio/Cr atomic ratio with respect to the depth from the outermost layer after the alkali treatment is determined by the method of least squares. Using the obtained cubic equation, the depth from the outermost layer at which the Ni atomic ratio/Cr atomic ratio becomes 1 is calculated, and this is taken as the thickness of the metal Cr layer.
  • a scanning X-ray photoelectron spectrometer PHI X-tool manufactured by ULVAC-PHI can be used.
  • the X-ray source is a monochrome AlK ⁇ ray
  • the voltage is 15 kV
  • the beam diameter is 100 ⁇ m ⁇
  • the extraction angle is 45°
  • the sputtering conditions are Ar ion acceleration voltage 1 kV
  • the sputter rate is 1.50 nm/min in terms of SiO 2 .
  • the form of C present in the metal Cr layer and Cr oxide layer is not particularly limited, but if it exists as a precipitate, corrosion resistance may decrease due to the formation of local batteries. Therefore, it is preferable that the sum of the volume fractions of carbides and clusters having a clear crystal structure is 10% or less, and it is more preferable that they are not contained at all (0%).
  • the presence or absence of carbides can be confirmed, for example, by compositional analysis using energy dispersive X-ray spectroscopy (EDS) or wavelength dispersive X-ray spectroscopy (WDS) attached to a scanning electron microscope (SEM) or transmission electron microscope (TEM). I can do it.
  • the presence or absence of clusters can be confirmed, for example, by performing cluster analysis on data after three-dimensional composition analysis using a three-dimensional atom probe (3DAP).
  • the metal Cr layer may contain O.
  • the upper limit of the O content in the metal Cr layer is not particularly limited, but if the O content is high, Cr oxide may precipitate and corrosion resistance may deteriorate due to the formation of local batteries. Therefore, the O content is preferably 30% or less, more preferably 25% or less, as an atomic ratio to Cr.
  • the metal Cr layer does not need to contain O, and therefore, the lower limit of the Cr contained in the metal Cr layer is not particularly limited and may be 0%.
  • the content of O in the metal Cr layer can be measured by compositional analysis such as XPS, SEM, EDS and WDS attached to TEM, or 3DAP.
  • One or both of the metal Cr layer and the oxidized Cr layer may contain Fe, Sn, and Ni.
  • the upper limits of the Fe content, Sn content, and Ni content in the metal Cr layer are not particularly limited, but the atomic ratio to Cr is preferably 100% or less.
  • the upper limits of the Fe content, Sn content, and Ni content in the Cr oxide layer are not particularly limited, but the atomic ratio to Cr is preferably 100% or less.
  • the metal Cr layer and the oxidized Cr layer do not need to contain Fe, Sn, or Ni, so the lower limit of the atomic ratio to Cr is not particularly limited and may be 0%.
  • the Fe, Sn, and Ni contents on the surface of the surface-treated steel sheet, that is, on the surface of the Cr oxide layer are not particularly limited.
  • the lower limit of the atomic ratio of Sn to Cr on the surface of the treated steel sheet and the atomic ratio of Ni to Cr on the surface of the treated steel sheet may be 0%, and is most preferably 0%.
  • the upper limit of the atomic ratio of Fe to Cr on the surface of the surface-treated steel sheet is preferably 15% or less, and preferably 10% or less. More preferred.
  • the upper limit of the atomic ratio of Sn to Cr on the surface of the surface-treated steel sheet is preferably 100% or less, more preferably 80% or less.
  • the upper limit of the atomic ratio of Ni to Cr on the surface of the surface-treated steel sheet is preferably 100% or less, more preferably 80% or less.
  • the content of Fe, Sn, and Ni in the metal Cr layer and the oxidized Cr layer can be measured by XPS similarly to the C content.
  • the atomic ratio of Fe to Cr on the surface of the surface-treated steel sheet, that is, the surface of the oxidized Cr layer, the atomic ratio of Sn to Cr on the surface of the surface-treated steel sheet, that is, the surface of the oxidized Cr layer, and the surface of the surface-treated steel sheet, That is, the atomic ratio of Ni to Cr on the surface of the Cr oxide layer can be measured by XPS of the surface of the surface-treated steel sheet.
  • the narrow spectra of Cr2p, Fe2p, Sn3d, and Ni2p may be used to calculate the atomic ratio.
  • Fe, Sn, and Ni are contained in the metal Cr layer and the Cr oxide layer.
  • Fe, Sn, and Ni dissolve in trace amounts in the electrolytic solution and are incorporated into the film.
  • the metal Cr layer and Cr oxide layer contain metal impurities such as Cu and Zn contained in the aqueous solution, S, N, Cl, Br, etc. may be included.
  • the presence of these elements may reduce the adhesion with BPA-free paints and the corrosion resistance of BPA-free paints. Therefore, the total amount of elements other than Cr, O, Fe, Sn, Ni, C, K, Na, Mg, and Ca is preferably 3% or less as an atomic ratio to Cr, and is not contained at all (0%). It is more preferable.
  • the content of the above elements is not particularly limited, and can be measured by XPS, for example, similarly to the content of C.
  • the surface roughness of the surface-treated steel sheet of the present invention does not change significantly due to the formation of the metal Cr layer and the oxidized Cr layer, and the surface roughness of the steel sheet, the Sn layer, and the Ni-containing layer that are normally placed under the metal Cr layer. It is almost equivalent to roughness.
  • the surface roughness of the surface-treated steel sheet is not particularly limited, it is preferable that the arithmetic mean roughness Ra is 0.1 ⁇ m or more and 4 ⁇ m or less. Moreover, it is preferable that the ten-point average roughness Rz is 0.2 ⁇ m or more and 6 ⁇ m or less.
  • the contact angle of ethylene glycol on the surface-treated steel sheet is 50° or less.
  • the contact angle of ethylene glycol is preferably 48° or less, more preferably 45° or less.
  • the contact angle is preferably as low as possible from the viewpoint of improving adhesion, the lower limit thereof is not particularly limited and may be 0°. However, from the viewpoint of ease of manufacture, etc., the angle is preferably 3° or more, and more preferably 6° or more.
  • the surface of the surface-treated steel sheet in the present invention is stable against heat, and the contact angle of ethylene glycol does not change significantly even after heat treatment equivalent to paint baking, for example. It is estimated that such thermal stability of the surface condition also contributes to the improvement of the adhesion with BPA-free paint and the corrosion resistance of BPA-free paint. Therefore, the contact angle of ethylene glycol on the surface-treated steel sheet after the heat treatment equivalent to painting is preferably 50° or less, more preferably 48° or less, and even more preferably 45° or less.
  • the contact angle of ethylene glycol on the surface-treated steel sheet after the heat treatment equivalent to painting is not particularly limited, but may be 0° or more, preferably 3° or more, and more preferably 6° or more.
  • the conditions for the heat treatment equivalent to painting are not particularly limited, but may be, for example, 200° C. for 10 minutes.
  • the method for measuring the contact angle of ethylene glycol is not particularly limited, but it can be measured using, for example, an automatic contact angle meter model CA-VP manufactured by Kyowa Interface Science. Specifically, 2 ⁇ l of ethylene glycol is dropped onto the surface of the surface-treated steel sheet, and after 1 second, the contact angle is measured by the ⁇ /2 method. The surface temperature of the surface-treated steel sheet at the time of measurement is 20°C ⁇ 1°C, and the temperature of ethylene glycol is 20 ⁇ 1°C. As the ethylene glycol, reagent special grade ethylene glycol manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. can be used. The arithmetic mean value of the contact angles for 5 drops is determined and used as the contact angle of ethylene glycol.
  • the surface of the surface-treated steel sheet may be coated with a rust preventive oil such as CSO, DOS, DOS-A, ATBC, etc. If the surface-treated steel sheet is coated with oil, heat treatment equivalent to painting at 200° C. for 10 minutes is performed to vaporize the coated oil, and then the contact angle of ethylene glycol is measured using the method described above. As described above, the surface-treated steel sheet of the present invention is stable against heat treatment, so there is no problem in performing the measurement after performing the above heat treatment.
  • a rust preventive oil such as CSO, DOS, DOS-A, ATBC, etc.
  • additive components such as rust preventive agents contained in the oil coating may remain on the surface of the surface-treated steel sheet even after heat treatment equivalent to painting, but since the amount is very small, the contact angle of ethylene glycol mentioned above It does not affect the adsorption amount of adsorbed elements, and does not deteriorate the adhesion with BPA-free paint and the corrosion resistance of BPA-free paint.
  • the mechanism by which the contact angle of ethylene glycol on the surface-treated steel sheet becomes 50° or less is not clear, but after forming a metal Cr layer and an oxidized Cr layer by cathodic electrolysis in an electrolytic solution prepared by a predetermined method, electrolysis By immersing it in the solution for a predetermined period of time or longer, the surface of the surface-treated steel sheet, that is, the surface of the Cr oxide layer, undergoes some kind of dissolution reaction and is modified so that the contact angle of ethylene glycol becomes 50° or less. It is thought that it will be done.
  • the contact angle of ethylene glycol will be 50%. ° or less.
  • the present invention focused on ethylene glycol rather than water and found that by adjusting the surface to have a high affinity for ethylene glycol, strong adhesion with BPA-free paints could be ensured. Therefore, it can be said that the present invention is based on a completely different technical idea from the prior art described above.
  • the mechanism by which adhesion with BPA-free paints is improved by adjusting the surface to have a high affinity for ethylene glycol is not clear, but ethylene glycol is a component of the hydroxyl monomer that is a constituent of the polyester resin that makes up BPA-free paints. Therefore, it is presumed that adhesion with BPA-free paints was improved by adjusting the surface to have a high affinity for ethylene glycol.
  • the surface-treated steel sheet of the present invention has a contact angle of 50° or less with ethylene glycol, and its surface is chemically active. Therefore, cations of elements such as K, Na, Mg, and Ca are easily adsorbed on the surface of the surface-treated steel sheet.
  • the present inventors have discovered that simply setting the contact angle of ethylene glycol to 50° or less does not result in the original adhesion being exhibited due to the influence of the adsorbed cations.
  • by reducing the amount of the cations adsorbed on the surface of the surface-treated steel sheet it is possible to improve the adhesion with BPA-free paint and achieve excellent BPA-free paint corrosion resistance.
  • the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface of the surface-treated steel sheet to Cr is 5.0% or less, preferably 3.0% or less, and more preferably 1.0% or less. 0% or less. Since the lower the sum of the atomic ratios, the better, the lower limit is not particularly limited and may be 0%.
  • the total atomic ratio can be measured by the method described in Examples.
  • a surface-treated steel sheet may further optionally have a Sn layer under the metal Cr layer.
  • a surface-treated steel sheet according to an embodiment of the present invention includes a steel sheet, a Sn layer placed on at least one surface of the steel sheet, a metal Cr layer placed on the Sn layer, and a metal Cr layer placed on the Sn layer.
  • the surface treated steel sheet may have a Cr oxide layer disposed thereon.
  • the Sn layer may be provided on at least one surface of the steel plate, or may be provided on both surfaces.
  • the Sn layer only needs to cover at least a portion of the steel plate, and may cover the entire surface on which the Sn layer is provided.
  • the Sn layer may be a continuous layer or a discontinuous layer. Examples of the discontinuous layer include a layer having an island structure.
  • the Sn layer also includes a portion of the Sn layer that is alloyed. For example, a case where a part of the Sn layer becomes an Sn alloy layer by heating and melting treatment after Sn plating is also included in the Sn layer.
  • the Sn alloy layer include a Fe--Sn alloy layer and a Fe--Sn--Ni alloy layer.
  • a portion of the Sn layer on the steel plate side can be made into an Fe-Sn alloy layer.
  • a part of the Sn layer on the steel plate side becomes an Fe-Sn-Ni alloy layer and an Fe-Sn alloy layer. It can be one or both of the alloy layers.
  • the amount of Sn attached in the Sn layer is not particularly limited and can be any amount.
  • the amount of Sn deposited is preferably 2.0 mg/m 2 or more per side of the steel sheet, and more preferably 5.0 mg/m 2 or more.
  • the amount of Sn attached is preferably 20.0 g/m 2 or less, more preferably 18.0 g/m 2 or less.
  • the total amount of Sn deposited in the Sn layer and the amount of Cr deposited in the metal Cr layer is 40.0 mg/m 2 or more per one side of the steel sheet.
  • the amount is preferably 45.0 mg/m 2 or more, and more preferably 45.0 mg/m 2 or more.
  • the sum of the amount of Sn attached in the Sn layer and the amount of Cr attached in the metal Cr layer is preferably 20.0 g/m 2 or less per side of the steel sheet.
  • the Sn adhesion amount is a value measured by, for example, an electrolytic method or a fluorescent X-ray method described in JIS G 3303.
  • the formation of the Sn layer is not particularly limited, and can be performed by any method such as electroplating or hot-dip plating.
  • any plating bath can be used. Examples of plating baths that can be used include a phenolsulfonic acid Sn plating bath, a methanesulfonic acid Sn plating bath, and a halogen-based Sn plating bath.
  • a reflow process may be performed.
  • an alloy layer such as a Fe-Sn alloy layer is formed under the Sn plating layer (on the steel plate side) by heating the Sn layer to a temperature higher than the melting point of Sn (231.9°C). can do.
  • the reflow treatment is omitted, a Sn-plated steel sheet having a plating layer of Sn alone is obtained.
  • the surface-treated steel sheet may further optionally have a Ni-containing layer under the Sn layer.
  • a surface-treated steel sheet in an embodiment of the present invention includes a steel sheet, a Ni-containing layer disposed on at least one surface of the steel sheet, an Sn layer disposed on the Ni-containing layer, and the Sn layer. It may be a surface-treated steel sheet having a metal Cr layer disposed thereon and an oxidized Cr layer disposed on the metal Cr layer.
  • the Ni-containing layer may be provided on at least one surface of the steel plate, and may be provided on both surfaces.
  • the Ni-containing layer only needs to cover at least a portion of the steel plate, and may cover the entire surface on which the Ni-containing layer is provided.
  • the Ni-containing layer may be a continuous layer or a discontinuous layer. Examples of the discontinuous layer include a layer having an island structure.
  • any layer containing nickel can be used, for example, one or both of a Ni layer and a Ni alloy layer can be used.
  • a Ni alloy layer formed by diffusion annealing after Ni plating is also included in the Ni-containing layer.
  • the Ni alloy layer include a Ni--Fe alloy layer.
  • an Fe-Sn-Ni alloy layer, a Fe-Sn alloy layer, etc. is formed under the Sn plating layer (on the steel plate side). You can also do that.
  • the Ni-containing layer is preferably a Ni-based plating layer.
  • the term "Ni-based plating layer” is defined as a plating layer having a Ni content of 50% by mass or more.
  • the Ni-based plating layer is a Ni-plated layer or a plating layer made of a Ni-based alloy.
  • the Ni-based plating layer may be a dispersed plating layer (composite plating layer) in which solid fine particles are dispersed in Ni or a Ni-based alloy as a matrix.
  • the solid particles are not particularly limited and may be made of any material.
  • the fine particles may be either inorganic fine particles or organic fine particles. Examples of the organic fine particles include fine particles made of resin. Although any resin can be used as the resin, it is preferable to use a fluororesin, and it is more preferable to use polytetrafluoroethylene (PTFE).
  • the inorganic fine particles are not particularly limited, and fine particles made of any inorganic material can be used.
  • the inorganic material may be, for example, a metal (including an alloy), a compound, or another simple substance.
  • fine particles made of at least one selected from the group consisting of oxides, nitrides, and carbides, and it is preferable to use fine particles of metal oxides.
  • the metal oxide include aluminum oxide, chromium oxide, titanium oxide, and zinc oxide.
  • the particle size of the fine particles used in the dispersion plating is not particularly limited, and particles of any size can be used. However, it is preferable that the diameter of the fine particles does not exceed the thickness of the dispersed plating layer as the Ni-containing layer. Typically, the diameter of the fine particles is preferably 1 nm to 50 ⁇ m, more preferably 10 nm to 1000 nm.
  • the amount of Ni deposited in the Ni-containing layer is not particularly limited and can be any amount. From the viewpoint of further improving the BPA-free coating corrosion resistance of the surface-treated steel sheet, the amount of Ni deposited is preferably 2.0 mg/m 2 or more per side of the steel sheet, and more preferably 5.0 mg/m 2 or more. . On the other hand, when the Ni adhesion amount exceeds 2000 mg/m 2 , the effect of improving BPA-free coating corrosion resistance is saturated. Therefore, from the viewpoint of reducing excessive costs, the amount of Ni deposited is preferably 2000 mg/m 2 or less, more preferably 1800 mg/m 2 or less.
  • the formation of the Ni-containing layer is not particularly limited, and can be performed by any method such as electroplating.
  • any plating bath can be used. Examples of plating baths that can be used include Watt bath, sulfamic acid bath, and Wood bath.
  • the Ni--Fe alloy layer can be formed by forming the Ni layer on the surface of the steel sheet by a method such as electroplating, and then annealing it.
  • the surface side of the Ni-containing layer may contain Ni oxide or may not contain it at all, but from the viewpoint of further improving secondary paint adhesion and sulfurization resistance, the Ni-containing layer Preferably, the surface side does not contain Ni oxide.
  • Ni oxide can also be formed by dissolved oxygen contained in the washing water after Ni plating, it is preferable to remove the Ni oxide contained in the Ni-containing layer by a pretreatment described below.
  • a surface-treated steel sheet in an embodiment of the present invention includes a steel sheet, a Ni-containing layer disposed on at least one surface of the steel sheet, a metal Cr layer disposed on the Ni-containing layer, and a metal Cr layer disposed on the Ni-containing layer. It may be a surface-treated steel sheet having a Cr oxide layer disposed on the Cr layer.
  • the Ni-containing layer may be provided on at least one surface of the steel plate, or may be provided on both surfaces. The Ni-containing layer only needs to cover at least a portion of the steel plate, and may cover the entire surface on which the Ni-containing layer is provided.
  • the Ni-containing layer may be a continuous layer or a discontinuous layer. Examples of the discontinuous layer include a layer having an island structure.
  • any layer containing nickel can be used, for example, one or both of a Ni layer and a Ni alloy layer can be used.
  • a Ni alloy layer formed by diffusion annealing after Ni plating is also included in the Ni-containing layer.
  • the Ni alloy layer include a Ni--Fe alloy layer.
  • the Ni-containing layer is preferably a Ni-based plating layer.
  • the term "Ni-based plating layer” is defined as a plating layer having a Ni content of 50% by mass or more.
  • the Ni-based plating layer is a Ni-plated layer or a plating layer made of a Ni-based alloy.
  • the Ni-based plating layer may be a dispersed plating layer (composite plating layer) in which solid fine particles are dispersed in Ni or a Ni-based alloy as a matrix.
  • the solid particles are not particularly limited and may be made of any material.
  • the fine particles may be either inorganic fine particles or organic fine particles. Examples of the organic fine particles include fine particles made of resin. Although any resin can be used as the resin, it is preferable to use a fluororesin, and it is more preferable to use polytetrafluoroethylene (PTFE).
  • the inorganic fine particles are not particularly limited, and fine particles made of any inorganic material can be used.
  • the inorganic material may be, for example, a metal (including an alloy), a compound, or another simple substance.
  • fine particles made of at least one selected from the group consisting of oxides, nitrides, and carbides, and it is preferable to use fine particles of metal oxides.
  • the metal oxide include aluminum oxide, chromium oxide, titanium oxide, and zinc oxide.
  • the particle size of the fine particles used in the dispersion plating is not particularly limited, and particles of any size can be used. However, it is preferable that the diameter of the fine particles does not exceed the thickness of the dispersed plating layer as the Ni-containing layer. Typically, the diameter of the fine particles is preferably 1 nm to 50 ⁇ m, more preferably 10 nm to 1000 nm.
  • the amount of Ni deposited in the Ni-containing layer is not particularly limited and can be any amount. From the viewpoint of further improving the BPA-free coating corrosion resistance of the surface-treated steel sheet, the amount of Ni deposited is preferably 2.0 mg/m 2 or more per side of the steel sheet, and more preferably 5.0 mg/m 2 or more. . On the other hand, when the Ni adhesion amount exceeds 2000 mg/m 2 , the effect of improving BPA-free coating corrosion resistance is saturated. Therefore, from the viewpoint of reducing excessive costs, the amount of Ni deposited is preferably 2000 mg/m 2 or less, more preferably 1800 mg/m 2 or less.
  • the total amount of Ni deposited in the Ni-containing layer and the amount of Cr deposited in the metal Cr layer is 40.0 mg/m 2 per one side of the steel sheet. It is preferably at least 50.0 mg/m 2 , more preferably at least 50.0 mg/m 2 .
  • the total amount of Ni deposited in the Ni-containing layer and Cr deposited in the metal Cr layer is preferably 2000 mg/m 2 or less per side of the steel sheet.
  • the amount of Ni adhered to the Ni-containing layer is measured by a calibration curve method using fluorescent X-rays. Prepare multiple steel plates with known Ni adhesion amounts, measure the fluorescent X-ray intensity derived from Ni in advance, and linearly approximate the relationship between the measured fluorescent X-ray intensity and the Ni adhesion amount to obtain a calibration curve. do. The intensity of fluorescent X-rays originating from Ni in the surface-treated steel sheet can be measured, and the amount of Ni adhered to the Ni-containing layer can be measured using the above-mentioned calibration curve.
  • the formation of the Ni-containing layer is not particularly limited, and can be performed by any method such as electroplating.
  • any plating bath can be used. Examples of plating baths that can be used include Watt bath, sulfamic acid bath, and Wood bath.
  • the Ni--Fe alloy layer can be formed by forming the Ni layer on the surface of the steel sheet by a method such as electroplating, and then annealing it.
  • the surface side of the Ni-containing layer may contain Ni oxide or may not contain it at all, but from the viewpoint of further improving secondary paint adhesion and sulfurization resistance, the Ni-containing layer Preferably, the surface side does not contain Ni oxide.
  • Ni oxide can also be formed by dissolved oxygen contained in the washing water after Ni plating, it is preferable to remove the Ni oxide contained in the Ni-containing layer by a pretreatment described below.
  • a surface-treated steel sheet having the above characteristics can be manufactured by the method described below.
  • a method for manufacturing a surface-treated steel sheet according to an embodiment of the present invention is a method for manufacturing a surface-treated steel sheet having a metal Cr layer and an oxidized Cr layer disposed on the metal Cr layer on at least one surface of the steel sheet. It includes the following steps (1) to (4). Each step will be explained below.
  • An electrolytic solution preparation step of preparing an electrolytic solution containing trivalent chromium ions (2) A cathodic electrolytic treatment step of cathodic electrolytically treating the steel plate in the electrolytic solution (3) A cathodic electrolytic treatment step of preparing the steel plate after the cathodic electrolytic treatment An immersion step of immersing the steel plate in an electrolytic solution for a predetermined period of time or longer (4) A washing step of rinsing the steel plate at least once with water after the immersion step
  • Electrode preparation process (i) Mixing In the electrolyte solution preparation step, first, a trivalent chromium ion source, a carboxylic acid compound, and water are mixed to form an aqueous solution.
  • trivalent chromium ion source any compound that can supply trivalent chromium ions can be used.
  • the trivalent chromium ion source for example, at least one selected from the group consisting of chromium chloride, chromium sulfate, and chromium nitrate can be used.
  • the content of the trivalent chromium ion-containing source in the aqueous solution is not particularly limited, but it is preferably 3 g/L or more and 50 g/L or less, and 5 g/L or more and 40 g/L or less in terms of trivalent chromium ions. More preferred.
  • the trivalent chromium ion source Atotech's BluCr (registered trademark) TFS A can be used.
  • the carboxylic acid compound is not particularly limited, and any carboxylic acid compound can be used.
  • the carboxylic acid compound may be at least one of a carboxylic acid and a carboxylate salt, and is preferably at least one of an aliphatic carboxylic acid and a salt of an aliphatic carboxylic acid.
  • the aliphatic carboxylic acid preferably has 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms. Further, the number of carbon atoms in the aliphatic carboxylate is preferably 1 to 10, more preferably 1 to 5.
  • the content of the carboxylic acid compound is not particularly limited, it is preferably 0.1 mol/L or more and 5.5 mol/L or less, and more preferably 0.15 mol/L or more and 5.3 mol/L or less.
  • the carboxylic acid compound Atotech's BluCr (registered trademark) TFS B can be used.
  • water is used as a solvent for preparing the electrolyte.
  • water it is preferable to use ion-exchanged water from which cations have been removed in advance using an ion-exchange resin or the like, or highly purified water such as distilled water.
  • highly purified water such as distilled water.
  • water whose electrical conductivity is 30 ⁇ S/m or less.
  • K, Na, Mg, and Ca adsorbed on the surface of the surface-treated steel sheet it is preferable that K, Na, Mg, and Ca are not intentionally contained in the above-mentioned aqueous solution. Therefore, it is preferable that the components added to the aqueous solution, such as the above-mentioned trivalent chromium ion source, carboxylic acid compound, and pH adjuster described in detail below, do not contain K, Na, Mg, and Ca.
  • the pH adjuster it is preferable to use hydrochloric acid, sulfuric acid, nitric acid, etc. to lower the pH, and use ammonia water, etc. to increase the pH.
  • K, Na, Mg, and Ca that are unavoidably mixed into the aqueous solution or electrolyte are allowed, but the total concentration of K, Na, Mg, and Ca is preferably 2.0 mol/L or less, and 1 It is more preferably .5 mol/L or less, and even more preferably 1.0 mol/L or less.
  • the aqueous solution further contains at least one type of halide ion.
  • the content of halide ions is not particularly limited, but is preferably 0.05 mol/L or more and 3.0 mol/L or less, more preferably 0.10 mol/L or more and 2.5 mol/L or less.
  • Atotech's BluCr (registered trademark) TFS C1 and BluCr (registered trademark) TFS C2 can be used.
  • hexavalent chromium is not added to the above aqueous solution. Except for a very small amount of hexavalent chromium formed at the anode during the cathodic electrolytic treatment process, the electrolytic solution described above does not contain hexavalent chromium. In the cathodic electrolytic treatment process, a trace amount of hexavalent chromium formed at the anode is reduced to trivalent chromium, so the concentration of hexavalent chromium in the electrolyte does not increase.
  • metal ions other than trivalent chromium ions are not intentionally added to the above-mentioned aqueous solution.
  • the above-mentioned metal ions are not limited, but include Cu ions, Zn ions, Fe ions, Sn ions, Ni ions, etc., and each is preferably 0 mg/L or more and 40 mg/L or less, and 0 mg/L or more and 20 mg/L. It is more preferably below, and most preferably 0 mg/L or more and 10 mg/L or less.
  • Fe ions, Sn ions, and Ni ions may be dissolved in the electrolyte and eutectoid in the film during the cathodic electrolytic treatment process and the immersion process, but they may not be mixed with BPA-free paint. Adhesion and BPA-free paint corrosion resistance are not affected. It is preferable that the concentrations of Fe ions, Sn ions, and Ni ions are within the above ranges during bath preparation, but the concentrations of Fe ions, Sn ions, and Ni ions in the electrolytic solution are preferably kept within the above ranges during the cathodic electrolytic treatment process and the immersion process. It is preferable to maintain it within the range. If Fe ions, Sn ions, and Ni ions are controlled within the above range, they will not inhibit the formation of the metal Cr layer and the Cr oxide layer, and the required amount of the metal Cr layer and the Cr oxide layer can be formed. .
  • the electrolytic solution is prepared by adjusting the pH of the aqueous solution to 4.0 to 7.0 and adjusting the temperature of the aqueous solution to 40 to 70°C.
  • the pH and temperature it is not enough to simply dissolve the trivalent chromium ion source and the carboxylic acid compound in water, and it is important to appropriately control the pH and temperature as described above. .
  • the pH of the mixed aqueous solution is adjusted to 4.0 to 7.0.
  • the contact angle of ethylene glycol on the surface-treated steel sheet manufactured using the obtained electrolyte becomes higher than 50°.
  • the pH is preferably 4.5 to 6.5.
  • the temperature of the aqueous solution after mixing is adjusted to 40 to 70°C. If the temperature is less than 40°C or more than 70°C, the contact angle of ethylene glycol on the surface-treated steel sheet produced using the obtained electrolyte will be greater than 50°. Note that the holding time in the temperature range of 40 to 70°C is not particularly limited.
  • an electrolytic solution to be used in the next cathodic electrolytic treatment step can be obtained.
  • the electrolytic solution produced by the above procedure can be stored at room temperature.
  • the steel plate is subjected to cathodic electrolysis treatment in the electrolyte obtained in the electrolyte preparation step.
  • cathodic electrolytic treatment a metal Cr layer and an oxidized Cr layer can be formed on the steel plate.
  • the surface-treated steel sheet may further include a Sn layer.
  • a steel sheet with a Sn layer on at least one surface may be subjected to cathodic electrolysis.
  • the surface-treated steel sheet may further include a Ni-containing layer under the Sn layer.
  • a steel sheet having a Ni-containing layer on at least one surface and a Sn layer disposed on the Ni-containing layer is subjected to cathodic electrolysis. do it.
  • the surface-treated steel sheet may further include a Ni-containing layer.
  • the steel sheet having the Ni-containing layer on at least one surface may be subjected to cathodic electrolysis.
  • the temperature of the electrolyte during the cathodic electrolytic treatment is not particularly limited, but is preferably in the temperature range of 40° C. or higher and 70° C. or lower in order to efficiently form the metal Cr layer and the oxidized Cr layer. From the viewpoint of stably manufacturing the above-mentioned surface-treated steel sheet, it is preferable to monitor the temperature of the electrolytic solution and maintain it in the above temperature range in the cathodic electrolytic treatment step.
  • the pH of the electrolyte during cathodic electrolytic treatment is not particularly limited, but is preferably 4.0 or higher, more preferably 4.5 or higher. Further, the pH is preferably 7.0 or less, more preferably 6.5 or less. From the viewpoint of stably manufacturing the above-mentioned surface-treated steel sheet, it is preferable to monitor the pH of the electrolytic solution and maintain it within the above pH range in the cathodic electrolytic treatment step.
  • the current density in the cathodic electrolytic treatment is not particularly limited, and may be adjusted as appropriate so that a desired surface treatment layer is formed. However, if the current density is excessively high, the load placed on the cathode electrolytic treatment apparatus becomes excessive. Therefore, the current density is preferably 200.0 A/dm 2 or less, more preferably 100 A/dm 2 or less. Further, there is no particular restriction on the lower limit of the current density, but if the current density is too low, hexavalent Cr may be generated in the electrolyte, which may disrupt the stability of the bath. Therefore, the current density is preferably 5.0 A/dm 2 or more, more preferably 10.0 A/dm 2 or more.
  • the number of times the steel plate is subjected to cathodic electrolysis treatment is not particularly limited, and can be any number of times.
  • cathodic electrolytic treatment can be performed using an electrolytic treatment apparatus having an arbitrary number of passes of one or more.
  • the electrolysis time per pass is not particularly limited. However, if the electrolysis time per pass is too long, the conveyance speed (line speed) of the steel plate decreases, resulting in a decrease in productivity. Therefore, the electrolysis time per pass is preferably 5 seconds or less, more preferably 3 seconds or less.
  • the lower limit of the electrolysis time per pass is not particularly limited either, but if the electrolysis time is excessively shortened, it becomes necessary to increase the line speed accordingly, making control difficult. Therefore, the electrolysis time per pass is preferably 0.005 seconds or more, more preferably 0.01 seconds or more.
  • the amount of metallic Cr formed by cathodic electrolytic treatment can be controlled by the total electrical quantity density expressed as the product of current density, electrolysis time, and number of passes. As mentioned above, if the amount of metal Cr is too small, the corrosion resistance of the BPA-free paint will be impaired, and if the amount of metal Cr is too large, cohesive failure will occur within the metal Cr layer and the adhesion with the BPA-free paint will be impaired. Therefore, from the perspective of ensuring more stable adhesion with BPA-free paint and corrosion resistance of BPA-free paint, the total amount of Cr deposited per side of the steel plate of the metal Cr layer should be within an appropriate range. It is preferable to control the charge density of .
  • the type of anode used when performing cathodic electrolysis treatment is not particularly limited, and any anode can be used.
  • the anode it is preferable to use an insoluble anode.
  • the insoluble anode it is preferable to use at least one selected from the group consisting of an anode in which Ti is coated with one or both of a platinum group metal and an oxide of a platinum group metal, and a graphite anode. More specifically, examples of the insoluble anode include an anode in which the surface of a Ti substrate is coated with platinum, iridium oxide, or ruthenium oxide.
  • the concentration of the electrolytic solution constantly changes due to the formation of a metal Cr layer and an oxidized Cr layer on the steel sheet, the removal and introduction of liquid, evaporation of water, etc.
  • the concentration of the electrolyte in the cathodic electrolytic treatment process varies depending on the equipment configuration and manufacturing conditions, so from the perspective of producing surface-treated steel sheets more stably, the concentration of the components contained in the electrolyte in the cathodic electrolytic treatment process is It is preferable to monitor and maintain the concentration within the above-mentioned concentration range.
  • the steel plate prior to the cathodic electrolytic treatment, can be optionally pretreated.
  • degreasing rolling oil, rust preventive oil, etc. attached to the steel plate can be removed.
  • the degreasing can be carried out by any method without particular limitation. After degreasing, it is preferable to wash the steel plate with water to remove the degreasing solution adhering to the surface of the steel plate.
  • pickling it is possible to remove the natural oxide film present on the surface of the steel sheet and activate the surface.
  • the pickling can be carried out by any method without particular limitation. After pickling, it is preferable to wash the steel plate with water to remove the pickling solution adhering to the surface of the steel plate.
  • the pretreatment can be optionally performed on the steel sheet having the Sn layer on at least one surface.
  • the method of the pretreatment is not particularly limited and any method can be used, but it is preferable to perform one or both of an electrolytic treatment in an alkaline aqueous solution and an immersion treatment in an alkaline aqueous solution as the pretreatment.
  • the electrolytic treatment one or both of cathodic electrolytic treatment and anodic electrolytic treatment can be used, but it is preferable that the electrolytic treatment includes at least cathodic electrolytic treatment.
  • the alkaline aqueous solution can contain one or more arbitrary electrolytes. Any electrolyte can be used without particular limitation. As the electrolyte, for example, carbonate is preferably used, and sodium carbonate or sodium hydrogen carbonate is more preferably used. Although the concentration of the alkaline aqueous solution is not particularly limited, it is preferably 1 g/L or more and 30 g/L or less, and more preferably 5 g/L or more and 20 g/L or less.
  • the temperature of the alkaline aqueous solution is not particularly limited, but is preferably 10°C or more and 70°C or less, and more preferably 15°C or more and 60°C or less.
  • the lower limit of the charge density in the cathodic electrolytic treatment is not particularly limited, but it is preferably 0.2 C/dm 2 or more, and 0.5 C/dm 2 or more. It is more preferable to do so.
  • the upper limit of the charge density for cathodic electrolytic treatment is not particularly limited, but the effect of the pretreatment will be saturated even if it is too high, so it is preferable that the charge density is 10.0/dm 2 or less.
  • the lower limit of the dipping time in the dipping treatment is not particularly limited, but it is preferably 0.1 seconds or more, and more preferably 0.5 seconds or more.
  • the upper limit of the immersion time is not particularly limited, but the effect of the pretreatment will be saturated if it is too long, so the immersion time is preferably 10 seconds or less.
  • the lower limit of the charge density in the anodic electrolytic treatment is not particularly limited, but it is preferably 0.5 C/dm 2 or more, and 1.0 C/dm More preferably, the number is 2 or more.
  • the upper limit of the charge density in the anodic electrolytic treatment is not particularly limited, but the effect of the pretreatment will be saturated if it is too high, so the charge density is preferably 10.0 C/dm 2 or less. preferable.
  • any treatment can be performed, but it is preferable to perform at least one of degreasing, pickling, and water washing.
  • the pre-treatment can be optionally performed on the steel sheet having the Ni-containing layer on at least one surface.
  • the pretreatment method is not particularly limited and any method may be used, but it is preferable that at least one of degreasing, pickling, and water washing is performed as the pretreatment.
  • the steel plate obtained in the cathodic electrolytic treatment step is electrolessly immersed in the electrolytic solution (immersion step). That is, the steel plate is immersed in an electrolytic solution without electrolysis.
  • immersion treatment the contact angle of ethylene glycol on the surface-treated steel sheet can be adjusted to 50° or less.
  • the electrolytic solution used in the immersion step may be the same as the electrolytic solution used in the cathode electrolysis step, or may be a different electrolytic solution, as long as it has been adjusted through the electrolytic solution adjustment step. However, from the viewpoint of cost, it is preferable that the electrolytic solution be the same as that used in the cathode electrolysis step.
  • Immersion time 1.0 to 5.0 seconds It is important that the immersion time in the above immersion treatment be 1.0 seconds or more and 5.0 seconds or less. If the immersion time is less than 1.0 seconds or more than 5.0 seconds, the contact angle of ethylene glycol will exceed 50°, the adhesion with the BPA-free paint will deteriorate, and the corrosion resistance of the BPA-free paint will deteriorate. From the viewpoint of further reducing the contact angle of ethylene glycol, the immersion time is preferably 1.2 seconds or more, more preferably 1.5 seconds or more. From the same viewpoint, the immersion time is preferably 4.5 seconds or less, more preferably 4.0 seconds or less.
  • the immersion treatment may be performed in one immersion tank or in two or more immersion tanks.
  • the immersion treatment may be performed in one immersion tank or in two or more immersion tanks.
  • the above-mentioned immersion time may be ensured by continuously passing through two or more arbitrary number of immersion tanks.
  • the contact angle of ethylene glycol increases, so it is preferable not to dry the steel plate during the immersion process.
  • the immersion treatment may be performed in an electrolytic bath that has been subjected to cathodic electrolysis treatment.
  • the temperature of the electrolytic solution during the immersion treatment is not particularly limited, but from the viewpoint of further reducing the contact angle of ethylene glycol on the surface-treated steel sheet, it is preferably in the temperature range of 40 ° C. or higher and 70 ° C. or lower. From the viewpoint of stably manufacturing the above-mentioned surface-treated steel sheet, it is preferable to monitor the temperature of the electrolytic solution and maintain it within the above temperature range in the immersion step.
  • the pH of the electrolyte during the immersion treatment is not particularly limited, but is preferably 4.0 or higher, more preferably 4.5 or higher. Further, the pH is preferably 7.0 or less, more preferably 6.5 or less. From the viewpoint of stably manufacturing the above-mentioned surface-treated steel sheet, it is preferable to monitor the pH of the electrolytic solution in the immersion step and maintain it within the above pH range.
  • the concentration of the electrolyte solution constantly changes due to the effects of taking out or bringing in the solution, evaporation of water, etc. Changes in the concentration of the electrolyte during the immersion process vary depending on the configuration of the equipment and manufacturing conditions, so from the perspective of producing surface-treated steel sheets more stably, it is necessary to monitor the concentration of the components contained in the electrolyte during the immersion process. It is preferable to maintain the concentration within the above-mentioned range.
  • the steel plate after the above-mentioned dipping step is washed with water at least once.
  • the water washing can be performed by any method without particular limitation.
  • a water washing tank can be provided downstream of a dipping tank for performing dipping treatment, and the steel plate after dipping can be continuously dipped in water.
  • water washing may be performed by spraying water onto the steel plate after immersion.
  • the number of times the water washing is performed is not particularly limited, and may be once, twice or more. However, in order to avoid an excessive increase in the number of water washing tanks, it is preferable that the number of water washings be 5 times or less. Moreover, when performing the water washing process two or more times, each water washing may be performed by the same method or may be performed by different methods.
  • the electrical conductivity is preferably 1 ⁇ S/m or more, more preferably 5 ⁇ S/m or more, and even more preferably 10 ⁇ S/m or more.
  • water with an electrical conductivity of 100 ⁇ S/m or less is used for the last washing, so for washing other than the last washing, Any water can be used.
  • Water with an electrical conductivity of 100 ⁇ S/m or less may be used for washing other than the final washing, but from the perspective of reducing costs, it is recommended to use water with an electrical conductivity of 100 ⁇ S/m or less only in the final washing. It is preferable to use ordinary water such as tap water or industrial water for washing other than the final washing.
  • the electrical conductivity of the water used for the final washing is preferably 50 ⁇ S/m or less, and 30 ⁇ S/m or less. /m or less is more preferable.
  • the temperature of the water used for the washing process is not particularly limited and may be any temperature. However, since an excessively high temperature places an excessive burden on the washing equipment, it is preferable that the temperature of the water used for washing is 95° C. or lower. On the other hand, the lower limit of the temperature of the water used for washing is also not particularly limited, but it is preferably 0° C. or higher. The temperature of the water used for the washing may be room temperature.
  • the water washing time per water washing treatment is not particularly limited, but from the viewpoint of enhancing the effect of the water washing treatment, it is preferably 0.1 seconds or more, and more preferably 0.2 seconds or more. Further, the upper limit of the water washing time per water washing treatment is not particularly limited, but when manufacturing on a continuous line, the line speed will decrease and productivity will decrease, so it is preferably 10 seconds or less, and 10 seconds or less is preferable. More preferably seconds or less.
  • drying may be optionally performed.
  • the drying method is not particularly limited, and for example, a normal dryer or an electric oven drying method can be applied.
  • the temperature during the drying treatment is preferably 100°C or lower. Within the above range, deterioration of the surface treated film can be suppressed. Note that the lower limit is not particularly limited, but is usually about room temperature.
  • the use of the surface-treated steel sheet of the present invention is not particularly limited, it is particularly suitable as a surface-treated steel sheet for containers used for manufacturing various containers such as food cans, beverage cans, pail cans, and 18-liter cans.
  • Example 1 In order to confirm the effects of the present invention, a surface-treated steel sheet was manufactured according to the procedure described below, and its characteristics were evaluated. In Example 1, a surface-treated steel sheet was manufactured that included a steel sheet, a metal Cr layer disposed on at least one surface of the steel sheet, and an oxidized Cr layer disposed on the metal Cr layer.
  • electrolytic solutions having compositions A to G shown in Table 1 were prepared under the conditions shown in Table 1. That is, each component shown in Table 1 was mixed with water to form an aqueous solution, and then the aqueous solution was adjusted to the pH and temperature shown in Table 1. Note that the electrolytic solution G corresponds to the electrolytic solution used in the example of Patent Document 6. Ammonia water was used to raise the pH, and to lower the pH, sulfuric acid was used for electrolytes A, B, and G, hydrochloric acid was used for electrolytes C and D, and nitric acid was used for electrolytes E and F.
  • the steel plate was sequentially subjected to electrolytic degreasing, washing with water, pickling by immersion in dilute sulfuric acid, and washing with water, and then subjected to a cathodic electrolytic treatment process while kept wet.
  • a can steel plate (T4 original plate) having a Cr content as shown in Tables 2 and 3 and a thickness of 0.17 mm was used as the steel plate.
  • the amount of Cr deposited on one side of the steel sheet in the metal Cr layer and the amount of Cr deposited on one side of the steel sheet in the oxidized Cr layer were measured using the method described above. Further, for each of the obtained surface-treated steel sheets, the contact angle of ethylene glycol, the amount of adsorbed elements, the Fe atomic ratio, the Sn atomic ratio, and the Ni atomic ratio were measured by the methods described below. The measurement results are shown in Tables 4 and 5.
  • the contact angle of ethylene glycol on the obtained surface-treated steel sheet was measured using an automatic contact angle meter model CA-VP manufactured by Kyowa Interface Science.
  • the surface temperature of the surface-treated steel sheet was set at 20°C ⁇ 1°C, and the ethylene glycol used was reagent grade ethylene glycol from Fuji Film Wako Pure Chemical Industries, Ltd. at 20 ⁇ 1°C, and a droplet volume of 2 ⁇ l was applied to the surface of the surface-treated steel sheet.
  • the contact angle was measured by the ⁇ /2 method after 1 second, and the arithmetic average value of the contact angles for 5 drops was taken as the contact angle of ethylene glycol.
  • the contact angle was also measured after the surface-treated steel sheet was heat treated at 200° C. for 10 minutes.
  • the measurement conditions were the same as above.
  • the contact angle values were substantially the same before and after heat treatment.
  • the contact angle value changes significantly due to heat treatment.
  • the total atomic ratio of K, Na, Mg, and Ca adsorbed on the surface of the surface-treated steel sheet to Cr was measured by XPS. In the measurements, no sputtering was performed. From the integrated intensity of the narrow spectrum of K2p, Na1s, Ca2p, Mg1s, and Cr2p on the outermost surface of the sample, the atomic ratio was quantified by the relative sensitivity coefficient method, and was calculated as (K atomic ratio + Na atomic ratio + Ca atomic ratio + Mg atomic ratio) / Cr atomic ratio. The ratio was calculated.
  • a scanning X-ray photoelectron spectrometer PHI X-tool manufactured by ULVAC-PHI was used, the X-ray source was a monochrome AlK ⁇ ray, the voltage was 15 kV, the beam diameter was 100 ⁇ m ⁇ , and the extraction angle was 45°.
  • Fe atomic ratio The atomic ratio of Fe to Cr on the surface of the surface-treated steel sheet was measured by XPS. In the measurements, no sputtering was performed. From the integrated intensity of the narrow spectrum of Fe2p and Cr2p on the sample surface, the atomic ratio was quantified by the relative sensitivity coefficient method, and the Fe atomic ratio/Cr atomic ratio was calculated.
  • XPS measurements a scanning X-ray photoelectron spectrometer PHI X-tool manufactured by ULVAC-PHI was used, the X-ray source was a monochrome AlK ⁇ ray, the voltage was 15 kV, the beam diameter was 100 ⁇ m ⁇ , and the extraction angle was 45°.
  • the obtained surface-treated steel sheet was evaluated for adhesion with BPA-free paint and BPA-free paint corrosion resistance using the following methods.
  • the evaluation results are shown in Tables 4 and 5.
  • a BPA-free coated steel plate as a sample used for evaluation of adhesion with BPA-free paint and BPA-free paint corrosion resistance was produced by the following procedure.
  • a polyester paint for can inner surfaces (BPA-free paint) was applied to the surface of the obtained surface-treated steel sheet, and baked at 180° C. for 10 minutes to produce a BPA-free coated steel sheet.
  • the amount of coating applied was 60 mg/dm 2 .
  • BPA-free paint corrosion resistance A cutter was used to make a cross cut deep enough to reach the base iron (steel plate) on the painted surface of the produced BPA-free coated steel plate.
  • a painted steel plate with crosscuts was immersed for 96 hours in a test solution at 55° C. consisting of a mixed aqueous solution containing 1.5% by mass of citric acid and 1.5% by mass of common salt. After immersion, washing and drying, a cellophane adhesive tape was attached to the painted surface of the BPA-free coated steel plate, and tape peeling was performed by peeling it off.
  • the paint peeling width (the total width of the left and right sides extending from the cut portion) was measured at four arbitrary locations on the cross-cut portion of the BPA-free coated steel plate, and the average value of the four locations was determined and considered as the corrosion width.
  • the BPA-free paint corrosion resistance was evaluated based on the corrosion width as described below using the following four levels. In practical terms, if the rating is 1 to 3, it can be said that the BPA-free coating has excellent corrosion resistance.
  • Example 2 a surface-treated steel sheet further having a Sn layer disposed under the metal Cr layer was manufactured, and its characteristics were evaluated. That is, in the present Example 2, a steel plate, an Sn layer disposed on at least one surface of the steel plate, a metal Cr layer disposed on the surface of the Sn layer, and a metal Cr layer disposed on the metal Cr layer. A surface-treated steel sheet having a Cr oxide layer was manufactured.
  • the Sn layer was formed by electrical Sn plating. Specifically, a steel plate is sequentially subjected to electrolytic degreasing, water washing, pickling by immersion in dilute sulfuric acid, and water washing, and then electrolytic Sn plating using a phenolsulfonic acid bath is performed to form a Sn layer on both sides of the steel plate. was formed to obtain a Sn-plated steel sheet. At that time, the amount of Sn attached to the Sn layer was set to the values shown in Tables 6 to 8 by changing the current application time. As the steel plate, a can steel plate (T4 original plate) having a Cr content of the values shown in Tables 6 to 8 and a plate thickness of 0.17 mm was used.
  • the steel plate prior to the electro-Sn plating, the steel plate was subjected to electro-Ni plating using a Watts bath to form Ni-containing layers on both sides of the steel plate. At that time, the amount of Ni deposited on the Ni-containing layer was set to the values shown in Tables 6 to 8 by changing the current application time and current density. The amount of Ni deposited on the Ni-containing layer was measured by the above-mentioned calibration curve method using fluorescent X-rays.
  • the surface-treated steel sheet includes a steel sheet, a Ni-containing layer disposed on at least one surface of the steel sheet, an Sn layer formed on the surface of the Ni-containing layer, and the Sn layer. It has a metal Cr layer disposed on the surface of the layer and an oxidized Cr layer disposed on the metal Cr layer.
  • a reflow treatment was performed after forming the Sn layer.
  • the film was heated for 5 seconds at a heating rate of 50° C./sec using a direct current heating method, and then introduced into water and rapidly cooled.
  • the obtained Sn-plated steel sheet was pretreated by cathodic electrolysis in an aqueous sodium hydrogen carbonate solution.
  • concentration of the sodium bicarbonate aqueous solution was 10 g/L, and the temperature was 50°C. Further, the electrical quantity density during the cathodic electrolytic treatment was 1.0 C/dm 2 .
  • the Sn-plated steel sheet was washed with water and subjected to a cathodic electrolytic treatment step, a dipping step, and a water washing step while kept wet to obtain a surface-treated steel sheet.
  • the cathodic electrolytic treatment step, immersion step, and water washing step were performed under the conditions shown in Tables 6 to 8, and all other conditions were the same as in Example 1.
  • the amount of Cr deposited on one side of the steel sheet in the metal Cr layer and the amount of Cr deposited on one side of the steel sheet in the oxidized Cr layer were measured in the same manner as in Example 1. Furthermore, for each of the obtained surface-treated steel sheets, the contact angle of ethylene glycol, the amount of adsorbed elements, and the Fe atomic ratio were measured in the same manner as in Example 1. Furthermore, in this example, the Sn atomic ratio was measured according to the following procedure. The measurement results are shown in Tables 9-11. Tables 9 to 11 also list the total amount of Sn attached to the Sn layer and the amount of Cr attached to the metal Cr layer.
  • the atomic ratio of Sn to Cr on the surface of the surface-treated steel sheet was measured by XPS. In the measurements, no sputtering was performed. From the integrated intensity of the narrow spectrum of Sn3d and Cr2p on the sample surface, the atomic ratio was quantified by the relative sensitivity coefficient method, and the Sn atomic ratio/Cr atomic ratio was calculated.
  • a scanning X-ray photoelectron spectrometer PHI X-tool manufactured by ULVAC-PHI was used, the X-ray source was a monochrome AlK ⁇ ray, the voltage was 15 kV, the beam diameter was 100 ⁇ m ⁇ , and the extraction angle was 45°.
  • the obtained surface-treated steel sheet was evaluated for adhesion to BPA-free paint and BPA-free paint corrosion resistance in the same manner as in Example 1.
  • the evaluation results are shown in Tables 9-11.
  • Example 3 a surface-treated steel sheet further having a Ni-containing layer disposed under the metal Cr layer was manufactured, and its properties were evaluated. That is, in the present Example 3, a steel plate, a Ni-containing layer disposed on at least one surface of the steel plate, a metal Cr layer disposed on the surface of the Ni-containing layer, and a metal Cr layer disposed on the surface of the metal Cr layer. A surface-treated steel sheet having a Cr oxide layer arranged thereon was produced.
  • Ni-containing layer As the Ni-containing layer, either a Ni layer or a Ni--Fe alloy layer was used as shown in Tables 12 and 13.
  • the above Ni layer was formed by electrical Ni plating. Specifically, a steel plate is sequentially subjected to electrolytic degreasing, water washing, pickling by immersion in dilute sulfuric acid, and water washing, and then electrolytic Ni plating is applied using a Watts bath to form a Ni layer on both sides of the steel plate. A Ni-plated steel plate was obtained. At that time, the amount of Ni deposited in the Ni layer was set to the values shown in Tables 12 and 13 by changing the charge density. The amount of Ni adhered to the Ni layer was measured by the above-mentioned calibration curve method using fluorescent X-rays.
  • a can steel plate (T4 original plate) having a Cr content as shown in Tables 12 and 13 and a plate thickness of 0.17 mm was used. After the Ni layer was formed, it was washed with water and subjected to a cathode electrolytic treatment step while kept wet.
  • a Ni--Fe alloy layer was formed by annealing after forming a Ni layer using the above procedure.
  • the obtained Ni-plated steel sheet was subjected to a cathodic electrolytic treatment process, an immersion process, and a water washing process to obtain a surface-treated steel sheet.
  • the cathodic electrolytic treatment step, immersion step, and water washing step were performed under the conditions shown in Tables 12 and 13, and all other conditions were the same as in Example 1.
  • the amount of Cr deposited on one side of the steel sheet in the metal Cr layer and the amount of Cr deposited on one side of the steel sheet in the oxidized Cr layer were measured in the same manner as in Example 1. Furthermore, for each of the obtained surface-treated steel sheets, the contact angle of ethylene glycol, the amount of adsorbed elements, and the Fe atomic ratio were measured in the same manner as in Example 1. Furthermore, in this example, the Ni atomic ratio was measured according to the following procedure. The measurement results are shown in Tables 14 and 15. Tables 14 and 15 also list the total amount of Ni deposited in the Ni-containing layer and the amount of Cr deposited in the metal Cr layer.
  • Ni atomic ratio The atomic ratio of Ni to Cr on the surface of the surface-treated steel sheet was measured by XPS. In the measurements, no sputtering was performed. From the integrated intensity of the narrow spectrum of Ni2p and Cr2p on the sample surface, the atomic ratio was quantified by the relative sensitivity coefficient method, and the Ni atomic ratio/Cr atomic ratio was calculated.
  • XPS measurements a scanning X-ray photoelectron spectrometer PHI X-tool manufactured by ULVAC-PHI was used, the X-ray source was a monochrome AlK ⁇ ray, the voltage was 15 kV, the beam diameter was 100 ⁇ m ⁇ , and the extraction angle was 45°.

Abstract

6価クロムを用いることなく製造することができ、かつ、優れたBPAフリー塗料との密着性とBPAフリー塗装耐食性を兼ね備えた表面処理鋼板を提供する。鋼板の少なくとも一方の面に、金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有し、エチレングリコールの接触角が50°以下であり、表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計が、5.0%以下である、表面処理鋼板。

Description

表面処理鋼板およびその製造方法
 本発明は、表面処理鋼板に関し、特に、BPAフリー塗料との密着性およびBPAフリー塗装耐食性に優れる表面処理鋼板に関する。本発明の表面処理鋼板は、缶などの容器に好適に用いることができる。また、本発明は、前記表面処理鋼板の製造方法に関する。
 Snめっき鋼板(ぶりき)、ティンフリー鋼板(TFS)、およびNiめっき鋼板などの鋼板は、飲料缶、食品缶、ペール缶、18リットル缶などの各種金属缶の素材として、広く使用されてきた。
 これらの鋼板を金属缶の素材として用いる場合、さまざまな内容物に対応するために、該鋼板の表面にエポキシ系塗料などの有機樹脂被覆が施される。有機樹脂被覆を施す場合、6価Crを含む水溶液中で鋼板を電解処理あるいは浸漬処理することで最表面に形成した酸化Cr層が重要な役割を果たす。すなわち、前記酸化Cr層によって有機樹脂被覆層に対する優れた密着性が達成され、その結果、さまざまな内容物に対する耐食性が担保される(特許文献1~5)。
一方で、エポキシ系塗料に含まれるBPA(ビスフェノールA)が人間に有害な影響がある可能性が示唆されていることから、BPAを含有しないポリエステル系樹脂を用いたBPAフリー塗料の開発が進められており(特許文献6、7)、エポキシ系塗料からの置き換えが求められている。しかし、これまで缶用鋼板として用いられてきたぶりき、TFS、およびNiめっき鋼板などの鋼板は、エポキシ系塗料に対する密着性と比較し、BPAフリー塗料に対する密着性が乏しいことから、さまざまな内容物に対する耐食性が十分に確保できず、各種金属缶へのBPAフリー塗料の適用は進んでいないという現状がある。
 さらに近年、環境に対する意識の高まりから、世界的に6価Crの使用が規制される方向に向かっている。そのため、各種金属缶に用いられる表面処理鋼板の分野においても、6価クロムを使用しない製造方法の確立が求められている。
 6価クロムを使用せずに表面処理鋼板を形成する方法としては、例えば、特許文献8で提案されている方法が知られている。この方法では、塩基性硫酸クロムなどの3価クロム化合物を含む電解液中で電解処理を行うことによって表面処理層を形成している。
特開昭58-110695号公報 特開昭55-134197号公報 特開昭57-035699号公報 特開平11-117085号公報 特開2007-231394号公報 特開2013-144753号公報 特開2008-050486号公報 特表2016-505708号公報
 特許文献8で提案されている方法によれば、6価クロムを用いることなく表面処理層を形成することができる。そして、特許文献8によれば、前記方法により、エポキシ系塗料との密着性に優れる表面処理鋼板を得ることができる。
 しかし、特許文献8で提案されているような従来の方法で得られる表面処理鋼板は、エポキシ系塗料に対する密着性には優れるものの、BPAフリー塗料との密着性が劣っており、結果としてBPAフリー塗装耐食性が十分ではなく、さまざま内容物への耐食性を確保したまま、BPAフリー塗料へ置き換えることができなかった。
 そのため、6価クロムを用いることなく製造することができ、BPAフリー塗料に対する優れた密着性と、優れたBPAフリー塗装耐食性を兼ね備えた表面処理鋼板が求められている。
 本発明は、上記実状に鑑みてなされたものであって、その目的は、6価クロムを用いることなく製造することができ、かつ、BPAフリー塗料との密着性とBPAフリー塗装耐食性に優れる表面処理鋼板を提供することにある。
 本発明の発明者らは、上記目的を達成するために鋭意検討を行なった結果、次の(1)および(2)の知見を得た。
(1)金属Cr層と酸化Cr層とを有する表面処理鋼板において、エチレングリコールの接触角と、表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計を、それぞれ特定の範囲に制御することにより、BPAフリー塗料との密着性とBPAフリー塗装耐食性に優れた表面処理鋼板を得ることができる。
(2)上記表面処理鋼板は、3価クロムイオンを含有する特定の方法で調製した電解液中で陰極電解処理を行い、上記電解液に所定の時間以上浸漬した後、電気伝導度が所定の値以下である水を用いて最終水洗を行うことにより製造することができる。
 本発明は、以上の知見に基づいて完成されたものである。本発明の要旨は次のとおりである。
1.鋼板と、
 前記鋼板の少なくとも一方の表面上に配置された金属Cr層と、
 前記金属Cr層上に配置された酸化Cr層とを有し、
 エチレングリコールの接触角が50°以下であり、
 表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計が、5.0%以下
2.前記金属Cr層は、前記鋼板の表面に直接配置されており、
 前記金属Cr層は、Cr付着量が前記鋼板の片面当たり40.0mg/m以上500.0mg/m以下である、上記1に記載の表面処理鋼板。
3.前記表面処理鋼板の表面におけるFeの、Crに対する原子比率が、15%以下である、上記1または2に記載の表面処理鋼板。
4.前記鋼板の少なくとも一方の面に、前記金属Cr層の下に配置されたSn層をさらに有する、上記1に記載の表面処理鋼板。
5.前記Sn層は、Sn付着量が前記鋼板の片面当たり2.0mg/m以上20.0g/m以下であり、前記金属Cr層は、Cr付着量が前記鋼板の片面当たり2.0mg/m以上500.0mg/m以下であり、前記Sn付着量とCr付着量の合計が鋼板片面当たり40.0mg/m以上である、上記4に記載の表面処理鋼板。
6.前記表面処理鋼板の表面におけるSnの、Crに対する原子比率が、100%以下である、上記4または5に記載の表面処理鋼板。
7.前記鋼板の少なくとも一方の面に、前記Sn層の下に配置されたNi含有層をさらに有する、上記4~6のいずれか一項に記載の表面処理鋼板。
8.前記Ni含有層は、Ni付着量が前記鋼板の片面当たり2.0mg/m以上2000mg/m以下である、上記7に記載の表面処理鋼板。
9.前記鋼板の少なくとも一方の面に、前記金属Cr層の下に配置されたNi含有層をさらに有する、上記1に記載の表面処理鋼板
10.前記Ni含有層は、Ni付着量が前記鋼板の片面当たり2.0mg/m以上2000.0mg/m以下であり、前記金属Cr層は、Cr付着量が前記鋼板の片面当たり2.0mg/m以上500.0mg/m以下であり、前記Ni付着量と前記Cr付着量の合計が鋼板片面当たり40.0mg/m以上である、上記9に記載の表面処理鋼板。
11.前記表面処理鋼板の表面におけるNiの、Crに対する原子比率が、100%以下である、上記9または10に記載の表面処理鋼板。
12.前記酸化Cr層は、Cr付着量が前記鋼板の片面当たり0.1mg/m以上15.0mg/m以下である、上記1~11のいずれか一項に記載の表面処理鋼板。
13.鋼板と、前記鋼板の少なくとも一方の表面上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板の製造方法であって、
 3価クロムイオンを含有する電解液を調製する電解液調製工程と、
 鋼板を前記電解液中で陰極電解処理する陰極電解処理工程と、
 前記陰極電解処理後の鋼板を少なくとも1.0秒以上5.0秒以下前記電解液中に無電解で浸漬する浸漬工程と
 前記陰極電解処理後の鋼板を少なくとも1回水洗する水洗工程とを含み、
 前記電解液調製工程では、
  3価クロムイオン源、カルボン酸化合物、および水を混合し、
  pHを4.0~7.0に調整するとともに、温度を40~70℃に調整することによって前記電解液が調製され、
 前記水洗工程では、
  少なくとも最後の水洗において、電気伝導度100μS/m以下の水を使用する、表面処理鋼板の製造方法。
14.前記表面処理鋼板が、前記金属Cr層の下に配置されたSn層をさらに有する、上記13に記載の表面処理鋼板の製造方法。
15.前記表面処理鋼板が、前記Sn層の下に配置されたNi含有層をさらに有する、上記14に記載の表面処理鋼板の製造方法。
16.前記表面処理鋼板が、前記金属Cr層の下に配置されたNi含有層をさらに有する、上記13に記載の表面処理鋼板の製造方法。
 本発明によれば、6価クロムを使用することなく、BPAフリー塗料との密着性とBPAフリー塗装耐食性に優れる表面処理鋼板を提供することができる。本発明の表面処理鋼板は、容器等の材料として好適に用いることができる。
 以下、本発明を実施する方法について具体的に説明する。なお、以下の説明は、本発明の好適な実施形態の例を示すものであって、本発明はこれに限定されない。
 本発明の一実施形態における表面処理鋼板は、鋼板の少なくとも一方の面に、金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板である。本発明においては、前記表面処理鋼板のエチレングリコールの接触角が50°以下であり、かつ、表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計が、5.0%以下であることが重要である。以下、前記表面処理鋼板の構成要件のそれぞれについて説明する。
[鋼板]
 前記鋼板としては、特に限定されることなく任意の鋼板を用いることができる。前記鋼板は、缶用鋼板であることが好ましい。前記鋼板としては、例えば、極低炭素鋼板または低炭素鋼板を用いることができる。前記鋼板の製造方法についても特に限定されず、任意の方法で製造された鋼板を用いることができる。通常は、前記鋼板として冷延鋼板を使用すればよい。前記冷延鋼板は、例えば、熱間圧延、酸洗、冷間圧延、焼鈍、および調質圧延を行う、一般的な製造工程により製造することができる。
 前記鋼板の成分組成は特に限定されないが、Cr含有量は0.10質量%以下であることが好ましく、0.08質量%以下であることがより好ましい。前記鋼板のCr含有量を上記の範囲とすれば、鋼板表面に過度にCrが濃化することがなく、後述する陰極処理電解処理工程において金属Cr層と酸化Cr層の形成を阻害することなく、緻密な金属Cr層と酸化Cr層を形成することができ、BPAフリー塗装耐食性の向上に寄与する。前記鋼板のCr含有量を上記の範囲とすれば、前記鋼板の上に前記金属Cr層が直接配置されている場合は、最終的に得られる表面処理鋼板の表面におけるFeのCrに対する原子比率を15%以下とすることができ、前記金属Cr層の下にSn層を有する場合は、最終的に得られる表面処理鋼板の表面におけるSnのCrに対する原子比率を100%以下とすることができ、前記金属Cr層の下にNi含有層を有する場合は、最終的に得られる表面処理鋼板の表面におけるNiのCrに対する原子比率を100%以下とすることができる。さらに、前記鋼板には、本発明の範囲の効果を損なわない範囲でC、Mn、P、S、Si、Cu、Ni、Mo、Al、不可避的不純物を含有してもよい。その際、前記鋼板としては、例えば、ASTM A623M-09に規定される成分組成の鋼板を好適に用いることができる。
 本発明の一実施形態においては、質量%で、
C :0.0001~0.13%、
Si:0~0.020%、
Mn:0.01~0.60%
P :0~0.020%、
S :0~0.030%、
Al:0~0.20%、
N :0~0.040%、
Cu:0~0.20%、
Ni:0~0.15%、
Cr:0~0.10%、
Mo:0~0.05%、
Ti:0~0.020%、
Nb:0~0.020%、
B :0~0.020%、
Ca:0~0.020%、
Sn:0~0.020%、
Sb:0~0.020%、
および残部のFeおよび不可避的不純物からなる成分組成を有する鋼板を用いることが好ましい。上記成分組成のうち、Si、P、S、Al、およびNは含有量が低いほど好ましい成分であり、Cu、Ni、Cr、Mo、Ti、Nb、B、Ca、SnおよびSbは、任意に添加し得る成分である。
 前記鋼板の板厚は特に限定されないが、0.60mm以下であることが好ましい。なお、ここで「鋼板」には「鋼帯」を包含するものと定義する。一方、前記板厚の下限についてもとくに限定されないが、0.10mm以上とすることが好ましい。
[金属Cr層]
 鋼板の少なくとも一方の面には金属Cr層が存在する。
 前記金属Cr層の付着量は特に限定されず、任意の値とすることができる。しかし、前記金属Cr層の付着量が過剰であると、該金属Cr層内で凝集破壊を引き起こし、BPAフリー塗料との密着性が劣化する場合がある。そのため、BPAフリー塗料との密着性とBPAフリー塗装耐食性をより安定的に確保するという観点からは、金属Cr層の前記鋼板の片面当たりのCr付着量を500.0mg/m以下とすることが好ましく、450.0mg/m以下とすることがより好ましい。
 一方、前記金属Cr層の付着量の下限についても特に限定されないが、BPAフリー塗装耐食性をさらに向上させるという観点からは、金属Cr層の前記鋼板の片面当たりのCr付着量は多い方が好ましい。具体的には、金属Cr層の前記鋼板の片面当たりのCr付着量を2.0mg/m以上とすることが好ましく、5.0mg/m以上とすることがより好ましい。前記鋼板の上に前記金属Cr層が直接配置されている場合、すなわち後述するSn層およびNi含有層のいずれも備えない場合には、金属Cr層の前記鋼板の片面当たりのCr付着量を40.0mg/m以上とすることがより好ましく、50.0mg/m以上とすることがさらに好ましい。
 なお、金属Cr層におけるCr付着量は、蛍光X線法により測定することができる。具体的には、まず、蛍光X線装置を用いて表面処理鋼板におけるCr量(全Cr量)を測定する。次いで、前記表面処理鋼板に、90℃の7.5N-NaOH中に10分間浸漬するアルカリ処理を施した後、十分に水洗する。その後、再び、蛍光X線装置を用いてCr量(アルカリ処理後Cr量)を測定する。さらに、金属Cr層と酸化Cr層を剥離した後の鋼板について、蛍光X線装置を用いて、Cr量(原板Cr量)を測定する。金属Cr層と酸化Cr層の剥離には、例えば、市販されている塩酸系などのクロムめっき剥離剤が使用できる。アルカリ処理後Cr量から原板Cr量を差し引いた値を、金属Cr層の前記鋼板の片面当たりのCr付着量とする。なお、前記全Cr量は、後述する酸化Cr層としてのCr付着量の算出に用いる。
 前記金属Cr層を構成する金属Crは、非晶質Crであってもよく、結晶性Crであってもよい。すなわち、前記金属Cr層は、非晶質Crおよび結晶性Crの一方または両方を含有することができる。後述する方法で製造される金属Cr層は、一般的には非晶質Crを含有しており、さらに結晶性Crを含有している場合もある。金属Cr層の形成メカニズムは明らかではないが、非晶質Crが形成される際に部分的に結晶化が進むことで、非晶質と結晶相の両者を含む金属Cr層となると考えられる。
[酸化Cr層]
 前記金属Cr層上には酸化Cr層が存在する。前記酸化Cr層の付着量は特に限定されず、任意の値とすることができる。しかし、BPAフリー塗装耐食性をさらに向上させるという観点からは、酸化Cr層の付着量を、鋼板の片面当たりのCr付着量で0.1mg/m以上とすることが好ましい。一方、前記酸化Cr層の付着量の上限についても特に限定されないが、前記酸化Cr層の付着量が過剰であると、酸化Cr層内で凝集破壊を引き起こし、BPAフリー塗料との密着性が劣化する場合がある。そのため、BPAフリー塗料との密着性を向上させ、BPAフリー塗装耐食性をより安定的に確保するという観点からは、15.0mg/m以下であることが好ましい。なお、酸化Cr層におけるCr付着量は、蛍光X線法により測定することができる。具体的には、前述の蛍光X線装置を用いて測定した全Cr量からアルカリ処理後Cr量を差し引くことにより、酸化Cr層におけるCr付着量を求めることができる。
 上記金属Cr層および酸化Cr層の一方または両方には、Cが含有されていてもよい。しかし、金属Cr層および酸化Cr層中にCを過剰に含有すると、溶接を行う際に溶接熱影響部が硬化し、割れを生じる場合がある。そのため、金属Cr層中のC含有量は、Crに対する原子比率として、50%以下であることが好ましく、45%以下であることがより好ましい。同様に、酸化Cr層中のC含有量についても、Crに対する原子比率として、50%以下であることが好ましく、45%以下であることがより好ましい。金属Cr層および酸化Cr層はCを含んでいなくてもよく、したがって、金属Cr層および酸化Cr層に含まれるCのCrに対する原子比率の下限は特に限定されず、0%であってよい。
 金属Cr層中のC含有量および酸化Cr層中のC含有量は、それぞれ、X線光電子分光(XPS)により測定することができる。XPSによるC含有量の測定は、具体的には、XPSにより測定したCr2pとC1sのナロースペクトルの積分強度から、相対感度係数法でC原子比率およびCr原子比率を求め、C原子比率/Cr原子比率を算出することにより実施できる。
 なお、表面処理鋼板の最表層からはコンタミネーション由来のCが検出されてしまうため、酸化Cr層中のCの含有量を正確に測定するために最表層からSiO換算で例えば0.2nmの深さ以上スパッタした後に測定を行えばよい。一方、金属Cr層中のCの含有量は、上述したアルカリ処理後の最表層から金属Cr層の厚さの1/2の深さまでスパッタした後に測定すればよい。
 上記の測定に用いる金属Cr層の厚みは、以下の手順で求めることができる。まず、アルカリ処理後の最表層から深さ方向に1nmごとにXPSによる測定を行い、Cr原子比率およびNi原子比率を測定する。次いで、アルカリ処理後の最表層からの深さに対する、Ni原子比率/Cr原子比率の関係を近似する3次式を最小二乗法により求める。得られた3次式を用いて、Ni原子比率/Cr原子比率が1となる最表層からの深さを算出し、これを金属Cr層の厚みとする。
 前記測定には、例えば、アルバックファイ社製の走査型X線光電子分光分析装置PHI X-toolを使用することができる。X線源はモノクロAlKα線、電圧は15kV、ビーム径は100μmφ、取出角は45°とし、スパッタ条件はArイオンを加速電圧1kV、スパッタレートはSiO換算で1.50nm/minとすればよい。
 金属Cr層および酸化Cr層にCが含有されるメカニズムは明らかではないが、鋼板に金属Cr層と酸化Cr層を形成する工程で、電解液中に含まれるカルボン酸化合物が分解し、皮膜に取り込まれると考えられる。
 金属Cr層および酸化Cr層中のCの存在形態は特に限定されないが、析出物として存在すると局部電池の形成によって耐食性が低下する場合がある。このため明確な結晶構造を有する炭化物やクラスターの体積分率の和が10%以下であることが好ましく、まったく含有しない(0%)ことがより好ましい。炭化物の有無は例えば走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)に付属のエネルギー分散型X線分光(EDS)や波長分散型X線分光(WDS)による組成分析により確認することが出来る。クラスターの有無に関しては、例えば3次元アトムプローブ(3DAP)による3次元組成分析後のデータに対して、クラスター解析を行う事で確認することができる。
 金属Cr層にはOが含有されていてもよい。金属Cr層中のO含有量の上限は特に限定されないが、O含有量が高い場合には酸化Crが析出し、局部電池の形成によって耐食性が低下する場合がある。このため、O含有量はCrに対する原子比率として、30%以下であることが好ましく、25%以下であることがより好ましい。金属Cr層はOを含んでいなくてもよく、したがって、金属Cr層に含まれるCrに対する下限は特に限定されず、0%であってもよい。
 金属Cr層中のOの含有量は、XPSやSEMやTEMに付属のEDSおよびWDS、もしくは3DAPなどの組成分析により測定することが出来る。
 上記金属Cr層および酸化Cr層の一方または両方には、Fe、Sn、Niが含有されていてもよい。金属Cr層中のFe含有量、Sn含有量、Ni含有量の上限は特に限定されないが、Crに対する原子比率として、100%以下であることが好ましい。同様に、酸化Cr層中のFe含有量、Sn含有量、Ni含有量の上限は特に限定されないが、Crに対する原子比率として、100%以下であることが好ましい。金属Cr層および酸化Cr層はFe、Sn、Niを含んでいなくてもよく、したがって、前記Crに対する原子比率の下限は特に限定されず、0%であってよい。
 表面処理鋼板の表面、すなわち酸化Cr層の表面におけるFe、Sn、Ni含有量は特に限定されない。表面処理鋼板の表面、すなわち酸化Cr層の表面におけるFe、Sn、Ni含有量は低ければ低いほどBPAフリー塗装耐食性が向上するため、表面処理鋼板の表面におけるFeの、Crに対する原子比率と、表面処理鋼板の表面におけるSnの、Crに対する原子比率と、表面処理鋼板の表面におけるNiの、Crに対する原子比率の下限は0%であってよく、0%であることがもっとも好ましい。前記鋼板の上に前記金属Cr層が直接配置されている場合は、表面処理鋼板の表面におけるFeの、Crに対する原子比率の上限は15%以下とすることが好ましく、10%以下とすることがより好ましい。前記金属Cr層の下にSn層を有する場合は、表面処理鋼板の表面におけるSnの、Crに対する原子比率の上限は100%以下とすることが好ましく、80%以下とすることがより好ましい。前記金属Cr層の下にNi含有層を有する場合は、表面処理鋼板の表面におけるNiの、Crに対する原子比率の上限は100%以下とすることが好ましく、80%以下とすることがより好ましい。
 金属Cr層および酸化Cr層中のFe、Sn、Niの含有量は、Cの含有量と同様、XPSにより測定することができる。表面処理鋼板の表面、すなわち酸化Cr層の表面におけるFeの、Crに対する原子比率と、表面処理鋼板の表面、すなわち酸化Cr層の表面におけるSnの、Crに対する原子比率と、表面処理鋼板の表面、すなわち酸化Cr層の表面におけるNiの、Crに対する原子比率は、表面処理鋼板の表面のXPSにより測定することができる。原子比率の算出にはCr2pとFe2pとSn3dとNi2pのナロースペクトルを用いればよい。
 金属Cr層および酸化Cr層にFe、Sn、Niが含有されるメカニズムは明らかではないが、鋼板に金属Cr層と酸化Cr層を形成する工程で、鋼板やSn層やNi含有層に含まれるFe、Sn、Niが電解液に微量に溶解し、Fe、Sn、Niが皮膜に取り込まれると考えられる。
 上記金属Cr層および酸化Cr層には、Cr、O、Fe、Sn、Ni、Cと後述するK、Na、MgおよびCa以外には、水溶液中に含まれるCu、Zn等の金属不純物や、S、N、Cl、Br等が含まれる場合がある。しかし、それらの元素が存在すると、BPAフリー塗料との密着性およびBPAフリー塗装耐食性が低下する場合がある。そのため、Cr、O、Fe、Sn、Ni、C、K、Na、Mg、Ca以外の元素の合計は、Crに対する原子比率として、3%以下であることが好ましく、まったく含有しない(0%)ことがより好ましい。上記元素の含有量は、特に限定されないが、例えば、Cの含有量と同様にXPSで測定することができる。
 また、本発明の表面処理鋼板の表面粗さは、金属Cr層および酸化Cr層の形成で大きく変化せず、通常は金属Cr層の下に配置される鋼板、Sn層、Ni含有層の表面粗さとほぼ同等である。表面処理鋼板の表面粗さは特に限定されないが、算術平均粗さRaが0.1μm以上4μm以下であることが好ましい。また、十点平均粗さRzは0.2μm以上6μm以下であることが好ましい。
[エチレングリコールの接触角]
 本発明においては、表面処理鋼板のエチレングリコールの接触角が50°以下であることが重要である。エチレングリコールの接触角が50°以下となるよう表面処理鋼板の表面を制御することにより、BPAフリー塗料に含まれるポリエステル樹脂と表面処理鋼板との間に強固な結合が形成され、その結果、BPAフリー塗料との高い密着性を得ることができ、BPAフリー塗装耐食性も向上する。BPAフリー塗料との密着性とBPAフリー塗装耐食性をさらに向上させるという観点からは、エチレングリコールの接触角を48°以下とすることが好ましく、45°以下とすることがより好ましい。前記接触角は、密着性向上の観点からは低ければ低いほど好ましいため、その下限はとくに限定されず、0°であってもよい。しかし、製造しやすさなどの観点からは、3°以上とすることが好ましく、6°以上とすることがより好ましい。
 さらに、本発明における表面処理鋼板の表面、すなわち酸化Cr層の表面の状態は、熱に対して安定であり、例えば塗装焼付相当の熱処理後にもエチレングリコールの接触角は大きく変化しないことも特徴であり、そのような表面状態の熱安定性も、BPAフリー塗料との密着性とBPAフリー塗装耐食性の向上に寄与していると推定している。そのため、塗装相当熱処理後の表面処理鋼板のエチレングリコールの接触角は50°以下とすることが好ましく、48°以下とすることがより好ましく、45°以下とすることがさらに好ましい。一方、塗装相当熱処理後の表面処理鋼板のエチレングリコールの接触角についてもとくに限定されないが、0°以上であってよく、3°以上であることが好ましく、6°以上であることがより好ましい。なお、上記の塗装相当熱処理の条件は特に限定されないが、例えば200℃で10分とすればよい。
 エチレングリコールの接触角の測定方法は特に限定されないが、例えば協和界面科学社製の自動接触角計CA-VP型を用いて測定できる。具体的には、2μlのエチレングリコールを前記表面処理鋼板の表面に滴下し、1秒後にθ/2法によって接触角を測定する。測定時の表面処理鋼板の表面温度は20℃±1℃、エチレングリコールの温度は20±1℃とする。前記エチレングリコールとしては、富士フイルム和光純薬株式会社の試薬特級のエチレングリコールを使用することができる。5滴分の接触角の相加平均値を求め、エチレングリコールの接触角とする。
 なお、表面処理鋼板の表面に、CSO、DOS、DOS-A、ATBCなどの防錆油が塗油されている場合がある。表面処理鋼板が塗油されている場合は、200℃、10分間の塗装相当熱処理を施して塗油を気化させてから、上記の方法でエチレングリコールの接触角を測定することとする。上述したように本発明の表面処理鋼板は熱処理に対して安定であるため、上記熱処理を行ってから測定することに問題はない。また、塗油中に含まれる防錆剤などの添加成分が塗装相当熱処理後も表面処理鋼板の表面に残留することがあるが、その量は微量であるため、上述のエチレングリコールの接触角や吸着元素の吸着量には影響を及ぼさず、BPAフリー塗料との密着性とBPAフリー塗装耐食性を劣化させることはない。
 表面処理鋼板のエチレングリコールの接触角が50°以下となるメカニズムは明らかではないが、所定の方法で調整した電解液中で陰極電解することによって金属Cr層と酸化Cr層を形成した後に、電解液中に所定の時間以上浸漬することで、表面処理鋼板の表面、すなわち酸化Cr層の表面が、何らかの溶解反応などの影響を経て、エチレングリコールの接触角が50°以下となるように改質されると考えられる。ただし、後述するように特定の条件で電解液を調製しなかった場合は、電解液中で陰極電解した後に所定の時間以上浸漬したとしても、表面処理鋼板の表面はエチレングリコールの接触角が50°以下とならない。
 なお、特許文献1~5で提案されているような従来の6価クロム浴を用いて製造される表面処理鋼板においては、表層に存在するクロム水和酸化物層の組成が湿潤環境下でのエポキシ系塗料に対する密着性に大きく影響を及ぼすことが報告されている。湿潤環境下では、エポキシ系塗膜を浸透してきた水が、エポキシ系塗膜とクロム水和酸化物層との間の界面の接着を阻害する。そのため、親水性であるOH基がクロム水和酸化物層に多く存在する場合は、界面における水の拡張濡れが促進され、接着力が低下すると考えられていた。したがって、従来の表面処理鋼板においては、クロム水和酸化物のオキソ化の進行によるOH基の減少、すなわち表面の疎水化によって湿潤環境下でのエポキシ系塗料に対する密着性を向上させていた。
 これに対して本発明は、水ではなくエチレングリコールに着目し、エチレングリコールとの親和性が高い表面に調整することによって、BPAフリー塗料との強固な密着性を確保できることを見出した。したがって本発明は、上述した従来技術とはまったく異なる技術的思想に基づくものであると言える。エチレングリコールとの親和性が高い表面に調整することによる、BPAフリー塗料との密着性向上メカニズムは明らかではないが、エチレングリコールは、BPAフリー塗料を構成するポリエステル樹脂の構成成分である水酸基モノマーの一つであるため、エチレングリコールと親和性が高い表面に調整することで、BPAフリー塗料との密着性が向上したと推定している。
[吸着元素の原子比率]
 上述したように、本発明の表面処理鋼板はエチレングリコールの接触角が50°以下であり、その表面は化学的に活性である。そのため、前記表面処理鋼板の表面には、K、Na、Mg、およびCaなどの元素のカチオンが吸着しやすい。本発明者らは、単純にエチレングリコールの接触角を50°以下とするのみでは、吸着した前記カチオンの影響のため、本来の密着性が発揮されないことを見出した。本発明では、表面処理鋼板の表面に吸着した前記カチオンの量を低減することにより、BPAフリー塗料との密着性を向上させ、優れたBPAフリー塗装耐食性を実現することができる。
 具体的には、表面処理鋼板の表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計を、5.0%以下、好ましくは3.0%以下、より好ましくは1.0%以下とする。前記原子比率の合計は低ければ低いほどよいため、下限は特に限定されず、0%であってよい。前記原子比率の合計は、実施例に記載した方法で測定することができる。
[Sn層]
 上記の表面処理鋼板は、金属Cr層の下にさらに任意にSn層を有することができる。例えば、本発明の一実施形態における表面処理鋼板は、鋼板と、前記鋼板の少なくとも一方の表面上に配置されたSn層と、前記Sn層上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板であってよい。前記Sn層は、鋼板の少なくとも一方の面に備えられていればよく、両面に備えられていてもよい。前記Sn層は、鋼板の少なくとも一部を覆っていればよく、該Sn層が設けられた面の全体を覆っていてもよい。また、前記Sn層は、連続層であってもよいし、不連続層であってもよい。前記不連続層としては、例えば、島状構造を有する層が挙げられる。
 前記Sn層には、当該Sn層の一部が合金化したものも包含する。例えば、Sn層の一部が、Snめっき後の加熱溶融処理によってSn合金層となっている場合もSn層に含める。前記Sn合金層の例としては、Fe-Sn合金層およびFe-Sn-Ni合金層が挙げられる。
 例えば、Snめっき後に通電加熱などによってSnを加熱溶融させることにより、Sn層の鋼板側の一部をFe-Sn合金層とすることができる。また、Ni層を表面に有する鋼板に対してSnめっきを行い、さらに通電加熱などによってSnを加熱溶融させることにより、Sn層の鋼板側の一部をFe-Sn-Ni合金層およびFe-Sn合金層の一方または両方とすることができる。
 前記Sn層におけるSn付着量は、特に限定されることなく任意の量とすることができる。表面処理鋼板のBPAフリー塗装耐食性をさらに向上させるという観点からは、Sn付着量を鋼板片面当たり2.0mg/m以上とすることが好ましく、5.0mg/m以上とすることがより好ましい。一方、前記Sn付着量が20.0g/mを超えると、BPAフリー塗装耐食性を向上させる効果は飽和する。そのため、過剰なコストを削減するという観点からは、前記Sn付着量を20.0g/m以下とすることが好ましく、18.0g/m以下とすることがより好ましい。また、表面処理鋼板のBPAフリー塗装耐食性をさらに向上させるという観点からは、前記Sn層におけるSn付着量と、金属Cr層のCr付着量との合計は、鋼板片面当たり40.0mg/m以上とすることが好ましく、45.0mg/m以上とすることがより好ましい。一方、Sn層におけるSn付着量と、金属Cr層のCr付着量との合計は、鋼板片面当たり20.0g/m以下とすることが好ましい。
 なお、前記Sn付着量は、例えばJIS G 3303に記載された電解法や蛍光X線法によって測定された値とする。
 Sn層の形成は、特に限定されることなく、電気めっき法や溶融めっき法など、任意の方法で行うことができる。電気めっき法によりSn層を形成する場合、めっき浴としては任意のものを用いることができる。使用できるめっき浴としては、例えば、フェノールスルホン酸Snめっき浴、メタンスルホン酸Snめっき浴、またはハロゲン系Snめっき浴などを挙げることができる。
 Sn層を形成した後には、リフロー処理を行ってもよい。リフロー処理を行う場合、Sn層をSnの融点(231.9℃)以上の温度に加熱することにより、Sn単体のめっき層の下層(鋼板側)にFe-Sn合金層などの合金層を形成することができる。また、リフロー処理を省略した場合には、Sn単体のめっき層を有するSnめっき鋼板が得られる。
[Ni含有層]
 上記表面処理鋼板は、上記Sn層の下にさらに任意にNi含有層を有することができる。例えば、本発明の一実施形態における表面処理鋼板は、鋼板と、前記鋼板の少なくとも一方の表面上に配置されたNi含有層と、前記Ni含有層上に配置されたSn層と、前記Sn層上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板であってよい。
 前記Ni含有層は、鋼板の少なくとも一方の面に備えられていればよく、両面に備えられていてもよい。前記Ni含有層は、鋼板の少なくとも一部を覆っていればよく、該Ni含有層が設けられた面の全体を覆っていてもよい。また、前記Ni含有層は、連続層であってもよいし、不連続層であってもよい。前記不連続層としては、例えば、島状構造を有する層が挙げられる。
 前記Ni含有層としては、ニッケルが含まれている任意の層を用いることができ、例えば、Ni層およびNi合金層の一方または両方を用いることができる。例えば、Niめっき後の拡散焼鈍処理によってNi合金層となっている場合もNi含有層に含める。前記Ni合金層としては、例えば、Ni-Fe合金層が挙げられる。また、Ni含有層上にSn層を形成し、次いでリフロー処理を行うことにより、Sn単体のめっき層の下層(鋼板側)にFe-Sn-Ni合金層やFe-Sn合金層等を形成することもできる。
 前記Ni含有層は、Ni基めっき層であることが好ましい。ここで、「Ni基めっき層」とは、Ni含有量が50質量%以上であるめっき層を指すものと定義する。言い換えると、前記Ni基めっき層は、Niめっき層またはNi基合金からなるめっき層である。
 前記Ni基めっき層は、マトリックスとしてのNiまたはNi基合金中に、固体微粒子が分散した分散めっき層(複合めっき層)であってもよい。前記固体微粒子としては、とくに限定されることなく任意の材質の微粒子を用いることができる。前記微粒子は、無機微粒子および有機微粒子のいずれであってもよい。前記有機微粒子としては、例えば、樹脂からなる微粒子が挙げられる。前記樹脂としては、任意の樹脂を使用できるが、フッ素樹脂を用いることが好ましく、ポリテトラフルオロエチレン(PTFE)を用いることがより好ましい。前記無機微粒子としては、とくに限定されることなく任意の無機材料からなる微粒子を使用することができる。前記無機材料は、例えば、金属(合金を含む)であってもよく、化合物であってもよく、その他の単体であってもよい。中でも、酸化物、窒化物、および炭化物からなる群より選択される少なくとも1つからなる微粒子を用いることが好ましく、金属酸化物の微粒子を用いることが好ましい。前記金属酸化物としては、例えば、酸化アルミニウム、酸化クロム、酸化チタン、酸化亜鉛などが挙げられる。
 前記分散めっきに用いる微粒子の粒径は特に限定されず、任意のサイズの粒子を使用することができる。しかし、微粒子の直径が、Ni含有層としての分散めっき層の厚さを超えないことが好ましい。典型的には、前記微粒子の直径を、1nm~50μmとすることが好ましく、10nm~1000nmとすることがより好ましい。
 前記Ni含有層中のNi付着量は、特に限定されることなく任意の量とすることができる。表面処理鋼板のBPAフリー塗装耐食性をさらに向上させるという観点からは、Ni付着量を鋼板片面当たり2.0mg/m以上とすることが好ましく、5.0mg/m以上とすることがより好ましい。一方、前記Ni付着量が2000mg/mを超えると、BPAフリー塗装耐食性を向上させる効果が飽和する。そのため、過剰なコストを削減するという観点からは、前記Ni付着量を2000mg/m以下とすることが好ましく、1800mg/m以下とすることがより好ましい。
 前記Ni含有層の形成は、特に限定されることなく、電気めっき法など、任意の方法で行うことができる。電気めっき法によりNi含有層を形成する場合、任意のめっき浴を用いることができる。使用できるめっき浴としては、例えば、ワット浴、スルファミン酸浴、またはウッド浴などを挙げることができる。Ni含有層としてNi-Fe合金層を形成する場合、電気めっき等の方法により鋼板表面上にNi層を形成した後、焼鈍することによりNi-Fe合金層を形成できる。
 前記Ni含有層の表面側にはNi酸化物を含有してもよいし、全く含有しなくてもよいが、塗料2次密着性と耐硫化黒変性をさらに向上させる観点からは、Ni含有層の表面側にはNi酸化物を含有しないことが好ましい。Ni酸化物はNiめっき後の水洗水中に含有される溶存酸素などによっても形成されうるが、後述する前処理などで前記Ni含有層に含有するNi酸化物を除去することが好ましい。
 また、上記表面処理鋼板は、上記金属Cr層の下にさらに任意にNi含有層を有することができる。例えば、本発明の一実施形態における表面処理鋼板は、鋼板と、前記鋼板の少なくとも一方の表面上に配置されたNi含有層と、前記Ni含有層上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板であってよい。前記Ni含有層は、鋼板の少なくとも一方の面に備えられていればよく、両面に備えられていてもよい。前記Ni含有層は、鋼板の少なくとも一部を覆っていればよく、該Ni含有層が設けられた面の全体を覆っていてもよい。また、前記Ni含有層は、連続層であってもよいし、不連続層であってもよい。前記不連続層としては、例えば、島状構造を有する層が挙げられる。
 前記Ni含有層としては、ニッケルが含まれている任意の層を用いることができ、例えば、Ni層およびNi合金層の一方または両方を用いることができる。例えば、Niめっき後の拡散焼鈍処理によってNi合金層となっている場合もNi含有層に含める。前記Ni合金層としては、例えば、Ni-Fe合金層が挙げられる。
 前記Ni含有層は、Ni基めっき層であることが好ましい。ここで、「Ni基めっき層」とは、Ni含有量が50質量%以上であるめっき層を指すものと定義する。言い換えると、前記Ni基めっき層は、Niめっき層またはNi基合金からなるめっき層である。
 前記Ni基めっき層は、マトリックスとしてのNiまたはNi基合金中に、固体微粒子が分散した分散めっき層(複合めっき層)であってもよい。前記固体微粒子としては、とくに限定されることなく任意の材質の微粒子を用いることができる。前記微粒子は、無機微粒子および有機微粒子のいずれであってもよい。前記有機微粒子としては、例えば、樹脂からなる微粒子が挙げられる。前記樹脂としては、任意の樹脂を使用できるが、フッ素樹脂を用いることが好ましく、ポリテトラフルオロエチレン(PTFE)を用いることがより好ましい。前記無機微粒子としては、とくに限定されることなく任意の無機材料からなる微粒子を使用することができる。前記無機材料は、例えば、金属(合金を含む)であってもよく、化合物であってもよく、その他の単体であってもよい。中でも、酸化物、窒化物、および炭化物からなる群より選択される少なくとも1つからなる微粒子を用いることが好ましく、金属酸化物の微粒子を用いることが好ましい。前記金属酸化物としては、例えば、酸化アルミニウム、酸化クロム、酸化チタン、酸化亜鉛などが挙げられる。
 前記分散めっきに用いる微粒子の粒径は特に限定されず、任意のサイズの粒子を使用することができる。しかし、微粒子の直径が、Ni含有層としての分散めっき層の厚さを超えないことが好ましい。典型的には、前記微粒子の直径を、1nm~50μmとすることが好ましく、10nm~1000nmとすることがより好ましい。
 前記Ni含有層におけるNi付着量は、特に限定されることなく任意の量とすることができる。表面処理鋼板のBPAフリー塗装耐食性をさらに向上させるという観点からは、Ni付着量を鋼板片面当たり2.0mg/m以上とすることが好ましく、5.0mg/m以上とすることがより好ましい。一方、前記Ni付着量が2000mg/mを超えると、BPAフリー塗装耐食性を向上させる効果が飽和する。そのため、過剰なコストを削減するという観点からは、前記Ni付着量を2000mg/m以下とすることが好ましく、1800mg/m以下とすることがより好ましい。また、表面処理鋼板のBPAフリー塗装耐食性をさらに向上させるという観点からは、前記Ni含有層におけるNi付着量と、金属Cr層のCr付着量との合計は、鋼板片面当たり40.0mg/m以上とすることが好ましく、50.0mg/m以上とすることがより好ましい。一方、前記Ni含有層におけるNi付着量と、金属Cr層のCr付着量との合計は、鋼板片面当たり2000mg/m以下とすることが好ましい。
 前記Ni含有層のNi付着量は蛍光X線による検量線法で測定する。Ni付着量が既知である複数の鋼板を準備し、Niに由来する蛍光X線強度を事前に測定し、測定した蛍光X線の強度とNi付着量との関係を線形近似して検量線とする。表面処理鋼板のNiに由来する蛍光X線強度を測定し、上述の検量線を用いて前記Ni含有層のNi付着量を測定することができる。
 前記Ni含有層の形成は、特に限定されることなく、電気めっき法など、任意の方法で行うことができる。電気めっき法によりNi含有層を形成する場合、任意のめっき浴を用いることができる。使用できるめっき浴としては、例えば、ワット浴、スルファミン酸浴、またはウッド浴などを挙げることができる。Ni含有層としてNi-Fe合金層を形成する場合、電気めっき等の方法により鋼板表面上にNi層を形成した後、焼鈍することによりNi-Fe合金層を形成できる。
 前記Ni含有層の表面側にはNi酸化物を含有してもよいし、全く含有しなくてもよいが、塗料2次密着性と耐硫化黒変性をさらに向上させる観点からは、Ni含有層の表面側にはNi酸化物を含有しないことが好ましい。Ni酸化物はNiめっき後の水洗水中に含有される溶存酸素などによっても形成されうるが、後述する前処理などで前記Ni含有層に含有するNi酸化物を除去することが好ましい。
[製造方法]
 本発明の一実施形態における表面処理鋼板の製造方法では、以下に説明する方法で、上記特性を備えた表面処理鋼板を製造することができる。
 本発明の一実施形態における表面処理鋼板の製造方法は、鋼板の少なくとも一方の面に、金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板の製造方法であって、次の(1)~(4)の工程を含む。以下、各工程について説明する。
(1)3価クロムイオンを含有する電解液を調製する電解液調製工程
(2)鋼板を前記電解液中で陰極電解処理する陰極電解処理工程
(3)前記陰極電解処理後の鋼板を、前記電解液中に所定の時間以上浸漬する浸漬工程
(4)前記浸漬工程後の鋼板を少なくとも1回水洗する水洗工程
[電解液調製工程]
(i)混合
 上記電解液調製工程では、まず、3価クロムイオン源、カルボン酸化合物、および水を混合して水溶液とする。
 前記3価クロムイオン源としては、3価クロムイオンを供給できる化合物であれば、任意のものを使用できる。前記3価クロムイオン源としては、例えば、塩化クロム、硫酸クロム、および硝酸クロムからなる群より選択される少なくとも1つを使用することができる。
 前記水溶液における3価クロムイオン含有源の含有量は特に限定されないが、3価クロムイオン換算で3g/L以上50g/L以下であることが好ましく、5g/L以上40g/L以下であることがより好ましい。前記3価クロムイオン源としては、Atotech社のBluCr(登録商標)TFS Aを使用することができる。
 前記カルボン酸化合物としては、特に限定されることなく、任意のカルボン酸化合物を使用できる。前記カルボン酸化合物は、カルボン酸およびカルボン酸塩の少なくとも一方であってよく、脂肪族カルボン酸および脂肪族カルボン酸の塩の少なくとも一方であることが好ましい。前記脂肪族カルボン酸の炭素数は、1~10であることが好ましく、1~5であることがより好ましい。また、前記脂肪族カルボン酸塩の炭素数は、1~10であることが好ましく、1~5であることが好ましい。前記カルボン酸化合物の含有量は特に限定されないが、0.1mol/L以上5.5mol/L以下であることが好ましく、0.15mol/L以上5.3mol/L以下であることがより好ましい。前記カルボン酸化合物としては、Atotech社のBluCr(登録商標)TFS Bを使用することができる。
 本発明では、電解液を調製するための溶媒として水を使用する。前記水としては、イオン交換樹脂等であらかじめカチオンを除去したイオン交換水や、蒸留水のような純度の高い水を用いることが好ましい。後述するように、電解液中に含まれるK、Na、Mg、およびCaの量を低減するという観点からは、電気伝導度が30μS/m以下である水を使用することが好ましい。
 表面処理鋼板の表面に吸着するK、Na、Mg、およびCaを減少させるため、上述の水溶液中には、K、Na、Mg、およびCaを、意図的に含有しないことが好ましい。そのため、上述の3価クロムイオン源、カルボン酸化合物、および以下に詳述するpH調整剤などの、水溶液に添加する成分には、K、Na、Mg、およびCaを含まないことが好ましい。pH調整剤としては、pH低下には塩酸、硫酸、硝酸等を使用し、pH上昇にはアンモニア水等を使用することが好ましい。水溶液や電解液中に不可避的に混入したK、Na、Mg、およびCaは許容されるが、K、Na、Mg、およびCaの合計濃度は2.0mol/L以下であることが好ましく、1.5mol/L以下であることがより好ましく、1.0mol/L以下であることがさらに好ましい。
 陰極電解処理工程における陽極での6価クロム生成を効果的に抑制し、上述の電解液の安定性を向上させるため、前記水溶液中にはさらに少なくとも1種のハロゲン化物イオンを含有させることが好ましい。ハロゲン化物イオンの含有量は特に限定されないが、0.05mol/L以上3.0mol/L以下であることが好ましく、0.10mol/L以上2.5mol/L以下であることがより好ましい。前記ハロゲン化物イオンを含有させるには、Atotech社のBluCr(登録商標)TFS C1およびBluCr(登録商標)TFS C2を使用することができる。
 上述の水溶液には、6価クロムを添加しないことが好ましい。陰極電解処理工程において陽極で形成する極微量の6価クロムを除き、上述の電解液中には6価クロムを含有しない。陰極電解処理工程において陽極で形成する極微量の6価クロムは3価クロムに還元されるため、電解液中の6価クロム濃度は増加しない。
 上述の水溶液は、3価クロムイオン以外の金属イオンを意図的に添加しないことが好ましい。上記金属イオンは限定されないが、Cuイオン、Znイオン、Feイオン、Snイオン、Niイオン等が挙げられ、それぞれ、0mg/L以上40mg/L以下であることが好ましく、0mg/L以上20mg/L以下であることがさらに好ましく、0mg/L以上10mg/L以下であることが最も好ましい。上記金属イオンのうち、FeイオンとSnイオンとNiイオンについては、陰極電解処理工程および浸漬工程において上述の電解液中に溶解し、皮膜中に共析することがあるが、BPAフリー塗料との密着性とBPAフリー塗装耐食性には影響しない。なお、FeイオンとSnイオンとNiイオン濃度は、建浴時に上記範囲とすることが好ましいが、陰極電解処理工程および浸漬工程においても、電解液中のFeイオンとSnイオンとNiイオン濃度を上記範囲に維持することが好ましい。FeイオンとSnイオンとNiイオンは、上記の範囲内で制御すれば、金属Cr層と酸化Cr層の形成を阻害せず、必要な量の金属Cr層および酸化Cr層を形成することができる。
(ii)pHと温度の調整
 次に、前記水溶液のpHを4.0~7.0に調整するとともに、前記水溶液の温度を40~70℃に調整することによって前記電解液を調製する。上述した表面処理鋼板を製造するためには、単に3価クロムイオン源とカルボン酸化合物を水に溶解させるだけでは不十分であり、上記のとおりpHと温度を適正に制御することが重要である。
pH:4.0~7.0
 前記電解液調製工程においては、混合後の水溶液のpHを4.0~7.0に調整する。pHが4.0未満または7.0超であると、得られた電解液を用いて製造した表面処理鋼板のエチレングリコールの接触角は50°より高くなる。pHは、4.5~6.5とすることが好ましい。
温度:40~70℃
 前記電解液調製工程では、混合後の水溶液の温度を40~70℃に調整する。温度が40℃未満、あるいは70℃超であると、得られた電解液を用いて製造した表面処理鋼板のエチレングリコールの接触角が50°より大きくなる。なお、40~70℃の温度域での保持時間は特に限定されない。
 以上の手順により、次の陰極電解処理工程において使用する電解液を得ることができる。なお、上記の手順で製造された電解液は室温で保管することができる。
[陰極電解処理工程]
 次に、鋼板を上記電解液調製工程で得られた電解液中で陰極電解処理する。前記陰極電解処理により、前記鋼板上に金属Cr層と酸化Cr層とを形成することができる。本発明の一実施形態においては、前記表面処理鋼板が、Sn層をさらに有することができる。Sn層を備える表面処理鋼板を製造する場合は、少なくとも一方の面にSn層を有する鋼板を陰極電解に供すればよい。本発明の一実施形態においては、前記表面処理鋼板が、前記Sn層の下にNi含有層をさらに有することができる。前記Sn層の下にNi含有層を備える表面処理鋼板を製造する場合は、少なくとも一方の面にNi含有層と、前記Ni含有層上に配置されたSn層とを有する鋼板を陰極電解に供すればよい。本発明の一実施形態においては、前記表面処理鋼板が、Ni含有層をさらに有することができる。Ni含有層を備える表面処理鋼板を製造する場合は、少なくとも一方の面にNi含有層を有する鋼板を陰極電解に供すればよい。
 陰極電解処理を行う際の電解液の温度は、特に限定されないが、金属Cr層と酸化Cr層を効率的に形成するために、40℃以上70℃以下の温度域とすることが好ましい。上述した表面処理鋼板を安定的に製造するためという観点からは、陰極電解処理工程において、電解液の温度をモニターし、上記の温度域に維持することが好ましい。
 陰極電解処理を行う際の電解液のpHは特に限定されないが、4.0以上とすることが好ましく、4.5以上とすることがより好ましい。また、前記pHは、7.0以下とすることが好ましく、6.5以下とすることがより好ましい。上述した表面処理鋼板を安定的に製造するためという観点からは、陰極電解処理工程において、電解液のpHをモニターし、上記pHの範囲に維持することが好ましい。
 上記陰極電解処理における電流密度は特に限定されず、所望の表面処理層が形成されるよう適宜調整すればよい。しかし、過度に電流密度が高いと陰極電解処理装置にかかる負担が過大となる。そのため、電流密度は200.0A/dm以下とすることが好ましく、100A/dm以下とすることがより好ましい。また、電流密度の下限についても特に限定されないが、過度に電流密度が低いと電解液中で6価Crが生成し、浴の安定性が崩れるおそれがある。そのため、電流密度は5.0A/dm以上とすることが好ましく、10.0A/dm以上とすることがより好ましい。
 鋼板に陰極電解処理を施す回数は特に限定されず、任意の回数とすることができる。言い換えると、1また2以上の任意の数のパスを有する電解処理装置を用いて陰極電解処理を行うことができる。例えば、鋼板(鋼帯)を搬送しながら複数のパスを通過させることによって連続的に陰極電解処理を実施することも好ましい。なお、陰極電解処理の回数(すなわち、パス数)を増加させると、それに見合った数の電解槽が必要となるため、陰極電解処理の回数(パス数)は20以下とすることが好ましい。
 1パスあたりの電解時間は、特に限定されない。しかし、1パスあたりの電解時間が長すぎると、鋼板の搬送速度(ラインスピード)が下がって生産性が低下する。そのため、1パス当たりの電解時間は5秒以下とすることが好ましく、3秒以下とすることがより好ましい。1パスあたりの電解時間の下限についても特に限定されないが、電解時間を過度に短くすると、それに合わせてラインスピードを上げる必要が生じ、制御が困難となる。そのため、1パス当たりの電解時間は0.005秒以上とすることが好ましく、0.01秒以上とすることがより好ましい。
 陰極電解処理によって形成される金属Cr量は、電流密度と電解時間とパス数の積で表されるトータルの電気量密度で制御することができる。上述したように、金属Cr量が過度に少ないと、BPAフリー塗装耐食性が損なわれ、金属Cr量が過度に多いと金属Cr層内で凝集破壊を生じBPAフリー塗料との密着性が損なわれる場合があるため、より安定的にBPAフリー塗料との密着性とBPAフリー塗装耐食性を確保するという観点からは、金属Cr層の前記鋼板の片面当たりのCr付着量を適正な範囲とするようにトータルの電気量密度を制御することが好ましい。ただし、金属Cr層の前記鋼板の片面当たりのCr付着量とトータルの電気量密度の関係は、陰極電解処理工程に使用する装置の構成で変わるため、実際の電解処理条件は装置に合わせて調整すればよい。
 陰極電解処理を実施する際に使用する陽極の種類は特に限定されず、任意の陽極を使用できる。前記陽極としては、不溶性陽極を用いることが好ましい。前記不溶性陽極としては、Tiに白金族金属および白金族金属の酸化物の一方または両方を被覆した陽極、ならびにグラファイト陽極からなる群より選択される少なくとも1つを用いることが好ましい。より具体的には、前記不溶性陽極としては、基体としてのTiの表面に、白金、酸化イリジウム、または酸化ルテニウムを被覆した陽極が例示される。
 上記陰極電解処理工程では、鋼板への金属Cr層と酸化Cr層の形成、液の持ち出しや持ち込み、水の蒸発等の影響で、電解液の濃度は常に変化する。陰極電解処理工程における電解液の濃度変化は、装置の構成や製造条件で変わるため、表面処理鋼板をより安定的に製造するという観点からは、陰極電解処理工程において電解液に含まれる成分の濃度をモニターし、上述した濃度範囲に維持することが好ましい。
 なお、前記陰極電解処理に先だって、鋼板に対して任意に前処理を施すことができる。前記鋼板の上に前記金属Cr層を直接形成する場合は、前記前処理として、脱脂、酸洗、および水洗の少なくとも1つを行うことが好ましい。
 脱脂を行うことにより、鋼板に付着した圧延油や防錆油等を除去することができる。前記脱脂は、特に限定されず任意の方法で行うことができる。脱脂後は鋼板表面に付着した脱脂処理液を除去するために水洗を行うことが好ましい。
 また、酸洗を行うことにより、鋼板の表面に存在する自然酸化膜を除去し、表面を活性化することができる。前記酸洗は、特に限定されず任意の方法で行うことができる。酸洗後は鋼板表面に付着した酸洗処理液を除去するために水洗することが好ましい。
 前記Sn層を備える表面処理鋼板を製造する場合は、少なくとも一方の面にSn層を有する鋼板に対して任意に前記前処理を施すことができる。前記前処理の方法は特に限定されず、任意の方法を用いることができるが、前記前処理として、アルカリ性水溶液中での電解処理およびアルカリ性水溶液中での浸漬処理の一方または両方を行うことが好ましい。前記電解処理としては、陰極電解処理および陽極電解処理の一方または両方を用いることができるが、前記電解処理は少なくとも陰極電解処理を含むことが好ましい。Sn酸化物量を低減するという観点からは、前記前処理として、下記(1)~(3)のいずれかの処理を行うことが好ましく、中でも(1)または(2)の処理を行うことがより好ましく、(1)の処理を行うことがさらに好ましい。
(1)アルカリ性水溶液中での陰極電解処理
(2)アルカリ性水溶液中での浸漬処理
(3)アルカリ性水溶液中での陰極電解処理およびそれに続くアルカリ性水溶液中での陽極電解処理
 前記アルカリ性水溶液は、1または2以上の任意の電解質を含むことができる。電解質としては、特に限定されることなく任意のものを用いることができる。電解質としては、例えば炭酸塩を用いることが好ましく、炭酸ナトリウムあるいは炭酸水素ナトリウムを用いることがさらに好ましい。アルカリ性水溶液の濃度は特に限定されないが、1g/L以上30g/L以下とすることが好ましく、5g/L以上20g/L以下とすることがさらに好ましい。
 前記アルカリ性水溶液の温度は特に限定されないが、10℃以上70℃以下が好ましく、15℃以上60℃以下とすることがさらに好ましい。
 また、前記前処理として陰極電解処理を行う場合、該陰極電解処理における電気量密度の下限は特に限定されないが、0.2C/dm以上とすることが好ましく、0.5C/dm以上とすることがより好ましい。一方、陰極電解処理の電気量密度の上限についても特に限定されないが、過度に高くしても前処理の効果が飽和するため、電気量密度は10.0/dm以下とすることが好ましい。
 前記前処理として浸漬処理を行う場合、該浸漬処理における浸漬時間の下限は特に限定されないが、0.1秒以上とすることが好ましく、0.5秒以上とすることがより好ましい。一方、浸漬時間の上限についても特に限定されないが、過度に長くしても前処理の効果が飽和するため、浸漬時間は10秒以下とすることが好ましい。
 前記前処理として、陰極電解処理した後に陽極電解処理する場合、該陽極電解処理における電気量密度の下限は特に限定されないが、0.5C/dm以上とすることが好ましく、1.0C/dm以上とすることがよりに好ましい。一方、前記陽極電解処理における電気量密度の上限についても特に限定されないが、過度に高くしても前処理の効果が飽和するため、前記電気量密度は10.0C/dm以下とすることが好ましい。
 前記前処理を行った後には、表面に付着した前処理液を除去する観点で水洗することが好ましい。
 また、下地鋼板の表面にSn層あるいはNi含有層を形成する際には、下地鋼板に対して前処理を施すことが好ましい。前記前処理としては、任意の処理を行うことができるが、脱脂、酸洗、および水洗の少なくとも1つを行うことが好ましい。
 前記Ni含有層を備える表面処理鋼板を製造する場合は、少なくとも一方の面にNi含有層を有する鋼板に対して任意に前記前処理を施すことができる。前記前処理の方法は特に限定されず、任意の方法を用いることができるが、前記前処理として、脱脂、酸洗、および水洗の少なくとも1つを行うことが好ましい。
[浸漬工程]
 次に、前記陰極電解処理工程で得られた鋼板を、前記電解液中に無電解で浸漬する(浸漬工程)。すなわち、電解を行わない状態で鋼板を電解液に浸漬する。前記浸漬処理により、前記表面処理鋼板のエチレングリコールの接触角を50°以下に調整することができる。浸漬工程で使用する電解液は、前記電解液調整工程を経て調整された電解液であれば、前記陰極電解工程で使用する電解液と同じであってもよいし、異なる電解液であってもよいが、コストの観点からは、前記陰極電解工程で使用する電解液と同じであることが好ましい。
浸漬時間:1.0~5.0秒
 上記浸漬処理における浸漬時間は、1.0秒以上5.0秒以下とすることが重要である。浸漬時間が1.0秒未満あるいは5.0秒超であると、エチレングリコールの接触角が50°超となり、BPAフリー塗料との密着性が劣化し、BPAフリー塗装耐食性が劣化する。エチレングリコールの接触角をさらに低減させる観点から、前記浸漬時間は、1.2秒以上が好ましく、1.5秒以上がより好ましい。同様の観点から、前記浸漬時間は4.5秒以下が好ましく、4.0秒以下がより好ましい。
 前記浸漬処理は、1つの浸漬槽で行ってもよく、2つ以上の浸漬槽で行ってもよい。例えば、鋼板を一定の速度で通板しながら連続的に処理を行う場合、浸漬時間を確保するためには浸漬槽の長さを長くする必要がある。そのため、2つ以上の任意の数の浸漬槽を連続的に通過させることにより、上記浸漬時間を確保してもよい。しかし、次の水洗工程の前に鋼板が乾燥するとエチレングリコールの接触角が増加するため、浸漬処理の途中で鋼板を乾燥させないことが好ましい。鋼板を乾燥させないためには、浸漬槽から鋼板が出る際に、リンガーロールなどにより鋼板表面の電解液を除去せず、表面が電解液で濡れたままとすることが好ましい。また、ある浸漬槽を出てから次の浸漬槽に入るまでの間の時間をできる限り短くすることが好ましい。乾燥を防ぐという観点、および設備コスト低減の観点からは、前記浸漬処理を1つの浸漬槽で行うことがより好ましい。前記浸漬処理は、陰極電解処理を行った電解槽において行ってもよい。
 浸漬処理を行う際の電解液の温度は、特に限定されないが、表面処理鋼板のエチレングリコールの接触角をさらに低減するという観点からは、40℃以上70℃以下の温度域とすることが好ましい。上述した表面処理鋼板を安定的に製造するためという観点からは、浸漬工程において、電解液の温度をモニターし、上記の温度域に維持することが好ましい。
 浸漬処理を行う際の電解液のpHは特に限定されないが、4.0以上とすることが好ましく、4.5以上とすることがより好ましい。また、前記pHは、7.0以下とすることが好ましく、6.5以下とすることがより好ましい。上述した表面処理鋼板を安定的に製造するためという観点からは、浸漬工程において、電解液のpHをモニターし、上記pHの範囲に維持することが好ましい。
 上記浸漬工程では、液の持ち出しや持ち込み、水の蒸発等の影響で、電解液の濃度は常に変化する。浸漬工程における電解液の濃度変化は、装置の構成や製造条件で変わるため、表面処理鋼板をより安定的に製造するという観点からは、浸漬工程において電解液に含まれる成分の濃度をモニターし、上述した濃度範囲に維持することが好ましい。
 なお、前記陰極電解処理から浸漬工程の間は、エチレングリコールの接触角が50°以下に調整するという観点から、鋼板が乾燥しないようにすることが好ましい。なお、前記陰極電解処理工程と浸漬工程で異なる槽や異なる組成の電解液を使用する場合は、陰極電解処理工程と浸漬工程の間に、任意に水洗をさらに施してもよい。
[水洗工程]
 次に、上記浸漬工程後の鋼板を少なくとも1回水洗する。水洗を行うことにより、鋼板の表面に残留している電解液を除去することができる。前記水洗は、特に限定されることなく任意の方法で行うことができる。例えば、浸漬処理を行うための浸漬槽の下流に水洗タンクを設け、浸漬後の鋼板を連続的に水に浸漬することができる。また、浸漬後の鋼板にスプレーで水を吹き付けることによって水洗を行ってもよい。
 水洗を行う回数は特に限定されず、1回でも、2回以上でもよい。しかし、水洗タンクの数が過剰に多くなることを避けるため、水洗の回数は5回以下とすることが好ましい。また、水洗処理を2回以上行う場合、各水洗は、同じ方法で行ってもよく、異なる方法で行ってもよい。
 本発明においては、前記水洗処理工程の少なくとも最後の水洗において、電気伝導度100μS/m以下の水を使用することが重要である。これにより、表面処理鋼板の表面に吸着するK、Na、Mg、およびCaの量を低減し、その結果としてBPAフリー塗料との密着性を向上させることができる。電気伝導度100μS/m以下の水は、任意の方法で製造することができる。前記電気伝導度100μS/m以下の水は、例えば、イオン交換水または蒸留水であってよい。一方、前記電気伝導度の下限はとくに限定されないが、過度の低減は製造コストの増加を招く。そのため、製造コストの観点からは、前記電気伝導度を1μS/m以上とすることが好ましく、5μS/m以上とすることがより好ましく、10μS/m以上とすることがさらに好ましい。
 なお、前記水洗処理工程において2回以上の水洗を行う場合、最後の水洗に電気伝導度100μS/m以下の水を使用すれば上述した効果が得られるため、最後の水洗以外の水洗には、任意の水を用いることができる。最後の水洗以外の水洗にも電気伝導度100μS/m以下の水を用いても良いが、コストを低減するという観点からは、最後の水洗にのみ電気伝導度100μS/m以下の水を使用し、最後の水洗以外の水洗には、水道水、工業用水など、通常の水を使用することが好ましい。
 表面処理鋼板の表面に吸着するK、Na、Mg、およびCaの量をさらに低減するという観点からは、最後の水洗に使用する水の電気伝導度は50μS/m以下とすることが好ましく、30μS/m以下とすることがより好ましい。
 水洗処理に用いる水の温度は、特に限定されず、任意の温度であってよい。しかし、過度に温度が高いと水洗設備に過剰な負担がかかるため、水洗に使用する水の温度は95℃以下とすることが好ましい。一方、水洗に使用する水の温度の下限も特に限定されないが、0℃以上であることが好ましい。前記水洗に使用する水の温度は室温であってもよい。
 水洗処理1回あたりの水洗時間は、特に限定されないが、水洗処理の効果を高めるという観点からは0.1秒以上が好ましく、0.2秒以上がさらに好ましい。また、水洗処理の1回あたりの水洗時間の上限も、特に限定されないが、連続ラインで製造を行う場合は、ラインスピードが下がって生産性が低下するという理由から、10秒以下が好ましく、8秒以下がさらに好ましい。
 上記水洗処理工程の後には、任意に乾燥を行ってもよい。乾燥の方式は特に限定されず、例えば、通常のドライヤーや電気炉乾燥方式が適用できる。乾燥処理の際の温度としては、100℃以下が好ましい。上記範囲内であれば、表面処理皮膜の変質を抑制できる。なお、下限は特に限定されないが、通常、室温程度である。
 本発明の表面処理鋼板の用途は特に限定されないが、例えば、食缶、飲料缶、ペール缶、18リットル缶など種々の容器の製造に使用される容器用表面処理鋼板として特に好適である。
(実施例1)
 本発明の効果を確認するために、以下に述べる手順で表面処理鋼板を製造し、その特性を評価した。本実施例1では、鋼板と、前記鋼板の少なくとも一方の表面上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板を製造した。
(電解液調製工程)
 まず、表1に示す組成A~Gを有する電解液を、表1に示した各条件で調製した。すなわち、表1に示した各成分を水と混合して水溶液とし、次いで前記水溶液を表1に示したpHおよび温度に調整した。なお、電解液Gは、特許文献6の実施例で使用されている電解液に相当する。pHの上昇にはいずれもアンモニア水を使用し、pHの低下には電解液A、B、Gには硫酸、電解液C、Dには塩酸、電解液E、Fには硝酸を使用した。
(鋼板に対する前処理)
 一方、鋼板に電解脱脂、水洗、希硫酸への浸漬による酸洗、および水洗を順次施したのち、キープウェットのまま陰極電解処理工程に供した。前記鋼板としては、Cr含有量が表2、3に示す値であり、板厚が0.17mmである缶用鋼板(T4原板)を使用した。
(陰極電解処理工程)
 次に、前記鋼板に対して、表2、3に示す条件で陰極電解処理を施した。なお、陰極電解処理の際の電解液は表1に示したpHと温度に保持した。陰極電解処理時の電流密度は40A/dmとし、電解時間とパス数は適宜変化させた。陰極電解処理時の陽極としては、基体としてのTiに酸化イリジウムをコーティングした不溶性陽極を使用した。陰極電解処理を行った後は、鋼板を乾燥させないようキープウェットのまま浸漬工程に供した。
(浸漬工程)
 次に、上記陰極電解処理後の鋼板を前記電解液中に浸漬した。浸漬時間は表2、3に示す値とした。なお、浸漬の際の電解液は表1に示したpHと温度に保持した。陰極電解処理工程と浸漬工程で同じ電解液を使用した際は、水洗を施さず、リンガーロールなどで電解液を絞らずに、鋼板を乾燥させないようキープウェットのまま浸漬工程に供した。陰極電解処理工程と浸漬工程で異なる電解液を使用した際は、浸漬工程の電解液槽に陰極電解処理工程の電解液を持ち込まないように、陰極電解処理工程後に水洗を施し、鋼板を乾燥させないようキープウェットのまま浸漬工程に供した。浸漬処理を行った後は、鋼板を乾燥させないようキープウェットのまま水洗工程に供した。
(水洗工程)
 次いで、上記浸漬工程後の鋼板に水洗処理を施した。前記水洗処理は、表2、3に示した条件で1~5回行った。各回の水洗の方法と、使用した水の電気伝導度は表2、3に示したとおりとした。水洗後は、ブロワーを用いて室温で乾燥を行った。
 得られた表面処理鋼板のそれぞれについて、上述の方法で金属Cr層の前記鋼板の片面当たりのCr付着量、酸化Cr層の前記鋼板の片面当たりのCr付着量を測定した。また、得られた表面処理鋼板のそれぞれについて、エチレングリコールの接触角、吸着元素量、Fe原子比率、Sn原子比率、Ni原子比率、を後述の方法で測定した。測定結果は表4、5に示す。
(エチレングリコールの接触角)
 得られた表面処理鋼板のエチレングリコールの接触角は、協和界面科学社製の自動接触角計CA-VP型を用いて測定した。表面処理鋼板の表面温度を20℃±1℃とし、エチレングリコールは20±1℃の富士フイルム和光純薬株式会社の試薬特級のエチレングリコールを使用し、2μlの液滴量を表面処理鋼板の表面に滴下し、1秒後にθ/2法によって接触角を測定し、5滴分の接触角の相加平均値をエチレングリコールの接触角とした。
 なお、熱による接触角の変化を確認するため、表面処理鋼板に200℃、10分間の熱処理を施した後の接触角も測定した。測定条件は上記と同様とした。その結果、本発明の条件を満たす表面処理鋼板では、熱処理得前後で接触角の値が実質的に同じであった。それに対し、本発明の条件を満たさない表面処理鋼板では、熱処理により接触角の値が大きく変化するものがあった。
(吸着元素量)
 表面処理鋼板の表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計を、XPSにより測定した。測定においては、スパッタは行わなかった。試料最表面のK2p、Na1s、Ca2p、Mg1s、およびCr2pのナロースペクトルの積分強度から、相対感度係数法により原子比率を定量化し、(K原子比率+Na原子比率+Ca原子比率+Mg原子比率)/Cr原子比率を算出した。XPSの測定には、アルバックファイ社製走査型X線光電子分光分析装置PHI X-toolを用い、X線源はモノクロAlKα線、電圧は15kV、ビーム径は100μmφ、取出角は45°とした。
(Fe原子比率)
 表面処理鋼板の表面におけるFeの、Crに対する原子比率を、XPSにより測定した。測定においては、スパッタは行わなかった。試料表面のFe2pおよびCr2pのナロースペクトルの積分強度から、相対感度係数法により原子比率を定量化し、Fe原子比率/Cr原子比率を算出した。XPSの測定には、アルバックファイ社製走査型X線光電子分光分析装置PHI X-toolを用い、X線源はモノクロAlKα線、電圧は15kV、ビーム径は100μmφ、取出角は45°とした。
 さらに、得られた表面処理鋼板について、以下の方法でBPAフリー塗料との密着性、BPAフリー塗装耐食性を評価した。評価結果を表4、5に示す。
(サンプルの作製)
 BPAフリー塗料との密着性およびBPAフリー塗装耐食性の評価に使用するサンプルとしてのBPAフリー塗装鋼板を、以下の手順で作製した。
 得られた表面処理鋼板の表面に、缶内面用ポリエステル系塗料(BPAフリー塗料)を塗布し、180℃で10分間の焼付を行ってBPAフリー塗装鋼板を作製した。塗装の付着量は60mg/dmとした。
(BPAフリー塗料との密着性)
 同じ条件で作製したBPAフリー塗装鋼板2枚を、ナイロン接着フィルムを挟んで塗装面が向かい合わせになるように積層した後、圧力2.94×10Pa、温度190℃、圧着時間30秒の圧着条件下で貼り合わせた。その後、これを5mm幅の試験片に分割した。分割した試験片は、1.5質量%クエン酸と1.5質量%食塩とを含有する混合水溶液からなる55℃の試験液に、168時間浸漬した。浸漬後、洗浄および乾燥をした後、分割した試験片の2枚の鋼板を引張試験機で引き剥がし、引き剥がしたときの引張強度を測定した。3つの試験片の平均値を下記の4水準で評価した。実用上、評価が1~3であれば、BPAフリー塗料との密着性に優れるといえる。
 1:2.5kgf以上
 2:2.0kgf以上2.5kgf未満
 3:1.5kgf以上2.0kgf未満
 4:1.5kgf未満
(BPAフリー塗装耐食性)
 作製したBPAフリー塗装鋼板の塗装面に、カッターを用いて地鉄(鋼板)に達する深さのクロスカットを入れた。クロスカットを入れた塗装鋼板を、1.5質量%クエン酸と1.5質量%食塩とを含有する混合水溶液からなる55℃の試験液に、96時間浸漬した。浸漬後、洗浄および乾燥をした後、BPAフリー塗装鋼板の塗装面にセロハン粘着テープを貼り付け、引き剥がすテープ剥離を行った。BPAフリー塗装鋼板のクロスカット部の任意の4箇所について塗装剥離幅(カット部から広がる左右の合計幅)を測定し、4箇所の平均値を求め、腐食幅とみなした。BPAフリー塗装耐食性は、前記腐食幅に基づいて下記の4水準で評価した。実用上、評価が1~3であれば、BPAフリー塗装耐食性に優れるといえる。
 1:腐食幅0.3mm未満
 2:腐食幅0.3mm以上0.5mm未満
 3:腐食幅0.5mm以上1.0mm未満
 4:腐食幅1.0mm以上
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
(実施例2)
 次に、前記金属Cr層の下に配置されたSn層をさらに有する表面処理鋼板を製造し、その特性を評価した。すなわち、本実施例2では、鋼板と、前記鋼板の少なくとも一方の表面上に配置されたSn層と、前記Sn層の表面上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板を製造した。
(Sn層)
 上記Sn層の形成は、電気Snめっきにより行った。具体的には、鋼板に電解脱脂、水洗、希硫酸への浸漬による酸洗、および水洗を順次施したのち、フェノールスルホン酸浴を用いた電気Snめっきを施して、前記鋼板の両面にSn層を形成し、Snめっき鋼板を得た。その際、通電時間を変えることにより前記Sn層のSn付着量を表6~8に示す値とした。前記鋼板としては、Cr含有量が表6~8に示す値であり、板厚が0.17mmである缶用鋼板(T4原板)を使用した。
(Ni含有層)
 また、一部の実施例においては、前記電気Snめっきに先立ち、鋼板にワット浴を用いた電気Niめっきを施して、前記鋼板の両面にNi含有層を形成した。その際、通電時間と電流密度を変えることにより前記Ni含有層のNi付着量を表6~8に示す値とした。前記Ni含有層のNi付着量は、上述した蛍光X線による検量線法で測定した。Ni含有層を設けた場合、表面処理鋼板は、鋼板と、前記鋼板の少なくとも一方の表面上に配置されたNi含有層と、前記Ni含有層の表面上に形成されたSn層と、前記Sn層の表面上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する。
(リフロー処理)
 さらに、一部の実施例においては、前記Sn層を形成した後、リフロー処理を施した。前記リフロー処理においては、直接通電加熱方式により50℃/secの加熱速度で5秒間加熱し、その後、水中に導入し急冷した。
(Snめっき鋼板に対する前処理)
 その後、得られたSnめっき鋼板に対して、炭酸水素ナトリウム水溶液中での陰極電解処理による前処理を施した。前記炭酸水素ナトリウム水溶液の濃度は10g/L、温度は50℃とした。また、前記陰極電解処理の際の電気量密度は1.0C/dmとした。
 前処理の後、前記Snめっき鋼板を水洗し、キープウェットのまま陰極電解処理工程、浸漬工程、および水洗工程に供し、表面処理鋼板を得た。前記陰極電解処理工程、浸漬工程、および水洗工程は、表6~8に示した条件で実施し、その他の条件はすべて実施例1と同様とした。
 得られた表面処理鋼板のそれぞれについて、実施例1と同様の方法で金属Cr層の前記鋼板の片面当たりのCr付着量、酸化Cr層の前記鋼板の片面当たりのCr付着量を測定した。さらに、得られた表面処理鋼板のそれぞれについて、実施例1と同様の方法でエチレングリコールの接触角、吸着元素量、Fe原子比率を測定した。さらに本実施例では、Sn原子比率を下記の手順で測定した。測定結果を表9~11に示す。表9~11には、前記Sn層のSn付着量と前記金属Cr層のCr付着量の合計を併記する。
(Sn原子比率)
 表面処理鋼板の表面におけるSnの、Crに対する原子比率を、XPSにより測定した。測定においては、スパッタは行わなかった。試料表面のSn3dおよびCr2pのナロースペクトルの積分強度から、相対感度係数法により原子比率を定量化し、Sn原子比率/Cr原子比率を算出した。XPSの測定には、アルバックファイ社製走査型X線光電子分光分析装置PHI X-toolを用い、X線源はモノクロAlKα線、電圧は15kV、ビーム径は100μmφ、取出角は45°とした。
 さらに、得られた表面処理鋼板について、実施例1と同様の方法でBPAフリー塗料との密着性およびBPAフリー塗装耐食性を評価した。評価結果を表9~11に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
(実施例3)
 次に、前記金属Cr層の下に配置されたNi含有層をさらに有する表面処理鋼板を製造し、その特性を評価した。すなわち、本実施例3では、鋼板と、前記鋼板の少なくとも一方の表面上に配置されたNi含有層と、前記Ni含有層の表面上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板を製造した。
(Ni含有層)
 Ni含有層としては、表12、13に示したように、Ni層およびNi-Fe合金層のいずれかを使用した。
 上記Ni層の形成は、電気Niめっきにより行った。具体的には、鋼板に電解脱脂、水洗、希硫酸への浸漬による酸洗、および水洗を順次施したのち、ワット浴を用いた電気Niめっきを施して、前記鋼板の両面にNi層を形成し、Niめっき鋼板を得た。その際、電気量密度を変えることにより前記Ni層のNi付着量を表12、13に示す値とした。前記Ni層のNi付着量は、上述した蛍光X線による検量線法で測定した。前記鋼板としては、Cr含有量が表12、13に示す値であり、板厚が0.17mmである缶用鋼板(T4原板)を使用した。Ni層形成後は水洗を施し、キープウェットのまま陰極電解処理工程に供した。
 一部の実施例では、上記の手順でNi層を形成した後、焼鈍することによりNi-Fe合金層を形成した。
 次いで、得られたNiめっき鋼板を陰極電解処理工程、浸漬工程、および水洗工程に供し、表面処理鋼板を得た。前記陰極電解処理工程、浸漬工程、および水洗工程は、表12、13に示した条件で実施し、その他の条件はすべて実施例1と同様とした。
 得られた表面処理鋼板のそれぞれについて、実施例1と同様の方法で金属Cr層の前記鋼板の片面当たりのCr付着量、酸化Cr層の前記鋼板の片面当たりのCr付着量を測定した。さらに、得られた表面処理鋼板のそれぞれについて、実施例1と同様の方法でエチレングリコールの接触角、吸着元素量、Fe原子比率を測定した。さらに本実施例では、Ni原子比率を下記の手順で測定した。測定結果を表14、15に示す。表14、15には、前記Ni含有層のNi付着量と前記金属Cr層のCr付着量の合計を併記する。
(Ni原子比率)
 表面処理鋼板の表面におけるNiの、Crに対する原子比率を、XPSにより測定した。測定においては、スパッタは行わなかった。試料表面のNi2pおよびCr2pのナロースペクトルの積分強度から、相対感度係数法により原子比率を定量化し、Ni原子比率/Cr原子比率を算出した。XPSの測定には、アルバックファイ社製走査型X線光電子分光分析装置PHI X-toolを用い、X線源はモノクロAlKα線、電圧は15kV、ビーム径は100μmφ、取出角は45°とした。
 さらに、得られた表面処理鋼板について、実施例1と同様の方法でBPAフリー塗料との密着性およびBPAフリー塗装耐食性を評価した。評価結果を表14、15に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 上記実施例1~3の結果から明らかなように、本発明の条件を満たす表面処理鋼板は、いずれも6価クロムを用いずに製造でき、かつ、優れたBPAフリー塗料との密着性、BPAフリー塗装耐食性を兼ね備えていた。

Claims (16)

  1.  鋼板と、
     前記鋼板の少なくとも一方の表面上に配置された金属Cr層と、
     前記金属Cr層上に配置された酸化Cr層とを有し、
     エチレングリコールの接触角が50°以下であり、
     表面に吸着したK、Na、Mg、およびCaの、Crに対する原子比率の合計が、5.0%以下である、表面処理鋼板。
  2.  前記金属Cr層は、前記鋼板の表面に直接配置されており、
     前記金属Cr層は、Cr付着量が前記鋼板の片面当たり40.0mg/m以上500.0mg/m以下である、請求項1に記載の表面処理鋼板。
  3.  前記表面処理鋼板の表面におけるFeの、Crに対する原子比率が、15%以下である、請求項1または2に記載の表面処理鋼板。
  4.  前記鋼板の少なくとも一方の面に、前記金属Cr層の下に配置されたSn層をさらに有する、請求項1に記載の表面処理鋼板。
  5.  前記Sn層は、Sn付着量が前記鋼板の片面当たり2.0mg/m以上20.0g/m以下であり、前記金属Cr層は、Cr付着量が前記鋼板の片面当たり2.0mg/m以上500.0mg/m以下であり、前記Sn付着量とCr付着量の合計が鋼板片面当たり40.0mg/m以上である、請求項4に記載の表面処理鋼板。
  6.  前記表面処理鋼板の表面におけるSnの、Crに対する原子比率が、100%以下である、請求項4または5に記載の表面処理鋼板。
  7.  前記鋼板の少なくとも一方の面に、前記Sn層の下に配置されたNi含有層をさらに有する、請求項4~6のいずれか一項に記載の表面処理鋼板。
  8.  前記Ni含有層は、Ni付着量が前記鋼板の片面当たり2.0mg/m以上2000mg/m以下である、請求項7に記載の表面処理鋼板。
  9.  前記鋼板の少なくとも一方の面に、前記金属Cr層の下に配置されたNi含有層をさらに有する、請求項1に記載の表面処理鋼板。
  10.  前記Ni含有層は、Ni付着量が前記鋼板の片面当たり2.0mg/m以上2000.0mg/m以下であり、前記金属Cr層は、Cr付着量が前記鋼板の片面当たり2.0mg/m以上500.0mg/m以下であり、前記Ni付着量と前記Cr付着量の合計が鋼板片面当たり40.0mg/m以上である、請求項9に記載の表面処理鋼板。
  11.  前記表面処理鋼板の表面におけるNiの、Crに対する原子比率が、100%以下である、請求項9または10に記載の表面処理鋼板。
  12.  前記酸化Cr層は、Cr付着量が前記鋼板の片面当たり0.1mg/m以上15.0mg/m以下である、請求項1~11のいずれか一項に記載の表面処理鋼板。
  13.  鋼板と、前記鋼板の少なくとも一方の表面上に配置された金属Cr層と、前記金属Cr層上に配置された酸化Cr層とを有する表面処理鋼板の製造方法であって、
     3価クロムイオンを含有する電解液を調製する電解液調製工程と、
     鋼板を前記電解液中で陰極電解処理する陰極電解処理工程と、
     前記陰極電解処理後の鋼板を少なくとも1.0秒以上5.0秒以下前記電解液中に無電解で浸漬する浸漬工程と
     前記陰極電解処理後の鋼板を少なくとも1回水洗する水洗工程とを含み、
     前記電解液調製工程では、
      3価クロムイオン源、カルボン酸化合物、および水を混合し、
      pHを4.0~7.0に調整するとともに、温度を40~70℃に調整することによって前記電解液が調製され、
     前記水洗工程では、
      少なくとも最後の水洗において、電気伝導度100μS/m以下の水を使用する、表面処理鋼板の製造方法。
  14.  前記表面処理鋼板が、前記金属Cr層の下に配置されたSn層をさらに有する、請求項13に記載の表面処理鋼板の製造方法。
  15.  前記表面処理鋼板が、前記Sn層の下に配置されたNi含有層をさらに有する、請求項14に記載の表面処理鋼板の製造方法。
  16.  前記表面処理鋼板が、前記金属Cr層の下に配置されたNi含有層をさらに有する、請求項13に記載の表面処理鋼板の製造方法。
PCT/JP2023/006070 2022-04-08 2023-02-20 表面処理鋼板およびその製造方法 WO2023195252A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023532839A JP7327719B1 (ja) 2022-04-08 2023-02-20 表面処理鋼板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-064802 2022-04-08
JP2022064802 2022-04-08

Publications (1)

Publication Number Publication Date
WO2023195252A1 true WO2023195252A1 (ja) 2023-10-12

Family

ID=88242855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006070 WO2023195252A1 (ja) 2022-04-08 2023-02-20 表面処理鋼板およびその製造方法

Country Status (1)

Country Link
WO (1) WO2023195252A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129979A1 (en) * 2006-05-09 2007-11-15 Sandvik Intellectual Property Ab Flapper valve material, production and use thereof
JP2009035806A (ja) * 2007-07-12 2009-02-19 Okuno Chem Ind Co Ltd 3価クロムめっき浴及びその製造方法
JP2014513214A (ja) * 2011-05-03 2014-05-29 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 電気めっき浴及び黒色クロム層の製造方法
JP2020109205A (ja) * 2018-12-13 2020-07-16 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー 三価クロム化合物を含む電解液を使用してクロムおよび酸化クロムのコーティングで被覆された金属ストリップの製造方法
JP2020200533A (ja) * 2019-06-06 2020-12-17 Jfeスチール株式会社 缶用鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129979A1 (en) * 2006-05-09 2007-11-15 Sandvik Intellectual Property Ab Flapper valve material, production and use thereof
JP2009035806A (ja) * 2007-07-12 2009-02-19 Okuno Chem Ind Co Ltd 3価クロムめっき浴及びその製造方法
JP2014513214A (ja) * 2011-05-03 2014-05-29 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 電気めっき浴及び黒色クロム層の製造方法
JP2020109205A (ja) * 2018-12-13 2020-07-16 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー 三価クロム化合物を含む電解液を使用してクロムおよび酸化クロムのコーティングで被覆された金属ストリップの製造方法
JP2020200533A (ja) * 2019-06-06 2020-12-17 Jfeスチール株式会社 缶用鋼板およびその製造方法

Also Published As

Publication number Publication date
TW202342819A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
EP2551377B1 (en) Method for producing a steel sheet for a container
JP7070823B1 (ja) 表面処理鋼板およびその製造方法
WO2012036201A1 (ja) 容器用鋼板の製造方法
JP6146541B2 (ja) めっき鋼板およびその製造方法
WO2009139480A1 (ja) 錫めっき鋼板の製造方法および錫めっき鋼板ならびに化成処理液
TWI792744B (zh) 表面處理鋼板及其製造方法
JP6098763B2 (ja) Snめっき鋼板及び化成処理鋼板並びにこれらの製造方法
JP7327719B1 (ja) 表面処理鋼板およびその製造方法
WO2023195252A1 (ja) 表面処理鋼板およびその製造方法
JP7327718B1 (ja) 表面処理鋼板およびその製造方法
JP7401039B1 (ja) 表面処理鋼板およびその製造方法
JP7435924B1 (ja) 表面処理鋼板およびその製造方法
JP7070822B1 (ja) 表面処理鋼板およびその製造方法
JP7435925B1 (ja) 表面処理鋼板およびその製造方法
JP7460035B1 (ja) 表面処理鋼板およびその製造方法
WO2023195251A1 (ja) 表面処理鋼板およびその製造方法
WO2023243717A1 (ja) 錫めっき鋼板および缶
JP7401033B1 (ja) 表面処理鋼板およびその製造方法
WO2021261155A1 (ja) 表面処理鋼板、金属容器および表面処理鋼板の製造方法
WO2022138005A1 (ja) 表面処理鋼板およびその製造方法
JP2010013706A (ja) 錫めっき鋼板の製造方法および錫めっき鋼板
WO2010090267A1 (ja) スズめっき鋼板及びその製造方法
WO2024018723A1 (ja) 表面処理鋼板およびその製造方法
JP2010133014A (ja) 錫めっき鋼板の製造方法および錫めっき鋼板
JP2011102417A (ja) 錫めっき鋼板の製造方法および錫めっき鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023532839

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784545

Country of ref document: EP

Kind code of ref document: A1