JP7435924B1 - 表面処理鋼板およびその製造方法 - Google Patents

表面処理鋼板およびその製造方法 Download PDF

Info

Publication number
JP7435924B1
JP7435924B1 JP2023563898A JP2023563898A JP7435924B1 JP 7435924 B1 JP7435924 B1 JP 7435924B1 JP 2023563898 A JP2023563898 A JP 2023563898A JP 2023563898 A JP2023563898 A JP 2023563898A JP 7435924 B1 JP7435924 B1 JP 7435924B1
Authority
JP
Japan
Prior art keywords
steel sheet
treated steel
amount
oxide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023563898A
Other languages
English (en)
Inventor
卓嗣 植野
祐介 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority claimed from PCT/JP2023/025347 external-priority patent/WO2024111159A1/ja
Application granted granted Critical
Publication of JP7435924B1 publication Critical patent/JP7435924B1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

6価クロムを用いることなく製造することができ、かつ、優れたBPAフリー塗料との密着性に優れた表面処理鋼板を提供する。鋼板の少なくとも一方の面に、Ni含有層と、前記Ni含有層上に配置されたZr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層を有する表面処理鋼板であって、エチレングリコールの接触角が50°以下であり、表面に吸着したK、Na、Mg、およびCaの全元素に対する原子比率の合計が、5.0%以下である、表面処理鋼板。

Description

本発明は、表面処理鋼板に関し、特に、BPA(ビスフェノールA)フリー塗料との密着性に優れる表面処理鋼板に関する。本発明の表面処理鋼板は、缶などの容器に好適に用いることができる。また、本発明は、前記表面処理鋼板の製造方法に関する。
表面処理鋼板の1種であるSnめっき鋼板(ぶりき)は、耐食性、溶接性、加工性に優れ、製造も容易であることから、飲料缶、食品缶、ペール缶、18リットル缶などの各種金属缶の素材として広く用いられている。
これらの用途に用いられる表面処理鋼板には、さまざまな内容物に対応するために、該鋼板の表面にエポキシ系塗料などの有機樹脂被覆が施される。有機樹脂被覆を施す場合、6価Crを含む水溶液中で鋼板を電解処理あるいは浸漬処理することで最表面に形成した酸化Cr層が重要な役割を果たす。すなわち、前記酸化Cr層によって有機樹脂被覆層に対する優れた密着性が達成され、その結果、さまざまな内容物に対する耐食性が担保される(特許文献1~5)。
一方で、エポキシ系塗料に含まれるBPAが人間に有害な影響がある可能性が示唆されている。そのためBPAを含有しないポリエステル系樹脂を用いたBPAフリー塗料の開発が進められており(特許文献6、7)、エポキシ系塗料からの置き換えが求められている。しかし、これまで缶用鋼板として用いられてきたぶりきは、エポキシ系塗料に対する密着性と比較し、BPAフリー塗料に対する密着性が乏しい。よって、さまざまな内容物に対する耐食性が十分に確保できず、各種金属缶へのBPAフリー塗料の適用は進んでいないという現状がある。
さらに近年、環境に対する意識の高まりから、世界的に6価Crの使用が規制される方向に向かっている。そのため、各種金属缶に用いられる表面処理鋼板の分野においても、6価クロムを使用しない製造方法の確立が求められている。
6価クロムを使用せずに表面処理鋼板を製造する方法としては、例えば、特許文献8で提案されている方法が知られている。この方法では、Snめっき鋼板の表面にジルコニウム化合物を含有する皮膜を形成した表面処理鋼板が提案されている。
特開昭58-110695号公報 特開昭55-134197号公報 特開昭57-035699号公報 特開平11-117085号公報 特開2007-231394号公報 特開2013-144753号公報 特開2008-050486号公報 特開2018-135569号公報
特許文献8で提案されている方法によれば、6価クロムを用いることなく表面処理層を形成することができる。そして、特許文献8によれば、前記方法により、エポキシ系塗料との密着性に優れる表面処理鋼板を得ることができる。
しかし、特許文献8で提案されているような従来の方法で得られる表面処理鋼板は、エポキシ系塗料に対する密着性には優れるものの、BPAフリー塗料との密着性が劣っており、結果としてBPAフリー塗装耐食性が十分ではなかった。それゆえ、さまざま内容物への耐食性を確保したまま、BPAフリー塗料へ置き換えることができなかった。
そのため、6価クロムを用いることなく製造することができ、BPAフリー塗料に対する優れた密着性を有する表面処理鋼板が求められている。
本発明は、上記実状に鑑みてなされたものであって、その目的は、6価クロムを用いることなく製造することができ、かつ、BPAフリー塗料との密着性に優れる表面処理鋼板を提供することにある。
本発明の発明者らは、上記目的を達成するために鋭意検討を行なった結果、次の(1)および(2)の知見を得た。
(1)Ni含有層上にZr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層を有する表面処理鋼板において、エチレングリコールの接触角と、表面に吸着したK、Na、Mg、およびCaの、全元素に対する原子比率の合計を、それぞれ特定の範囲に制御することにより、BPAフリー塗料との密着性に優れた表面処理鋼板を得ることができる。
(2)上記表面処理鋼板は、皮膜形成後、所定の条件で表面調整を行い、さらに、電気伝導度が所定の値以下である水を用いて最終水洗を行うことにより製造することができる。
本発明は、以上の知見に基づいて完成されたものである。本発明の要旨は次のとおりである。
1.鋼板の少なくとも一方の面に、
Ni含有層と、
前記Ni含有層上に配置された、Zr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層とを有する表面処理鋼板であって、
エチレングリコールの接触角が50°以下であり、
表面に吸着したK、Na、Mg、およびCaの、全元素に対する原子比率の合計が、5.0%以下である、表面処理鋼板。
2.前記Ni含有層は、Ni付着量が前記鋼板の片面当たり0.1~20.0g/mである、上記1に記載の表面処理鋼板。
3.前記皮膜層中におけるZr酸化物およびTi酸化物の付着量の合計が、金属Zr量と金属Ti量で前記鋼板の片面当たり0.3~50.0mg/mである、上記1または2に記載の表面処理鋼板。
4.前記皮膜層は、さらにPを含有し、P付着量が前記鋼板の片面当たり50.0mg/m以下である、上記1~3のいずれか一項に記載の表面処理鋼板。
5.前記皮膜層は、さらにMnを含有し、Mn付着量が前記鋼板の片面当たり50.0mg/m以下である、上記1~4のいずれか一項に記載の表面処理鋼板。
6.鋼板の少なくとも一方の面に、Ni含有層と、前記Ni含有層上に配置されたZr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層とを有する表面処理鋼板の製造方法であって、
少なくとも一方の面にNi含有層を有する鋼板の表面を、ZrイオンおよびTiイオンの少なくとも一方を含有する水溶液で処理して、前記Ni含有層上に前記皮膜層を形成する皮膜形成工程と、
前記皮膜層の表面に前記水溶液が1.0~30.0g/m存在する状態で、0.1~20.0秒保持する表面調整工程と、
前記表面調整工程後の前記鋼板を少なくとも1回水洗する水洗工程とを含み、
前記水洗工程では、
少なくとも最後の水洗において、電気伝導度100μS/m以下の水を使用する、表面処理鋼板の製造方法。
本発明によれば、6価クロムを使用することなく、BPAフリー塗料との密着性に優れる表面処理鋼板を提供することができる。本発明の表面処理鋼板は、容器等の材料として好適に用いることができる。
以下、本発明を実施する方法について具体的に説明する。なお、以下の説明は、本発明の好適な実施形態の例を示すものであって、本発明はこれに限定されない。
本発明の一実施形態における表面処理鋼板は、鋼板の少なくとも一方の面に、Ni含有層と、前記Ni含有層上に配置された皮膜層を有し、前記皮膜層は、Zr酸化物およびTi酸化物の少なくとも一方を含有する。本発明においては、前記表面処理鋼板のエチレングリコールの接触角が50°以下であり、かつ、表面に吸着したK、Na、Mg、およびCaの、全元素に対する原子比率の合計が、5.0%以下であることが重要である。以下、前記表面処理鋼板の構成要件のそれぞれについて説明する。
[鋼板]
前記鋼板としては、とくに限定されることなく任意の鋼板を用いることができるが、缶用鋼板を用いることが好ましい。前記鋼板としては、例えば、極低炭素鋼板または低炭素鋼板を用いることができる。前記鋼板の製造方法についてもとくに限定されず、任意の方法で製造された鋼板を用いることができるが、通常は冷延鋼板を使用すればよい。前記冷延鋼板は、例えば、熱間圧延、酸洗、冷間圧延、焼鈍、および調質圧延を行う、一般的な製造工程により製造することができる。
前記鋼板の成分組成は特に限定されないが、前記鋼板には、本発明の範囲の効果を損なわない範囲でC、Mn、Cr、P、S、Si、Cu、Ni、Mo、Al、不可避的不純物を含有してもよい。その際、前記鋼板としては、例えば、ASTM A623M-09に規定される成分組成の鋼板を好適に用いることができる。
本発明の一実施形態においては、質量%で、
C :0.0001~0.13%、
Si:0~0.020%、
Mn:0.01~0.60%
P :0~0.020%、
S :0~0.030%、
Al:0~0.20%、
N :0~0.040%、
Cu:0~0.20%、
Ni:0~0.15%、
Cr:0~0.10%、
Mo:0~0.05%、
Ti:0~0.020%、
Nb:0~0.020%、
B :0~0.020%、
Ca:0~0.020%、
Sn:0~0.020%、
Sb:0~0.020%、
および残部のFeおよび不可避的不純物からなる成分組成を有する鋼板を用いることが好ましい。上記成分組成のうち、Si、P、S、Al、およびNは含有量が低いほど好ましい成分であり、Cu、Ni、Cr、Mo、Ti、Nb、B、Ca、SnおよびSbは、任意に添加し得る成分である。
前記鋼板の板厚の下限は特に限定されないが、前記板厚は0.10mm以上であることが好ましい。また、前記板厚の上限についても特に限定されないが、前記板厚は0.60mm以下であることが好ましい。なお、ここで「鋼板」には「鋼帯」を包含するものと定義する。
[Ni含有層]
前記Ni含有層は、鋼板の少なくとも一方の面に備えられていればよく、両面に備えられていてもよい。前記Ni含有層は、鋼板の少なくとも一部を覆っていればよく、該Ni含有層が設けられた面の全体を覆っていてもよい。また、前記Ni含有層は、連続層であってもよいし、不連続層であってもよい。前記不連続層としては、例えば、島状構造を有する層が挙げられる。
前記Ni含有層としては、ニッケルが含まれている任意の層を用いることができ、例えば、Ni層およびNi合金層の一方または両方を用いることができる。例えば、Niめっき後の拡散焼鈍処理によってNi合金層となっている場合もNi合金層に含める。また、前記Ni合金層としては、例えば、Ni-Fe合金層が挙げられる。
前記Ni含有層は、Ni基めっき層であることが好ましい。ここで、「Ni基めっき層」とは、Ni含有量が50質量%以上であるめっき層を指すものと定義する。言い換えると、前記Ni基めっき層は、Niめっき層またはNi基合金からなるめっき層である。
前記Ni基めっき層は、マトリックスとしてのNiまたはNi基合金中に、固体微粒子が分散した分散めっき層(複合めっき層)であってもよい。前記固体微粒子としては、とくに限定されることなく任意の材質の微粒子を用いることができる。前記微粒子は、無機微粒子および有機微粒子のいずれであってもよい。前記有機微粒子としては、例えば、樹脂からなる微粒子が挙げられる。前記樹脂としては、任意の樹脂を使用できるが、フッ素樹脂を用いることが好ましく、ポリテトラフルオロエチレン(PTFE)を用いることがより好ましい。前記無機微粒子としては、とくに限定されることなく任意の無機材料からなる微粒子を使用することができる。前記無機材料は、例えば、金属(合金を含む)であってもよく、化合物であってもよく、その他の単体であってもよい。中でも、酸化物、窒化物、および炭化物からなる群より選択される少なくとも1つからなる微粒子を用いることが好ましく、金属酸化物の微粒子を用いることが好ましい。前記金属酸化物としては、例えば、酸化アルミニウム、酸化クロム、酸化チタン、酸化亜鉛などが挙げられる。
前記分散めっきに用いる微粒子の粒径は特に限定されず、任意のサイズの粒子を使用することができる。しかし、微粒子の直径が、Ni含有層としての分散めっき層の厚さを超えないことが好ましい。典型的には、前記微粒子の直径を、1nm以上とすることが好ましく、10nm以上とすることがより好ましい。また、前記微粒子の直径を、50μm以下とすることが好ましく、1000nm以下とすることがより好ましい。
前記Ni含有層におけるNi付着量は、特に限定されることなく任意の量とすることができる。しかし、表面処理鋼板の外観および耐食性をさらに向上させるという観点からは、Ni付着量を鋼板片面当たり20.0g/m以下とすることが好ましい。同様の観点から、前記Ni付着量を0.1g/m以上とすることが好ましく、0.2g/m以上とすることがより好ましい。また、加工性をさらに向上させるという観点からは、前記Ni付着量を1.0g/m以上とすることがさらに好ましい。
前記Ni含有層のNi付着量は蛍光X線による検量線法で測定する。まず、Ni付着量が既知である複数の鋼板を準備し、該鋼板についてNiに由来する蛍光X線強度を事前に測定し、測定した蛍光X線の強度とNi付着量との関係を線形近似して検量線とする。次いで、表面処理鋼板のNiに由来する蛍光X線強度を測定し、上述の検量線を用いて前記Ni含有層のNi付着量を求めることができる。
Ni含有層を形成する方法はとくに限定されず、例えば、電気めっき法など、任意の方法を用いることができる。Ni含有層としてNi-Fe合金層を形成する場合、電気めっき法等の方法により鋼板表面上にNi層を形成した後、焼鈍することによりNi-Fe合金層を形成できる。
前記Ni含有層の表面側にはNi酸化物を含有してもよいし、全く含有しなくてもよい。しかし、湿潤環境下における塗料との密着性である塗料2次密着性(coating secondary adhesion)と耐硫化黒変性(sulfide staining resistance)を向上させる観点からは、Ni含有層の表面側にはNi酸化物を含有しないことが好ましい。Ni酸化物はNiめっき後の水洗水中に含有される溶存酸素などによっても形成されうるが、後述する前処理などで前記Ni含有層に含有するNi酸化物を除去することが好ましい。
[皮膜層]
前記Ni含有層上にはZr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層が存在する。Zr酸化物およびTi酸化物の少なくとも一方を前記皮膜層に含有させることは、優れたBPAフリー塗料との密着性を得るために必要である。
前記皮膜層中におけるZr酸化物およびTi酸化物の付着量の合計の下限は特に限定されない。しかし、BPAフリー塗料との密着性をさらに向上させるという観点からは、Zr酸化物およびTi酸化物の付着量の合計は、金属Zr量と金属Ti量で鋼板片面当たり0.3mg/m以上が好ましく、0.4mg/m以上がより好ましく、0.5mg/m以上がさらに好ましい。一方、皮膜層中におけるZr酸化物およびTi酸化物の付着量の合計の上限についても特に限定されない。しかし、Zr酸化物およびTi酸化物の付着量の合計が過度に多いと、皮膜層の凝集破壊によりBPAフリー塗料との密着性が損なわれる場合がある。そのため、より安定してBPAフリー塗料との密着性を確保するという観点からは、Zr酸化物およびTi酸化物の付着量の合計は、金属Zr量と金属Ti量で鋼板片面当たり50.0mg/m以下が好ましく、45.0mg/m以下がより好ましく、40.0mg/m以下がさらに好ましい。なお、Zr酸化物およびTi酸化物の付着量の合計を算出するにあたり、Zr酸化物の付着量としては金属Zr量に換算した値を使用し、Ti酸化物の付着量としては金属Ti量に換算した値を使用する。
前記皮膜層中におけるZr酸化物の付着量は蛍光X線による検量線法で測定する。まず、金属Zrとしての付着量が既知である複数の鋼板を準備し、該鋼板についてZrに由来する蛍光X線強度を事前に測定し、測定した蛍光X線の強度と金属Zrとしての付着量との関係を線形近似して検量線とする。次いで、表面処理鋼板のZrに由来する蛍光X線強度を測定し、上述の検量線を用いて前記皮膜層中におけるZr酸化物の付着量を金属Zr換算で求めることができる。
また、前記皮膜層中におけるTi酸化物の付着量は蛍光X線による検量線法で測定する。まず、金属Tiとしての付着量が既知である複数の鋼板を準備し、該鋼板についてTiに由来する蛍光X線強度を事前に測定し、測定した蛍光X線の強度と金属Tiとしての付着量との関係を線形近似して検量線とする。次いで、表面処理鋼板のTiに由来する蛍光X線強度を測定し、上述の検量線を用いて前記皮膜層中におけるTi酸化物の付着量を金属Ti換算で求めることができる。
前記皮膜層には、BPAフリー塗料との密着性をさらに向上させるという観点から、Pを含有してもよい。皮膜層に含有するPの付着量の上限は特に限定されないが、皮膜層の凝集破壊によりBPAフリー塗料との密着性が損なわれる場合があるため、鋼板片面当たり50.0mg/m以下であることが好ましい。皮膜層に含有するPの付着量の下限は特に限定されず、例えば0.0mg/mであってよく、全く含有していなくてもよい。
前記皮膜層中におけるPの付着量は蛍光X線による検量線法で測定する。まず、P付着量が既知である複数の鋼板を準備し、該鋼板についてPに由来する蛍光X線強度を事前に測定し、測定した蛍光X線の強度とP付着量との関係を線形近似して検量線とする。次いで、表面処理鋼板のPに由来する蛍光X線強度を測定し、上述の検量線を用いて前記皮膜層中におけるPの付着量を求めることができる。
前記皮膜層には、BPAフリー塗料との密着性をさらに向上させるという観点から、Mnを含有してもよい。皮膜層に含有するMnの付着量の上限は特に限定されないが、皮膜層の凝集破壊によりBPAフリー塗料との密着性が損なわれる場合があるため、鋼板片面当たり50.0mg/m以下であることが好ましい。皮膜層に含有するMnの付着量の下限は特に限定されず、例えば0.0mg/mであってよく、全く含有していなくてもよい。
前記皮膜層中におけるMnの付着量は蛍光X線による検量線法で測定する。まず、Mn付着量が既知である複数の鋼板を準備し、該鋼板についてMnに由来する蛍光X線強度を事前に測定し、測定した蛍光X線の強度とMn付着量との関係を線形近似して検量線とする。次いで、表面処理鋼板のMnに由来する蛍光X線強度を測定し、上述の検量線を用いて前記皮膜層中におけるMnの付着量を求めることができる。
上記皮膜層には、Niが含有されていてもよい。皮膜層中のNi含有量の上限は特に限定されない。皮膜層はNiを含んでいなくてもよく、0.0mg/m2であってよい。
上記皮膜層には、Cが含有されていてもよい。皮膜層中のC含有量の上限は特に限定されない。皮膜層はCを含んでいなくてもよく、0.0mg/mであってよい。
上記皮膜層には、Zr、Ti、O、Ni、Mn、PおよびC並びに後述するK、Na、MgおよびCa以外の元素が含まれる場合がある。前記元素以外の元素としては、後述する皮膜形成工程で使用する水溶液中に含まれるCu、Zn、Fe等の金属不純物及びS、N、F、Cl、Br、Si等の元素が挙げられる。しかし、Zr、Ti、O、Ni、Mn、P、C、K、Na、Mg及びCa以外の元素が過度に存在すると、BPAフリー塗料との密着性が低下する場合がある。そのため、皮膜層中のZr、Ti、O、Ni、Mn、P、C、K、Na、Mg及びCa以外の元素の含有量の合計が、原子比率で30%以下であることが好ましく、20%以下であることがより好ましい。皮膜層はZr、Ti、O、Ni、Mn、P、C、K、Na、Mg及びCa以外の元素を含んでいなくてもよく、原子比率で0%であってよい。上記元素の含有量はXPS(X線光電子分光法)で測定することができる。
[エチレングリコールの接触角]
本発明においては、表面処理鋼板のエチレングリコールの接触角が50°以下であることが重要である。エチレングリコールの接触角が50°以下となるよう表面処理鋼板の表面を制御することにより、BPAフリー塗料に含まれるポリエステル樹脂と表面処理鋼板との間に強固な結合が形成され、その結果、BPAフリー塗料との高い密着性を得ることができる。BPAフリー塗料との密着性をさらに向上させるという観点からは、エチレングリコールの接触角を48°以下とすることが好ましく、45°以下とすることがより好ましい。前記エチレングリコールの接触角は、BPAフリー塗料との密着性向上の観点からは低ければ低いほど好ましいため、その下限はとくに限定されず、0°であってもよい。しかし、製造しやすさなどの観点からは、5°以上であってよく、8°以上であってもよい。
さらに、本発明における表面処理鋼板の表面、すなわちZr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層の表面の状態は、熱に対して安定であり、例えば塗装焼付相当の熱処理後にもエチレングリコールの接触角が大きく変化しない。そのような表面状態の熱安定性も、BPAフリー塗料との密着性の向上に寄与していると推定している。そのため、塗装相当熱処理後の表面処理鋼板のエチレングリコールの接触角についても50°以下であることが好ましく、48°以下であることがより好ましく、45°以下であることがさらに好ましい。また、塗装相当熱処理後の表面処理鋼板の接触角の下限はとくに限定されず、0°であってもよいが、前記接触角は、5°以上であってよく、8°以上であってもよい。なお、前記塗装相当熱処理の条件は、最高温度を200℃とし、前記最高温度での保持時間を10分とする。
表面処理鋼板のエチレングリコールの接触角が50°以下となるメカニズムは明らかではないが、後述する表面調整工程で表面の微小な粗さが調整され、エチレングリコールとの親和性が高い表面に改質されると考えられる。後述する表面調整工程を経なかった場合は、製造直後に表面処理鋼板の表面がエチレングリコールとの親和性が高い表面をしていたとしても、前記皮膜層を、前記親和性が高い状態で定着させることができず、エチレングリコールの接触角が50°を上回る。
なお、前記エチレングリコールの接触角は、θ/2法により測定することができる。前記測定においては、測定対象の表面処理鋼板の温度を20℃とし、温度20℃のエチレングリコールを表面処理鋼板の表面に滴下する。滴下から1秒経過後の接触角を、θ/2法によって算出する。より具体的には、実施例に記載した方法で測定することができる。ここで、表面処理鋼板の表面に、CSO(Cottonseed Oil)、DOS(Dioctyl Sebacate)、ATBC(Acetyl Tributyl Citrate)などの防錆油が塗油されている場合がある。表面処理鋼板が塗油されている場合は、前記塗装相当熱処理を施して塗油された油を気化させてから、実施例に記載した方法により測定した接触角を、塗油後の当該表面処理鋼板のエチレングリコールの接触角とする。上述したように本発明の表面処理鋼板は熱処理に対して安定であるため、上記熱処理を行ってから測定した接触角及び後述する吸着元素の原子比率が本発明の条件を満たすならば、上記熱処理前の表面処理鋼板についても本発明の効果を奏すると考えられる。なお、塗油された油中に含まれる防錆剤などの添加成分が塗装相当熱処理後も表面処理鋼板の表面に残留することがあるが、その量は微量であるため、上述のエチレングリコールの接触角及び吸着元素の原子比率には影響を及ぼさない。
なお、特許文献1~5で提案されているような従来の6価クロム浴を用いて製造される表面処理鋼板においては、表層に存在するクロム水和酸化物層の組成が湿潤環境下でのエポキシ系塗料に対する密着性に大きく影響を及ぼすことが報告されている。湿潤環境下では、エポキシ系塗膜を浸透してきた水が、エポキシ系塗膜とクロム水和酸化物層との間の界面の接着を阻害する。そのため、親水性であるOH基がクロム水和酸化物層に多く存在する場合は、界面における水の拡張濡れが促進され、接着力が低下すると考えられていた。したがって、従来の表面処理鋼板においては、クロム水和酸化物のオキソ化の進行によるOH基の減少、すなわち表面の疎水化によって湿潤環境下でのエポキシ系塗料に対する密着性を向上させていた。
これに対して本発明は、水ではなくエチレングリコールに着目し、エチレングリコールとの親和性が高い表面に調整することによって、BPAフリー塗料との強固な密着性を確保できることを見出した。したがって本発明は、上述した従来技術とはまったく異なる技術的思想に基づくものであると言える。エチレングリコールとの親和性が高い表面に調整することによる、BPAフリー塗料との密着性向上メカニズムは明らかではない。しかし、エチレングリコールは、BPAフリー塗料を構成するポリエステル樹脂の構成成分である水酸基モノマーの一つであるため、エチレングリコールと親和性が高い表面に調整することで、BPAフリー塗料との密着性が向上したと推定している。
[吸着元素の原子比率]
上述したように、本発明の表面処理鋼板はエチレングリコールの接触角が50°以下であり、その表面は化学的に活性である。そのため、前記表面処理鋼板の表面には、K、Na、Mg、およびCaなどの元素のカチオンが吸着しやすい。本発明者らは、単純にエチレングリコールの接触角を50°以下とするのみでは、吸着した前記カチオンの影響のため、本来の密着性が発揮されないことを見出した。本発明では、表面処理鋼板の表面に吸着した前記カチオンの量を低減することにより、BPAフリー塗料との密着性を向上させることができる。
具体的には、表面処理鋼板の表面に吸着したK、Na、Mg、およびCaの全元素に対する原子比率の合計を、5.0%以下、好ましくは3.0%以下、より好ましくは1.0%以下とする。前記原子比率の合計は低ければ低いほどよいため、下限は特に限定されず、0.0%であってよい。前記原子比率の合計は、XPSにより測定することができる。前記測定においては、表面処理鋼板の最表面におけるK2p、Na1s、Ca2p、Mg1sのナロースペクトルの積分強度から、相対感度係数法により、K、Na、Mg、およびCaの全元素に対する原子比率を求めればよい。より具体的には、実施例に記載した方法で測定することができる。なお、表面処理鋼板が塗油されている場合は、前記塗装相当熱処理を施して塗油された油を気化させてから、実施例に記載した方法により測定した原子比率を、塗油後の当該表面処理鋼板の吸着元素の原子比率とする。
[製造方法]
本発明の一実施形態における表面処理鋼板の製造方法では、以下に説明する方法で、上記特性を備えた表面処理鋼板を製造することができる。
本発明の一実施形態における表面処理鋼板の製造方法は、鋼板の少なくとも一方の面に、Ni含有層と、前記Ni含有層上に配置された皮膜層を有する表面処理鋼板の製造方法であって、次の(1)~(3)の工程を含む。以下、各工程について説明する。
(1)皮膜形成工程
(2)表面調整工程
(3)水洗工程
[皮膜形成工程]
上記皮膜形成工程においては、少なくとも一方の面にNi含有層を有する鋼板の表面を、ZrイオンおよびTiイオンの少なくとも一方を含有する水溶液で処理して、前記Ni含有層上に皮膜層を形成する。形成される前記皮膜層は、Zr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層である。
前記水溶液による処理は、とくに限定されることなく任意の方法で行うことができる。前記処理は、例えば、電解で行うことができる。前記処理を電解によって行う場合は、Ni含有層を有する鋼板を前記水溶液中で陰極電解処理することが好ましい。前記陰極電解処理には、クロメート処理等に用いられている従来の設備をそのまま使用することが可能である。そのため、設備コスト低減の観点からは、陰極電解処理により皮膜層を形成することが好ましい。
前記水溶液の調製方法はとくに限定されないが、例えば、Zrイオン源としてのZr含有化合物およびTiイオン源としてのTi含有化合物の一方または両方を水に溶解させることにより調製することができる。前記水としては、蒸留水または脱イオン水を用いることができるが、それに限定されず任意のものを用いることができる。
前記Zr含有化合物およびTi含有化合物としては、それぞれ、ZrイオンおよびTiイオンを供給することができる任意の化合物を用いることができる。前記Zr含有化合物としては、例えば、ZrFなどのZr塩またはHZrFやKZrFなどのZr錯体を用いることが好ましい。Zrイオンは、陰極の表面におけるpH上昇に伴いZr酸化物となり皮膜を形成する。前記Ti含有化合物としては、例えば、TiFなどのTi塩、またはHTiFやKTiFなどのTi錯体を用いることが好ましい。Tiイオンは、陰極の表面におけるpH上昇に伴いTi酸化物となり皮膜を形成する。
前記水溶液中には、さらに、フッ素イオン、硝酸イオン、アンモニウムイオン、リン酸イオン、Mnイオン、硫酸イオンからなる群より選択される少なくとも1つが含まれていてもよい。前記水溶液中が、硝酸イオンとアンモニウムイオンの両者を含有する場合、数秒から数十秒程度の短時間で処理が可能であり、工業的には極めて有利である。そのため、前記水溶液中は、ZrイオンおよびTiイオンの少なくとも一方に加え、硝酸イオンとアンモニウムイオンの両者を含有することが好ましい。以下、イオン濃度の単位である「ppm」は、特に断らない限り質量百万分率を指す。
前記水溶液中がZrイオンを含有する場合、Zrイオンの濃度の下限は特に限定されないが、100ppm以上とすることが好ましい。また、Zrイオンの濃度の上限についても特に限定されないが、4000ppm以下とすることが好ましい。同様に、前記水溶液中がTiイオンを含有する場合、Tiイオンの濃度の下限は特に限定されないが、100ppm以上とすることが好ましい。また、Tiイオンの濃度の上限についても特に限定されないが、4000ppm以下とすることが好ましい。
また、前記水溶液がフッ素イオンを含有する場合、フッ素イオンの濃度の下限は特に限定されないが、120ppm以上とすることが好ましい。また、フッ素イオンの濃度の上限についても特に限定されないが、4000ppm以下とすることが好ましい。前記水溶液がリン酸イオンを含有する場合、リン酸イオンの濃度の下限は特に限定されないが、50ppm以上とすることが好ましい。また、リン酸イオンの濃度の上限についても特に限定されないが、5000ppm以下とすることが好ましい。前記水溶液がMnイオンを含有する場合、Mnイオンの濃度の下限は特に限定されないが、50ppm以上とすることが好ましい。また、Mnイオンの濃度の上限についても特に限定されないが、5000ppm以下とすることが好ましい。前記水溶液がアンモニウムイオンを含有する場合、アンモニウムイオンの濃度の下限は特に限定されず、0ppmであってよい。また、アンモニウムイオンの濃度の上限についても特に限定されないが、20000ppm以下とすることが好ましい。前記水溶液が硝酸イオンを含有する場合、硝酸イオンの濃度の下限は特に限定されず、0ppmであってよい。また、硝酸イオンの濃度の上限についても特に限定されないが、20000ppm以下とすることが好ましい。前記水溶液が硫酸イオンを含有する場合、硫酸イオンの濃度の下限は特に限定されず、0ppmであってよい。また、硫酸イオンの濃度の上限についても特に限定されないが、20000ppm以下とすることが好ましい。
陰極電解処理を行う際の前記水溶液の温度の上限はとくに限定されないが、例えば、50℃以下とすることが好ましい。50℃以下で陰極電解を行うことにより、非常に細かい粒子からなる、緻密で均一な皮膜組織の生成が可能となる。また、前記水溶液の温度を50℃以下とすることにより、形成される皮膜層における欠陥、割れ、マイクロクラック等の発生を抑制し、BPAフリー塗料との密着性をさらに向上させることができる。また、陰極電解処理を行う際の前記水溶液の温度の下限についてもとくに限定されないが、例えば、10℃以上とすることが好ましい。前記水溶液の温度を10℃以上とすることにより、皮膜の生成効率を高めることができる。また、前記水溶液の温度を10℃以上とすれば、夏場など外気温が高い場合であっても該水溶液の冷却が不要となるため、経済的である。
前記水溶液のpHの下限は、とくに限定されないが、3以上とすることが好ましい。pHが3以上であれば、Zr酸化物あるいはTi酸化物の生成効率をさらに向上させることができる。また、前記水溶液のpHの上限についても、とくに限定されないが、5以下とすることが好ましい。pHが5以下であれば、前記水溶液中に沈殿が多量に発生することを防止し、連続生産性を良好にすることができる。
なお、pHの調整や電解効率の向上を目的として、前記水溶液に、例えば、硝酸、アンモニア水などを添加してもよい。
陰極電解する際の電流密度の下限はとくに限定されないが、例えば、0.05A/dm以上とすることが好ましく、1A/dm以上とすることがより好ましい。電流密度が0.05A/dm以上であれば、Zr酸化物あるいはTi酸化物の生成効率が向上する。その結果、より安定的なZr酸化物あるいはTi酸化物を含有する皮膜層の生成が可能となり、BPAフリー塗料との密着性をさらに向上させることができる。また、陰極電解する際の電流密度の上限についてもとくに限定されないが、例えば、50A/dm以下とすることが好ましく、10A/dm以下とすることがより好ましい。電流密度が50A/dm以下であれば、Zr酸化物あるいはTi酸化物の生成効率を適度にすることができ、粗大かつ密着性に劣るZr酸化物あるいはTi酸化物の生成を抑制することができる。
なお、上記陰極電解処理における電解時間はとくに限定されず、上述したZr付着量とTi付着量が得られるよう、電流密度に応じて適宜調整すればよい。
上記陰極電解処理における通電パターンは、連続通電であっても断続通電であってもよい。また、上記陰極電解を行う際の、水溶液と鋼板との関係はとくに限定されず、相対的に静止していてもよく移動していてもよいが、反応の促進および均一性向上の観点からは、鋼板と水溶液とを相対的に移動させながら陰極電解を行うことが好ましい。例えば、鋼板を、ZrイオンあるいはTiイオンの少なくとも一方を含有する水溶液が収められた処理槽中を通過させながら連続的に陰極電解を行うことにより、鋼板と水溶液とを相対的に移動させることができる。
鋼板と水溶液とを相対的に移動させながら陰極電解を行う場合、水溶液と鋼板の相対流速を50m/min以上とすることが好ましい。相対流速が50m/min以上であれば、通電に伴って水素が発生する鋼板表面のpHをさらに均一とし、粗大なZr酸化物あるいはTi酸化物の生成を効果的に抑制できる。なお、相対流速の上限はとくに限定されない。
[表面調整工程]
次に、前記皮膜形成工程で得られた皮膜層に対して、表面調整を行う。具体的には、前記皮膜層の表面に前記水溶液が1.0~30.0g/m以下存在する状態で、0.1~20.0秒保持する。前記条件で表面調整を行うことにより、前記皮膜層を、エチレングリコールに対する親和性が高い状態で定着させることができる。
前記表面調整工程によって、前記皮膜層をエチレングリコールに対する親和性が高い状態で定着させることができるメカニズムは明らかではないが、次のように考えられる。すなわち、前記皮膜層を前記水溶液と接触させることにより、該皮膜層の表面がわずかにエッチングされ、皮膜層の表面に微細な凹凸が形成される。この微細な凹凸の作用により、皮膜層のエチレングリコールに対する親和性が向上する。この親和性は、OH基などの親水性官能基の存在に起因する親和性とは異なり、表面の粗さという物理的な構造に起因するものであるため、熱に対する安定性にも優れている。
なお、前記皮膜層の表面における前記水溶液の存在状態は特に限定されないが、エッチングを均一に進行させるという観点からは、液膜状であることが好ましい。
・水溶液の量:1.0~30.0g/m
表面調整を行う際の水溶液の量が1.0g/m以下であると、エッチングが十分に進行せず、その結果、エチレングリコールの接触角が50°より大きくなる。そのため、前記水溶液の量は、1.0g/m以上、好ましくは2.0g/m以上、より好ましくは3.0g/m以上とする。一方、前記水溶液の量が30.0g/mより多いと、かえってエチレングリコールに対する親和性が低下し、その結果、エチレングリコールの接触角が50°より大きくなる。そのため、前記水溶液の量を、30.0g/m以下、好ましくは28.0g/m以下、より好ましくは25.0g/m以下とする。
・保持時間:0.1~20.0秒
また、前記表面調整において、保持時間が0.1秒未満であるとエッチングが十分に進行せず、その結果、エチレングリコールの接触角が50°より大きくなる。そのため、前記保持時間を、0.1秒以上、好ましくは0.2秒以上、より好ましくは0.3秒以上とする。一方、前記保持時間が20.0秒を超える場合にも、エチレングリコールの接触角が50°より大きくなる。これは、エッチングが過度に進行し、エチレングリコールに対する親和性の発現に適した表面状態から外れるためだと考えられる。そのため、前記保持時間を、20.0秒以下、好ましくは18.0秒以下、より好ましくは15.0秒以下とする。
なお、上記水溶液の量は、フィルター式赤外吸収法による水分計で測定することができる。具体的には、フィルター式赤外吸収法による水分計により表面における吸光度を測定し、予め求めておいた検量線を用いて前記吸光度から水溶液の量を求める。なお、前記検量線は、以下の手順で作成することができる。まず、電子天秤上に前記皮膜層を有する鋼板を設置する。前記皮膜層を有する鋼板上に水溶液をピペットで滴下して前記皮膜層を有する鋼板表面全体に液膜を形成する。水溶液を滴下する前の前記皮膜層を有する鋼板重量と、水溶液を滴下した後の前記皮膜層を有する鋼板重量から、前記皮膜層を有する鋼板上に存在する水溶液の重量を求める。得られた水溶液の重量を、前記皮膜層を有する鋼板の面積で割ることにより、単位面積あたりの水溶液の量を求める。同時に、フィルター式赤外吸収法による水分計により前記皮膜層を有する鋼板表面における吸光度を測定する。以上の測定を、水溶液の量を変化させながら複数回実施し、水溶液の量と吸光度の相関を表す検量線を作成する。前記検量線としては、水溶液の量と吸光度の相関を線形近似したものを用いることができる。
前記皮膜層の表面に存在する水溶液の量を調整する方法は特に限定されず、任意の方法を用いることができる。例えば、リンガーロールで液を絞る方法や、ワイピングなどの方法により、前記鋼板の表面の前記水溶液の量を調整すればよい。
なお、前記皮膜形成工程に先だって、Ni含有層を有する鋼板に対して任意に前処理を施すことができる。前処理を行うことにより、例えば、Ni含有層の表面に存在する自然酸化膜を除去することができる。自然酸化膜を除去することにより、Ni酸化物の量を調整することができ、また、表面を活性化させることができる。
前記前処理の方法は特に限定されず、任意の方法を用いることができる。前記前処理としては、例えば、酸洗を行うことができる。前記酸洗は、特に限定されず任意の方法で行うことができる。前記酸洗に用いる酸洗処理液の種類は特に限定されないが、希硫酸などの硫酸水溶液であることが好ましい。ここで、硫酸水溶液とは硫酸の水溶液を意味し、硫酸以外の成分が含まれる場合を包含する。硫酸水溶液に含有する硫酸イオンの濃度の下限は特に限定されないが、3g/L以上であることが好ましく、5g/L以上であることがより好ましい。硫酸水溶液に含有する硫酸イオンの濃度の上限は特に限定されないが、200g/L以下であることが好ましく、150g/L以下であることがより好ましい。硫酸水溶液の温度の下限は特に限定されないが、10℃以上であることが好ましく15℃以上であることがより好ましい。硫酸水溶液の温度の上限は特に限定されないが、70℃以下であることが好ましく60℃以下であることがより好ましい。
前記前処理を行った後には、表面に付着した前処理液を除去する観点で水洗することが好ましい。
また、下地鋼板の表面にNi含有層を形成する際には、下地鋼板に対して前処理を施すことが好ましい。前記前処理としては、任意の処理を行うことができるが、脱脂、酸洗、および水洗の少なくとも1つを行うことが好ましい。
脱脂を行うことにより、鋼板に付着した圧延油や防錆油等を除去することができる。前記脱脂は、特に限定されず任意の方法で行うことができる。脱脂後は鋼板表面に付着した脱脂処理液を除去するために水洗を行うことが好ましい。
また、酸洗を行うことにより、鋼板の表面に存在する自然酸化膜を除去し、表面を活性化することができる。前記酸洗は、特に限定されず任意の方法で行うことができる。酸洗後は鋼板表面に付着した酸洗処理液を除去するために水洗することが好ましい。
[水洗工程]
次に、上記表面調整工程後の鋼板を少なくとも1回水洗する。水洗を行うことにより、鋼板の表面に残留している水溶液を除去することができる。前記水洗は、特に限定されることなく任意の方法で行うことができる。例えば、皮膜形成を行うための槽の下流に水洗タンクを設け、皮膜形成工程後の鋼板を連続的に水に浸漬することができる。また、皮膜形成工程後の鋼板にスプレーで水を吹き付けることによって水洗を行ってもよい。
水洗を行う回数は特に限定されず、1回でも、2回以上でもよい。しかし、水洗タンクの数が過剰に多くなることを避けるため、水洗の回数は5回以下とすることが好ましい。また、水洗処理を2回以上行う場合、各水洗は、同じ方法で行ってもよく、異なる方法で行ってもよい。
本発明においては、前記水洗処理工程の少なくとも最後の水洗において、電気伝導度100μS/m以下の水を使用することが重要である。これにより、表面処理鋼板の表面に吸着するK、Na、Mg、およびCaの量を低減し、その結果として密着性を向上させることができる。電気伝導度100μS/m以下の水は、任意の方法で製造することができる。前記電気伝導度100μS/m以下の水は、例えば、逆浸透膜水、イオン交換水、蒸留水であってよい。水洗に使用する水の電気伝導度は、導電率計を用いて測定することができる。
なお、前記水洗処理工程において2回以上の水洗を行う場合、最後の水洗に電気伝導度100μS/m以下の水を使用すれば上述した効果が得られるため、最後の水洗以外の水洗には、任意の水を用いることができる。最後の水洗以外の水洗にも電気伝導度100μS/m以下の水を用いてもよい。しかし、コストを低減するという観点からは、最後の水洗にのみ電気伝導度100μS/m以下の水を使用し、最後の水洗以外の水洗には、水道水、工業用水など、通常の水を使用することが好ましい。
表面処理鋼板の表面に吸着するK、Na、Mg、およびCaの量をさらに低減するという観点からは、最後の水洗に使用する水の電気伝導度は50μS/m以下とすることが好ましく、30μS/m以下とすることがより好ましい。一方、前記電気伝導度の下限は特に限定されず、0μS/mであってよい。しかし、コストを低減するという観点からは、前記電気伝導度を1μS/m以上とすることが好ましい。
水洗処理に用いる水の温度は、特に限定されず、任意の温度であってよい。しかし、過度に温度が高いと水洗設備に過剰な負担がかかるため、水洗に使用する水の温度は95℃以下とすることが好ましい。一方、水洗に使用する水の温度の下限も特に限定されないが、0℃以上であることが好ましい。前記水洗に使用する水の温度は室温であってもよい。
水洗処理1回あたりの水洗時間は、特に限定されないが、水洗処理の効果を高めるという観点からは0.1秒以上が好ましく、0.2秒以上がさらに好ましい。また、水洗処理の1回あたりの水洗時間の上限も、特に限定されないが、連続ラインで製造を行う場合は、ラインスピードが下がって生産性が低下するという理由から、10秒以下が好ましく、8秒以下がさらに好ましい。
上記水洗処理工程の後には、任意に乾燥を行ってもよい。乾燥の方式は特に限定されず、例えば、通常のドライヤーや電気炉乾燥方式が適用できる。乾燥処理の際の温度としては、100℃以下が好ましい。上記範囲内であれば、表面処理皮膜の変質を抑制できる。なお、下限は特に限定されないが、通常、室温程度である。
本発明の表面処理鋼板の用途は特に限定されないが、例えば、食缶、飲料缶、ペール缶、18リットル缶など種々の容器の製造に使用される容器用表面処理鋼板として特に好適である。
本発明の効果を確認するために、以下に述べる手順で表面処理鋼板を製造し、その特性を評価した。ただし、本発明はこれらに限定されるものではない。
(Ni含有層の形成)
まず、鋼板に電解脱脂、水洗、希硫酸への浸漬による酸洗、および水洗を順次施した。次いで、前記鋼板に電気Niめっきを施して、前記鋼板の両面にNi含有層としてのNiめっき層を備えるNiめっき鋼板を得た。その際、通電時間を変えることにより前記Ni含有層のNi付着量を表2、3に示す値とした。前記Ni含有層のNi付着量は、上述した蛍光X線による検量線法で測定した。なお、一部の実施例においては、Ni含有層としてNi-Fe合金層を形成した。すなわち、上述した方法によりNiめっき層を形成した後、焼鈍することによりNi-Fe合金層を形成した。
前記鋼板としては、板厚が0.17mmである缶用鋼板(T4原板)を使用した。
(Ni含有層を形成した鋼板に対する前処理)
その後、得られたNi含有層を形成した鋼板に対して、表2、3に示すように希硫酸への浸漬による酸洗、および水洗を順次施した。なお、比較のために一部の実施例においては前処理を行わなかった。
(皮膜形成工程)
次いで、前記Ni含有層の形成および前処理を施した鋼板の表面を水溶液で処理することにより、前記Ni含有層上に皮膜層を形成した。具体的には、前記水溶液として表1に示す組成の水溶液を使用し、該水溶液中で陰極電解処理を行うことで皮膜層を形成した。前記水溶液の温度は35℃とし、pHは3以上5以下となるように調整した。電気量密度を調整することによりZr付着量およびTi付着量を制御した。なお、Zr含有化合物としてはフッ化ジルコニウム(ZrF)を用い、Ti含有化合物としてはフッ化チタン(TiF)を用いた。そして、前記水溶液は、表1に示す組成を有するように、Zr含有化合物及びTi含有化合物以外の化合物をさらに用いて各イオンの濃度を調整することにより作成した。
(表面調整工程)
上記皮膜形成工程の後、表2、3に示した条件で表面調整を行った。具体的には、皮膜形成工程が終了した時点の、表面に水溶液が付着した状態の鋼板をリンガーロールで絞ることにより、皮膜層の表面に存在する水溶液の量を表2、3に記載の量に調整した。前記水溶液の量は、先に述べたとおりフィルター式赤外吸収法による水分計で測定した。その後、表2、3に示した保持時間の間、保持した。すなわち、表面調整工程で使用した水溶液は、上記皮膜形成工程で使用した水溶液と同じである。
(水洗工程)
次いで、上記表面調整工程後の鋼板に水洗処理を施した。前記水洗処理は、表2、3に示した条件で1~5回行った。各回の水洗の方法と、使用した水の電気伝導度は表2、3に示したとおりとした。なお、水洗の方法を「浸漬」とした回では、鋼板を水に浸漬して水洗を行った。一方、水洗の方法を「スプレー」とした回では、鋼板にスプレーで水を吹き付けることによって水洗を行った。また、電気伝導度は導電率計を用いて測定した。
得られた表面処理鋼板のそれぞれについて、皮膜層中におけるZr酸化物の付着量、Ti酸化物の付着量、P付着量、およびMn付着量を測定した。前記測定は、上述した蛍光X線による検量線法により実施した。測定結果を表4、5に示す。なお、表4、5においては、Zr酸化物およびTi酸化物の付着量を、それぞれ金属Zr量および金属Ti量として記載した。
得られた表面処理鋼板のそれぞれについて、以下の手順でエチレングリコールの接触角、吸着元素の原子比率を測定した。測定結果は表4、5に示す。
(エチレングリコールの接触角)
得られた表面処理鋼板のエチレングリコールの接触角は、協和界面科学社製の自動接触角計CA-VP型を用いて測定した。表面処理鋼板の表面温度を20℃±1℃とし、エチレングリコールは20±1℃の富士フイルム和光純薬株式会社の試薬特級のエチレングリコールを使用した。2μlの液滴量でエチレングリコールを表面処理鋼板の表面に滴下し、1秒後にθ/2法によって接触角を測定し、5滴分の接触角の相加平均値をエチレングリコールの接触角とした。
なお、熱による接触角の変化を確認するため、表面処理鋼板に200℃、10分間の熱処理を施した後の接触角も測定した。測定条件は上記と同様とした。その結果、本発明の条件を満たす表面処理鋼板では、熱処理前後で接触角の値が実質的に同じであった。それに対し、本発明の条件を満たさない表面処理鋼板では、熱処理により接触角の値が大きく変化するものがあった。
(吸着元素の原子比率)
表面処理鋼板の表面に吸着したK、Na、Mg、およびCaの全元素に対する原子比率の合計を、XPSにより測定した。測定においては、スパッタは行わなかった。試料最表面のK2p、Na1s、Ca2p、Mg1sのナロースペクトルの積分強度から、相対感度係数法により検出された全元素に対する原子比率を定量化し、(K原子比率+Na原子比率+Ca原子比率+Mg原子比率)を算出した。XPSの測定には、アルバックファイ社製走査型X線光電子分光分析装置PHI X-toolを用い、X線源はモノクロAlKα線、電圧は15kV、ビーム径は100μmφ、取出角は45°とした。
さらに、得られた表面処理鋼板について、以下の方法でBPAフリー塗料との密着性を評価した。評価結果を表4、5に示す。
(サンプルの作製)
BPAフリー塗料との密着性の評価に使用するサンプルとしてのBPAフリー塗装鋼板を、以下の手順で作製した。
得られた表面処理鋼板の表面に、缶内面用ポリエステル系塗料(BPAフリー塗料)を塗布し、180℃で10分間の焼付を行ってBPAフリー塗装鋼板を作製した。塗装の付着量は60mg/dmとした。
(BPAフリー塗料との密着性)
同じ条件で作製したBPAフリー塗装鋼板2枚を、ナイロン接着フィルムを挟んで塗装面が向かい合わせになるように積層した後、圧力2.94×10Pa、温度190℃、圧着時間30秒の圧着条件下で貼り合わせた。その後、これを5mm幅の試験片に分割した。分割した試験片は、1.5質量%クエン酸と1.5質量%食塩とを含有する混合水溶液からなる55℃の試験液に、168時間浸漬した。浸漬後、洗浄および乾燥をした後、分割した試験片の2枚の鋼板を引張試験機で引き剥がし、引き剥がしたときの引張強度を測定した。3つの試験片の平均値を下記の4水準で評価した。実用上、結果が1~3であれば、BPAフリー塗料との密着性に優れるものとして評価できる。
1:2.5kgf以上
2:2.0kgf以上2.5kgf未満
3:1.5kgf以上2.0kgf未満
4:1.5kgf未満
表4、5に示した結果から明らかなように、本発明の条件を満たす表面処理鋼板は、いずれも6価クロムを用いずに製造したにもかかわらず、優れたBPAフリー塗料との密着性を有していた。
Figure 0007435924000001
Figure 0007435924000002
Figure 0007435924000003
Figure 0007435924000004
Figure 0007435924000005

Claims (8)

  1. 鋼板の少なくとも一方の面に、
    Ni含有層と、
    前記Ni含有層上に配置された、Zr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層とを有する表面処理鋼板であって、
    エチレングリコールの接触角が50°以下であり、
    表面に吸着したK、Na、Mg、およびCaの、全元素に対する原子比率の合計が、5.0%以下である、表面処理鋼板。
  2. 前記Ni含有層は、Ni付着量が前記鋼板の片面当たり0.1~20.0g/mである、請求項1に記載の表面処理鋼板。
  3. 前記皮膜層中におけるZr酸化物およびTi酸化物の付着量の合計が、金属Zr量と金属Ti量で前記鋼板の片面当たり0.3~50.0mg/mである、請求項1に記載の表面処理鋼板。
  4. 前記皮膜層中におけるZr酸化物およびTi酸化物の付着量の合計が、金属Zr量と金属Ti量で前記鋼板の片面当たり0.3~50.0mg/m である、請求項2に記載の表面処理鋼板。
  5. 前記皮膜層は、さらにPを含有し、P付着量が前記鋼板の片面当たり50.0mg/m以下である、請求項1~のいずれか一項に記載の表面処理鋼板。
  6. 前記皮膜層は、さらにMnを含有し、Mn付着量が前記鋼板の片面当たり50.0mg/m以下である、請求項1~4のいずれか一項に記載の表面処理鋼板。
  7. 前記皮膜層は、さらにMnを含有し、Mn付着量が前記鋼板の片面当たり50.0mg/m 以下である、請求項5に記載の表面処理鋼板。
  8. 鋼板の少なくとも一方の面に、Ni含有層と、前記Ni含有層上に配置されたZr酸化物およびTi酸化物の少なくとも一方を含有する皮膜層とを有する表面処理鋼板の製造方法であって、
    少なくとも一方の面にNi含有層を有する鋼板の表面を、ZrイオンおよびTiイオンの少なくとも一方を含有する水溶液で処理して、前記Ni含有層上に前記皮膜層を形成する皮膜形成工程と、
    前記皮膜層の表面に前記水溶液が1.0~30.0g/m存在する状態で、0.1~20.0秒保持する表面調整工程と、
    前記表面調整工程後の前記鋼板を少なくとも1回水洗する水洗工程とを含み、
    前記水洗工程では、
    少なくとも最後の水洗において、電気伝導度100μS/m以下の水を使用する、表面処理鋼板の製造方法。
JP2023563898A 2022-11-24 2023-07-07 表面処理鋼板およびその製造方法 Active JP7435924B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2022187790 2022-11-24
JP2022187790 2022-11-24
PCT/JP2023/025347 WO2024111159A1 (ja) 2022-11-24 2023-07-07 表面処理鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
JP7435924B1 true JP7435924B1 (ja) 2024-02-21

Family

ID=89904400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023563898A Active JP7435924B1 (ja) 2022-11-24 2023-07-07 表面処理鋼板およびその製造方法

Country Status (1)

Country Link
JP (1) JP7435924B1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232169A (ja) 2014-05-15 2015-12-24 Jfeスチール株式会社 容器用鋼板
WO2016125740A1 (ja) 2015-02-03 2016-08-11 新日鐵住金株式会社 燃料タンク用鋼板
WO2016207967A1 (ja) 2015-06-23 2016-12-29 新日鐵住金株式会社 容器用鋼板及び容器用鋼板の製造方法
WO2017204267A1 (ja) 2016-05-24 2017-11-30 新日鐵住金株式会社 容器用鋼板
JP7070823B1 (ja) 2020-12-21 2022-05-18 Jfeスチール株式会社 表面処理鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232169A (ja) 2014-05-15 2015-12-24 Jfeスチール株式会社 容器用鋼板
WO2016125740A1 (ja) 2015-02-03 2016-08-11 新日鐵住金株式会社 燃料タンク用鋼板
WO2016207967A1 (ja) 2015-06-23 2016-12-29 新日鐵住金株式会社 容器用鋼板及び容器用鋼板の製造方法
WO2017204267A1 (ja) 2016-05-24 2017-11-30 新日鐵住金株式会社 容器用鋼板
JP7070823B1 (ja) 2020-12-21 2022-05-18 Jfeスチール株式会社 表面処理鋼板およびその製造方法

Similar Documents

Publication Publication Date Title
JP4886811B2 (ja) 有機皮膜性能に優れた容器用鋼板およびその製造方法
JP5760355B2 (ja) 容器用鋼板
WO2011052797A1 (ja) 熱間プレス部材およびその製造方法
KR20120125547A (ko) 용기용 강판 및 그 제조 방법
JP7070823B1 (ja) 表面処理鋼板およびその製造方法
JP6146541B2 (ja) めっき鋼板およびその製造方法
KR100206669B1 (ko) 아연계 도금강판 및 그 제조방법
JP2009001854A (ja) 容器用鋼板
WO2009139480A1 (ja) 錫めっき鋼板の製造方法および錫めっき鋼板ならびに化成処理液
JP7435924B1 (ja) 表面処理鋼板およびその製造方法
TWI792744B (zh) 表面處理鋼板及其製造方法
JP7401039B1 (ja) 表面処理鋼板およびその製造方法
JP7435925B1 (ja) 表面処理鋼板およびその製造方法
JP7460035B1 (ja) 表面処理鋼板およびその製造方法
WO2024111159A1 (ja) 表面処理鋼板およびその製造方法
WO2024111157A1 (ja) 表面処理鋼板およびその製造方法
WO2024111158A1 (ja) 表面処理鋼板およびその製造方法
JP7327719B1 (ja) 表面処理鋼板およびその製造方法
JP7327718B1 (ja) 表面処理鋼板およびその製造方法
WO2024111156A1 (ja) 表面処理鋼板およびその製造方法
TWI840140B (zh) 表面處理鋼板及其製造方法
WO2023195252A1 (ja) 表面処理鋼板およびその製造方法
JP7070822B1 (ja) 表面処理鋼板およびその製造方法
JP3111904B2 (ja) 亜鉛系メッキ鋼板の製造方法
WO2023243717A1 (ja) 錫めっき鋼板および缶

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231017

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231017

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R150 Certificate of patent or registration of utility model

Ref document number: 7435924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150