EP3666928B1 - Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung - Google Patents

Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung Download PDF

Info

Publication number
EP3666928B1
EP3666928B1 EP19206952.4A EP19206952A EP3666928B1 EP 3666928 B1 EP3666928 B1 EP 3666928B1 EP 19206952 A EP19206952 A EP 19206952A EP 3666928 B1 EP3666928 B1 EP 3666928B1
Authority
EP
European Patent Office
Prior art keywords
electrolysis
chromium
strip
electrolyte solution
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19206952.4A
Other languages
English (en)
French (fr)
Other versions
EP3666928A1 (de
Inventor
Andrea Marmann
Christoph Molls
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp AG
ThyssenKrupp Rasselstein GmbH
Original Assignee
ThyssenKrupp AG
ThyssenKrupp Rasselstein GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp AG, ThyssenKrupp Rasselstein GmbH filed Critical ThyssenKrupp AG
Publication of EP3666928A1 publication Critical patent/EP3666928A1/de
Application granted granted Critical
Publication of EP3666928B1 publication Critical patent/EP3666928B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0628In vertical cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/02Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation

Definitions

  • the invention relates to a method for producing a metal strip coated with a coating according to the preamble of claim 1.
  • tin-free steel sheet steel sheets electrolytically coated with a coating of chromium and chromium oxide are known from the prior art, which are referred to as tin-free steel sheet ("Tin Free Steel", TFS) or as “Electrolytic Chromium Coated Steel (ECCS)" and a Represent an alternative to tinplate.
  • TFS Tin Free Steel
  • ECCS Electrolytic Chromium Coated Steel
  • tin-free steel sheets are particularly characterized by their good adhesion to paints or organic protective coatings (such as polymer coatings made of PP or PET).
  • these chromium-coated steel sheets have good corrosion resistance and good processability in forming processes for the production of packaging, for example in deep-drawing and ironing processes.
  • electrolytic coating processes are known from the prior art, with which the coating is applied to a strip-shaped steel sheet in a strip coating system using an electrolyte containing chromium VI.
  • the composition of the coating which, depending on the components contained in the electrolyte solution in addition to the trivalent chromium compound (Cr-III), can also contain chromium sulfates and chromium carbides in addition to the components chromium metal and chromium oxide, depends significantly on the current densities of the electrolysis depends on which are set on the anodes during the electrolytic deposition process in the electrolysis tanks in which the electrolyte solution is contained. It was found that three regions (Regime I, Regime II and Regime III) are formed depending on the current density, with no chromium-containing deposition occurring on the steel substrate in a first region with low current density up to a first current density threshold (Regime I).
  • the coating contains a higher current density Proportion of chromium oxide, which is in the range of higher Current densities are between 1 ⁇ 4 and 1/3 of the total weight of the coating.
  • the values of the current density thresholds that delimit the areas (regimes I to III) depend on the belt speed at which the steel sheet is moved through the electrolyte solution.
  • the object of the present invention is to provide the most efficient and energy-saving method for producing a tinplate strip coated with a coating of chromium and chromium oxide based on an electrolyte solution with a trivalent chromium compound.
  • a coating containing chromium metal and chromium oxide is electrolytically applied to a tinplate strip from an electrolyte solution containing a trivalent chromium compound by bringing the tinplate strip into contact with the electrolyte solution connected as a cathode, the tinplate strip being sequentially is passed at a predetermined belt speed in a belt running direction through several electrolysis tanks arranged one behind the other in the belt running direction, with a low current density j 1 in the first electrolysis tank seen in the belt running direction or in a front group of electrolysis tanks, in a second electrolysis tank following in the belt running direction or in a middle group of electrolysis tanks there is a medium current density j 2 and in a last electrolysis tank seen in the direction of strip travel or in a rear group of electrolysis tanks there is a high current density j 3 , where j 1 ⁇ j 2 ⁇ j 3 and the low current density j 1 is greater than 20 A/ d
  • the low current density j 1 > 20 A/dm 2 is selected so that a coating which contains chromium and/or chromium oxide is already deposited on the tinplate strip in the first electrolysis tank or in the front group of electrolysis tanks.
  • chromium oxide we mean all oxide forms of chromium (CrOx), including chromium hydroxides, in particular chromium (III) hydroxide and chromium (III) oxide hydrate, as well as mixtures thereof.
  • the larger proportion of chromium oxide is deposited in the last electrolysis tank seen in the direction of strip travel or in the rear group of electrolysis tanks, because the high current density j 3 is set there, at which the proportion of chromium oxide in the total layer of the coating is higher.
  • chromium oxide crystals act in the last electrolysis tank and/or in the rear group of electrolysis tanks as a nucleus for the growth of further oxide crystals, which is why the efficiency of the deposition of chromium oxide or the proportion of chromium oxide in the total coverage of the coating in the last one Electrolysis tank or in the rear group of electrolysis tanks increases.
  • a sufficiently high concentration of chromium oxide of preferably more than 5 mg/m 2 on the surface of the Tinplate strips are produced.
  • the proportion of chromium oxide produced in the first electrolysis tank or in the front group of electrolysis tanks and in the second electrolysis tank or in the middle group of electrolysis tanks forms due to the higher oxygen content in the coating compared to an electrodeposition with higher current densities (and consequently lower oxide content ) a denser coating that results in improved corrosion resistance.
  • a current density of at least 25 A/dm 2 is required so that a chromium-chromium oxide layer can be deposited on at least one surface of the tinplate strip.
  • This current density of 25 A/dm 2 represents the first current density threshold at a belt speed of approx. 100 m/min, which separates regime I (no chromium deposition) from regime II (chromium deposition with a linear relationship between current density and the chromium weight of the deposited coating ).
  • the current densities (j 1 , j 2 , j 3 ) in the electrolysis tanks are each adapted to the belt speed, with at least essentially a linear relationship between the belt speed and the respective current density (j 1 , j 2 , j 3 ). It is advantageous if the current density in the first electrolysis tank or in the front group of electrolysis tanks is smaller than in the second electrolysis tank or in the middle group of electrolysis tanks.
  • a lower current density in the first electrolysis tank or in the front group of electrolysis tanks produces a dense and therefore corrosion-resistant chromium-chromium oxide coating directly on the surface of the tinplate strip with a relatively high chromium oxide content, preferably at more than 8%, in particular between 8 and 15% and particularly preferably more than 10% by weight.
  • each electrolysis tank To generate the current densities (j 1 , j 2 , j 3 ) in the electrolysis tanks, at least one pair of anodes with two opposite anodes is expediently arranged in each electrolysis tank, with the tinplate strip passing between the opposite anodes of a pair of anodes. This allows a uniform current density distribution around the tinplate strip to be achieved.
  • the anode pairs of each electrolysis tank can expediently be supplied with electrical current independently of one another, so that different current densities (j 1 , j 2 , j 3 ) can be set in the electrolysis tanks.
  • At least one pair of anodes can be provided therein, which has a smaller expansion in the direction of strip travel compared to the anode pairs in the previous electrolysis tanks.
  • the anodes can be coupled to a rectifier that has a lower rectifier capacity.
  • the belt speed of the tinplate strip is preferably selected so that the electrolysis time (t E ), during which the tinplate strip is in electrolytically effective contact with the electrolyte solution, is less than 2.0 seconds in each of the electrolysis tanks and in particular between 0.5 and 1. 9 seconds and is preferably less than 1.0 seconds and in particular between 0.6 seconds and 0.9 seconds. This ensures, on the one hand, a higher efficiency of the process and, on the other hand, the deposition of a coating with a sufficient weight of chromium of preferably at least 40 mg/m 2 and in particular from 70 mg/m 2 to 180 mg/m 2 .
  • the proportion by weight of the chromium oxide contained in the coating of the total weight of the coating is at least 5%, preferably more than 10% and in particular 11 to 16%.
  • a short electrolysis period of less than 1 second in each of the electrolysis tanks promotes (at constant current density) the formation of chromium oxide and inhibits the formation of metallic chromium, which is why short electrolysis periods (t E ) are also important With regard to the formation of a coating with the highest possible chromium oxide content, it is preferable.
  • the total electrolysis time (t E ), during which the tinplate strip is in electrolytically effective contact with the electrolyte solution (E), is - added up across all electrolysis tanks (1c - 1h) - preferably less than 16 seconds and is in particular between 3 and 16 seconds .
  • the total electrolysis time is particularly preferably less than 8 seconds and is in particular between 4 seconds and 7 seconds.
  • the coating is deposited in layers, with a layer with a different composition of the coating, in particular with a different chromium oxide, in each of the electrolysis tanks, depending on the current density selected in the respective electrolysis tank. Proportion in the respective layer is generated.
  • a layer containing chromium metal and chromium oxide with a weight proportion of chromium oxide of more than 5%, in particular 6 to 15% can be deposited on the surface of the tinplate strip and in the second electrolysis tank or in the middle group of electrolysis tanks a layer containing chromium metal and chromium oxide with a weight proportion of the chromium oxide of less than 5%, in particular from 1 to 3%.
  • a layer with a higher proportion by weight of chromium oxide is deposited in any case at the high current density j 3 , the higher proportion by weight of chromium oxide preferably being more than 40%, in particular between 50 and 80%. lies.
  • the coating applied from the electrolyte solution which contains at least the components chromium metal and chromium oxide and possibly also chromium sulfates and chromium carbides, preferably has a total weight of chromium of at least 40 mg/m 2 and in particular 70 mg/m to achieve a sufficiently high corrosion resistance 2 to 180 mg/m 2 , the proportion of the total weight of chromium contained in the chromium oxide being at least 5%, preferably 10 to 15%.
  • the chromium oxide portion has a weight of the chromium bound as chromium oxide of at least 3 mg Cr per m 2 , in particular from 3 to 15 mg/m 2 and preferably at least 7 mg Cr per m 2 .
  • a single electrolyte solution is expediently used in the method according to the invention, i.e. the electrolysis tanks are all filled with the same electrolyte solution, with both the composition and the temperature of the electrolyte solution in all electrolysis tanks preferably being at least essentially the same.
  • the temperature of the electrolyte solution an (average) temperature in all electrolysis tanks of less than 40 ° C has proven to be suitable in terms of deposition of the highest possible proportion of chromium oxide in the coating. It has been shown that at electrolyte solution temperatures of up to 40°C, the formation of chromium oxide is promoted and the formation of metallic chromium is suppressed. It is also possible to set different temperatures of the electrolyte solution in the electrolysis tanks.
  • a lower temperature can be set than in the first and second electrolysis tanks or the front and middle group of electrolysis tanks.
  • the (average) temperature of the electrolyte solution in the last electrolysis tank or the rear group of electrolysis tanks can be between 20 ° C and less than 40 ° C and preferably between 25 ° C and 38 ° C and in particular at 35 ° C and the The temperature of the electrolyte solution in the electrolysis tanks preceding the last electrolysis tank can be at higher temperatures, in particular between 40 ° C and 70 ° C and preferably at 55 ° C.
  • a preferred composition of the electrolyte solution includes basic Cr(III) sulfate (Cr 2 (SO 4 ) 3 ) as a trivalent chromium compound.
  • concentration of the trivalent chromium compound in the electrolyte solution is at least 10 g/l and preferably more than 15 g/l and is in particular 20 g/l or more.
  • Further useful components of the electrolyte solution can be complexing agents, in particular an alkali metal carboxylate, preferably a salt of formic acid, in particular potassium formate or sodium formate.
  • the ratio of the weight proportion is preferred trivalent chromium compound to the weight proportion of the complexing agents, in particular the formates, between 1:1.1 and 1:1.4 and preferably between 1:1.2 and 1:1.3 and in particular at 1:1.25.
  • the electrolyte solution can comprise an alkali metal sulfate, preferably potassium or sodium sulfate.
  • the electrolyte solution is preferably free of halides, in particular free of chloride and bromide ions as well as free of a buffering agent and in particular free of a boric acid buffer.
  • the pH value of the electrolyte solution (measured at a temperature of 20 ° C) is preferably between 2.0 and 3.0 and particularly preferably between 2.5 and 2.9 and in particular 2.7.
  • an acid for example sulfuric acid, can be added to it.
  • an organic coating in particular a lacquer or a thermoplastic, for example a polymer film made of PET, PE, PP or a mixture thereof, can be applied to the surface of the coating made of chromium metal and chromium oxide in order to provide additional protection against corrosion and to form a barrier against acidic filling materials in packaging.
  • FIG. 1 A coil coating system for carrying out the method according to the invention is shown schematically in a first embodiment.
  • the coil coating system comprises three electrolysis tanks 1a, 1b, 1c arranged next to or behind one another, each of which is filled with an electrolyte solution E.
  • An initially uncoated tinplate strip M is passed through the electrolysis tanks 1a-1c one after the other.
  • the tinplate strip M is pulled through the electrolysis tanks 1a-1c by a transport device (not shown here) in a strip running direction v at a predetermined strip speed.
  • Current rollers S are arranged above the electrolysis tanks 1a-1c, via which the tinplate strip M is switched as a cathode.
  • a deflection roller U is also arranged in each electrolysis tank, around which the tinplate strip M is guided and is thereby directed into or out of the electrolysis tank.
  • each electrolysis tank 1a-1c at least one pair of anodes AP is arranged below the liquid level of the electrolyte solution E.
  • two pairs of anodes AP arranged one behind the other in the direction of strip travel are provided in each electrolysis tank 1a-1c.
  • the tinplate strip M is passed between the opposite anodes of an anode pair AP.
  • Two pairs of anodes AP are thus arranged in each electrolysis tank 1a, 1b, 1c in such a way that the tinplate strip M is passed through these pairs of anodes AP one after the other.
  • the last anode pair APc in the downstream direction of the last electrolysis tank 1c seen in the strip running direction v has a shortened length compared to the remaining anode pairs AP. As a result, a higher current density can be generated with this last pair of anodes APc when an equally high electrical current is applied.
  • the tinplate strip M is a tin-plated steel strip. To prepare for the electrolysis process, the tinplate strip M is first degreased, rinsed, pickled and rinsed again and, in this pretreated form, is successively passed through the electrolysis tanks 1a - 1c, with the tinplate strip M being switched as a cathode by using the Power rollers S electrical current is supplied.
  • the belt speed at which the tinplate strip M is passed through the electrolysis tanks 1a-1c is at least 100 m/min and can be up to 900 m/min.
  • the same electrolyte solution E is filled into the electrolysis tanks 1a-1c arranged one behind the other in the strip running direction v.
  • the electrolyte solution E contains a trivalent chromium compound, preferably basic Cr(III) sulfate, Cr 2 (SO 4 ) 3 .
  • the electrolyte solution preferably contains at least one complexing agent, for example a salt of formic acid, in particular potassium or sodium formate.
  • the ratio of the proportion by weight of the trivalent chromium compound to the proportion by weight of the complexing agents, in particular the formats, is preferably between 1:1.1 and 1:1.4 and particularly preferably 1:1.25.
  • the electrolyte solution E can contain an alkali metal sulfate, for example potassium or sodium sulfate.
  • concentration of the trivalent chromium compound in the electrolyte solution E is at least 10g/l and particularly preferably 20g/l or more.
  • the temperature of the electrolyte solution E is expediently the same in all electrolysis tanks 1a-1c and is preferably between 25 ° C and 70 ° C.
  • different temperatures of the electrolyte solution can also be set in the electrolysis tanks 1a-1c.
  • the temperature of the electrolyte solution in the last electrolysis tank 1c can be lower than in the electrolysis tanks 1a and 1b arranged upstream.
  • the temperature of the electrolyte solution in the last electrolysis tank 1c is preferably between 25 ° C and 38 ° C and in particular at 35 ° C.
  • the temperature of the electrolyte solution in the first two electrolysis tanks 1a, 1b is preferably between 40 ° C and 75 ° C and in particular at 55 ° C.
  • the lower temperature of the electrolyte solution E promotes the deposition of a chromium/chromium oxide layer with a higher proportion of chromium oxide in the last electrolysis tank 1c.
  • the anode pairs AP arranged in the electrolysis tanks 1a-1c are supplied with direct electrical current in such a way that one in each of the electrolysis tanks 1a, 1b, 1c different current density exists.
  • the first electrolysis tank 1a which is upstream in the direction of strip travel, there is a low current density j 1
  • in the second electrolysis tank 1b following in the direction of strip travel there is an average current density j 2
  • in the last electrolysis tank 1c as seen in the direction of strip travel, there is a high current density j 3 , so that the relation j 1 ⁇ j 2 ⁇ j 3 holds and the low current density j 1 > 20 A/dm 2 .
  • each electrolytically applied layer B1, B2, B3 has a different composition, which differs in particular in the proportion of chromium oxide.
  • FIG. 3 A sectional view of a tinplate strip M electrolytically coated using the method according to the invention is shown schematically.
  • a coating B is applied to one side of the tinplate strip M, which is composed of the individual layers B1, B2, B3.
  • Each individual layer B1, B2, B3 is applied to the surface in one of the electrolysis tanks 1a, 1b, 1c.
  • the coating B which is composed of the individual layers B1, B2, B3, contains metallic chromium (chromium metal) and chromium oxides (CrOx) as essential components, with the composition of the individual layers B1, B2, B3 in relation to their respective weight proportion of Chromium metal and chromium oxide are different due to the different current densities j 1 , j 2 , j 3 in the electrolysis tanks 1a, 1b, 1c.
  • the layer structure of the layers deposited on the metal substrate can be demonstrated using GDOES spectra ( Glow Discharge Optical Emission Spectroscopy ).
  • a metallic chromium layer with a thickness of 10-15 nm is first deposited on the tinplate strip substrate. The surface of this layer oxidizes and is present primarily as chromium oxide in the form Cr 2 O 3 or as a mixed oxide-hydroxide in the form Cr 2 O 2 (OH) 2 . This oxide layer is a few nanometers thick.
  • chromium-carbon and chromium sulfate compounds which are formed from the reduction of the organic complexing agent or the sulfate of the electrolyte solution.
  • Typical GDOES spectra of the layers B1, B2, B3 deposited in the individual electrolysis tanks show a strong increase in the oxygen signal in the first nanometers of the layer, from which it can be concluded that the oxide layer is concentrated on the surface of the respective layer ( Figure 4 ).
  • the tinplate strip M which is connected as a cathode and passed through the electrolysis tanks 1a-1c, is in electrolytically effective contact with the electrolyte solution E during an electrolysis period t E.
  • the electrolysis period is in each of the electrolysis tanks 1a, 1b, 1c between 0.5 and 2.0 seconds.
  • Belt speeds are preferably set so high that the electrolysis time t E in each electrolysis tank 1a, 1b, 1c is less than 2 seconds and in particular between 0.6 seconds and 1.8 seconds.
  • the total electrolysis time in which the tinplate strip M is in electrolytically effective contact with the electrolyte solution E across all electrolysis tanks 1a-1c is between 1.8 and 5.4 seconds.
  • the layer B1 applied in the first electrolysis tank 1a Due to the low current density j 1 in the first electrolysis tank 1a, the layer B1 applied in the first electrolysis tank 1a has a higher oxide content compared to the layer B2, which is applied in the second (middle) electrolysis tank 1b, since at lower current densities , which are within regime II, form higher oxide contents in the coating.
  • a current density j3 is set which is in regime III, in which an increased proportion of chromium oxide is produced in the coating, which is preferably more than 40% by weight and particularly preferably more than 50% by weight.
  • the current densities j 1 , j 2 present in the first two electrolysis tanks 1a , 1b are in regime II, in which there is a linear relationship between the current density and the electrolytically deposited Amount of chromium (or the deposited weight of chromium) is present.
  • the current density j 1 of the first electrolysis tank 1a is expediently selected so that it is close to the first current density threshold, which delimits regime I (in which no chromium deposition yet takes place) from regime II.
  • a chromium metal-chromium oxide coating (layer B1) is deposited on the surface of the tinplate strip M with a higher chromium oxide content than at higher current densities within regime II. Therefore, the layer deposited in the first electrolysis tank 1a B1 has a higher chromium oxide content compared to the coating B2 deposited in the second electrolysis tank 1b.
  • a current density j 3 is set which is above the second current density threshold, which delimits regime II from regime III.
  • the current density j 3 of the last electrolysis tank 1c is therefore in regime III, in which a partial decomposition of the chromium metal-chromium oxide coating occurs and a significantly higher proportion of chromium oxide is deposited than at current densities in regime II. For this reason, the current density in the last Electrolysis tank 1c deposited coating B3 has a high chromium oxide content, which is higher than the chromium oxide contents in the coatings B1 and B2.
  • the tinplate strip M provided with coating B is rinsed, dried and oiled (for example with DOS).
  • the tinplate strip M electrolytically coated with coating B can then be provided with an organic coating on the surface of coating B.
  • the organic coating can be, for example, an organic varnish or polymer films made of thermoplastic polymers such as PET, PP or mixtures thereof.
  • the organic coating can be applied either in a "coil coating" process or in a panel process, whereby the coated tinplate strip is first divided into panels in the panel process, which are then painted with an organic lacquer or coated with a polymer film .
  • FIG 2 a second embodiment of a strip coating system is shown with eight electrolysis tanks 1a-1h arranged one behind the other in the strip running direction v.
  • the electrolysis tanks 1a-1h are grouped into three groups, namely a front group with the first two electrolysis tanks 1a, 1b, and a middle group with those in the direction of strip travel subsequent electrolysis tanks 1c-1f and a rear group with the last two electrolysis tanks 1g and 1h.
  • the groups of electrolysis tanks each have different current densities j 1 , j 2 , j 3 , with a low current density j 1 in the front group of electrolysis tanks 1a, 1b and a medium current density j 2 in the middle group of electrolysis tanks 1c-1f and in the rear group of electrolysis tanks 1g, 1h there is a high current density j 3 , where j 1 ⁇ j 2 ⁇ j 3 and the low current density j 1 > 20A/dm 2 .
  • a layer B1 containing chromium and chromium oxide is electrolytically applied and in the second group of electrolysis tanks 1c-1f a second layer B2 and in the rear group of electrolysis tanks 1g, 1h a third layer B3 is applied to the tinplate strip M applied.
  • the layers B1, B2, B3 have different compositions due to the different current densities j 1 , j 2 , j 3 in the groups of electrolysis tanks arranged one behind the other, with the layer B1 containing a higher proportion of chromium oxide than the second layer B2 and the third Layer B3 contains a higher proportion of chromium oxide than the two layers B1 and B2.
  • Table 2 shows examples of suitable current densities j 1 , j 2 , j 3 in the individual electrolysis tanks 1a to 1h at different belt speeds v, with a low current density j 1 , in in each of the electrolysis tanks 1a, 1b of the front group an average current density j 2 is set in the electrolysis tanks 1c to 1f of the middle group and a high current density j 3 is set in the electrolysis tanks 1g, 1h of the rear group, where j 1 ⁇ j 2 ⁇ j 3 .
  • the process according to the invention in the coil coating system of Figure 2 The coating B produced on the surface of the tinplate strip M therefore has essentially the same composition and structure as in Figure 3 shown.
  • the coatings B preferably have a total weight of chromium of at least 40 mg/m 2 and particularly preferably from 70 mg/m 2 to 180 mg/m 2 .
  • the coating B expediently has a total chromium oxide content with a weight of the chromium bound as chromium oxide of at least 3 mg chromium per m 2 and in particular from 3 to 15 mg/m 2 .
  • the weight of the chromium bound as chromium oxide, averaged over the entire coating of coating B, is preferably at least 7 mg of chromium per m 2 .
  • Good adhesion of organic paints or thermoplastic polymer materials to the surface of coating B can be achieved with chromium oxide weights of up to approximately 15 mg/m 2 .
  • a preferred range for the weight of the chromium oxide in the coating B is therefore between 5 and 15 mg/m 2 .
  • the entire electrolysis period during which the tinplate strip M is in electrolytically effective contact with the electrolyte solution E is in the exemplary embodiment of Figure 2 across all electrolysis tanks 1a-1h, preferably less than 16 seconds and in particular between 4 and 16 seconds.
  • Table 1: ⁇ /b> Current densities j 1 , j 2 , j 3 in the individual electrolysis tanks of the first exemplary embodiment (with 3 electrolysis tanks 1a - 1c) at different belt speeds v: tank 1a 1b 1c v [m/min] J 1 / [A/dm 2 ] J 2 / [A/dm 2 ] J 3 / [A/dm 2 ] 100 25 29 75 150 41 45 91 200 57 61 107 300 73 77 133 400 89 93 149 500 105 109 165 Current densities j 1 , j 2 , j 3 in the individual electrolysis tanks of the second exemplary embodiment (with 8 electrolysis tanks 1a - 1h, which are

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines mit einer Beschichtung beschichteten Metallbands nach dem Oberbegriff des Anspruchs 1.
  • Zur Herstellung von Verpackungen sind aus dem Stand der Technik elektrolytisch mit einer Beschichtung aus Chrom und Chromoxid beschichtete Stahlbleche bekannt, welche als zinnfreies Stahlblech ("Tin Free Steel", TFS) oder als "Electrolytic Chromium Coated Steel (ECCS)" bezeichnet werden und eine Alternative zu Weißblechen darstellen. Diese zinnfreien Stahlbleche zeichnen sich besonders durch ein gutes Haftvermögen für Lacke oder organische Schutzbeschichtungen (wie bspw. Polymerbeschichtungen aus PP oder PET) aus. Trotz der geringen Dicke der Beschichtung aus Chrom und Chromoxid, die in der Regel weniger als 20 nm beträgt, weisen diese chrombeschichteten Stahlbleche eine gute Korrosionsbeständigkeit sowie eine gute Verarbeitbarkeit in Umformverfahren zur Herstellung von Verpackungen, bspw. in Tiefzieh- und Abstreckziehverfahren, auf.
  • Zur Beschichtung des Stahlsubstrats mit einer metallisches Chrom und Chromoxid enthaltenden Beschichtung sind aus dem Stand der Technik elektrolytische Beschichtungsverfahren bekannt, mit denen die Beschichtung in einer Bandbeschichtungsanlage auf ein bandförmiges Stahlblech unter Verwendung eines Chrom-VI-haltigen Elektrolyten appliziert wird. Aus US 3,316,160-A ist ein Verfahren zur elektrolytischen Chrombeschichtung eines Stahlblechs mit einem Chromsäureanhydrid-Elektrolyten bekannt, in dem das Stahlblech durch mehrere Beschichtungsbäder geleitet wird, wobei das Stahlblech in dem ersten Beschichtungsbad bei einer höheren Stromdichte von mindestens 30 A/dm2 mit einer Chromschicht beschichtet wird und in dem zweiten Beschichtungsbad oder den weiteren nachfolgenden Beschichtungsbädern zunächst eine kathodische Behandlung des Stahlblechs bei einer niedrigen Stromdichte von 0,1 bis 10 A/dm2 und danach eine elektrolytische Abscheidung einer Chromschicht bei der höheren Stromdichte erfolgt.
  • Diese Beschichtungsverfahren mit einem sechswertigen Chrom-Elektrolyten, wie Chromsäureanhydrid, weisen allerdings aufgrund der umwelt- und gesundheitsgefährdenden Eigenschaften der im Elektrolyseverfahren verwendeten Chrom-VI-haltigen Elektrolyten erhebliche Nachteile auf und müssen in absehbarer Zeit durch alternative Beschichtungsverfahren ersetzt werden, da die Verwendung von Chrom-VI-haltigen Materialien zukünftig verboten sein wird.
  • Aus diesem Grund wurden im Stand der Technik bereits elektrolytische Beschichtungsverfahren entwickelt, die auf den Einsatz von Chrom-VI-haltigen Elektrolyten verzichten können. So ist bspw. aus der WO 2015/177314-A1 und der EP 3378973 A1 ein Verfahren zur elektrolytischen Beschichtung eines bandförmigen Stahlblechs mit einer Chrommetall-Chromoxid (Cr-CrOx)-Schicht in einer Bandbeschichtungsanlage bekannt, in dem das Stahlblech als Kathode geschaltet mit hohen Bandgeschwindigkeiten von mehr als 100 m/min durch eine Elektrolytlösung geleitet wird, welche eine dreiwertige Chromverbindung (Cr-III) enthält. Dabei wurde beobachtet, dass die Zusammensetzung der Beschichtung, die je nach den in der Elektrolytlösung neben der dreiwertigen Chromverbindung (Cr-III) noch enthaltenen Komponenten außer den Bestandteilen Chrommetall und Chromoxid auch noch Chromsulfate und Chromcarbide enthalten kann, ganz wesentlich von den Stromdichten der Elektrolyse abhängt, die beim elektrolytischen Abscheideprozess in den Elektrolysetanks, in denen die Elektrolytlösung enthalten ist, an den Anoden eingestellt werden. Es wurde fest gestellt, dass sich in Abhängigkeit der Stromdichte drei Bereiche (Regime I, Regime II und Regime III) ausbilden, wobei in einem ersten Bereich mit niedriger Stromdichte bis zu einer ersten Stromdichteschwelle (Regime I) noch keine chromhaltige Abscheidung auf dem Stahlsubstrat erfolgt, in einem zweiten Bereich mit mittlerer Stromdichte (Regime II) ein linearer Zusammenhang zwischen der Stromdichte und der Gewichtsauflage der abgeschiedenen Beschichtung besteht und bei Stromdichten oberhalb einer zweiten Stromdichteschwelle (Regime III) eine teilweise Zersetzung der applizierten Beschichtung erfolgt, so dass die Gewichtsauflage des Chrom der applizierten Beschichtung in diesem Bereich bei ansteigender Stromdichte zunächst abfällt und sich dann bei höheren Stromdichten auf einen gleichbleibenden Wert einstellt. Dabei wird in dem Bereich mit mittlerer Stromdichte (Regime II) im Wesentlichen metallisches Chrom mit einem Gewichtsanteil von bis zu 80% (bezogen auf das Gesamtgewicht der Beschichtung) auf dem Stahlsubstrat abgeschieden und oberhalb der zweiten Stromdichteschwelle (Regime III) enthält die Beschichtung einen höheren Anteil an Chromoxid, der in dem Bereich der höheren Stromdichten zwischen ¼ und ein 1/3 der Gesamtgewichtsauflage der Beschichtung ausmacht. Die Werte der Stromdichteschwellen, die die Bereiche (Regime I bis III) voneinander abgrenzen, sind dabei abhängig von der Bandgeschwindigkeit, mit der das Stahlblech durch die Elektrolytlösung bewegt wird.
  • In der WO 2014/079909 A1 ist erwähnt, dass zur Erzielung einer für Verpackungsanwendungen ausreichenden Korrosionsbeständigkeit eines mit einer Chrom-Chromoxid-Beschichtung beschichteten Schwarzblechs (unbeschichtetes Stahlblech) eine Mindestauflage der Beschichtung von wenigstens 20 mg/m2 erforderlich ist, um eine mit herkömmlichem ECCS vergleichbare Korrosionsbeständigkeit zu erzielen. Es hat sich ferner gezeigt, dass zur Erzielung einer für Verpackungsanwendungen ausreichenden Korrosionsbeständigkeit eine Mindestauflage von Chromoxid von wenigstens 5 mg/m2 in der Beschichtung erforderlich ist. Um eine solche Mindestauflage von Chromoxid in der Beschichtung zu gewährleisten, erscheint es zweckmäßig, in dem Elektrolyseverfahren hohe Stromdichten anzulegen, damit in dem Bereich (Regime III) gearbeitet werden kann, in dem sich eine Beschichtung mit einem relativ hohen Chromoxid-Anteil auf dem Stahlsubstrat abscheidet. Um eine Beschichtung mit einem hohen Chromoxid-Anteil zu erhalten, müssten demzufolge hohe Stromdichten eingesetzt werden. Die Erzielung hoher Stromdichten in den Elektrolysetanks erfordert jedoch einen erheblichen Energieaufwand für die Beaufschlagung der Anoden mit hohen Strömen.
  • Die unter WO 2019/121582 A1 nachveröffentlichte europäische Patentanmeldung offenbart ein Verfahren zur Herstellung eines mit einer Chrommetall und Chromoxid enthaltenden Beschichtung beschichteten Schwarzblechbands aus einer Elektrolytlösung, welche eine dreiwertige Chromverbindung enthält, in dem das Schwarzblechband als Kathode geschaltet in Kontakt mit der Elektrolytlösung gebracht und nacheinander durch mehrere hintereinander angeordnete Elektrolysetanks geleitet wird, wobei die Stromdichte in den vorderen Elektrolysetanks in einem Regime II und in die Stromdichte in den hinteren Elektrolysetanks in einem Regime III liegt und die Stromdichte in dem Regime III höher als die Stromdichte in dem Regime II ist und sich bei den Stromdichten in dem Regime II eine chromoxidhaltige Schicht auf dem Schwarzblech abscheidet, die einen niedrigeren Anteil des Chromoxyds aufweist im Vergleich zu der Schicht, die sich in dem Regime III abscheidet.
  • Die Aufgabe der vorliegenden Erfindung besteht in der Bereitstellung eines möglichst effizienten und energiesparenden Verfahrens zur Herstellung eines mit einer Beschichtung aus Chrom und Chromoxid beschichteten Weißblechbands auf Basis einer Elektrolytlösung mit einer dreiwertigen Chromverbindung.
  • Gelöst wird diese Aufgabe durch ein Verfahren mit den Merkmalen des Anspruchs 1. Bevorzugte Ausführungsformen dieses Verfahrens sind den Unteransprüchen zu entnehmen.
  • In dem Verfahren gemäß der Erfindung wird eine Beschichtung, die Chrommetall und Chromoxid enthält, elektrolytisch aus einer Elektrolytlösung, die eine dreiwertige Chromverbindung enthält, auf ein Weißblechband aufgebracht, indem das Weißblechband als Kathode geschaltet in Kontakt mit der Elektrolytlösung gebracht wird, wobei das Weißblechband nacheinander mit einer vorgegebenen Bandgeschwindigkeit in einer Bandlaufrichtung durch mehrere in Bandlaufrichtung hintereinander angeordnete Elektrolysetanks geleitet wird, wobei in dem in Bandlaufrichtung gesehen ersten Elektrolysetank oder in einer vorderen Gruppe von Elektrolysetanks eine niedrige Stromdichte j1, in einem in Bandlaufrichtung folgenden zweiten Elektrolysetank oder in einer mittleren Gruppe von Elektrolysetanks eine mittlere Stromdichte j2 und in einem in Bandlaufrichtung gesehen letzten Elektrolysetank oder in einer hinteren Gruppe von Elektrolysetanks eine hohe Stromdichte j3 vorliegt, wobei j1 ≤ j2 < j3 ist und die niedrige Stromdichte j1 größer als 20 A/dm2 ist.
  • Die niedrige Stromdichte j1 > 20 A/dm2 ist dabei so ausgewählt, dass sich in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks bereits eine Beschichtung auf dem Weißblechband abscheidet, die Chrom und/oder Chromoxid enthält. Mit dem gewählten unteren Grenzwert für die Stromdichte von 20 A/dm2 lassen sich auch bei niedrigen Bandgeschwindigkeiten (von bspw. v = 100 m/min) bereits Chrom und/oder Chromoxid enthaltende Beschichtungen abscheiden. Zur Erzielung eines hohen Durchsatzes sind Bandgeschwindigkeiten von v ≥ 100 m/min bevorzugt.
  • Durch die Aufteilung der in Bandlaufrichtung hintereinander angeordneten Elektrolysetanks und Einstellung unterschiedlicher, in Bandlaufrichtung ansteigender Stromdichte in den einzelnen Elektrolysetanks ist es möglich, einerseits hohe Bandgeschwindigkeiten von 100 m/min oder mehr einzuhalten, und andererseits eine genügend hohe Gewichtsauflage der Beschichtung auf wenigstens einer Seite des Weißblechbands abzuscheiden, wobei die Beschichtung den für eine ausreichende Korrosionsbeständigkeit erforderlichen Anteil des Chromoxids von wenigstens 5 mg/m2, bevorzugt von mehr als 7 mg/m2 aufweist.
  • Wenn von Chromoxid gesprochen wird, sind dabei alle Oxidformen des Chrom (CrOx), einschließlich Chromhydroxide, insbesondere Chrom(III)-Hydroxid und Chrom(III)-oxidHydrat, sowie Mischungen davon gemeint.
  • Dadurch, dass in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks und in dem zweiten Elektrolysetank oder in der mittleren Gruppe von Elektrolysetanks eine, verglichen mit dem in Bandlaufrichtung gesehen letzten Elektrolysetank oder in der hinteren Gruppe von Elektrolysetanks, niedrigere Stromdichte j1 bzw. j2 eingesetzt wird, kann Energie gespart werden, da für die Beaufschlagung der Anoden in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks und in dem zweiten Elektrolysetank oder in der mittleren Gruppe von Elektrolysetanks geringere elektrische Ströme benötigt werden. Dennoch wird eine genügend hohe Gewichtsauflage von Chromoxid in der Beschichtung erzeugt, da auch bei den niedrigeren Stromdichten j1 und j2, die in dem ersten bzw. dem zweiten Elektrolysetank bzw. der vorderen und der mittleren Gruppe von Elektrolysetanks eingestellt werden, bereits zu einem gewissen Anteil Chromoxid auf dem Metallsubstrat abgeschieden wird. Der größere Anteil von Chromoxid wird in dem in Bandlaufrichtung gesehen letzten Elektrolysetank oder in der hinteren Gruppe von Elektrolysetanks abgeschieden, weil darin die hohe Stromdichte j3 eingestellt wird, bei der der Anteil des Chromoxids an der Gesamtauflage der Beschichtung höher ausfällt.
  • Da bereits in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks und in dem zweiten Elektrolysetank oder in der mittleren Gruppe von Elektrolysetanks ein gewisser Gewichtsanteil der Gesamtauflage der abgeschiedenen Beschichtung, der bei ca. 9 bis 25 % liegt, auf das Chromoxid entfällt, bilden sich bereits in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks und in dem zweiten Elektrolysetank oder in der mittleren Gruppe von Elektrolysetanks Chromoxidkristalle auf der Oberfläche des Weißblechbands aus. Diese Chromoxidkristalle wirken in dem letzten Elektrolysetank und/oder in der hinteren Gruppe von Elektrolysetanks als Keimzelle für das Anwachsen weiterer Oxidkristalle, weshalb dadurch die Effizienz der Abscheidung von Chromoxid bzw. der Anteil des Chromoxids an der Gesamtauflage der Beschichtung in dem letzten Elektrolysetank oder in der hinteren Gruppe von Elektrolysetanks zunimmt. Somit kann, unter energiesparender Verwendung von niedrigeren Stromdichten j1 und j2 in dem ersten und dem zweiten Elektrolysetank bzw. der vorderen und mittleren Gruppe von Elektrolysetanks, eine genügend hohe Auflage von Chromoxid von bevorzugt mehr als 5 mg/m2 auf der Oberfläche des Weißblechbands erzeugt werden.
  • Der in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks und in dem zweiten Elektrolysetank oder in der mittleren Gruppe von Elektrolysetanks erzeugte Anteil des Chromoxids bildet aufgrund des höheren Sauerstoffanteils in der Beschichtung im Vergleich zu einem elektrolytischen Abscheiden mit höheren Stromdichten (und folglich geringerem Oxidanteil) eine dichtere Beschichtung aus, die zu einer verbesserten Korrosionsbeständigkeit führt.
  • Die Verwendung von wenigstens drei hintereinander angeordneten Elektrolysetanks ermöglicht die Einhaltung einer hohen Bandgeschwindigkeit bei möglichst niedrigen Stromdichten, wodurch die Effizienz des Verfahrens gesteigert wird. Es hat sich gezeigt, dass zur Einhaltung einer bevorzugten Bandgeschwindigkeit von mindestens 100 m/min eine Stromdicht von wenigstens 25 A/dm2 benötigt wird, damit eine Abscheidung einer Chrom-Chromoxidschicht auf wenigstens einer Oberfläche des Weißblechbands erfolgen kann. Diese Stromdicht von 25 A/dm2 stellt den ersten Stromdichteschwellwert bei einer Bandgeschwindigkeit von ca. 100 m/min dar, der das Regime I (keine Chromabscheidung) von Regime II (Chromabscheidung mit linearen Zusammenhang zwischen Stromdichte und der Chrom-Gewichtsauflage der abgeschiedenen Beschichtung) abgrenzt.
  • Die Stromdichten (j1, j2, j3) in den Elektrolysetanks werden jeweils an die Bandgeschwindigkeit angepasst, wobei zumindest im Wesentlichen ein linearer Zusammenhang zwischen der Bandgeschwindigkeit und der jeweiligen Stromdichte (j1, j2, j3) vorliegt. Dabei ist es von Vorteil, wenn die Stromdichte in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks kleiner ist als in dem zweiten Elektrolysetank oder in der mittleren Gruppe von Elektrolysetanks. Eine geringere Stromdichte in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks erzeugt unmittelbar auf der Oberfläche des Weißblechbands eine dichte und damit korrosionsbeständige Chrom-Chromoxidbeschichtung mit einem relativ hohen Chromoxid-Anteil, der bevorzugt bei mehr als 8%, insbesondere zwischen 8 und 15% und besonders bevorzugt bei mehr als 10 Gew.% und liegt.
  • Zur Erzeugung der Stromdichten (j1, j2, j3) in den Elektrolysetanks ist zweckmäßig in jedem Elektrolysetank wenigstens ein Anodenpaar mit zwei gegenüberliegenden Anoden angeordnet, wobei das Weißblechband zwischen den gegenüberliegenden Anoden eines Anodenpaars durchläuft. Dadurch kann eine gleichmäßige Stromdichteverteilung um das Weißblechband erzielt werden. Zweckmäßig sind die Anodenpaare jedes Elektrolysetanks dabei unabhängig voneinander mit elektrischem Strom beaufschlagbar, so dass in den Elektrolysetanks unterschiedliche Stromdichten (j1, j2, j3) eingestellt werden können.
  • Um in dem in Bandlaufrichtung gesehen letzten Elektrolysetank eine hohe Stromdichte j3 einstellen zu können, kann darin wenigstens ein Anodenpaar vorgesehen sein, welches im Vergleich zu den Anodenpaaren in den vorangehenden Elektrolysetanks eine geringere Ausdehnung in Bandlaufrichtung aufweist. Dadurch können alle Anodenpaare mit gleich viel elektrischem Strom betrieben werden und dennoch kann in dem letzten Elektrolysetank eine hohe Stromdichte j3 eigestellt werden, die höher als die Stromdichte in den vorangehenden Elektrolysetanks ist. Weiterhin können durch die Verwendung eines verkürzten Anodenpaars in dem letzten Elektrolysetank die Anoden mit einem Gleichrichter gekoppelt werden, der über eine geringere Gleichrichterkapazität verfügt.
  • Bevorzugt wird die Bandgeschwindigkeit des Weißblechbands so gewählt, dass die Elektrolysedauer (tE), in der das Weißblechband elektrolytisch wirksam in Kontakt mit der Elektrolytlösung steht, in jedem der Elektrolysetanks kleiner als 2,0 Sekunden ist und insbesondere zwischen 0,5 und 1,9 Sekunden liegt und bevorzugt kleiner als 1,0 Sekunden ist und insbesondere zwischen 0,6 Sekunden und 0,9 Sekunden liegt. Dies gewährleistet einerseits eine höhere Effizienz des Verfahrens und andererseits die Abscheidung einer Beschichtung mit einer ausreichenden Gewichtsauflage des Chrom von bevorzugt wenigstens 40 mg/m2 und insbesondere von 70 mg/m2 bis 180 mg/m2. Der in der Beschichtung enthaltene Gewichtsanteil des Chromoxid an der gesamten Gewichtsauflage der Beschichtung liegt dabei bei wenigstens 5%, bevorzugt bei mehr als 10% und insbesondere bei 11 bis 16%. Eine kurze Elektrolysedauer von weniger als 1 Sekunde in jedem der Elektrolysetanks fördert (bei gleichbleibender Stromdichte) die Ausbildung von Chromoxid und hemmt die Ausbildung von metallischem Chrom, weshalb die Einhaltung kurzer Elektrolysedauern (tE) auch in Bezug auf die Ausbildung einer Beschichtung mit einem möglichst hohen Chromoxid-Anteil zu bevorzugen ist.
  • Die gesamte Elektrolysedauer (tE), in der das Weißblechband elektrolytisch wirksam in Kontakt mit der Elektrolytlösung (E) steht, ist - aufsummiert über alle Elektrolysetanks (1c - 1h) hinweg - bevorzugt kleiner als 16 Sekunden und liegt insbesondere zwischen 3 und 16 Sekunden. Die gesamte Elektrolysedauer ist besonders bevorzugt kleiner als 8 Sekunden und liegt insbesondere zwischen 4 Sekunden und 7 Sekunden.
  • Durch die Anordnung der Elektrolysetanks, durch die das Weißblechband in Bandlaufrichtung durchgeführt wird, erfolgt eine schichtweise Abscheidung der Beschichtung, wobei in jedem der Elektrolysetanks, je nach gewählter Stromdichte im jeweiligen Elektrolysetank, eine Schicht mit unterschiedlicher Zusammensetzung der Beschichtung, insbesondere mit einem unterschiedlichen Chromoxid-Anteil in der jeweiligen Schicht, erzeugt wird. So kann bspw. in dem ersten Elektrolysetank oder in der vorderen Gruppe von Elektrolysetanks eine Chrommetall und Chromoxid enthaltende Schicht mit einem Gewichtsanteil des Chromoxid von mehr als 5%, insbesondere von 6 bis 15 % auf der Oberfläche des Weißblechbands abgeschieden werden und in dem zweiten Elektrolysetank oder in der mittleren Gruppe von Elektrolysetanks eine Chrommetall und Chromoxid enthaltende Schicht mit einem Gewichtsanteil des Chromoxid von weniger als 5%, insbesondere von 1 bis 3 %. In dem dritten Elektrolysetank oder in der hinteren Gruppe von Elektrolysetanks wird in jedem Fall bei der hohen Stromdichte j3 eine Schicht mit einem höheren Gewichtsanteil des Chromoxids abgeschieden, wobei der höhere Gewichtsanteil des Chromoxid bevorzugt bei mehr als 40%, insbesondere zwischen 50 bis 80 % liegt.
  • Die aus der Elektrolytlösung aufgebrachte Beschichtung, die zumindest die Bestandteile Chrommetall und Chromoxid und ggf. noch Chromsulphate und Chromcarbide enthält, weist zur Erzielung einer ausreichend hohen Korrosionsbeständigkeit bevorzugt eine gesamte Gewichtsauflage des Chroms von wenigstens 40 mg/m2 und insbesondere von 70 mg/m2 bis 180 mg/m2 auf, wobei der im Chromoxid enthaltene Anteil der gesamten Gewichtsauflage des Chroms bei wenigstens 5%, bevorzugt bei 10 bis 15% liegt. Der Chromoxid-Anteil weist dabei eine Gewichtsauflage des als Chromoxid gebundenen Chroms von wenigstens 3 mg Cr pro m2, insbesondere von 3 bis 15 mg/m2 und bevorzugt von wenigstens 7 mg Cr pro m2 auf.
  • Zweckmäßig wird in dem erfindungsgemäßen Verfahren eine einzige Elektrolytlösung verwendet, d.h. die Elektrolysetanks sind alle mit derselben Elektrolytlösung befüllt, wobei sowohl die Zusammensetzung als auch die Temperatur der Elektrolytlösung in allen Elektrolysetanks bevorzugt zumindest im Wesentlichen gleich ist. Bezüglich der Temperatur der Elektrolytlösung hat sich eine (mittlere) Temperatur in allen Elektrolysetanks von weniger als 40°C als in Bezug auf die Abscheidung eines möglichst hohen Anteils von Chromoxid in der Beschichtung als geeignet erwiesen. Es hat sich gezeigt, dass bei Temperaturen der Elektrolytlösung von bis zu 40°C die Ausbildung von Chromoxid gefördert und die Ausbildung von metallischen Chrom unterdrückt wird. Es ist dabei auch möglich, unterschiedliche Temperaturen der Elektrolytlösung in den Elektrolysetanks einzustellen. So kann bspw. zur Erzielung eines möglichst hohen Anteils von Chromoxid in dem letzten Elektrolysetank oder in der hinteren Gruppe von Elektrolysetanks eine niedrigere Temperatur eingestellt werden als in dem ersten und zweiten Elektrolysetank bzw. der vorderen und mittleren Gruppe von Elektrolysetanks. So kann bspw. die (mittlere) Temperatur der Elektrolytlösung in dem letzten Elektrolysetank oder der hinteren Gruppe von Elektrolysetanks zwischen 20°C und weniger als 40°C und bevorzugt zwischen 25°C und 38°C und insbesondere bei 35°C liegen und die Temperatur der Elektrolytlösung in den dem letzten Elektrolysetank vorangehenden Elektrolysetanks kann bei höheren Temperaturen liegen, insbesondere zwischen 40°C und 70°C und bevorzugt bei 55°C.
  • Wenn von der Temperatur der Elektrolytlösung bzw. von der Temperatur in einem Elektrolysetank gesprochen wird, ist jeweils die mittlere Temperatur gemeint, die sich gemittelt über das gesamte Volumen eines Elektrolysetanks ergibt. In der Regel liegt in den Elektrolysetanks eine Temperaturgradient mit einer Temperaturzunahme von oben nach unten vor.
  • Eine bevorzugte Zusammensetzung der Elektrolytlösung umfasst basisches Cr(III)-Sulfat (Cr2(SO4)3) als dreiwertige Chromverbindung. Die Konzentration der dreiwertigen Chromverbindung in der Elektrolytlösung beträgt sowohl bei dieser bevorzugten Zusammensetzung als auch in anderen Kompositionen wenigstens 10g/l und bevorzugt mehr als 15 g/l beträgt und liegt insbesondere bei 20 g/l oder mehr. Weitere zweckmäßige Bestandteile der Elektrolytlösung können Komplexbildner, insbesondere ein Alkalimetallcarboxylat, bevorzugt ein Salz der Ameisensäure, insbesondere Kaliumformat oder Natriumformat, sein. Bevorzugt liegt das Verhältnis des Gewichtsanteils der dreiwertigen Chromverbindung zum Gewichtsanteil der Komplexbildner, insbesondere der Formiate, zwischen 1:1,1 und 1:1,4 und bevorzugt zwischen 1:1,2 und 1:1,3 und insbesondere bei 1:1,25. Zur Erhöhung der Leitfähigkeit kann die Elektrolytlösung ein Alkalimetallsulfat, bevorzugt Kalium- oder Natriumsulfat, umfassen. Bevorzugt ist die Elektrolytlösung frei von Halogeniden, insbesondere frei von Chlorid- und Bromid-Ionen sowie frei von einem Pufferungsmittel und insbesondere frei von einem Borsäure-Puffer.
  • Der pH-Wert der Elektrolytlösung (gemessen bei einer Temperatur von 20°C) liegt bevorzugt zwischen 2,0 und 3,0 und besonders bevorzugt zwischen 2,5 und 2,9 und insbesondere bei 2,7. Zur Einstellung des pH-Werts der Elektrolytlösung kann dieser eine Säure, bspw. Schwefelsäure, zugegeben werden.
  • Nach dem elektrolytischen Aufbringen der Beschichtung kann auf die Oberfläche der Beschichtung aus Chrommetall und Chromoxid eine organische Beschichtung, insbesondere ein Lack oder ein thermoplastischer Kunststoff, bspw. eine Polymerfolie aus PET, PE, PP oder einer Mischung davon, aufgebracht werden, um einen zusätzlichen Schutz gegen Korrosion und eine Barriere gegen säurehaltige Füllgüter von Verpackungen auszubilden.
  • Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Bezugnahme auf die begleitenden Zeichnungen näher erläutert, wobei diese Ausführungsbeispiele die Erfindung lediglich beispielhaft erläutern und in Bezug auf den durch die nachfolgenden Ansprüche definierten Schutzbereich nicht beschränken. Die Zeichnungen zeigen:
  • Figur 1:
    schematische Darstellung einer Bandbeschichtungsanlage zur Durchführung des erfindungsgemäßen Verfahrens in einer ersten Ausführungsform mit drei in Bandlaufrichtung v hintereinander angeordneten Elektrolysetanks;
    Figur 2:
    schematische Darstellung einer Bandbeschichtungsanlage zur Durchführung des erfindungsgemäßen Verfahrens in einer zweiten Ausführungsform mit acht in Bandlaufrichtung v hintereinander angeordneten Elektrolysetanks;
    Figur 3:
    Schnittdarstellung eines mit dem erfindungsgemäßen Verfahren in der ersten Ausführungsform beschichteten Weißblechbands;
    Figur 4:
    GDOES-Spektrum einer elektrolytisch auf einem Stahlband abgeschiedenen Schicht, welche Chrommetall, Chromoxid und Chrom-Carbide enthält, wobei das Chromoxid an der Oberfläche der Schicht liegt.
  • In Figur 1 ist schematisch eine Bandbeschichtungsanlage zur Durchführung des erfindungsgemäßen Verfahrens in einer ersten Ausführungsform gezeigt. Die Bandbeschichtungsanlage umfasst drei neben- bzw. hintereinander angeordnete Elektrolysetanks 1a, 1b, 1c, die jeweils mit einer Elektrolytlösung E befüllt sind. Durch die Elektrolysetanks 1a-1c wird nacheinander ein zunächst unbeschichtetes Weißblechband M geleitet. Das Weißblechband M wird hierzu von einer hier nicht dargestellten Transporteinrichtung in eine Bandlaufrichtung v mit einer vorgegebenen Bandgeschwindigkeit durch die Elektrolysetanks 1a-1c gezogen. Oberhalb der Elektrolysetanks 1a-1c sind Stromrollen S angeordnet, über die das Weißblechband M als Kathode geschaltet wird. In jedem Elektrolysetank ist weiterhin eine Umlenkrolle U angeordnet, um die das Weißblechband M geführt ist und dadurch in den bzw. aus dem Elektrolysetank gelenkt wird.
  • Innerhalb jedes Elektrolysetanks 1a-1c ist jeweils unterhalb des Flüssigkeitsspiegels der Elektrolytlösung E mindestens ein Anodenpaar AP angeordnet. In dem gezeigten Ausführungsbeispiel sind in jedem Elektrolysetank 1a-1c zwei in Bandlaufrichtung hintereinander angeordnete Anodenpaare AP vorgesehen. Das Weißblechband M wird dabei zwischen den gegenüberliegenden Anoden eines Anodenpaars AP hindurchgeführt. In dem Ausführungsbeispiel von Figur 1 sind somit in jedem Elektrolysetank 1a, 1b, 1c zwei Anodenpaare AP so angeordnet, dass das Weißblechband M nacheinander durch diese Anodenpaare AP durchgeführt wird. Das in stromabwärtiger Richtung letzte Anodenpaar APc des in Bandlaufrichtung v gesehen letzten Elektrolysetanks 1c weist dabei im Vergleich zu den übrigen Anodenpaaren AP eine verkürzte Länge auf. Dadurch kann mit diesem letzten Anodenpaar APc bei Beaufschlagung mit einem gleich hohen elektrischen Strom eine höhere Stromdichte erzeugt werden.
  • Bei dem Weißblechband M handelt es sich um ein verzinntes Stahlband. Zur Vorbereitung des Elektrolyseverfahrens wird das Weißblechband M zunächst entfettet, gespült, gebeizt und nochmals gespült und in dieser vorbehandelten Form nacheinander durch die Elektrolysetanks 1a -1c geleitet, wobei das Weißblechband M als Kathode geschaltet wird, indem über die Stromrollen S elektrischer Strom zugeführt wird. Die Bandgeschwindigkeit, mit der das Weißblechband M durch die Elektrolysetanks 1a-1c geleitet wird, beträgt mindestens 100 m/min und kann bis zu 900 m/min betragen.
  • Den in Bandlaufrichtung v hintereinander angeordneten Elektrolysetanks 1a-1c ist jeweils dieselbe Elektrolytlösung E eingefüllt. Die Elektrolytlösung E enthält eine dreiwertige Chromverbindung, bevorzugt basisches Cr(III)-Sulfat, Cr2(SO4)3. Neben der dreiwertigen Chromverbindung enthält die Elektrolytlösung bevorzugt wenigstens einen Komplexbildner, beispielsweise ein Salz der Ameisensäure, insbesondere Kalium- oder Natriumformat. Das Verhältnis des Gewichtsanteils der dreiwertigen Chromverbindung zum Gewichtsanteil der Komplexbildner, insbesondere der Formate, liegt dabei bevorzugt zwischen 1:1,1 und 1:1,4 und besonders bevorzugt bei 1:1,25. Zur Erhöhung der Leitfähigkeit kann die Elektrolytlösung E ein Alkalimetallsulfat, beispielsweise Kalium- oder Natriumsulfat, enthalten. Die Konzentration der dreiwertigen Chromverbindung in der Elektrolytlösung E liegt dabei bei wenigstens 10g/l und besonders bevorzugt bei 20g/l oder mehr. Der pH-Wert der Elektrolytlösung wird durch Zugabe einer Säure, beispielsweise Schwefelsäure, auf einen bevorzugten Wert zwischen 2,0 und 3,0 und insbesondere auf pH=2,7 eingestellt.
  • Die Temperatur der Elektrolytlösung E ist zweckmäßig in allen Elektrolysetanks 1a-1c gleich hoch und liegt bevorzugt zwischen 25°C und 70°C. In besonders bevorzugten Ausführungsbeispielen des erfindungsgemäßen Verfahrens können jedoch in den Elektrolysetanks 1a-1c auch unterschiedliche Temperaturen der Elektrolytlösung eingestellt werden. So kann beispielsweise die Temperatur der Elektrolytlösung in dem letzten Elektrolysetank 1c niedriger sein als in den stromaufwärtig angeordneten Elektrolysetanks 1a und 1b. In dieser Ausführungsform des Verfahrens liegt die Temperatur der Elektrolytlösung in dem letzten Elektrolysetank 1c bevorzugt zwischen 25°C und 38°C und insbesondere bei 35°C. Die Temperatur der Elektrolytlösung in den ersten beiden Elektrolysetanks 1a, 1b liegt bei diesem Ausführungsbeispiel bevorzugt zwischen 40°C und 75°C und insbesondere bei 55°C. Durch die niedrigere Temperatur der Elektrolytlösung E wird in dem letzten Elektrolysetank 1c die Abscheidung einer Chrom-/Chromoxid-Schicht mit einem höheren Anteil von Chromoxid gefördert.
  • Die in den Elektrolysetanks 1a-1c angeordneten Anodenpaare AP werden so mit elektrischem Gleichstrom beaufschlagt, dass in den Elektrolysetanks 1a, 1b, 1c jeweils eine unterschiedliche Stromdichte vorliegt. In dem in Bandlaufrichtung v gesehen stromaufwärtigen, ersten Elektrolysetank 1a liegt eine niedrige Stromdichte j1 vor, in dem in Bandlaufrichtung folgenden zweiten Elektrolysetank 1b liegt eine mittlere Stromdichte j2 vor und in dem in Bandlaufrichtung gesehen letzten Elektrolysetank 1c liegt eine hohe Stromdichte j3 vor, so dass die Relation j1 < j2 < j3 gilt und die niedrige Stromdichte j1 > 20 A/dm2 ist.
  • Durch die eingestellte Stromdichte in dem jeweiligen Elektrolysetank wird auf wenigstens eine Seite des Weißblechbands M eine Chrom und Chromoxid enthaltende Schicht elektrolytisch abgeschieden, wobei in jedem der Elektrolysetanks eine Schicht B1, B2, B3 erzeugt wird. Aufgrund der unterschiedlichen Stromdichten j1, j2, j3 in den einzelnen Elektrolysetanks 1a, 1b, 1c weist jede elektrolytisch aufgebrachte Schicht B1, B2, B3 dabei eine unterschiedliche Zusammensetzung auf, die sich insbesondere durch den Anteil von Chromoxid unterscheidet.
  • In Figur 3 ist schematisch eine Schnittdarstellung eines mit dem erfindungsgemäßen Verfahren elektrolytisch beschichteten Weißblechbands M gezeigt. Auf einer Seite des Weißblechbands M ist dabei eine Beschichtung B aufgebracht, die sich aus den einzelnen Schichten B1, B2, B3 zusammensetzt. Jede einzelne Schicht B1, B2, B3 wird dabei in einem der Elektrolysetanks 1a, 1b, 1c auf die Oberfläche appliziert.
  • Die Beschichtung B, die sich aus den einzelnen Schichten B1, B2, B3 zusammensetzt, enthält als wesentliche Bestandteile metallisches Chrom (Chrommetall) sowie Chromoxide (CrOx), wobei die Zusammensetzung der einzelnen Schichten B1, B2, B3 in Bezug auf ihren jeweiligen Gewichtsanteil von Chrommetall und Chromoxid aufgrund der unterschiedlichen Stromdichten j1, j2, j3 in den Elektrolysetanks 1a, 1b, 1c unterschiedlich ist.
  • Der Schichtaufbau der auf dem Metallsubstart abgeschiedenen Schichten lässt sich durch GDOES- Spektren (Glow Discharge Optical Emission Spectroscopy) nachweisen. Auf dem Weißblechband-Substrat scheidet sich zunächst eine metallische Chromschicht mit einer Dicke von 10-15 nm ab. Die Oberfläche dieser Schicht oxidiert und liegt hauptsächlich als Chromoxid in der Form Cr2O3 oder als Misch-Oxid-Hydroxid in der Form Cr2O2(OH)2 vor. Diese Oxidschicht ist wenige Nanometer dick. Zusätzlich bilden sich, durch die komplette Schicht gleichmäßig eingebaut, Chrom-Kohlenstoff und Chromsulfat- Verbindungen, welche aus der Reduktion des organischen Komplexbildners bzw. dem Sulfat der Elektrolytlösung gebildet werden. Typische GDOES- Spektren der in den einzelnen Elektrolysetanks abgeschiedenen Schichten B1, B2, B3 zeigen in den ersten Nanometern der Schicht einen starken Anstieg des Sauerstoffsignals, woraus sich erschließen lässt, dass die Oxidschicht an der Oberfläche der jeweiligen Schicht konzentriert ist (Figur 4).
  • Je nach Bandgeschwindigkeit steht das als Kathode geschaltete und durch die Elektrolysetanks 1a-1c geleitete Weißblechband M während einer Elektrolysedauer tE elektrolytisch wirksam in Kontakt mit der Elektrolytlösung E. Bei Bandgeschwindigkeiten zwischen 100 und 700 m/min liegt die Elektrolysedauer in jedem der Elektrolysetanks 1a, 1b, 1c zwischen 0,5 und 2,0 Sekunden. Bevorzugt werden so hohe Bandgeschwindigkeiten eingestellt, dass die Elektrolysedauer tE in jedem Elektrolysetank 1a, 1b, 1c kleiner als 2 Sekunden ist und insbesondere zwischen 0,6 Sekunden und 1,8 Sekunden liegt. Die gesamte Elektrolysedauer in der das Weißblechband M über alle Elektrolysetanks 1a-1c hinweg elektrolytisch wirksam in Kontakt mit der Elektrolytlösung E steht, beträgt entsprechend zwischen 1,8 und 5,4 Sekunden.
  • Durch die niedrige Stromdichte j1 in dem ersten Elektrolysetank 1a weist die in dem ersten Elektrolysetank 1a aufgebrachte Schicht B1 im Vergleich zu der Schicht B2, die in dem zweiten (mittleren) Elektrolysetank 1b aufgebracht wird, einen höheren Oxidanteil auf, da sich bei kleineren Stromdichten, die sich innerhalb des Regime II befinden, höhere Oxidanteile in der Beschichtung ausbilden. Im letzten Elektrolysetank 1c wird eine Stromdichte j3 eingestellt, die im Regime III liegt, in dem ein erhöhter Chromoxidanteil in der Beschichtung erzeugt wird, der bevorzugt bei mehr als 40 Gew.% und besonders bevorzugt bei mehr als 50 Gew.% liegt.
  • In Tabelle 1 sind beispielhaft geeignete Stromdichten j1, j2, j3 in den einzelnen Elektrolysetanks 1a, 1b, 1c bei verschiedenen Bandgeschwindigkeiten dargestellt. Aus Tabelle 1 ist ersichtlich, dass die Stromdichten j1 im ersten Elektrolysetank 1a im Vergleich zu den Stromdichten j2 in dem zweiten Elektrolysetank 1b geringfügig kleiner sind und oberhalb eines unteren Grenzwerts von j0 = 20 A/dm2 liegen. Die in den ersten beiden Elektrolysetanks 1a, 1b vorliegenden Stromdichten j1, j2 befinden sich im Regime II, in dem ein linearer Zusammenhang zwischen der Stromdichte und der elektrolytisch abgeschiedenen Menge des Chroms (bzw. der abgeschiedenen Gewichtsauflage von Chrom) vorliegt. Die Stromdichte j1 des ersten Elektrolysetanks 1a ist dabei zweckmäßig so ausgewählt, dass sie nahe an der ersten Stromdichteschwelle liegt, die das Regime I (in dem noch keine Chromabscheidung erfolgt) von dem Regime II abgrenzt. Bei diesen niedrigen Stromdichten j1 wird eine Chrommetall-Chromoxid-Beschichtung (Schicht B1) auf der Oberfläche des Weißblechbands M mit einem höheren Chromoxid-Anteil abgeschieden, als bei höheren Stromdichten innerhalb des Regime II. Deshalb weist die in dem ersten Elektrolysetank 1a abgeschiedene Schicht B1 im Vergleich zu der im zweiten Elektrolysetank 1b abgeschiedenen Beschichtung B2 einen höheren Chromoxid-Anteil auf.
  • In dem letzten Elektrolysetank 1a wird eine Stromdichte j3 eingestellt, die oberhalb der zweiten Stromdichteschwelle liegt, welche das Regime II von dem Regime III abgrenzt. Die Stromdichte j3 des letzten Elektrolysetanks 1c liegt also in dem Regime III, in dem eine teilweise Zersetzung der Chrommetall-Chromoxid-Beschichtung erfolgt und ein wesentlich höherer Chromoxid-Anteil abgeschieden wird als bei Stromdichten im Regime II. Aus diesem Grund weist die im letzten Elektrolysetank 1c abgeschiedene Beschichtung B3 einen hohen Chromoxid-Anteil auf, der höher ist, als die Chromoxid-Anteile in den Beschichtungen B1 und B2.
  • Nach der elektrolytischen Beschichtung wird das mit der Beschichtung B versehene Weißblechband M gespült, getrocknet und eingeölt (beispielsweise mit DOS). Danach kann das elektrolytisch mit der Beschichtung B beschichtete Weißblechband M mit einer organischen Auflage auf die Oberfläche der Beschichtung B versehen werden. Bei der organischen Auflage kann es sich beispielsweise um einen organischen Lack oder um Polymerfilme aus thermoplastische Polymeren wie PET, PP oder Mischungen davon handeln. Die organische Auflage kann entweder in einem "Coil Coating"-Verfahren oder in einem Tafel-Verfahren appliziert werden, wobei das beschichtete Weißblechband in dem Tafel-Verfahren zunächst in Tafeln zerteilt wird, die anschließend mit einem organischen Lack lackiert oder mit einem Polymerfilm beschichtet werden.
  • In Figur 2 ist eine zweite Ausführungsform einer Bandbeschichtungsanlage mit acht in Bandlaufrichtung v hintereinander angeordneten Elektrolysetanks 1a-1h gezeigt. Die Elektrolysetanks 1a-1h sind dabei in drei Gruppen gruppiert, nämlich eine vordere Gruppe mit den beiden ersten Elektrolysetanks 1a, 1b, eine mittlere Gruppe mit den in Bandlaufrichtung nachfolgenden Elektrolysetanks 1c-1f und eine hintere Gruppe mit den beiden letzten Elektrolysetanks 1g und 1h. In den Gruppen von Elektrolysetanks liegen jeweils unterschiedlich hohe Stromdichten j1, j2, j3 vor, wobei in der vorderen Gruppe von Elektrolysetanks 1a, 1b eine niedrige Stromdichte j1, in der mittleren Gruppe von Elektrolysetanks 1c-1f eine mittlere Stromdichte j2 und in der hinteren Gruppe von Elektrolysetanks 1g, 1h eine hohe Stromdichte j3 vorliegt, wobei j1 < j2 < j3 ist und die niedrige Stromdichte j1 > 20A/dm2 ist.
  • In der vorderen Gruppe von Elektrolysetanks 1a, 1b wird elektrolytisch eine Chrom und Chromoxid enthaltende Schicht B1 und in der zweiten Gruppe von Elektrolysetanks 1c-1f eine zweite Schicht B2 und in der hinteren Gruppe von Elektrolysetanks 1g, 1h eine dritte Schicht B3 auf das Weißblechband M appliziert. Wie bei dem Ausführungsbeispiel von Figur 1 weisen die Schichten B1, B2, B3 dabei aufgrund der unterschiedlichen Stromdichten j1, j2, j3 in den hintereinander angeordneten Gruppen von Elektrolysetanks unterschiedliche Zusammensetzung auf, wobei die Schicht B1 einen höheren Chromoxid-Anteil enthält als die zweite Schicht B2 und die dritte Schicht B3 einen höheren Chromoxid-Anteil enthält als die beiden Schichten B1 und B2.
  • In Tabelle 2 sind analog zur Tabelle 1 beispielhaft geeignete Stromdichten j1, j2, j3 in den einzelnen Elektrolysetanks 1a bis 1h bei verschiedenen Bandgeschwindigkeiten v dargestellt, wobei in den Elektrolysetanks 1a, 1b der vorderen Gruppe jeweils eine niedrige Stromdichte j1, in den Elektrolysetanks 1c bis 1f der mittleren Gruppe jeweils eine mittlere Stromdichte j2 und in den Elektrolysetanks 1g, 1h der hinteren Gruppe jeweils eine hohe Stromdichte j3 eingestellt ist, wobei j1 < j2 < j3 ist.
  • Die mit dem erfindungsgemäßen Verfahren in der Bandbeschichtungsanlage von Figur 2 erzeugte Beschichtung B auf der Oberfläche des Weißblechbands M weist damit im Wesentlichen die gleiche Zusammensetzung und Struktur auf wie in Figur 3 dargestellt.
  • Mit der Bandbeschichtungsanlage von Figur 2 können wegen der höheren Anzahl der Elektrolysetanks und der damit einhergehenden höheren Gesamt-Elektrolysedauer, in der sich das als Kathode geschaltete Weißblechband elektrolytisch wirksam in Kontakt mit der Elektrolytlösung E befindet, Beschichtungen B mit höheren Gewichtsauflagen erzeugt werden.
  • Zur Erzielung einer ausreichenden Korrosionsbeständigkeit weisen die Beschichtungen B bevorzugt eine gesamte Gewichtsauflage des Chroms von wenigstens 40 mg/m2 und besonders bevorzugt von 70 mg/m2 bis 180 mg/m2 auf. Der im Chromoxid enthaltenen Anteil der gesamten Gewichtsauflage des Chroms liegt dabei, gemittelt über die gesamte Auflage der Beschichtung B, bei wenigstens 5% und bevorzugt zwischen 10% und 15%. Zweckmäßig weist die Beschichtung B insgesamt einen Chromoxid-Anteil mit einer Gewichtsauflage des als Chromoxid gebundenen Chroms von wenigstens 3 mg Chrom pro m2 und insbesondere von 3 bis 15 mg/m2 auf. Bevorzugt beträgt die Gewichtsauflage des als Chromoxid gebundenen Chroms, gemittelt über die gesamte Auflage der Beschichtung B, wenigstens 7 mg Chrom pro m2. Eine gute Haftung von organischen Lacken oder thermoplastischen Polymermaterialien auf der Oberfläche der Beschichtung B kann bei Gewichtsauflagen des Chromoxid bis ca. 15 mg/m2 erzielt werden. Ein bevorzugter Bereich für die Gewichtsauflage des Chromoxid in der Beschichtung B liegt daher zwischen 5 und 15 mg/ m2.
  • Die gesamte Elektrolysedauer, in der das Weißblechband M elektrolytisch wirksamen Kontakt mit der Elektrolytlösung E steht, liegt in dem Ausführungsbeispiel von Figur 2 über alle Elektrolysetanks 1a-1h hinweg bevorzugt bei weniger als 16 Sekunden und insbesondere zwischen 4 und 16 Sekunden. Tabelle 1:
    Stromdichten j1, j2, j3 in den einzelnen Elektrolysetanks des ersten Ausführungsbeispiels (mit 3 Elektrolysetanks 1a - 1c) bei verschiedenen Bandgeschwindigkeiten v:
    Tank 1a 1b 1c
    v [m/min] J1/ [A/dm2] J2/ [A/dm2] J3/ [A/dm2]
    100 25 29 75
    150 41 45 91
    200 57 61 107
    300 73 77 133
    400 89 93 149
    500 105 109 165
    Tabelle 2:
    Stromdichten j1, j2, j3 in den einzelnen Elektrolysetanks des zweiten Ausführungsbeispiels (mit 8 Elektrolysetanks 1a - 1h, die zu drei Gruppen gruppiert sind) bei verschiedenen Bandgeschwindigkeiten v:
    Tank 1a 1b 1c 1d 1e 1f 1g 1h
    v [m/min] J1/ [A/dm2] J1/ [A/dm2] J2/ [A/dm2] J2/ [A/dm2] J2/ [A/dm2] J2/ [A/dm2] J3/ [A/dm2] J3/ [A/dm2]
    100 25 25 29 29 29 29 75 75
    150 41 41 45 45 45 45 91 91
    200 57 57 61 61 61 61 107 107
    300 73 73 77 77 77 77 133 133
    400 89 89 93 93 93 93 149 149
    500 105 105 109 109 109 109 165 165

Claims (15)

  1. Verfahren zur Herstellung eines mit einer Beschichtung (B) beschichteten Weißblechbands (M), wobei die Beschichtung (B) Chrommetall und Chromoxid enthält und elektrolytisch aus einer Elektrolytlösung (E), welche eine dreiwertige Chromverbindung in einer Konzentration von wenigstens 10 g/l enthält, auf das Weißblechband (M) aufgebracht wird, indem das Weißblechband (M) als Kathode geschaltet in Kontakt mit der Elektrolytlösung (E) gebracht wird, dadurch gekennzeichnet, dass das Weißblechband (M) nacheinander mit einer vorgegebenen Bandgeschwindigkeit (v) in einer Bandlaufrichtung durch mehrere in Bandlaufrichtung hintereinander angeordnete Elektrolysetanks (1a bis 1h) geleitet wird, wobei in dem in Bandlaufrichtung gesehen ersten Elektrolysetank (1a) oder in einer vorderen Gruppe von Elektrolysetanks (1a, 1b) eine niedrige Stromdichte (j1), in einem in Bandlaufrichtung folgenden zweiten Elektrolysetank (1c) oder in einer mittleren Gruppe von Elektrolysetanks (1c - 1f) eine mittlere Stromdichte (j2) und in einem in Bandlaufrichtung gesehen letzten Elektrolysetank (1h) oder in einer hinteren Gruppe von Elektrolysetanks (1g, 1h) eine hohe Stromdichte (j3) vorliegt, wobei j1 ≤ j2 < j3 ist und die niedrige Stromdichte (j1) größer als 20 A/dm2 ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Stromdichten (j1, j2, j3) in den Elektrolysetanks (1a - 1h) jeweils an die Bandgeschwindigkeit (v) angepasst wird, wobei insbesondere und zumindest im Wesentlichen ein linearer Zusammenhang zwischen der Bandgeschwindigkeit (v) und der jeweiligen Stromdichte (j1, j2, j3) vorliegt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in jedem Elektrolysetank (1a - 1h) wenigstens ein Anodenpaar (AP) mit zwei gegenüberliegenden Anoden angeordnet ist, wobei das Weißblechband zwischen den gegenüberliegenden Anoden eines Anodenpaars (AP) durchläuft.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in dem in Bandlaufrichtung gesehen letzten Elektrolysetank (1c; 1h) wenigstens ein Anodenpaar (APc) vorgesehen ist, welches im Vergleich zu den Anodenpaaren (AP) in den vorangehenden Elektrolysetanks (1a, 1b bzw. 1a bis 1g) eine geringere Ausdehnung in Bandlaufrichtung aufweist.
  5. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Elektrolysedauer (tE), in der das Weißblechband (M) elektrolytisch wirksam in Kontakt mit der Elektrolytlösung (E) steht, in jedem der Elektrolysetanks (1a-1c; 1a - 1h) kleiner als 2,0 Sekunden ist und insbesondere zwischen 0,5 und 1,9 Sekunden liegt und bevorzugt kleiner als 1,0 Sekunden ist und insbesondere zwischen 0,6 Sekunden und 0,9 Sekunden liegt.
  6. Verfahren nach Anspruch einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die gesamte Elektrolysedauer (tE), in der das Weißblechband (M) elektrolytisch wirksam in Kontakt mit der Elektrolytlösung (E) steht, über alle Elektrolysetanks (1a-1c; 1a - 1h) hinweg kleiner als 16 Sekunden ist und insbesondere zwischen 4 und 16 Sekunden liegt und bevorzugt kleiner als 8 Sekunden ist und insbesondere zwischen 5 Sekunden und 7 Sekunden liegt.
  7. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Elektrolysetanks (1a-1c; 1a bis 1h) mit der Elektrolytlösung (E) befüllt sind, wobei die Zusammensetzung und/oder die Temperatur der Elektrolytlösung (E) in allen Elektrolysetanks (1a bis 1h) zumindest im Wesentlichen gleich ist.
  8. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die mittlere Temperatur der Elektrolytlösung (E) in allen Elektrolysetanks (1a-1c; 1a bis 1h) weniger als 40°C beträgt.
  9. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die mittlere Temperatur der Elektrolytlösung in dem letzten Elektrolysetank (1c; 1h) oder der hinteren Gruppe von Elektrolysetanks (1g, 1h) zwischen 20°C und 40°C und bevorzugt zwischen 25°C und 38°C und insbesondere bei 35°C liegt.
  10. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Temperatur der Elektrolytlösung in dem letzten Elektrolysetank (1c; 1h) unter 40°C ist und insbesondere zwischen 25°C und 38°C liegt und dass die Temperatur der Elektrolytlösung in den dem letzten Elektrolysetank (1h) vorangehenden Elektrolysetanks (1a, 1b; 1a bis 1g) höher als 40°C ist und insbesondere zwischen 40°C und 70°C liegt.
  11. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Elektrolytlösung (E) neben der dreiwertigen Chromverbindung, die bevorzugt basisches Cr(III)-Sulfat (Cr2(SO4)3) umfasst, wenigstens einen Komplexbildner, insbesondere ein Alkalimetallcarboxylat, bevorzugt ein Salz der Ameisensäure, insbesondere Kaliumformat oder Natriumformat, umfasst, wobei das Verhältnis des Gewichtsanteils der dreiwertigen Chromverbindung zum Gewichtsanteil der Komplexbildner, insbesondere der Formiate, zwischen 1:1,1 und 1:1,4 und bevorzugt zwischen 1:1,2 und 1:1,3 und besonders bevorzugt bei 1:1,25 liegt, und dass die Elektrolytlösung zur Erhöhung der Leitfähigkeit bevorzugt ein Alkalimetallsulfat, insbesondere Kalium- oder Natriumsulfat, umfasst, und/oder frei von Halogeniden, insbesondere frei von Chlorid- und Bromid-Ionen sowie frei von einem Pufferungsmittel und insbesondere frei von einem Borsäure-Puffer ist.
  12. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Konzentration der dreiwertigen Chromverbindung in der Elektrolytlösung mehr als 15 g/l beträgt und besonders bevorzugt bei 20 g/l oder mehr liegt und/oder dass der pH-Wert der Elektrolytlösung, gemessen bei einer Temperatur von 20°C, zwischen 2,0 und 3,0 und bevorzugt zwischen 2,5 und 2,9 und besonders bevorzugt bei 2,7 liegt.
  13. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Weißblechband mit einer Bandgeschwindigkeit von mindestens 100 m/min durch die Elektrolysetanks (1a-1c; 1a bis 1h) bewegt wird.
  14. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die aus der Elektrolytlösung aufgebrachte Beschichtung eine gesamte Gewichtsauflage des Chroms von wenigstens 40 mg/m2, bevorzugt von 70 mg/m2 bis 180 mg/m2 aufweist, wobei der im Chromoxid enthaltene Anteil der gesamten Gewichtsauflage des Chroms bei wenigstens 5%, bevorzugt bei 10 bis 15% liegt und/oder dass die aus der Elektrolytlösung aufgebrachte Beschichtung einen Chromoxidanteil mit einer Gewichtsauflage des als Chromoxid gebundenen Chroms von wenigstens 3 mg Cr pro m2, insbesondere von 3 bis 15 mg/m2 und bevorzugt von wenigstens 7 mg Cr pro m2 aufweist.
  15. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass in dem ersten Elektrolysetank (1a) oder in der vorderen Gruppe von Elektrolysetanks (1a, 1b) eine Chrommetall und Chromoxid enthaltende Beschichtung (B) mit einem Gewichtsanteil des Chromoxid von mehr als 5%, insbesondere von 6 bis 15 % auf der Oberfläche des Weißblechbands abgeschieden wird und/oder dass in dem zweiten Elektrolysetank (1b) oder in der mittleren Gruppe von Elektrolysetanks (1c - 1f) eine Chrommetall und Chromoxid enthaltende Beschichtung (B) mit einem Gewichtsanteil des Chromoxid von weniger als 5%, insbesondere von 1 bis 3 %, auf der Oberfläche des Weißblechbands abgeschieden wird und/oder dass in dem dritten Elektrolysetank (1c) oder in der hinteren Gruppe von Elektrolysetanks (1g, 1h) eine Chrommetall und Chromoxid enthaltende Beschichtung (B) mit einem Gewichtsanteil des Chromoxid von mehr als 40%, insbesondere von 50 bis 80 % auf der Oberfläche des Weißblechbands abgeschieden wird.
EP19206952.4A 2018-12-13 2019-11-04 Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung Active EP3666928B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018132074.4A DE102018132074A1 (de) 2018-12-13 2018-12-13 Verfahren zur Herstellung eines mit einer Beschichtung aus Chrom und Chromoxid beschichteten Metallbands auf Basis einer Elektrolytlösung mit einer dreiwertigen Chromverbindung

Publications (2)

Publication Number Publication Date
EP3666928A1 EP3666928A1 (de) 2020-06-17
EP3666928B1 true EP3666928B1 (de) 2024-02-21

Family

ID=68426330

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19206952.4A Active EP3666928B1 (de) 2018-12-13 2019-11-04 Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung

Country Status (8)

Country Link
US (1) US11396713B2 (de)
EP (1) EP3666928B1 (de)
JP (1) JP6949095B2 (de)
KR (1) KR102268790B1 (de)
CN (1) CN111321432B (de)
BR (1) BR102019025861A2 (de)
CA (1) CA3063790C (de)
DE (1) DE102018132074A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018132075A1 (de) 2018-12-13 2020-06-18 thysenkrupp AG Verfahren zur Herstellung eines mit einer Beschichtung aus Chrom und Chromoxid beschichteten Metallbands auf Basis einer Elektrolytlösung mit einer dreiwertigen Chromverbindung
EP4083268A1 (de) * 2021-04-30 2022-11-02 Atotech Deutschland GmbH & Co. KG Elektroplattierungszusammensetzung zur abscheidung einer chrom- oder chromlegierungsschicht auf einem substrat

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3728701A1 (de) * 2017-12-22 2020-10-28 Tata Steel IJmuiden B.V. Verfahren zur herstellung einer chrom-chromoxidbeschichteten rückplatte

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE635457A (de) * 1962-08-16
CN104302814B (zh) * 2012-03-30 2016-12-21 塔塔钢铁艾默伊登有限责任公司 用于包装应用的涂覆基材及用于制备所述涂覆基材的方法
RS58504B1 (sr) 2012-11-21 2019-04-30 Tata Steel Ijmuiden Bv Obloge od hrom-hrom oksida koje se nanose na čelične supstrate za primene za pakovanje i postupak za proizvodnju pomenutih obloga
EP3011080B1 (de) * 2013-06-20 2017-07-12 Tata Steel IJmuiden BV Verfahren zur herstellung von chrom-chromoxidbeschichteten substraten
ES2743802T3 (es) 2014-05-21 2020-02-20 Tata Steel Ijmuiden Bv Método para enchapar una tira de metal en movimiento
RS59292B1 (sr) 2014-05-21 2019-10-31 Tata Steel Ijmuiden Bv Postupak za proizvodnju supstrata obloženih hromom-hrom oksidom
EP3112502B1 (de) 2015-06-30 2018-08-01 Vazzoler, Evio Verfahren zum plattieren von metallischen drähten oder bändern und produkt hergestellt mittels diesem verfahren
US11136685B2 (en) 2015-11-05 2021-10-05 Topocrom Systems Ag Method and device for the galvanic application of a surface coating
ES2841450T3 (es) * 2015-12-11 2021-07-08 Jfe Steel Corp Chapa de acero para latas y método de producción de chapa de acero para latas
MX2019005540A (es) * 2016-11-14 2019-10-21 Tata Steel Ijmuiden Bv Metodo para electrochapado de una tira de acero no recubierta con una capa de chapado.
RS63579B1 (sr) * 2017-03-21 2022-10-31 Tata Steel Ijmuiden Bv Postupak za proizvodnju crnog lima obloženog hrom-hrom oksidom
DE102018132075A1 (de) 2018-12-13 2020-06-18 thysenkrupp AG Verfahren zur Herstellung eines mit einer Beschichtung aus Chrom und Chromoxid beschichteten Metallbands auf Basis einer Elektrolytlösung mit einer dreiwertigen Chromverbindung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3728701A1 (de) * 2017-12-22 2020-10-28 Tata Steel IJmuiden B.V. Verfahren zur herstellung einer chrom-chromoxidbeschichteten rückplatte

Also Published As

Publication number Publication date
CN111321432B (zh) 2022-06-10
CA3063790C (en) 2022-09-27
EP3666928A1 (de) 2020-06-17
JP6949095B2 (ja) 2021-10-13
JP2020109204A (ja) 2020-07-16
KR20200074030A (ko) 2020-06-24
CN111321432A (zh) 2020-06-23
DE102018132074A1 (de) 2020-06-18
US20200190684A1 (en) 2020-06-18
KR102268790B1 (ko) 2021-06-28
US11396713B2 (en) 2022-07-26
CA3063790A1 (en) 2020-06-13
BR102019025861A2 (pt) 2020-06-23

Similar Documents

Publication Publication Date Title
EP3666931B1 (de) Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung
EP2050841B1 (de) Alkalisches Galvanikbad mit einer Filtrationsmembran
EP3666928B1 (de) Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung
DE2532769A1 (de) Verfahren zur herstellung von vorsensibilisierten lithographischen platten
DE3024932C2 (de)
EP1738000B1 (de) Herstellung einer strukturierten hartchromschicht und herstellung einer beschichtung
EP0366941B1 (de) Verfahren zur elektrophoretischen Tauchlackierung von chromatierbaren Metalloberflächen
DE60019204T2 (de) Bad und Verfahren zur Herstellung eines mit Borkarbid in einer Nickel-Phosphormatrix plattierten Artikels
WO2021023778A1 (de) Verfahren und anlage zum elektrolytischen beschichten eines stahlbandes mittels pulstechnik
EP3000918A1 (de) Verfahren und Vorrichtung zum galvanischen Aufbringen einer Oberflächenbeschichtung
EP3733932A1 (de) Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung und elektrolysesystem zur durchführung des verfahrens
EP3722464A1 (de) Verfahren zur passivierung der oberfläche eines schwarzblechs oder eines weissblechs und elektrolysesystem zur durchführung des verfahrens
DE3106361C2 (de) Verfahren zum Herstellen galvanisch verzinkter Stahlbänder bzw. -bleche
EP4159896A2 (de) Verfahren zur passivierung der oberfläche eines weissblechs und elektrolysesystem zur durchführung des verfahrens
DE602004001208T2 (de) Elektrolytzusammensetzung und Methode zum Elektroplattieren mit Zinn
DE102004037673B4 (de) Verfahren zur simultanen elektrolytischen Abscheidung von Zink und Magnesium auf einem Substrat aus Blech und Verfahren zur Herstellung eines korrosionsgeschützten lackierten Formteils aus Blech
DE4311005C1 (de) Fensterbeschlag und Verfahren zu dessen Herstellung
DE1816762A1 (de) Verfahren zur Bildung einer Schutzfilmschicht auf Metallflaechen
DE202013009714U1 (de) Werkstück beschichtet mit einem Elektrotauchlack
DE102022106091A1 (de) Verfahren zum Modifizieren einer Oberfläche eines beschichteten Stahlblechs
WO2010010134A1 (de) Schichtüberzüge von polyanilin und polyanilin-derivaten auf zinkoberflächen
DE102010044934A1 (de) Vorrichtung zum elektrolytischen Beschichten eines Flachprodukts
EP1201791A2 (de) Anodenzelle zur kathodischen Elektro-Tauchlackierung von Werkstücken
WO2010034511A2 (de) Hydraulikzylinder sowie dessen herstellungsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201217

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP AG

Owner name: THYSSENKRUPP RASSELSTEIN GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210617

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231031

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MOLLS, CHRISTOPH

Inventor name: MARMANN, ANDREA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240125

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019010615

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 43732

Country of ref document: SK