EP1201791A2 - Anodenzelle zur kathodischen Elektro-Tauchlackierung von Werkstücken - Google Patents
Anodenzelle zur kathodischen Elektro-Tauchlackierung von Werkstücken Download PDFInfo
- Publication number
- EP1201791A2 EP1201791A2 EP01122349A EP01122349A EP1201791A2 EP 1201791 A2 EP1201791 A2 EP 1201791A2 EP 01122349 A EP01122349 A EP 01122349A EP 01122349 A EP01122349 A EP 01122349A EP 1201791 A2 EP1201791 A2 EP 1201791A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- anode
- area
- electrical
- cell according
- anode cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D13/00—Electrophoretic coating characterised by the process
- C25D13/22—Servicing or operating apparatus or multistep processes
Definitions
- the present invention relates to an anode cell for production of an electric field in a plunge pool cathodic electro dip painting of workpieces, in particular of vehicle bodies which have at least one anode includes.
- plunge pools for cathodic electro-dip painting known from vehicle bodies, which anode cells arranged in the wall of the immersion tank with in arranged essentially rectangular to the anode cells, Include anode sheets.
- vehicle bodies which anode cells arranged in the wall of the immersion tank with in arranged essentially rectangular to the anode cells, Include anode sheets.
- vehicle bodies which anode cells arranged in the wall of the immersion tank with in arranged essentially rectangular to the anode cells, Include anode sheets.
- vehicle bodies which anode cells arranged in the wall of the immersion tank with in arranged essentially rectangular to the anode cells, Include anode sheets.
- This electrical Field causes electrolytic dissociation of the Electrolytes in the plunge pool, in which in the boundary layer the vehicle bodies connected as cathode Hydroxide ions are formed.
- KTL paint only in acidic environment is dispersible, the paint coagulates on the Cathode and thus leads to a layer formation on the vehicle body.
- the stratification rate depends on the local field strength the vehicle body. Since the potential difference between Cathode and anode is constant, the electric field strength depends the distance between the respective coated area the vehicle body and the anode. Parts of the body, which are closer to the anode, such as the side parts of the body, are with a higher Layering rate coated as parts of the body that are further away from the anode, such as interior areas the sill and the roof.
- the present invention has for its object a To create anode cell of the type mentioned, which it allows a desired layer thickness distribution to the to achieve coating workpieces, and simple is constructed and easy to maintain.
- This task is done with an anode cell with the characteristics of the preamble of claim 1 solved according to the invention, that between the generation of the electric field effective area of the anode and the workpiece to be coated the anode opposite that of the outer contour of the concerned Anode limited area is reduced.
- the solution according to the invention is based on the concept of such Use anodes, which with regard to their arrangement and their outer contour can correspond to conventional anodes, and that between the anodes and those to be coated Workpieces generated electrical field through targeted reduction the effective area of the anodes so that the desired layer thickness distribution on the one to be coated Workpiece is achieved.
- the middle portion of the field generation effective area of the anode on the of the outer contour total area of the anode along a longitudinal direction the anode varies. Areas of the anode where the middle Proportion of effective area is high, leading to a higher one Layer thickness at the areas of the coating workpieces as areas of the anode in which the average proportion of the effective area is small.
- An anode cell whose anode is along a longitudinal direction has a varying average proportion of the effective area, is advantageously arranged in the plunge pool in such a way that the longitudinal direction of the anode transversely, preferably substantially perpendicular to the direction of flow of the coating Workpieces are aligned through the plunge pool.
- the effective area of the anode is reduced in that the Anode cell at least one between the anode and the one to be coated Electrical shield arranged on the workpiece to reduce the electric field effective area between the anode and the workpiece Anode includes.
- the electrical shielding and their arrangement relative to the respective anode can be of any shape the anode surface for generating the electric field be rendered ineffective; only that not by the electrical Shield hidden area of the anode surface is effective for generating the electric field.
- the electrical Shield comprises an electrically conductive material.
- an electrically highly conductive material can be achieved that the electrical field between the shield and the workpiece to be coated is significantly weakened.
- the electrical shield can be placed on cathodic potential.
- the electrical shielding and what is to be coated Workpiece at the same electrical potential so that the electrical field between the electrical shield on the one hand and the workpiece to be coated on the other completely disappears.
- the electrical Shielding a coating from electrical not conductive material. This avoids that due the high field strength between the anode and the electrical Shielding current flows and through electrolytic Dissociation on the electrical shield disturbing Electrolysis gases are generated.
- the coating of electrically non-conductive material can, for example, KTL paint or a plastic powder coating include.
- the electrical shield is designed as a shielding plate is.
- a shield can be as essentially flat rectangular sheet or as, for example, semicircular be bent sheet metal.
- Such Design of an electrical shield can in particular be manufactured in a simple manner.
- the electrical shield at least one Passage opening for the passage of the electric field having.
- This passage opening corresponds to an area the anode, which is not due to the electrical shielding is hidden and therefore to generate the electrical Field between the anode and the workpiece to be coated is effective.
- the electrical shield for example the shielding plate from the anode cell is removable.
- the shield removed from the anode cell can have additional or enlarged openings provided or against another shield with a different number or arrangement of through openings be replaced.
- the anode with at least a through opening to reduce the generation of electric field between the anode and the one to be coated Work surface of the anode is provided.
- Number, shape and size of the through openings in the anode can be varied particularly easily if the anode a holding frame and anode partial sheets held on the holding frame includes.
- the anode partial sheet has a holding area comprises, on which the anode partial sheet from the holding frame is held, the holding area being made of crevice corrosion-resistant Material is formed.
- the anode partial sheet except the holding area also includes a field generating area which from a different material from the holding area Material formed and connected to the holding area without gaps is.
- Such a field generation area of the anode partial sheet can made of a material with a lower crevice corrosion resistance, for example made of stainless steel, for example made of material 1.4404.
- the gap-free connection between the holding area and the Field generation area can, for example, by welding getting produced.
- the effective area of the anode is in a testing phase or when changing the type of workpieces to be coated, especially when the type to be coated is changed Vehicle bodies, particularly easy to change if it is provided that the anode can be removed from the anode cell is. After removal from the anode cell, the number or changed the shape of the through openings in the anode or the anode against another anode with another Configuration of through openings can be exchanged.
- the anode cell according to the invention is particularly suitable for Use in a device for cathodic electro-dip painting of workpieces, in particular vehicle bodies, which is a plunge pool and at least one in that Plunge pool arranged anode cell according to the invention comprises.
- the device for cathodic electro dip painting several anode cells in the follow the longitudinal direction of the plunge pool and each comprise an electrical shield, which at least one Passage opening for the passage of the electric field has, it can be provided that the electrical Shielding the successive anode cells differing in height and / or size Have passage openings. This makes it possible the different areas of a workpiece to be coated to coat for different lengths.
- the electrical shields more openings at the level of the Sill area of a vehicle body to be painted than at the heights of other body parts, so that the sill area is coated longer than the rest Body parts and the use of additional floor anodes to coat the sill area can.
- the device for cathodic electro dip painting several anode cells in the follow the longitudinal direction of the plunge pool and their Anodes each with at least one through opening Reduction in the generation of the electric field between the respective anode and the one to be coated Work surface of the anode are provided, so can it is intended that the anodes of the successive Anode cells in terms of height and / or size of each other have different through openings. This will make it possible for different areas of the to be coated Workpieces have different coating times achieve.
- Dip tanks for cathodic electro dip painting of Vehicle bodies 102 include one Trough 104, which is up to a liquid level 106 with a Electrolyte bath 108 is filled. Over an overflow edge 110 can electrolyte from the electrolyte bath 108 into an overflow tank 112 drain.
- the overflow tank 112 is via an electrolyte supply line 114 with a pump 116 and a filter 118 and above electrolyte branch lines branching from the electrolyte supply line 114 120 with injector nozzles 122 in the bottom area of the Tub 104 connected.
- the mean flow direction 124 of the Direction of travel 126 of the vehicle bodies 102 through the Electrolyte bath 108, which is parallel to the longitudinal direction 128 of the Plunge pool 100 runs in the opposite parallel.
- Projection 130 designated “tanker snout” is formed from which electrolyte via an electrolyte supply line 132 a pump 134 and a filter 136 and over from the electrolyte supply line 132 branching electrolyte branch lines 138 further arranged in the bottom area of the tub 104
- Injector nozzles 122 ' is supplied, which are also used for generation the electrolyte flow through the electrolyte bath 108 contribute.
- the plunge pool 100 extends along the tub 104 of the side walls of the tub 104 arranged in the longitudinal direction 128 of the plunge pool 100 consecutive and in the Longitudinal direction 128 spaced apart anode cells 138 with anodes 139 formed from anode sheets 140.
- the Anode sheets 140 are via electrical connection lines 142 connected to the positive outputs of rectifiers 144 and thereby placed on positive anodic potential.
- the positive outputs are the rectifiers 144 grounded so that the anodic potential is the ground potential equivalent.
- the negative outputs of the rectifiers 144 are each with a portion 146 of one designated 148 as a whole Busbar connected so that the sections 146 of the busbar 148 are set to negative cathodic potential.
- the vehicle bodies 102 to be painted which by means of a suitable conveyor, for example a (not shown) shuttle conveyor, in the electrolyte bath 108 of the immersion pool 100 introduced, along the direction of flow 126 conveyed through the electrolyte bath 108 and then applied again from the electrolyte bath 108 stand with one during the entire immersion period Section 146 of the busbar 148 in electrically conductive Connection, so that the metallic and thus electrical conductive material existing vehicle bodies 102 are at the negative cathodic potential.
- a suitable conveyor for example a (not shown) shuttle conveyor
- anode sheets 140 and the vehicle bodies 102 are placed on different electrical potentials, there is an electrolytic dissociation of in the water molecules present in the electrolyte, wherein in the Interface layer of the anodes 139 protons and oxygen molecules are formed while in the boundary layer as the cathode functioning vehicle bodies 102 hydroxide ions and hydrogen molecules be formed.
- the mass transfer of others charged and dispersed paint particles to the to be coated Surface occurs in the core flow of the Electrolyte bath 108 due to flow turbulence and in the Cathode boundary layer due to migration of the charged paint particles in the electric field.
- the electric field strength depends on the gradient of the electric potential field between the anode and the Cathode, that is the surface to be coated. Since that Potential over the entire cathode and the entire Anode is constant, the gradient of the electrical potential field depends from the local distance of the cathode, i.e. the vehicle body 102 to be painted, from the anode.
- anode without electrical shielding are therefore parts of the body 102 that are closer to the Anode, such as the side parts of the body, coated with a higher layer thickness than such Areas of the body that are further from the anode are, such as interior areas of the sill and that Top, roof.
- the anode cells 138 of the immersion tank are to be influenced 100 each provided with an electrical shield.
- FIGS. 2 and 3 The structure of an anode cell 138 is shown in FIGS. 2 and 3 seen.
- Each of the anode cells 138 includes one of the electrolyte bath 108 facing front frame 150, which is essentially is rectangular and has a rectangular through opening surrounds, and one of the side wall of the tub 104 which the anode cell 138 is arranged facing rear Frame 152, which is also rectangular is and on its top brackets 154 for hanging the has rear frame 152 on a side wall of the tub 104.
- anode cell 138 Between the front frame 150 and the rear frame 152 the remaining components of the anode cell 138 are held; this is an essentially rectangular one Anion exchange membrane 156, which is between two only in the Fig. 2, but not shown in Fig. 3 spacer grids 158 is held, a substantially rectangular anode plate 140 that at its top edge with a projection 160 is provided, on which the anode plate upwards from the Anode cell 138 can be pulled out, one between the Anode plate 140 and the anion exchange membrane 156 arranged substantially rectangular shielding plate 162, the is provided on its upper edge with a projection 164, on which the shield plate 162 upwards from the anode cell 138 can be pulled out, a grate-shaped first Spacer 166, which is between the rear frame 152 and the anode plate 140 is arranged and from a electrically insulating material is made to the rear Electrically isolate frame 152 from anode sheet 140, and a grate-shaped second spacer 168, which between
- anode cell 138 comprises an annularly closed one Seal 170, which on the front frame 150 facing away Side of the anion exchange membrane 156 along the side thereof Edges are arranged around the interior of the anode cell 138 to seal against the electrolyte bath 108.
- the anode cell 138 has an inlet 172 for supply from anolyte to anode cell 138 and with one drain 174 for removing anolyte from the interior of the anode cell 138 provided.
- the interior of the anode cell 138, the inlet 172 and the drain 174 are part of an anolyte cycle through the anode cell 138, which further (not shown) Devices for conditioning the anolyte, in particular to remove corrosion products from the Anode originate from acetic acid and from anions from the anolyte includes.
- the removal of acetic acid from the anolyte is required because the KTL lacquer is dispersed with acetic acid and excess during cathodic electro dip painting Acetic acid migrates to the anode.
- the anolyte in the anode cell 138 has a pH in the range from about 2.5 to about 3.
- the anode sheet 140 is made, for example, of stainless steel or made of titanium with an oxide coating.
- the oxide coating can be, for example, a tantalum iridium oxide or a tantalum ruthenium oxide his.
- the shield plate 162 has one or more passage areas 176, each with a, preferably rectangular, Passage opening 178 formed in the shield plate 162 are.
- the Field lines 180 (see the schematic representation of FIG. 4) the electric field between the positively charged Anode plate 140 and the one (shown purely schematically in FIG. 4) negatively charged vehicle body 102 by the Pass shielding plate 162 through.
- the electrical potential essentially increases linear from the potential of the anode sheet 140 (e.g. O V) up to the cathodic potential of the vehicle body 102 (e.g. 300 V). 4 is this linear potential increase schematically through the line 182 shown.
- the shield plate 162 is designed so that it is on the one hand shields the electric field and secondly not as Electrode can act.
- the shield plate 162 may be a metal plate with a coating of KTL lacquer or with a coating be made of plastic.
- the electrically conductive core of the shield plate 162 is placed on the same cathodic potential as the vehicle body 102 so that the electric field between the shield 162 and the vehicle body 102 essentially disappears.
- the total difference between the anodic Potential and the cathodic potential falls between the anode plate 140 and the shield plate 162 as from the in Fig. 4 designated 184 potential curve in the area of the shield plate 162 can be seen.
- each shield plate 162 to the same cathodic potential lay like that section 146 of the busbar 148, with which the vehicle body 102 is currently in contact with, if the respective shield plate 162 in the electrolyte bath 108 is opposite.
- the shield plate 162 Through the electrical insulation 188 of the shield plate 162 ensures that the shield plate 162 is not used as a cathode acts so that despite the high electric field strength in the area between the anode plate 140 and the shielding plate 162 no electrical charge through the shielding plate 162 can flow off and thus on the shielding plate 162 no electrolytic dissociation of water with formation of hydroxide ions and hydrogen takes place.
- the deposition rate of the KTL paint on the vehicle body 102 depends on the local electric field strength, is Deposition rate in the one hidden by the shield plate 162 Area 190 significantly smaller than in area 192 of the Vehicle body 102, which the passage area 176 in the shield plate 162 is opposite.
- the deposition rate is in the non-masked area 192 significantly higher than in the hidden area 190.
- Fig. 5 shows the equipotential lines 194 of the electrical Field between a conveyed through the electrolyte bath 108 Vehicle body 102 and laterally along the side walls the anode cells 138 arranged in the tub 104 fully inserted anode sheets 140 and completely pulled out shielding plates 162.
- the vehicle body 102 is one in FIGS. 5 and 6 small angle pivoted about its horizontal longitudinal axis; this tilting of the vehicle body 102 serves to The KTL paint runs off when the vehicle body appears 102 from the electrolyte bath 108 to facilitate.
- 5 and 6 correspond to small distances between successive ones Equipotential lines 194 of a high electrical Field strength.
- the distance between the successive equipotential lines 194 is in the rocker panels in this case 196 significantly smaller than on the side wall areas 198 and on the hood areas 200. Accordingly, in this case the electrical field strength and thus the local deposition rate the side wall areas 198 and the hood areas 200 clearly less than in the sill areas 196. The required Minimum layer thickness on the inner sill areas can therefore be achieved without overcoating the side wall regions 198 and the hood regions 200 occurs.
- FIG. 7 shows a shield plate 162 with an upper through opening 178a and a lower through opening 178b.
- the upper extends Through opening 178a over the height of the roof area of the in Electrolyte bath 108 transported past the shield plate 162 Vehicle body 102 while the lower Through opening 178b over the height of the sill area 196, the side wall area 198 and the hood area 200 extends.
- Dip tank 100 is therefore provided that the anode cells 138 to several, for example four, in the longitudinal direction 128 of the plunge pool grouped 100 consecutive groups with anode cells 138 in each group the same shielding plates 162, the anode cells 138 different groups but with different ones Shielding plates 162 are equipped.
- the shield plates 162a are in the direction of passage 126 of the vehicle body 102 front group of anode cells 138 constructed in the same way as in the context above described with Fig. 7, that is, with an upper Through opening 178a, which the roof area 202 of the vehicle body 102 releases for coating, and with a lower through opening 178b, which the sill area 196, the side wall area 198 and the hood area 200 releases, as well as with one between the upper through opening 178a and the lower through opening 178b Fade-out area 206a which provides the window area 204 hides the vehicle body 102.
- the shield plates 162c on the second group of anode cells 138 third in the direction of passage 126 Group of anode cells 138 have an upper through opening 178a on the roof area 202 of the vehicle body 102 releases for coating, a lower through opening 178c, which releases the sill area 196 for coating, and one between the two through openings 178a and 178c extending blanking area 206c, the side wall area 198, the hood area 200 and the window area 204 of the vehicle body 102 fades out.
- the shield plates 162d on the third group of anode cells 138 in the direction of passage 126 following the fourth Group of anode cells 138 have a lower through opening 178c on the sill area 196 of the vehicle body 102 releases for coating, as well as one of the upper edge of the passage opening 178c to the upper Blanking area extending edge of the shielding plate 162 206d, the side wall area 198, the hood area 200, the window area 204 and the roof area 202 of the vehicle body 102 hides.
- electrolyte bath 108 along the direction of passage 126 in the area of the first group of anode cells 138 with the shielding plates 162a, the sill area 196, the side wall area 198, the hood area 200 and the roof area 202 of the vehicle body 102 with a large deposition rate and the hidden window area 204 with a low deposition rate coated.
- sill area 196 the inside of the sill, which is difficult to access, longer than that to coat other areas of the body, so that in Sill inner area required layer thickness of, for example about 12 ⁇ m can be achieved without it in the side wall area 198 and in the hood area 200 into one Overcoating is coming.
- the thickness of the in through the different groups of Anode cells 138 defined coating phases deposited Coatings can be determined by the number of anode cells 138, which are assigned to each of these groups, can be set.
- a second embodiment of a cathodic device Electro-immersion painting differs from vehicle bodies 102 differs from the first embodiment described above in that the anode cells 138 have no shielding plates 162, but with through openings for reduction the electric field strength at a selected one Areas of the vehicle bodies 102 provided anodes 139 include.
- each anode cell 138 of the second embodiment a substantially rectangular support frame 208 on the Above a projection 164 is provided on which the Anode 139 'as a whole upward from anode cell 138 can be pulled out and on which the anode 139 ' electrically contacted, that means to anodic potential can be placed.
- Holding frame 208 On the front sides of the side members 209 of the holding frame 208 are equidistantly arranged, in the horizontal direction from Holding frame 208 is provided from protruding holding pins 211 which one or more substantially rectangular anode partial sheets 210 are attached.
- fasteners (not shown) can be used by means of which the anode partial sheets 210 can be detached can be fixed on the holding pins 211 of the holding frame 208, for example lock nuts, lock washers or like.
- each includes of the anode partial sheets 210 at each of their end regions a holding area 213 on which the relevant anode partial sheet 210 is held by the holding frame 208, to which Purpose of each of the holding areas 213 with two through holes each 215 each for holding one of the holding pins 211 of the holding frame 208 is provided.
- each anode partial sheet 210 also made of crevice corrosion-resistant Material, preferably from the same Material such as the holding frame 208 formed.
- substantially rectangular field generation area 217 is between the side members 209 of the Holding frame 208 arranged at a sufficient distance therefrom, so that this field generation area 217 is already due its arrangement is less prone to crevice corrosion.
- the field generation area 217 can therefore be made of one material formed with a lower crevice corrosion resistance stainless steel, e.g. from the Material 1.4404.
- the field generation area 217 gap-free, for example by welding, with each connected to one of the two holding areas 213.
- Fig. 13 is for various nickel materials and high alloy Special stainless steels the critical pitting corrosion temperature CPT in 10% Fe (III) Cl solution as a function of Effective sum WS or WS 'entered.
- the two figures 13 and 14 are from the book by U. Heubner et al .: "Nickel materials and high-alloy special stainless steels", Krupp, VDM, expert verlag, 1985, Ehningen.
- anode partial sheets which can be suspended on the holding frame 208 210 may be on each of the anodes 139 'from the anode sub-sheets 210 covered field generation areas 212 are formed between two fields 212 or between a field generation area 212 and the Holding frame 208 remaining spaces each one Form through opening 214 of the anode 139 '.
- Areas of a vehicle body 102 that are at the height of a Field generation area 212 transported past an anode 139 ' are coated with a high deposition rate, since the electric field between the anode 139 'and the vehicle body 102 at the level of the field generation areas 212 has a high field strength.
- the through openings 214 in the anodes 139 'thus have a comparable effect to the masking areas 206 of FIG Shield plates 162 of the first embodiment.
- the field generation areas of the anodes 139 'of the second embodiment have essentially the same effect like the passage openings 178 in the shielding plates 162 the first embodiment.
- variable anode 139 'a Through opening 214 and / or the shielding plate 162 one Fade out area 206.
- the second embodiment of a device is correct for cathodic electro-dip painting of vehicle bodies in terms of structure and function with the first Embodiment corresponds to the above description insofar as reference is made.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Prevention Of Electric Corrosion (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
- Fig. 1
- einen schematischen Längsschnitt durch ein Tauchbecken zur kathodischen Elektro-Tauchlackierung von Fahrzeugkarosserien;
- Fig. 2
- einen schematischen vertikalen Schnitt durch eine Anodenzelle des Tauchbeckens aus Fig. 1;
- Fig. 3
- eine schematische perspektivische Explosionsdarstellung der Anodenzelle aus Fig. 2;
- Fig. 4
- eine schematische Darstellung des Verlaufs des elektrischen Potentials zwischen einer Anode und einer als Kathode geschalteten zu lackierenden Fahrzeugkarosserie;
- Fig. 5
- einen schematischen Querschnitt durch das Tauchbecken aus Fig. 1 mit einer Darstellung des elektrischen Potentialfeldes zwischen einer zu lackierenden Fahrzeugkarosserie und Anoden ohne elektrische Abschirmung;
- Fig. 6
- einen schematischen Querschnitt durch das Tauchbecken aus Fig. 1 mit einer Darstellung des elektrischen Potentialfeldes zwischen einer zu lackierenden Fahrzeugkarosserie und Anoden, deren wirksame Fläche auf den unteren Bereich der Anoden beschränkt ist;
- Fig. 7
- eine schematische Darstellung eines mit Durchgangsöffnungen versehenen Abschirmblechs, welche die Zuordnung der Durchgangsöffnungen zu unterschiedlichen Bereichen der zu lackierenden Fahrzeugkarosserie darstellt;
- Fig. 8
- eine schematische Darstellung von in der Längsrichtung des Tauchbeckens aufeinanderfolgenden Abschirmblechen mit Durchgangsöffnungen, welche die Zuordnung der Durchgangsöffnungen zu den unterschiedlichen Bereichen der zu lackierenden Fahrzeugkarosserie darstellt;
- Fig. 9
- eine schematische Vorderansicht einer Anode, die einen Halterahmen mit zwei daran eingehängten Anoden-Teilblechen umfaßt, wobei sich die Anoden-Teilbleche über einen unteren Bereich des Halterahmens erstrecken;
- Fig. 10
- eine schematische Seitenansicht der Anode aus Fig. 9;
- Fig. 11
- eine schematische Vorderansicht eines Teil-Anodenblechs der Anode aus den Fig. 9 und 10;
- Fig. 12
- eine schematische Vorderansicht einer Anode, die einen Halterahmen und drei daran eingehängte Anoden-Teilbleche umfaßt, wobei sich zwei der Anoden-Teilbleche über einen unteren Bereich des Halterahmens erstrecken und ein weiteres Anoden-Teilblech am oberen Rand des Halterahmens angeordnet ist;
- Fig. 13
- ein Schaubild, das die kritische Lochkorrosionstemperatur CPT verschiedener Werkstoffe in 10 % Fe(III)Cl-Lösung als Funktion der Wirksumme darstellt; und
- Fig. 14
- ein Schaubild, das die kritische Spaltkorrosionstemperatur CCT verschiedener Werkstoffe in 10 % Fe(III)Cl-Lösung als Funktion der Wirksumme darstellt.
- Legierungen auf der Basis von Eisen, welche Chrom, Nickel, Molybdän und/oder andere Legierungselemente enthalten, die die Korrosionsbeständigkeit steigern;
- Legierungen auf der Basis von Titan, Zirkon, Niob oder Tantal.
Claims (20)
- Anodenzelle zur Erzeugung eines elektrischen Feldes in einem Tauchbecken (100) zur kathodischen Elektro-Tauchlackierung von Werkstücken, insbesondere von Fahrzeugkarosserien (102), umfassend mindestens eine Anode (139; 139'),
dadurch gekennzeichnet, daß die zur Erzeugung des elektrischen Feldes zwischen der Anode (139; 139') und dem zu beschichtenden Werkstück wirksame Fläche der Anode (139; 139') gegenüber der von der Außenkontur der Anode begrenzten Fläche reduziert ist. - Anodenzelle nach Anspruch 1, dadurch gekennzeichnet, daß die Anodenzelle (100) mindestens eine zwischen der Anode (139) und dem zu beschichtenden Werkstück angeordnete elektrische Abschirmung zur Reduzierung der zur Erzeugung des elektrischen Feldes zwischen der Anode (139) und dem Werkstück wirksamen Fläche der Anode (139) umfaßt.
- Anodenzelle nach Anspruch 2, dadurch gekennzeichnet, daß die elektrische Abschirmung ein elektrisch leitfähiges Material umfaßt.
- Anodenzelle nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß die elektrische Abschirmung auf kathodisches Potential legbar ist.
- Anodenzelle nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die elektrische Abschirmung eine Beschichtung aus elektrisch nicht leitfähigem Material umfaßt.
- Anodenzelle nach Anspruch 5, dadurch gekennzeichnet, daß die Beschichtung KTL-Lack umfaßt.
- Anodenzelle nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß die elektrische Abschirmung als Abschirmblech (163) ausgebildet ist.
- Anodenzelle nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß die elektrische Abschirmung mindestens eine Durchtrittsöffnung (178) für den Durchtritt des elektrischen Feldes aufweist.
- , Anodenzelle nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, daß die elektrische Abschirmung aus der Anodenzelle (138) entnehmbar ist.
- Anodenzelle nach Anspruch 9, dadurch gekennzeichnet, daß die elektrische Abschirmung nach oben aus der Anodenzelle (138) herausziehbar ist.
- Anodenzelle nach Anspruch 1, dadurch gekennzeichnet, daß die Anode (139') mit mindestens einer Durchgangsöffnung (214) zur Reduzierung der zur Erzeugung des elektrischen Feldes zwischen der Anode (139') und dem zu beschichtenden Werkstück wirksamen Fläche der Anode (139') versehen ist.
- Anodenzelle nach Anspruch 11, dadurch gekennzeichnet, daß die Anode (139') einen Halterahmen (208) und mindestens ein an dem Halterahmen (208) gehaltenes Anoden-Teilblech (210) umfaßt.
- Anodenzelle nach Anspruch 12, dadurch gekennzeichnet, daß der Halterahmen (208) aus einem spaltkorrosionsbeständigen Werkstoff hergestellt ist.
- Anodenzelle nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, daß das Anoden-Teilblech (210) einen Haltebereich (213) umfaßt, an dem das Anoden-Teilblech (210) von dem Halterahmen (208) gehalten wird, wobei der Haltebereich (213) aus einem spaltkorrosionsbeständigen Werkstoff gebildet ist.
- Anodenzelle nach Anspruch 14, dadurch gekennzeichnet, daß das Anoden-Teilblech (210) außer dem Haltebereich (213) auch einen Felderzeugungsbereich (217) umfaßt, der aus einem von dem Material des Haltebereichs (213) verschiedenen Material gebildet und spaltfrei mit dem Haltebereich (213) verbunden ist.
- Anodenzelle nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, daß die Anode (139') aus der Anodenzelle (138) entnehmbar ist.
- Anodenzelle nach Anspruch 16, dadurch gekennzeichnet, daß die Anode (139') nach oben aus der Anodenzelle (138) herausziehbar ist.
- Vorrichtung zur kathodischen Elektro-Tauchlackierung von Werkstücken, insbesondere von Fahrzeugkarosserien (102), umfassend ein Tauchbecken (100) und mindestens eine in dem Tauchbecken (100) angeordnete Anodenzelle (138) nach einem der Ansprüche 1 bis 17.
- Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, daß die Vorrichtung mehrere Anodenzellen (138) nach einem der Ansprüche 2 bis 10 umfaßt, die in der Längsrichtung (128) des Tauchbeckens (100) aufeinanderfolgen und jeweils eine elektrische Abschirmung umfassen, welche mindestens eine Durchtrittsöffnung (178) für den Durchtritt des elektrischen Feldes aufweist, wobei die elektrischen Abschirmungen der aufeinanderfolgenden Anodenzellen (138) hinsichtlich Höhe und/oder Größe voneinander verschiedene Durchtrittsöffnungen (178) aufweisen.
- Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, daß die Vorrichtung mehrere Anodenzellen (138) nach einem der Ansprüche 11 bis 17 umfaßt, die in der Längsrichtung (128) des Tauchbeckens (100) aufeinanderfolgen und deren Anoden (139') jeweils mit mindestens einer Durchgangsöffnung (214) zur Reduzierung der zur Erzeugung des elektrischen Feldes zwischen der jeweiligen Anode (139') und dem zu beschichtenden Werkstück wirksamen Fläche der Anode (139') versehen sind, wobei die Anoden (139') der aufeinanderfolgenden Anodenzellen (138) hinsichtlich Höhe und/oder Größe voneinander verschiedene Durchgangsöffnungen (214) aufweisen.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2000151683 DE10051683A1 (de) | 2000-10-18 | 2000-10-18 | Anodenzelle zur kathodischen Elektro-Tauchlackierung von Werkstücken |
DE10051683 | 2000-10-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1201791A2 true EP1201791A2 (de) | 2002-05-02 |
EP1201791A3 EP1201791A3 (de) | 2003-12-03 |
Family
ID=7660228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01122349A Withdrawn EP1201791A3 (de) | 2000-10-18 | 2001-09-19 | Anodenzelle zur kathodischen Elektro-Tauchlackierung von Werkstücken |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1201791A3 (de) |
DE (1) | DE10051683A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10313205A1 (de) * | 2002-10-23 | 2004-05-06 | Volkswagen Ag | Verfahren zur Behandlung eines Substrats in einem Tauchbad |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3719440C1 (en) * | 1987-06-11 | 1988-09-01 | Elektro Kohle Koeln | Anode cell for electrophoretic metal-coating baths |
DE19606000C1 (de) * | 1996-02-17 | 1996-12-19 | Daimler Benz Ag | Elektrolytbad für eine kathodische Tauchlackierung von Fahrzeugkarosserien |
DE19940233A1 (de) * | 1998-10-29 | 2000-05-04 | Herberts Gmbh & Co Kg | Verfahren und Vorrichtung zur Elektrotauchlackierung von Automobilkarossen |
DE19948177C1 (de) * | 1999-10-07 | 2000-12-14 | Elektro Kohle Koeln Gmbh & Co | In Flachbauweise ausgeführte Anodenzelle zur Verwendung in kataphoretischen Beschichtungsbädern |
-
2000
- 2000-10-18 DE DE2000151683 patent/DE10051683A1/de not_active Withdrawn
-
2001
- 2001-09-19 EP EP01122349A patent/EP1201791A3/de not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3719440C1 (en) * | 1987-06-11 | 1988-09-01 | Elektro Kohle Koeln | Anode cell for electrophoretic metal-coating baths |
DE19606000C1 (de) * | 1996-02-17 | 1996-12-19 | Daimler Benz Ag | Elektrolytbad für eine kathodische Tauchlackierung von Fahrzeugkarosserien |
DE19940233A1 (de) * | 1998-10-29 | 2000-05-04 | Herberts Gmbh & Co Kg | Verfahren und Vorrichtung zur Elektrotauchlackierung von Automobilkarossen |
DE19948177C1 (de) * | 1999-10-07 | 2000-12-14 | Elektro Kohle Koeln Gmbh & Co | In Flachbauweise ausgeführte Anodenzelle zur Verwendung in kataphoretischen Beschichtungsbädern |
Also Published As
Publication number | Publication date |
---|---|
DE10051683A1 (de) | 2002-05-02 |
EP1201791A3 (de) | 2003-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3666931B1 (de) | Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung | |
EP1712660A1 (de) | Unlösliche Anode | |
DE10261493A1 (de) | Anode zur Galvanisierung | |
DE3421480A1 (de) | Beschichtete ventilmetall-elektrode zur elektrolytischen galvanisierung | |
DE69923956T2 (de) | Anodenstruktur zur Herstellung von Metallfolien | |
DE2046479B2 (de) | Anodenanordnung in einer elektrolysezelle | |
DE69203600T3 (de) | Elektrode für eine elektrolytische zelle, deren gebrauch und verfahren. | |
WO2021023778A1 (de) | Verfahren und anlage zum elektrolytischen beschichten eines stahlbandes mittels pulstechnik | |
DE102014001799B3 (de) | Anlage zur Beschichtung von Gegenständen | |
DE19606000C1 (de) | Elektrolytbad für eine kathodische Tauchlackierung von Fahrzeugkarosserien | |
EP1201791A2 (de) | Anodenzelle zur kathodischen Elektro-Tauchlackierung von Werkstücken | |
DE69501073T2 (de) | Zelle zur kontinuierlichen Elektrobeschichtung von Metalllegierungen | |
DE3719440C1 (en) | Anode cell for electrophoretic metal-coating baths | |
DE10235117B3 (de) | Anlage zur kataphoretischen Tauchlackierung von Gegenständen | |
WO1998007903A1 (de) | Vorrichtung zum galvanisieren von elektronischen leiterplatten oder dergleichen | |
DE3011005A1 (de) | Vorrichtung und verfahren zum aufbringen eines galvanischen ueberzugs auf eine oder auf beide seiten eines metallischen streifens | |
AT390450B (de) | Vorrichtung zur kontinuierlichen elektroabscheidung von metallen bei hoher stromdichte | |
EP3733932A1 (de) | Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung und elektrolysesystem zur durchführung des verfahrens | |
EP0429748B1 (de) | Elektrode für das Austragen von Metallen aus Metallionen enthaltender Lösung | |
DE19940233C2 (de) | Verfahren zur Elektrotauchlackierung von Automobilkarossen | |
DE10215463C1 (de) | Durchlaufanlage und Verfahren zum elektrolytischen Metallisieren von Werkstück | |
DE10228400B4 (de) | Vorrichtung zum Galvanisieren von elektronischen Leiterplatten | |
DE3000597C2 (de) | ||
DE102016119250B4 (de) | Galvanisiersystem und -verfahren | |
DE3131367C2 (de) | Verfahren und Elektrode zur galvanoplastischen Herstellung formbildender Metallwerkzeuge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
AKX | Designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20040604 |