EP3231717A2 - Procédé et dispositif de fabrication d'emballages au moyen de film rétractable - Google Patents

Procédé et dispositif de fabrication d'emballages au moyen de film rétractable Download PDF

Info

Publication number
EP3231717A2
EP3231717A2 EP17000863.5A EP17000863A EP3231717A2 EP 3231717 A2 EP3231717 A2 EP 3231717A2 EP 17000863 A EP17000863 A EP 17000863A EP 3231717 A2 EP3231717 A2 EP 3231717A2
Authority
EP
European Patent Office
Prior art keywords
station
packs
sealing
packages
shrinking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17000863.5A
Other languages
German (de)
English (en)
Other versions
EP3231717A3 (fr
EP3231717B1 (fr
Inventor
Jens Schmidt
Burkard Roesler
Patrick BUDDE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Focke and Co GmbH and Co KG
Original Assignee
Focke and Co GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Focke and Co GmbH and Co KG filed Critical Focke and Co GmbH and Co KG
Publication of EP3231717A2 publication Critical patent/EP3231717A2/fr
Publication of EP3231717A3 publication Critical patent/EP3231717A3/fr
Application granted granted Critical
Publication of EP3231717B1 publication Critical patent/EP3231717B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B19/00Packaging rod-shaped or tubular articles susceptible to damage by abrasion or pressure, e.g. cigarettes, cigars, macaroni, spaghetti, drinking straws or welding electrodes
    • B65B19/02Packaging cigarettes
    • B65B19/22Wrapping the cigarettes; Packaging the cigarettes in containers formed by folding wrapping material around formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B53/00Shrinking wrappers, containers, or container covers during or after packaging
    • B65B53/02Shrinking wrappers, containers, or container covers during or after packaging by heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B19/00Packaging rod-shaped or tubular articles susceptible to damage by abrasion or pressure, e.g. cigarettes, cigars, macaroni, spaghetti, drinking straws or welding electrodes
    • B65B19/02Packaging cigarettes
    • B65B19/22Wrapping the cigarettes; Packaging the cigarettes in containers formed by folding wrapping material around formers
    • B65B19/223Wrapping the cigarettes; Packaging the cigarettes in containers formed by folding wrapping material around formers in a curved path; in a combination of straight and curved paths, e.g. on rotary tables or other endless conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B35/00Supplying, feeding, arranging or orientating articles to be packaged
    • B65B35/30Arranging and feeding articles in groups
    • B65B35/44Arranging and feeding articles in groups by endless belts or chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B49/00Devices for folding or bending wrappers around contents
    • B65B49/12Rotary folders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B5/00Packaging individual articles in containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
    • B65B5/08Packaging groups of articles, the articles being individually gripped or guided for transfer to the containers or receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B51/00Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
    • B65B51/10Applying or generating heat or pressure or combinations thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B51/00Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
    • B65B51/10Applying or generating heat or pressure or combinations thereof
    • B65B51/14Applying or generating heat or pressure or combinations thereof by reciprocating or oscillating members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B65/00Details peculiar to packaging machines and not otherwise provided for; Arrangements of such details
    • B65B65/003Packaging lines, e.g. general layout
    • B65B65/006Multiple parallel packaging lines

Definitions

  • the invention relates to a method for producing outer shrink-wrap packages comprising the features of the preamble of claim 1. Further, the invention is concerned with a device for carrying out the method.
  • Packages made of, in particular, thin cardboard and an outer casing made of film are subjected to a shrinking treatment in accordance with the technical suitability of the film so that the package is surrounded by the film in a smooth and wrinkle-free manner and under tension.
  • In the foreground are (cigarette) packs of the type folding box / Hinge Lid with such an outer wrapper.
  • the packages are passed through a shrinking station, in the area of which the upwardly and downwardly directed large - area pack sides - front wall and rear wall of the Outer casing - be acted upon by plate-shaped heat elements with a dosed for the shrinking heat heat ( EP 1 103 465 A1 ).
  • the invention is concerned with the further development of this manufacturing process. It is all about ensuring a technically and qualitatively perfect seal of the folding flaps and beyond optimal shrinking treatment, namely at increased performance of the (packaging) machine and thereby shorter cycle times.
  • the inventive method is characterized by the features of claim 1.
  • a core of the invention is therefore that all surfaces or walls of the outer sheath are subjected to a shrink treatment, but at least the front wall and rear wall on the one hand and narrow (upright) side walls on the other.
  • the process of shrinking ie the areal supply of shrinking temperature, is combined with the thermal sealing of the folding flaps, in particular in connection with an upstream stapling of the folding flaps before the end sealing. Sealing and shrinking are carried out according to the invention in several steps, even at the same time with respect to transverse packing surfaces.
  • Another peculiarity is to increase the performance of the device based on the delivery of packages one at a time, consecutively, preferably at a distance from one another and a tactile movement.
  • several (successive) packages are transported together as a conveyor unit in a conveyor cycle. It is also important that the packing units are transverse to the feed direction, namely in particular moved upward and thereby cyclically transported through several processing stations arranged one above the other.
  • the device according to the invention comprises folding elements for the outer wrapping, stitching stations, sealing stations and shrinkage units. These are not according to the invention arranged and effective in the usual order. A first shrinking process takes place after stapling the folding flaps. It is important that sealing jaws on the one hand and (plate-shaped) heating elements for the shrinkage treatment in the same station are effective, but effective at different, in particular at an angle of 90 ° to each other facing surfaces or walls of the outer sheath.
  • the examples shown in the drawings relate to the treatment of cuboidal packs 10 of relatively rigid packaging material, in particular of (thin) cardboard.
  • the concrete example concerns (cigarette) packs 10 in the form of a folding box or hanging lid pack.
  • the package is surrounded on all sides by an outer envelope 11 made of film, which is thermally sealable - in the region of folding flaps - and by heat supply shrinkable (shrink film).
  • a blank of the outer casing 11 is folded around the package 10 or folding box so that a (large-scale) front wall 12, a corresponding rear wall 13, narrow, upright side walls 14, 15 and end wall 16 and bottom wall 17 arise.
  • the outer casing 11 is folded so that on a side wall 15 (partially) overlapping folding flaps, namely hose tabs 18 arise.
  • End wall 16 and bottom wall 17 are provided with complex folds (envelope folding) to form trapezoidal closure flap 19.
  • the outer wrapper 11 has an opening aid, namely with a tear strip 20 running around.
  • the folding tabs 18, 19 are connected to each other by thermal sealing.
  • FIG. 1 The device shown schematically is part of a plant for the production of (cigarette) packs 10. These are transported along a horizontal, substantially rectilinear packing web. This is divided into sections, namely in track sections 21, 22 which extend in (the amount of) offset planes in the same direction.
  • finished packages 10 are supplied via an intermediate conveyor intermittently and at a distance from each other a folding device, namely a folding turret 23.
  • a folding turret 23 This is preferably analogous to the folding turret EP 1 103 465 A1 educated.
  • the tube tabs 18 are formed and fixed by stapling members 24 in the sense of stapling (connection of the folding tabs by means of small sealing surfaces).
  • the folding turret 23 is provided with three successive (different) stapling members 24.
  • the packs 10 reach a first region of the web section 21.
  • the transport takes place by means of an endless belt, namely lower belt 25, which expediently follows the specifications of US Pat EP 2 019 783 B1 is formed, so with special drivers 26, 27, each pack 10 at Front side - side wall 14 with tube tabs 18 - and on the back - side wall 15 - capture and thus fix exactly.
  • the packages are transported through a folding section of the web section 21 for the production of the closure tabs 19.
  • folding trays 28 of known design are arranged laterally next to the belt 25 and form the folding tabs 19 during transport.
  • the packs 10 reach the area of another work station, namely stapling and shrinking station 29.
  • a first stapling member, namely a stapling jaw 30 is partially laterally fixed in the area of the folding switch 28.
  • the folding switch 28 is formed in this area by reducing the width as a lateral guide piece 31 in order to fix the folding tabs 18 in the folded position until the first stitching.
  • the guide piece 31 has a recess 32 (FIG. Fig.
  • the guide piece 31 is angular in cross-section, so that the package 10 is supported with a horizontal leg on the underside. Furthermore, the track portion 21 is formed so that the narrower belt 25 is supported by an elongated track plate 34 with a central recess for the run of the lower chord 25 and with lateral support webs 35 on which the pack rests with marginal surface areas.
  • the first stapling jaw 30 is followed by another stapling member for the laterally directed closing tabs 19, namely a (longer) stapling bar 36.
  • a (longer) stapling bar 36 This is dimensioned so that two (by far) successive packs 10 can be acted upon in one working cycle.
  • the stapling bar 36 complements or completes the stapling in the region of the folding tabs 19.
  • the working surface of the stapling bar 36 is designed accordingly, in this case with a convex stapling surface 37.
  • the lateral folding tabs 19 are sufficiently fixed after this processing.
  • the large-area free side of the package namely the upwardly facing front wall 12 (or rear wall 13) is acted upon by a flat shrink member, namely by a hot plate 38.
  • a hot plate 38 This is movable up and down (with very small amplitudes).
  • the heating plate 38 is provided with a recess or groove 39 provided on the underside in the region of the tear strip 20 so that it is not subjected to heat.
  • the packs Following the stapling and shrinking station 29, the packs reach the outer casing 11 which is sufficiently fixed with respect to the folding flaps, into the region of a further processing station - in the present case by continued transport by means of lower belt 25.
  • An aggregate station 40 serves to form groups or units of several, initially successively transported packages 10. In the present embodiment, four packages 10 each form such a processing unit. Furthermore, the packs 10 are transported in the region of the aggregation station 40 transversely to the incoming conveying direction, in this case in the upward direction. For this purpose, the packs 10 are removed from the common belt 25 and further transported by other conveyor.
  • the present aggregate station 40 has a plurality of vertical conveyors, namely pairs of vertical straps 41, 42. Each two opposite vertical straps 41, 42 are associated with a pack 10 or a series of (cyclically) upwardly transported packs 10. Each vertical belt 41, 42 is guided over upper and lower pulleys 43 (with drive below). Furthermore, the straps 41, 42 web-like projections 44, 45 as a driver for the packs 10. The projections 44, 45 detect the pack 10 to be transported on the underside and at the top, respectively in an edge region adjacent to the end wall 16 and bottom wall 17.
  • the vertical straps 41, 42 and the projections 44, 45 have a smaller transverse dimension than the corresponding dimension (width) of the packs 10, so that on both sides of the straps 41, 42 at least the side walls 14, 15 of the packs 10 are completely exposed.
  • the vertical straps 41, 42 are driven together, intermittently.
  • the conveying movement of the packs by the lower chord 25 is adjusted to the movement of the vertical chords 41, 42 such that after inserting a number of packs 10 (four) into the region of the vertical conveyor ( Fig. 8 ), the vertical straps 41, 42 are moved by one clock, whereby the packs 10 are lifted from the belt 25 and fed to a first processing station in the area of the elevator.
  • the machining takes place during the standstill, so that four packs 10 can be processed simultaneously, while the same number is supplied in the lower level by the belt 25, in conveying cycles of the belt 25, which correspond to the distances between individual packs 10, so four promotion acts are required to to provide the appropriate number of packages for takeover by the elevator.
  • the side walls 14, 15 are processed, in each case the (four) packs 10 of a unit at the same time.
  • a shrinkage of the side walls 14, 15 is effected by a strip-shaped heating body 47.
  • only the folding flap-free side wall 15 is subjected to shrinkage heat.
  • a support is provided in the region of the side wall 14.
  • a movable support member, namely a (short-stroke) cylinder 48 is arranged, which presses the pack 10 against the fixed radiator 47 for the shrinking process. This process takes place at the same time in the area of shrinking station 46 for all (four) packages lying in the same horizontal plane.
  • the vertical straps 41, 42 are moved to the next work station, namely in a (first) sealing station 49.
  • the folding tabs 18 are connected in the region of the side wall 14 by sealing.
  • a special feature is that the process of sealing is resolved in at least two consecutive steps.
  • elongated sealing bodies 50 are effective, which have a crowned sealing surface, as in the staple bar 36.
  • a central region of the surface of the side wall 14 with the required (seal) pressure is applied, wherein the longitudinal edges of the package remain substantially pressure-free.
  • a (short-stroke) cylinder 48 is arranged so that the packs 10 are pressed against fixed sealing organs.
  • a second sealing step in the region of the tube tabs 18 is performed.
  • An elongate sealing body 52 is formed with a substantially flat sealing surface and dimensioned so that the side walls 14 are covered over the entire surface or with a supernatant. Also, this embodiment of seal bodies 52 is assigned a (short-stroke) cylinder 48 respectively.
  • the aggregate station 40 is thus equipped with three workstations 46, 49, 51, wherein in each of these stations at the same time several - in the present case four - packs 10 are processed during a standstill phase, this about four times the duration of a stoppage phase in the field of delivery of the packs 10 (FIG. Belt 25).
  • the operation of the aggregate station 40 is arranged so that the packs 10 with Distance from each other, in particular, while maintaining the previous relative position be transported as a unit.
  • the packages 10 thus have within the unit distances from each other and from the packages of the preceding and following units.
  • a further conveying cycle of the vertical straps 41, 42 leads the packs 10, which are completely sealed in the area of the side wall 14, into a discharge station 53.
  • the horizontally adjacent packs 10 are taken over by a discharge conveyor, an upper belt 54.
  • This is analogous to the lower belt 25, including the driver 26, 27.
  • the top flange 54 consists of two single straps 55, 56 of matching design.
  • the packs 10 are thus each detected by two drivers 26. 27 at a distance from each other and out of the range of vertical straps 41, 42 out ( Fig. 7 ).
  • Another special feature is that due to appropriate transport movement of the upper belt 54 at the same time held in the discharge station 53 (four) packs 10 are transported away.
  • the conveying cycle of the upper belt 54 thus corresponds to the dimension of a unit from the packages 10 transported away.
  • the packages are detected between the mutually associated vertical belts 41, 42, by drivers 26, 27 of the upper belt 54 and the single belts 55, 56 and at the same time out of the range the vertical straps 41, 42 conveyed out in the transverse direction. Gaps between the vertical straps 41, 42 are bridged by horizontal support plates 65.
  • the packs 10 are fed along the web section 22 to further treatment stations, specifically immediately thereafter a combined sealing and shrinking station 57.
  • a combined sealing and shrinking station 57 In the present case, four packs 10 are deposited in the area of this station 57 at each working or conveying cycle.
  • the packs 10 are processed during a (longer) stoppage phase on different sides of the pack.
  • the packs 10 rest on (lower) heat plates 58, which cause shrinkage treatment of lower large-area sides of the pack - rear wall 13 -.
  • the heat plates 58 are dimensioned so that at least the full package surface is covered ( Fig. 9 ).
  • the heat plates 58 also serve to support the packages 10 during transport, with the packages 10 sliding on the heat plates 58.
  • the heat plates 58 are movable up and down, namely for performing a shrink stroke upwardly movable to produce a slightly increased contact pressure on the packs 10.
  • the heat plate 58 extends over the full length of the station 57, so over a length corresponding to (present) four Packs 10.
  • sealing and shrinking station 57 further packing surfaces are processed, namely laterally directed areas - end wall 16, bottom wall 17. It is about the sealing of the complex folding tabs 19.
  • sealing webs 59 with spherical sealing surface 60 analogous to the stapling bar 36 (FIG. Fig. 6 ). Accordingly, internal surface areas are applied in the sense of a thermal seal.
  • the station 57 is designed so that simultaneously several (four) packs 10 are acted upon, here by two sealing webs 59 corresponding to the dimension of two packs 10.
  • a subsequent transfer station 61 serves to transfer the transport of the packs 10 from the upper belt 54 to a lower belt, namely to an end conveyor 62.
  • This consists of a single belt, largely coinciding with the lower belt 25.
  • the transfer of the packs 10 from the feeding belt 54 the continuing belt 62 is analogous to the examples in EP 2 019 783 B1 carried out.
  • the incoming packages are taken over during a conveying cycle of the upper belt 54 successively from the belt of the end conveyor 62 and while maintaining the movement characteristics - in the present case four packs 10 per conveyor cycle - transported on.
  • the transfer station 61 is formed in a special way.
  • the heat plates 58 of the station 57 terminate with this.
  • the packs 10 rest on a track plate 66 adjoining the heating plates 58.
  • This serves as a support for the packs 10 at least in the region of a first substation 63-in the dimensions of two successive packs 10.
  • the packs 10 rest on lateral web webs 67, between which the belt of the end conveyor 62 is guided ( Fig. 10 . Fig. 11 ).
  • the packages Up to the first sub-station 63, the packages are transported by the upper belt 54, at least from the sub-station 64, the final conveyor 62 takes over the transport. But it remains at a funding cycle of several (four) packs 10th
  • the packs 10 are treated during the standstill phase.
  • Lateral sealing webs 68 complete the sealing of the folding tabs 19 of the laterally directed packing walls 16, 17.
  • the sealing webs 68 are formed with flat sealing surfaces 69, which bear against the package walls 16, 17 over the whole area and preferably project beyond them.
  • the packages 10 reach a region of a finishing station 70 due to a further conveying stroke of the final conveyor 62.
  • This station 70 is also aligned to the dimensions of a unit of several (four) packages 10.
  • the packs rest on the web webs 67.
  • a (continuous, one-piece) heat plate 71 is operative, which shrinks the tops of the packs 10, in this case the front wall 12.
  • the heat plate 71 is sized to extend over the surfaces of the webs Packs 10 protrudes.
  • the movable up and down heat plate 71 receives contact with the packs 10 during the standstill phase.
  • lateral sealing webs 72 are effective, which are moved up again to the end wall 16 and bottom wall 17 in order to complete the sealing of the folding tabs 19.
  • the sealing webs 72 are formed with crowned or curved sealing surfaces 60.
  • the first web section 21 of the device may correspond to the embodiment described above.
  • a larger number of processing stations is set up, and indeed also for the treatment of special packaging forms, namely with contoured packing edges. These may be formed as round edges 73 or as a bevel 74. In this case, all four packing edges can be identical or - as shown - different. It is about the shrinking treatment of the outer sheath 11 in such packages 10 also apply to the specially designed packing edges 73, 74.
  • the packing edges 73, 74 are subjected to a shrinking treatment in a separate working cycle.
  • special shrink plates 75, 76 are provided, which are used in shrinking stations for the packaging edges, namely edge stations 77, 78.
  • the special (edge) shrink plates 75, 76 have each edge of webs 79, 80 associated with each package edge to be treated, which in one of the number of simultaneously (four) packages 10 corresponding to a number of carriers, namely a support plate 81, 82 than Up or down projecting ribs are attached.
  • Each of the edge webs 79, 80 has at the free end of the packaging edge corresponding shape edge 83, 84, namely as a quarter circle (for the treatment of round edges 73) or as a chamfer for the treatment of Beveled edges 74.
  • At least the edge webs 79, 80 are heated according to the shrinking temperature.
  • the edge-shrinking members 75, 76 are adapted to the operation of the device, namely according to the arrangement of a belt conveyor below ( Fig. 13 ) or above ( Fig. 14 ) of the path of movement of the packs 10.
  • the shrink plates 75, 76 are movable up and down, such that in an upper position, the packs through the respective belt 54, 62 are freely movable.
  • the packs 10 are supported on the side facing the shrinking member 75, 76.
  • the web plates 85 At the bottom of the web plates 85 are arranged as a support for the packs, in sections or with interruptions, so that the upright edge webs 79 lie between the web plates 85 and can be moved.
  • a top-side arrangement of the shrink plate 76 (FIG. Fig. 14 ) are at least in the area between the packs 10 associated edge bars 80 plate-shaped support members 86 fixed in place, which fix the packs 10 during the shrinkage treatment and during the movements of the shrink plate 76.
  • edge stations 77, 78 support members for the belt 54 and 62 are arranged, namely a top plate 87 above the belt 54 in Fig. 13 and a bottom plate 88 below the belt 62 in FIG Fig. 14 , Both edge stations 77, 78 are directed to the multiple treatment of packages 10 during one processing cycle, in this case based on four packages per cycle.
  • the area of the web section 22 differs from the embodiment of FIG Fig. 1 also in that a larger number of processing stations is created.
  • the packs 10 are transported away in the manner described from the area of the unit station 40 by the upper belt 54 (which extends over a relatively long conveying area), likewise in packing units of a plurality, for example four packs 10, at a distance from one another.
  • the aggregate station 40 is followed by a sealing and shrinking station 57, which accordingly Fig. 5 . Fig. 9 can be trained. In this area, therefore, seals are performed on the sideways packing surfaces and shrinking treatments on the bottom.
  • the station 57 comprises a packing unit (four packs 10).
  • the packs 10 then enter a range of finishing. This consists in the present case of two stations, namely a finishing station 70 accordingly Fig. 1 respectively. Fig. 5 and Fig. 11 , It is about top-side shrink treatment and side sealing. Subsequently, the unit of the packs 10 (in a further conveyor cycle) the already described edge station 78 is supplied. The finished treated packages are deposited on a discharge conveyor 89, which feeds the packages for further processing, in particular the production of bundle packs.
  • the sealing and shrinking elements are formed in a basically known embodiment.
  • elongated sealing jaws or sealing webs 36, 50, 52, 59, 68, 72 elongated heating cartridges 90 of known type are arranged.
  • Plate-shaped heat elements 38, 58, 71 have a plurality, in the present case two balanced heating cartridges 90.
  • the movable members are mechanically adjustable by appropriately trained actuating gear. If in a workstation, for example in the stapling and shrinking station 29, several organs must be operated at about the same time, a common actuating gear is provided both for movement of the staple bar 36 and the heating plate 38th
  • a peculiarity of the present technology is that the packs 10, which are preferably supplied individually cyclically along a conveyor track, corresponding to the spacing of the individual packs 10, are combined functionally into one unit of a plurality of successive packs 10 without changing the relative position and subsequently for each of these units a simultaneous treatment of the packs 10 during a stoppage phase of the unit or pack group is performed.
  • the units are formed in the area of the aggregate station 40. This can also be designed such that the packs 10 or the units formed are transported further from a plurality of (four) packs 10 without changing the conveying direction and treated in the manner described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers And Plastic Fillers For Packaging (AREA)
  • Auxiliary Devices For And Details Of Packaging Control (AREA)
  • Package Closures (AREA)
  • Wrapping Of Specific Fragile Articles (AREA)
  • Basic Packing Technique (AREA)
EP17000863.5A 2011-12-23 2012-12-12 Procédé et dispositif de fabrication d'emballages au moyen de film rétractable Active EP3231717B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011122327A DE102011122327A1 (de) 2011-12-23 2011-12-23 Verfahren und Vorrichtung zum Herstellen von Packungen mit Schrumpffolie
EP12810081.5A EP2794403B1 (fr) 2011-12-23 2012-12-12 Procédé et dispositif permettant de fabriquer des emballages pourvus d'un film rétractable
PCT/EP2012/005125 WO2013091796A1 (fr) 2011-12-23 2012-12-12 Procédé et dispositif permettant de fabriquer des emballages pourvus d'un film rétractable

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP12810081.5A Division EP2794403B1 (fr) 2011-12-23 2012-12-12 Procédé et dispositif permettant de fabriquer des emballages pourvus d'un film rétractable
EP12810081.5A Division-Into EP2794403B1 (fr) 2011-12-23 2012-12-12 Procédé et dispositif permettant de fabriquer des emballages pourvus d'un film rétractable

Publications (3)

Publication Number Publication Date
EP3231717A2 true EP3231717A2 (fr) 2017-10-18
EP3231717A3 EP3231717A3 (fr) 2017-11-22
EP3231717B1 EP3231717B1 (fr) 2019-04-24

Family

ID=47504798

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17000863.5A Active EP3231717B1 (fr) 2011-12-23 2012-12-12 Procédé et dispositif de fabrication d'emballages au moyen de film rétractable
EP12810081.5A Active EP2794403B1 (fr) 2011-12-23 2012-12-12 Procédé et dispositif permettant de fabriquer des emballages pourvus d'un film rétractable

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP12810081.5A Active EP2794403B1 (fr) 2011-12-23 2012-12-12 Procédé et dispositif permettant de fabriquer des emballages pourvus d'un film rétractable

Country Status (7)

Country Link
US (1) US20150232218A1 (fr)
EP (2) EP3231717B1 (fr)
JP (1) JP6261514B2 (fr)
CN (2) CN106275563B (fr)
BR (1) BR112014015361A8 (fr)
DE (1) DE102011122327A1 (fr)
WO (1) WO2013091796A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015001593A1 (de) 2015-02-05 2016-08-11 Focke & Co. (Gmbh & Co. Kg) Vorrichtung und Verfahren zum Herstellen von quaderförmigen Packungen für Zigaretten
DE102015001850A1 (de) 2015-02-17 2016-08-18 Focke & Co. (Gmbh & Co. Kg) Vorrichtung zum Herstellen von Packungen
DE102015003049A1 (de) 2015-03-11 2016-09-15 Focke & Co. (Gmbh & Co. Kg) Verfahren zum Umrüsten einer Vorrichtung zum Herstellen von Packungen
DE102015008827A1 (de) 2015-07-13 2017-01-19 Focke & Co. (Gmbh & Co. Kg) Verfahren zum sicheren Betreiben einer Zigarettenverpackungsmaschine
DE102017203660A1 (de) 2017-03-07 2018-09-13 Krones Aktiengesellschaft Mit schrumpfbarer Folie umhülltes Verpackungsgut sowie Verfahren und Verpackungsmaschine zu dessen Herstellung
CN106742394B (zh) * 2017-03-14 2019-02-12 南通市英赛机械有限公司 一种冷切式卷材包装机
CN108162491A (zh) * 2017-11-22 2018-06-15 昆明理工大学 一种试卷袋密封折盖装置
DE102017011309A1 (de) * 2017-12-08 2019-06-13 Focke & Co. (Gmbh & Co. Kg) Verpackungsmaschine zum Herstellen von Zigarettenpackungen
CN107879299A (zh) * 2017-12-12 2018-04-06 上海古鳌电子科技股份有限公司 一种翻转推钞装置及方法
DE102019110153A1 (de) * 2019-04-17 2020-10-22 Focke & Co. (Gmbh & Co. Kg) Packung für Produkte der Zigarettenindustrie sowie Verfahren und Vorrichtung zur Herstellung derselben
CN114852412B (zh) * 2022-02-25 2024-01-23 香港科技大学深港协同创新研究院(深圳福田) 一种多级可调型包装生产用袋式夹爪
DE102022105780A1 (de) * 2022-03-11 2023-09-14 Focke & Co. (Gmbh & Co. Kg) Vorrichtung zum Siegeln und/oder Schrumpfen von Außenumhüllungen von Packungen
CN116750291B (zh) * 2023-08-24 2023-10-31 常州市正文印刷有限公司 纸制品生产系统及其工作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1103465A1 (fr) 1999-11-29 2001-05-30 Focke & Co. (GmbH & Co.) Procede et appareil pour fabriquer des boites a charniere pour cigarettes
EP2019783B1 (fr) 2006-05-23 2011-07-27 Focke & Co. (GmbH & Co. KG) Procédé et dispositif de fabrication de paquets de cigarettes

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1274951B (de) * 1964-10-21 1968-08-08 Alfred Schmermund Maschine zum Einhuellen blockfoermiger Gegenstaende
US3423901A (en) * 1965-07-06 1969-01-28 Diamond Int Corp Shrink capping method and apparatus
JPS4823319B1 (fr) * 1969-09-04 1973-07-12
DE2910404A1 (de) * 1979-03-16 1980-09-25 Focke & Co Vorrichtung zum heissiegeln von packungs-umhuellungen u.dgl.
DE3728716C2 (de) * 1987-08-28 1999-10-07 Focke & Co Verfahren zum Einhüllen von quaderförmigen Gegenständen, insbesondere Zigaretten-Packungen sowie Vorrichtung zur Durchführung des Verfahrens
DE3824924A1 (de) * 1988-07-22 1990-01-25 Bat Cigarettenfab Gmbh Verfahren und einrichtung zum einschlagen von packungen
IL93671A0 (en) * 1990-03-07 1990-12-23 Syfan Method and apparatus for tightly wrapping an article with a synthetic film
JPH06144417A (ja) * 1991-03-20 1994-05-24 Shinoda:Kk 包装装置
US5123226A (en) * 1991-04-09 1992-06-23 Near Michael A System for sealing cigarette packages
IT1252457B (it) * 1991-07-29 1995-06-16 Gd Spa Dispositivo per la saldatura di involucri in macchine incartatrici e/o sovraincartatrici di prodotti, in particolare di pacchetti di sigarette
IT1279221B1 (it) * 1994-01-20 1997-12-09 Gd Spa Metodo e macchina impacchettatrice per la formazione di pacchetti doppi per sigarette
IT1279222B1 (it) * 1994-02-11 1997-12-09 Gd Spa Linea di impacchettamento per la formazione di pacchetti doppi
DE19648240B4 (de) * 1996-11-21 2006-01-05 Focke & Co.(Gmbh & Co. Kg) Klappschachtel für Zigaretten und Zuschnitt zur Herstellung derselben
ITBO20040720A1 (it) * 2004-11-19 2005-02-19 Gd Spa Metodo e unita' per il sivraincarto di prodotti in particolare pacchetti
US20060130433A1 (en) * 2004-12-22 2006-06-22 Philip Morris Usa Inc. Multi-stage heater plates for sealing and shrinking overwrap
DE102005046304A1 (de) * 2005-09-27 2007-03-29 Focke & Co.(Gmbh & Co. Kg) Verfahren und Vorrichtung zur Wärmebehandlung von Packungen
ITBO20050595A1 (it) * 2005-10-06 2006-01-05 Gd Spa Metodo e macchina per l'incarto di un prodotto in almeno un foglio di incarto
US20070270758A1 (en) 2006-05-22 2007-11-22 Gert Hanner IV catheter assembly with an ergonomic needle grip
ITBO20060611A1 (it) * 2006-08-17 2006-11-16 Gd Spa Metodo ed unita di alimentazione di prodotti ad una unita di raggruppamento
ITBO20070622A1 (it) * 2007-09-13 2007-12-13 Gd Spa Metodo ed unita di alimentazione di prodotti ad una unita di raggruppamento.
DE102011109233A1 (de) * 2011-07-19 2013-01-24 Focke & Co. (Gmbh & Co. Kg) Zigarettenpackung sowie Verfahren zum Herstellen derselben

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1103465A1 (fr) 1999-11-29 2001-05-30 Focke & Co. (GmbH & Co.) Procede et appareil pour fabriquer des boites a charniere pour cigarettes
EP2019783B1 (fr) 2006-05-23 2011-07-27 Focke & Co. (GmbH & Co. KG) Procédé et dispositif de fabrication de paquets de cigarettes

Also Published As

Publication number Publication date
EP3231717A3 (fr) 2017-11-22
CN106275563A (zh) 2017-01-04
DE102011122327A1 (de) 2013-06-27
CN106275563B (zh) 2019-07-16
CN104114448A (zh) 2014-10-22
JP6261514B2 (ja) 2018-01-17
CN104114448B (zh) 2016-10-12
US20150232218A1 (en) 2015-08-20
WO2013091796A1 (fr) 2013-06-27
EP2794403B1 (fr) 2017-08-09
EP3231717B1 (fr) 2019-04-24
BR112014015361A2 (pt) 2017-06-13
BR112014015361A8 (pt) 2017-06-13
EP2794403A1 (fr) 2014-10-29
JP2015506312A (ja) 2015-03-02

Similar Documents

Publication Publication Date Title
EP3231717B1 (fr) Procédé et dispositif de fabrication d'emballages au moyen de film rétractable
EP0460374B1 (fr) Procédé et dispositif d'emballage d'objets dans une boîte pliable
EP2019783B1 (fr) Procédé et dispositif de fabrication de paquets de cigarettes
EP1928748B1 (fr) Dispositif de traitement thermique de paquets
EP1452452B1 (fr) Procédé et machine pour fabriquer des emballages (de cigarettes)
EP0803446A2 (fr) Ensemble d'emballage ainsi qu'un procédé et un dispositif pour le réaliser
EP2704949B1 (fr) Procédé et dispositif pour emballer des groupes d'objets réunis en unités d'emballage
EP2303702A1 (fr) Procédé et dispositif de production d'emballages
EP0268151B1 (fr) Procédé et dispositif de scellage des rabats de pliage d'un emballage
EP2305563A2 (fr) Procédé et dispositif destinés à la fabrication de fûts
EP2364917B1 (fr) Procédé et dispositif destinés au traitement d'articles
DE1945089A1 (de) Verfahren und Vorrichtung zum Verpacken von Gegenstaenden
DE2260936B2 (de) Vorrichtung zum Aufrichten von Kartonhülsen
EP1829783A1 (fr) Dispositif de fabrication d'emballages doubles
DE19601664A1 (de) Verfahren und Vorrichtung zum richtungsorientierten Sortieren von Hygieneartikeln zum nachfolgenden Verpacken
EP3476752B1 (fr) Dispositif et procédé de fabrication d'emballages de cigarettes
DE4023025A1 (de) Vorrichtung zum gruppenweisen verpacken von produkten in schachteln
DE2328845A1 (de) Verpackungsgeraet
EP3808668A1 (fr) Dispositif de manutention d'articles à emballer et procédé d'ajustement d'un dispositif pour le transport d'articles destinés à l'emballage
DE1586235A1 (de) Verfahren und Vorrichtung zum Verpacken von Behaeltnissen,z.B. Flaschen
DE2644251A1 (de) Vorrichtung und verfahren zum einpacken von gegenstaenden
DE2461669A1 (de) Mit zwei pappe-zuschnitten arbeitende verpackungsmaschine
DE2013695A1 (de) Transportvorrichtung
DE1511766C (de) Vorrichtung zum Verpacken von gesta pelten Gegenstanden in einen vorgefertig ten Zuschnitt
DE1945089C (de) Vorrichtung zum Falten eines um eine Gruppe von Gegenstanden gelegten Pappzu Schnitts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 2794403

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: B65B 51/14 20060101ALI20171016BHEP

Ipc: B65B 53/02 20060101ALI20171016BHEP

Ipc: B65B 65/00 20060101ALI20171016BHEP

Ipc: B65B 19/22 20060101AFI20171016BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180518

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2794403

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1123865

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012014671

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190424

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190725

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012014671

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

26N No opposition filed

Effective date: 20200127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191212

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191212

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1123865

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121212

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221130

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231128

Year of fee payment: 12