EP3158024A1 - Zusammensetzungen für elektronische vorrichtungen - Google Patents

Zusammensetzungen für elektronische vorrichtungen

Info

Publication number
EP3158024A1
EP3158024A1 EP15726863.2A EP15726863A EP3158024A1 EP 3158024 A1 EP3158024 A1 EP 3158024A1 EP 15726863 A EP15726863 A EP 15726863A EP 3158024 A1 EP3158024 A1 EP 3158024A1
Authority
EP
European Patent Office
Prior art keywords
homo
lumo
organic
composition according
host
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15726863.2A
Other languages
German (de)
English (en)
French (fr)
Inventor
Anna Hayer
Florian MAIER-FLAIG
Tobias Grossmann
Dominik Joosten
Holger Heil
Thomas Eberle
Rémi Manouk ANÉMIAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP3158024A1 publication Critical patent/EP3158024A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/96Spiro-condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • compositions for electronic devices are provided.
  • the present invention relates to a composition, as well as a formulation and device containing the composition.
  • organic electroluminescent devices for example OLEDs - organic light-emitting diodes or OLECs-organic light-emitting electrochemical cells
  • organic semiconductors for example, in US Pat. No. 4,539,507.
  • organometallic complexes which exhibit phosphorescence (M.A. Baldo et al., Appl. Phys. Lett. 1999, 75, 4-6).
  • organometallic complexes which exhibit phosphorescence
  • organic electroluminescent devices are not determined solely by the emitters used.
  • the other materials used such as host materials, hole blocking materials, electron transport materials, hole transport materials and electron or exciton blocking materials are of particular importance. Improvements to these materials can lead to significant improvements in electroluminescent
  • matrix material is also often used in the prior art if a host material for phosphorescent dopants is meant. Meanwhile, a variety of host materials have been developed for both fluorescent and phosphorescent electronic devices.
  • fluorescent OLEDs according to the prior art, especially condensed aromatics, in particular anthracene derivatives, are used as host materials, in particular for blue-emitting electroluminescent devices, eg. B. 9,10-bis (2-naphthyl) anthracene
  • WO 03/095445 and CN 1362464 disclose 9,10-bis (1-naphthyl) anthracene derivatives for use in OLEDs. Further anthracene derivatives are disclosed in WO 01/076323, in WO 01/021729, in WO 2004/013073, in WO 2004/018588, in WO 2003/087023 or in WO 2004/018587. Host materials based on aryl-substituted pyrenes and chrysenes are disclosed in WO 2004/016575. Host materials based on benzanthracene derivatives are disclosed in WO 2008/145239. It is desirable for high quality applications to have improved host materials available.
  • ketones eg.
  • phosphine oxides are used as host materials for phosphorescent emitters.
  • Other host materials according to the prior art represent triazines (for example WO 2008/056746, US Pat.
  • WO 2012/074210 discloses the use of fluorenes and spirobifluorenes as host materials.
  • WO 2009/069442 discloses tricyclics, such as carbazole, dibenzofuran or dibenzothiophene, which are highly substituted with electron-deficient heteroaromatics (e.g., pyridine, pyrimidine or triazine). With hole-conducting groups, i. electron-rich groups, the tricycles are unsubstituted.
  • JP 2009-21336 discloses substituted dibenzofurans which are substituted in position 2 with carbazole and in position with a triazine.
  • WO 2011/057706 discloses occasionally substituted dibenzothiophenes and dibenzofurans as host materials, which compounds are specifically substituted with an electron-conducting and a hole-conducting group.
  • Another way to improve the performance of electronic devices, particularly electroluminescent devices, is to use combinations of materials.
  • US 6,392,250 B1 discloses the use of a mixture consisting of an electron transport material, a hole transport material and a fluorescent emitter in the emission layer of an OLED. With the help of this mixture, the life of the OLED over the prior art could be improved.
  • US Pat. No. 6,803,720 B1 discloses the use of a mixture comprising a phosphorescent emitter and a hole and an electron transport material in the emission layer of an OLED. Both the hole and the electron transport material are small organic molecules. Furthermore, US Pat. No. 7,294,849 B2 discloses the use of a mixture containing a host material, a hole or an electron transport material and a phosphorescent emitter in the emission layer of an OLED. If a hole transport material is used in the mixture, the energy of the HOMO (highest occupied molecular orbital) of the host material must be lower than that of the hole transport material. Furthermore, then the LUMO energy (lowest unoccupied molecular orbital) of the host material must be higher than that of the phosphorescent emitter.
  • HOMO highest occupied molecular orbital
  • the energy of the HOMO (highest occupied molecular orbital) of the host material must be lower than that of the phosphorescent emitter. Furthermore, the LUMO energy (lowest unoccupied molecular orbital) of the host material must then be higher than that of the electron transport material.
  • the host material is a wide band gap material that is characterized by a bandgap of at least 3.5 eV, where below
  • compositions which are suitable for use in a fluorescent or phosphorescent OLED, and which lead to good device properties when used in an OLED, as well as the provision of the corresponding electronic device.
  • compositions described in more detail below solve these objects and eliminate the disadvantages of the prior art.
  • the compositions lead to very good properties of organic electronic devices, in particular organic electroluminescent devices, in particular with regard to the lifetime, the efficiency and the operating voltage.
  • Electronic devices, in particular organic electroluminescent devices which contain such compositions, and the corresponding preferred embodiments are therefore the subject of the present invention.
  • the surprising effects are achieved by a very specific selection of known materials.
  • the present invention relates to a composition
  • a composition comprising a bipolar host, a neutral co-host and a light-emitting dopant.
  • Both the bipolar host and the neutral co-host are organic compounds, while the light-emitting dopant may be organic, organometallic or inorganic compounds.
  • the individual connections are well known to those skilled in the art so that they can select from a variety of available connections.
  • composition according to the invention is particularly suitable for use in organic electronic devices.
  • Organic electroluminescent devices containing these compositions have very good efficiencies, operating voltages and significantly increased lifetimes.
  • the concentration of the light-emitting dopant in the composition is preferably in the range of 0.1% by weight and 50% by weight, more preferably in the range of 1% by weight and 30% by weight and most preferably in the range of 5% by weight .-% and 20 wt .-% based on the total composition.
  • the concentration of the neutral co-host in the composition is preferably in the range of 5% by weight to 70% by weight, more preferably in the range of 20% to 60% by weight, and most preferably in the range of 30 wt .-% and 60 wt .-% based on the total
  • the concentration of the bipolar host in the composition is preferably in the range of 5% by weight and 70% by weight, more preferably in the range of 10% by weight and 60% by weight, and most preferably in the range of 20% by weight .-% and 50 wt .-% based on the total
  • Preferred for the purposes of the present invention is when the dopant of the composition is a phosphorescent emitter.
  • phosphorescent dopants or emitters typically includes compounds in which the light emission takes place by a spin-forbidden transition, for example by a transition from a triplet state or a state with an even higher spin quantum number, for example a quintet state.
  • a transition from a triplet state is preferably understood.
  • Particularly suitable as phosphorescent dopants or emitters are compounds which emit light, preferably in the visible range, with suitable excitation and also contain at least one atom of atomic number greater than 20, preferably greater than 38 and less than 84, particularly preferably greater than 56 and less than 80.
  • phosphorescent dopants compounds containing copper, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or europium are preferably used, in particular compounds containing iridium, platinum or copper.
  • Preferred phosphorescent dopants are organic compounds and organic metal complexes, with organic metal complexes being quite preferred. Examples of the emitters described above can be found in the applications WO 00/70655, WO 2001/41512, WO 2002/02714, WO 2002/15645, EP 1191613, EP 1191612, EP 1191614, WO 2005/033244,
  • Composition meet the following conditions:
  • HOMO (C) stands for the HOMO energy of the neutral co-host
  • HOMO (B) and HOMO (D) correspondingly represents the HOMO energy of the bipolar host or the dopant
  • the energy values given here refer to isolated compounds, and are determined as set out below.
  • the highest occupied molecular orbital (HOMO) and LUMO (lowest unoccupied molecular orbital) energies as well as the triplet level of the materials are determined by quantum-chemical calculations.
  • the program package "Gaussian09, Revision D.01"
  • the triplet level Ti of a material is defined as the relative excitation energy (in eV) of the triplet state with the lowest energy resulting from the quantum chemical energy calculation.
  • composition which is characterized in that at least one of the following two
  • the composition comprises a bipolar host, a neutral co-host, and a light-emitting dopant, which is preferably a phosphorescent emitter, more preferably an organic phosphorescent emitter, characterized in that the following conditions are satisfied max ⁇
  • composition according to the aforementioned further embodiment which is characterized in that at least one of the following two conditions is satisfied max ⁇
  • bipolar host is one which contributes significantly to both the electron transport and the hole transport in the mixture used in the component used.
  • this is achieved in that a material is selected, (a) in that due to its energy level positions in
  • One skilled in the art can use a large number of known hosts to select suitable bipolar hosts and combine them with similarly known emitters with matching energy level gauges.
  • Hybrid systems are characterized by having both at least one electron transporting group and at least contain a hole-transporting group, which are generally groups that achieve by their electron richness or their electron poverty a suitable for hole injection HOMO or a suitable for electron injection LUMO.
  • Bipolarity is not a property of a single material, but is achieved by appropriate properties relative to other materials present in the mixture. In the examples, it will be shown later that a material may once be a bipolar host and once a neutral co-host, depending on the other materials of the composition (compound 13t).
  • Preferred bipolar hosts are selected from the group of pyridines, pyrimidines, triazines, benzimidazoles, carbazoles, indenocarbazoles, indolocarbazoles, 1, 10-phenanthrolines, 1, 3,4-oxadiazoles, phosphine oxides, phenylsulfonyls, ketones, lactams and triarylamines, wherein the triazines , Pyrimidines, benzimidazoles, carbazoles, indenocarbazoles, indolocarbazoles, ketones, lactams and triarylamines are quite preferred.
  • bipolar hosts are selected from the group of triazines, benzimidazoles, carbazoles, indenocarbazoles, lactams and triarylamines, the triazines, carbazoles, indenocarbazoles and lactams being particularly preferred.
  • the relative locations of the frontier orbitals are critical to the beneficial technical effects.
  • the components specified here are therefore exemplary in nature.
  • Pyridines which are useful as bipolar hosts are, for example, disclosed in Adv. Mater., 2011, 23, 3876-3895.
  • the pyridines disclosed therein also represent very preferred bipolar hosts within the meaning of the present invention.
  • Pyrimidines which are suitable as bipolar hosts are, for example, in WO 20 1/057706 A2, in WO2011 / 132684A1 or in EP 12008332.4 disclosed.
  • the pyrimidines disclosed therein also represent very preferred bipolar hosts within the meaning of the present invention.
  • Triazines which are useful as bipolar hosts are, for example, disclosed in WO 2011/057706 A2, EP 12008332.4 or in Adv. Mater., 2011, 23, 3876-3895.
  • the triazines disclosed therein also represent very preferred bipolar hosts within the meaning of the present invention.
  • Benzimidazoles useful as bipolar hosts are, for example, disclosed in Adv. Mater., 2011, 23, 3876-3895 or WO2010 / 107244 A2. 0
  • the benzimidazoles disclosed therein also represent very preferred bipolar hosts within the meaning of the present invention.
  • Carbazoles which are useful as bipolar hosts are, for example, disclosed in WO 2011/057706 A2, EP 12008332.4 or in Adv. Mater., ⁇ 2011, 23, 3876-3895.
  • the carbazoles disclosed therein also represent very preferred bipolar hosts within the meaning of the present invention.
  • Indenocarbazoles useful as bipolar hosts are, for example, disclosed in EP 12008332.4 or in WO 2011/000455. The one in it
  • Indenocarbazoles disclosed also represent very preferred bipolar hosts within the meaning of the present invention.
  • Indolocarbazoles useful as bipolar hosts are, for example, disclosed in WO 2008/056746 A1.
  • the indolocarbazoles disclosed therein also represent very preferred bipolar hosts within the meaning of the present invention.
  • 10-phenanthrolines useful as bipolar hosts are, for example, disclosed in Adv. Mater., 2011, 23, 3876-3895.
  • the 1,10-phenanthrolines disclosed therein also represent very preferred bipolar hosts within the meaning of the present invention.
  • Phosphine oxides useful as bipolar hosts are, for example, disclosed in Adv. Mater., 2011, 23, 3876-3895.
  • the phosphine oxides disclosed therein also represent very preferred bipolar hosts within the meaning of the present invention.
  • Phenylsulfonyls which are useful as bipolar hosts are, for example, disclosed in Adv. Mater., 20 1, 23, 3876-3895.
  • the phenylsulfonyls disclosed therein also represent very preferred bipolar hosts within the meaning of the present invention.
  • Ketones which are suitable as bipolar hosts are disclosed, for example, in WO 2007/137725 A1 or in WO 2010/136109 A1.
  • the ketones disclosed therein also represent very preferred bipolar hosts within the meaning of the present invention.
  • Lactams suitable as bipolar hosts are disclosed, for example, in WO 2013/064206.
  • the lactams disclosed therein also represent very preferred bipolar hosts within the meaning of the present invention.
  • Triarylamines useful as bipolar hosts are disclosed in, for example, WO2007 / 137725 A1, WO 2011/000455 or Adv. Mater., 2011, 23, 3876-3895.
  • the triarylamines disclosed therein also represent very preferred bipolar hosts within the meaning of the present invention.
  • Hybrid systems are characterized by containing both at least one electron transporting group (ET) and at least one hole transporting group (HT).
  • the bipolar host of the composition according to the invention is therefore in a further preferred embodiment of the present invention, a hybrid system containing both at least one electron-transporting group (ET) and at least one hole-transporting Group (HT).
  • ET electron-transporting group
  • HT hole-transporting Group
  • the bipolar host is a hybrid system which is selected from the group consisting of the HT / N-containing heterocycle hybrid systems, HT / benzimidazole hybrid system, HT / 1, 10-phenanthroline. Hybrid systems, HT / 1, 3,4-oxadiazole hybrid systems, HT / phosphine oxide hybrid systems, HT / phenylsulfonyl hybrid systems, HT / ketone hybrid systems and HT / lactam hybrid systems.
  • the notation HT / benzimidazole is intended to mean that the bipolar host contains at least one hole-transporting group (HT) and at least one electron-transporting group, one of the electron-transporting groups being a benzimidazole.
  • Preferred N-containing heterocycles are the pyridines, pyrimidines and triazines, the triazines being very preferred groups.
  • hybrid systems for bipolar hosts are HT / pyridine hybrid systems, HT / pyrimidine hybrid systems, HT / triazine hybrid systems, HT / benzimidazole hybrid systems, most preferred
  • HT / triazine hybrid systems or HT / benzimidazole hybrid systems, and particularly preferred are HT / triazine hybrid systems.
  • bipolar hosts are carbazole / ET hybrid systems, indenocarbazole / ET hybrid systems, indolocarbazole / ET hybrid systems, carbazole-carbazole / ET hybrid systems, indenocarbazole-carbazole / ET hybrid systems and amine / ET hybrid systems wherein the carbazole / ET - Hybrid systems are very preferred.
  • Very particularly preferred hybrid systems are the carbazole / triazine hybrid systems, indenocarbazole / triazine hybrid systems, indolocarbazole / triazine hybrid systems, carbazole-carbazole / triazine hybrid systems, indenocarbazole-carbazole / triazine hybrid systems and amine / triazine hybrid systems ,
  • the neutral co-host of the composition of the present invention like the other two components (bipolar host and light-emitting dopant), is also by the relative locations of its frontier orbitals
  • neutral neutrals should also be noted that neutrality is not a property of a single material, but is achieved by appropriate properties relative to other materials present in the mixture (see Compound 13t in the Examples).
  • Examples of preferred neutral co-hosts are, for example, disclosed in WO 2010/108579, EP 12008584.0, and WO 2009/021126 A9,.
  • the neutral co-hosts are preferably aromatic or heteroaromatic hydrocarbons, the number of heteroaromatic rings in the neutral co-host being smaller than the number of aromatic rings. Most preferred is when the number of heteroaromatic rings in the neutral co-host is at most 2. It is particularly preferred if at most one ring of the neutral co-host is a heteroaromatic ring.
  • a benzimidazole for example, contains an aromatic ring
  • Benzene and a heteroaromatic ring (imidazole).
  • a carbazole contains two aromatic rings (two benzenes) and one heteroaromatic ring (pyrrole).
  • a spirobifluorene contains 4 aromatic rings (4 benzenes).
  • the neutral co-host preferably contains 6 or less, more preferably 5 or less, more preferably 4 or less, even more preferably 3 or less, most preferably 2 or less, still more preferably 1 or less, most preferably none at all
  • preferred neutral hosts may also be those which in other combinations are charge transporting, e.g. used as electron-transporting hosts.
  • charge transporting e.g. used as electron-transporting hosts.
  • These include, for example, lactams (e.g., WO 2013/064206), pyrimidines (e.g., WO 2010/136109 A1), triazines (e.g., WO 2010/136109 A1), and benzimidazoles (e.g., Optical Materials 35 (2013) 2201-2207).
  • Some exemplary, more preferred neutral co-hosts are those of the folloWing overview.
  • the composition of the present invention may contain other organic functional materials in addition to said materials, bipolar host, neutral co-host, and light-emitting dopants.
  • the present invention therefore also relates to a composition which, in addition to the three components mentioned above, contains further organic functional materials which are preferably selected from the group of hole injection materials, hole transport materials, hole blocking materials, host materials, emitter materials, electron blocking materials, electron transport materials and electron injection materials. It does not give the expert any difficulty to select from a variety of materials known to him.
  • composition is another
  • functional material contains another host material.
  • the further host material is another bipolar host material within the meaning of this application. In a further preferred embodiment, the further host material is another neutral host material within the meaning of this application.
  • the further host material is a hole-transporting host material. In a further preferred embodiment, the further host material is a
  • Preferred other host materials are aromatic amines,
  • triarylamines in particular triarylamines, e.g.
  • carbazole derivatives e.g CBP, ⁇ , ⁇ -biscarbazolylbiphenyl
  • WO 2005/039246 e.g. WO 2005/039246
  • US 2005/0069729 JP 2004/288381
  • EP 1205527 WO 2008/086851
  • bridged carbazole derivatives e.g. B. according to
  • WO 2011/088877 and WO 2011/128017 indenocarbazole derivatives, e.g. B. according to WO 2010/136109 and WO 2011/000455, Azacarbazolderivate, z. B. according to EP 1617710, EP 16177, EP 1731584, JP 2005/347160, Indolocarbazolderivate, z. B. according to WO 2007/063754 or
  • WO 2010/006680 phosphine oxides, sulfoxides and sulfones, z. B. according to WO 2005/003253, oligophenylenes, bipolar host materials, eg. B. according to WO 2007/137725, silanes, z. B. according to WO 2005/111172, azaborole or boronic esters, z. B. according to WO 2006/117052, triazine derivatives, z. According to WO 20/015156, WO 2007/063754 or WO 2008/056746,
  • Zinc complexes e.g. B. according to EP 652273 or WO 2009/062578,
  • Aluminum complexes e.g. B. BAIq, diazasilol and tetraazasilol derivatives, z. B. according to WO 2010/054729, diazaphosphole derivatives, z. B. according to
  • WO 2010/054730 and aluminum complexes, for. B. BAIQ.
  • the concentration of the further host material in the composition is preferably in the range of 10% by weight and 50% by weight, more preferably in the range of 10% by weight and 30% by weight, and most preferably in the range of 10 wt .-% and 20 wt .-% based on the total composition.
  • the composition according to the invention contains one or more further light-emitting dopants, which are phosphorescent emitters.
  • the composition contains one or two further light-emitting dopants, wherein it is particularly preferred if the composition contains a further light-emitting dopant.
  • the above-mentioned phosphorescent dopants are suitable.
  • a dopant then has a shorter wavelength emission spectrum when its peak emission in the electroluminescence spectrum is shifted to a shorter wavelength compared to the peak emission in the
  • blue (400-500 nm) or green (501-560 nm) emitting, phosphorescent dopants can be used as co-hosts for red-emitting, phosphorescent dopants.
  • blue-emitting, phosphorescent dopants can be used as co-hosts for green-emitting, phosphorescent dopants. This is advantageous for life, efficiency and operating voltage of the corresponding organic
  • Electroluminescent devices are Electroluminescent devices.
  • compositions are used in which the predominant portion of the emission in electroluminescence emanates from the longer-wavelength phosphorescent dopant.
  • the proportion of emission in the electroluminescence of a dopant predominates when at least 70%, preferably at least 80% and most preferably at least 90% of the area under the electroluminescence emission spectrum is due to this dopant of the composition.
  • Very particular preference is given here to compositions in which only the longer-wavelength, phosphorescent dopant contributes to the emission into electroluminescence.
  • the term "exclusive" means that at least 99% of the area under the electroluminescent emission spectrum is due to that dopant of the composition.
  • a high proportion of emission from the longer-wavelength, phosphorescent dopant can be achieved, for example, by a high relative concentration of this emitter and / or low steric Shielding of both emitters involved and / or suitable energy level positions leading to preferential exciton formation on the longer wavelength, phosphorescent dopant.
  • the concentration of the shorter-wavelength light-emitting phosphorescent dopant in the composition is preferably in the range of 1 wt% and 40 wt%, more preferably in the range of 3 wt% and 30 wt%, and all more preferably in the range of 5 wt .-% and 20 wt .-% based on the total composition.
  • longer wavelength light-emitting phosphorescent dopants in the composition preferably in the range of 1 wt .-% and 30 wt .-%, more preferably in the range of 5 wt .-% and 20 wt .-% based on the total composition.
  • composition of two light-emitting, phosphorescent dopants is used in which both dopants significantly to the emission in
  • a dopant contributes significantly to the emission in electroluminescence if its contribution to the emission in the electroluminescence is at least 10%, preferably at least 20% and more preferably at least 30% of the area under the electroluminescent emission spectrum is on said dopant of the composition.
  • a significant proportion of emission from the shorter-wavelength phosphorescent dopant can be achieved, for example, by a low to very low relative concentration of the longer-wavelength phosphorescent dopant and / or or high steric shielding of both involved emitters and / or suitable energy level positions leading to preferential exciton formation on the shorter wavelength, phosphorescent dopant.
  • the concentration of the shorter wavelength further light-emitting dopant in the composition is preferably in the range of 1 wt% and 40 wt%, more preferably in the range of 5 wt% and 30 wt%, and most particularly preferably in the range of 8 wt .-% and 20 wt .-% based on the total composition.
  • the concentration of the longer wavelength light-emitting dopant in the composition is preferably in the range of 0.1% by weight and 10% by weight, more preferably in the range of 0.1% by weight and 3% by weight based on the whole Composition.
  • these dopants preferably have several total
  • Emission maxima between 380 nm and 750 nm, so that total white emission results.
  • Particularly preferred is a combination of blue, green and orange or red emission.
  • the concentration of the shortest wavelength light-emitting dopant in the composition is preferably in the range of 1 wt% and 40 wt%, more preferably in the range of 5 wt% and 30 wt%, and most preferably in the range of 8 wt .-% and 20 wt .-% based on the total composition.
  • the concentration of the light emitting dopant having the next higher emission wavelength in the composition is preferably in the range of 0.1 wt% to 10 wt%, more preferably in the range of 0.5 wt% to 3 wt% on the entire composition.
  • the concentration of the longest-wavelength light-emitting dopant in the composition is preferably in the range of 0.01% by weight and 5% by weight, more preferably in the range of 0.1% by weight and 1% by weight based on the total
  • the composition in addition to the bipolar host, the neutral co-host and the light-emitting dopant, the composition does not contain any organic functional materials, it being particularly preferred that the composition of the invention be composed only of the bipolar host, the neutral co-host and the light-emitting dopant and contains no other organic or inorganic constituents.
  • present invention contains the composition in addition to the bipolar host, the neutral co-host, the light-emitting dopant and the other host material none of the above-mentioned organic functional materials, wherein it is particularly preferred that the composition according to the invention only from the bipolar host, the neutral co-host, the light-emitting dopant and the other host material and contains no other organic or inorganic constituents.
  • the composition does not contain any of the above-mentioned organic functional materials, with the composition according to the invention being particularly preferred consists only of the bipolar host, the neutral co-host, the light-emitting dopant and the further light-emitting dopant and no further
  • compositions according to the invention can be used in electronic devices, in particular in organic electroluminescent devices.
  • the components of the compositions can be processed by vapor deposition or from solution. If the compositions are applied from solution, at least one additional solvent is required.
  • the processing from solution has the advantage that the layer containing the composition according to the invention can be applied very simply and inexpensively. This technique is particularly suitable for the mass production of organic electronic devices.
  • the present invention therefore also relates to a formulation comprising a composition according to the invention and at least one
  • Suitable and preferred solvents are, for example, toluene, anisole, o-, m- or p-xylene, methyl benzoate, mesitylene, tetralin, veratrole, THF, methyl THF, THP, chlorobenzene, dioxane, phenoxytoluene, in particular 3-phenoxytoluene, (-) Fenchone, 1,2,3,5-tetramethylbenzene, 1, 2,4,5-tetra- methylbenzene, 1-methylnaphthalene, 2-methylbenzothiazole, 2-phenoxyethanol, 2-pyrrolidinone, 3-methylanisole, 4-methylanisole, 3 , 4-dimethylanisole, 3,5-dimethylanisole, acetophenone, ⁇ -terpineol, benzothiazole, butyl benzoate, cumene, cyclohexanol, cyclohexanone, cyclohexylbenzene, decalin,
  • the present invention therefore relates to the use of a formulation according to the invention for producing an electronic device, in particular an organic electroluminescent device, characterized in that the formulation is used to obtain an emission layer of the device from solution
  • the present invention also relates to the use of the inventive compositions in an organic solvent
  • the present invention also relates to an organic compound
  • OICs organic integrated circuits
  • OFETs organic field effect transistors
  • OTFTs organic thin film transistors
  • O electroluminescent devices organic solar cells (OSCs)
  • OSCs organic solar cells
  • organic optical detectors organic photoreceptors, and the organic electroluminescent device are most preferred.
  • OLETs organic light-emitting transistors
  • OFQDs organic field quench devices
  • OLEDs organic light-emitting electrochemical cells
  • O-lasers organic laser diodes
  • OLEDs organic light-emitting Diodes
  • the organic electroluminescent device may contain further layers. These are selected, for example, from one or more hole injection layers, hole transport layers, hole blocking layers, emitting layers, electron transport layers, electron injection layers, electron blocking layers, exciton blocking layers, interlayers, charge generation layers (IDMC 2003, Taiwan; OLED (5), T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi, J. Kido, Multiphoton Organic EL Device Having Charge Generation Layer) and / or Organic or Inorganic P / n transitions. It should be noted, however, that not necessarily each of these layers must be present.
  • the sequence of layers of organic electroluminescent devices is preferably the following:
  • the organic electroluminescent device according to the invention may contain a plurality of emitting layers.
  • these emission layers particularly preferably have a total of a plurality of emission maxima between 380 nm and 750 nm, so that overall white emission results, ie, in the emitting layers
  • emissive compounds that can fluoresce or phosphoresce and that emit blue or yellow or orange or red light. Particularly preferred
  • Three-layer systems ie systems with three emitting layers, the three layers showing blue, green and orange or red emission (for the basic structure, see, for example, WO 2005/011013). It should be noted that for the production of white light, instead of a plurality of color-emitting emitter compounds, a single emitter compound which can be used in a broad range may also be suitable
  • Wavelength range emitted Wavelength range emitted.
  • composition according to the invention is also suitable in particular for use in organic electroluminescent devices, as described, for example, in US Pat.
  • an additional blue emission layer is vapor-deposited over all pixels, even those with a different color from blue. It is surprisingly found that the inventive
  • compositions when used for the red and / or green pixel, together with the vapor-deposited blue
  • Suitable charge transport materials as used in the hole injection or hole transport layer or in the electron blocking layer or in the
  • Electron transport layer of the organic electroluminescent device according to the invention can be used, for example, those disclosed in Y. Shirota et al., Chem. Rev. 2007, 107 (4), 953-1010
  • Compounds or other materials, as used in the prior art in these layers are suitable as materials for the electron transport layer.
  • materials for the electron transport layer it is possible to use all materials as used in the prior art as electron transport materials in the electron transport layer.
  • aluminum complexes, for example Alq3, are suitable.
  • Zirconium complexes for example Zrq-t, benzimidazole derivatives, triazine derivatives, pyrimidine derivatives, pyridine derivatives, pyrazine derivatives, quinoxaline derivatives, quinoline derivatives, oxadiazole derivatives, aromatic ketones, lactams, boranes, diazaphosphole derivatives and phosphine oxide derivatives.
  • WO 2004/028217, WO 2004/080975 and WO 2010/072300 are disclosed.
  • hole transport materials are materials which can be used in a hole transport, hole injection or electron blocking layer, indenofluorenamine derivatives (for example according to WO 06/122630 or WO 06/100896), the amine derivatives disclosed in EP 1661888, hexaazatriphenylene derivatives (for example according to WO 01/049806), amine-fused aromatics (for example according to US Pat. No.
  • the cathode of the electronic device are low workfunction metals, metal alloys or multilayer structures of various metals, such as alkaline earth metals, alkali metals, main group metals or lanthanides (eg Ca, Ba, Mg, Al, In, Mg, Yb, Sm, Etc.). Also suitable are alloys of an alkali or alkaline earth metal and silver, for example an alloy of magnesium and silver. In multilayer structures can also be added to the metals mentioned other metals are used which have a relatively high work function, such as. As Ag or Al, which then usually combinations of metals, such as Ca / Ag, Mg / Ag or Ba / Ag are used. It may also be preferred to introduce a thin intermediate layer of a material with a high dielectric constant between a metallic cathode and the organic semiconductor. For example, alkali metal or
  • Alkaline earth metal fluorides but also the corresponding oxides or
  • Carbonates in question eg LiF, L12O, BaF2, MgO, NaF, CsF, CS2CO3, etc.
  • lithium quinolinate LiQ
  • the layer thickness of this layer is preferably between 0.5 and 5 nm.
  • the anode high workfunction materials are preferred.
  • the anode has a work function greater than 4.5 eV. Vacuum up.
  • metals with a high redox potential such as Ag, Pt or Au, are suitable for this purpose.
  • metal / metal oxide electrodes eg Al / Ni / NiOx, Al / PtOx
  • at least one of the electrodes must be transparent or
  • anode materials are conductive mixed metal oxides. Particularly preferred are indium tin oxide (ITO) or indium zinc oxide (IZO). Preference is furthermore given to conductive, doped organic materials, in particular conductive doped polymers.
  • the anode can also consist of several layers, for example of an inner layer of ITO and an outer layer of a metal oxide, preferably tungsten oxide,
  • Molybdenum oxide or vanadium oxide are examples of Molybdenum oxide or vanadium oxide.
  • the electronic device is structured according to the application (depending on the application), contacted and finally sealed, since the life of the devices according to the invention at
  • the electronic device according to the invention is characterized in that one or several layers are coated with a sublimation process.
  • the materials in vacuum sublimation are evaporated at an initial pressure less than 10 -5 mbar, preferably less than 10 "6 mbar. However, it is also possible that the initial pressure is even lower, for example less than 10 7 mbar.
  • an organic electroluminescent device characterized in that one or more layers are coated with the OVPD (Organic Vapor Phase Deposition) method or with the aid of a carrier gas sublimation.
  • the materials are applied at a pressure between 10 -5 mbar and 1 bar.
  • OVJP Organic Vapor Jet Printing
  • the materials are applied directly through a nozzle and thus structured (for example, BMS Arnold et al., Appl. Phys. Lett., 2008, 92, 053301).
  • an organic electroluminescent device characterized in that one or more layers of solution, such. B. by spin coating, or with any printing process, such.
  • any printing process such as screen printing, flexographic printing, Nozzle Printing or offset printing, but particularly preferably LITI (Light Induced Thermal Imaging, thermal transfer printing) or ink-jet printing (ink jet printing), are produced.
  • LITI Light Induced Thermal Imaging, thermal transfer printing
  • ink-jet printing ink jet printing
  • the invention thus further provides a method for producing the inventive electronic device, characterized
  • the devices according to the invention can be used in a very versatile manner.
  • the electroluminescent devices can be used in displays for televisions, mobile phones, computers and cameras.
  • the devices can also be used in lighting applications.
  • electroluminescent devices, for. B. in OLEDs or OLECs, containing at least one of the composition according to the invention in medicine or cosmetics are used for phototherapy.
  • diseases psoriasis, atopic dermatitis, inflammation, acne, skin cancer, etc.
  • the light-emitting devices may be used to keep beverages, foods, or foods fresh, or to sterilize devices (eg, medical devices).
  • the present invention also provides a device comprising at least one organic electronic device according to the invention, preferably an organic electroluminescent device, wherein the device is preferably a television, a mobile phone or a smartphone, a computer (eg desktop computer, tablet, notebook) or a photo camera is acting.
  • the device is preferably a television, a mobile phone or a smartphone, a computer (eg desktop computer, tablet, notebook) or a photo camera is acting.
  • the present invention furthermore relates to an organic electroluminescent device, preferably an OLED or OLEC, and very particularly preferably an OLED containing a composition according to the invention for use in medicine for phototherapy.
  • a further preferred subject of the present invention relates to an electronic device, preferably an organic electroluminescent device according to the invention, very preferably an OLED or OLEC and very particularly preferably an OLED for use in the phototherapeutic treatment of skin diseases.
  • Another very preferred object of the present invention relates to an electronic device according to the invention, preferably an organic electroluminescent device according to the invention, entirely preferably an OLED or OLEC and very particularly preferably an OLED for use for the phototherapeutic treatment of
  • Psoriasis atopic dermatitis
  • inflammatory diseases vitiligo
  • wound healing atopic dermatitis
  • skin cancer atopic dermatitis
  • the present invention also relates to the use of the organic electroluminescent devices according to the invention, very preferably an OLED or OLEC and very particularly preferably an OLED in cosmetics, preferably for the treatment of acne, aging skin, and cellulites.
  • composition according to the invention in the
  • organic electroluminescent devices often contain further layers in addition to an anode, cathode and an emission layer. These further layers may contain organic and / or inorganic constituents.
  • HTL hole transport layer
  • HTM hole transport materials
  • HTL hole transport layer
  • HTM all hole transport materials which are familiar to the person skilled in the art can be used for this purpose.
  • Hole transport materials which are typically used for this purpose and which are also preferred hole transport materials in the context of the present invention are selected from the group of the triarylamines, carbazoles, indenocarbazoles, indolocarbazoles and the aromatic silylamines.
  • Emission layer and the cathode is directly adjacent to the emission layer electron transport layer (ETL) is present.
  • ETL emission layer electron transport layer
  • ETM electron transport materials
  • Electron transport materials which are typically used for this purpose and which are also preferred electron-transport materials in the context of the present invention are selected from the group of pyridines, pyrimidines, triazines, benzimidazoles, metal hydroxyquinolines,
  • LUMO (ETM) represent the absolute magnitudes of the LUMO energies of the bipolar host in the emission layer and those of the electron transport material in the adjacent ETL.
  • compositions according to the invention or the
  • compositions according to the invention are very suitable for use in an emission layer and show improved
  • compositions of the invention in electronic devices leads to significant increases in the lifetimes of the devices. 3.
  • the compositions can be easily processed and are therefore very well suited for mass production in commercial application.
  • Embodiments of the present invention are to be considered. For these features, independent protection may be desired in addition to or as an alternative to any presently claimed invention.
  • Step 1
  • 1, 1'-bis (diphenylphosphino) ferrocene are placed in 1300 ml of toluene and heated for 5 hours under reflux. After cooling to
  • Reaction mixture is cooled to 0 ° C and added in portions over 30 minutes with 35.6 g (200 mmol) / V-bromosuccinimide. The cooling is removed, the mixture stirred for 16 hours and then concentrated to about 250 ml. With vigorous stirring 1000 ml of water are added, the solid formed is filtered off with suction and boiled twice with 800 ml of ethanol. After drying in vacuo remain 47.1 g (130 mmol, 65% of theory) of the product as a colorless solid with a purity of about 98% by 1 H-NMR.
  • the following compounds can be prepared:
  • Example 3a 17.9 g (114 mmol) of bromobenzene, 30.5 g (317 mmol) of sodium ferf-butylate, 0.5 g (2.2 mmol) of palladium (II) acetate and 4.2 ml of tri-feri-butyl-phosphine solution ( 1M in toluene) are placed in 1500 ml of p-xylene and heated for 16 hours under reflux. After cooling to room temperature, the organic phase is separated from solid components, washed three times with 200 ml of water and then freed from the solvent on a rotary evaporator. The residue is mixed with about 300 ml
  • Step 1
  • Step 1
  • Lithium acetate are heated with 4800 hours of 100% acetic acid to 135 ° C with exclusion of light.
  • the acetic acid is removed in vacuo, the residue with 200 ml of ethanol and dispersed.
  • the solid is filtered off, washed with water and ethanol, dried in vacuo and then hot-extracted twice over silica gel with dichloromethane.
  • the residue is recrystallized in DMF, dried in vacuo and fractionated at 5 * 10 5 mbar and fractionated at 360 ° C. There are obtained 11.3 g (14 mmol) of a yellow powder in 99.8% purity by HPLC.
  • compositions according to the invention are provided.
  • compositions according to the invention A selection of compositions according to the invention and
  • Blend components can take on different roles (bipolar host, electron-transporting host, neutral co-host, etc.).
  • solution-based and vacuum-based deposited layers within an OLED are combined so that the processing up to and including the emission layer from solution and in the subsequent layers (hole blocking layer and electron transport layer) takes place from the vacuum.
  • the general methods described above are adapted and combined as follows to the conditions described here (layer thickness variation, materials) and combined:
  • the structure is as follows:
  • HTL hole transport layer
  • EML emission layer
  • HBL hole blocking layer
  • ETL Electron Transport Layer
  • the substrate used is glass flakes coated with structured ITO (indium tin oxide) 50 nm thick.
  • structured ITO indium tin oxide
  • PEDOT PSS (poly (3,4-ethylenedioxy-2,5-thiophene): polystyrene sulfonate, obtained from Heraeus Precious Metals GmbH & Co. KG, Germany).
  • PEDOTPSS is spun in air from water and subsequently heated in air at 180 ° C for 10 minutes to remove residual water. On this coated
  • the hole transport layer used is crosslinkable.
  • the hole transport polymer is dissolved in toluene.
  • the typical solids content of such solutions is about 5 g / l, if, as here, the typical for a device layer thickness of 20 nm is to be achieved by spin coating.
  • the layers are spin-coated in an inert gas atmosphere, in this case argon, and baked at 180 ° C. for 60 minutes.
  • the emission layer is always composed of the host material (s) and an emitting dopant (dopant, emitter).
  • TMM-A (92%): Dotand (8%) here means that the material TMM-A is present in a weight fraction of 92% and dopant in a weight fraction of 8% in the emission layer.
  • Emission layer is dissolved in toluene or optionally chlorobenzene.
  • the typical solids content of such solutions is about 18 g / l, if, as here, the typical for a device layer thickness of 60 nm is to be achieved by spin coating.
  • the layers are spin-coated in an inert gas atmosphere, in the present case argon, and baked at 160 ° C. for 10 minutes.
  • the materials for the hole blocking layer and electron transport layer are thermally evaporated in a vacuum chamber.
  • the electron transport layer consist of more than one material, the other by co-evaporation in a certain volume fraction be mixed.
  • An indication such as ETM1: ETM2 (50%: 50%) here means that the materials ETM1 and ETM2 are present in a volume fraction of 50% each in the layer.
  • the materials used in the present case are shown in Table 4.
  • the cathode becomes 100 nm due to the thermal evaporation
  • the OLEDs are characterized by default.
  • the electroluminescence spectra, current-voltage-luminance characteristics are determined assuming a lambertian radiation characteristic and the (operating) life. Key figures are determined from the IUL characteristics such as the operating voltage (in V) and the external quantum efficiency (in%) at a specific brightness.
  • LD80 @ 8000 cd / m 2 is the lifetime until the OLED has dropped to 80% of the initial intensity, ie 6400 cd / m 2 , at a starting brightness of 8000 cd / m 2 . Accordingly LD80 @ 10,000 cd / m 2, the durability to the OLED is dropped at an initial luminance of 10,000 cd / m 2 to 80% of the initial intensity, so to 8000 cd / m 2.
  • OLED materials can be vacuum evaporated. In the examples discussed below, only vacuum-based applied layers were used. The above-described general methods are adapted to the circumstances described here (layer thickness variation, materials).
  • the OLEDs have in principle the following layer structure: substrate / hole transport layer (HTL) / optional intermediate layer (IL) / electron blocking layer (EBL) / emission layer (EML) / optional hole blocking layer (HBL) / electron transport layer (ETL) and finally a cathode.
  • the cathode is formed by a 100 nm thick aluminum layer.
  • Table 7 The exact structure of the OLEDs and the resulting results are shown in Table 7.
  • the auxiliary materials needed to make the OLEDs are shown in Table 6; used
  • compositions are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
EP15726863.2A 2014-06-18 2015-05-26 Zusammensetzungen für elektronische vorrichtungen Withdrawn EP3158024A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014008722.0A DE102014008722A1 (de) 2014-06-18 2014-06-18 Zusammensetzungen für elektronische Vorrichtungen
PCT/EP2015/001072 WO2015192941A1 (de) 2014-06-18 2015-05-26 Zusammensetzungen für elektronische vorrichtungen

Publications (1)

Publication Number Publication Date
EP3158024A1 true EP3158024A1 (de) 2017-04-26

Family

ID=53284196

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15726863.2A Withdrawn EP3158024A1 (de) 2014-06-18 2015-05-26 Zusammensetzungen für elektronische vorrichtungen

Country Status (8)

Country Link
US (1) US10847727B2 (zh)
EP (1) EP3158024A1 (zh)
JP (1) JP6772073B2 (zh)
KR (1) KR102537035B1 (zh)
CN (2) CN111518544A (zh)
DE (1) DE102014008722A1 (zh)
TW (1) TWI703200B (zh)
WO (1) WO2015192941A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017038728A1 (ja) 2015-08-28 2018-06-14 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
TWI589673B (zh) * 2016-11-03 2017-07-01 元智大學 雙極性材料以及有機發光二極體元件
CN106749289B (zh) * 2016-11-24 2019-06-18 上海道亦化工科技有限公司 一种具有螺结构的有机电致发光化合物及其发光器件
KR102523619B1 (ko) * 2016-11-25 2023-04-20 엘티소재주식회사 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
CN106831861A (zh) * 2017-03-01 2017-06-13 武汉华星光电技术有限公司 一种芴并咔唑类衍生物及磷光有机电致发光器件
US20200006687A1 (en) * 2017-03-21 2020-01-02 Konica Minolta, Inc. Organic electroluminescence element
JP6562168B2 (ja) 2017-04-27 2019-08-21 住友化学株式会社 組成物及びそれを用いた発光素子
TWI610927B (zh) * 2017-06-28 2018-01-11 可作為發光材料之雙極化合物
JP7247121B2 (ja) * 2017-07-05 2023-03-28 メルク パテント ゲーエムベーハー 有機電子デバイスのための組成物
KR102395782B1 (ko) 2017-07-31 2022-05-09 삼성전자주식회사 유기 발광 소자
US11515477B2 (en) 2017-09-06 2022-11-29 Sumitomo Chemical Company, Limited Light emitting device having thermally activated delayed fluorescent (TADF) compound
TWI785142B (zh) 2017-11-14 2022-12-01 德商麥克專利有限公司 用於有機電子裝置之組成物
KR102637792B1 (ko) * 2018-03-22 2024-02-19 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함한 전자 장치
TWI826522B (zh) * 2018-09-12 2023-12-21 德商麥克專利有限公司 電致發光裝置
EP3887478A1 (de) * 2018-11-30 2021-10-06 Merck Patent GmbH Verbindungen für elektronische vorrichtungen
TW202039493A (zh) * 2018-12-19 2020-11-01 德商麥克專利有限公司 用於有機電致發光裝置之材料
CN110256406B (zh) * 2019-06-14 2020-07-10 武汉华星光电半导体显示技术有限公司 空穴传输材料及其制备方法、有机电致发光器件
CN115867426A (zh) 2020-06-23 2023-03-28 默克专利有限公司 生产混合物的方法
CN114507224B (zh) * 2020-11-16 2024-02-27 江苏三月科技股份有限公司 一种含酮的有机化合物及其应用
WO2022120774A1 (zh) * 2020-12-11 2022-06-16 京东方科技集团股份有限公司 有机电致发光器件和显示装置

Family Cites Families (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
US5151629A (en) 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
EP0721935B1 (en) 1993-09-29 2003-01-22 Idemitsu Kosan Company Limited Organic electroluminescent element and arylenediamine derivative
JPH07133483A (ja) 1993-11-09 1995-05-23 Shinko Electric Ind Co Ltd El素子用有機発光材料及びel素子
EP0676461B1 (de) 1994-04-07 2002-08-14 Covion Organic Semiconductors GmbH Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
JP3899566B2 (ja) 1996-11-25 2007-03-28 セイコーエプソン株式会社 有機el表示装置の製造方法
DE19652261A1 (de) 1996-12-16 1998-06-18 Hoechst Ag Arylsubstituierte Poly(p-arylenvinylene), Verfahren zur Herstellung und deren Verwendung in Elektroluminszenzbauelementen
US5952115A (en) 1997-10-02 1999-09-14 Xerox Corporation Electroluminescent devices
US5942340A (en) 1997-10-02 1999-08-24 Xerox Corporation Indolocarbazole electroluminescent devices
US5843607A (en) 1997-10-02 1998-12-01 Xerox Corporation Indolocarbazole photoconductors
US5935721A (en) 1998-03-20 1999-08-10 Eastman Kodak Company Organic electroluminescent elements for stable electroluminescent
JP3302945B2 (ja) 1998-06-23 2002-07-15 ネースディスプレイ・カンパニー・リミテッド 新規な有機金属発光物質およびそれを含む有機電気発光素子
KR100934420B1 (ko) 1999-05-13 2009-12-29 더 트러스티즈 오브 프린스턴 유니버시티 전계인광에 기초한 고 효율의 유기 발광장치
KR100790663B1 (ko) 1999-09-21 2008-01-03 이데미쓰 고산 가부시키가이샤 유기 전자발광 소자 및 유기 발광 매체
AU1807201A (en) 1999-12-01 2001-06-12 Trustees Of Princeton University, The Complexes of form L2MX as phosphorescent dopants for organic leds
KR100377321B1 (ko) 1999-12-31 2003-03-26 주식회사 엘지화학 피-형 반도체 성질을 갖는 유기 화합물을 포함하는 전기소자
US6660410B2 (en) 2000-03-27 2003-12-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
JP4094203B2 (ja) 2000-03-30 2008-06-04 出光興産株式会社 有機エレクトロルミネッセンス素子及び有機発光媒体
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US6392250B1 (en) 2000-06-30 2002-05-21 Xerox Corporation Organic light emitting devices having improved performance
CN100505375C (zh) 2000-08-11 2009-06-24 普林斯顿大学理事会 有机金属化合物和发射转换有机电致磷光
JP4154140B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 金属配位化合物
JP4154139B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子
JP4154138B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子、表示装置及び金属配位化合物
US6803720B2 (en) 2000-12-15 2004-10-12 Universal Display Corporation Highly stable and efficient OLEDs with a phosphorescent-doped mixed layer architecture
JP5265840B2 (ja) 2001-03-14 2013-08-14 ザ、トラスティーズ オブ プリンストン ユニバーシティ 有機発光ダイオード類に基づく青色リン光用の材料および素子
CN1239447C (zh) 2002-01-15 2006-02-01 清华大学 一种有机电致发光材料
KR100691543B1 (ko) 2002-01-18 2007-03-09 주식회사 엘지화학 새로운 전자 수송용 물질 및 이를 이용한 유기 발광 소자
JP4170655B2 (ja) 2002-04-17 2008-10-22 出光興産株式会社 新規芳香族化合物及びそれを利用した有機エレクトロルミネッセンス素子
AU2003230308A1 (en) 2002-05-07 2003-11-11 Lg Chem, Ltd. New organic compounds for electroluminescence and organic electroluminescent devices using the same
EP2199361B2 (en) 2002-07-19 2016-06-15 Idemitsu Kosan Co., Ltd. Organic electroluminescent devices and organic luminescent medium
JP4025137B2 (ja) 2002-08-02 2007-12-19 出光興産株式会社 アントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
JP2004075567A (ja) 2002-08-12 2004-03-11 Idemitsu Kosan Co Ltd オリゴアリーレン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
KR100924462B1 (ko) 2002-08-23 2009-11-03 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자 및 안트라센 유도체
TWI276369B (en) 2002-09-20 2007-03-11 Idemitsu Kosan Co Organic electroluminescent device
DE10249723A1 (de) 2002-10-25 2004-05-06 Covion Organic Semiconductors Gmbh Arylamin-Einheiten enthaltende konjugierte Polymere, deren Darstellung und Verwendung
CN100489056C (zh) 2002-12-23 2009-05-20 默克专利有限公司 有机电致发光元件
KR101036391B1 (ko) 2003-03-13 2011-05-23 이데미쓰 고산 가부시키가이샤 신규한 질소 함유 헤테로환 유도체 및 이를 이용한 유기 전기발광 소자
JP4411851B2 (ja) 2003-03-19 2010-02-10 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
EP2281861A3 (de) 2003-04-15 2012-03-28 Merck Patent GmbH Mischungen von organischen zur Emission befähigten Halbleitern und Matrixmaterialien, deren Verwendung und Elektronikbauteile enthaltend diese Mischungen
EP1617711B1 (en) 2003-04-23 2016-08-17 Konica Minolta Holdings, Inc. Organic electroluminescent device and display
TWI224473B (en) * 2003-06-03 2004-11-21 Chin-Hsin Chen Doped co-host emitter system in organic electroluminescent devices
US20040247933A1 (en) 2003-06-03 2004-12-09 Canon Kabushiki Kaisha Bipolar asymmetric carbazole-based host materials for electrophosphorescent guest-host OLED systems
US8592614B2 (en) 2003-07-07 2013-11-26 Merck Patent Gmbh Mixtures of organic emissive semiconductors and matrix materials, their use and electronic components comprising said materials
DE10333232A1 (de) 2003-07-21 2007-10-11 Merck Patent Gmbh Organisches Elektrolumineszenzelement
DE10338550A1 (de) 2003-08-19 2005-03-31 Basf Ag Übergangsmetallkomplexe mit Carbenliganden als Emitter für organische Licht-emittierende Dioden (OLEDs)
WO2005029923A1 (en) 2003-09-24 2005-03-31 Fuji Photo Film Co., Ltd. Electroluminescent device
DE10345572A1 (de) 2003-09-29 2005-05-19 Covion Organic Semiconductors Gmbh Metallkomplexe
US7795801B2 (en) 2003-09-30 2010-09-14 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
US7790890B2 (en) 2004-03-31 2010-09-07 Konica Minolta Holdings, Inc. Organic electroluminescence element material, organic electroluminescence element, display device and illumination device
KR100787425B1 (ko) 2004-11-29 2007-12-26 삼성에스디아이 주식회사 페닐카바졸계 화합물 및 이를 이용한 유기 전계 발광 소자
DE102004023277A1 (de) 2004-05-11 2005-12-01 Covion Organic Semiconductors Gmbh Neue Materialmischungen für die Elektrolumineszenz
US7598388B2 (en) 2004-05-18 2009-10-06 The University Of Southern California Carbene containing metal complexes as OLEDs
JP4862248B2 (ja) 2004-06-04 2012-01-25 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
US7803468B2 (en) 2004-09-29 2010-09-28 Fujifilm Corporation Organic electroluminescent element
US20060134461A1 (en) * 2004-12-17 2006-06-22 Shouquan Huo Organometallic materials and electroluminescent devices
US7597967B2 (en) * 2004-12-17 2009-10-06 Eastman Kodak Company Phosphorescent OLEDs with exciton blocking layer
JP4358884B2 (ja) 2005-03-18 2009-11-04 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR101289923B1 (ko) 2005-05-03 2013-07-25 메르크 파텐트 게엠베하 유기 전계발광 장치 및 그에 사용되는 붕산 및 보린산유도체
DE102005023437A1 (de) 2005-05-20 2006-11-30 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
US7839078B2 (en) * 2005-09-15 2010-11-23 Fujifilm Corporation Organic electroluminescent element having a luminescent layer and a buffer layer adjacent thereto
CN101321755B (zh) 2005-12-01 2012-04-18 新日铁化学株式会社 有机电致发光元件用化合物及有机电致发光元件
US20070275265A1 (en) * 2006-05-25 2007-11-29 Au Optronics Corporation Organic light emitting layer with a reduced phosphorescent dopant concentration and applications of same
DE102006025777A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102006025846A1 (de) 2006-06-02 2007-12-06 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102006031990A1 (de) 2006-07-11 2008-01-17 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
CN101511834B (zh) 2006-11-09 2013-03-27 新日铁化学株式会社 有机场致发光元件用化合物及有机场致发光元件
DE102007002714A1 (de) 2007-01-18 2008-07-31 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102007024850A1 (de) 2007-05-29 2008-12-04 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
JP5194596B2 (ja) 2007-07-11 2013-05-08 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR101565724B1 (ko) 2007-08-08 2015-11-03 유니버셜 디스플레이 코포레이션 트리페닐렌기를 포함하는 벤조 융합 티오펜 또는 벤조 융합 푸란 화합물
DE102007053771A1 (de) 2007-11-12 2009-05-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
JP5304653B2 (ja) 2007-11-26 2013-10-02 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
DE102008033943A1 (de) 2008-07-18 2010-01-21 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102008036982A1 (de) 2008-08-08 2010-02-11 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
KR20110097612A (ko) 2008-11-11 2011-08-31 메르크 파텐트 게엠베하 유기 전계발광 소자
DE102008056688A1 (de) 2008-11-11 2010-05-12 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
TW201023413A (en) * 2008-12-05 2010-06-16 Univ Tsinghua Organic light-emitting diode (OLED) device
DE102008064200A1 (de) 2008-12-22 2010-07-01 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
WO2010085676A1 (en) * 2009-01-22 2010-07-29 University Of Rochester Hybrid host materials for electrophosphorescent devices
DE102009007038A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
CN102333809A (zh) 2009-02-27 2012-01-25 默克专利有限公司 具有醛基的聚合物、所述聚合物的转化和交联、交联的聚合物以及包含所述聚合物的电致发光器件
KR101511072B1 (ko) 2009-03-20 2015-04-10 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광소자
DE102009014513A1 (de) * 2009-03-23 2010-09-30 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102009023155A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009031021A1 (de) 2009-06-30 2011-01-05 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009053382A1 (de) 2009-11-14 2011-05-19 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
DE102010005697A1 (de) 2010-01-25 2011-07-28 Merck Patent GmbH, 64293 Verbindungen für elektronische Vorrichtungen
JP5678487B2 (ja) 2010-04-09 2015-03-04 ソニー株式会社 有機el表示装置
DE102010014933A1 (de) 2010-04-14 2011-10-20 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
CN102421772B (zh) 2010-04-20 2015-11-25 出光兴产株式会社 双咔唑衍生物、有机电致发光元件用材料及使用其的有机电致发光元件
CN105949177B (zh) * 2010-05-03 2019-02-01 默克专利有限公司 制剂和电子器件
CN101859879A (zh) * 2010-05-26 2010-10-13 上海大学 一种白色有机电致发光器件及其制备方法
KR20130087499A (ko) 2010-06-15 2013-08-06 메르크 파텐트 게엠베하 금속 착물
DE102010027317A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
DE102010045405A1 (de) 2010-09-15 2012-03-15 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
KR101531612B1 (ko) 2010-12-02 2015-06-25 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
CN102110782A (zh) * 2010-12-06 2011-06-29 电子科技大学 一种有机发光器件及其制备方法
KR101906868B1 (ko) * 2010-12-31 2018-10-12 엘지디스플레이 주식회사 유기전계 발광소자 제조용 증착장비 및 이를 이용한 유기전계 발광소자 제조방법
JP5778950B2 (ja) 2011-03-04 2015-09-16 株式会社Joled 有機el表示装置およびその製造方法
CN102184938B (zh) * 2011-05-03 2015-06-24 昆山维信诺显示技术有限公司 有机电致发光器件及其制备方法
WO2012163471A1 (de) 2011-06-03 2012-12-06 Merck Patent Gmbh Metallkomplexe
WO2013000531A1 (de) 2011-06-28 2013-01-03 Merck Patent Gmbh Metallkomplexe
WO2013020631A1 (de) 2011-08-10 2013-02-14 Merck Patent Gmbh Metallkomplexe
WO2013064206A1 (de) 2011-11-01 2013-05-10 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
TWI585091B (zh) 2012-03-30 2017-06-01 新日鐵住金化學股份有限公司 Organic electroluminescent elements
JP2015167150A (ja) * 2012-05-28 2015-09-24 出光興産株式会社 有機エレクトロルミネッセンス素子
CN102738401B (zh) * 2012-05-31 2016-03-09 昆山工研院新型平板显示技术中心有限公司 一种双主体型红光有机电致发光器件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015192941A1 *

Also Published As

Publication number Publication date
JP2017523270A (ja) 2017-08-17
CN111518544A (zh) 2020-08-11
CN106459747B (zh) 2020-09-04
WO2015192941A1 (de) 2015-12-23
TW201614041A (en) 2016-04-16
TWI703200B (zh) 2020-09-01
US10847727B2 (en) 2020-11-24
KR20170018946A (ko) 2017-02-20
CN106459747A (zh) 2017-02-22
DE102014008722A1 (de) 2015-12-24
US20170141328A1 (en) 2017-05-18
KR102537035B1 (ko) 2023-05-26
JP6772073B2 (ja) 2020-10-21

Similar Documents

Publication Publication Date Title
WO2015192941A1 (de) Zusammensetzungen für elektronische vorrichtungen
EP3752512B1 (de) Metallkomplexe
EP3345984B1 (de) Verbindungen und organische elektronische vorrichtungen
EP3077382B1 (de) Substituierte oxepine
EP3055303B1 (de) Materialien für elektronische vorrichtungen
EP3533794B1 (de) Materialien für elektronische vorrichtungen
EP3378857B1 (de) Materialien für elektronische vorrichtungen
EP2875004B1 (de) Fluorene und elektronische vorrichtungen, die sie enthalten
EP3519417A1 (de) Verbindungen mit diazadibenzofuran- oder diazadibenzothiophen-strukturen
EP3519415A1 (de) Carbazole mit diazadibenzofuran- oder diazadibenzothiophen-strukturen
EP3548467B1 (de) Verbindungen mit valerolaktam-strukturen
EP3083880A2 (de) Heterocyclische spiroverbindungen
EP3647393A1 (de) Materialien für elektronische vorrichtungen
EP3712229A1 (de) Materialien für elektronische vorrichtungen
WO2017157983A1 (de) Verbindungen mit spirobifluoren-strukturen
WO2014015938A1 (de) Derivate von 2-diarylaminofluoren und diese enthaltnde organische elektronische verbindungen
DE202019005923U1 (de) Elektrolumineszierende Vorrichtungen
EP3512848B1 (de) Verbindungen mit carbazol-strukturen
EP3573973A1 (de) Carbazolderivate
WO2021104749A1 (de) Verbindungen für elektronische vorrichtungen
WO2019121458A1 (de) Heterocyclische verbindung zur verwendung in electronischen vorrichtungen
EP2675868A1 (de) Verbindungen für elektronische vorrichtungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20161102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180424

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20190311