EP3117727B1 - Schuh mit belüftung im unteren schaftbereich und dafür verwendbares luftdurchlässiges abstandsgebilde - Google Patents

Schuh mit belüftung im unteren schaftbereich und dafür verwendbares luftdurchlässiges abstandsgebilde Download PDF

Info

Publication number
EP3117727B1
EP3117727B1 EP16180543.7A EP16180543A EP3117727B1 EP 3117727 B1 EP3117727 B1 EP 3117727B1 EP 16180543 A EP16180543 A EP 16180543A EP 3117727 B1 EP3117727 B1 EP 3117727B1
Authority
EP
European Patent Office
Prior art keywords
air
shaft
permeable
shoe
functional layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16180543.7A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3117727A1 (de
Inventor
Christian Bier
Marc Peikert
Ambrosius Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates GmbH
Original Assignee
WL Gore and Associates GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WL Gore and Associates GmbH filed Critical WL Gore and Associates GmbH
Publication of EP3117727A1 publication Critical patent/EP3117727A1/de
Application granted granted Critical
Publication of EP3117727B1 publication Critical patent/EP3117727B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/06Footwear with health or hygienic arrangements ventilated
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B1/00Footwear characterised by the material
    • A43B1/02Footwear characterised by the material made of fibres or fabrics made therefrom
    • A43B1/04Footwear characterised by the material made of fibres or fabrics made therefrom braided, knotted, knitted or crocheted
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/38Built-in insoles joined to uppers during the manufacturing process, e.g. structural insoles; Insoles glued to shoes during the manufacturing process
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B23/00Uppers; Boot legs; Stiffeners; Other single parts of footwear
    • A43B23/02Uppers; Boot legs
    • A43B23/0205Uppers; Boot legs characterised by the material
    • A43B23/0235Different layers of different material
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/06Footwear with health or hygienic arrangements ventilated
    • A43B7/08Footwear with health or hygienic arrangements ventilated with air-holes, with or without closures
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/06Footwear with health or hygienic arrangements ventilated
    • A43B7/08Footwear with health or hygienic arrangements ventilated with air-holes, with or without closures
    • A43B7/082Footwear with health or hygienic arrangements ventilated with air-holes, with or without closures the air being expelled to the outside
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/06Footwear with health or hygienic arrangements ventilated
    • A43B7/08Footwear with health or hygienic arrangements ventilated with air-holes, with or without closures
    • A43B7/084Footwear with health or hygienic arrangements ventilated with air-holes, with or without closures characterised by the location of the holes
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/12Special watertight footwear
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/12Special watertight footwear
    • A43B7/125Special watertight footwear provided with a vapour permeable member, e.g. a membrane
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/22Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting goods of particular configuration

Definitions

  • the invention relates to shoes with ventilation below the sole of the foot and with the removal of sweat moisture through layers below the foot to improve the climate comfort of such shoes.
  • shoes in the sole area either had some water vapor permeability, also called breathability, due to the use of outsole material such as leather, with the disadvantage of water permeability in the sole area, or shoes in the sole area due to the use of outsoles of waterproof material such as rubber or rubber-like Plastic waterproof but also impermeable to water vapor, with the disadvantage of the accumulation of sweat moisture in the sole of the foot.
  • outsole material such as leather
  • waterproof material such as rubber or rubber-like Plastic waterproof but also impermeable to water vapor
  • shoes have been made which are both waterproof and permeable to water vapor in the sole area by perforating their outsoles with through openings and covering the through openings by means of a waterproof, water vapor permeable membrane arranged on the inside of the outsole, so that no water from the outside can penetrate to the shoe interior, but in the sole of the foot resulting sweat moisture can escape from the shoe interior to the outside.
  • a waterproof, water vapor permeable membrane arranged on the inside of the outsole, so that no water from the outside can penetrate to the shoe interior, but in the sole of the foot resulting sweat moisture can escape from the shoe interior to the outside.
  • two different solutions gone. Either you have provided the outsole with their vertical thickness through openings through which sweat moisture from the shoe interior to the tread of the outsole can be passed, or you have provided the outsole with horizontal channels over which sweat moisture that has collected above the outsole over the lateral extent of the outsole can escape.
  • a sole composite according to EP 0 382 904 A1 has a micro-perforated lower sole portion, also provided with perforations upper sole portion and therebetween a waterproof, water vapor permeable membrane.
  • the outsole is provided with relatively large vertical through-openings for obtaining a stronger water vapor permeability, and a water vapor-permeable protective layer is arranged between the latter and the outsole for mechanical protection of the membrane.
  • the outsole is provided with relatively large vertical through-openings, which are closed by a water-vapor-permeable protective layer.
  • Such an outsole is attached to a watertight shaft assembly, thus providing a watertight shoe.
  • the outsole is provided on its side facing away from the tread on its outer periphery with a raised outsole edge, which is interspersed with horizontal, that is, running parallel to the tread microperforations.
  • a spacer is arranged with standing upright from the outsole transverse webs, which may be integrally formed with the outsole.
  • an inner band associated with the spacer which is also penetrated by horizontally extending passage openings.
  • a water vapor permeable mounting sole or insole Under the outer peripheral region of which a lasting impact of a shaft made of water vapor permeable material is struck, which is located on the inner side of the inner band of the spacer element.
  • a waterproof, water vapor permeable membrane which extends approximately perpendicularly from the inside of the outsole.
  • the outsole is on its side facing away from the tread on the one hand on the outer periphery with a raised edge web, in the top of the edge web passing through venting channels are inserted, and provided in a sole region within the edge web with hemispherical projections.
  • On the upper surface of the outsole is disposed an upper sole member which rests on the edge land and on the protrusions of the outsole and has a water vapor permeable portion covered with a waterproof, water vapor permeable membrane having an extension approximately equal to that of the protruded portion of the outsole. Sweat moisture, which accumulates in the space between the outsole and sole element, in which the projections of the outsole are located, can theoretically escape via the ventilation channels in the edge web of the outsole.
  • the EP 1 033 924 B1 shows a shoe with an outsole with an upstanding from an inner side of the outsole outer peripheral edge, which is penetrated by horizontal, ie parallel to the tread of the outsole extending venting channels.
  • the outsole is attached to a shaft having a bottom side lower shaft portion having a lasting impact associated with the underside of a peripheral portion of a perforated mounting sole.
  • a waterproof, water vapor permeable membrane is disposed on the underside of the mounting base.
  • Sweat moisture which has passed through the perforated mounting base and the membrane into the air-permeable material, can diffuse through the horizontal ventilation channels of the outer peripheral edge of the outsole in the outside environment.
  • water which has passed through the ventilation channels in the air-permeable material is prevented by the membrane from passing through the mounting sole into the shoe interior.
  • On the inside of the outsole is a nail protection plate, so that this shoe is suitable as a safety shoe.
  • Out JP 16-75205 U is a shoe known in which the two approaches above are combined.
  • the sole structure of this shoe has a perforated mounting sole, an outsole which is provided at its shoe inner space facing upper side with horizontally extending, opening to the outside of the outsole circumference horizontal grooves and extending from these grooves to the tread through holes, and has a on the Underneath the mounting sole arranged waterproof, water vapor permeable membrane and a disposed between the membrane and the outsole protective layer, for example made of felt.
  • a sole-side lower end portion of a shaft is wrapped in the form of a lasting impact on the underside of a peripheral edge portion of the mounting sole.
  • the protective layer is in the same plane as the lasting impact and the protective layer extends only between the inner edge of the lasting impact.
  • the horizontally extending grooves are open at the periphery of the outsole to the outside environment.
  • the document DE 1 034 067 discloses a shoe according to the preamble of claim 1.
  • the present invention provides a shoe according to claim 1.
  • the core of the invention is defined by an air-permeable spacer fabric ventilation space below the sole of the foot, which allows efficient removal of condensation moisture (water vapor), which has passed through the layers below the foot.
  • a shoe according to the invention has a shaft arrangement and a sole, wherein the shaft arrangement has a shaft upper material and an air-permeable layer arranged in a shaft bottom.
  • the air-permeable layer is arranged in a sole-side lower region of the shaft arrangement above the sole.
  • the air-permeable layer has a three-dimensional structure permitting air passage in at least the horizontal direction.
  • the upper upper material has at least one air passage opening in a sole-side lower peripheral region, by means of which a connection can be established between the air-permeable layer and the outer environment of the shoe such that an exchange of air between the outer environment and the air-permeable layer can take place. In this way, heat and water vapor can be dissipated from the region of the shaft arrangement located above the air-permeable layer, for example by means of convective air exchange through the air-permeable layer.
  • a watertight, water vapor permeable shaft bottom functional layer is additionally provided in a lower region of the shaft arrangement facing the sole, the air permeable layer being arranged below the shaft bottom functional layer, and the shaft assembly furthermore has a watertight, water vapor permeable shaft functional layer in a shaft region above the air permeable layer wherein the waterproof, water vapor permeable shaft bottom functional layer and the waterproof, water vapor permeable shaft functional layer are arranged in such a way that water vapor permeability and waterproofness are achieved for both the shaft region and the shaft bottom region of the shoe.
  • the at least one air passage opening which in conjunction with the air-permeable layer enables the efficient removal of perspiration moisture, is not formed in the outsole, where it is from the standpoint of outsole stability and especially in the case of a shoe with a rather thin outsole for aesthetic reasons can not be particularly large, but in a sole side lower peripheral region of the upper shaft material, where the air passage opening compares easily can make large, achieved thereby already a better exchange of air and thus higher Wasserdampfabloomloom Wennkeit than in a shoe whose at least one air passage opening is formed in the outsole.
  • the shaft arrangement with the air-permeable layer has the further advantage that the air-permeable layer, which is positioned between the at least one air passage opening and the shoe interior, can extend directly to the inside of the upper material and not, as in the known solutions according to EP 1 033 924 B1 and JP 16-75205 U is limited to the interior between the Zwickintschsrand of the upper shaft material.
  • the air-permeable layer is located above the glued-on lasting sting and can therefore provide a larger exchange surface for water vapor and heat of the sole of the foot. Therefore, in the solution according to the invention, the air-permeable layer may have a significantly larger surface area than in the known solutions, with a correspondingly larger exchange area and thus Wasserdampfabrioskapaztician.
  • Both a shank functional layer and a shank bottom functional layer are provided, so that water vapor permeability combined with waterproofness is achieved both for the shaft and for the shaft bottom region of the shoe.
  • a waterproof and water vapor permeable functional layer in the form of a functional layer laminate, wherein the air-permeable layer is located directly below the functional layer or the functional layer laminate.
  • the water vapor must first cover from the bottom of the foot to the air-permeable layer is minimized by the selection of the thinnest possible layer structure of the functional layer and maximizes heat transfer. If the steam has reached the air-permeable layer, it is additionally carried away convectively via the air flow, whereby the water vapor partial pressure difference between the two sides of the functional layer is permanently maintained at a high level. There are no more layers to overcome.
  • the water vapor partial pressure difference between the two sides of the functional layer is a driving force for efficient removal of perspiration moisture.
  • heat is also dissipated by the convection.
  • the fact that in the case of a gezucksten shaft, the air-permeable layer is located above the lasting end of the upper shaft material, is approximately the entire sole surface for the steam exchange available.
  • a shaft functional layer and a shaft bottom functional layer are part of a sock-like functional layer bootie in which a shaft region is formed by the shaft functional layer and a sole region by the shaft bottom functional layer.
  • the shank functional layer and the shank bottom functional layer in the lower shank region are connected to each other and sealed watertight at their common boundary.
  • the functional layer of the shaft functional layer and / or the shaft bottom functional layer is part of a multilayer laminate which has at least one textile layer in addition to the functional layer.
  • Frequently used laminates are two-, three- or four-ply with a textile layer on one side or one textile layer on each side of the functional layer.
  • the functional layer has a water vapor-permeable membrane.
  • the membrane is waterproof and permeable to water vapor.
  • the functional layer has a membrane constructed with expanded microporous polytetrafluoroethylene (ePTFE).
  • the air permeable layer is below the shaft bottom functional layer.
  • the air-permeable layer is located immediately below the shaft bottom functional layer, which in the case that the shaft bottom functional layer is part of a functional layer laminate, is to include the air-permeable layer immediately below the functional layer laminate.
  • At least one air passage opening in the upper shaft material is arranged so that it is at least partially at the same height as the air-permeable layer.
  • At least two in the foot transverse direction or in the foot longitudinal direction at least approximately opposite air passage openings are arranged in the lower region of the upper upper material.
  • the air exchange is strongly promoted by the relative movement of the shoe wearer to the outside air. Wind and / or walking or running increases the air exchange.
  • the lower peripheral portion of the upper shaft material has a plurality of air passage openings arranged along the circumference of the shaft assembly.
  • the lower end of the upper sheath material has a separate air-permeable shaft material, which is attached to the upper shaft material and thus is part of the upper shaft material.
  • This air-permeable shaft material which extends around most of the shaft circumference or even around the entire shaft circumference, has a plurality of air passage openings due to the air-permeable structure.
  • the air-permeable shaft material is attached in the form of a mesh to the lower end of the upper upper material.
  • the air-permeable shaft material may be constructed of a perforated or latticed material. This air-permeable shaft material can be made stable in such a way that it gives the shaft the required shape stability despite these air passage openings extending almost or completely around the entire shaft circumference.
  • the at least one air passage opening has a total area of at least 50 mm 2 .
  • the at least one air passage opening is covered with an air-permeable protective material, for example a protective net or protective grid made of metal or plastic, to hinder the penetration of foreign bodies such as dirt or pebbles through the air passage opening.
  • the air-permeable protective material can are located in the region of the lower peripheral region of the upper material of the shaft along the air-permeable layer, either on the outside of the air passage opening or on the inside of the air passage opening between the shaft upper material and the air-permeable layer.
  • the at least one air passage opening can be closed by means of a device.
  • the device serves for temporary protection against external elements, at least against splash water, so that water can not penetrate directly through the air passage opening.
  • the device can be designed in the form of a movable device, for example as a slide, by means of which the at least one air passage opening can be partially or completely closed in order to throttle or prevent the exchange of air between the outside world of the shoe and the air-permeable layer. This may be advantageous, especially at low temperatures (such as in winter), because too strong a cooling effect can occur through the removal of sweat moisture and the associated cooling effect in connection with the exchange of air through the air-permeable layer.
  • By closing the air passage openings by means of the movable device, an excessive ingress of water when walking in a very wet environment can be counteracted.
  • a fan or blower installed, for example, in the air-permeable layer ensures a constant exchange of air with the environment.
  • the performance of the fan can regulate itself independently to maintain a desired setpoint temperature on the foot.
  • the fan may be required for a noticeable cooling effect, especially in the case of small or low relative movements between the shoe and ambient air as well as at high ambient temperatures.
  • the stiffener and mounting insole are located with which the Zwickeinschlag is glued, below the air-permeable layer.
  • the invention is not limited to shoes with a fluted shank but is applicable regardless of how the lower portion of the upper of the upper has been processed to obtain a shank-side shaped shaft arrangement.
  • the invention is not limited to shoes with a fluted shank but is applicable regardless of how the lower portion of the upper of the upper has been processed to obtain a shank-side shaped shaft arrangement.
  • the Zwick-style also known per se other types are applicable.
  • Examples include the Strobel-style, in which the lower portion of the upper shaft material is sewn to the circumference of a mounting sole by means of a so-called Strobelnaht; the Einsch beneficial-Machart (also known as “string-Lasting"), in which at the sole side end portion of the upper shaft material a Schnettunnel, for example in the form of a spiral loop seam, is attached, through which a movable Einindeschnur leads, by means of which the sole side end portion of the upper shaft material can be contracted; and the moccasin-style, in which the shaft, with the exception of the blade, and the shaft bottom are made in one piece from a piece of shaft upper, usually leather.
  • all components of the shoe contributing to the breathability are located above a boundary plane between the upper and the sole.
  • all components of the shoe with the exception of the ground contacting outsole, are part of the shaft assembly.
  • This shank arrangement can be completely completed before the outsole is attached to the shaft arrangement in a temporally and possibly spatially separate second production step for the completion of the shoe.
  • the attachment of the outsole can pass immediately after completion of the shaft assembly in a single pass of the shoe manufacture, or with completion of the shaft assembly is first completed a self-contained manufacturing step, after which the shaft assembly thus obtained is brought to another manufacturing location at which the shaft assembly with the Outsole is provided.
  • This manufacturing site may be located in the same factory where the stem assembly is made.
  • the manufacturing site where the shaft assembly is provided with the outsole but may also be located in a very different location than the manufacturing location for the shaft assembly, so that between the step of manufacturing the shaft assembly and the step of mounting the
  • Outsole on the shaft assembly may take place interrupting the manufacturing process, during which the finished shaft assembly is brought to the manufacturing site for attaching the outsole to the shaft assembly. Since all but the outsole components of the shoe are housed in the shaft assembly by not only the shaft bottom functional layer but also the air permeable layer are attached to the shaft bottom or form part of the shaft bottom before the outsole is attached to the shaft assembly, for example, by molding or Sticking can happen, the one manufacturing, which is responsible for attaching the outsole to the shaft assembly, nothing more than to attach this outsole, for which quite normal conventional methods and tools are sufficient.
  • the sole is additionally provided with at least one sole passage opening extending through its thickness.
  • This embodiment leads to a shoe in whose sole region a removal of sweat moisture and heat both in the vertical direction over the at least one sole passage opening and in the horizontal direction over the at least one air passage opening of the upper upper material is made possible.
  • the at least one sole passage opening serves as an aid to improved drainage of water, which has reached an area above the outsole.
  • a penetration protection element for example in the form of a nail protection plate, is arranged in or above the outsole for producing a safety shoe. This prevents that objects lying on the floor, in particular nails, which can be entered into the outsole, penetrate through these and overlying further elements of the sole structure and the shaft bottom into the shoe interior and the foot hurt the user of the shoe.
  • Such objects as nails are intercepted by the penetration protection element, which is for example a steel plate or a plastic plate with corresponding penetration resistance. Since in such a safety shoe, the outsole passing through openings make no sense, because these are covered by the nail protection plate anyway, remains in such a shoe for ventilation in the plantar area and thus improve the climate comfort exclusively the horizontal lateral removal of sweat moisture.
  • the air-permeable layer is formed as an air-permeable spacer structure, which is designed so that the air-permeable layer, even under load by the foot of the user of the shoe maintains such a distance between the under and over their layers that the air permeability of the permeable layer is maintained.
  • the air-permeable spacer structure is at least partially elastically yielding. As a result, the walking comfort of the shoe is increased because with this type of air-permeable spacer structure a shock absorption and a lighter rolling when walking is achieved.
  • the air-permeable spacer structure is designed such that at maximum load with the shoe size of the shoe according to the maximum expected weight of the shoe user elastically maximum extent yields so far that even with such a maximum load nor a significant portion of the air conductivity of the the permeable layer forming spacer structure is maintained.
  • this proviso for the air-permeable spacer fabric ensures that the air-permeable spacer structure is not completely compressed under load by the user of the shoe with loss of its air permeability, but that it is the distance function and thus the air permeability of the spacer structure even under load by the user of the shoe to a sufficient for the ventilation function dimensions.
  • the air-permeable spacer structure has a first support surface forming sheet and a plurality of perpendicularly and / or at an angle between 0 ° and 90 ° away from the sheet extending spacers.
  • the spacer elements of the spacer structure are formed as studs, wherein the free stud ends taken together form said second bearing surface.
  • the spacer structure on two mutually parallel sheets, wherein the two sheets are connected by means of the spacer elements air permeable to each other and kept at a distance.
  • Each of the fabrics forms one of the bearing surfaces of the spacer structure.
  • spacer elements must have the same length in order to make the two support surfaces equidistant over the entire areal extent of the spacer structure.
  • the spacer elements may be formed separately, that is, they are not connected to each other between the two bearing surfaces. However, it is also possible to allow the spacer elements to be touched between the contact surfaces or to fix at least some of the contact points formed thereby to one another, for example by adhesive or by the spacer elements being made of one another weldable material, such as a klebemap by heating expectant material.
  • the spacer elements may be rod-shaped or thread-like individual elements or sections of a more complex structure, for example a truss or latticework.
  • the spacer elements can also be connected to one another in a zigzag shape or in the form of a cross lattice.
  • the spacing structure is wave-shaped or sawtooth-shaped.
  • the two bearing surfaces are defined by the upper and lower peaks or the upper and lower sawtooth apex of the spacer structure.
  • the spacer structure is constructed with a consolidated knit, wherein the solidification is, for example, by gluing, for which a synthetic resin adhesive can be used, or by thermal action by constructing the spacer with thermoplastic material and solidifying it to a softening temperature which this material glued together, is heated.
  • the spacer structure is constructed with a material selected from the group of materials polyolefins, polyamides or polyesters.
  • the spacer structure is constructed with fibers, of which at least a part is arranged as a spacer perpendicularly between the fabrics.
  • the fibers are constructed with a flexible, deformable material.
  • the fibers are made of polyolefins, polyester or polyamide.
  • the fabrics are constructed with open-pored woven, knitted or knitted textile materials.
  • the air-permeable spacer structure is formed by two mutually parallel air-permeable sheets, which are interconnected by means of mono- or multifilaments permeable to air and at the same time spaced.
  • the sheets are constructed with a material selected from the group of materials of polyolefins, polyamides or polyesters.
  • At least a portion of the monofilaments or multifilaments of the spacer structure are arranged as spacers approximately perpendicularly between the fabrics.
  • the mono- or multifilaments consist of polyolefins and / or polyesters and / or polyamides.
  • the air-permeable layer or the air-permeable spacer structure forming it has the function of a ventilation layer whose ventilation effect is based on a very low flow resistance for air.
  • the air exchange causes an efficient removal of moisture in the form of water vapor from the shoe interior to the shoe outside.
  • Another advantage of the present invention is that due to the arrangement of the air-permeable layer according to the invention in the shaft bottom region of the shaft assembly conventional soles can be used without additional modifications. Especially in mountain shoes and trekking shoes, the border area between sole and shaft assembly is sealed from the outside along the shoe circumference with an additional rubber sole band. This band must also be perforated in the area of the air passage openings.
  • Shell soles can be used for embodiments of the invention, for example, if the air passage openings in the shaft material are arranged above the shell edge or if the additional sole band at the locations where it lies above the at least one air passage opening of the upper shaft material, in turn with one or more corresponding air passage openings is provided.
  • the at least one air passage opening may have any shape.
  • the at least one air passage opening has a round shape, for example, is circular or elliptical.
  • the shape of the at least one air passage opening may also be square, for example, may have the shape of a square or an elongated rectangle.
  • an air-permeable layer for example, is a distance structure, as it is in itself DE 102 40 802 A2 is known, but there in connection with an infrared-reflective material for clothing.
  • the air-permeable layer can be, for example, a shaped structure made of polymers, a 3D spacer or a textile polymerized with polymer resins Be structure.
  • the air pervious layer may also be made by an injection molding process, in one embodiment it may have a channel or tubular configuration, or be formed of polymer or metal foams.
  • Shaped structures of polymers are based on polymer monofilaments, fabrics, nonwovens or scrims which are formed by means of deformation and fixation of the materials to a ribbed, knobbed or zigzag structure.
  • the structure may also be a 3-dimensional structure, for example made of polypropylene, in the form of a filament fabric placed, for example, in a wavy or other shape into a 3D structure.
  • the deformation and fixation can be carried out, for example, via a heated structural roller or as a thermoforming process.
  • the shaped structures may additionally be laminated with a woven or non-woven fabric to improve dimensional stability.
  • One possible method for producing such shaped structures is, for example, in the patent application WO 2006/056398 A1 described.
  • the air-permeable layer can also be formed from a 3D spacer structure.
  • spacers are usually made of polyester multi- or monofilaments.
  • Spacers may be spacer, spacer, spacer, or spacer.
  • the active technology makes it possible to vary both the top and bottom of the fabric surfaces as well as the spacer thread (pile thread) independently of each other. Thus, the surfaces and the hardness including the spring characteristic can be adjusted depending on the type of individual application. Spacers are characterized by a very high air circulation in all directions, even under load.
  • a spacer structure for example in the form of a spacer knitted fabric, can also be produced by impregnating fabrics which are impregnated with synthetic resin before or after deformation into a 3-dimensional structure, thus obtaining the desired rigidity.
  • inorganic fibers such as glass fibers or carbon fibers can be selected.
  • Table 1 Selection of possible usable materials for the air-permeable layer template Manufacturer characteristics product name Thickness in mm Basis weight in g / m 2 Air volume in% polymer 1 Colbond bv 3D mat structure of monofilaments, thermoformed into a zigzag structure ENKA Spacer: 8006H 5006C 7004H 3-12 100-2000 > 70 Polyester Polyamides Polyolefins > 90 2 Colbond bv 3D mat structure made of monofilaments, which are welded together at their crossing points ENKA Spacer: 7008 3-12 100-2000 > 70 Polyester Polyamides Polyolefins > 90 3 Müller textile 3D spacers 3-mesh 3-12 100-1500 Polyester monofilament or multifilament 4 Tylex Letovice as 3D spacers Tylspace 3-12 100-1500 Polyester monofilament or multifilament
  • the air-permeable layer is to maintain a distance between the foot and the outsole and form a plurality of passages which oppose as little resistance as possible to an air flow and thus contribute to the transport of water vapor and heat without adsorbing the water vapor.
  • the air permeable layer has no or at least substantially no capillary action.
  • the breathable layer will be at her Bottom side of the mounting base and / or a filling layer and / or the outsole closed and is open at least on its periphery in an air permeability permitting manner.
  • the air permeable sheet is additionally open on its upper surface also in an air permeability permitting manner.
  • the upper surface of the air-permeable layer facing the shaft interior is in one embodiment directed towards a watertight and possibly also water-vapor-permeable functional layer.
  • the determination of the air permeability of spacers is based on DIN EN ISO 9237 "Determination of air permeability of textile fabrics".
  • the flow velocity and the differential pressure are measured not perpendicular to the surface but along the surface.
  • a definite distance channel defined by closed cover surfaces is constructed, into which an air flow is fed from one side.
  • the differential pressure between inlet and outlet from the duct and the flow velocity at the air outlet are measured.
  • flow velocities between 0 and 1 m / s were measured at the end of the channel between 300 mm and 1300 mm long. This means that a spacer structure which produces no measurable flow at the outlet at a back pressure of up to 100 Pa and a flow channel length of 300 mm at the outlet should not be suitable for the present invention.
  • Air through-opening Includes at least one opening in the sole-side lower peripheral region of the upper upper material. Preferably, there are at least two approximately opposite air passage openings.
  • the air passage openings can be introduced for example by means of punching, cutting or perforation in the upper shaft material.
  • the shape of the air passage opening may be arbitrary such as round or square.
  • the air passage opening can be protected against the ingress of foreign bodies with an air-permeable sheet-like protective material, for example in the form of a net or grid.
  • the protective material may be hydrophobic.
  • the total area of the at least one air passage opening is at least 50 mm 2 and preferably at least 100 mm 2 .
  • the air passage opening can also be formed directly by an air-permeable material that can be used as a shaft upper or part of the upper shaft material and inherently has the necessary air permeability, so no additional openings must be created.
  • FIG. 1 shows a first embodiment of a shoe 10, which has a shaft assembly 12 and attached to the lower end portion of the shaft assembly 12 sole 14, which in the case of this embodiment is an outsole.
  • the shaft assembly 12 has in the usual way at its upper end a soliciteinschlüpfö réelle 12 a, from which extends a lacing portion 12 b in the direction of the forefoot portion of the shaft assembly 12.
  • a plurality of air passage openings 20 arranged around a part of the circumference of the shaft arrangement 12 can be seen.
  • no air vents provided In the front part of the forefoot area, which corresponds approximately to the toe area of the shoe, in this embodiment no air vents provided.
  • the air passage openings 20 are uniformly distributed around the remaining peripheral region of the shaft assembly 12 at approximately the same distance from one another and are of circular design. Furthermore, the air passage openings 20 are provided with an air-permeable protective cover 22 to prevent the penetration of coarse particles such as stones.
  • the protective cover 22 may cover the air passage opening from outside and / or from inside.
  • a protective cover 22 may be associated with each individual air passage opening 20 or an entire protective cover 22 extends over all air passage openings.
  • the protective cover 22 may be formed, for example, grid or net shape.
  • FIG. 2 shows a second embodiment of a shoe 10, which largely with the in FIG. 1 However, it differs from the first embodiment in terms of the arrangement and shape of the air passage openings 20 shown.
  • the air passage openings 20 of the in FIG. 2 Shoe shown have an elongated rectangular shape in the circumferential direction of the shaft assembly 12 and are located in the forefoot or heel region of the shaft circumference in the lower end of the shaft assembly.
  • the air passage openings 20 also have a grid-shaped protective cover 22.
  • FIG. 3 shows a third embodiment of a shoe 10, which largely with the in FIG. 2 shown second embodiment, but differs from the second embodiment in the arrangement of the air passage openings 20.
  • the air passage openings 20 have an elongated rectangular shape in the circumferential direction of the shaft assembly 12. However, only in the forefoot area of the shaft circumference are air passage openings 20 which are at least approximately opposite in the transverse direction of the foot.
  • the air passage openings 20 are covered with a grid-shaped protective cover 22.
  • FIG. 3 also shows on behalf of all embodiments of the FIGS. 1 to 4 a device 45, by means of which the air passage openings 20 can be closed if necessary.
  • the illustrated movable device 45 comprises means with which an at least water-repellent material temporarily the air passage opening 20 closes.
  • an at least water-repellent material can be pushed along the circumference of the shaft over the air passage opening 20 until it is closed.
  • the pusher may be provided for each one air passage opening or for a plurality of air passage openings.
  • the movable device 45 allows the air passage opening and thus the air-permeable layer (not shown) of the shaft assembly 12 to be temporarily protected against the ingress of liquids such as water.
  • the closing of the air passage openings may also be advantageous in winter or in very cold temperatures, as this can prevent over-cooling of the foot.
  • a device for closing the air passage openings plug, slide, flaps, a circulating belt and all other closure mechanisms can be used.
  • Possible materials for closing the air passage opening may be plastics, foams, coated textiles, TPU, TPE, silicone, polyolefins, polyamides vulcanizates.
  • FIG. 4 shows a fourth embodiment of a shoe 10, which largely with the in FIG. 1 but differs from the first embodiment in that the air passage openings 20 are formed by an air-permeable material which extends around the entire circumference of the lower shaft portion.
  • the air-permeable material is part of the upper upper material.
  • it may be a separate perforated, latticed or reticulated material attached to the sole side lower peripheral portion of the upper of the upper, or the upper of the upper itself is mechanically processed in this lower peripheral portion such as by punching or perforating.
  • air-permeable material nets, meshes, mesh-like fabrics, open-cell foams, air-permeable fabrics, and combinations of these materials may be used. These materials can be, for example consist of polyesters, polyamides, polyolefins, TPE, TPU, vulcanizates.
  • All embodiments in the FIGS. 1 to 4 is common that at least two air passage openings in the foot transverse direction or in the foot longitudinal direction are at least approximately opposite.
  • an air flow through the air-permeable layer can form, which is conducive to the removal of water vapor and heat from the inside of the shoe by means of convection.
  • the airflow can also be actively generated with a built-in fan.
  • FIGS. 1 to 4 can also be combined with each other.
  • FIGS. 5 to 9 each show a cross-section through part of the forefoot portion of a shoe 10, along the section line AA in FIG FIG. 1 , If such a cutting line only in FIG. 1 is shown, the cross-sectional views of FIGS. 5 to 9 equally for those in the FIGS. 2 to 4 shown embodiments.
  • the FIGS. 5 to 9 each show a shaft assembly 12 with an attached sole 14, which represents an outsole in the illustrated embodiment.
  • the in the FIGS. 5 to 9 shown embodiments differ with respect to the respective shaft assembly 12th All shaft assemblies 12 of the embodiments in the FIGS. 5 to 9 have a shaft upper 16, on the inside of which there is a lining, which either has a bootie functional layer 34 (FIG.
  • a shank functional layer 37 ( FIGS. 6 or 7 ) or only one feed layer 18 without functional layer ( FIG. 8 ) having.
  • a shaft bottom functional layer is located in the region of the shaft bottom 15.
  • the shank functional layer and the shank bottom functional layer may be common parts of a functional layer boat 39 (FIG. Figures 5 or 9 ) or they may be separate functional layer parts which are sealed against each other ( FIGS. 6 and 7 ). In FIG. 8 only the shoe bottom has a functional layer.
  • all of these functional layers are part of a multi-layer functional layer laminate, in the illustrated embodiments of a three-layer functional layer laminate 24, 27 or 28 with a functional layer 34, 37 and 38 embedded between two sheets 25 and 26, respectively.
  • the fabrics in FIGS. 25 and 26 may typically be one textile layer at a time.
  • the shaft functional layer 37 or the shaft functional layer laminate 27 (FIG. FIGS. 6 and 7 ) or the feed layer 18 (FIG. FIG. 8 ) may be secured by means of a Strobelnaht 32 to a mounting base 30.
  • an air-permeable layer 40 (FIG. FIGS. 5 to 9 At least approximately at the level of the at least one air passage opening 20.
  • a sole-side lower end region of the upper upper material 16 is either stuck on the underside of the mounting sole 30 as a lasting weft 16a by means of a Zwickklebstoff (not shown). Figures 5 and 9 ) or the air-permeable layer 40 (FIG. FIGS. 6 and 7 ). Or the sole-side lower end region of the upper upper material 16 is connected by means of a further Strobelnaht 33 with another mounting sole 30a ( FIG. 8 ).
  • the upper 16 is constructed with a moisture vapor permeable material. Also with water vapor permeable material are arranged above the shaft bottom functional layer laminate 28 mounting base 30 ( FIGS. 6 to 8 ) and the feed layer 18 (FIG. FIG. 8 ) built up. All located below the air-permeable layer 40 layers of the shaft bottom, such as the mounting base 30 in Figure 5, the filling layers 31 in the FIGS. 6 and 7 and the other mounting brine 30a in FIG. 8 do not need to have water vapor permeability.
  • FIGS. 5 to 9 are the air passage openings 20 of the upper shaft material 16 close to the Abwinklungs Society the embraced lower end portion of the Schaftobermaterials 16, namely at such a height that the air passage openings 20 at least approximately at the same level as the peripheral side surfaces 42 of the air-permeable layer 40.
  • the air passage openings 20 preferably have a vertical extent approximately equal to the vertical thickness of the air-permeable layer 40 and the air passage openings 20 and the air-permeable layer 40 in vertical Direction relative to each other aligned so that a horizontal center plane of the air-permeable layer 40 and a central axis of the respective air passage opening 20 are at least approximately the same vertical height.
  • the sole 14 is connected to the lower portion of the shaft assembly 12 so as to be flush with the underside of the impact forming lower end portion 16a of the upper 16 of the upper and the portion of the lower surface of the upper which is not covered by this impact. communicates.
  • a unevenness on the underside of the shaft bottom, in particular caused by a lasting impact 16a of the shaft upper 16, can be compensated by a filling layer 31.
  • the sole 14 may be constructed with waterproof material which is rubber or a rubber-like elastic plastic, for example an elastomer. However, the sole 14 may also be made of material permeable to water vapor such as leather.
  • the sole 14 may be a prefabricated sole which is glued to the shaft assembly 12, or a sole molded onto the shaft assembly 12.
  • a running surface of this sole located on the underside of the sole 14 is provided with a groove pattern in the usual way in order to form profile projections which improve the slip resistance of the shoe 10 provided with such a sole 14.
  • an upper edge 14 a of the sole 14 terminates below the lower end of the respective air passage opening 20.
  • a mainly serving as scree rubber edge be attached
  • the rubber rim at the passage openings 20 corresponding points in turn provided with air passage openings.
  • the air passage openings 20 are provided with an air-permeable protective cover 22, which is formed for example by a net or mesh of metal or plastic or by a textile material with high air permeability and thus high water vapor permeability.
  • the protective cover 22 may be on the outside ( Figures 5 . 6 . 8th and 9 ) or the inside ( FIG. 7 ) of the respective air passage opening 20 are located.
  • each air passage opening 20 is associated with its own protective cover 22 or each part of the air passage openings 20 or all air passage openings 20 is associated with a common protective cover strip which extends over the corresponding number of the air passage openings 20.
  • FIGS. 5 to 9 will now be considered in more detail.
  • the functional layer on the inside of the upper upper 16 and the functional layer on the upper side of the air permeable layer 40 are both part of a sock-like bootie 39 which lines the entire upper 12 with the exception of the foot insertion 12a.
  • a bootie is usually sewn together from several functional layer parts, wherein the seams are pasted over with waterproof seam sealing tape and made waterproof in this way.
  • the bootie could also be made of one piece of material, which would no longer require the need to sew and seal it.
  • the bootie is constructed with the already mentioned functional layer laminate 24.
  • the shaft assembly 12 is thus waterproof and after addition of a sole 14 there is a waterproof shoe.
  • the air-permeable layer 40 is arranged in the shaft bottom region immediately below the functional layer laminate 24 of the bootie 39. In this case, the air-permeable layer 40 extends over the entire shaft bottom region and is thus available to the entire sole of the foot for the steam and heat exchange.
  • the mounting sole 40 On the underside of which the twill flap 16a of the sole-side lower end region is fastened by means of a Zwickklebstoff (not shown).
  • a separate mounting sole it is also possible in certain designs, to make the bottom or lower bearing surface of the air-permeable layer 40 correspondingly stable, so that the lasting impact can be fastened to this underside.
  • the air-permeable layer additionally assumes the function of a mounting sole.
  • the shaft bottom functional layer laminate 28 is located below the mounting sole 30 and extends below the struck end portion 27a of the shaft functional layer laminate 27 and is watertightly connected to the end portion 27a via a sealing material (not shown), for example in the form of a sealing adhesive, so that the shoe interior is penetrated by the shoe Cooperation of the mutually sealed functional layers 37 and 38 with the exception of practitionereinschlüpfö réelle 12 a and the Schnur Societys 12 b of the shoe 10 is completely waterproof, as when using a functional layer bootie. It is also possible to waterproof the shaft bottom functional layer above the mounting sole to the shaft functional layer laminate.
  • the shaft bottom functional layer 38 extends below the embossed end region 27a and thus beyond the strobe seam 32, the strobe seam 32 is also sealed by the shaft bottom functional layer 38.
  • the air permeable layer 40 is disposed.
  • the lasting weft 16a of the upper 16 is secured by means of a Zwickklebstoffs (not shown).
  • the air-permeable layer also assumes the function of a mounting sole. In principle, it would also be possible to provide a separate mounting base below the air-permeable layer.
  • the unevenness on the underside of the shaft bottom 15 caused by the lasting impact 16a of the upper material 16 is compensated by the filling layer 31 in the manner already mentioned.
  • FIG. 7 The embodiment shown differs from that in FIG. 6 shown embodiment only in that the protective cover 22 is not disposed on the outside but on the inside of the shaft upper material 16 directly along the peripheral side surfaces 42 of the air-permeable layer 40 and the inside in front of the air passage opening 20.
  • FIG. 8 The embodiment shown differs from the embodiments according to FIGS. 5 to 7 on the one hand by the fact that the upper 16 is provided with only one feed layer 18 but not with a shank functional layer except for a lower region near the shank bottom 15, and on the other hand by having two mounting soles and two strobe seams.
  • the feed layer 18 has at a bottom side bottom side a Futterlageneinschlag 18 a, which is connected by means of a Strobelnaht 32 with a mounting base 30.
  • the sole-side lower end region 16a of the upper upper material 16 is connected by means of a further Strobelnaht 33 with another mounting sole 30a.
  • the shaft bottom functional layer 38 which may again be part of a shaft bottom functional layer laminate, has on its outer periphery an upstanding collar 38a which projects into a gap between the upper 16 and the liner 18 between the shaft bottom functional layer 38 and the other bottom sole 30a, the air-permeable layer 40 is arranged.
  • the shaft bottom functional layer laminate may also be disposed above the mounting sole.
  • the upper shaft area is not waterproof.
  • the shoe is according to FIG. 8 especially suitable for use where less wetness from above than wetness from below and from the side has to be reckoned with, ie when walking or hiking in humid environments when it is not raining, or when you are only in the snow for a short time Stops rain.
  • FIG. 9 embodiment shown substantially corresponds to the embodiment shown in Figure 5.
  • the mounting base 30 is designed so that the air-permeable layer 40 directed towards the surface of the mounting base 30 rises at an angle in the middle and projects into the air-permeable layer.
  • the lower bearing surface of the air-permeable Layer 40 raised or compressed according to the angled elevation of the mounting sole 30.
  • formed within the air-permeable layer two inclined planes, starting from the center in the direction of the peripheral side surfaces 42 downwardly and thus facilitate the drainage of any existing water in the air-permeable layer 40.
  • Such an embodiment of the mounting sole 30 can also for the embodiments in the FIGS. 5 to 8 be provided.
  • spacer structures 60 are shown, which are suitable for the air-permeable layer 40 according to the invention. All of these distance formations is to own, that they form two spaced support surfaces, wherein the distance structure rests with the lower support surface on the respective support and whose upper support surface serves as a support surface for the located above the spacer structure layer, which is in particular the bottom area the functional layer booties ( FIG. 5 or 9 ) or the shaft bottom functional layer laminate ( FIGS. 6 to 8 ).
  • the two bearing surfaces are either either each formed by a sheet, which are held by means of intermediate spacer elements at a distance from each other and of which at least the upper is air-permeable ( FIG. 11 ).
  • the lower bearing surface is formed by a fabric, stand up from the spacer elements whose free ends form support points, which together have the function of the upper support surface ( Figures 10 . 12 and 14 ).
  • This distance structure 60 consists in one embodiment of an initially flat knit or a solid material which, after being brought into the shape shown, for example, by a deep drawing process, is so stiff or stiffened that it retains this shape under the load, which it is exposed to when walking with the shoe, which is equipped with this distance structure.
  • a deep-drawing process it is also possible to use other measures already mentioned, namely deformation and stiffening by a thermoforming process or impregnation with a synthetic resin curing to the desired shape and rigidity.
  • FIG. 11 shows an embodiment of a suitable as an air-permeable layer 40 spacer structure 60
  • the upper and lower support surface are formed by two mutually parallel air-permeable sheets 62 and 64, which are selected for example from the group of polyolefins, polyamides or polyesters, wherein the sheets 62 and 64 are interconnected by supporting fibers 66 air-permeable and spaced at the same time. At least a portion of the fibers 66 are disposed as spacers at least approximately perpendicularly between the sheets 62 and 64.
  • the fibers 66 are made of a flexible, deformable material such as polyester or polypropylene.
  • the air may flow through the sheets 62 and 64 and between the fibers 66.
  • the fabrics 62 and 64 are open-pored woven, knitted or knitted textile materials.
  • Such a spacer fabric 60 may be the aforementioned spacer fabric available from Tylex or Müller Textil.
  • FIG. 12 shown spacer structure 60 has a similar structure as that in FIG. 10 However, shown spacers, but consists of a knitted fabric or Gewirkkefilêtn which are brought into this form and solidified, for example, by a thermal process or impregnation with synthetic resin in this form.
  • FIG. 13 shows an embodiment of a spacer structure 60 with zigzag or sawtooth profile, to which a first flat material has been formed, such that the upper and lower vertices 60a and 60b, the upper and lower define lower bearing surface of this spacer 60.
  • the spacer 60 of this shape can be formed by the already mentioned methods and solidified to the desired stiffness.
  • FIG. 14 shows a further embodiment of a spacer structure 60, which is suitable as the inventive air-permeable layer 40.
  • spacers are formed by the single bottom sheet 68 not by protrusions or protrusions but by tufts 70 which are upstanding from the sheet 68 and whose top free ends together define the top support surface.
  • the tufts 70 can be applied by flocking the lower fabric 68.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
EP16180543.7A 2008-06-11 2009-06-08 Schuh mit belüftung im unteren schaftbereich und dafür verwendbares luftdurchlässiges abstandsgebilde Active EP3117727B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008027856A DE102008027856A1 (de) 2008-06-11 2008-06-11 Schuh mit Belüftung im unteren Schaftbereich und dafür verwendbares luftdurchlässiges Abstandsgebilde
EP09761450.7A EP2328435B1 (de) 2008-06-11 2009-06-08 Schuh mit belüftung im unteren schaftbereich
PCT/EP2009/004109 WO2009149887A1 (de) 2008-06-11 2009-06-08 Schuh mit belüftung im unteren schaftbereich und dafür verwendbares luftdurchlässiges abstandsgebilde

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP09761450.7A Division EP2328435B1 (de) 2008-06-11 2009-06-08 Schuh mit belüftung im unteren schaftbereich

Publications (2)

Publication Number Publication Date
EP3117727A1 EP3117727A1 (de) 2017-01-18
EP3117727B1 true EP3117727B1 (de) 2019-07-31

Family

ID=41066429

Family Applications (3)

Application Number Title Priority Date Filing Date
EP09761450.7A Active EP2328435B1 (de) 2008-06-11 2009-06-08 Schuh mit belüftung im unteren schaftbereich
EP16180543.7A Active EP3117727B1 (de) 2008-06-11 2009-06-08 Schuh mit belüftung im unteren schaftbereich und dafür verwendbares luftdurchlässiges abstandsgebilde
EP09761449.9A Active EP2317885B1 (de) 2008-06-11 2009-06-08 Schuh mit belüftung im unteren schaftbereich

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP09761450.7A Active EP2328435B1 (de) 2008-06-11 2009-06-08 Schuh mit belüftung im unteren schaftbereich

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09761449.9A Active EP2317885B1 (de) 2008-06-11 2009-06-08 Schuh mit belüftung im unteren schaftbereich

Country Status (12)

Country Link
US (5) US9192208B2 (zh)
EP (3) EP2328435B1 (zh)
JP (2) JP5180372B2 (zh)
KR (3) KR101302938B1 (zh)
CN (5) CN104799476A (zh)
CA (2) CA2727138C (zh)
DE (1) DE102008027856A1 (zh)
DK (3) DK2328435T3 (zh)
HK (4) HK1209989A1 (zh)
PL (2) PL2328435T3 (zh)
RU (2) RU2442512C1 (zh)
WO (2) WO2009149887A1 (zh)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008027856A1 (de) 2008-06-11 2009-12-24 W. L. Gore & Associates Gmbh Schuh mit Belüftung im unteren Schaftbereich und dafür verwendbares luftdurchlässiges Abstandsgebilde
NZ592064A (en) * 2008-12-10 2014-05-30 Resmed Ltd Headgear for masks
DE102009015890A1 (de) * 2009-04-01 2010-10-14 W. L. Gore & Associates Gmbh Sohleneinheit für Schuhwerk und damit versehenes Schuhwerk
DE102010006150A1 (de) * 2010-01-29 2011-08-04 W. L. Gore & Associates GmbH, 85640 Schaftanordnung für Schuhwerk sowie Schuhwerk damit
DE102010044260A1 (de) * 2010-09-03 2012-03-08 Ecco Sko A/S Schaftanordnung für Schuhwerk sowie Schuhwerk damit
IT1403989B1 (it) * 2010-09-28 2013-11-08 Geox Spa Calzatura traspirante con suola impermeabile e traspirante
US20130340289A1 (en) * 2011-03-04 2013-12-26 Salomon S.A.S. Shoe having an improved upper
US8945212B2 (en) * 2011-04-01 2015-02-03 W. L. Gore & Associates, Inc. Durable multi-layer high strength polymer composite suitable for implant and articles produced therefrom
US20140283411A1 (en) * 2011-07-29 2014-09-25 W. L. Gore & Associates Gmbh Upper Assembly For Footwear and Footwear Including the Same
ITVI20110248A1 (it) * 2011-09-15 2013-03-16 Erre Plast S R L Struttura alveolare ventilata ad elevato isolamento.
ITPD20110395A1 (it) * 2011-12-16 2013-06-17 Geox Spa Calzatura impermeabile e traspirante, particolarmente ma non esclusivamente del tipo di sicurezza, o simile
MY168149A (en) * 2011-12-21 2018-10-11 Ah Mee Chee Reinforced footwear
US11319651B2 (en) 2012-02-20 2022-05-03 Nike, Inc. Article of footwear incorporating a knitted component with an integral knit tongue
US8448474B1 (en) 2012-02-20 2013-05-28 Nike, Inc. Article of footwear incorporating a knitted component with a tongue
US9510636B2 (en) 2012-02-20 2016-12-06 Nike, Inc. Article of footwear incorporating a knitted component with an integral knit tongue
US20130232825A1 (en) * 2012-03-07 2013-09-12 W. L. Gore & Associates, Inc. Stretchable Insole
WO2013190647A1 (ja) * 2012-06-20 2013-12-27 有限会社コスモケア ウエア
US10028550B2 (en) * 2012-07-09 2018-07-24 Nike, Inc. Footwear with reflective outsole
KR101402987B1 (ko) * 2012-07-24 2014-06-03 동서대학교산학협력단 내마모성과 내슬립성이 향상된 신발 겉창용 열가소성 고무 조성물
KR101473108B1 (ko) * 2012-08-20 2014-12-15 최유달 테두리압착밴드를 형합(분리,조립)할 수 있는 신발 밑창
CN102871274A (zh) * 2012-10-15 2013-01-16 南通奥斯特鞋业有限公司 一种适于跑步的运动鞋
ES2538095T3 (es) * 2012-12-14 2015-06-17 W.L. Gore & Associates Gmbh Forro de calzado de monofilamentos
US9872535B2 (en) * 2012-12-20 2018-01-23 Nike, Inc. Article of footwear with a harness and fluid-filled chamber arrangement
RU2615056C1 (ru) * 2013-03-15 2017-04-03 В.Л. Гор Унд Ассошиэйтс Гмбх Предмет обуви с воздухопроницаемым слоем и воздухопроницаемым участком в нижней периферийной области верха
US20140352178A1 (en) * 2013-05-28 2014-12-04 Karsten Manufacturing Corporation Ventilated footwear
WO2015028045A1 (en) * 2013-08-26 2015-03-05 W.L. Gore & Associati S.R.L Footwear with air permeable layer in a lower peripheral area of the upper assembly and manufacturing method thereof
ITMI20130297U1 (it) 2013-08-30 2015-03-01 Gore W L & Ass Srl Calzatura comprendente uno strato permeabile all'aria e una porzione permeabile all'aria su di una porzione periferica inferiore del gruppo tomaia
ITMI20130295U1 (it) 2013-08-30 2015-03-01 Gore W L & Ass Srl Calzatura comprendente uno strato permeabile all'aria e una porzione permeabile all'aria su di una porzione periferica inferiore del gruppo tomaia
DE202014100248U1 (de) 2014-01-22 2014-03-05 W.L. Gore & Associati S.R.L. Schuhwerk mit einer luftdurchlässigen Lage und einem luftdurchlässigen Abschnitt in einem unteren Umfangsbereich der Schaftanordnung
CA2939240A1 (en) * 2014-02-14 2015-08-20 W. L. Gore & Associates, Inc. Conformable seamless booties and footwear assemblies, and methods and lasts therefor
US20150230553A1 (en) * 2014-02-14 2015-08-20 W. L. Gore & Associates, Gmbh Conformable Booties, Shoe Inserts, and Footwear Assemblies Made Therewith, and Waterproof Breathable Socks
US20150230543A1 (en) * 2014-02-14 2015-08-20 W. L. Gore & Associates, Gmbh Conformable Booties, Shoe Inserts, and Footwear Assemblies Made Therewith, and Waterproof Breathable Socks
US20150230554A1 (en) * 2014-02-14 2015-08-20 W. L. Gore & Associates, Gmbh Conformable Booties, Shoe Inserts, and Waterproof Breathable Socks Containing an Integrally Joined Interface
KR20160124173A (ko) * 2014-02-14 2016-10-26 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 정합성 무솔기 신 삽입체 및 신발 조립체, 및 이를 위한 방법
US20150230563A1 (en) * 2014-02-14 2015-08-20 W. L. Gore & Associates, Gmbh Methods for Forming Seamless Shoe Inserts
US20150230541A1 (en) * 2014-02-14 2015-08-20 W. L. Gore & Associates, Gmbh Conformable Booties, Shoe Inserts, and Footwear Assemblies Made Therewith, and Waterproof Breathable Socks
US20150230550A1 (en) * 2014-02-14 2015-08-20 W. L. Gore & Associates, Gmbh Methods for Forming Seamless Conformable Booties and Waterproof Breathable Socks
US20150237952A1 (en) * 2014-02-27 2015-08-27 Debra Garriga Ventilated Wellington Boots
US9468258B2 (en) * 2014-03-14 2016-10-18 Wolverine Outdoors, Inc. Footwear including combination lasting construction
US20150264996A1 (en) * 2014-03-24 2015-09-24 Gena Rodriguez Water Shoe
US20150335097A1 (en) * 2014-05-22 2015-11-26 Les Chaussures Stc Inc. Waterproof breathable boot
EP2957186B1 (en) * 2014-06-17 2020-05-06 Geox S.p.A. Ventilated shoe
KR101990271B1 (ko) * 2014-06-23 2019-06-17 나이키 이노베이트 씨.브이. 신발 디자인 도구
EP3166785B1 (en) * 2014-07-11 2020-12-30 Geox S.p.A. Method for waterproofing blanks of shoes, gloves, items of clothing and other clothing accessories, blanks waterproofed with the method, shoes, gloves, items of clothing and other clothing accessories provided with the waterproofed blanks
US20160206037A1 (en) * 2014-07-21 2016-07-21 Dennis McCormick Polymer boat shoe with drainage holes and a gripping sole
US9565898B2 (en) * 2014-09-26 2017-02-14 Wolverine Outdoors, Inc. Footwear including a support cage
US9668544B2 (en) * 2014-12-10 2017-06-06 Nike, Inc. Last system for articles with braided components
US9775401B2 (en) 2015-01-16 2017-10-03 Nike, Inc. Sole system for an article of footwear incorporating a knitted component with a one-piece knit outsole
US9820530B2 (en) 2015-01-16 2017-11-21 Nike, Inc. Knit article of footwear with customized midsole and customized cleat arrangement
US10568383B2 (en) 2015-01-16 2020-02-25 Nike, Inc. Sole system for an article of footwear incorporating a knitted component with a one-piece knit outsole and a tensile element
EP3244763A1 (en) * 2015-01-16 2017-11-22 NIKE Innovate C.V. Knitted component with cleat member
US9848673B2 (en) 2015-01-16 2017-12-26 Nike, Inc. Vacuum formed knit sole system for an article of footwear incorporating a knitted component
US20160302517A1 (en) * 2015-04-17 2016-10-20 Wolverine World Wide, Inc. Sole assembly for an article of footwear
US10653203B2 (en) 2015-05-22 2020-05-19 S9, Llc Shoe drainage system
ITUB20152773A1 (it) * 2015-08-03 2017-02-03 Geox Spa Calzatura impermeabile e traspirante
JP2018522686A (ja) 2015-08-13 2018-08-16 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated シームレスの延伸可能なフィルムを含むブーティ及び履物集成体、並びにそのための方法
CN108135302A (zh) 2015-08-19 2018-06-08 W.L.戈尔及同仁股份有限公司 顺应性无缝三维制品及用于该制品的方法
US11427942B2 (en) 2016-09-30 2022-08-30 Kimberly-Clark Worldwide, Inc. Non-planar nonwoven fabrics and methods of making the same
US10786035B2 (en) 2016-10-13 2020-09-29 Under Armour, Inc. Article of footwear with cooling features
CN106418874A (zh) * 2016-10-13 2017-02-22 陈茂双 全方位包裹、环保的鞋及其生产工艺
US10568384B2 (en) * 2016-10-28 2020-02-25 Tammy Terrell Glaze Sole insert with mating attachment system
TWI616149B (zh) * 2016-12-07 2018-03-01 Shuang Bang Ind Corp 具挺性之立體襪鞋的製造方法
US10104932B2 (en) * 2017-02-01 2018-10-23 Ziben Safety Co., Ltd. Safety shoes with a ventilation structure
IT201700018544A1 (it) * 2017-02-20 2018-08-20 Lta S R L Sottopiede per calzature.
US20180317605A1 (en) * 2017-05-04 2018-11-08 Bha Altair, Llc Footwear item and methods using strobel stitching
US11116282B2 (en) * 2017-06-14 2021-09-14 W. L. Gore & Associates, Inc. Waterproof breathable footwear
JP6993437B2 (ja) * 2017-06-20 2022-01-13 ニュー バランス アスレティックス,インコーポレイテッド 刺繍要素を組み込むフットウェア物品および関連製造方法
EP4298945A1 (en) * 2017-10-19 2024-01-03 NIKE Innovate C.V. Article with at least two layers
EP3697955A1 (en) * 2017-10-20 2020-08-26 NIKE Innovate C.V. Knitted loft zones
WO2019095076A1 (en) * 2017-11-17 2019-05-23 Stedfast Inc. Multilayer textile assembly for use in footwear
US20190150553A1 (en) * 2017-11-21 2019-05-23 Altra Llc Drainage holes in a toe box of a shoe
CN110169622B (zh) * 2018-01-19 2021-06-04 黎明职业大学 一种运动鞋用防摔跌组件
US10702007B2 (en) * 2018-04-16 2020-07-07 Ronie Reuben Ventilated article of footwear
KR200490930Y1 (ko) * 2018-07-06 2020-02-11 월터'스 씨오., 엘티디 방수 신발 표면 구조.
US11466387B2 (en) 2018-07-23 2022-10-11 Nike, Inc. Knitted component with an angled raised structure
US11484091B2 (en) * 2019-01-28 2022-11-01 Columbia Insurance Company Waterproof shoes and method for preparing the same
CN110172778A (zh) * 2019-06-17 2019-08-27 鹤山精丰织造有限公司 一种形成有加厚结构的鞋面的生产工艺
US11576462B2 (en) * 2020-06-29 2023-02-14 Saucony, Inc. Footwear with mesh sole construction
USD984787S1 (en) 2020-06-29 2023-05-02 Saucony, Inc. Footwear sole
WO2022098975A1 (en) * 2020-11-06 2022-05-12 Ossur Iceland Ehf Ventilated prosthetic socket and kit for making the same
IT202100002126A1 (it) * 2021-02-02 2022-08-02 Binar S R L Calzature ipoallergeniche e metodo per prevenire la dermatite allergica da contatto acd
KR102586181B1 (ko) * 2021-03-26 2023-10-11 이동호 에어메쉬띠가 형성된 통풍 신발
CN113876074B (zh) * 2021-08-22 2023-07-07 茂泰(福建)新材料科技有限公司 一种足丝纤维透气鞋底及其制备方法
EP4193871A1 (en) * 2021-12-13 2023-06-14 ALC Tecnologie Adesive S.r.l. Reinforced shoe upper, reinforcement element for a shoe upper and method for forming a reinforced shoe upper
WO2024042556A1 (en) * 2022-08-22 2024-02-29 W. L. Gore & Associati S.R.L. Waterproof and water vapour-permeable footwear articles

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1390929A (en) * 1921-02-04 1921-09-13 Saudino Dominic Ventilated shoe
US2022488A (en) * 1934-03-03 1935-11-26 Dainty Maid Slippers Inc Shoe
US2098412A (en) * 1936-06-16 1937-11-09 Us Rubber Prod Inc Rubber soled footwear
DE1034067B (de) 1954-01-09 1958-07-10 Hutchinson Cie Ets Schuh mit Innenbelueftung
GB874066A (en) * 1960-05-02 1961-08-02 Ignatz Folkmann Improvements in or relating to shoes
US3012342A (en) * 1960-07-06 1961-12-12 Ramirez Eliseo Loza Sole assembly for footwear
CA962021A (en) 1970-05-21 1975-02-04 Robert W. Gore Porous products and process therefor
US3952358A (en) * 1973-10-03 1976-04-27 Tatsuo Fukuoka Shoe and a method for manufacturing the same
US4034431A (en) * 1973-10-03 1977-07-12 Tatsuo Fukuoka Method for manufacturing a footwear
US4000566A (en) * 1975-04-22 1977-01-04 Famolare, Inc. Shock absorbing athletic shoe with air cooled insole
US4073072A (en) * 1975-08-20 1978-02-14 Comfort Products, Inc. Air circulation shoe material
US4421742A (en) 1977-02-08 1983-12-20 Dr. Werner Freyberg Chemische Fabrik Delitia Nachf. Phosphine producing pesticide and method of manufacture therefor
US4197041A (en) * 1978-05-01 1980-04-08 Prewitt Floyd B Boring tool
US4194041A (en) 1978-06-29 1980-03-18 W. L. Gore & Associates, Inc. Waterproof laminate
DE3148712A1 (de) * 1981-12-09 1983-06-23 Fa. Carl Freudenberg, 6940 Weinheim Schuheinlage
CA1191439A (en) 1982-12-02 1985-08-06 Cornelius M.F. Vrouenraets Flexible layered product
DE3333807A1 (de) * 1983-09-19 1985-04-11 Siemens AG, 1000 Berlin und 8000 München Speicherprogrammierbares automatisierungsgeraet
US4813161A (en) * 1984-04-30 1989-03-21 Milliken Research Corporation Footwear
JPH0316483Y2 (zh) * 1985-03-11 1991-04-09
JPS6325004U (zh) * 1986-07-31 1988-02-18
JPS6375205A (ja) 1986-09-16 1988-04-05 トヨマット株式会社 古タイヤのビ−ド部分を利用した組立基材
JPS6375205U (zh) 1986-11-07 1988-05-19
JPH0518962Y2 (zh) 1987-01-20 1993-05-19
ITPD20020246A1 (it) 2002-09-24 2004-03-25 Geox Spa Struttura di suola impermeabile e traspirante per calzature e calzatura realizzata con detta suola.
US4835883A (en) * 1987-12-21 1989-06-06 Tetrault Edward J Ventilated sole shoe construction
JPH057925Y2 (zh) * 1988-04-14 1993-03-01
US4837948A (en) * 1988-06-03 1989-06-13 Cho Kang Rai Natural ventilation type footwear
KR910001207Y1 (ko) 1988-07-02 1991-02-25 이균철 일방흡입 및 일방배출 통풍구를 부착한 일방 통풍화
US4910887A (en) * 1988-08-05 1990-03-27 The Timberland Company Boating shoe
US4918981A (en) 1988-10-28 1990-04-24 W. L. Gore & Associates, Inc. Method for measuring moisture vapor transmission rate in wearing apparel
IT1232798B (it) 1989-02-17 1992-03-05 Pol Scarpe Sportive Srl Struttura di suola traspirante/impermeabile per calzature.
IT1247400B (it) 1990-10-03 1994-12-13 Pol Scarpe Sportive Srl Struttura di suola per calzature impermeabile e traspirante
US5385036A (en) * 1993-05-24 1995-01-31 Guilford Mills, Inc. Warp knitted textile spacer fabric, method of producing same, and products produced therefrom
US5329807A (en) 1993-06-18 1994-07-19 W. L. Gore & Associates, Inc. Centrifuge test apparatus for footwear and apparel
JPH07136002A (ja) * 1993-11-18 1995-05-30 Daitoku:Kk 通気性を有する靴
US5461884A (en) * 1994-01-19 1995-10-31 Guilford Mills, Inc. Warp-knitted textile fabric shoe liner and method of producing same
DE4415918A1 (de) * 1994-05-05 1995-11-09 Werner Schaedlich Rundstricker Mehrschichtiges Stoffgebilde
BR9602748A (pt) * 1995-06-13 1998-04-22 Faytex Corp Estrutura para calçado
DE29601932U1 (de) * 1996-02-08 1996-07-25 Gore W L & Ass Gmbh Atmungsaktive Schuhsohle
IT1293474B1 (it) * 1997-05-09 1999-03-01 Nottington Holding Bv Calzatura traspirante perfezionata
US5964047A (en) * 1997-10-20 1999-10-12 Columbia Insurance Company Waterproof footwear
FI974317A0 (fi) 1997-11-25 1997-11-25 Sievin Jalkine Oy Skodons sulkonstruktion
ITPD980157A1 (it) * 1998-06-25 1999-12-25 Nottington Holding Bv Suola traspirante ed impermeabile per calzature
US20020053148A1 (en) * 1998-11-17 2002-05-09 Franz Haimerl Footwear with last area sealing and method for its production
FR2786370B1 (fr) * 1998-11-27 2001-04-27 Picardie Lainiere Insert imper-respirant, ses utilisations dans des articles d'habillement, article d'habillement comportant un tel insert imper-respirant
ES2240042T3 (es) * 2000-02-28 2005-10-16 Stonefly S.P.A. Palmilla compuesta permeable al valor.
IT1317329B1 (it) * 2000-04-13 2003-06-16 Nottington Holding Bv Calzatura traspirante.
IT1317377B1 (it) * 2000-10-31 2003-06-16 Nottington Holding Bv Suola traspirante ed impermeabile per calzature.
US6477789B2 (en) * 2000-12-05 2002-11-12 Peter Cheng Ventilated shoe insole having minimal height front region
DE10207663C1 (de) * 2002-02-22 2003-08-28 Gore W L & Ass Gmbh Schuhschaft und damit aufgebautes Schuhwerk und Verfahren zu deren Herstellung
ITTV20020052A1 (it) * 2002-04-30 2003-10-30 Sixty Active Spa Struttura di calzatura sportiva particolarmente da barca
DE10240802A1 (de) 2002-08-30 2004-04-15 W.L. Gore & Associates Gmbh IR reflektierendes Material
DE10241961B4 (de) * 2002-09-10 2005-01-20 Cetec Ag Innensohle und Schuh mit Innensohle oder Einlegesohle
US20040049942A1 (en) 2002-09-18 2004-03-18 Eddie Chen Shoe having waterproof breathable shell
FR2846585B1 (fr) * 2002-10-30 2006-02-03 Prospection Et D Inv S Tech So Tube d'alimentation en elements de fixation pour un appareil de fixation
US20040139629A1 (en) * 2003-01-16 2004-07-22 Wiener Robert J. Waterproof footwear
ITPD20030166A1 (it) * 2003-07-22 2005-01-23 Geox Spa Suola traspirante ed impermeabile per calzature, particolarmente ma non esclusivamente per calzature di tipo aperto quali sandali, sabo' e simili e calzatura realizzata con detta suola
AT7438U1 (de) * 2003-07-23 2005-04-25 Gallus Herrenschuh Gmbh Schuh mit belüftungseinrichtung
US7047668B2 (en) * 2003-07-24 2006-05-23 Nike, Inc. Article of footwear having an upper with a polymer layer
US20050126036A1 (en) * 2003-12-16 2005-06-16 Huei-Ling Wu Sole structure with complex waterproof and gas-permeable material and manufacturing method thereof
US6948260B2 (en) * 2003-12-24 2005-09-27 Hsi-Liang Lin 3D air-pumping shoe
ITPD20030312A1 (it) * 2003-12-30 2005-06-30 Geox Spa Suola traspirante ed impermeabile per calzature
WO2005077216A1 (en) * 2004-02-18 2005-08-25 General Building S.A.S. Di De Giacomi Giancarlo Shoe with upper and heel developed ventilation
WO2006006454A1 (ja) * 2004-07-14 2006-01-19 Teijin Fibers Limited 靴内部材および靴中敷きおよび長靴
ITPD20040208A1 (it) 2004-07-30 2004-10-30 Geox Spa Suola impermeabile e traspirante per calzature
JP2008521639A (ja) 2004-11-26 2008-06-26 コルボント ベスローテン フェンノートシャップ 二次元構造及び三次元構造並びに二次元構造及び三次元構造を製造する方法
GB2425131B (en) * 2005-03-22 2010-09-08 Mothercare Uk Ltd Improvements in or relating to spacer fabrics
JP4778278B2 (ja) * 2005-08-02 2011-09-21 アキレス株式会社 踏抜き防止板を有する射出成形靴およびその製造方法。
DE202007000667U1 (de) 2006-03-03 2007-04-12 Gore W L & Ass Gmbh Wasserdampfdurchlässiger Schuhsohlenverbund
CN102125332B (zh) 2006-03-03 2013-01-16 W.L.戈尔有限公司 复合鞋底、由其制成的鞋及其制造方法
DE202007000668U1 (de) 2006-03-03 2007-03-29 W.L. Gore & Associates Gmbh Schuhsohlenstabilisierungsmaterial
CN2896955Y (zh) * 2006-03-17 2007-05-09 冯镜球 自动换气鞋
ITTV20060104A1 (it) * 2006-06-14 2007-12-15 Geox Spa Suola per calzature, del tipo impermeabile all'acqua e permeabile al vapore acqueo e calzatura realizzata con detta suola
EP2031993B1 (en) 2006-06-20 2013-08-28 Geox S.p.A. Vapor-permeable element to be used in composing soles for shoes, sole provided with such vapor-permeable element, and shoe provided with such sole
ITPD20060274A1 (it) 2006-07-06 2008-01-07 Geox Spa Calzatura, del tipo impermeabile all'acqua e permeabile al vapore acqueo
US7943005B2 (en) 2006-10-30 2011-05-17 Applied Materials, Inc. Method and apparatus for photomask plasma etching
ITPD20060437A1 (it) * 2006-11-23 2008-05-24 Geox Spa Suola traspirante ed impermeabile per calzature, calzatura utilizzante detta suola e procedimento per la realizzazione di detta suola e detta calzatura
ITPD20070106A1 (it) * 2007-03-23 2008-09-24 Geox Spa Sottopiede di montaggio impermeabile all'acqua e permeabile al vapord'acqua e calzatura realizzata con detto sottopiede
US20080307679A1 (en) * 2007-06-13 2008-12-18 Ming-Chung Chiang Insole with ventilation arrangement
DE202007011758U1 (de) * 2007-08-22 2007-11-22 Lin, Yong-Jiann Eine Matte mit dreidimensionalen Netzwerken
DE102008027856A1 (de) 2008-06-11 2009-12-24 W. L. Gore & Associates Gmbh Schuh mit Belüftung im unteren Schaftbereich und dafür verwendbares luftdurchlässiges Abstandsgebilde
DE202008009455U1 (de) * 2008-06-20 2009-08-06 W. L. Gore & Associates Gmbh Sohleneinheit für Schuhwerk
IT1395217B1 (it) * 2008-09-22 2012-09-05 Foch Italia S R L Scarpa aerata avente effetto ammortizzante per il piede, equipaggiata con un dispositivo di regolazione del flusso d'aria in entrata e in uscita su tutta la superficie della suola.
US8839530B2 (en) * 2011-04-12 2014-09-23 Nike, Inc. Method of lasting an article of footwear with a fluid-filled chamber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN102112018A (zh) 2011-06-29
EP2328435A1 (de) 2011-06-08
JP5291191B2 (ja) 2013-09-18
CA2727142A1 (en) 2009-12-17
CN102112018B (zh) 2013-07-31
RU2442512C1 (ru) 2012-02-20
US9192208B2 (en) 2015-11-24
KR20110017443A (ko) 2011-02-21
KR101251120B1 (ko) 2013-04-05
HK1158904A1 (en) 2012-07-27
CA2727142C (en) 2015-12-22
US20110162239A1 (en) 2011-07-07
DK2317885T3 (en) 2016-12-05
WO2009149886A1 (de) 2009-12-17
WO2009149887A1 (de) 2009-12-17
CN102056502A (zh) 2011-05-11
US9756898B2 (en) 2017-09-12
CN104757729B (zh) 2017-09-08
HK1209989A1 (zh) 2016-04-15
DE102008027856A1 (de) 2009-12-24
EP3117727A1 (de) 2017-01-18
US20130199060A1 (en) 2013-08-08
PL2328435T3 (pl) 2017-01-31
US9750301B2 (en) 2017-09-05
CA2727138C (en) 2013-06-04
JP5180372B2 (ja) 2013-04-10
KR20120132587A (ko) 2012-12-05
CN104757729A (zh) 2015-07-08
CA2727138A1 (en) 2009-12-17
DK3117727T3 (da) 2019-10-21
CN103976502A (zh) 2014-08-13
HK1212564A1 (zh) 2016-06-17
EP2317885A1 (de) 2011-05-11
KR101286010B1 (ko) 2013-07-12
KR101302938B1 (ko) 2013-09-06
US20160073727A1 (en) 2016-03-17
PL2317885T3 (pl) 2017-01-31
EP2317885B1 (de) 2016-08-10
US20110167677A1 (en) 2011-07-14
JP2011522646A (ja) 2011-08-04
RU2446727C1 (ru) 2012-04-10
HK1201702A1 (zh) 2015-09-11
DK2328435T3 (en) 2016-11-28
KR20110017444A (ko) 2011-02-21
US20160073728A1 (en) 2016-03-17
EP2328435B1 (de) 2016-08-03
JP2011522647A (ja) 2011-08-04
CN104799476A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
EP3117727B1 (de) Schuh mit belüftung im unteren schaftbereich und dafür verwendbares luftdurchlässiges abstandsgebilde
EP2413728B1 (de) Sohleneinheit für schuhwerk und damit versehenes schuhwerk
EP2611325B1 (de) Schaftanordnung für schuhwerk sowie schuhwerk damit
EP3001922B1 (de) Schuhsohlenverbund, damit aufgebautes schuhwerk und verfahren zu dessen herstellung
DE69913964T2 (de) Dampfdurchlaessige und wasserdichte sohle fuer schuhe
EP1605790B1 (de) Schuh mit atmungsaktiver sohle
EP2298111B1 (de) Flexible Innensohle für geschlossene Schuhe
DE102010006150A1 (de) Schaftanordnung für Schuhwerk sowie Schuhwerk damit
DE3820099C2 (de) Schuhwerk
EP2528463B1 (de) Schaftanordnung für schuhwerk sowie schuhwerk damit
DE202014100250U1 (de) Schuhwerk mit einer luftdurchlässigen Lage und einem luftdurchlässigen Abschnitt in einem unteren Umfangsbereich der Schaftanordnung
DE202014100248U1 (de) Schuhwerk mit einer luftdurchlässigen Lage und einem luftdurchlässigen Abschnitt in einem unteren Umfangsbereich der Schaftanordnung
DE202015002270U1 (de) Ventilationselement für den Einsatz in einem Schaftboden eines Schuhs und Schuh
DE202014100249U1 (de) Schuhwerk mit einer luftdurchlässigen Lage und einem luftdurchlässigen Abschnitt in einem unteren Umfangsbereich der Schaftanordnung
DE202010017647U1 (de) Wasserdichter, atmungsaktiver Schuh
DE202013009049U1 (de) Schuhwerk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 2328435

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170711

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: A43B 7/12 20060101ALI20181204BHEP

Ipc: A43B 7/08 20060101AFI20181204BHEP

Ipc: A43B 13/38 20060101ALI20181204BHEP

Ipc: A43B 23/02 20060101ALI20181204BHEP

Ipc: A43B 7/06 20060101ALI20181204BHEP

Ipc: A43B 1/04 20060101ALI20181204BHEP

Ipc: D04B 1/24 20060101ALI20181204BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
AC Divisional application: reference to earlier application

Ref document number: 2328435

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

INTG Intention to grant announced

Effective date: 20190625

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009015902

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1159976

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20191017

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190731

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191031

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191101

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009015902

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200608

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220518

Year of fee payment: 14

Ref country code: GB

Payment date: 20220520

Year of fee payment: 14

Ref country code: FR

Payment date: 20220519

Year of fee payment: 14

Ref country code: DK

Payment date: 20220518

Year of fee payment: 14

Ref country code: DE

Payment date: 20220518

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20220519

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009015902

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20230630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1159976

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230608

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240103

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230608

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230608