EP2772226B1 - Appareil pour créer des incisions chirurgicales oculaires et de relâchement - Google Patents

Appareil pour créer des incisions chirurgicales oculaires et de relâchement Download PDF

Info

Publication number
EP2772226B1
EP2772226B1 EP14166814.5A EP14166814A EP2772226B1 EP 2772226 B1 EP2772226 B1 EP 2772226B1 EP 14166814 A EP14166814 A EP 14166814A EP 2772226 B1 EP2772226 B1 EP 2772226B1
Authority
EP
European Patent Office
Prior art keywords
eye
patient
oct
scanner
cornea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14166814.5A
Other languages
German (de)
English (en)
Other versions
EP2772226A2 (fr
EP2772226A3 (fr
Inventor
William Culbertson
David Angeley
George Marcellino
Dan E. Andersen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMO Development LLC
Original Assignee
AMO Development LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39759860&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2772226(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by AMO Development LLC filed Critical AMO Development LLC
Priority to EP23183550.5A priority Critical patent/EP4292573A3/fr
Publication of EP2772226A2 publication Critical patent/EP2772226A2/fr
Publication of EP2772226A3 publication Critical patent/EP2772226A3/fr
Application granted granted Critical
Publication of EP2772226B1 publication Critical patent/EP2772226B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1637Correcting aberrations caused by inhomogeneities; correcting intrinsic aberrations, e.g. of the cornea, of the surface of the natural lens, aspheric, cylindrical, toric lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1648Multipart lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1662Instruments for inserting intraocular lenses into the eye
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2002/1681Intraocular lenses having supporting structure for lens, e.g. haptics
    • A61F2002/1683Intraocular lenses having supporting structure for lens, e.g. haptics having filiform haptics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2002/1681Intraocular lenses having supporting structure for lens, e.g. haptics
    • A61F2002/16901Supporting structure conforms to shape of capsular bag
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00855Calibration of the laser system
    • A61F2009/00859Calibration of the laser system considering nomograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/0087Lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00878Planning
    • A61F2009/0088Planning based on wavefront
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00885Methods or devices for eye surgery using laser for treating a particular disease
    • A61F2009/00887Cataract
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00897Scanning mechanisms or algorithms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00736Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
    • A61F9/00754Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments for cutting or perforating the anterior lens capsule, e.g. capsulotomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00802Methods or devices for eye surgery using laser for photoablation
    • A61F9/00812Inlays; Onlays; Intraocular lenses [IOL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/009Auxiliary devices making contact with the eyeball and coupling in laser light, e.g. goniolenses

Definitions

  • the present invention relates to ophthalmic surgical systems.
  • Cataract extraction is one of the most commonly performed surgical procedures in the world with estimated 2.5 million cases performed annually in the United States and 9.1 million cases worldwide in 2000. This was expected to increase to approximately 13.3 million estimated global cases in 2006.
  • This market is composed of various segments including intraocular lenses for implantation, viscoelastic polymers to facilitate surgical maneuvers, disposable instrumentation including ultrasonic phacoemulsification tips, tubing, and various knives and forceps.
  • Modem cataract surgery is typically performed using a technique termed phacoemulsification in which an ultrasonic tip with an associated water stream for cooling purposes is used to sculpt the relatively hard nucleus of the lens after performance of an opening in the anterior lens capsule termed anterior capsulotomy or more recently capsulorhexis.
  • a synthetic foldable intraocular lens (IOLs) is inserted into the eye through a small incision.
  • cataract patients are astigmatic. Astigmatism can occur when the cornea has a different curvature one direction than the other. IOLs are not presently used to correct beyond 5D of astigmatism, even though many patients have more severe aberrations. Correcting it further often involves making the corneal shape more spherical, or at least more radially symmetrical. There have been numerous approaches, including Comeaplasty, Astigmatic Keratotomy (AK), Corneal Relaxing Incisions (CRT), and Limbal Relaxing Incisions (LRI). All are done using manual, mechanical incisions. Presently, astigmatism cannot easily or predictably be corrected fully using standard techniques and approaches.
  • WO 93/08877 relates to a laser based method and apparatus for corneal surgery. It is intended to be applied primarily to ablate organic material, in human cornea in particular.
  • the invention uses a laser source which has the characteristics of providing a shallow ablation depth and a low ablation energy density threshold to achieve optically smooth ablated corneal surfaces.
  • WO 2006/074469 divulges a scanning system for incising tissue in an eye comprising an ultrafast laser source, an optical coherence tomography device, a scanner and a controller.
  • Rapid and precise opening formation in the cornea and/or limbus are possible using a scanning system that implements patterned laser cutting.
  • the patterned laser cutting improves accuracy and precision, while decreasing procedure time.
  • a scanning system for treating target tissue in a patient's eye includes a light source for generating a light beam, a scanner for deflecting the light beam to form first and second treatment patterns of the light beam under the control of a controller, and a delivery system for delivering the first treatment pattern to the target tissue to form a cataract incision therein that provides access to an eye chamber of the patient's eye.
  • the delivery system is also for delivering the second treatment pattern to the target tissue to form a relaxation incision along or near limbus tissue or along corneal tissue anterior to the limbus tissue of the patient's eye to reduce astigmatism thereof.
  • the techniques and systems disclosed herein provide many advantages over the current standard of care. Specifically, rapid and precise openings in the cornea and/or limbus are formed using 3-dimensional patterned laser cutting. The accuracy and precision of the incisions are improved over traditional methods, while the duration of the procedure and the risk associated with creating incisions are both reduced.
  • the present invention can utilize anatomical and optical characterization and feedback to perform astigmatic keratotomy such as limbal and corneal relaxing incisions in conjunction with the creation of surgical incision that provides the surgeon access to the anterior chamber of an eye. The surgical incision may be made completely, or partially, depending upon the clinical situation.
  • a wavefront sensor, interferometer, surface profiler, or other such device may be used to yield prescriptions for correcting the astigmatism or other visual aberrations.
  • these same devices may be used to verify the surgical correction of the patterned scanning system, even adjusting it during the treatment procedure to produce the desired outcome.
  • the present invention may be used in multiple sessions to coordinate the healing of the astigmatic correction, and drive the corrective treatment over the course of the wound healing process.
  • the present invention also provides for the image guided alignment of the incision.
  • the incisions enable greater precision or modifications to conventional ophthalmic procedures as well as enable new procedures.
  • the incision is not limited only to circular shapes but may be any shape that is conducive to healing or follow on procedures. These incisions might be placed such that they are able to seal spontaneously; or with autologous or synthetic tissue glue, photochemical bonding agent, or other such method.
  • the present invention provides for the automated generation of incision patterns for optimal effect.
  • Another procedure enabled by the techniques described herein provides for the controlled formation of an incision or pattern of incisions.
  • Conventional techniques are confined to areas accessible from outside the eye using mechanical cutting instruments and thus can only create incisions from anterior to posterior segments of tissue.
  • the controllable, patterned laser techniques described herein may be used to create an incision in virtually any position and in virtually any shape. Matching incisions may be made in both the anterior and posterior sections. The present invention is uniquely suited to perform such matching incisions.
  • these incisions may be tailored to complement an asymmetric IOL that is being inserted as part of the procedure or has been previously inserted.
  • the present invention enables the measurement of the IOL placement and subsequent automated calculation and generation of these complimentary corneal or limbus incisions.
  • the controllable, patterned laser techniques described herein have available and/or utilize precise lens measurement and other dimensional information that allows the incision or opening formation while minimizing impact on surrounding tissue.
  • the present invention can be implemented by a system that projects or scans an optical beam into a patient's eye 68, such as system 2 shown in Figure 1 which includes an ultrafast (UF) light source 4 (e.g. a femtosecond laser).
  • a beam may be scanned in a patient's eye in three dimensions: X, Y, Z.
  • the UF wavelength can vary between 1010nm to 1 100nm and the pulse width can vary from 100fs to 10000fs.
  • the pulse repetition frequency can also vary from 10kHz to 250kHz.
  • Safety limits with regard to unintended damage to non-targeted tissue bound the upper limit with regard to repetition rate and pulse energy; while threshold energy, time to complete the procedure and stability bound the lower limit for pulse energy and repetition rate.
  • the peak power of the focused spot in the eye 68 and specifically within the crystalline lens 69 and anterior capsule of the eye is sufficient to produce optical breakdown and initiate a plasma-mediated ablation process. Near-infrared wavelengths are preferred because linear optical absorption and scattering in biological tissue is reduced across that spectral range.
  • laser 4 may be a repetitively pulsed 1035 nm device that produces 500 fs pulses at a repetition rate of 100kHz and an individual pulse energy in the ten microjoule range.
  • Control electronics 300 is controlled by control electronics 300, via an input and output device 302, to create optical beam 6.
  • Control electronics 300 may be a computer, microcontroller, etc. In this example, the entire system is controlled by the controller 300, and data moved through input/output device IO 302.
  • a graphical user interface GUI 304 may be used to set system operating parameters, process user input (UI) 306 on the GUI 304, and display gathered information such as images of ocular structures.
  • the generated UF light beam 6 proceeds towards the patient eye 68 passing through half-wave plate, 8, and linear polarizer, 10.
  • the polarization state of the beam can be adjusted so that the desired amount of light passes through half-wave plate 8 and linear polarizer 10, which together act as a variable attenuator for the LTF beam 6. Additionally, the orientation of linear polarizer 10 determines the incident polarization state incident upon beamcombiner 34, thereby optimizing beamcombiner throughput.
  • the UF beam proceeds through a shutter 12, aperture 14, and a pickoff device 16.
  • the system controlled shutter 12 ensures on/off control of the laser for procedural and safety reasons.
  • the aperture sets an outer useful diameter for the laser beam and the pickoff monitors the output of the useful beam.
  • the pickoff device 16 includes of a partially reflecting mirror 20 and a detector 18. Pulse energy, average power, or a combination may be measured using detector 18. The information can be used for feedback to the half-wave plate 8 for attenuation and to verify whether the shutter 12 is open or closed.
  • the shutter 12 may have position sensors to provide a redundant state detection.
  • the beam passes through a beam conditioning stage 22, in which beam parameters such as beam diameter, divergence, circularity, and astigmatism can be modified.
  • the beam conditioning stage 22 includes a 2 element beam expanding telescope comprised of spherical optics 24 and 26 in order to achieve the intended beam size and collimation.
  • an anamorphic or other optical system can be used to achieve the desired beam parameters.
  • the factors used to determine these beam parameters include the output beam parameters of the laser, the overall magnification of the system, and the desired numerical aperture (NA) at the treatment location.
  • the optical system 22 can be used to image aperture 14 to a desired location (e.g. the center location between the 2-axis scanning device 50 described below). In this way, the amount of light that makes it through the aperture 14 is assured to make it through the scanning system. Pickoff device 16 is then a reliable measure of the usable light.
  • beam 6 After exiting conditioning stage 22, beam 6 reflects off of fold mirrors 28, 30, & 32. These mirrors can be adjustable for alignment purposes.
  • the beam 6 is then incident upon beam combiner 34.
  • Beamcombiner 34 reflects the UF beam 6 (and transmits both the OCT 114 and aim 202 beams described below).
  • the angle of incidence is preferably kept below 45 degrees and the polarization where possible of the beams is fixed.
  • the orientation of linear polarizer 10 provides fixed polarization.
  • the z-adjust includes a Galilean telescope with two lens groups 42 and 44 (each lens group includes one or more lenses).
  • Lens group 42 moves along the z-axis about the collimation position of the telescope.
  • the focus position of the spot in the patient's eye 68 moves along the z-axis as indicated.
  • the z-adjust telescope has an approximate 2x beam expansion ratio and a 1:1 relationship of the movement of lens 42 to the movement of the focus.
  • lens group 44 could be moved along the z-axis to actuate the z-adjust, and scan.
  • the z-adjust is the z-scan device for treatment in the eye 68. It can be controlled automatically and dynamically by the system and selected to be independent or to interplay with the X-Y scan device described next.
  • Mirrors 36 and 38 can be used for aligning the optical axis with the axis of z-adjust device 40.
  • the beam 6 is directed to the x-y scan device by mirrors 46 & 48.
  • Mirrors 46 & 48 can be adjustable for alignment purposes.
  • X-Y scanning is achieved by the scanning device 50 preferably using two mirrors 52 & 54 under the control of control electronics 300, which rotate in orthogonal directions using motors, galvanometers, or any other well known optic moving device.
  • Mirrors 52 & 54 are located near the telecentric position of the objective lens 58 and contact lens 66 combination described below. Tilting these mirrors 52/54 causes them to deflect beam 6, causing lateral displacements in the plane of UF focus located in the patient's eye 68.
  • Objective lens 58 may be a complex multi-element lens element, as shown, and represented by lenses 60, 62, and 64.
  • the complexity of the lens 58 will be dictated by the scan field size, the focused spot size, the available working distance on both the proximal and distal sides of objective 58, as well as the amount of aberration control.
  • An f-theta lens 58 of focal length 60mm generating a spot size of 10 ⁇ m, over a field of 10mm, with an input beam size of 15mm diameter is an example.
  • X-Y scanning by scanner 50 may be achieved by using one or more moveable optical elements (e.g. lenses, gratings) which also may be controlled by control electronics 300, via input and output device 302.
  • the aiming and treatment scan patterns can be automatically generated by the scanner 50 under the control of controller 300. Such patterns may be comprised of a single spot of light, multiple spots of light, a continuous pattern of light, multiple continuous patterns of light, and/or any combination of these.
  • the aiming pattern (using aim beam 202 described below) need not be identical to the treatment pattern (using light beam 6), but preferably at least defines its boundaries in order to assure that the treatment light is delivered only within the desired target area for patient safety. This may be done, for example, by having the aiming pattern provide an outline of the intended treatment pattern. This way the spatial extent of the treatment pattern may be made known to the user, if not the exact locations of the individual spots themselves, and the scanning thus optimized for speed, efficiency and accuracy.
  • the aiming pattern may also be made to be perceived as blinking in order to further enhance its visibility to the user.
  • An optional contact lens 66 which can be any suitable ophthalmic lens, can be used to help further focus the optical beam 6 into the patient's eye 68 while helping to stabilize eye position.
  • the positioning and character of optical beam 6 and/or the scan pattern the beam 6 forms on the eye 68 may be further controlled by use of an input device such as a joystick, or any other appropriate user input device (e.g. GUI 304) to position the patient and/or the optical system.
  • the UF laser 4 and controller 300 can be set to target the surfaces of the targeted structures in the eye 68 and ensure that the beam 6 will be focused where appropriate and not unintentionally damage non-targeted tissue.
  • Imaging modalities and techniques described herein such as for example, Optical Coherence Tomography (OCT), Purkinje imaging, Scheimpflug imaging, or ultrasound may be used to determine the location and measure the thickness of the lens and lens capsule to provide greater precision to the laser focusing methods, including 2D and 3D patterning.
  • Laser focusing may also be accomplished using one or more methods including direct observation of an aiming beam, Optical Coherence Tomography (OCT), Purkinje imaging, Scheimpflug imaging, ultrasound, or other known ophthalmic or medical imaging modalities and/or combinations thereof.
  • an OCT device 100 is described.
  • An OCT scan of the eye will provide information about the axial location of the anterior and posterior lens capsule, the boundaries of the cataract nucleus, as well as the depth of the anterior chamber. This information is then be loaded into the control electronics 300, and used to program and control the subsequent laser-assisted surgical procedure. The information may also be used to determine a wide variety of parameters related to the procedure such as, for example, the upper and lower axial limits of the focal planes used for cutting the lens capsule and segmentation of the lens cortex and nucleus, and the thickness of the lens capsule among others.
  • the OCT device 100 in Figure 1 includes a broadband or a swept light source 102 that is split by a fiber coupler 104 into a reference arm 106 and a sample arm 110.
  • the reference arm 106 includes a module 108 containing a reference reflection along with suitable dispersion and path length compensation.
  • the sample arm 110 of the OCT device 100 has an output connector 112 that serves as an interface to the rest of the UF laser system.
  • the return signals from both the reference and sample arms 106, 110 are then directed by coupler 104 to a detection device 128, which employs either time domain, frequency or single point detection techniques.
  • a frequency domain technique is used with an OCT wavelength of 920nm and bandwidth of 100nm.
  • the OCT beam 114 is collimated using lens 116.
  • the size of the collimated beam 114 is determined by the focal length of lens 116.
  • the size of the beam 114 is dictated by the desired NA at the focus in the eye and the magnification of the beam train leading to the eye 68.
  • OCT beam 114 does not require as high an NA as the UF beam 6 in the focal plane and therefore the OCT beam 114 is smaller in diameter than the UF beam 6 at the beamcombiner 34 location.
  • aperture 118 Following collimating lens 116 is aperture 118 which further modifies the resultant NA of the OCT beam 114 at the eye.
  • the diameter of aperture 118 is chosen to optimize OCT light incident on the target tissue and the strength of the return signal.
  • Polarization control element 120 which may be active or dynamic, is used to compensate for polarization state changes which may be induced by individual differences in corneal birefringence, for example.
  • Mirrors 122 & 124 are then used to direct the OCT beam 114 towards beamcombiners 126 & 34.
  • Mirrors 122 & 124 may be adjustable for alignment purposes and in particular for overlaying of OCT beam 114 to UF beam 6 subsequent to beamcombiner 34.
  • beamcombiner 126 is used to combine the OCT beam 114 with the aim beam 202 described below.
  • OCT beam 114 follows the same path as UF beam 6 through the rest of the system. In this way, OCT beam 114 is indicative of the location of UF beam 6.
  • OCT beam 114 passes through the z-scan 40 and x-y scan 50 devices then the objective lens 58 , contact lens 66 and on into the eye 68. Reflections and scatter off of structures within the eye provide return beams that retrace back through the optical system, into connector 112, through coupler 104, and to OCT detector 128. These return back reflections provide the OCT signals that are in turn interpreted by the system as to the location in X, Y Z of UF beam 6 focal location.
  • OCT device 100 works on the principle of measuring differences in optical path length between its reference and sample arms. Therefore, passing the OCT through z-adjust 40 does not extend the z-range of OCT system 100 because the optical path length does not change as a function of movement of 42.
  • OCT system 100 has an inherent z-range that is related to the detection scheme, and in the case of frequency domain detection it is specifically related to the spectrometer and the location of the reference arm 106. In the case of OCT system 100 used in Figure 1 , the z-range is approximately 1-2mm in an aqueous environment. Extending this range to at least 4mm involves the adjustment of the path length of the reference arm within OCT system 100.
  • Passing the OCT beam 114 in the sample arm through the z-scan of z-adjust 40 allows for optimization of the OCT signal strength. This is accomplished by focusing the OCT beam 114 onto the targeted structure while accommodating the extended optical path length by commensurately increasing the path within the reference arm 106 of OCT system 100.
  • An aim subsystem 200 is employed in the configuration shown in Figure 1 .
  • the aim beam 202 is generated by a an aim beam light source 201, such as a helium-neon laser operating at a wavelength of 633nm.
  • a laser diode in the 630-650nm range could be used.
  • the advantage of using the helium neon 633nm beam is its long coherence length, which would enable the use of the aim path as a laser unequal path interferometer (LUPI) to measure the optical quality of the beam train, for example.
  • LUPI laser unequal path interferometer
  • the aim beam 202 is collimated using lens 204.
  • the size of the collimated beam is determined by the focal length of lens 204.
  • the size of the aim beam 202 is dictated by the desired NA at the focus in the eye and the magnification of the beam train leading to the eye 68.
  • aim beam 202 should have close to the same NA as UF beam 6 in the focal plane and therefore aim beam 202 is of similar diameter to the UF beam at the beamcombiner 34 location. Because the aim beam is meant to stand-in for the UF beam 6 during system alignment to the target tissue of the eye, much of the aim path mimics the UF path as described previously.
  • the aim beam 202 proceeds through a half-wave plate 206 and linear polarizer 208.
  • the polarization state of the aim beam 202 can be adjusted so that the desired amount of light passes through polarizer 208.
  • Elements 206 & 208 therefore act as a variable attenuator for the aim beam 202.
  • the orientation of polarizer 208 determines the incident polarization state incident upon beamcombiners 126 and 34, thereby fixing the polarization state and allowing for optimization of the beamcombiners' throughput.
  • the drive current can be varied to adjust the optical power.
  • the aim beam 202 proceeds through a shutter 210 and aperture 212.
  • the system controlled shutter 210 provides on/off control of the aim beam 202.
  • the aperture 212 sets an outer useful diameter for the aim beam 202 and can be adjusted appropriately.
  • a calibration procedure measuring the output of the aim beam 202 at the eye can be used to set the attenuation of aim beam 202 via control of polarizer 206.
  • the aim beam 202 next passes through a beam conditioning device 214.
  • Beam parameters such as beam diameter, divergence, circularity, and astigmatism can be modified using one or more well known beaming conditioning optical elements.
  • the beam conditioning device 214 can simply include a beam expanding telescope with two optical elements 216 and 218 in order to achieve the intended beam size and collimation.
  • the final factors used to determine the aim beam parameters such as degree of collimation are dictated by what is necessary to match the UF beam 6 and aim beam 202 at the location of the eye 68. Chromatic differences can be taken into account by appropriate adjustments of beam conditioning device 214.
  • the optical system 214 is used to image aperture 212 to a desired location such as a conjugate location of aperture 14.
  • the aim beam 202 next reflects off of fold mirrors 222 & 220, which are preferably adjustable for alignment registration to UF beam 6 subsequent to beam combiner 34.
  • the aim beam 202 is then incident upon beam combiner 126 where the aim beam 202 is combined with OCT beam 114.
  • Beamcombiner 126 reflects the aim beam 202 and transmits the OCT beam 114, which allows for efficient operation of the beamcombining functions at both wavelength ranges. Alternatively, the transmit and reflect functions of beamcombiner 126 can be reversed and the configuration inverted. Subsequent to beamcombiner 126, aim beam 202 along with OCT beam 114 is combined with UF beam 6 by beamcombiner 34.
  • Imaging system 71 A device for imaging the target tissue on or within the eye 68 is shown schematically in Figure 1 as imaging system 71.
  • Imaging system includes a camera 74 and an illumination light source 86 for creating an image of the target tissue.
  • the imaging system 71 gathers images which may be used by the system controller 300 for providing pattern centering about or within a predefined structure.
  • the illumination light source 86 for the viewing is generally broadband and incoherent.
  • light source 86 can include multiple LEDs as shown.
  • the wavelength of the viewing light source 86 is preferably in the range of 700nm to 750nm, but can be anything which is accommodated by the beamcombiner 56, which combines the viewing light with the beam path for UF beam 6 and aim beam 202 (beamcombiner 56 reflects the viewing wavelengths while transmitting the OCT and UF wavelengths).
  • the beamcombiner 56 may partially transmit the aim wavelength so that the aim beam 202 can be visible to the viewing camera 74.
  • Optional polarization element 84 in front of light source 86 can be a linear polarizer, a quarter wave plate, a half-wave plate or any combination, and is used to optimize signal. A false color image as generated by the near infrared wavelength is acceptable.
  • the illumination light from light source 86 is directed down towards the eye using the same objective lens 58 and contact lens 66 as the UF and aim beam 6, 202.
  • the light reflected and scattered off of various structures in the eye 68 are collected by the same lenses 58 & 66 and directed back towards beamcombiner 56. There, the return light is directed back into the viewing path via beam combiner and mirror 82, and on to camera 74.
  • Camera 74 can be, for example but not limited to, any silicon based detector array of the appropriately sized format.
  • Video lens 76 forms an image onto the camera's detector array while optical elements 80 & 78 provide polarization control and wavelength filtering respectively.
  • Aperture or iris 81 provides control of imaging NA and therefore depth of focus and depth of field.
  • a small aperture provides the advantage of large depth of field which aids in the patient docking procedure.
  • the illumination and camera paths can be switched.
  • aim light source 200 can be made to emit in the infrared which would not directly visible, but could be captured and displayed using imaging system 71.
  • Coarse adjust registration is usually needed so that when the contact lens 66 comes into contact with the cornea, the targeted structures are in the capture range of the X, Y scan of the system. Therefore a docking procedure is preferred, which preferably takes in account patient motion as the system approaches the contact condition (i.e. contact between the patient's eye 68 and the contact lens 66.
  • the viewing system 71 is configured so that the depth of focus is large enough such that the patient's eye 68 and other salient features may be seen before the contact lens 66 makes contact with eye 68.
  • a motion control system 70 is integrated into the overall control system 2, and may move the patient, the system 2 or elements thereof, or both, to achieve accurate and reliable contact between contact lens 66 and eye 68.
  • a vacuum suction subsystem and flange may be incorporated into system 2, and used to stabilize eye 68.
  • the alignment of eye 68 to system 2 via contact lens 66 may be accomplished while monitoring the output of imaging system 71, and performed manually or automatically by analyzing the images produced by imaging system 71 electronically by means of control electronics 300 via IO 302. Force and/or pressure sensor feedback may also be used to discern contact, as well as to initiate the vacuum subsystem.
  • FIG. 2 An alternative beamcombining configuration is shown in the alternate embodiment of Figure 2 .
  • the passive beamcombiner 34 in Figure 1 can be replaced with an active combiner 140 in Figure 2 .
  • the active beamcombiner 34 can be a moving or dynamically controlled element such as a galvanometric scanning mirror, as shown.
  • Active combiner 140 changes it angular orientation in order to direct either the UF beam 6 or the combined aim and OCT beams 202,114 towards the scanner 50 and eventually eye 68 one at a time.
  • the advantage of the active combining technique is that it avoids the difficulty of combining beams with similar wavelength ranges or polarization states using a passive beam combiner. This ability is traded off against the ability to have simultaneous beams in time and potentially less accuracy and precision due to positional tolerances of active beam combiner 140.
  • FIG. 3 Another alternate embodiment is shown in Figure 3 which is similar to that of Figure 1 but utilizes an alternate approach to OCT 100.
  • OCT 101 is the same as OCT 100 in Figure 1 , except that the reference arm 106 has been replaced by reference arm 132.
  • This tree-space OCT reference arm 132 is realized by including beamsplitter 130 after lens 116.
  • the reference beam 132 then proceeds through polarization controlling element 134 and then onto the reference return module 136.
  • the reference return module 136 contains the appropriate dispersion and path length adjusting and compensating elements and generates an appropriate reference signal for interference with the sample signal.
  • the sample arm of OCT 101 now originates subsequent to beamsplitter 130.
  • the potential advantages of this free space configuration include separate polarization control and maintenance of the reference and sample arms.
  • the fiber based beam splitter 104 of OCT 101 can also be replaced by a fiber based circulator. Alternately, both OCT detector 128 and beamsplitter 130 might be moved together as opposed to reference
  • FIG 4 shows another alternative embodiment for combining OCT beam 114 and UF beam 6.
  • OCT 156 (which can include either of the configurations of OCT 100 or 101) is configured such that its OCT beam 154 is coupled to UF beam 6 after the z-scan 40 using beamcombiner 152. In this way, OCT beam 154 avoids using the zadjust. This allows the OCT 156 to possibly be folded into the beam more easily and shortening the path length for more stable operation. This OCT configuration is at the expense of an optimized signal return strength as discussed with respect to Figure 1 .
  • the present invention provides a system for creating the incision to allow access for the lens removal instrumentation, typically referred to as the "cataract incision.”
  • This is shown as cataract incision 402 on the patient's eye 68 illustrated in Figures 5A & 5B .
  • cataract incision 402 is made to eye 68 to provide access to crystalline lens 412 through cornea 406 while pupil 404 is dilated.
  • the incision 402 is shown in cornea 406, but could be alternately placed in limbus 408 or sclera 410.
  • the incision may be made with adjustable arcuate dimensions (both radius and extent), radial orientation and depth.
  • a complete cut may not be desirable in all situations, such as in an unsterile field where opening the eye to the environment poses further risks of endophthalmitis, for example.
  • a cataract incision that only partially penetrates cornea 406, limbus 408 and/or sclera 410 is provided.
  • the resident imaging apparati in system 2 may also provide input for planning the incision.
  • imaging system 71 and/or OCT 100 could identify the limbal boundary, and guide the incision to follow it along at a predetermined depth.
  • surgeons often have difficulty in starting the incision at the correct location relative to limbus 410 when employing cold steel techniques, as well as keeping the knife straight to avoid incisions that ultimately penetrate both cornea 406 and sclera 410.
  • Such angled incisions prove more likely to have torn edges and significantly higher risks of endophthalmitis.
  • the present invention may make use of the integrated OCT system 100 to discern limbus 408 and sclera 410 relative to cornea 406 by virtue of the large optical scattering differences between them. These can be directly imaged using OCT device 100, and the location of the transition (limbus 408) from clear (cornea 406) to scattering (sclera 410) can be determined and used by CPU 300 of system 2 to guide the placement of the laser-created incisions.
  • the scanner position values corresponding to this transition define the location of limbus 408.
  • OCT 100 can guide the position of beam 6 relative to limbus 408.
  • This same imaging approach may be used to discern the thickness of the tissue, as well.
  • the depth of the incisions and their disposition within the tissue may be precisely defined.
  • wavelengths for OCT device 100 preferably accounts for the requirement of scleral measurement. Wavelengths in the range of 800 - 1400 nm are especially suited for this, as they are less scattered in tissue (and penetrate to depths of ⁇ 1mm) while not suffering from linear optical absorption by water or other tissue constituents that would otherwise diminish their performance.
  • Standard cataract incisions typically require ⁇ 30° of limbal angle as seen from directly above the eye. Such incisions have been shown to induce from 0-1.0D of astigmatism, on average. Thus, achieving postoperative emmetropia can be made more difficult.
  • the present system may also produce Astigmatic Kerototomy (AK) incisions.
  • AK Astigmatic Kerototomy
  • Such incisions are routinely used to correct astigmatism by relaxing an asymmetrically shaped cornea along its steep axis. Similar to the cataract incision, such relaxing incisions (RIs) must be accurately placed along or nearby the limbus and are known as Limbal Relaxing Incisions (LRIs). Relaxing incisions, however, are only partially penetrating incisions.
  • CRIs Corneal Relaxing Incisions
  • the RIs may be planned and executed in conjunction with the cataract incision to achieve a better visual correction than otherwise possible.
  • the cataract incision should not be placed at or near the steep axis of the cornea. If it is, only one RI is traditionally recommended.
  • nomograms based upon empirical observations that are currently used by clinicians to prescribe the placement and extent of RIs. These include, but are not limited to, the Donnenfeld, Gills, Nichamin, and Koch nomograms.
  • Figure 6 illustrates system 2 as shown in Figure 1 , but with a sub-system to characterize the astigmatism of the patient's cornea.
  • a profilometer 415 distal to X-Y scanner 50 is included to allow for a continuous unobstructed view of the cornea of patient's eye 68.
  • Profilometer 415 and its sensor 417 are added to system 2 via beamcombiner 419 and are connected as shown in Figure 6 to the system controller 300 through input/output bus 302.
  • contact lens 66 or its disposition relative to cornea 406 of eye 68 may have to be modified, or compensated for, to suit the profilometer's mode of operation.
  • profilometer 415 requires the cornea to be in its natural state, not forced into contact with a surface and possibly conforming to its shape, to accurately measure cornea 406 and provide data to system 2 for calculation and registration via input/output bus 302 and control electronics 300.
  • contact lens 66 may be removed from contact with the eye, and the diagnostic and therapeutic portions of system 2 made to traverse gap 421 to eye 68 as shown in Figure 9 .
  • the change in relationship between eye 68 and system 2 made by removing contact lens 66 must then be accounted for in ranging and registration of beams 6, 114, and 202.
  • the use of OCT 100 to discern the location and shape of cornea 406 is especially useful in this regard, as the reflection from cornea 406 will provide a very strong signal making registration straight forward.
  • profilometer 415 may be used to prescribe an astigmatic keratotomy to correct the shape of a patient's cornea to diminish its astigmatism.
  • the profilometer 415 may be a placido system, triangulation system, laser displacement sensor, interferometer, or other such device, which measures the corneal topography also known as the surface profile or the surface sag (i.e. sagitta) of the cornea as a function of the transverse dimension to some defined axis. This axis is typically the visual axis of the eye but can also be the optical axis of the cornea.
  • profilometer 415 may be replaced by a wavefront sensor to more fully optically characterize the patient's eye.
  • a wavefront sensing system measures the aberration of the eye's optical system.
  • a common technique for accomplishing this task is a Shack-Hartmann wavefront sensor, which measures the shape of the wavefronts of light (surfaces of constant phase) that exit the eye's pupil. If the eye were a perfect optical system, these wavefronts would be perfectly flat. Since the eye is not perfect, the wavefronts are not flat and have irregular curved shapes.
  • a Shack-Hartmann sensor divides up the incoming beam and its overall wavefront into sub-beams, dividing up the wavefront into separate facets, each focused by a microlens onto a subarray of detection pixels.
  • the wavefront sensor may be used by controller 300 to automatically prescribe an astigmatic keratotomy via predictive algorithms resident in the system, as mentioned above.
  • Figure 7 shows a possible configuration of such an astigmatic keratotomy.
  • eye 68 is shown and a set of relaxing incisions RI 420 are made at locations within the area of the cornea 406.
  • such relaxing incisions may be made in the limbus 408, or sclera 410.
  • Astigmatism is present when the cornea is not spherical; that is, it is steeper in one meridian than other (orthogonal) meridian. Determining the nature of the corneal shape is important, whether the astigmatism is "with-the-rule,” "against-the-rule,” or oblique.
  • LRIs Limbal relaxing incisions
  • AK astigmatic keratotomy
  • LRIs can correct astigmatism up to 8 diopters (D); however, the use of LRIs is presently routinely reserved for corrections of 0.5-4 D of astigmatism.
  • LRIs are a weaker corrective procedure compared to corneal relaxing incisions (CRIs)
  • CRIs corneal relaxing incisions
  • LRIs produce less postoperative glare and less patient discomfort. In addition, these incisions heal faster. Unlike CRIs, making the incision at the limbus preserves the perfect optical qualities of the cornea. LRIs are also a more forgiving procedure, and surgeons often get excellent results, even with early cases.
  • the desired length, number, and depth of relaxing incisions 420 can be determined using nomograms.
  • a starting point nomogram can titrate surgery by length and number of LRIs. However, the length and placement can vary based on topography and other factors. The goal is to reduce cylindrical optical power and to absolutely avoid overcorrecting with-the-rule astigmatism, because against-the-rule astigmatism should be minimized.
  • Relaxing incisions formed in the sclera, limbus, or cornea are generally used for cases of with-the-rule astigmatism and low against-the-rule astigmatism.
  • the LRI When using the relaxing incision in conjunction with against-the-rule astigmatism, the LRI can be moved slightly into the cornea, or, alternatively, the LRI could be placed opposite another relaxing incision in the sclera, limbus or cornea.
  • the relaxing incision is made temporally, and the LRIs are placed at the steep axis.
  • the placement of the LRI should be customized to the topography of the cornea.
  • the LRI in the steepest axis can be elongated slightly and then shortened the same amount in the flatter of the 2 steep axes. Paired LRIs do not have to be made in the same meridian.
  • RI 420 can be made from the inside out and thus better preserve the structural integrity of the tissue and limit the risk of tearing and infection.
  • the cataract incision 402 and the relaxation incision(s) 420 can be made automatically using the imaging and scanning features of system 2.
  • a pair of treatment patterns can be generated that forms incisions 402 and 420, thus providing more accurate control over the absolute and relative positioning of these incisions.
  • the pair of treatment patterns can be applied sequentially, or simultaneously (i.e. the pair of treatment patterns can be combined into a single treatment pattern that forms both types of incisions).
  • an aiming beam and/or pattern from system 2 can be first projected onto the target tissue with visible light indicating where the treatment pattern(s) will be projected. This allows the surgeon to adjust and confirm the size, location and shape of the treatment pattern(s) before their actual application. Thereafter, the two or three dimensional treatment pattern(s) can be rapidly applied to the target tissue using the scanning capabilities of system 2.
  • FIG. 8 A cross-sectional view of an alternate geometry for cataract incision 402 is shown to have a bevel feature 430. Bevel feature 430 may be useful for wound healing, sealing, or locking. Such 3-dimensional cataract incisions 402 can be achieved accurately and quickly utilizing the 3-dimensional scanning ability of system 2. Although a beveled incision is shown, many such geometries are enabled using the present invention, and within its scope. As before, the incision 402 is shown in cornea 406, but could be alternately placed in limbus 408 or sclera 410.
  • a specialized contact lens can be used for large fields as when incisions are made in the outer most regions such as the limbus or sclera.
  • This contact lens could be in the form of a gonioscopic mirror or lens.
  • the lens does not need to be diametrically symmetric. Just one portion of the lens can be extended to reach the outer regions of the eye such as the limbus 408 and sclera 410. Any targeted location can be reached by the proper rotation of the specialized lens.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cardiology (AREA)
  • Prostheses (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laser Surgery Devices (AREA)
  • Eye Examination Apparatus (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)

Claims (13)

  1. Système de balayage (2) pour inciser un tissu cible dans l'œil (68) d'un patient, le système de balayage comprenant :
    une source laser ultra rapide (4) configurée pour produire un faisceau laser (6) comprenant une pluralité d'impulsions laser ;
    un dispositif (100) de tomographie par cohérence optique (OCT) configuré pour générer des signaux qui peuvent être utilisés pour créer une image de tissu oculaire qui inclut une cornée, un limbe et une sclère de l'œil du patient ;
    un scanner (40, 50) configuré pour diriger le faisceau laser vers différents emplacements dans l'œil du patient ;
    et
    un dispositif de commande (300) fonctionnellement couplé à la source laser, au dispositif OCT et au scanner, et configuré pour :
    (a) actionner le dispositif OCT pour balayer le tissu oculaire afin de générer des données d'imagerie pour le tissu cible ;
    (b) commander la formation d'un premier motif de traitement par le scanner en réponse aux données d'imagerie générées, de telle sorte que le faisceau laser crée une incision de cataracte dans la cornée ou le limbe qui donne accès à une chambre oculaire de l'œil du patient, dans lequel l'incision de la cataracte comprend une caractéristique en biseau, et
    pour commander la formation d'un second motif de traitement par le scanner en réponse aux données d'imagerie de telle sorte que le faisceau laser crée une ou plusieurs incisions de relâchement le long du tissu de limbe ou le long du tissu de cornée antérieur au limbe afin de réduire l'astigmatisme ;
    dans lequel le système de balayage comprend en outre un système de distribution agencé en aval du scanner pour distribuer les premier et second motifs de traitement au tissu cible.
  2. Système selon la revendication 1, dans lequel la source laser et le scanner sont configurés pour fonctionner de telle sorte que le faisceau laser crée l'incision de la cataracte de sorte que l'incision de la cataracte ne pénètre que partiellement dans la cornée ou le limbe.
  3. Système selon la revendication 1, dans lequel la source laser et le scanner sont configurés pour fonctionner de telle sorte que le faisceau laser crée l'incision de la cataracte de sorte que l'incision de la cataracte est formée selon une forme arquée.
  4. Système selon la revendication 1, dans lequel la source laser et le scanner sont configurés pour fonctionner de telle sorte que le faisceau laser crée l'incision de relâchement en relâchant la cornée le long de son axe raide.
  5. Système selon la revendication 1, dans lequel la source laser et le scanner sont configurés pour fonctionner de telle sorte que le faisceau laser crée l'incision de la cataracte de telle sorte que l'incision de la cataracte n'est pas placée au niveau ou près d'un axe raide de la cornée.
  6. Système selon la revendication 1, comprenant en outre un profilomètre destiné à mesurer un profil de surface de la cornée de l'œil du patient, dans lequel le profil de surface de cornée mesuré peut être utilisé pour définir le motif de traitement de manière à traiter l'astigmatisme de l'œil du patient.
  7. Système selon la revendication 6, dans lequel le profilomètre est disposé de manière distale au scanner pour permettre une vue continue non obstruée de la cornée de l'œil du patient.
  8. Système selon l'une quelconque des revendications 1 à 5, comprenant en outre un capteur de front d'onde pour caractériser optiquement l'œil du patient, dans lequel les mesures de l'œil du patient effectuées par le capteur de front d'onde peuvent être utilisées pour définir le motif de traitement de manière à traiter l'astigmatisme de l'œil du patient.
  9. Système selon l'une quelconque des revendications précédentes, dans lequel au moins une des une ou plusieurs incisions de relâchement ne croise pas l'une parmi : (a) une surface antérieure du tissu cible et (b) une surface postérieure du tissu cible.
  10. Système selon l'une quelconque des revendications précédentes, dans lequel les une ou plusieurs incisions de relâchement comprennent une pluralité d'incisions distinctes.
  11. Système selon l'une quelconque des revendications précédentes, dans lequel au moins une des une ou plusieurs incisions de relâchement est créée en partant de l'intérieur et en progressant vers l'extérieur.
  12. Système selon l'une quelconque des revendications précédentes, dans lequel le scanner inclut un dispositif de balayage X-Y et un dispositif de balayage Z, le dispositif de balayage Z étant utilisable pour déplacer le point focal du faisceau laser le long d'un axe z qui est sensiblement aligné sur le faisceau laser, le dispositif de balayage X-Y étant utilisable pour déplacer la position de focalisation latéralement à l'axe z, dans lequel le faisceau laser se propage à travers le dispositif de balayage Z avant de se propager à travers le dispositif de balayage X-Y.
  13. Système selon la revendication 12 dans lequel le dispositif OCT est configuré pour produire un faisceau OCT dont la focalisation peut être déplacée le long d'un axe z par le dispositif de balayage Z et qui est balayé par le dispositif de balayage X-Y.
EP14166814.5A 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement Active EP2772226B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23183550.5A EP4292573A3 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US90694407P 2007-03-13 2007-03-13
EP08726822.3A EP2129345B8 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement
PCT/US2008/003382 WO2008112292A1 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP08726822.3A Division-Into EP2129345B8 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement
EP08726822.3A Division EP2129345B8 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP23183550.5A Division EP4292573A3 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement

Publications (3)

Publication Number Publication Date
EP2772226A2 EP2772226A2 (fr) 2014-09-03
EP2772226A3 EP2772226A3 (fr) 2014-11-12
EP2772226B1 true EP2772226B1 (fr) 2023-07-19

Family

ID=39759860

Family Applications (13)

Application Number Title Priority Date Filing Date
EP13173306.5A Revoked EP2649971B1 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement
EP13173305.7A Revoked EP2664308B1 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement
EP17195378.9A Active EP3308756B1 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions afin d'améliorer le placement de lentilles intraoculaires
EP20140177176 Withdrawn EP2803343A3 (fr) 2007-03-13 2008-03-13 Procédé pour améliorer le placement de lentille intraoculaire
EP14166814.5A Active EP2772226B1 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement
EP13164193.8A Active EP2617398B1 (fr) 2007-03-13 2008-03-13 Lentille intraoculaire pour placement amélioré
EP08726825.6A Active EP2129346B1 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions afin d'améliorer la mis en place d'une lentille intraoculaire
EP18206444.4A Active EP3466379B1 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement
EP08726822.3A Revoked EP2129345B8 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement
EP23183550.5A Pending EP4292573A3 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement
EP13164190.4A Active EP2617397B1 (fr) 2007-03-13 2008-03-13 Lentille intraoculaire pour placement amélioré
EP13164195.3A Active EP2620130B1 (fr) 2007-03-13 2008-03-13 Lentille intraoculaire avec placement amélioré
EP14166815.2A Active EP2772234B1 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement

Family Applications Before (4)

Application Number Title Priority Date Filing Date
EP13173306.5A Revoked EP2649971B1 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement
EP13173305.7A Revoked EP2664308B1 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement
EP17195378.9A Active EP3308756B1 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions afin d'améliorer le placement de lentilles intraoculaires
EP20140177176 Withdrawn EP2803343A3 (fr) 2007-03-13 2008-03-13 Procédé pour améliorer le placement de lentille intraoculaire

Family Applications After (8)

Application Number Title Priority Date Filing Date
EP13164193.8A Active EP2617398B1 (fr) 2007-03-13 2008-03-13 Lentille intraoculaire pour placement amélioré
EP08726825.6A Active EP2129346B1 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions afin d'améliorer la mis en place d'une lentille intraoculaire
EP18206444.4A Active EP3466379B1 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement
EP08726822.3A Revoked EP2129345B8 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement
EP23183550.5A Pending EP4292573A3 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement
EP13164190.4A Active EP2617397B1 (fr) 2007-03-13 2008-03-13 Lentille intraoculaire pour placement amélioré
EP13164195.3A Active EP2620130B1 (fr) 2007-03-13 2008-03-13 Lentille intraoculaire avec placement amélioré
EP14166815.2A Active EP2772234B1 (fr) 2007-03-13 2008-03-13 Appareil pour créer des incisions chirurgicales oculaires et de relâchement

Country Status (6)

Country Link
US (35) US9233023B2 (fr)
EP (13) EP2649971B1 (fr)
JP (13) JP5212952B2 (fr)
CN (4) CN101631522B (fr)
AU (2) AU2008226826A1 (fr)
WO (2) WO2008112292A1 (fr)

Families Citing this family (227)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394084B2 (en) 2005-01-10 2013-03-12 Optimedica Corporation Apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
US8262646B2 (en) 2006-01-20 2012-09-11 Lensar, Inc. System and method for providing the shaped structural weakening of the human lens with a laser
US10709610B2 (en) * 2006-01-20 2020-07-14 Lensar, Inc. Laser methods and systems for addressing conditions of the lens
US10842675B2 (en) 2006-01-20 2020-11-24 Lensar, Inc. System and method for treating the structure of the human lens with a laser
US9889043B2 (en) 2006-01-20 2018-02-13 Lensar, Inc. System and apparatus for delivering a laser beam to the lens of an eye
US9545338B2 (en) 2006-01-20 2017-01-17 Lensar, Llc. System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser
US9232959B2 (en) 2007-01-02 2016-01-12 Aquabeam, Llc Multi fluid tissue resection methods and devices
WO2008112292A1 (fr) 2007-03-13 2008-09-18 Optimedica Corporation Appareil pour créer des incisions chirurgicales oculaires et de relâchement
US20080312675A1 (en) * 2007-06-18 2008-12-18 Advanced Medical Optics, Inc. System and method for calculating limbal relaxing incisions
WO2009033110A2 (fr) 2007-09-05 2009-03-12 Lensx Lasers, Inc. Blindage de protection induit par laser en chirurgie laser
US9456925B2 (en) * 2007-09-06 2016-10-04 Alcon Lensx, Inc. Photodisruptive laser treatment of the crystalline lens
WO2009033107A2 (fr) * 2007-09-06 2009-03-12 Lensx Lasers, Inc. Traitement photodisruptif du cristallin
DE112008002383T5 (de) 2007-09-06 2010-06-24 LenSx Lasers, Inc., Aliso Viejo Präzises targeting chirurgischer Photodisruption
JP2010538704A (ja) * 2007-09-10 2010-12-16 アルコン レンゼックス, インコーポレーテッド 重力場における有効なレーザ光破壊手術
WO2009039315A2 (fr) * 2007-09-18 2009-03-26 Lensx Lasers, Inc. Procédés et dispositifs pour un traitement par laser du cristallin
US20100324543A1 (en) * 2007-09-18 2010-12-23 Kurtz Ronald M Method And Apparatus For Integrating Cataract Surgery With Glaucoma Or Astigmatism Surgery
WO2009039302A2 (fr) * 2007-09-18 2009-03-26 Lensx Lasers, Inc. Procédés et dispositifs pour une chirurgie intégrée de la cataracte
US8409182B2 (en) * 2007-09-28 2013-04-02 Eos Holdings, Llc Laser-assisted thermal separation of tissue
ES2390315T3 (es) * 2007-11-02 2012-11-08 Alcon Lensx, Inc. Aparato para unas prestaciones ópticas oculares posoperatorias mejoradas
EP3363415B1 (fr) 2008-01-09 2019-10-02 Alcon Lensx, Inc. Fragmentation laser photodisruptive incurvée de tissus
EP2259742B1 (fr) 2008-03-06 2020-01-01 AquaBeam LLC Ablation des tissus et cautérisation avec de l'énergie optique véhiculée dans un courant de fluide
US20100022996A1 (en) * 2008-07-25 2010-01-28 Frey Rudolph W Method and system for creating a bubble shield for laser lens procedures
US8500723B2 (en) 2008-07-25 2013-08-06 Lensar, Inc. Liquid filled index matching device for ophthalmic laser procedures
US8480659B2 (en) 2008-07-25 2013-07-09 Lensar, Inc. Method and system for removal and replacement of lens material from the lens of an eye
US8685087B2 (en) * 2008-12-11 2014-04-01 Bausch & Lomb Incorporated Intraocular lens and method of making an intraocular lens
US9848904B2 (en) 2009-03-06 2017-12-26 Procept Biorobotics Corporation Tissue resection and treatment with shedding pulses
DE102009012873B4 (de) * 2009-03-12 2021-08-19 Carl Zeiss Meditec Ag Ophthalmologisches Lasersystem und Steuereinheit
GB0907277D0 (en) * 2009-04-29 2009-06-10 Univ Kent Kanterbury Method for depth resolved wavefront sensing, depth resolved wavefront sensors and method and apparatus for optical imaging
WO2010142311A1 (fr) * 2009-06-12 2010-12-16 Wavelight Gmbh Dispositif d'ophtalmologie par chirurgie au laser
EP2676645A1 (fr) * 2009-07-24 2013-12-25 Lensar, Inc. Système laser permettant de réduire l'astigmatisme induit à partir de la thérapie de cataracte
CA2769090A1 (fr) 2009-07-24 2011-01-27 Lensar, Inc. Systeme et procede pour emettre des motifs de tir laser vers le cristallin
US8382745B2 (en) 2009-07-24 2013-02-26 Lensar, Inc. Laser system and method for astigmatic corrections in association with cataract treatment
US8758332B2 (en) * 2009-07-24 2014-06-24 Lensar, Inc. Laser system and method for performing and sealing corneal incisions in the eye
CA2769097A1 (fr) * 2009-07-24 2011-01-27 Lensar, Inc. Systeme et procede de mise en oeuvre de procedures chirurgicales assistees par laser sur le cristallin
US8617146B2 (en) * 2009-07-24 2013-12-31 Lensar, Inc. Laser system and method for correction of induced astigmatism
US7963476B2 (en) * 2009-07-27 2011-06-21 The Orvis Company, Inc. Stackable tippet spool
MX2012001324A (es) * 2009-07-29 2012-08-15 Alcon Lensx Inc Sistema optico para laser quirurgico oftalmico.
AU2010281590A1 (en) * 2009-07-29 2012-02-16 Alcon Lensx, Inc. Optical system for ophthalmic surgical laser
CN102596129B (zh) * 2009-07-29 2016-08-03 爱尔康蓝斯克斯股份有限公司 用于眼科手术激光的光学系统
BR112012002159A2 (pt) * 2009-07-29 2017-08-08 Alcon Lensx Inc sistema ótico com múltiplos leitores para laser cirúrgico oftálmico
US9504608B2 (en) * 2009-07-29 2016-11-29 Alcon Lensx, Inc. Optical system with movable lens for ophthalmic surgical laser
KR20120068819A (ko) * 2009-07-29 2012-06-27 알콘 렌즈엑스 인코포레이티드 안과 수술 레이저를 위한 광학 시스템
US8262647B2 (en) * 2009-07-29 2012-09-11 Alcon Lensx, Inc. Optical system for ophthalmic surgical laser
US8920407B2 (en) * 2009-07-29 2014-12-30 Alcon Lensx, Inc. Optical system for ophthalmic surgical laser
US8267925B2 (en) * 2009-07-29 2012-09-18 Alcon Lensx, Inc. Optical system for ophthalmic surgical laser
JP2013500767A (ja) * 2009-07-29 2013-01-10 アルコン レンゼックス, インコーポレーテッド 眼科手術用レーザのための光学システム
AU2009353572B2 (en) * 2009-09-30 2014-07-24 Alcon Inc. Apparatus for ophthalmic laser surgery
US8506559B2 (en) * 2009-11-16 2013-08-13 Alcon Lensx, Inc. Variable stage optical system for ophthalmic surgical laser
US9492322B2 (en) 2009-11-16 2016-11-15 Alcon Lensx, Inc. Imaging surgical target tissue by nonlinear scanning
US8357196B2 (en) * 2009-11-18 2013-01-22 Abbott Medical Optics Inc. Mark for intraocular lenses
US20110184395A1 (en) * 2009-12-23 2011-07-28 Optimedica Corporation Method for laser capsulotomy and lens conditioning
EP2345394A1 (fr) * 2010-01-15 2011-07-20 Schwind eye-tech-solutions GmbH & Co. KG Dispositif de traitement d'un oeil par rayonnement laser
AU2011207402B2 (en) * 2010-01-22 2015-01-29 Amo Development, Llc Apparatus for automated placement of scanned laser capsulorhexis incisions
CN102811685A (zh) * 2010-01-29 2012-12-05 雷萨公司 用于眼科应用的伺服控制的对接力设备
EP2531090A4 (fr) * 2010-02-01 2014-11-12 Lensar Inc Mesure des anneaux de placido de l'axe d'astigmatisme et marquage laser de cet axe
WO2011094678A1 (fr) 2010-02-01 2011-08-04 Lensar, Inc. Alignement fondé sur des images de purkinje d'un anneau d'aspiration dans des applications ophtalmiques
US8265364B2 (en) 2010-02-05 2012-09-11 Alcon Lensx, Inc. Gradient search integrated with local imaging in laser surgical systems
WO2011097647A1 (fr) 2010-02-08 2011-08-11 Optimedica Corporation Système pour modification de tissu médiée par le plasma
US8414564B2 (en) 2010-02-18 2013-04-09 Alcon Lensx, Inc. Optical coherence tomographic system for ophthalmic surgery
JP5601610B2 (ja) 2010-03-31 2014-10-08 株式会社ニデック 眼科用レーザ治療装置
JP5701625B2 (ja) 2010-03-31 2015-04-15 株式会社ニデック 眼科用レーザ治療装置
US8403918B2 (en) 2010-04-01 2013-03-26 John Taboada Automated non-invasive capsulectomy and anterior segment surgical apparatus and method
FR2959305B1 (fr) * 2010-04-26 2014-09-05 Nanotec Solution Dispositif optique et procede d'inspection d'objets structures.
CN102883682A (zh) 2010-04-27 2013-01-16 雷恩斯根公司 调节眼内晶状体的装置
US9220590B2 (en) 2010-06-10 2015-12-29 Z Lens, Llc Accommodative intraocular lens and method of improving accommodation
US8398236B2 (en) 2010-06-14 2013-03-19 Alcon Lensx, Inc. Image-guided docking for ophthalmic surgical systems
US8845624B2 (en) 2010-06-25 2014-09-30 Alcon LexSx, Inc. Adaptive patient interface
AU2011295719B2 (en) 2010-09-02 2014-07-10 Amo Development, Llc Patient interface for ophthalmologic diagnostic and interventional procedures
US9532708B2 (en) 2010-09-17 2017-01-03 Alcon Lensx, Inc. Electronically controlled fixation light for ophthalmic imaging systems
US10124410B2 (en) 2010-09-25 2018-11-13 Ipg Photonics Corporation Methods and systems for coherent imaging and feedback control for modification of materials
EP2619633B1 (fr) 2010-09-25 2023-12-06 IPG Photonics (Canada) Inc. Procédés d'imagerie cohérente et de commande par rétroaction permettant une modification de matériaux
US20120089134A1 (en) * 2010-10-11 2012-04-12 Christopher Horvath Contactless Photodisruptive Laser assisted Cataract Surgery
USD694890S1 (en) 2010-10-15 2013-12-03 Lensar, Inc. Laser system for treatment of the eye
USD695408S1 (en) 2010-10-15 2013-12-10 Lensar, Inc. Laser system for treatment of the eye
EP2627240B1 (fr) 2010-10-15 2023-01-18 LENSAR, Inc. Système et procédé d'éclairage commandé par balayage de structures dans un il
CN101999973B (zh) * 2010-11-24 2012-12-05 沈华豹 用于视力提升、恢复训练的治疗装置
US20120150158A1 (en) 2010-12-10 2012-06-14 Johannes Krause Device and process for machining the cornea of a human eye with focused pulsed laser radiation
BR112013013775A2 (pt) * 2010-12-10 2016-09-13 Wavelight Gmbh dispositivo e método para cortar a córnea de um olho humano por meio de cortes empregando radiação a laser pulsado focalizado
DE102010055966B4 (de) * 2010-12-23 2013-07-11 Rowiak Gmbh Vorrichtung zur Materialbearbeitung eines Werkstücks und Verfahren zum Kalibrieren einer solchen Vorrichtung
US10582847B2 (en) 2010-12-30 2020-03-10 Amo Wavefront Sciences, Llc Method and system for eye measurements and cataract surgery planning using vector function derived from prior surgeries
US10583039B2 (en) 2010-12-30 2020-03-10 Amo Wavefront Sciences, Llc Method and system for eye measurements and cataract surgery planning using vector function derived from prior surgeries
EP2658489B1 (fr) 2010-12-30 2017-05-17 Amo Wavefront Sciences, LLC Méthode de planification améliorée d'un traitement et système de contrôle d'une intervention de chirurgie réfractive laser
US10582846B2 (en) 2010-12-30 2020-03-10 Amo Wavefront Sciences, Llc Method and system for eye measurements and cataract surgery planning using vector function derived from prior surgeries
US20120191079A1 (en) 2011-01-20 2012-07-26 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
US10143589B2 (en) 2011-02-22 2018-12-04 Anita Nevyas-Wallace Method and apparatus for making improved surgical incisions in corrective eye surgery
US20120240939A1 (en) * 2011-03-24 2012-09-27 Jochen Kandulla Apparatus and Method for Control of Refractive Index Changes in a Material
CN106974615B (zh) * 2011-03-25 2019-11-26 雷萨公司 利用激光产生的角膜切口测量和校正散光的系统和方法
US10463541B2 (en) 2011-03-25 2019-11-05 Lensar, Inc. System and method for correcting astigmatism using multiple paired arcuate laser generated corneal incisions
US10716706B2 (en) 2011-04-07 2020-07-21 Bausch & Lomb Incorporated System and method for performing lens fragmentation
US8459794B2 (en) 2011-05-02 2013-06-11 Alcon Lensx, Inc. Image-processor-controlled misalignment-reduction for ophthalmic systems
US9622913B2 (en) 2011-05-18 2017-04-18 Alcon Lensx, Inc. Imaging-controlled laser surgical system
US20120303007A1 (en) * 2011-05-27 2012-11-29 Frieder Loesel System and Method for Using Multiple Detectors
JP5838598B2 (ja) * 2011-05-31 2016-01-06 株式会社ニデック 眼科用レーザ手術装置
JP2014522284A (ja) * 2011-06-09 2014-09-04 クリストファー ホルヴァト 眼科手術のためのレーザー伝送システム
US9095414B2 (en) 2011-06-24 2015-08-04 The Regents Of The University Of California Nonlinear optical photodynamic therapy (NLO-PDT) of the cornea
US8398238B1 (en) 2011-08-26 2013-03-19 Alcon Lensx, Inc. Imaging-based guidance system for ophthalmic docking using a location-orientation analysis
WO2013048194A2 (fr) * 2011-09-30 2013-04-04 (주)루트로닉 Appareil de radiothérapie externe et son procédé de commande
KR101309629B1 (ko) * 2011-09-30 2013-09-17 주식회사 루트로닉 빔 치료장치 및 이의 제어방법
EP2763636B1 (fr) * 2011-10-03 2017-12-06 Biolase, Inc. Systèmes de destruction d'un cristallin oculaire
US8986290B2 (en) 2011-10-06 2015-03-24 Douglas Patton Systems and methods for combined femto-phaco cataract surgery
US9044302B2 (en) 2011-10-21 2015-06-02 Optimedica Corp. Patient interface for ophthalmologic diagnostic and interventional procedures
US9301806B2 (en) 2011-10-21 2016-04-05 Nusite Technologies Llc Methods and patterns for increasing amplitude of accommodations in a human lens
US9237967B2 (en) 2011-10-21 2016-01-19 Optimedica Corporation Patient interface for ophthalmologic diagnostic and interventional procedures
US8863749B2 (en) 2011-10-21 2014-10-21 Optimedica Corporation Patient interface for ophthalmologic diagnostic and interventional procedures
US9566190B2 (en) * 2011-11-25 2017-02-14 Sie Ag, Surgical Instrument Engineering Device for processing eye tissue by means of a pulsed laser beam
US9023016B2 (en) 2011-12-19 2015-05-05 Alcon Lensx, Inc. Image processor for intra-surgical optical coherence tomographic imaging of laser cataract procedures
US9066784B2 (en) 2011-12-19 2015-06-30 Alcon Lensx, Inc. Intra-surgical optical coherence tomographic imaging of cataract procedures
US9393155B2 (en) 2011-12-28 2016-07-19 Technolas Perfect Vision Gmbh System and method for postoperative capsular bag control
US8900300B1 (en) 2012-02-22 2014-12-02 Omega Ophthalmics Llc Prosthetic capsular bag and method of inserting the same
ES2687817T3 (es) 2012-02-29 2018-10-29 Procept Biorobotics Corporation Resección y tratamiento de tejido guiado por imagen automatizada
US8807752B2 (en) 2012-03-08 2014-08-19 Technolas Perfect Vision Gmbh System and method with refractive corrections for controlled placement of a laser beam's focal point
US10182943B2 (en) 2012-03-09 2019-01-22 Alcon Lensx, Inc. Adjustable pupil system for surgical laser systems
US8852177B2 (en) 2012-03-09 2014-10-07 Alcon Lensx, Inc. Spatio-temporal beam modulator for surgical laser systems
US9629750B2 (en) 2012-04-18 2017-04-25 Technolas Perfect Vision Gmbh Surgical laser unit with variable modes of operation
US10137035B1 (en) 2012-04-20 2018-11-27 Gustavo Tamayo Round posterior capsulotomy for the opacification of a posterior capsule and lens
US9364318B2 (en) 2012-05-10 2016-06-14 Z Lens, Llc Accommodative-disaccommodative intraocular lens
JP5875090B2 (ja) * 2012-06-14 2016-03-02 学校法人北里研究所 挿入される眼内レンズの度数決定方法、及びシステム
WO2014018104A1 (fr) * 2012-07-25 2014-01-30 Elenza, Inc. Procédé et appareil pour réaliser une capsulotomie postérieure
EP2892479B1 (fr) * 2012-09-07 2020-07-15 AMO Development, LLC Système de réalisation d'une capsulotomie postérieure et de chirurgie au laser de l' oeil ayant une cornée pénétrée
WO2014058973A1 (fr) * 2012-10-09 2014-04-17 Douglas Patton Systèmes & procédés de chirurgie femto-phaco de la cataracte combinée
US10314746B2 (en) * 2012-11-02 2019-06-11 Optimedica Corporation Laser eye surgery system calibration
US9592157B2 (en) 2012-11-09 2017-03-14 Bausch & Lomb Incorporated System and method for femto-fragmentation of a crystalline lens
US10231867B2 (en) 2013-01-18 2019-03-19 Auris Health, Inc. Method, apparatus and system for a water jet
JP6403695B2 (ja) * 2013-02-14 2018-10-10 プロセプト バイオロボティクス コーポレイション アクアアブレーションアクアビーム眼科手術方法および装置
DK2972479T3 (da) 2013-03-13 2020-11-30 Ipg Photonics Canada Inc Fremgangsmåder og systemer til beskrivelse af laserbearbejdningsegenskaber ved at måle keyholedynamik ved hjælp af interferometri
EP3195838B1 (fr) 2013-03-14 2018-08-22 Optimedica Corporation Capsulovitréotomie laser
CA2907114C (fr) * 2013-03-15 2021-07-13 Optimedica Corporation Procedes et systemes de microfemtotomie
US10369053B2 (en) 2013-04-17 2019-08-06 Optimedica Corporation Corneal topography measurements and fiducial mark incisions in laser surgical procedures
WO2014172545A1 (fr) * 2013-04-17 2014-10-23 Optimedica Corporation Repères d'alignement au laser pour alignement d'axe en opération de la cataracte
JPWO2014171537A1 (ja) * 2013-04-19 2017-02-23 興和株式会社 眼内レンズ
DE102013008269C5 (de) * 2013-05-15 2019-01-24 Precitec Optronik Gmbh Bearbeitungskopf für eine Laserbearbeitungsvorrichtung
CA153773S (en) * 2013-05-17 2014-09-10 Johnson & Johnson Vision Care Contact lens
US10744035B2 (en) * 2013-06-11 2020-08-18 Auris Health, Inc. Methods for robotic assisted cataract surgery
JP6434015B2 (ja) 2013-07-25 2018-12-05 オプティメディカ コーポレイション 物体の屈折率のインサイチュー算定
US9968295B2 (en) * 2013-08-07 2018-05-15 Novartis Ag Surgical guidance and planning software for astigmatism treatment
US10426661B2 (en) 2013-08-13 2019-10-01 Auris Health, Inc. Method and apparatus for laser assisted cataract surgery
DE102013016335A1 (de) 2013-09-30 2015-04-02 Carl Zeiss Ag Steuerungsvorrichtung für ein Lasersystem sowie Lasersystem und Verfahren zum Steuern des Lasersystems
JP6625975B2 (ja) 2013-11-01 2019-12-25 レンスゲン、インコーポレイテッド 調節性眼内レンズデバイス
EP3062742B1 (fr) 2013-11-01 2021-12-01 Lensgen, Inc. Dispositif de lentille intra-oculaire de réception à deux parties
JP2015104470A (ja) * 2013-11-29 2015-06-08 株式会社ニデック 眼科用レーザ手術装置および眼科手術制御データ作成プログラム
DE102014001081B4 (de) * 2014-01-30 2017-08-24 Peter Hoffmann Ophthalmologisches Gerät
AU2015214443B2 (en) * 2014-02-04 2019-11-28 Amo Development, Llc Confocal detection to minimize capsulotomy overcut while dynamically running on the capsular surface
US10363173B2 (en) * 2014-02-04 2019-07-30 Optimedica Corporation Confocal detection to minimize capsulotomy overcut while dynamically running on the capsular surface
US10231872B2 (en) 2014-02-28 2019-03-19 Excel-Lens, Inc. Laser assisted cataract surgery
US10206817B2 (en) 2014-02-28 2019-02-19 Excel-Lens, Inc. Laser assisted cataract surgery
US9820886B2 (en) 2014-02-28 2017-11-21 Excel-Lens, Inc. Laser assisted cataract surgery
US10327951B2 (en) 2014-02-28 2019-06-25 Excel-Lens, Inc. Laser assisted cataract surgery
WO2015131135A1 (fr) * 2014-02-28 2015-09-03 Mordaunt David H Chirurgie de la cataracte assistée par laser
US9339414B2 (en) 2014-04-29 2016-05-17 Chukyo Medical Co., Inc. Irradiating device and program
KR101609365B1 (ko) * 2014-05-27 2016-04-21 주식회사 고영테크놀러지 착탈식 oct 장치
US10004594B2 (en) 2014-06-19 2018-06-26 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US10004596B2 (en) 2014-07-31 2018-06-26 Lensgen, Inc. Accommodating intraocular lens device
CA2962427A1 (fr) 2014-09-25 2016-03-31 Optimedica Corporation Procedes et systemes de topographie de la cornee, detection de clignement et chirurgie de l'ƒil au laser
FR3026940B1 (fr) 2014-10-08 2021-09-03 Univ Jean Monnet Dispositif et procede pour la decoupe d'une cornee ou d'un cristallin
US9358103B1 (en) 2015-02-10 2016-06-07 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
US10925721B2 (en) * 2015-02-16 2021-02-23 Prakhyat ROOP Optical implantable member
US20160287279A1 (en) 2015-04-01 2016-10-06 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
AU2016249405B2 (en) * 2015-04-16 2019-05-16 Lensar, Inc. Laser methods and systems for addressing conditions of the lens
CN104921805B (zh) * 2015-05-20 2017-05-31 中卫祥光(北京)科技有限公司 可视化点阵激光治疗仪
JP6607346B2 (ja) * 2015-06-11 2019-11-20 株式会社トーメーコーポレーション 前眼部光干渉断層撮影装置および前眼部光干渉断層撮影方法
DE102015008127A1 (de) 2015-06-24 2016-12-29 Wavelight Gmbh Vorrichtung für die Augenlaserchirurgie und Verfahren zur Durchführung einer transepithelialen photorefraktiven Keratektomie
CN105046698B (zh) * 2015-07-06 2021-12-03 嘉恒医疗科技(上海)有限公司 基于左右对称信息的肩关节缺损参数统计方法和系统
CN105011974A (zh) * 2015-07-16 2015-11-04 南京理工大学 一种用混合光束激光焊接生物组织的方法及其装置
AU2015404164A1 (en) * 2015-07-27 2018-01-18 Amo Wavefront Sciences, Llc Optical imaging and measurement systems and methods for cataract surgery and treatment planning
US9955986B2 (en) 2015-10-30 2018-05-01 Auris Surgical Robotics, Inc. Basket apparatus
US10231793B2 (en) 2015-10-30 2019-03-19 Auris Health, Inc. Object removal through a percutaneous suction tube
US9949749B2 (en) 2015-10-30 2018-04-24 Auris Surgical Robotics, Inc. Object capture with a basket
WO2017096087A1 (fr) 2015-12-01 2017-06-08 Daniel Brady Dispositif de lentille intraoculaire d'adaptation
IL262051B (en) 2016-04-06 2022-08-01 Keranova Optical focusing system of a device for cutting human or animal tissue
CA3026494C (fr) 2016-06-06 2022-06-07 Omega Ophthalmics Llc Dispositifs capsulaires prothetiques, systemes et procedes
SG10202012416YA (en) * 2016-06-15 2021-01-28 Kowa Co Toric intraocular lens, intraocular lens insertion tool, and method for producing toric intraocular lens
CN109890325B (zh) 2016-08-24 2021-10-26 Z晶状体有限责任公司 双模式调节-去调节型人工晶状体
US20180085256A1 (en) * 2016-09-12 2018-03-29 Lensar, Inc. Laser methods and systems for the aligned insertion of devices into a structure of the eye
JP6661836B2 (ja) 2016-10-21 2020-03-11 オメガ オフサルミックス エルエルシーOmega Ophthalmics Llc 人工水晶体デバイス、システムおよび方法
KR101884112B1 (ko) * 2017-01-13 2018-07-31 고려대학교 산학협력단 인공수정체
US11007080B2 (en) * 2017-01-30 2021-05-18 Alcon Inc. System and method for cutting a flap using polarization sensitive optical coherence tomography
US10779990B2 (en) 2017-02-17 2020-09-22 EyeMDengineering LLC Ophthalmic incisional procedure instrument and method
US10548719B2 (en) * 2017-03-01 2020-02-04 Eye-Pcr B.V. Devices for reconstruction of a lens capsule after cataract surgery
US10792466B2 (en) 2017-03-28 2020-10-06 Auris Health, Inc. Shaft actuating handle
KR20230106716A (ko) 2017-04-07 2023-07-13 아우리스 헬스, 인코포레이티드 환자 삽입기(Introducer) 정렬
US10285574B2 (en) 2017-04-07 2019-05-14 Auris Health, Inc. Superelastic medical instrument
EP3427705B1 (fr) * 2017-07-13 2020-04-01 Ziemer Ophthalmic Systems AG Dispositif de traitement de tissu oculaire à l'aide d'un rayon laser pulsé
DE102018203358A1 (de) 2018-03-07 2019-09-12 Carl Zeiss Meditec Ag Planungseinrichtung und -verfahren zur Erzeugung von Steuerdaten für ein ophthalmologisches Lasertherapiegerät für eine Zugangsstruktur
AU2019249216A1 (en) 2018-04-06 2020-10-01 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
WO2019209967A1 (fr) * 2018-04-25 2019-10-31 The Regents Of The University Of California Évaluation peropératoire de positionnement d'implant
KR102579505B1 (ko) 2018-06-07 2023-09-20 아우리스 헬스, 인코포레이티드 고출력 기구를 가진 로봇 의료 시스템
WO2019236908A1 (fr) * 2018-06-07 2019-12-12 Lensgen, Inc. Dispositifs de lentille intraoculaire et procédés associés
CN112368630B (zh) 2018-06-20 2023-01-03 国立大学法人大阪大学 眼佩戴用透镜的制造方法和眼佩戴用透镜
JP7391886B2 (ja) 2018-06-28 2023-12-05 オーリス ヘルス インコーポレイテッド 滑車共有を組み込んだ医療システム
US10821023B2 (en) 2018-07-16 2020-11-03 Vialase, Inc. Integrated surgical system and method for treatment in the irido-corneal angle of the eye
US11110006B2 (en) 2018-09-07 2021-09-07 Vialase, Inc. Non-invasive and minimally invasive laser surgery for the reduction of intraocular pressure in the eye
US10821024B2 (en) 2018-07-16 2020-11-03 Vialase, Inc. System and method for angled optical access to the irido-corneal angle of the eye
US11173067B2 (en) 2018-09-07 2021-11-16 Vialase, Inc. Surgical system and procedure for precise intraocular pressure reduction
US11986424B2 (en) 2018-07-16 2024-05-21 Vialase, Inc. Method, system, and apparatus for imaging and surgical scanning of the irido-corneal angle for laser surgery of glaucoma
CN112566584A (zh) 2018-08-15 2021-03-26 奥瑞斯健康公司 用于组织烧灼的医疗器械
CN112566567A (zh) 2018-08-17 2021-03-26 奥瑞斯健康公司 双极医疗器械
WO2020068303A1 (fr) 2018-09-26 2020-04-02 Auris Health, Inc. Systèmes et instruments pour aspiration et irrigation
WO2020076447A1 (fr) 2018-10-08 2020-04-16 Auris Health, Inc. Systèmes et instruments pour scellement tissulaire
CN111122568B (zh) 2018-11-01 2022-04-22 华中科技大学苏州脑空间信息研究院 一种高通量光学层析成像方法及成像系统
WO2020131529A1 (fr) 2018-12-20 2020-06-25 Auris Health, Inc. Blindage pour instruments à poignets
WO2020154100A1 (fr) 2019-01-25 2020-07-30 Auris Health, Inc. Dispositif de scellement de vaisseaux ayant des capacités de chauffage et de refroidissement
US11013407B2 (en) 2019-02-15 2021-05-25 Amo Development, Llc Intraocular pressure measurement for an eye docked to a laser system
JP6707161B2 (ja) * 2019-03-07 2020-06-10 株式会社トプコン レーザ治療装置
US11534248B2 (en) 2019-03-25 2022-12-27 Auris Health, Inc. Systems and methods for medical stapling
CN109938919B (zh) * 2019-04-25 2023-09-29 南京博视医疗科技有限公司 一种智能眼底激光手术治疗装置、系统及其实现方法
US20220211436A1 (en) * 2019-05-14 2022-07-07 Board Of Regents, The University Of Texas System Methods and apparatus for high-speed and high-aspect ratio laser subtractive material processing
US11369386B2 (en) 2019-06-27 2022-06-28 Auris Health, Inc. Systems and methods for a medical clip applier
EP3989863A4 (fr) 2019-06-28 2023-10-11 Auris Health, Inc. Instruments médicaux comprenant des poignets dotés de surfaces de réorientation hybrides
US11896330B2 (en) 2019-08-15 2024-02-13 Auris Health, Inc. Robotic medical system having multiple medical instruments
EP4034349A1 (fr) 2019-09-26 2022-08-03 Auris Health, Inc. Systèmes et procédés de détection et d'évitement de collision
US11737845B2 (en) 2019-09-30 2023-08-29 Auris Inc. Medical instrument with a capstan
US11737835B2 (en) 2019-10-29 2023-08-29 Auris Health, Inc. Braid-reinforced insulation sheath
EP3818967B1 (fr) * 2019-11-05 2023-09-27 Ziemer Ophthalmic Systems AG Dispositif ophtalmologique pour la fragmentation intracapsulaire d'un noyau de lentille
JP2023500892A (ja) 2019-11-06 2023-01-11 インサイトフル インストゥルメンツ, インコーポレイテッド 組織を切開するためのシステムおよび方法
KR20220123269A (ko) 2019-12-31 2022-09-06 아우리스 헬스, 인코포레이티드 고급 바스켓 구동 모드
CN114901188A (zh) 2019-12-31 2022-08-12 奥瑞斯健康公司 动态滑轮系统
US11564567B2 (en) 2020-02-04 2023-01-31 Vialase, Inc. System and method for locating a surface of ocular tissue for glaucoma surgery based on dual aiming beams
US11612315B2 (en) 2020-04-09 2023-03-28 Vialase, Inc. Alignment and diagnostic device and methods for imaging and surgery at the irido-corneal angle of the eye
CN111513917B (zh) * 2020-05-22 2022-03-22 杭州明视康眼科医院有限公司 一种散光型icl术后残留散光的转位调整方法并预估转位调整后的屈光度的方法
CN115802975A (zh) 2020-06-29 2023-03-14 奥瑞斯健康公司 用于检测连杆与外部对象之间的接触的系统和方法
US11357586B2 (en) 2020-06-30 2022-06-14 Auris Health, Inc. Systems and methods for saturated robotic movement
EP4171428A1 (fr) 2020-06-30 2023-05-03 Auris Health, Inc. Système médical robotique avec indicateurs de proximité de collision
US11364107B2 (en) 2020-10-12 2022-06-21 Omega Ophthalmics Llc Prosthetic capsular devices, systems, and methods
CN113041018B (zh) * 2020-11-25 2021-12-14 冯梅艳 眼球玻璃体切割治疗系统
JP2024520392A (ja) * 2021-05-27 2024-05-24 インサイトフル インストゥルメンツ, インコーポレイテッド 組織を切開するためのシステムおよび方法
US12002567B2 (en) 2021-11-29 2024-06-04 Vialase, Inc. System and method for laser treatment of ocular tissue based on patient biometric data and apparatus and method for determining laser energy based on an anatomical model
US20230255829A1 (en) 2022-01-10 2023-08-17 Amo Development, Llc Laser cataract surgery using spiral lens segmentation pattern

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060247659A1 (en) * 2004-10-26 2006-11-02 Carl Zeiss Surgical Gmbh Surgical microscopy system and method for performing eye surgery
DE102005027355A1 (de) * 2005-06-13 2006-12-14 Femtotechnologies Gmbh Verfahren zum Bearbeiten eines organischen Materials

Family Cites Families (194)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US495715A (en) * 1893-04-18 Territory
US3971073A (en) * 1975-04-09 1976-07-27 American Optical Corporation Artificial intraocular lens
US4169664A (en) * 1977-11-30 1979-10-02 Synemed, Inc. Apparatus for determining peripheral vision
FR2442622A1 (fr) * 1978-06-08 1980-06-27 Aron Rosa Daniele Appareil de chirurgie ophtalmologique
US4242762A (en) * 1979-07-25 1981-01-06 Tennant Jerald L Posterior encapsuled implant lens
FR2546057A1 (fr) 1983-05-16 1984-11-23 Aron Rosa Daniele Implant oculaire
US4684796A (en) 1983-07-08 1987-08-04 The Charles Stark Draper Laboratory, Inc. Common optical aperture laser separator for reciprocal path optical
US4538608A (en) * 1984-03-23 1985-09-03 Esperance Jr Francis A L Method and apparatus for removing cataractous lens tissue by laser radiation
US4634442A (en) * 1984-09-28 1987-01-06 American Hospital Supply Corporation Intraocular lens with a vaulted optic
JPH02175Y2 (fr) * 1985-03-22 1990-01-05
GB2181355A (en) * 1985-10-15 1987-04-23 Storz Instr Co Lens implant
US5336217A (en) 1986-04-24 1994-08-09 Institut National De La Sante Et De La Recherche Medicale (Insepm) Process for treatment by irradiating an area of a body, and treatment apparatus usable in dermatology for the treatment of cutaneous angio dysplasias
US4950289A (en) 1986-11-03 1990-08-21 Coopervision, Inc. Small incision intraocular lens with adjustable refractive power
EP0293126A1 (fr) * 1987-05-20 1988-11-30 Keeler Limited Appareil de photocoagulation
US5284477A (en) 1987-06-25 1994-02-08 International Business Machines Corporation Device for correcting the shape of an object by laser treatment
JPH0197450A (ja) 1987-10-09 1989-04-14 Canon Inc 眼内レンズ
US5112328A (en) * 1988-01-25 1992-05-12 Refractive Laser Research & Development Program, Ltd. Method and apparatus for laser surgery
US4901718A (en) * 1988-02-02 1990-02-20 Intelligent Surgical Lasers 3-Dimensional laser beam guidance system
US4848340A (en) 1988-02-10 1989-07-18 Intelligent Surgical Lasers Eyetracker and method of use
US4907586A (en) 1988-03-31 1990-03-13 Intelligent Surgical Lasers Method for reshaping the eye
AU622420B2 (en) 1988-07-20 1992-04-09 Allen L. Cohen Multifocal optical device
US6099522A (en) * 1989-02-06 2000-08-08 Visx Inc. Automated laser workstation for high precision surgical and industrial interventions
US5098426A (en) 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US4961745A (en) 1989-04-17 1990-10-09 Nestle S.A. Intraocular lens
US5152759A (en) 1989-06-07 1992-10-06 University Of Miami, School Of Medicine, Dept. Of Ophthalmology Noncontact laser microsurgical apparatus
JP2840298B2 (ja) 1989-06-22 1998-12-24 株式会社メニコン 眼内レンズ
JP2747030B2 (ja) 1989-06-22 1998-05-06 株式会社東芝 超音波診断装置
US5019097A (en) 1989-11-22 1991-05-28 Allergan, Inc. Corneal onlay lenses and methods for attaching same
US5098444A (en) 1990-03-16 1992-03-24 Feaster Fred T Epiphakic intraocular lens and process of implantation
US6197059B1 (en) * 1990-04-27 2001-03-06 Medevec Licensing, B.V. Accomodating intraocular lens
US5779696A (en) * 1990-07-23 1998-07-14 Sunrise Technologies International, Inc. Method and apparatus for performing corneal reshaping to correct ocular refractive errors
JP3168207B2 (ja) * 1990-08-22 2001-05-21 ヴィスクス・インコーポレイテッド 手術用レーザービームのスキャニング装置
US5722427A (en) 1993-05-10 1998-03-03 Eyesys Technologies, Inc. Method of refractive surgery
US5173723A (en) 1990-10-02 1992-12-22 Volk Donald A Aspheric ophthalmic accommodating lens design for intraocular lens and contact lens
JP2540879Y2 (ja) * 1990-11-30 1997-07-09 株式会社メニコン 眼内レンズ
US6111645A (en) 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
DE69227902T3 (de) 1991-04-29 2010-04-22 Massachusetts Institute Of Technology, Cambridge Vorrichtung für optische abbildung und messung
US5257988A (en) 1991-07-19 1993-11-02 L'esperance Medical Technologies, Inc. Apparatus for phacoemulsifying cataractous-lens tissue within a protected environment
DE69221806T2 (de) 1991-10-10 1998-03-26 Coherent Inc Vorrichtung zum Abgeben eines defokussierten Laserstrahls mit scharfkantigem Querschnitt
US6322556B1 (en) * 1991-10-30 2001-11-27 Arlene E. Gwon Method of laser photoablation of lenticular tissue for the correction of vision problems
US20020103478A1 (en) * 1991-10-30 2002-08-01 Gwon Arlene E. Method of laser photoablation of lenticular tissue for the correction of vision problems
CA2123008C (fr) * 1991-11-06 2003-01-21 Shui T. Lai Instrument de chirurgie corneenne et methode
US5984916A (en) 1993-04-20 1999-11-16 Lai; Shui T. Ophthalmic surgical laser and method
US6325792B1 (en) * 1991-11-06 2001-12-04 Casimir A. Swinger Ophthalmic surgical laser and method
US5439462A (en) * 1992-02-25 1995-08-08 Intelligent Surgical Lasers Apparatus for removing cataractous material
US5246435A (en) * 1992-02-25 1993-09-21 Intelligent Surgical Lasers Method for removing cataractous material
AU3781193A (en) 1992-02-27 1993-09-13 Phoenix Laser Systems, Inc. Automated laser workstation for high precision surgical and industrial interventions
US6090100A (en) * 1992-10-01 2000-07-18 Chiron Technolas Gmbh Ophthalmologische Systeme Excimer laser system for correction of vision with reduced thermal effects
ATE181656T1 (de) * 1992-10-02 1999-07-15 Nestle Sa Intraoculares linsensystem
US5437658A (en) * 1992-10-07 1995-08-01 Summit Technology, Incorporated Method and system for laser thermokeratoplasty of the cornea
AU5540594A (en) 1992-10-26 1994-05-24 Shui T. Lai Method of performing ophthalmic surgery
US5549632A (en) 1992-10-26 1996-08-27 Novatec Laser Systems, Inc. Method and apparatus for ophthalmic surgery
US5520679A (en) 1992-12-03 1996-05-28 Lasersight, Inc. Ophthalmic surgery method using non-contact scanning laser
USRE37504E1 (en) 1992-12-03 2002-01-08 Lasersight Technologies, Inc. Ophthalmic surgery method using non-contact scanning laser
US5460396A (en) 1993-02-05 1995-10-24 Roadmaster Corporation Derailleur mounting assembly for a bicycle
US6322589B1 (en) * 1995-10-06 2001-11-27 J. Stuart Cumming Intraocular lenses with fixated haptics
US5411510A (en) * 1993-07-06 1995-05-02 Fugo; Richard J. Surgical blade and method for ocular surgery
US5993438A (en) * 1993-11-12 1999-11-30 Escalon Medical Corporation Intrastromal photorefractive keratectomy
JP3261244B2 (ja) 1993-12-17 2002-02-25 ブラザー工業株式会社 走査光学装置
AU1915595A (en) * 1994-02-09 1995-08-29 Kabi Pharmacia Ophthalmics, Inc. Rapid implantation of shape transformable optical lenses
US5656186A (en) * 1994-04-08 1997-08-12 The Regents Of The University Of Michigan Method for controlling configuration of laser induced breakdown and ablation
US20030060880A1 (en) 1994-04-08 2003-03-27 Vladimir Feingold Toric intraocular lens
US5980513A (en) 1994-04-25 1999-11-09 Autonomous Technologies Corp. Laser beam delivery and eye tracking system
US5599341A (en) 1994-06-15 1997-02-04 Keravision, Inc. Laser surgical procedure and device for treatment of the cornea
US5493109A (en) 1994-08-18 1996-02-20 Carl Zeiss, Inc. Optical coherence tomography assisted ophthalmologic surgical microscope
ES2180597T4 (es) * 1994-08-18 2003-07-01 Zeiss Carl Aparato quirurgico asistido por tomografia de coherencia optica.
US5531753A (en) 1994-08-18 1996-07-02 Philip Stephen Cantor Surgical correction of astigmatism
US5697973A (en) * 1994-09-19 1997-12-16 Peyman; Gholam A. Intraocular silicone lens
US5491524A (en) 1994-10-05 1996-02-13 Carl Zeiss, Inc. Optical coherence tomography corneal mapping apparatus
US5480396A (en) * 1994-12-09 1996-01-02 Simon; Gabriel Laser beam ophthalmological surgery method and apparatus
US5505693A (en) * 1994-12-30 1996-04-09 Mackool; Richard J. Method and apparatus for reducing friction and heat generation by an ultrasonic device during surgery
US5743902A (en) * 1995-01-23 1998-04-28 Coherent, Inc. Hand-held laser scanner
US6454761B1 (en) 1995-01-30 2002-09-24 Philip D. Freedman Laser surgery device and method
DE19504444B4 (de) * 1995-02-10 2004-05-13 Carl Zeiss Jena Gmbh Interferometeranordnung mit verstellbarer optischer Weglängendifferenz
US5628795A (en) 1995-03-15 1997-05-13 Langerman David W Spare parts for use in ophthalmic surgical procedures
US6110166A (en) * 1995-03-20 2000-08-29 Escalon Medical Corporation Method for corneal laser surgery
US6002127A (en) * 1995-05-19 1999-12-14 Perseptive Biosystems, Inc. Time-of-flight mass spectrometry analysis of biomolecules
JPH0955843A (ja) 1995-08-10 1997-02-25 Nec Corp 画像データ送受信システム
JP3636789B2 (ja) * 1995-08-31 2005-04-06 株式会社ニデック 眼内レンズ
US5720894A (en) * 1996-01-11 1998-02-24 The Regents Of The University Of California Ultrashort pulse high repetition rate laser system for biological tissue processing
US5984962A (en) 1996-01-22 1999-11-16 Quantum Vision, Inc. Adjustable intraocular lens
US5728155A (en) * 1996-01-22 1998-03-17 Quantum Solutions, Inc. Adjustable intraocular lens
US20040148022A1 (en) * 1996-03-18 2004-07-29 Eggleston Harry C. Modular intraocular implant
US7655002B2 (en) 1996-03-21 2010-02-02 Second Sight Laser Technologies, Inc. Lenticular refractive surgery of presbyopia, other refractive errors, and cataract retardation
US6171336B1 (en) 1996-03-26 2001-01-09 Mark R. Sawusch Method, implant, and apparatus for refractive keratoplasty
US5795295A (en) * 1996-06-25 1998-08-18 Carl Zeiss, Inc. OCT-assisted surgical microscope with multi-coordinate manipulator
US6388683B1 (en) 1996-06-25 2002-05-14 International Business Machines Corporation Object oriented data arranger graphical user interface
JPH1067804A (ja) 1996-08-29 1998-03-10 Wakunaga Pharmaceut Co Ltd キトサン誘導体およびその製造法並びにその用途
US6019472A (en) 1997-05-12 2000-02-01 Koester; Charles J. Contact lens element for examination or treatment of ocular tissues
US5906611A (en) 1997-07-28 1999-05-25 Dodick; Jack Murray Surgical instrument with laser target
US7096192B1 (en) * 1997-07-28 2006-08-22 Cybersource Corporation Method and system for detecting fraud in a credit card transaction over a computer network
JPH1170121A (ja) * 1997-08-29 1999-03-16 Nidek Co Ltd レーザ治療装置
US6027531A (en) * 1997-10-14 2000-02-22 Tassignon; Marie-Joseb. R. Intraocular lens and method for preventing secondary opacification
US8663235B2 (en) * 1997-10-14 2014-03-04 Marie-José B. Tassignon Bag-in-the-lens intraocular lens with removable optic
US6007579A (en) 1998-01-15 1999-12-28 Visioncare Ltd. Intraocular carrying member with attachment for telescope
US6149644A (en) * 1998-02-17 2000-11-21 Altralight, Inc. Method and apparatus for epidermal treatment with computer controlled moving focused infrared light
US6638271B2 (en) * 1998-04-17 2003-10-28 Visx, Inc. Multiple beam laser sculpting system and method
RU2165248C2 (ru) 1998-04-29 2001-04-20 Межотраслевой научно-технический комплекс "Микрохирургия глаза" Способ хирургического лечения астигматизма высокой степени и катаракты
US6053613A (en) 1998-05-15 2000-04-25 Carl Zeiss, Inc. Optical coherence tomography with new interferometer
JP3848492B2 (ja) 1998-09-04 2006-11-22 株式会社ニデック 角膜手術装置
US6623476B2 (en) * 1998-10-15 2003-09-23 Intralase Corp. Device and method for reducing corneal induced aberrations during ophthalmic laser surgery
US6254595B1 (en) * 1998-10-15 2001-07-03 Intralase Corporation Corneal aplanation device
US6745775B2 (en) 1998-11-10 2004-06-08 Surgilight, Inc. Methods and apparatus for presbyopia treatment using a scanning laser system
US6146375A (en) 1998-12-02 2000-11-14 The University Of Michigan Device and method for internal surface sclerostomy
US6373571B1 (en) * 1999-03-11 2002-04-16 Intralase Corp. Disposable contact lens for use with an ophthalmic laser system
US6344040B1 (en) 1999-03-11 2002-02-05 Intralase Corporation Device and method for removing gas and debris during the photodisruption of stromal tissue
US6079417A (en) 1999-03-23 2000-06-27 Fugo; Richard J. Method of altering the shape of the cornea of the eye
JP3892986B2 (ja) 1999-03-30 2007-03-14 株式会社ニデック 眼科用レーザ治療装置
US6245059B1 (en) 1999-04-07 2001-06-12 Visx, Incorporated Offset ablation profiles for treatment of irregular astigmation
US6497701B2 (en) * 1999-04-30 2002-12-24 Visx, Incorporated Method and system for ablating surfaces with partially overlapping craters having consistent curvature
DE19929406A1 (de) * 1999-06-26 2000-12-28 Zeiss Carl Fa Zeilen-OCT als optischer Sensor für die Meß- und Medizintechnik
DE19938203A1 (de) 1999-08-11 2001-02-15 Aesculap Meditec Gmbh Verfahren und Vorrichtung zur Korrektur von Sehfehlern des menschlichen Auges
DE19940712A1 (de) 1999-08-26 2001-03-01 Aesculap Meditec Gmbh Verfahren und Vorrichtung zur Behandlung von Trübungen und/oder Verhärtungen eines ungeöffneten Auges
AT410055B (de) 1999-08-31 2003-01-27 Austrian Laser Produktion Und Laserskalpell
EP1210042B1 (fr) 1999-09-10 2008-06-18 Haag-Streit Ag Dispositif de photoablation de la cornee par rayonnement laser
KR100603543B1 (ko) 1999-10-21 2006-07-24 테크노라스 게엠베하 옵탈몰로지쉐 시스템 광학 치료용 홍체 인식 및 추적
US6324191B1 (en) * 2000-01-12 2001-11-27 Intralase Corp. Oscillator with mode control
JP3842515B2 (ja) * 2000-03-24 2006-11-08 セイコーエプソン株式会社 多重解像度画像解析による指示位置検出
DE10020559A1 (de) 2000-04-27 2001-10-31 Hannover Laser Zentrum Laser-Bearbeitung von Materialien
KR100345326B1 (ko) * 2000-06-09 2002-07-24 정영택 각막 고정용 인공수정체
US6648877B1 (en) 2000-06-30 2003-11-18 Intralase Corp. Method for custom corneal corrections
US6827738B2 (en) * 2001-01-30 2004-12-07 Timothy R. Willis Refractive intraocular implant lens and method
WO2002064031A2 (fr) 2001-02-09 2002-08-22 Sensomotoric Instruments Gmbh Systeme de mesure de position de l'oeil et de poursuite oculaire a dimensions multiples pour le diagnostic et le traitement de l'oeil
USD459807S1 (en) * 2001-04-11 2002-07-02 Intralase Corporation Patient interface gripper for ophthalmic laser surgery
USD462442S1 (en) * 2001-04-11 2002-09-03 Intralase Corporation Suction ring for ophthalmic laser surgery
USD462443S1 (en) * 2001-04-11 2002-09-03 Intralase Corporation Applanation lens cone for ophthalmic laser surgery
USD459806S1 (en) 2001-04-11 2002-07-02 Intralase Corporation Patient interface gripper for ophthalmic laser surgery
TWI224698B (en) * 2001-04-19 2004-12-01 Ibm Discrete pattern, optical member, light guide plate, side light device and light transmitting liquid crystal display device using the discrete pattern, method and program for generating the discrete pattern, computer-readable storage medium on which
JP2002360616A (ja) 2001-06-08 2002-12-17 Canon Inc 眼内挿入用レンズ
US6610050B2 (en) 2001-07-27 2003-08-26 20/10 Perfect Vision, Optische Geraete Gmbh Laser beam delivery system with multiple focal points
US20030053219A1 (en) 2001-07-30 2003-03-20 Manzi David J. Lens system and method
US7027233B2 (en) * 2001-10-12 2006-04-11 Intralase Corp. Closed-loop focal positioning system and method
US6751033B2 (en) * 2001-10-12 2004-06-15 Intralase Corp. Closed-loop focal positioning system and method
IL161936A0 (en) 2001-11-15 2005-11-20 Optotech Ltd Non-penetrating filtration surgery
DE10207535B4 (de) 2002-02-22 2006-07-06 Carl Zeiss Vorrichtung zum Bearbeiten und Vermessen eines Objekts sowie Verfahren hierzu
JP4339700B2 (ja) 2002-03-23 2009-10-07 エーエムオー ディベロップメント, エルエルシー レーザビームを使用する、改善された材料プロセシングのためのシステムおよび方法
US7130835B2 (en) 2002-03-28 2006-10-31 Bausch & Lomb Incorporated System and method for predictive ophthalmic correction
US6730074B2 (en) 2002-05-24 2004-05-04 20/10 Perfect Vision Optische Geraete Gmbh Cornea contact system for laser surgery
DE10226382B4 (de) * 2002-06-13 2004-05-19 Carl Zeiss Kataraktchirurgie-Mikroskopiesystem und Verfahren hierzu
US7133137B2 (en) 2002-06-27 2006-11-07 Visx, Incorporated Integrated scanning and ocular tomography system and method
DE10237945A1 (de) * 2002-08-20 2004-03-11 Quintis Gmbh Laserbasierte Vorrichtung zur nichtmechanischen, dreidimensionalen Trepanation bei Hornhauttransplantationen
DE10323422B4 (de) 2002-08-23 2022-05-05 Carl Zeiss Meditec Ag Vorrichtung und Verfahren zur Messung eines optischen Durchbruchs in einem Gewebe
EP1531770B1 (fr) 2002-08-23 2017-07-05 Carl Zeiss Meditec AG Dispositif de mesure d'une ouverture optique dans un tissu
US6693927B1 (en) * 2002-09-13 2004-02-17 Intralase Corp. Method and apparatus for oscillator start-up control for mode-locked laser
DE10313028A1 (de) * 2003-03-24 2004-10-21 Technovision Gmbh Verfahren und Vorrichtung zur Augenausrichtung
US7131968B2 (en) * 2003-06-02 2006-11-07 Carl Zeiss Meditec Ag Apparatus and method for opthalmologic surgical procedures using a femtosecond fiber laser
DE10326527B8 (de) 2003-06-12 2015-08-06 Carl Zeiss Meditec Ag Verfahren und Vorrichtung zur Bestimmung einer Bewegung eines menschlichen Auges
US7458683B2 (en) * 2003-06-16 2008-12-02 Amo Manufacturing Usa, Llc Methods and devices for registering optical measurement datasets of an optical system
DE10334108B4 (de) 2003-07-25 2018-05-09 Carl Zeiss Meditec Ag Vorrichtung zum Ausbilden einer geschlossenen, gekrümmten Schnittfläche
ES2415509T3 (es) * 2003-07-28 2013-07-25 Synergetics, Inc. Fuente de iluminación
DE10339520A1 (de) 2003-08-21 2005-03-17 Potsdamer Augenklinik Im Albrecht-Von Graefe-Haus Gmbh Einrichtung zum Einbringen von Präzisionsschnitten und -öffnungen in die Hornhaut des Auges und Verfahren zu ihrer Anwendung
US7766903B2 (en) * 2003-12-24 2010-08-03 The Board Of Trustees Of The Leland Stanford Junior University Patterned laser treatment of the retina
US8186357B2 (en) 2004-01-23 2012-05-29 Rowiak Gmbh Control device for a surgical laser
WO2005102200A2 (fr) * 2004-04-20 2005-11-03 Wavetec Vision Systems, Inc. Microscope chirurgical integre et capteur a front d'ondes
US20080058704A1 (en) 2004-04-29 2008-03-06 Michael Hee Apparatus and Method for Ocular Treatment
US20060041308A1 (en) * 2004-08-23 2006-02-23 Nichamin Louis D Posterior chamber implantable intraocular lens
US7806929B2 (en) * 2004-08-27 2010-10-05 Brown David C Intracapsular pseudophakic device
US7662148B2 (en) * 2004-11-12 2010-02-16 Technolas Perfect Vision Gmbh Systems and methods for intrastromal scanning patterns
JP2008521401A (ja) 2004-11-24 2008-06-26 アルナイラム ファーマシューティカルズ インコーポレイテッド BCR−ABL融合遺伝子のRNAi調節およびその使用方法
US7562148B2 (en) 2004-12-21 2009-07-14 Motorola, Inc. Distributed domain name service
US8394084B2 (en) 2005-01-10 2013-03-12 Optimedica Corporation Apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
DE102005013949A1 (de) 2005-03-26 2006-09-28 Carl Zeiss Meditec Ag Scanvorrichtung
JP4492874B2 (ja) 2005-03-31 2010-06-30 株式会社ニデック 眼科用レーザ治療装置
JP2006288770A (ja) 2005-04-11 2006-10-26 Kenji Yoshida 人工水晶体
US20060235428A1 (en) * 2005-04-14 2006-10-19 Silvestrini Thomas A Ocular inlay with locator
DE112006001217T5 (de) 2005-05-13 2008-03-27 Customvis Plc, Balcatta Schnell reagierende Augennachführung
JP4495045B2 (ja) * 2005-07-29 2010-06-30 会里子 福山 角膜マーカー
US7473784B2 (en) 2005-08-01 2009-01-06 Bristol-Myers Squibb Company Benzothiazole and azabenzothiazole compounds useful as kinase inhibitors
US10842675B2 (en) * 2006-01-20 2020-11-24 Lensar, Inc. System and method for treating the structure of the human lens with a laser
US10213340B2 (en) 2006-01-20 2019-02-26 Lensar, Inc. Methods and systems to provide excluded defined zones for increasing accommodative amplitude
US8262646B2 (en) * 2006-01-20 2012-09-11 Lensar, Inc. System and method for providing the shaped structural weakening of the human lens with a laser
US9545338B2 (en) * 2006-01-20 2017-01-17 Lensar, Llc. System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser
US8771261B2 (en) 2006-04-28 2014-07-08 Topcon Medical Laser Systems, Inc. Dynamic optical surgical system utilizing a fixed relationship between target tissue visualization and beam delivery
US8175685B2 (en) 2006-05-10 2012-05-08 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
WO2007143111A2 (fr) 2006-06-01 2007-12-13 University Of Southern California Procédé et appareil destinés à guider une chirurgie cornéenne au laser avec mesures optiques
US20080082086A1 (en) 2006-09-05 2008-04-03 Kurtz Ronald M System and method for resecting corneal tissue
US20080058841A1 (en) 2006-09-05 2008-03-06 Kurtz Ronald M System and method for marking corneal tissue in a transplant procedure
US7483607B2 (en) * 2006-11-07 2009-01-27 Synergetics, Inc. Dual core optic fiber illuminated laser probe
US8088124B2 (en) 2007-01-19 2012-01-03 Technolas Perfect Vision Gmbh System and method for precise beam positioning in ocular surgery
US20110319875A1 (en) 2007-01-19 2011-12-29 Frieder Loesel Apparatus and Method for Morphing a Three-Dimensional Target Surface into a Two-Dimensional Image for Use in Guiding a Laser Beam in Ocular Surgery
WO2008112292A1 (fr) * 2007-03-13 2008-09-18 Optimedica Corporation Appareil pour créer des incisions chirurgicales oculaires et de relâchement
DE102007028042B3 (de) 2007-06-14 2008-08-07 Universität Zu Lübeck Verfahren zur Laserbearbeitung transparenter Materialien
DE112008002383T5 (de) 2007-09-06 2010-06-24 LenSx Lasers, Inc., Aliso Viejo Präzises targeting chirurgischer Photodisruption
US9456925B2 (en) * 2007-09-06 2016-10-04 Alcon Lensx, Inc. Photodisruptive laser treatment of the crystalline lens
US20100324542A1 (en) * 2007-11-02 2010-12-23 Kurtz Ronald M Method to Guide a Cataract Procedure by Corneal Imaging
ES2390315T3 (es) 2007-11-02 2012-11-08 Alcon Lensx, Inc. Aparato para unas prestaciones ópticas oculares posoperatorias mejoradas
US8142423B2 (en) * 2007-11-07 2012-03-27 Amo Development, Llc. System and method for incising material
US7717907B2 (en) 2007-12-17 2010-05-18 Technolas Perfect Vision Gmbh Method for intrastromal refractive surgery
CN102098992B (zh) 2008-05-15 2013-12-04 惠氏有限责任公司 便携式湿热系统
CA2769090A1 (fr) * 2009-07-24 2011-01-27 Lensar, Inc. Systeme et procede pour emettre des motifs de tir laser vers le cristallin
US8382745B2 (en) 2009-07-24 2013-02-26 Lensar, Inc. Laser system and method for astigmatic corrections in association with cataract treatment
WO2011097647A1 (fr) 2010-02-08 2011-08-11 Optimedica Corporation Système pour modification de tissu médiée par le plasma
US8414564B2 (en) 2010-02-18 2013-04-09 Alcon Lensx, Inc. Optical coherence tomographic system for ophthalmic surgery
US8845624B2 (en) 2010-06-25 2014-09-30 Alcon LexSx, Inc. Adaptive patient interface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060247659A1 (en) * 2004-10-26 2006-11-02 Carl Zeiss Surgical Gmbh Surgical microscopy system and method for performing eye surgery
DE102005027355A1 (de) * 2005-06-13 2006-12-14 Femtotechnologies Gmbh Verfahren zum Bearbeiten eines organischen Materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GILLS J P: "Treating astigmatism at the time of cataract surgery", CURRENT OPINION IN OPHTHALMOLOGY, PHILADELPHIA, PA, US, vol. 13, 1 January 2002 (2002-01-01), pages 2 - 6, XP002429332, ISSN: 1040-8738, DOI: 10.1097/00055735-200202000-00002 *

Also Published As

Publication number Publication date
EP3308756B1 (fr) 2020-02-19
US20200138564A1 (en) 2020-05-07
US20150105763A1 (en) 2015-04-16
CN103169568B (zh) 2015-07-15
EP2129346B1 (fr) 2014-08-27
JP5497080B2 (ja) 2014-05-21
EP2803343A3 (fr) 2015-01-14
EP2129345A4 (fr) 2010-05-26
EP4292573A2 (fr) 2023-12-20
US10548715B2 (en) 2020-02-04
JP2012091053A (ja) 2012-05-17
EP2772234B1 (fr) 2021-05-26
CN104287888A (zh) 2015-01-21
US20100137850A1 (en) 2010-06-03
CN101631522B (zh) 2014-11-05
EP2772234A2 (fr) 2014-09-03
US20180085211A1 (en) 2018-03-29
US20150196429A1 (en) 2015-07-16
JP2015226846A (ja) 2015-12-17
US20170333180A9 (en) 2017-11-23
US20140142558A1 (en) 2014-05-22
EP2772234A3 (fr) 2014-11-12
EP2617397B1 (fr) 2016-12-14
JP2016215011A (ja) 2016-12-22
US9968439B2 (en) 2018-05-15
JP6530039B2 (ja) 2019-06-12
US20080281413A1 (en) 2008-11-13
US20240099830A1 (en) 2024-03-28
US9364317B2 (en) 2016-06-14
US20160256261A1 (en) 2016-09-08
US10405970B2 (en) 2019-09-10
WO2008112292A1 (fr) 2008-09-18
JP6495428B2 (ja) 2019-04-03
US20160074227A1 (en) 2016-03-17
JP2018047324A (ja) 2018-03-29
JP6161140B2 (ja) 2017-07-12
US9233024B2 (en) 2016-01-12
JP6327489B2 (ja) 2018-05-23
US10548716B2 (en) 2020-02-04
US10925720B2 (en) 2021-02-23
US20140296977A1 (en) 2014-10-02
US20150196428A1 (en) 2015-07-16
US8968375B2 (en) 2015-03-03
US20090012507A1 (en) 2009-01-08
EP2129345B1 (fr) 2014-05-14
US20150105762A1 (en) 2015-04-16
US20200261215A1 (en) 2020-08-20
EP3308756A1 (fr) 2018-04-18
US11701221B2 (en) 2023-07-18
EP4292573A3 (fr) 2024-02-21
US20230293286A1 (en) 2023-09-21
US20180360659A1 (en) 2018-12-20
EP2129346A1 (fr) 2009-12-09
US20170100234A1 (en) 2017-04-13
EP2664308B1 (fr) 2016-04-27
EP2649971A1 (fr) 2013-10-16
US9820848B2 (en) 2017-11-21
EP2620130A1 (fr) 2013-07-31
US11839536B2 (en) 2023-12-12
EP2129345B8 (fr) 2014-07-09
EP2772226A2 (fr) 2014-09-03
CN101631522A (zh) 2010-01-20
EP2664308A1 (fr) 2013-11-20
JP2015154978A (ja) 2015-08-27
US11931243B2 (en) 2024-03-19
JP2014166355A (ja) 2014-09-11
US10828149B2 (en) 2020-11-10
AU2008226828B2 (en) 2012-08-16
JP5813806B2 (ja) 2015-11-17
US20100137983A1 (en) 2010-06-03
JP2016174929A (ja) 2016-10-06
US20150230980A1 (en) 2015-08-20
US20180263758A1 (en) 2018-09-20
US9526608B2 (en) 2016-12-27
CN101631523A (zh) 2010-01-20
EP2617397A1 (fr) 2013-07-24
JP5933508B2 (ja) 2016-06-08
US11759310B2 (en) 2023-09-19
CN104287888B (zh) 2016-11-09
US20130317606A1 (en) 2013-11-28
US20080281303A1 (en) 2008-11-13
AU2008226828A1 (en) 2008-09-18
EP2129345A1 (fr) 2009-12-09
US20160074228A1 (en) 2016-03-17
US10376356B2 (en) 2019-08-13
EP3466379A1 (fr) 2019-04-10
US8657810B2 (en) 2014-02-25
EP2129346A4 (fr) 2010-06-09
US20210161654A1 (en) 2021-06-03
EP2649971B1 (fr) 2016-08-31
CN101631523B (zh) 2013-02-13
JP2018020232A (ja) 2018-02-08
US9795472B2 (en) 2017-10-24
US11612478B2 (en) 2023-03-28
EP2617398A1 (fr) 2013-07-24
US20100137982A1 (en) 2010-06-03
JP2010520802A (ja) 2010-06-17
US20200360130A1 (en) 2020-11-19
US9662198B2 (en) 2017-05-30
EP2772226A3 (fr) 2014-11-12
US20120296394A1 (en) 2012-11-22
US9782253B2 (en) 2017-10-10
JP6017655B2 (ja) 2016-11-02
JP6109873B2 (ja) 2017-04-05
US20200129287A1 (en) 2020-04-30
US10639140B2 (en) 2020-05-05
JP5212952B2 (ja) 2013-06-19
EP2620130B1 (fr) 2016-07-06
US20170258579A1 (en) 2017-09-14
US8518026B2 (en) 2013-08-27
US10729538B2 (en) 2020-08-04
US10034795B2 (en) 2018-07-31
US20200360131A1 (en) 2020-11-19
JP2010520801A (ja) 2010-06-17
US11826245B2 (en) 2023-11-28
WO2008112294A9 (fr) 2009-10-01
US10195017B2 (en) 2019-02-05
US20180042716A1 (en) 2018-02-15
US20110184392A1 (en) 2011-07-28
JP2018149305A (ja) 2018-09-27
WO2008112294A1 (fr) 2008-09-18
EP3466379B1 (fr) 2021-02-17
JP6657285B2 (ja) 2020-03-04
JP6243470B2 (ja) 2017-12-06
JP2016172018A (ja) 2016-09-29
JP2014054554A (ja) 2014-03-27
US9233023B2 (en) 2016-01-12
US10736733B2 (en) 2020-08-11
US20180036117A1 (en) 2018-02-08
CN103169568A (zh) 2013-06-26
US10709548B2 (en) 2020-07-14
EP2803343A2 (fr) 2014-11-19
AU2008226826A1 (en) 2008-09-18
US20180042715A1 (en) 2018-02-15
US11654015B2 (en) 2023-05-23
US9402715B2 (en) 2016-08-02
EP2617398B1 (fr) 2017-11-15

Similar Documents

Publication Publication Date Title
US11931243B2 (en) Method and apparatus for creating ocular surgical and relaxing incisions
AU2022206756B2 (en) Apparatus for creating ocular surgical and relaxing incisions
AU2020281103B2 (en) Apparatus for creating ocular surgical and relaxing incisions
US20240216125A1 (en) Method and Apparatus for Creating Ocular Surgical and Relaxing Incisions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140501

AC Divisional application: reference to earlier application

Ref document number: 2129345

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: A61F 9/008 20060101ALI20141006BHEP

Ipc: A61F 2/16 20060101AFI20141006BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180410

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230131

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AMO DEVELOPMENT, LLC

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

AC Divisional application: reference to earlier application

Ref document number: 2129345

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008064818

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230719

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1588734

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231120

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231019

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231119

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602008064818

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240130

Year of fee payment: 17

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: GRUENECKER PATENT- UND RECHTSANWAELTE PARTG MBB

Effective date: 20240419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240213

Year of fee payment: 17