EP2319670A1 - Matériau léger à base de bois - Google Patents

Matériau léger à base de bois Download PDF

Info

Publication number
EP2319670A1
EP2319670A1 EP20110152229 EP11152229A EP2319670A1 EP 2319670 A1 EP2319670 A1 EP 2319670A1 EP 20110152229 EP20110152229 EP 20110152229 EP 11152229 A EP11152229 A EP 11152229A EP 2319670 A1 EP2319670 A1 EP 2319670A1
Authority
EP
European Patent Office
Prior art keywords
wood
polystyrene
density
materials
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20110152229
Other languages
German (de)
English (en)
Inventor
Lionel Gehringer
Stephan WEINKÖTZ
Günter Scherr
Frank Braun
Maxim Peretolchin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37311395&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2319670(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Priority to EP20110152229 priority Critical patent/EP2319670A1/fr
Publication of EP2319670A1 publication Critical patent/EP2319670A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/005Manufacture of substantially flat articles, e.g. boards, from particles or fibres and foam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249971Preformed hollow element-containing
    • Y10T428/249972Resin or rubber element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/253Cellulosic [e.g., wood, paper, cork, rayon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • Y10T428/31899Addition polymer of hydrocarbon[s] only
    • Y10T428/31902Monoethylenically unsaturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31975Of cellulosic next to another carbohydrate
    • Y10T428/31978Cellulosic next to another cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31975Of cellulosic next to another carbohydrate
    • Y10T428/31978Cellulosic next to another cellulosic
    • Y10T428/31982Wood or paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31989Of wood

Definitions

  • the present invention relates to lightweight wood-based materials containing 30 to 95 wt .-%, based on the wood material, wood particles, wherein the wood particles have a mean density of 0.4 to 0.85 g / cm 3 , 2.5 to 20 wt. %, based on the wood material, polystyrene and / or styrene copolymer as filler, wherein the filler has a bulk density of 10 to 100 kg / m 3 , and 2.5 to 50 wt .-%, based on the wood material, binder, wherein the average density of the light wood material is less than or equal to 600 kg / m 3 .
  • Wood-based panels are a cost-effective and resource-saving alternative to solid wood and have gained great importance in particular in furniture construction, laminate flooring and as building materials.
  • Starting materials serve wood particles of different strengths, eg. As wood chips or wood fibers from different woods.
  • wood particles are usually pressed with natural and / or synthetic binders and optionally with the addition of further additives to plate or strand-shaped wood materials.
  • chipboard comes mainly used in the manufacture of doors as an inner layer.
  • a disadvantage of these materials is the too low screw extraction resistance, the difficulty attaching fittings and the difficulties in edging.
  • Lightweight and pressure-resistant molding materials consist of wood chips or fibers, a binder and serving as a filler porous plastic.
  • the wood chips or fibers are mixed with binders and foamable or partially foamable plastics, and the resulting mixture is compressed at elevated temperature.
  • binders all conventional binders suitable for the gluing of wood, such as urea-formaldehyde resins, are useful.
  • Suitable fillers are foamable or already foamed plastic particles, preferably expandable thermoplastics such as styrene polymers. The particle size of the plastics used is generally in prefoamed plastics 0.6 to 10 mm.
  • the plastics are used in an amount of 0.5 to 5 weight percent, based on the wood chips.
  • the plates described in the examples have a thickness of 18 to 21 mm, a density of 220 kg / m 3 to 430 kg / m 3 and an average bending strength of 3.6 N / mm 2 to 17.7 N / mm 2 on.
  • the transverse tensile strengths are not specified in the examples.
  • WO 02/38676 describes a process for the preparation of light products, in which 5 to 40 wt .-% foamable or already foamed polystyrene having a particle size of less than 1 mm, 60 to 95 wt .-% lignocellulosic material and binder mixed and at elevated temperature and elevated pressure be pressed into the finished product, wherein the polystyrene melts and on the one hand impregnates the lignocellulosic material and on the other hand by the migration to the surface of the product forms a hard, water-resistant skin.
  • urea-formaldehyde resin or melamine-formaldehyde resin may be used as the binder.
  • the example describes a product with a thickness of 4.5 mm and a density of 1200 kg / m 3 .
  • US 2005/0019548 describes lightweight OSB boards using low density fillers.
  • binder polymeric binders such as 4,4-diphenylmethane diisocyanate resin are described.
  • the fillers described are glass, ceramics, perlite or polymeric materials.
  • the polymeric material is used in an amount of 0.8 to 20 wt .-% based on the OSB board.
  • the polymeric material used in the examples is the material Dualite, which consists of polypropylene, polyvinylidene chloride or polyacrylonitrile. A weight reduction of 5% is described.
  • OSB boards having a density of 607 to 677 kg / m 3 and a transverse tensile strength of 0.31 to 0.59 N / mm 2 are described.
  • US 2003/24443 discloses a material consisting of wood chips, binders and fillers. Fillers include polymers based on styrene. The volume ratio between the wood chips and the binder is advantageously 1: 1. There are also described prior art plates in which the volume ratio of binder to wood shavings is 90:10. These prior art plates have a density of 948 kg / m 3 . As binders among other thermosetting resins are described. In the examples according to the invention plates with a volume ratio of binder to wood chips of 45:55 are described which have a density of 887 kg / m 3 .
  • JP 06031708 describes light wood materials, wherein for the middle layer of a three-layer chipboard, a mixture of 100 parts by weight of wood particles and 5 to 30 parts by weight of particles of synthetic resin foam are used, said resin particles having a specific gravity of not more than 0.3 g / cm 3 and have a compressive strength of at least 30 kg / cm 2 . Further, it is described that the specific gravity of the wood particles should not exceed 0.5 g / cm 3 .
  • a mechanical strength of the produced wood materials of 4.7 to 4.9 kg / cm 3 is achieved using wood particles from the Japanese cedar with a density of 0.35 g / cm 3 .
  • Lauan and Kapur wood particles with an average density of 0.6 g / cm 3 only a mechanical strength of the produced wood materials of 3.7 kg / cm 3 could be achieved.
  • the disadvantage of the prior art is summarized in that on the one hand, the described light (wood) materials for furniture manufacturing too low mechanical strength, such as too low a screw pull-out resistance, have. On the other hand, the wood materials described in the prior art still have a high density of over 600 kg / m 3 . Furthermore, in the prior art for the production of lightweight wood-based materials, woods with an unusually light density of less than 0.5 g / cm 3 are employed for the European market.
  • Too low mechanical strength for example, lead to breaking or cracking of the components. Furthermore, these components tend during drilling or sawing to additional flaking of further wood material. Fastening hardware is difficult with these materials.
  • the object of the present invention was therefore to show light wood materials, which in comparison to the commercial wood materials by 5 bis 40% lower density with the same good mechanical strength.
  • the mechanical strength can be determined, for example, by measuring the transverse tensile strength.
  • these lightweight wood-based materials should be manufacturable using native, European woods. Consequently, the lightweight wood-based materials using heavy woods with a density greater than or equal to 0.5 g / cm 3 should have comparable low densities and comparable high mechanical strengths as the wood-based materials according to JP 06031708 made using light woods. Furthermore, the swelling and water absorption of the light wood materials should not be affected by the reduced density.
  • the object was achieved by light wood materials containing 30 to 95 wt .-%, based on the wood material, wood particles, wherein the wood particles have a mean density of 0.4 to 0.85 g / cm 3 , 2.5 to 20 wt. -%, based on the wood material, polystyrene and / or styrene copolymer as a filler, wherein the filler has a bulk density of 10 to 100 kg / m 3 , and 2.5 to 50 wt .-%, based on the wood material, binder, wherein the average density of the light wood material is less than or equal to 600 kg / m 3 .
  • the weight of the binder refers to the solids content of the binder.
  • the average density of the wood particles refers to a wood moisture content of 12%. Furthermore, the average density of the wood particles refers to an average density over all wood particles used.
  • the wood-base materials according to the invention have an average density of 200 to 600 kg / m 3 , preferably 200 to 575 kg / m 3 , particularly preferably 250 to 550 kg / m 3 , in particular 300 to 500 kg / m 3 .
  • the transverse tensile strength of the wood-base materials according to the invention is advantageously greater than 0.3 N / mm 2 , preferably greater than 0.4 N / mm 2 , more preferably greater than 0.5 and in particular greater than 0.6 N / mm 2 .
  • the determination of the transverse tensile strength is in accordance with EN 319.
  • Wood-based materials are all materials which are made of wood veneers with an average density of 0.4 to 0.85 g / cm 3 , such as veneer sheets or plywood sheets, of wood chips with a mean density of 0.4 to 0.85 g / cm 3 produced wood materials, such as chipboard or OSB boards, and wood fiber materials such as LDF, MDF and HDF boards. Particleboard and fiberboard, in particular chipboard, are preferred.
  • the average density of the wood particles is advantageously 0.4 to 0.8 g / cm 3 , preferably 0.4 to 0.75 g / cm 3 , in particular 0.4 to 0.6 g / cm 3 .
  • spruce for example, spruce, beech, pine, larch, or fir wood is used, preferably spruce and / or beech wood, especially spruce wood.
  • the filler polystyrene and / or styrene copolymer can be prepared by all polymerization processes known to those skilled in the art [see, for example, US Pat. B. Ullmann's Encyclopedia, Sixth Edition, 2000 Electronic Release ]. For example, the preparation is carried out in a conventional manner by suspension polymerization or by extrusion.
  • styrene In the suspension polymerization, styrene, optionally with the addition of further comonomers in aqueous suspension, is polymerized in the presence of a customary suspension stabilizer by means of free-radical-forming catalysts.
  • the blowing agent and, if appropriate, further additives may be introduced during the polymerization or may be added to the batch in the course of the polymerization or after the end of the polymerization.
  • the resulting bead-shaped optionally expandable styrene polymers are separated from the aqueous phase after the end of the polymerization, washed, dried and sieved.
  • the blowing agent is mixed for example via an extruder in the polymer, conveyed through a nozzle plate and granulated into particles or strands.
  • the filler polystyrene or styrene copolymer is particularly preferably expandable.
  • blowing agents are all blowing agents known to those skilled in the art, for example C 3 to C 6 hydrocarbons, such as propane, n-butane, isobutane, n-pentane, isopentane, neopentane and / or hexane, alcohols, ketones, ethers or halogenated hydrocarbons , Preferably, a commercially available pentane isomer mixture is used.
  • the styrenic polymers may contain additives, nucleating agents, plasticizers, flame retardants, soluble and insoluble inorganic and / or organic dyes and pigments, e.g. IR absorber, such as carbon black, graphite or aluminum powder, are added together or spatially separated as additives.
  • additives e.g. IR absorber, such as carbon black, graphite or aluminum powder, are added together or spatially separated as additives.
  • styrene copolymers these styrene copolymers advantageously have at least 50% by weight, preferably at least 80% by weight, of copolymerized polystyrene.
  • comonomers come z. B. ⁇ -methylstyrene, ring-halogenated styrenes, acrylonitrile, esters of acrylic or methacrylic acid of Alcohols having 1 to 8 carbon atoms, N-vinylcarbazole, maleic acid (anhydride), (meth) acrylamides and / or vinyl acetate into consideration.
  • the polystyrene and / or styrene copolymer may contain in copolymerized form a small amount of a chain splitter, i. a compound having more than one, preferably two, double bonds, such as divinylbenzene, butadiene and / or butanediol diacrylate.
  • the branching agent is generally used in amounts of from 0.005 to 0.05 mol%, based on styrene.
  • styrene (co) polymers having molecular weights and molecular weight distributions as described in US Pat EP-B 106 129 and in DE-A 39 21 148 are described. Preference is given to using styrene (co) polymers having a molecular weight in the range from 190,000 to 400,000 g / mol.
  • Mixtures of different styrene (co) polymers can also be used.
  • styrene polymers to glassy polystyrene (GPPS), toughened polystyrene (HIPS), anionically polymerized polystyrene or toughened polystyrene (A-IPS), styrene- ⁇ -methylstyrene copolymers, acrylonitrile-butadiene-styrene polymers (ABS), styrene-acrylonitrile (SAN), Acrylonitrile-styrene-acrylic ester (ASA), methyl acrylate-butadiene-styrene (MBS), methyl methacrylate-acrylonitrile-butadiene-styrene (MABS) polymers or mixtures thereof or used with polyphenylene ether (PPE).
  • GPPS glassy polystyrene
  • HIPS toughened polystyrene
  • A-IPS anionically polymerized polystyrene or toughened polystyrene
  • polystyrene Styropor®, Neopor® and / or Peripor® from BASF Aktiengesellschaft is particularly preferably used.
  • Pre-expanded polystyrene and / or styrene copolymers are advantageously used.
  • the prefoamed polystyrene can be prepared by all methods known to the person skilled in the art (for example DE 845264 ).
  • the expandable styrene polymers are expanded in a known manner by heating to temperatures above their softening point, for example with hot air or preferably steam.
  • the prefoamed polystyrene or styrene copolymer advantageously has a bulk density of 10 to 100 kg / m 3 , preferably 15 to 80 kg / m 3 , more preferably 20 to 70 kg / m 3 , in particular 30 to 60 kg / m 3 .
  • the prefoamed polystyrene or styrene copolymer is advantageously used in the form of spheres or beads having an average diameter of advantageously 0.25 to 10 mm, preferably 0.5 to 5 mm, in particular 0.75 to 3 mm.
  • the prefoamed polystyrene or styrene copolymer spheres advantageously have a small surface area per volume, for example in the form of a spherical or elliptical particle.
  • the prefoamed polystyrene or styrene copolymer spheres are advantageously closed-celled.
  • the open cell density according to DIN-ISO 4590 is less than 30%.
  • the (prefoamed) polystyrene or styrene copolymer particularly preferably has an antistatic coating.
  • antistatic agents the usual and common in the art substances can be used. Examples are N, N-bis (2-hydroxyethyl) -C 12 -C 18 -alkylamines, fatty acid diethanolamides, choline ester chlorides of fatty acids, C 12 -C 20 -alkyl sulfonates, ammonium salts.
  • Suitable ammonium salts contain on nitrogen in addition to alkyl groups 1 to 3 hydroxyl-containing organic radicals.
  • Suitable quaternary ammonium salts are, for example, those having on the nitrogen cation 1 to 3, preferably 2, identical or different alkyl radicals having 1 to 12, preferably 1 to 10 carbon atoms, and 1 to 3, preferably 2 identical or different hydroxyalkyl or hydroxyalkylpolyoxyalkylene Radicals bound with any anion, such as chloride, bromide, acetate, methyl sulfate or p-toluenesulfonate.
  • hydroxyalkyl and hydroxyalkyl-polyoxyalkylene radicals are those which are formed by oxyalkylation of a nitrogen-bonded hydrogen atom and are derived from 1 to 10 oxyalkylene radicals, in particular oxyethylene and oxypropylene radicals.
  • An antistatic agent which is particularly preferred is a quaternary ammonium salt or an alkali metal salt, in particular the sodium salt of a C 12 -C 20 alkanesulfonate, eg. B emulsifier K30 from Bayer AG, or mixtures thereof.
  • the antistatic agents can generally be added both as a pure substance and in the form of an aqueous solution.
  • the antistatic agent can be added in the process for the preparation of polystyrene or styrene copolymer analogously to the customary additives or applied after the preparation of the polystyrene particles as a coating.
  • the antistatic agent is advantageously used in an amount of 0.05 to 6 wt .-%, preferably 0.1 to 4 wt .-%, based on the polystyrene or styrene copolymer.
  • the filler polystyrene and / or styrene copolymer is advantageously present evenly distributed in the wood material according to the invention.
  • the filler balls are advantageously present after pressing to the wood material in an unmelted state. Optionally, however, it may come to a melting of the filler balls, which are located on the surface of the wood material.
  • binders it is possible to use all binders known to the person skilled in the art for the production of wood-based materials.
  • Formaldehyde-containing adhesives are advantageously used as binders, for example urea-formaldehyde resins or melamine-containing urea-formaldehyde resins. Preference is given to using urea-formaldehyde resins.
  • Kaurit® glue from BASF Aktiengesellschaft is used as the binder.
  • the solids content of the binder is usually from 25 to 100% by weight, in particular from 50 to 70% by weight.
  • the lightweight wood-base materials according to the invention advantageously contain 55 to 92.5% by weight, preferably 60 to 90% by weight, in particular 70 to 85% by weight, based on the wood material, of wood particles, the wood particles having an average density of 0, 4 to 0.85 g / cm 3 , preferably 0.4 to 0.75 g / cm 3 , in particular 0.4 to 0.6 g / cm 3 , 5 to 15 wt .-%, preferably 8 to 12 wt .-% based on the wood material, polystyrene and / or styrene copolymer filler, wherein the filler has a bulk density of 10 to 100 kg / m 3 , preferably 20 to 80, in particular 30 to 60, and 2.5 to 40 wt .-% , preferably 5 to 25 wt .-%, in particular 5 to 15 wt .-%, based on the wood material, binder, wherein the average density of the light wood material is less than or equal to 600
  • the thickness of the wood materials varies with the field of application and is usually in the range of 0.5 to 50 mm.
  • the transverse tensile strength of the lightweight wood-base materials according to the invention having a density of 200 to 650 kg / m 3 is advantageously greater than (0.002 ⁇ D - 0.55) N / mm 2 , preferably greater than (0.002 ⁇ D - 0.45) N / mm 2 , in particular greater than (0.0022 x D - 0.45) N / mm 2 .
  • the swelling values are advantageously 10% smaller, preferably 20% smaller, in particular 30% smaller than the swelling values of a plate of the same density without filler.
  • the present invention relates to a material containing at least three layers, wherein at least the middle layer (s) 30 to 95 wt .-%, based on the wood material, wood particles, wherein the wood particles have an average density of 0.4 to 0.85 g / cm 3 , 2.5 to 20 wt .-%, based on the wood material, polystyrene and / or styrene copolymer as filler, wherein the filler has a bulk density of 10 to 100 kg / m 3 , and 2 , 5 to 50 wt .-%, based on the wood material, binder, wherein the average density of the light wood material is less than or equal to 600 kg / m 3 included.
  • the outer layers have no fillers.
  • the material comprises three layers wherein the outer cover layers together make up 5 to 50 percent of the total thickness of the composite, preferably 15 to 45 percent, especially 30 to 40 percent, and the middle layer is advantageously 50 to 95 percent of the total thickness of the composite, preferably 55 to 85 percent, especially 60 to 70 percent.
  • the present invention relates to a process for the production of light wood materials, which is characterized in that pre-expanded polystyrene and / or styrene copolymer having a bulk density of 10 to 100 kg / m 3 , binder and wood particles with a density of 0.4 to 0, 85 g / cm 3 are mixed and then pressed to a wood material under elevated temperature and elevated pressure.
  • the (prefoamed) polystyrene and / or styrene copolymer is preferably provided with an antistatic coating before mixing with the binder and / or the wood particles.
  • the wood particle cake is cold pre-sealed before pressing.
  • the pressing can be carried out by all methods known to the person skilled in the art. Usually, the wood particle cake is pressed at a press temperature of 150 ° C to 230 ° C to the desired thickness. The pressing time is normally 3 to 15 seconds per mm plate thickness.
  • the present invention relates to the use of the wood-based materials according to the invention for the production of furniture, of packaging materials, in house building or interior work.
  • the advantages of the present invention are the low density of the wood-based materials according to the invention with good mechanical stability. Furthermore, the inventive easily produce wood-based materials; There is no need to retrofit the existing plants for the production of wood-based materials according to the invention.
  • Foamable polystyrene was such.
  • EP 981 574 described prepared. The addition of an antistatic agent during or after production was omitted.
  • the polystyrene particles obtained according to Example A1 were treated with steam in a continuous prefoamer.
  • the bulk density of the prefoamed polystyrene beads was adjusted by varying the vapor pressure and the steaming time.
  • Extruded PS foam available from BASF as Styrodur® (bulk density about 30 kg / m 3 ) was ground in a Pallmann impact mill type PP to an average particle diameter of 0.2 to 2 mm.
  • the glued chips or fibers were cold precompressed in a 30x30 cm mold. It was then pressed in a hot press (pressing temperature 190 ° C, pressing time 210 s). The nominal thickness of the plate was 16 mm in each case.
  • the density was determined 24 hours after preparation according to EN 1058.
  • the determination of the transverse tensile strength is in accordance with EN 319.
EP20110152229 2006-10-19 2007-10-18 Matériau léger à base de bois Withdrawn EP2319670A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20110152229 EP2319670A1 (fr) 2006-10-19 2007-10-18 Matériau léger à base de bois

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06122557.9A EP1914052B1 (fr) 2006-10-19 2006-10-19 Materiau léger a base de bois
EP07821530.8A EP2083974B1 (fr) 2006-10-19 2007-10-18 Materiau leger a base de bois
EP20110152229 EP2319670A1 (fr) 2006-10-19 2007-10-18 Matériau léger à base de bois

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP07821530.8A Division-Into EP2083974B1 (fr) 2006-10-19 2007-10-18 Materiau leger a base de bois
EP07821530.8 Division 2007-10-18

Publications (1)

Publication Number Publication Date
EP2319670A1 true EP2319670A1 (fr) 2011-05-11

Family

ID=37311395

Family Applications (5)

Application Number Title Priority Date Filing Date
EP06122557.9A Active EP1914052B1 (fr) 2006-10-19 2006-10-19 Materiau léger a base de bois
EP20110152229 Withdrawn EP2319670A1 (fr) 2006-10-19 2007-10-18 Matériau léger à base de bois
EP07821530.8A Active EP2083974B1 (fr) 2006-10-19 2007-10-18 Materiau leger a base de bois
EP07821532A Withdrawn EP2083976A2 (fr) 2006-10-19 2007-10-18 Materiau leger a base de bois
EP20070821531 Active EP2083975B1 (fr) 2006-10-19 2007-10-18 Matériaux légers dérivés du bois présentant de bonnes propriétés mécaniques et leur methode de production

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06122557.9A Active EP1914052B1 (fr) 2006-10-19 2006-10-19 Materiau léger a base de bois

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP07821530.8A Active EP2083974B1 (fr) 2006-10-19 2007-10-18 Materiau leger a base de bois
EP07821532A Withdrawn EP2083976A2 (fr) 2006-10-19 2007-10-18 Materiau leger a base de bois
EP20070821531 Active EP2083975B1 (fr) 2006-10-19 2007-10-18 Matériaux légers dérivés du bois présentant de bonnes propriétés mécaniques et leur methode de production

Country Status (18)

Country Link
US (2) US9089991B2 (fr)
EP (5) EP1914052B1 (fr)
JP (2) JP5300728B2 (fr)
CN (2) CN101541488B (fr)
AT (1) ATE493247T1 (fr)
AU (2) AU2007312218B2 (fr)
BR (2) BRPI0717434A2 (fr)
CA (2) CA2666454A1 (fr)
DE (2) DE202006020503U1 (fr)
EA (2) EA013666B1 (fr)
ES (3) ES2641263T3 (fr)
MY (2) MY148871A (fr)
NO (3) NO20091516L (fr)
NZ (2) NZ576290A (fr)
PL (3) PL1914052T3 (fr)
PT (3) PT1914052T (fr)
UA (2) UA94123C2 (fr)
WO (3) WO2008046891A1 (fr)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2631869C (fr) * 2006-01-17 2014-03-18 Basf Se Procede pour limiter l'emission de formaldehyde dans des materiaux de construction en bois
PL1914052T3 (pl) 2006-10-19 2017-12-29 Basf Se Lekkie tworzywa drzewne
BE1017821A5 (nl) 2007-10-19 2009-08-04 Flooring Ind Ltd Sarl Plaat, werkwijzen voor het vervaardigen van platen en paneel dat dergelijk plaatmateriaal bevat.
CL2008003701A1 (es) 2008-01-11 2009-05-08 Nova Chem Inc Método para producir un artículo de material compuesto espumado de fibra celulósica-termoplástico.
EP2172333A1 (fr) * 2008-09-19 2010-04-07 Basf Se Corps de formage à teneur en lignocellulose multicouche à émission en formaldéhyde réduite
PL2223786T3 (pl) 2009-02-26 2015-02-27 SWISS KRONO Tec AG Płyta z tworzywa drzewnego oraz sposób wytwarzania płyty z tworzywa drzewnego
GB0908487D0 (en) * 2009-05-18 2009-06-24 Dynea Oy Resin system for foam core boards
JP2013501647A (ja) * 2009-08-13 2013-01-17 ビーエーエスエフ ソシエタス・ヨーロピア 良好な機械的性質を有する軽量リグノセルロース物質
EP2464692A1 (fr) * 2009-08-13 2012-06-20 Basf Se Matériaux lignocellulosiques légers possédant de bonnes propriétés mécaniques
US20120219815A1 (en) * 2009-11-06 2012-08-30 Basf Se Lignocellulose materials having good mechanical properties
DE102009056843A1 (de) * 2009-12-02 2011-06-09 Michanickl, Andreas, Prof.Dr. Leichte Holzwerkstoffplatte
US8920923B2 (en) 2010-03-04 2014-12-30 Basf Se Lignocellulose materials having good mechanical properties
EP2542625A4 (fr) * 2010-03-04 2013-10-23 Basf Se Matériaux lignocellulosiques présentant des propriétés mécaniques satisfaisantes
US8623501B2 (en) 2010-03-04 2014-01-07 Basf Se Lignocellulose materials having good mechanical properties
SI2651612T1 (sl) 2010-12-17 2015-01-30 Basf Se Večplastno oblikovano telo, ki vsebuje lignocelulozo in ima nizko emisijo formaldehida
CN102020862B (zh) * 2011-01-07 2012-04-25 福建农林大学 一种轻质木塑复合材料及其制造方法
CN103112071B (zh) * 2011-11-17 2015-09-16 上海通用汽车有限公司 汽车内饰件及其制造方法
DE102011056946A1 (de) 2011-12-22 2013-06-27 Nolte Holzwerkstoff Gmbh & Co. Kg Gewichtsreduzierte Spanplatte mit mechanisch belastbarer Polystyrol-Einlage
AU2012357001B8 (en) * 2011-12-23 2017-02-16 Basf Se Lignocellulose materials comprising expanded plastic particles non-homogeneously distributed in the core
US9266308B2 (en) 2011-12-23 2016-02-23 Basf Se Lignocellulosic materials with expanded plastics particles present in nonuniform distribution in the core
LT2794211T (lt) * 2011-12-23 2016-09-26 Basf Se Lignoceliuliozės medžiagos su lignoceliulioziniu pluoštu išorės sluoksniuose ir išplėstosios plastiko dalelės, esančios šerdyje, ir būdas bei jų panaudojimas
EP3401115B1 (fr) * 2013-07-22 2023-06-07 Akzenta Paneele + Profile GmbH Procédé de fabrication d'un panneau mural ou de sol décoré
KR102242166B1 (ko) 2013-09-30 2021-04-20 바스프 에스이 리그노셀룰로스 복합 물품
CN103568097A (zh) * 2013-10-21 2014-02-12 黄宣斐 一种含有天然木纤维的低密度板
EP2942208A1 (fr) * 2014-05-09 2015-11-11 Akzenta Paneele + Profile GmbH Procédé de fabrication d'un panneau mural ou de sol décoré
CN104786342A (zh) * 2015-04-24 2015-07-22 东北林业大学 低密度“三明治”结构的木质复合板材及其制备方法
CN105150352A (zh) * 2015-10-14 2015-12-16 中山冠华竹纤板业有限公司 一种调质养生竹纤维板及其生产工艺
MX2018009618A (es) 2016-02-23 2019-05-02 Financiera Maderera S A Procedimiento de fabricacion de tableros estratificados multicapas y tablero obtenido mediante dicho procedimiento.
CN105754363A (zh) * 2016-03-15 2016-07-13 南通长城装饰木制品制造有限公司 一种具有甲醛净化功能的纤维木材及其制备方法
US20220242007A1 (en) * 2016-03-21 2022-08-04 Bondcore öU Composite wood panels with corrugated cores and method of manufacturing same
TWI778957B (zh) * 2016-03-30 2022-10-01 大陸商贏創特種化學(上海)有限公司 包含聚(甲基)丙烯醯亞胺發泡體粒子的聚合物混合物
BR112019000159A2 (pt) * 2016-07-06 2019-04-24 Sonoco Development, Inc. bobina feita de componentes moldados
CN107150382A (zh) * 2017-01-11 2017-09-12 廖伟登 松柏桉混合制成的建筑用层压板
US20210253861A1 (en) 2018-08-28 2021-08-19 Basf Se Lignocellulosic composite articles
BR112021018115A2 (pt) 2019-03-15 2021-11-23 Basf Se Artigo compósito lignocelulósico, método para formar o artigo e método de formação de um artigo compósito lignocelulósico
PT115374A (pt) 2019-03-15 2020-10-08 Univ Do Porto Compósitos de baixa densidade de poliuretano-madeira e o seu método de fabrico
CN111168803A (zh) * 2019-12-31 2020-05-19 嘉兴市集美新材料科技有限公司 环保防水高强度的人造板及其制造方法
CN112497413A (zh) * 2020-11-29 2021-03-16 千年舟新材科技集团股份有限公司 一种发泡材料、超低密度的阻燃定向刨花板及制备方法
CN113801492B (zh) * 2021-09-24 2023-08-25 湖南兆恒材料科技有限公司 一种吸波复合泡沫材料及其制备方法
WO2024008939A1 (fr) 2022-07-08 2024-01-11 Covestro (Netherlands) B.V. Compositions pour panneaux de fibres présentant des propriétés améliorées lors d'un durcissement rapide à basse température
WO2024008938A1 (fr) 2022-07-08 2024-01-11 Covestro (Netherlands) B.V. Compositions pour panneaux de fibres présentant des propriétés améliorées lors d'un durcissement rapide à basse température
WO2024008940A1 (fr) 2022-07-08 2024-01-11 Covestro (Netherlands) B.V. Compositions pour panneaux de fibres présentant des propriétés améliorées lors d'un durcissement rapide à basse température
WO2024038153A1 (fr) 2022-08-19 2024-02-22 Covestro (Netherlands) B.V. Compositions pour panneaux de fibres présentant des propriétés améliorées lors d'un durcissement rapide à basse température
WO2024038152A1 (fr) 2022-08-19 2024-02-22 Covestro (Netherlands) B.V. Compositions pour plaques de fibres présentant des propriétés améliorées lors d'un durcissement rapide à basse température

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE845264C (de) 1950-02-28 1952-08-14 Basf Ag Verfahren zur Herstellung poroeser Massen aus Polymerisaten
CH370229A (de) 1956-12-17 1963-06-30 Max Dipl Ing Himmelheber Druckfester Formpressstoff und Verfahren zu seiner Herstellung
EP0106129B1 (fr) 1982-09-18 1986-08-20 BASF Aktiengesellschaft Particules de polystyrène expansible
DE3921148A1 (de) 1989-06-28 1991-01-10 Basf Ag Perlfoermige expandierbare styrolpolymerisate mit hohem expandiervermoegen
JPH0631708A (ja) * 1992-07-20 1994-02-08 Okura Ind Co Ltd 軽量パーティクルボード
JPH0631708B2 (ja) 1985-02-08 1994-04-27 株式会社日立製作所 蓄熱装置
EP0981574A1 (fr) 1997-05-14 2000-03-01 Basf Aktiengesellschaft Polymerisats de styrene expansibles contenant des particules de graphite
WO2002038676A1 (fr) 2000-11-10 2002-05-16 Balmoral Technologies (Proprietary) Limited Procede de fabrication d'un produit fini
US20030024443A1 (en) 2001-07-27 2003-02-06 Kabushiki Kaishi Togiya Loading and unloading pallet, forming material and method of producing it
US20050019548A1 (en) 2003-07-16 2005-01-27 J. M. Huber Corporation Strength-enhanced, lightweight lignocellulosic composite board materials and methods of their manufacture

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE370229C (de) * 1923-03-01 Ludwig Thallmayer Verfahren zum Puffern von Wechselstromnetzen mittels Schwungrades
US2898632A (en) * 1955-10-19 1959-08-11 Dayton Formold Inc Molding plastic foam
US3963816A (en) * 1971-09-02 1976-06-15 Foster Grant Co., Inc. Process for molding expandable thermoplastic material
JPS5445385A (en) * 1977-09-17 1979-04-10 Nippon Musical Instruments Mfg Particle board
JPS5989136A (ja) * 1982-11-15 1984-05-23 Toshiba Mach Co Ltd スチレン系ポリマ−の溶融押出方法
JPH02220808A (ja) * 1989-02-23 1990-09-04 Nippon Kasei Kk 導電性木質繊維成形板
US5002713A (en) * 1989-12-22 1991-03-26 Board Of Control Of Michigan Technological University Method for compression molding articles from lignocellulosic materials
NZ260980A (en) * 1993-07-14 1996-08-27 Yamaha Corp Wood board; core layer of wooden strips & foaming binder and surface layer of oriented strand board with wooden strips & binder
JPH07144308A (ja) * 1993-11-22 1995-06-06 Yamaha Corp 表面化粧木質板
CN1099328A (zh) * 1994-03-16 1995-03-01 郭柏林 一种轻质刨花板的生产工艺及其产品
CN2244987Y (zh) * 1996-05-21 1997-01-15 赵凤岐 人造复合板
JP2001191308A (ja) * 2000-01-12 2001-07-17 Pan Techno:Kk 木屑の有効利用法
JP2001287231A (ja) * 2000-04-07 2001-10-16 Nichiha Corp 木質成形体およびその製造方法
EP1271844B1 (fr) 2001-06-21 2009-12-09 SK Telecom Co.,Ltd. Procédé pour déterminer une route dans un réseau à commutation d'étiquettes multiprotocole
CN1274765C (zh) * 2004-11-18 2006-09-13 中国科学院广州化学研究所 一种甘蔗渣和聚苯乙烯共混人造纤维制品的制造方法
JP5258147B2 (ja) * 2005-01-28 2013-08-07 積水化成品工業株式会社 発泡性熱可塑性樹脂粒子とその製造方法、発泡性熱可塑性樹脂粒子用帯電防止剤組成物及び発泡性熱可塑性樹脂粒子の帯電防止方法
CA2631869C (fr) 2006-01-17 2014-03-18 Basf Se Procede pour limiter l'emission de formaldehyde dans des materiaux de construction en bois
PL1914052T3 (pl) 2006-10-19 2017-12-29 Basf Se Lekkie tworzywa drzewne
EP2042560A1 (fr) 2007-09-19 2009-04-01 Basf Se Matériaux légers dérivés du bois dotés de bonnes propriétés mécaniques et d'émissions réduites de formaldéhyde
ITMO20080070A1 (it) * 2008-03-11 2009-09-12 Massimiliano Pineschi Bevanda - condimento

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE845264C (de) 1950-02-28 1952-08-14 Basf Ag Verfahren zur Herstellung poroeser Massen aus Polymerisaten
CH370229A (de) 1956-12-17 1963-06-30 Max Dipl Ing Himmelheber Druckfester Formpressstoff und Verfahren zu seiner Herstellung
EP0106129B1 (fr) 1982-09-18 1986-08-20 BASF Aktiengesellschaft Particules de polystyrène expansible
JPH0631708B2 (ja) 1985-02-08 1994-04-27 株式会社日立製作所 蓄熱装置
DE3921148A1 (de) 1989-06-28 1991-01-10 Basf Ag Perlfoermige expandierbare styrolpolymerisate mit hohem expandiervermoegen
JPH0631708A (ja) * 1992-07-20 1994-02-08 Okura Ind Co Ltd 軽量パーティクルボード
EP0981574A1 (fr) 1997-05-14 2000-03-01 Basf Aktiengesellschaft Polymerisats de styrene expansibles contenant des particules de graphite
WO2002038676A1 (fr) 2000-11-10 2002-05-16 Balmoral Technologies (Proprietary) Limited Procede de fabrication d'un produit fini
US20030024443A1 (en) 2001-07-27 2003-02-06 Kabushiki Kaishi Togiya Loading and unloading pallet, forming material and method of producing it
US20050019548A1 (en) 2003-07-16 2005-01-27 J. M. Huber Corporation Strength-enhanced, lightweight lignocellulosic composite board materials and methods of their manufacture

Also Published As

Publication number Publication date
EP2083974B1 (fr) 2017-01-18
US20110003136A1 (en) 2011-01-06
PT1914052T (pt) 2017-10-04
UA96612C2 (ru) 2011-11-25
CN101541488B (zh) 2014-01-15
US9089991B2 (en) 2015-07-28
JP2010506757A (ja) 2010-03-04
EP2083976A2 (fr) 2009-08-05
JP2010506758A (ja) 2010-03-04
WO2008046892A2 (fr) 2008-04-24
ES2641263T3 (es) 2017-11-08
EA013665B1 (ru) 2010-06-30
DE202006020503U1 (de) 2008-10-09
ES2622883T3 (es) 2017-07-07
ATE493247T1 (de) 2011-01-15
EP2083974A2 (fr) 2009-08-05
CN101541488A (zh) 2009-09-23
EA200900550A1 (ru) 2009-10-30
NZ576290A (en) 2012-02-24
PL2083975T3 (pl) 2011-05-31
MY148865A (en) 2013-06-14
NO20091516L (no) 2009-05-14
PT2083974T (pt) 2017-03-31
AU2007312218B2 (en) 2012-02-09
NO20091522L (no) 2009-05-18
UA94123C2 (ru) 2011-04-11
EP2083975B1 (fr) 2010-12-29
WO2008046890A2 (fr) 2008-04-24
EP1914052B1 (fr) 2017-06-28
CA2666454A1 (fr) 2008-04-24
AU2007312220A1 (en) 2008-04-24
WO2008046891A1 (fr) 2008-04-24
MY148871A (en) 2013-06-14
PL1914052T3 (pl) 2017-12-29
WO2008046890A3 (fr) 2008-06-12
EA013666B1 (ru) 2010-06-30
BRPI0717434A2 (pt) 2013-11-12
EA200900551A1 (ru) 2009-10-30
BRPI0717436A2 (pt) 2013-11-12
PT2083975E (pt) 2011-02-03
NZ576323A (en) 2012-03-30
JP5150638B2 (ja) 2013-02-20
CN101553348B (zh) 2013-08-14
PL2083974T3 (pl) 2017-07-31
EP2083975A1 (fr) 2009-08-05
AU2007312220B2 (en) 2012-05-03
ES2357574T3 (es) 2011-04-27
JP5300728B2 (ja) 2013-09-25
DE502007006137D1 (de) 2011-02-10
CA2666447A1 (fr) 2008-04-24
AU2007312218A1 (en) 2008-04-24
NO20091523L (no) 2009-04-30
WO2008046892A3 (fr) 2008-08-21
CN101553348A (zh) 2009-10-07
EP1914052A1 (fr) 2008-04-23
US20100297425A1 (en) 2010-11-25
US8304069B2 (en) 2012-11-06

Similar Documents

Publication Publication Date Title
EP1914052B1 (fr) Materiau léger a base de bois
EP2193170B1 (fr) Matériau léger à base de bois à bonnes propriétés mécaniques et faible émission de formaldéhyde
EP2464691A1 (fr) Matériaux lignocellulosiques légers présentant de bonnes propriétés mécaniques
EP2464692A1 (fr) Matériaux lignocellulosiques légers possédant de bonnes propriétés mécaniques
WO2015000913A1 (fr) Substances à base de lignocellulose comportant des particules de matière plastique expansées munies d'un revêtement
WO2011054790A1 (fr) Matériaux lignocellulosiques présentant de bonnes propriétés mécaniques
EP2542393A1 (fr) Matériaux lignocellulosiques ayant de bonnes propriétés mécaniques
EP3145710A1 (fr) Matériaux lignocellulosiques multicouches à l'intérieur desquels se situe une barrière contre l'humidité

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2083974

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20111111

17Q First examination report despatched

Effective date: 20160129

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170516