EP2181992A1 - Composé polycyclique - Google Patents

Composé polycyclique Download PDF

Info

Publication number
EP2181992A1
EP2181992A1 EP08828870A EP08828870A EP2181992A1 EP 2181992 A1 EP2181992 A1 EP 2181992A1 EP 08828870 A EP08828870 A EP 08828870A EP 08828870 A EP08828870 A EP 08828870A EP 2181992 A1 EP2181992 A1 EP 2181992A1
Authority
EP
European Patent Office
Prior art keywords
group
compound
substituted
reaction
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08828870A
Other languages
German (de)
English (en)
Other versions
EP2181992A4 (fr
EP2181992B1 (fr
EP2181992B8 (fr
Inventor
Teiji Kimura
Noritaka Kitazawa
Toshihiko Kaneko
Nobuaki Sato
Koki Kawano
Koichi Ito
Mamoru Takaishi
Takeo Sasaki
Yu Yoshida
Toshiyuki Uemura
Takashi Doko
Daisuke Shinmyo
Daiju Hasegawa
Takehiko Miyagawa
Hiroaki Hagiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisai R&D Management Co Ltd
Original Assignee
Eisai R&D Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai R&D Management Co Ltd filed Critical Eisai R&D Management Co Ltd
Priority to EP12191398.2A priority Critical patent/EP2559693B1/fr
Publication of EP2181992A1 publication Critical patent/EP2181992A1/fr
Publication of EP2181992A4 publication Critical patent/EP2181992A4/fr
Publication of EP2181992B1 publication Critical patent/EP2181992B1/fr
Application granted granted Critical
Publication of EP2181992B8 publication Critical patent/EP2181992B8/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems

Definitions

  • the present invention relates to a pharmaceutical, more particularly, to a multi-cyclic cinnamide derivative effective for treatment of a neurodegenerative disease caused by amyloid- ⁇ (hereinafter referred to as A ⁇ ) such as Alzheimer's disease or Down's syndrome and a medicine, in particular, a medicine for prevention or treatment of a disease caused by A ⁇ comprising the derivative as an active ingredient.
  • a ⁇ amyloid- ⁇
  • Alzheimer's disease is a disease characterized by degeneration and loss of neurons as well as formation of senile plaques and neurofibrillary degeneration.
  • a symptom improving agent typified by an acetylcholinesterase inhibitor
  • APP amyloid precursor proteins
  • Main molecular species of A ⁇ -protein are A ⁇ 40 consisting of 40 amino acids and A ⁇ 42 with two amino acids added at the C-terminal.
  • the A ⁇ 40 and A ⁇ 42 are known to have high aggregability (see Non-Patent Document 3, for example) and to be main components of senile plaques (see Non-Patent Documents 3, 4 and 5, for example). Further, it is known that the A ⁇ 40 and A ⁇ 42 are increased by mutation in APP and presenilin genes which is observed in familial Alzheimer's disease (see Non-Patent Documents 6, 7 and 8, for example). Accordingly, a compound that reduces production of A ⁇ 40 and A ⁇ 42 is expected as a progression inhibitor or prophylactic agent for Alzheimer's disease.
  • a ⁇ is produced by cleaving APP by ⁇ -secretase and subsequently by ⁇ -secretase. For this reason, attempts have been made to create ⁇ -secretase and ⁇ -secretase inhibitors in order to reduce A ⁇ production.
  • Many of these secretase inhibitors already known are, for example, peptides and peptide mimetics such as L-685,458 (see Non-Patent Document 9, for example), LY-411,575 (see Non-Patent Documents 10, 11 and 12, for example) and LY-450,139 (see Non-Patent Documents 13, 14 and 15).
  • Nonpeptidic compounds are, for example, MRK-560 (see Non-Patent Documents 16 and 17) and compounds having a plurality of aromatic rings as disclosed in Patent Document 1.
  • the compound represented by the formula (VI) as disclosed in page 17 of the specification differs from the compound of the present invention in that the compound is limited to a compound having a 2-aminothiazolyl group as a main structure.
  • a compound that inhibits production of A ⁇ 40 and A ⁇ 42 from APP has been expected as a therapeutic or prophylactic agent for a disease caused by A ⁇ which is typified by Alzheimer's disease.
  • a nonpeptidic compound having high efficacy which inhibits production of A ⁇ 40 and A ⁇ 42 has not yet been known. Accordingly, there is a need for a novel low-molecular-weight compound that inhibits production of A ⁇ 40 and A ⁇ 42.
  • the present invention relates to the following 1) to 19):
  • the compound of the general formula (I) or pharmacologically acceptable salt thereof according to the present invention and the prophylactic or therapeutic agent for a disease caused by A ⁇ according to the present invention are novel inventions that have not yet been described in any documents.
  • a structural formula of a compound may represent a certain isomer for convenience.
  • the present invention includes all isomers and isomer mixtures such as geometric isomers which can be generated from the structure of a compound, optical isomers based on asymmetric carbon, stereoisomers and tautomers.
  • the present invention is not limited to the description of a chemical formula for convenience and may include any one of the isomers or mixtures thereof.
  • the compound of the present invention may have an asymmetric carbon atom in the molecule and exist as an optically active compound or racemate, and the present invention includes each of the optically active compound and the racemate without limitations.
  • crystal polymorphs of the compound may be present, the compound is not limited thereto as well and may be present as a single crystal form or a mixture of single crystal forms.
  • the compound may be an anhydride or hydrate.
  • the "disease caused by A ⁇ ” refers to a wide variety of diseases such as Alzheimer's disease (see, for example, Klein WL, and seven others, Alzheimer's disease-affected brain: Presence of oligomeric A ⁇ ligands (ADDLs) suggests a molecular basis for reversible memory loss, Proceeding National Academy of Science USA, 2003, Sep 2, 100(18), p.10417-10422 ; Nitsch RM, and sixteen others, Antibodies against ⁇ -amyloid slow cognitive decline in Alzheimer's disease, Neuron, 2003, May 22, 38(4), p.547-554 : Jarrett JT, and two others, The carboxy terminus of the ⁇ amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimers' disease, Biochemistry, 1993, May 11, 32(18), p.4693-4697 ; Glenner GG, and one other, Alzheimer's disease; initial report of the purification and characterization of a novel cerebro
  • frontotemporal dementia see, for example, Evin G, and eleven others, Alternative transcripts of presenilin-1 associated with frontotemporal dementia, Neuroreport, 2002, Apr 16, 13(5), p.719-723
  • Pick's disease see, for example, Yasuhara O, and three others, Accumulation of amyloid precursor protein in brain lesions of patients with Pick disease, Neuroscience Letters, 1994, Apr 25, 171(1-2), p.63-66
  • Down's syndrome see, for example, Teller JK, and ten others, Presence of soluble amyloid ⁇ -peptide precedes amyloid plaque formation in Down's syndrome, Nature Medicine, 1996, Jan, 2(1), p.93-95 ; Tokuda T, and six others, Plasma levels of amyloid ⁇ proteins A ⁇ 1-40 and A ⁇ 1-42(43) are elevated in Down's syndrome, Annals of Neurology, 1997, Feb, 41
  • the "5-membered aromatic heterocyclic group”, "6- to 14-membered aromatic hydrocarbon ring group”, “5- to 14-membered aromatic heterocyclic group”, “6- to 14-membered non-aromatic hydrocarbon ring group” and "5- to 14-membered non-aromatic heterocyclic group” in the compound represented by the formula (I) of the present invention which is effective for treatment or prevention of a disease caused by A ⁇ are defined as follows.
  • the "5-membered aromatic heterocyclic group” is a 5-membered aromatic heterocyclic group containing one or more hetero atoms selected from the group consisting of a nitrogen atom, a sulfur atom and an oxygen atom such as:
  • the "6- to 14-membered aromatic hydrocarbon ring group” refers to a monocyclic, bicyclic or tricyclic aromatic hydrocarbon ring group having 6 to 14 carbon atoms.
  • the group include 6- to 14-membered monocyclic, bicyclic, or tricyclic aromatic hydrocarbon ring groups such as a phenyl group, an indenyl group, a naphthyl group, an azulenyl group, a heptalenyl group, a biphenyl group, a fluorenyl group, a phenalenyl group, a phenanthrenyl group and an anthracenyl group.
  • the "5- to 14-membered aromatic heterocyclic group” refers to a monocyclic, bicyclic or tricyclic aromatic heterocyclic group having 5 to 14 carbon atoms.
  • the group include (1) nitrogen-containing aromatic heterocyclic groups such as a pyrrolyl group, a pyridyl group, a pyridazinyl group, a pyrimidinyl group, a pyrazinyl group, a pyrazolinyl group, an imidazolyl group, an indolyl group, an isoindolyl group, an indolizinyl group, a purinyl group, an indazolyl group, a quinolyl group, an isoquinolyl group, a quinolizinyl group, a phthalazinyl group, a naphthyridinyl group, a quinoxalinyl group, a quinazolinyl group, a cinnoliny
  • the "6- to 14-membered non-aromatic hydrocarbon ring group” refers to a cyclic aliphatic hydrocarbon group having 6 to 14 carbon atoms.
  • the group include cyclic aliphatic hydrocarbon groups having 6 to 14 carbon atoms such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a spiro[3.4]octanyl group, a decanyl group, an indanyl group, a 1-acenaphthenyl group, a cyclopentacyclooctenyl group, a benzocyclooctenyl group, an indenyl group, a tetrahydronaphthyl group, a 6,7,8,9-tetrahydro-5H-benzocyclohepten
  • the "5- to 14-membered non-aromatic heterocyclic group” 1) has 5 to 14 ring-forming atoms, 2) contains 1 to 5 hetero atoms such as a nitrogen atom, -O- or -S- in the ring-forming atoms, and 3) may contain one or more carbonyl groups, double bonds or triple bonds in the ring, and refers not only to a 5-to 14-membered non-aromatic monocyclic heterocyclic group but also to a saturated heterocyclic group condensed with an aromatic hydrocarbon ring group or a saturated hydrocarbon ring group or saturated heterocyclic group condensed with an aromatic heterocyclic group.
  • the 5- to 14-membered non-aromatic heterocyclic group include an azetidinyl ring, a pyrrolidinyl ring, a piperidinyl ring, an azepanyl ring, an azocanyl ring, a tetrahydrofuranyl ring, a tetrahydropyranyl ring, a morpholinyl ring, a thiomorpholinyl ring, a piperazinyl ring, a thiazolidinyl ring, a dioxanyl ring, an imidazolinyl ring, a thiazolinyl ring, a 1,2-benzopyranyl ring, an isochromanyl ring, a chromanyl ring, an indolinyl ring, an isoindolinyl ring, an azaindanyl group, an azatetrahydronaphthyl group
  • Substituent groups A1 and A2 refer to the following groups.
  • Substituent Group A1 refers to (1) a hydrogen atom, (2) a halogen atom, (3) a hydroxyl group, (4) a cyano group, (5) a nitro group, (6) a C3-8 cycloalkyl group which may be substituted with 1 to 3 substituents selected from Substituent Group A2, (7) a C2-6 alkenyl group which may be substituted with 1 to 3 substituents selected from Substituent Group A2, (8) a C2-6 alkynyl group which may be substituted with 1 to 3 substituents selected from Substituent Group A2, (9) a C3-8 cycloalkoxy group, (10) a C3-8 cycloalkylthio group, (11) a formyl group, (12) a C1-6 alkylcarbonyl group which may be substituted with 1 to 3 substituents selected from Substituent Group A2, (13)
  • Substituent Group A2 refers to (1) a hydrogen atom, (2) a halogen atom, (3) a hydroxyl group, (4) a cyano group, (5) a nitro group, (6) a C3-8 cycloalkyl group, (7) a C2-6 alkenyl group, (8) a C2-6 alkynyl group, (9) a C3-8 cycloalkoxy group, (10) a C3-8 cycloalkylthio group, (11) a formyl group, (12) a C1-6 alkylcarbonyl group, (13) a C1-6 alkylthio group, (14) a C1-6 alkylsulfinyl group, (15) a C1-6 alkylsulfonyl group, (16) a hydroxyimino group, (17) a C1-6 alkoxyimino group, (18) a C1-6 alkyl group (wherein the C1-6 alkyl group may be substituted with 1 to 3 substituents selected from
  • halogen atom refers to a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or the like and is preferably a fluorine atom, a chlorine atom or a bromine atom.
  • C3-8 cycloalkyl group refers to a cyclic alkyl group having 3 to 8 carbon atoms.
  • Preferable examples of the group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group and a cyclooctyl group.
  • C2-6 alkenyl group refers to an alkenyl group having 2 to 6 carbon atoms.
  • Preferable examples of the group include linear or branched alkenyl groups such as a vinyl group, an allyl group, a 1-propenyl group, an isopropenyl group, a 1-buten-1-yl group, a 1-buten-2-yl group, a 1-buten-3-yl group, a 2-buten-1-yl group and a 2-buten-2-yl group.
  • C2-6 alkynyl group refers to an alkynyl group having 2 to 6 carbon atoms.
  • Preferable examples of the group include linear or branched alkynyl groups such as an ethynyl group, a 1-propynyl group, a 2-propynyl group, a butynyl group, a pentynyl group and a hexynyl group.
  • C3-8 cycloalkoxy group refers to a cyclic alkyl group having 3 to 8 carbon atoms in which one hydrogen atom is replaced by an oxygen atom.
  • the group include a cyclopropoxy group, a cyclobutoxy group, a cyclopentoxy group, a cyclohexoxy group, a cycloheptyloxy group and a cyclooctyloxy group.
  • C3-8 cycloalkylthio group refers to a cyclic alkyl group having 3 to 8 carbon atoms in which one hydrogen atom is replaced by a sulfur atom.
  • the group include a cyclopropylthio group, a cyclobutylthio group, a cyclopentylthio group, a cyclohexylthio group, a cycloheptylthio group and a cyclooctylthio group.
  • C1-6 alkoxy group refers to an alkyl group having 1 to 6 carbon atoms in which a hydrogen atom is replaced by an oxygen atom.
  • the group include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, an i-butoxy group, a sec-butoxy group, a tert-butoxy group, an n-pentoxy group, an i-pentoxy group, a sec-pentoxy group, a tert-pentoxy group, an n-hexoxy group, an i-hexoxy group, a 1,2-dimethylpropoxy group, a 2-ethylpropoxy group, a 1-methyl-2-ethylpropoxy group, a 1-ethyl-2-methylpropoxy group, a 1,1,2-trimethylpropoxy group, a 1,1,2-trimethylpropoxy group, a 1,1-dimethylbutoxy group, a 2,
  • C1-6 alkylthio group refers to an alkyl group having 1 to 6 carbon atoms in which one hydrogen atom is replaced by a sulfur atom.
  • the group include a methylthio group, an ethylthio group, an n-propylthio group, an i-propylthio group, an n-butylthio group, an i-butylthio group, a tert-butylthio group, an n-pentylthio group, an i-pentylthio group, a neopentylthio group, an n-hexylthio group and a 1-methylpropylthio group.
  • C1-6 alkylcarbonyl group refers to an alkyl group having 1 to 6 carbon atoms in which one hydrogen atom is replaced by a carbonyl group.
  • Preferable examples of the group include an acetyl group, a propionyl group and a butyryl group.
  • C1-6 alkylsulfinyl group refers to an alkyl group having 1 to 6 carbon atoms in which one hydrogen atom is substituted with a sulfinyl group.
  • the group include a methylsulfinyl group, an ethylmethylsulfinyl group, an n-propylsulfinyl group, an i-propylsulfinyl group, an n-butylsulfinyl group, an i-butylsulfinyl group, a tert-butylsulfinyl group, an n-pentylsulfinyl group, an i-pentylsulfinyl group, a neopentylsulfinyl group, an n-hexylsulfinyl group and a 1-methylpropylsulfinyl group.
  • C1-6 alkylsulfonyl group refers to an alkyl group having 1 to 6 carbon atoms in which one hydrogen atom is replaced by a sulfonyl group.
  • Preferable examples of the group include a methanesulfonyl group and an ethanesulfonyl group.
  • C1-6 alkoxyimino group refers to an imino group in which a hydrogen atom is replaced by a C1-6 alkoxy group.
  • Preferable examples of the group include a methoxyimino group and an ethoxyimino group.
  • C1-6 alkyl group refers to an alkyl group having 1 to 6 carbon atoms.
  • the group include linear or branched alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a tert-butyl group, an n-pentyl group, an i-pentyl group, a neopentyl group, an n-hexyl group, a 1-methylpropyl group, an 1,2-dimethylpropyl group, a 1-ethylpropyl group, a 1-methyl-2-ethylpropyl group, a 1-ethyl-2-methylpropyl group, a 1,1,2-trimethylpropyl group, a 1-methylbutyl group, a 2-methylbutyl group, a 1,1-dimethylbutyl group, a 2,
  • C2-6 alkenyloxy group refers to an alkenyl group having 2 to 6 carbon atoms in which one hydrogen atom is replaced by an oxygen atom.
  • the group include linear or branched alkenyloxy groups such as a vinyloxy group, an allyloxy group, a 1-propenyloxy group, an isopropenyloxy group, a 1-buten-1-yloxy group, a 1-buten-2-yloxy group, a 1-buten-3-yloxy group, a 2-buten-1-yloxy group and a 2-buten-2-yloxy group.
  • C2-6 alkynyloxy group refers to an alkynyl group having 2 to 6 carbon atoms in which one hydrogen atom is replaced by an oxygen atom.
  • Preferable examples of the group include linear or branched alkynyloxy groups such as an ethynyloxy group, a 1-propynyloxy group, a 2-propynyloxy group, a butynyloxy group, a pentynyloxy group and a hexynyloxy group.
  • C3-8 cycloalkylsulfonyl group refers to a cyclic alkyl group having 3 to 8 carbon atoms in which one hydrogen atom is replaced by a sulfonyl group.
  • the group include a cyclopropylsulfonyl group, a'cyclobutylsulfonyl group, a cyclopentylsulfonyl group, a cyclohexylsulfonyl group, a cycloheptylsulfonyl group and a cyclooctylsulfonyl group.
  • C3-8 cycloalkylsulfinyl group refers to a cyclic alkyl group having 3 to 8 carbon atoms in which one hydrogen atom is replaced by a sulfinyl group.
  • the group include a cyclopropylsulfinyl group, a cyclobutylsulfinyl group, a cyclopentylsulfinyl group, a cyclohexylsulfinyl group, a cycloheptylsulfinyl group and a cyclooctylsulfinyl group.
  • C1-6 alkoxycarbonyl group refers to a carbonyl group in which a hydrogen atom is substituted with a C1-6 alkyl group.
  • Preferable examples of the group include an ethoxycarbonyl group.
  • Examples of the pyridinyl group as Ar 2 which may be substituted with a hydroxyl group include a tautomer represented by the following formula:
  • Het which is a group represented by the following formula: wherein R 5 and R 6 are the same or different and each represent a substituent selected from Substituent Group A1, X 3 represents a methylene group or an oxygen atom and n b represents an integer of 0 to 2, include: wherein R 5 and R 6 are the same or different and each represent a substituent selected from Substituent Group A1.
  • Het which is a group represented by the following formula: wherein n c represents an integer of 0 to 3, include:
  • Het which is a group represented by the following formula: wherein n d represents an integer of 0 to 3, include:
  • the "pharmacologically acceptable salt” is not particularly limited insofar as it is a pharmacologically acceptable salt formed with the compound of the general formula (I) which is a prophylactic or therapeutic agent for a disease caused by A ⁇ .
  • the salt include hydrohalides (such as hydrofluorides, hydrochlorides, hydrobromides and hydroiodides), inorganic acid salts (such as sulfates, nitrates, perchlorates, phosphates, carbonates and bicarbonates), organic carboxylates (such as acetates, oxalates, maleates, tartrates, fumarates and citrates), organic sulfonates (such as methanesulfonates, trifluoromethanesulfonates, ethanesulfonates, benzenesulfonates, toluenesulfonates and camphorsulfonates), amino acid salts (such as aspartates and glutamates), quaternary amine salts, alkali metal salts (such as sodium salts and potassium salts) and alkali earth metal salts (such as magnesium salts and calcium salts).
  • hydrohalides such as hydrofluorides, hydrochlorides, hydrobromides
  • Ar 1 is preferably an imidazolyl group substituted with a C1-6 alkyl group, and Ar 1 is more preferably an imidazolyl group substituted with a methyl group.
  • Ar 2 is preferably a pyridinyl group or a phenyl group which may be substituted with a halogen atom, a hydroxyl group or a C1-6 alkoxy group, Ar 2 is more preferably a phenyl group or a pyridinyl group, substituted with a C1-6 alkoxy group, Ar 2 is particularly preferably a phenyl group or a pyridinyl group, substituted with a methoxy group, and Ar 2 is most preferably a pyridinyl group substituted with a methoxy group.
  • Ar 1 and Ar more preferably have the following structural formulas: and most preferably have the following structural formulas:
  • Het is preferably a triazolyl group which may be substituted with 1 or 2 substituents selected from Substituent Group A1
  • Substituent Group A1 is preferably a group consisting of (1) a hydrogen atom, (2) a halogen atom, (3) a hydroxyl group, (4) a cyano group, (5) a nitro group, (6) a C3-8 cycloalkyl group which may be substituted with 1 to 3 substituents selected from Substituent Group A2, (7) a C2-6 alkenyl group which may be substituted with 1 to 3 substituents selected from Substituent Group A2, (8) a C2-6 alkynyl group which may be substituted with 1 to 3 substituents selected from Substituent Group A2, (9) a C3-8 cycloalkoxy group, (10) a C3-8 cycloalkylthio group, (11) a formyl group, (12) a C1-6 alkylcarbonyl group which may be substituted with 1 to 3 substituents selected from Substituent Group A2, (13) a C1-6 alkylthio group which may be
  • Substituent Group A1 is more preferably a group consisting of (1) a hydrogen atom, (2) a halogen atom, (3) a hydroxyl group, (4) a cyano group, (5) a C3-8 cycloalkyl group which may be substituted with 1 to 3 substituents selected from Substituent Group A2, (6) a C1-6 alkyl group which may be substituted with 1 to 3 substituents selected from Substituent Group A2, (7) a 6- to 14-membered aromatic hydrocarbon ring group which may be substituted with 1 to 3 substituents selected from Substituent Group A2, (8) a 5- to 14-membered aromatic heterocyclic group which may be substituted with 1 to 3 substituents selected from Substituent Group A2, (9) a 6- to 14-membered non-aromatic hydrocarbon ring group which may be substituted with 1 to 3 substituents selected from Substituent Group A2, (10) a 5- to 14-membered non-aro
  • Substituent Group A1 is a 6- to 14-membered aromatic hydrocarbon ring group or a 5- to 14-membered aromatic heterocyclic group
  • Substituent Group A2 is preferably a group consisting of (1) a hydrogen atom, (2) a halogen atom, (3) a hydroxyl group, (4) a cyano group, (5) a nitro group, (6) a C3-8 cycloalkyl group, (7) a C2-6 alkenyl group, (8) a C2-6 alkynyl group, (9) a C3-8 cycloalkoxy group, (10) a C3-8 cycloalkylthio group, (11) a formyl group, (12) a C1-6 alkylcarbonyl group, (13) a C1-6 alkylthio group, (14) a C1-6 alkylsulfinyl group, (15) a C1-6 alkylsulfonyl group, (16) a hydroxyimino group,
  • Substituent Group A1 is a 6- to 14-membered non-aromatic hydrocarbon ring group or a 5- to 14-membered non-aromatic heterocyclic group
  • Substituent Group A2 is preferably a group consisting of (1) a hydrogen atom, (2) a halogen atom, (3) a hydroxyl group, (4) a cyano group, (5) a nitro group, (6) a C3-8 cycloalkyl group, (7) a C2-6 alkenyl group, (8) a C2-6 alkynyl group, (9) a C3-8 cycloalkoxy group, (10) a C3-8 cycloalkylthio group, (11) a formyl group, (12) a C1-6 alkylcarbonyl group, (13) a C1-6 alkylthio group, (14) a C1-6 alkylsulfinyl group, (15) a C1-6 alkylsulfonyl group, (16)
  • the compound or pharmacologically acceptable salt, wherein the compound is at least one selected from the following group, for example, is particularly suitable and useful as a therapeutic or prophylactic agent for a disease caused by amyloid- ⁇ such as Alzheimer's disease, senile dementia, Down's syndrome or amyloidosis.
  • the above General Preparation Method 1 includes a method of condensing a carboxylic acid compound (1) with a compound (2a) in Step 1-1 to convert the carboxylic acid compound (1) into an ester compound (3) and reacting the ester compound (3) with ammonia, an ammonium salt or formamide in Step 1-2 to prepare a compound of the general formula (I-9); a method of reacting the compound of the general formula (I-9) with a compound (2b) in Step 1-3 to prepare a compound of the general formula (I-4); a method of reacting the ester compound (3) with ammonia, an ammonium salt or formamide in Step 1-4 to convert the ester compound (3) into an oxazole compound (21) and then reacting the oxazole compound (21) with an amine compound (22) in Step 1-5 to prepare a compound of the general formula (I-4); a method of preparing a compound of the general formula (I-6) or a compound of the general formula (I-7) from the compound of the general formula (I-9) in Step
  • the compound of the general formula (I-6) or the compound of the general formula (I-7) can be prepared from a compound of the general formula (I-9) by intramolecular cyclization reaction according to Step 1-6.
  • Step 1-6 as an intramolecular cyclization reaction may employ a known method described in many documents such as N-alkylation reaction (see The Journal of Organic Chemistry, 1977, vol.42, p.3925 , for example).
  • the compound can also be prepared from an oxazole compound (21) by intramolecular cyclization reaction according to Step 1-7.
  • Step 1-7 may employ a method of forming a triazole or imidazole ring and cyclizing the second ring at the same time in the presence or absence of a nitrogen atom source (see The Chemistry of Heterocyclic Compounds. Imidazole and Derivatives, Part I, p.33, Inters. Publish. 1953 , for example).
  • the base used varies according to the starting material and is not particularly limited.
  • Preferable examples of the base include alkali metal hydrides (such as sodium hydride and lithium hydride), alkali metal salts (such as potassium carbonate, sodium carbonate and cesium carbonate), metal alkoxides (such as sodium methoxide and tert-butyl potassium) and organometallic salts (such as lithium diisopropyl amide and lithium hexamethyldisilazane).
  • the solvent used varies according to the starting material, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether; halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform; polar solvents such as N,N-dimethylformamide and N-methylpyrrolidone; nonpolar solvents such as toluene and benzene; and a mixture thereof.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably -78°C to 200°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the solvent used is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include nonpolar solvents such as toluene and benzene; alcohol solvents such as methanol and ethanol; organic acids such as acetic acid; water; and a mixture thereof.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 250°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the compound of the general formula (I-8) can be prepared from an ester compound (3) according to Step 1-8 using ammonia, an ammonium salt or formamide as a nitrogen source, for example.
  • the compound can also be prepared from an oxazole compound (21) according to Step 1-9 using ammonia, an ammonium salt or formamide as a nitrogen source, for example.
  • Step 1-8 or Step 1-9 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction. A known method described in many documents may be used for the reaction (see The Chemistry of Heterocyclic Compounds. Imidazole and Derivatives, Part I, p.33, Inters. Publish.
  • the reaction is preferably a method of stirring an ester compound (3) or an oxazole compound (21) and 1.0 to 100.0 equivalents of ammonia or an ammonium salt such as ammonium acetate with respect to the ester compound (3) or the oxazole compound (21) in a solvent, for example.
  • the solvent used is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include nonpolar solvents such as toluene and benzene; alcohol solvents such as methanol and ethanol; organic acids such as acetic acid; water; and a mixture thereof.
  • Formamide may optionally be used as a nitrogen atom source and a solvent.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 250°C, for example.
  • the yield may be improved when the reaction is performed using a tight container.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the compound of the general formula (I-4) can be prepared by reacting a compound of the general formula (I-9) with a compound of the general formula (2b) according to Step 1-3.
  • Step 1-3 may employ a known method described in many documents such as N-alkylation reaction (see The Journal of Organic Chemistry, 1977, vol.42, p.3925 , for example) or N-arylation reaction (see The Journal of Organic Chemistry, 2001, vol.66, p.7892 ; Journal of Medicinal Chemistry, 1981, vol.24, p.1139 ; or Journal of Medicinal Chemistry, 1991, vol.39, p.2671 , for example).
  • N-alkylation reaction is preferably, for example, a method of stirring a compound of the general formula (I-9) and 1.0 to 10.0 equivalents of a compound (2b), wherein L 2 represents a halogen atom such as a chlorine atom, a bromine atom or an iodine atom or a sulfonate group such as a methanesulfonate group, a p-toluenesulfonate group or a trifluoromethanesulfonate group, with respect to the compound of the general formula (I-9) in a solvent in the presence of 1.0 to 10.0 equivalents of a base with respect to the compound of the general formula (I-9).
  • L 2 represents a halogen atom such as a chlorine atom, a bromine atom or an iodine atom or a sulfonate group such as a methanesulfonate group, a p-toluenesulfonate
  • the base used varies according to the starting material and is not particularly limited.
  • Preferable examples of the base include alkali metal hydrides (such as sodium hydride and lithium hydride), alkali metal salts (such as potassium carbonate, sodium carbonate and cesium carbonate) and metal alkoxides (such as sodium methoxide and potassium tert-butoxide).
  • the solvent used varies according to the starting material, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether; halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform; polar solvents such as N,N-dimethylformamide and N-methylpyrrolidone; nonpolar solvents such as toluene and benzene; and a mixture thereof.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably 0°C to 200°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • N-arylation reaction may be i) Ullmann reaction, ii) a coupling reaction of an arylboronic acid derivative using a copper compound or iii) nucleophilic substitution reaction.
  • Ullmann reaction is preferably, for example, a method of stirring a compound of the general formula (I-9) and 1.0 to 10.0 equivalents of a compound (2b), wherein L 2 represents a halogen atom such as a chlorine atom, a bromine atom or an iodine atom, with respect to the compound of the general formula (1-9) in a solvent in the presence of 0.01 to 1.0 equivalent of a copper reagent such as copper, copper bromide or copper iodide with respect to the compound of the general formula (I-9) with 1.0 to 10.0 equivalents of a base added with respect to the compound of the general formula (I-9).
  • a halogen atom such as a chlorine atom, a bromine atom or an iodine atom
  • the base used varies according to the starting material and is not particularly limited.
  • Preferable examples of the base include alkali metal salts (such as potassium carbonate, sodium carbonate, potassium acetate, sodium acetate and cesium carbonate) and metal alkoxides (such as sodium methoxide and potassium tert-butoxide).
  • the solvent used varies according to the starting material, the reagent and the like, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether; halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform; alcohol solvents such as amyl alcohol and isopropyl alcohol; polar solvents such as N,N-dimethylformamide and N-methylpyrrolidone; nonpolar solvents such as toluene, benzene and dichlorobenzene; and a mixture thereof.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 200°C, for example.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the ii) coupling reaction of an arylboronic acid derivative using a copper compound is preferably, for example, a method of stirring a compound of the general formula (I-9) and 1.0 to 10.0 equivalents of a compound (2b), wherein L 2 represents a boronic acid group or a boronate group such as a boronic acid pinacol ester group, with respect to the compound of the general formula (I-9) in a solvent in the presence of 0.01 to 1.0 equivalent of a copper reagent such as copper, copper bromide or copper iodide with respect to the compound of the general formula (I-9) with 1.0 to 10.0 equivalents of a base added with respect to the compound of the general formula (I-9).
  • a copper reagent such as copper, copper bromide or copper iodide
  • the base used varies according to the starting material, the solvent used and the like, and is not particularly limited insofar as the base does not inhibit the reaction.
  • Preferable examples of the base include organic bases such as triethylamine, pyridine and tetramethylethylenediamine; alkali metal salts such as potassium carbonate, sodium carbonate, potassium acetate, sodium acetate and cesium carbonate; and metal alkoxides such as sodium methoxide and potassium tert-butoxide.
  • the copper reagent used varies according to the starting material and is not particularly limited.
  • the copper reagent include copper acetate and di- ⁇ -hydroxo-bis[(N,N,N',N'-tetramethylethylenediamine)copper (II)] chloride.
  • the solvent used varies according to the starting material, the reagent and the like, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether; halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform; polar solvents such as ethyl acetate, N,N-dimethylformamide and N-methylpyrrolidone; nonpolar solvents such as toluene, benzene and dichlorobenzene; and a mixture thereof.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 200°C, for example.
  • reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • a compound of the general formula (I-9) and 2.0 to 5.0 equivalents of a compound (2b), wherein L 2 represents a halogen atom such as a chlorine atom, a bromine atom or an iodine atom or a sulfonate group such as a methanesulfonate group, a p-toluenesulfonate group or a trifluoromethanesulfonate group, with respect to the compound of the general formula (I-9) are preferably stirred in a solvent in the presence or absence of 1.0 to 5.0 equivalents of a base with respect to the compound of the general formula (I-9), for example.
  • the base used varies according to the starting material and is not particularly limited.
  • Preferable examples of the base include sodium hydride, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, cesium carbonate, barium carbonate, pyridine, lutidine and triethylamine.
  • the solvent used varies according to the starting material, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • Preferable examples of the solvent include acetonitrile, tetrahydrofuran, dimethyl sulfoxide, N,N-dimethylformamide and N-methylpyrrolidine.
  • the base may optionally be used as a solvent.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 150°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique or/and crystallization.
  • the compound of the general formula (I-4) can be prepared by reacting an oxazole compound (21) with an amine compound (22) according to Step 1-5.
  • Step 1-5 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents may be used for the reaction (see Heterocyclic Compounds, vol.5, Wiley, New York, N.Y. 1950, p.214 , for example).
  • an oxazole compound (21) and 1.0 to 100.0 equivalents of an amine compound (22) with respect to the oxazole compound (21) are stirred in a solvent, for example.
  • the solvent used is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether; halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform; alcohol solvents such as amyl alcohol and isopropyl alcohol; polar solvents such as N,N-dimethylformamide and N-methylpyrrolidone; nonpolar solvents such as toluene, benzene and dichlorobenzene; organic acids such as acetic acid; water; and a mixture thereof.
  • ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether
  • halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform
  • alcohol solvents such as am
  • the amine compound (22) to be reacted may be used as a solvent.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 200°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the compound of the general formula (I-1) can be prepared from an ester compound (3) according to Step 1-2 using ammonia, an ammonium salt or formamide as a nitrogen atom source, for example.
  • Step 1-2 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents may be used for the reaction (see The Chemistry of Heterocyclic Compounds. Imidazole and Derivatives, Part I, p.33, Inters. Publish. 1953, for example).
  • the reaction is preferably a method of stirring an ester compound (3) and 1.0 to 100.0 equivalents of ammonia or an ammonium salt such as ammonium acetate with respect to the ester compound (3) in a solvent, for example.
  • the solvent used is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include nonpolar solvents such as toluene and benzene; alcohol solvents such as methanol and ethanol; organic acids such as acetic acid; water; and a mixture thereof.
  • Formamide may optionally be used as a nitrogen atom source and a solvent.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 250°C, for example.
  • the yield may be improved when the reaction is performed using a tight container.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the ester compound (3) is prepared by condensation reaction of a carboxylic acid compound (1) with a compound (2a) according to Step 1-1.
  • Step 1-1 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction. A known method described in many documents may be used for the reaction.
  • reaction examples include i) nucleophilic substitution reaction of a carboxylic acid compound (1) with a compound (2a), wherein L 1 represents a halogen atom such as a chlorine atom, a bromine atom or an iodine atom or a sulfonate group such as a methanesulfonate group, a p-toluenesulfonate group or a trifluoromethanesulfonate group (see Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.22, Yuki Gosei (Organic Synthesis) [IV], edited by The Chemical Society of Japan, Maruzen Co., Ltd., November 1992, p.49-50 , for example) and ii) dehydration condensation reaction of a carboxylic acid compound (1) with a compound (2a) (see Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.22, Yuki Gosei (Organic Synthesis) [
  • Nucleophilic substitution reaction is preferably, for example, a method of stirring a carboxylic acid compound (1) and 1.0 to 10.0 equivalents of a compound (2a) with respect to the carboxylic acid compound (1) in a solvent in the presence of 1.0 to 10.0 equivalents of a base with respect to the carboxylic acid compound (1).
  • the base used varies according to the starting material and is not particularly limited.
  • the base include alkali metal hydroxides such as sodium hydroxide and lithium hydroxide; alkali metal carbonates such as sodium carbonate; alkali metal salts of alcohols such as sodium methoxide and potassium tert-butoxide; organic bases such as triethylamine, pyridine and diazabicyclononene; organic metals such as butyl lithium and lithium diisobutylamide; alkali metal hydrides such as sodium hydride; and alkali metal ammonium salts such as sodium amide.
  • the solvent used varies according to the starting material and the base used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include polar solvents such as nitromethane, acetonitrile, 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide; ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane; nonpolar solvents such as benzene, toluene and xylene; alcohol solvents such as ethanol and methanol; halogenated solvents such as chloroform and methylene chloride; water; and a mixed solvent thereof.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably -78 to 150°C, for example.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • Dehydration condensation reaction is preferably, for example, a method of stirring a carboxylic acid compound (1) and 1.0 to 10.0 equivalents of a compound (2a) with respect to the carboxylic acid compound (1) in a solvent in the presence of 0.1 to 10.0 equivalents of a condensing agent with respect to the carboxylic acid compound (1).
  • the condensing agent used varies according to the starting material and is not particularly limited.
  • the condensing agent include inorganic acids such as hydrochloric acid and sulfuric acid; organic acids such as p-toluenesulfonic acid and methanesulfonic acid; and 1,3-dicyclohexylcarbodiimide, 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide, benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate, diethyl cyanophosphonate, bis(2-oxo-3-oxazolidinyl)phosphonic chloride and diphenylphosphoryl azide.
  • inorganic acids such as hydrochloric acid and sulfuric acid
  • organic acids such as p-toluenesulfonic acid and methanesulfonic acid
  • 1,3-dicyclohexylcarbodiimide 1-ethyl-3-(3'-dimethylaminopropyl)carbodi
  • 1.0 to 5.0 equivalents of N-hydroxysuccinimide, N-hydroxybenzotriazole or dimethylaminopyridine may be added in order to make the reaction efficiently proceed, for example.
  • the solvent used varies according to the starting material and the condensing agent used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include halogenated solvents such as chloroform, methylene chloride and 1,2-dichloroethane; polar solvents such as tetrahydrofuran and N,N-dimethylformamide; and a mixed solvent thereof.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably ice-cold temperature to 150°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique or/and crystallization.
  • the oxazole compound (21) can be prepared by reacting an ester compound (3) with ammonia, an ammonium salt or formamide as a nitrogen atom source according to Step 1-4, for example.
  • Step 1-4 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents may be used for the reaction (see Synthesis, 1998, vol.9, p.1298 , for example).
  • an ester compound (3) and 1.0 to 100.0 equivalents of ammonia or an ammonium salt such as ammonium acetate with respect to the ester compound (3) are stirred in a solvent, for example.
  • the solvent used is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include nonpolar solvents such as toluene and benzene; alcohol solvents such as methanol and ethanol; organic acids such as acetic acid; water; and a mixture thereof.
  • Formamide may optionally be used as a nitrogen atom source and a solvent.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 250°C, for example. The yield may be improved when the reaction is performed using a tight container.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the compound (2b) is commercially available or can be prepared by a method known to a person skilled in the art (see Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.19, Yuki Gosei (Organic Synthesis) [I], edited by The Chemical Society of Japan, Maruzen Co., Ltd., September 1992, p.363-482 ; and Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.24, Yuki Gosei (Organic Synthesis) [VI], edited by The Chemical Society of Japan, Maruzen Co., Ltd., June 1992, p.61-90 , for example).
  • the compound (22) is commercially available or can be prepared by a method known to a person skilled in the art (see Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.20, Yuki Gosei (Organic Synthesis) [II], edited by The Chemical Society of Japan, Maruzen Co., Ltd., July 1992, p.279-372 , for example).
  • the compound (2a) is commercially available or can be prepared by a method known to a person skilled in the art (see Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.19, Yuki Gosei (Organic Synthesis) [I], edited by The Chemical Society of Japan, Maruzen Co., Ltd., September 1992, p.363-482 ; and Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.20, Yuki Gosei (Organic Synthesis) [II], edited by The Chemical Society of Japan, Maruzen Co., Ltd., July 1992, p.1-110 , for example).
  • Ar 1 , Ar 2 , R 1 and X 1 are as defined above;
  • V 1 represents a protecting group for a carboxylic group such as a methyl group, an ethyl group, a benzyl group, an allyl group, a triphenylmethyl group, a tert-butyl group or a tertbutyldimethylsilyl group;
  • L 3 and L 6 each represent a hydrogen atom, a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, a sulfonate group such as a trifluoromethanesulfonate group, a trialkyltin group or a leaving group such as a boronic acid or boronate group;
  • L 4 represents a formyl group, an alkanoyl group such as an acetyl group, an alkoxycarbonyl group such as a methyl ester
  • the carboxylic acid compound (1) is prepared by hydrolysis of an ester compound (8) according to Step 2-3.
  • Step 2-3 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents may be used for the reaction (see Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.22, Yuki Gosei (Organic Synthesis) [IV], edited by The Chemical Society of Japan, Maruzen Co., Ltd., November 1992, p.6-11 , for example).
  • an ester compound (8) is stirred in a solvent in the presence of 1.0 to 100.0 equivalents of a base or acid with respect to the ester compound (8), for example.
  • the base used varies according to the starting material and is not particularly limited.
  • Preferable examples of the base include sodium hydride, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, cesium carbonate and barium carbonate.
  • the acid used varies according to the starting material and is not particularly limited.
  • Preferable examples of the acid include inorganic acids such as hydrochloric acid and sulfuric acid; organic acids such as trifluoroacetic acid and p-toluenesulfonic acid; and Lewis acids such as boron trichloride.
  • the solvent used varies according to the starting material, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include alcohol solvents such as methanol, ethanol and ethylene glycol; ether solvents such as tetrahydrofuran; halogenated solvents such as dichloromethane and chloroform; water; and a mixed solvent thereof.
  • alcohol solvents such as methanol, ethanol and ethylene glycol
  • ether solvents such as tetrahydrofuran
  • halogenated solvents such as dichloromethane and chloroform
  • water and a mixed solvent thereof.
  • an organic acid such as acetic acid or formic acid
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 100°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique or/and crystallization.
  • the ester compound (8) can be prepared as shown by the above reaction formula, but the preparation is not limited thereto.
  • the ester compound (8) can be prepared by reacting a compound (4) with a compound (5) in Step 2-1 to obtain a carbonyl compound (6) and then condensing the carbonyl compound (6) by condensation reaction such as Horner-Emmons reaction, Wittig reaction or Peterson reaction in Step 2-2, for example.
  • the ester compound (8) can be prepared by subjecting a carbonyl compound (6) as a starting material to Step 2-4 to prepare a compound (10) and condensing the compound (10) with a compound (11) by condensation reaction such as Horner-Emmons reaction, Wittig reaction or Peterson reaction in Step 2-5.
  • the ester compound (8) can be prepared by forming Ar 1 in a compound (17) from an amino compound (13) as a starting material through three-stage reaction in Step 2-7 and then performing coupling reaction of the compound (17) with a compound (18a) or compound (18b) according to Step 2-11.
  • the ester compound (8) can also be prepared by converting a compound (15) as a starting material into a compound (17) according to Step 2-9 and then subjecting the compound (17) to Step 2-11.
  • a carbonyl compound (6) can be converted into the ester compound (8) and a compound (10) can be converted into the ester compound (8) by a method known to a person skilled in the art.
  • the ester compound (8) can be prepared from a carbonyl compound (6) and a compound (7) according to Step 2-2.
  • the ester compound (8) can be prepared from a compound (10) and a compound (11) according to Step 2-5.
  • coupling reaction in Step 2-2 or Step 2-5 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a method known to a person skilled in the art may be used for the reaction.
  • Preferable examples of the method include Wittig reaction, Horner-Emmons reaction and Peterson reaction (see Shin Jikken Kagaku Koza (Courses in Experimental Chemistry), vol.19, Yuki Gosei (Organic Synthesis) [I], edited by The Chemical Society of Japan, Maruzen Co., Ltd., June 1992, p.57-85 , for example).
  • a compound (7) or compound (10), wherein W represents a phosphonium salt, and 0.5 to 2.0 equivalents of a carbonyl compound (6) or a compound (11) with respect to the compound (7) or compound (10) are preferably stirred in a solvent in the presence of 1.0 to 5.0 equivalents of a base with respect to the compound (7) or compound (10), for example.
  • This reaction may be a method of first treating a compound (7) or compound (10) and a base to form a phosphorus ylide and then adding a carbonyl compound (6) or a compound (11) to the ylide; or a method of adding a base in the presence of a compound (7) or compound (10) and a carbonyl compound (6) or a compound (11).
  • This reaction is preferably performed in the presence of a solvent from the viewpoint of handleability and stirring efficiency.
  • the solvent used varies according to the starting material and the base used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include polar solvents such as nitromethane, acetonitrile, 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide; ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane; nonpolar solvents such as benzene, toluene and xylene; alcohol solvents such as ethanol and methanol; halogenated solvents such as chloroform and methylene chloride; water; and a mixed solvent thereof.
  • polar solvents such as nitromethane, acetonitrile, 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide
  • ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane
  • nonpolar solvents such as benzene, toluene and xylene
  • the base include alkali metal hydroxides such as sodium hydroxide and lithium hydroxide; alkali metal carbonates such as sodium carbonate; alkali metal salts of alcohols such as sodium methoxide and potassium tert-butoxide; organic bases such as triethylamine, pyridine and diazabicyclononene; organic metals such as butyl lithium and lithium diisobutylamide; and alkali metal hydrides such as sodium hydride.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably -78 to 150°C, for example.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • a compound (7) or compound (10), wherein W represents a phosphite group, and 0.5 to 2.0 equivalents of a carbonyl compound (6) or a compound (11) with respect to the compound (7) or compound (10) are preferably stirred in a solvent in the presence of 1.0 to 5.0 equivalents of a base with respect to the compound (7) or compound (10), for example.
  • This reaction may be a method of first treating a compound (7) or compound (10) and a base to form a carbanion and then adding a carbonyl compound (6) or a compound (11) to the carbanion; or a method of adding a base in the presence of a compound (7) or compound (10) and a carbonyl compound (6) or a compound (11).
  • This reaction is preferably performed in the presence of a solvent from the viewpoint of handleability and stirring efficiency.
  • the solvent used varies according to the starting material and the base used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include polar solvents such as 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide; ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane; nonpolar solvents such as benzene, toluene and xylene; alcohol solvents such as ethanol and methanol; water; and a mixed solvent thereof.
  • polar solvents such as 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide
  • ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane
  • nonpolar solvents such as benzene, toluene and xylene
  • alcohol solvents such as ethanol and methanol
  • water and a mixed solvent thereof.
  • the base used varies according to the starting material and the solvent.
  • the base include alkali metal hydroxides such as sodium hydroxide and lithium hydroxide; alkali metal carbonates such as sodium carbonate; alkali metal salts of alcohols such as sodium methoxide and potassium tert-butoxide; organic bases such as triethylamine, pyridine and diazabicyclononene; organic metals such as butyl lithium and lithium diisobutylamide; alkali metal hydrides such as sodium hydride; and alkali metal ammonium salts such as sodium amide.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably -78 to 150°C, for example.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • a compound (7) or compound (10), wherein W represents a silyl group, and 0.5 to 2.0 equivalents of a carbonyl compound (6) or a compound (11) with respect to the compound (7) or compound (10) are preferably stirred in a solvent in the presence of 1.0 to 5.0 equivalents of a base with respect to the compound (7) or compound (10), for example.
  • This reaction may be a method of first treating a compound (7) or compound (10) and a base to form a carbanion and then adding a carbonyl compound (6) or a compound (11) to the carbanion; or a method of adding a base in the presence of a compound (7) or compound (10) and a carbonyl compound (6) or a compound (11).
  • This reaction is preferably performed in the presence of a solvent from the viewpoint of handleability and stirring efficiency.
  • the solvent used varies according to the starting material and the base used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include polar solvents such as 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide; ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane; nonpolar solvents such as benzene, toluene and xylene; alcohol solvents such as ethanol and methanol; water; and a mixed solvent thereof.
  • polar solvents such as 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide
  • ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,
  • the base used varies according to the starting material and the solvent.
  • Preferable examples of the base include alkali metal hydroxides such as sodium hydroxide and lithium hydroxide; alkali metal carbonates such as sodium carbonate; alkali metal salts of alcohols such as sodium methoxide and potassium tert-butoxide; organic bases such as triethylamine, pyridine and diazabicyclononene; organic metals such as butyl lithium and lithium diisobutylamide; alkali metal hydrides such as sodium hydride; and alkali metal ammonium salts such as sodium amide.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably -78 to 150°C, for example.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • a compound (17) can be converted into the ester compound (8) by a method known to a person skilled in the art.
  • the ester compound (8) can be prepared from a compound (17) together with a compound (18a) or compound (18b) according to Step 2-11, for example.
  • the coupling reaction in Step 2-11 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a method known to a person skilled in the art may be used for the reaction.
  • Preferable examples of the method include Mizoroki-Heck reaction (see R.F. Heck, "Org. Reactions.”, 1982, vol.27, p.345 , for example), Suzuki-Miyaura reaction (see A. Suzuki, "Chem.
  • a halogen compound or triflate compound (17), wherein L 4 represents a chlorine atom, a bromine atom, an iodine atom or a sulfonate group such as a trifluoromethanesulfonate group is preferably coupled with 1.0 to 5.0 equivalents of an alkene compound (18a; wherein L 6 is a hydrogen atom) with respect to the compound (17) in the presence of 0.01 to 0.2 equivalent of a transition metal catalyst with respect to the compound (17), for example.
  • This reaction is preferably performed in the presence of a solvent from the viewpoint of handleability and stirring efficiency.
  • the solvent used varies according to the starting material and the transition metal catalyst used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include acetonitrile, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, 1-methyl-2-pyrrolidone and N,N-dimethylformamide.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 150°C. This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere.
  • the transition metal catalyst is preferably a palladium complex, for example, and more preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0). It is also preferable to appropriately add a phosphorus ligand (preferably triphenylphosphine, tri-o-tolylphosphine, tri-tert-butylphosphine or 2-(di-tert-butylphosphino)biphenyl, for example) in order to make the reaction efficiently proceed.
  • a phosphorus ligand preferably triphenylphosphine, tri-o-tolylphosphine, tri-tert-butylphosphine or 2-(di-tert-butylphosphino)bi
  • a preferable result may be achieved in the presence of a base.
  • the base used is not particularly limited insofar as the base is used in a coupling reaction similar to this reaction.
  • Preferable examples of the base include triethylamine, N,N-diisopropylethylamine, N,N-dicyclohexylmethylamine and tetrabutylammonium chloride.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • a halogen compound or trifluoromethanesulfonate compound (17), wherein L 4 represents a chlorine atom, a bromine atom, an iodine atom or a sulfonate group such as a trifluoromethanesulfonate group is preferably coupled with 1.0 to 5.0 equivalents of a boronic acid compound or boronate compound (18a; wherein L 6 is a boronic acid or boronate group) with respect to the compound (17) in the presence of 0.01 to 0.5 equivalent of a transition metal catalyst with respect to the compound (17), for example.
  • This reaction is preferably performed in the presence of a solvent from the viewpoint of handleability and stirring efficiency.
  • the solvent used varies according to the starting material and the transition metal catalyst used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include acetonitrile, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, 1-methyl-2-pyrrolidone, N,N-dimethylformamide, water and a mixed solvent thereof.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 200°C.
  • the transition metal catalyst is preferably a known palladium complex, and more preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0), or tris(dibenzylideneacetone)dipalladium (0).
  • a phosphorus ligand (preferably triphenylphosphine, tri-o-tolylphosphine, tricyclohexylphosphine, or tri-tert-butylphosphine, for example) may be appropriately added in order to make the reaction efficiently proceed.
  • a quaternary ammonium salt preferably tetrabutylammonium chloride or tetrabutylammonium bromide, for example, may also be appropriately added in order to make the reaction efficiently proceed.
  • a preferable result may be achieved in the presence of a base.
  • the base used at this time varies according to the starting material, the solvent used and the like, and is not particularly limited.
  • Preferable examples of the base include sodium hydroxide, barium hydroxide, potassium fluoride, cesium fluoride, sodium carbonate, potassium carbonate, cesium carbonate and potassium phosphate.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • the desired ester compound (8) can be efficiently obtained even when the compound (18a) is a halide or a trifluoromethanesulfonate compound, wherein L 6 is a chlorine atom, a bromine atom, an iodine atom or a trifluoromethanesulfonate group, for example, and the compound (17) is a boronic acid compound or boronate compound, wherein L 4 is a boronic acid or boronate group, for example.
  • reaction conditions in Sonogashira reaction vary according to the starting material, the solvent and the transition metal catalyst, and are not particularly limited insofar as the conditions are similar to those in this reaction.
  • a method known to a person skilled in the art may be used for the reaction.
  • a compound (17), wherein L 4 represents a chlorine atom, a bromine atom, an iodine atom or a sulfonate group such as a trifluoromethanesulfonate group, and 1.0 to 5.0 equivalents of an alkyne compound (18b) with respect to the compound (17) are stirred in a solvent, for example.
  • the solvent used include acetonitrile, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide. More preferable examples of the solvent include tetrahydrofuran, 1,4-dioxane, 1-methyl-2-pyrrolidone and N,N-dimethylformamide.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 150°C. This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere.
  • the transition metal catalyst is preferably 0.01 to 0.5 equivalent with respect to the compound (17) of a known palladium complex, and more preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0).
  • a phosphorus ligand (preferably triphenylphosphine, tri-o-tolylphosphine or tri-tert-butylphosphine, for example) may be appropriately added, for example, in order to make the reaction efficiently proceed.
  • a metal halide or a quaternary ammonium salt preferably copper (I) iodide, lithium chloride, tetrabutylammonium fluoride or silver (I) oxide, for example, may be added.
  • a preferable result may be achieved in the presence of a base.
  • the base used here is not particularly limited insofar as the base is used in a coupling reaction similar to this reaction.
  • Preferable examples of the base include basic solvents such as diethylamine, triethylamine, N,N-diisopropylethylamine, piperidine and pyridine.
  • a trialkyltin compound (17), wherein L 4 represents an alkyltin group, and 1.0 to 5.0 equivalents of a halide or a trifluoromethanesulfonate compound (18a), wherein L 6 represents a chlorine atom, a bromine atom, an iodine atom or a trifluoromethanesulfonate group, with respect to the compound (17) are preferably stirred in a solvent in the presence of 0.01 to 0.2 equivalent of a transition metal catalyst with respect to the compound (17), for example. It is preferable to appropriately use 0.1 to 5.0 equivalents of copper (I) halide or/and lithium chloride in order to make the reaction efficiently proceed.
  • the solvent used in this reaction include toluene, xylene, N,N-dimethylformamide, N,N-dimethylacetamide, 1-methyl-2-pyrrolidone and dimethyl sulfoxide.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 150°C.
  • the preferable transition metal catalyst is a palladium complex, preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0), for example, and more preferably tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0), for example.
  • This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • the carbonyl compound (6) can be prepared from a compound (4) as a starting material according to Step 2-1, for example.
  • Step 2-1 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a method known to a person skilled in the art may be used for the reaction.
  • a compound (4) and 1.0 to 5.0 equivalents of a compound (5) with respect to the compound (4) are stirred in a solvent in the presence or absence of 1.0 to 5.0 equivalents of a base with respect to the compound (4) (see D.D. Davey et al., "J. Med. Chem.”, 1991, vol.39, p.2671-2677 ).
  • the base used include sodium hydride, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, cesium carbonate, barium carbonate, pyridine, lutidine and triethylamine.
  • the solvent used varies according to the starting material, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • Preferable examples of the solvent include acetonitrile, tetrahydrofuran, dimethyl sulfoxide, N,N-dimethylformamide and N-methylpyrrolidine.
  • the base may optionally be used as a solvent.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 150°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique or/and crystallization.
  • the carbonyl compound (6) can also be prepared from a compound (17) as a starting material according to Step 2-10, for example.
  • Step 2-10 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction. A method known to a person skilled in the art may be used for the reaction.
  • the compound (4) is commercially available or can be obtained by a technique known to a person skilled in the art. If not commercially available, the preferable compound (4), wherein L 3 represents a fluorine atom, a chlorine atom or a bromine atom, can be obtained by oxidizing a corresponding alcohol compound by an oxidation reaction known to a person skilled in the art; or the carbonyl compound can be obtained by reducing a corresponding ester compound by a known reduction reaction.
  • the compound (5) used in this step is commercially available or can be obtained by a technique known to a person skilled in the art. (see M.Komoto et al., "Agr. Biol. Chem.”, 1968, vol.32, p.983-987 ; or J.M.Kokosa et al., "J.Org.Chem.”, 1983, vol.48, p.3605-3607 , for example).
  • R 13 W, L 5 and V 1 are as defined above.
  • the above reaction formula shows an example of a method for preparing the phosphonate compound (7).
  • the phosphonate compound (7) is commercially available or can be obtained by a method shown in the above Step 3-1 to Step 3-3 and known to a person skilled in the art (see C. Patois et al., "Synth. Commun.”, 1991, vol.22, p.2391 ; or J.A. Jackson et al., "J. Org. Chem.”, 1989, vol.20, p.5556 , for example).
  • Step 3-1 is a step of obtaining the desired phosphonate compound (7) by stirring a phosphonate compound (20a) and 1.0 to 2.0 equivalents of an alkyl halide compound (19a) with respect to the phosphonate compound (20a) in a solvent in the presence of 1.0 to 1.5 equivalents of a base with respect to the phosphonate compound (20a) to introduce R 13 , for example.
  • Step 3-2 is a step of obtaining the desired phosphonate compound (7) by stirring a phosphonate compound (19b) and 1.0 to 2.0 equivalents of a halogenated formate compound (20b) with respect to the phosphonate compound (19b) in a solvent in the presence of 1.0 to 1.5 equivalents of a base with respect to the phosphonate compound (19b).
  • Step 3-3 is a step of obtaining the desired phosphonate compound (7) by stirring a phosphonic acid halide compound (19c) and 1.0 to 2.0 equivalents of an ester compound (20c) with respect to the phosphonic acid halide compound (19c) in a solvent in the presence of 1.0 to 1.5 equivalents of a base with respect to the phosphonic acid halide compound (19c).
  • the base used varies according to the starting material and is not particularly limited.
  • Preferable examples of the base include sodium hydride, n-butyl lithium, lithium diisopropylamide, lithium bis(trimethylsilyl)amide and sodium bis(trimethylsilyl)amide.
  • the solvent used varies according to the starting material, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • Preferable examples of the solvent include hexane, toluene, diethyl ether, tetrahydrofuran, N,N-dimethylformamide, hexamethylphosphoric triamide and a mixed solvent thereof.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably -78°C to 100°C.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique or/and crystallization.
  • the desired phosphonate compound (7) can be efficiently obtained by modification of R 13 by a technique known to a person skilled in the art.
  • alkyl halide compound (19a), phosphonate compound (19b), phosphonic acid halide compound (19c), phosphonate compound (20a), halogenated formate compound (20b) and ester compound (20c) used in this step are commercially available or can be obtained by a technique known to a person skilled in the art.
  • the compound (10) can be prepared from a compound (6) and a compound (9) according to Step 2-4.
  • Step 2-4 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a method known to a person skilled in the art may be used for the reaction (see Journal of the American Chemistry, 1961, vol.83, p.173 , for example).
  • a compound (6) and 1.0 to 10.0 equivalents of a compound (9) with respect to the compound (6) are stirred in a solvent in the presence of 1.0 to 10.0 equivalents of a base with respect to the compound (6), for example.
  • the base used varies according to the starting material and is not particularly limited.
  • the base include organic bases such as 1,8-diazabicyclo[5,4,0]-7-undecene and diisopropylamine; and alkali metal salts such as potassium carbonate and sodium carbonate.
  • the solvent used varies according to the starting material, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include hexane, toluene, diethyl ether, tetrahydrofuran, N,N-dimethylformamide, hexamethylphosphoric triamide and a mixed solvent thereof.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably -78°C to 100°C. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique or/and crystallization.
  • the compound (9) used in this step is commercially available or can be obtained by a technique known to a person skilled in the art.
  • the compound (11) used in this step is commercially available or can be obtained by a technique known to a person skilled in the art.
  • the amine compound (13) is commercially available or can be obtained by a technique known to a person skilled in the art.
  • the compound can be prepared from a nitro compound (12) as a starting material according to Step 2-6.
  • reduction reaction in Step 2-6 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • the reaction is preferably a catalytic reduction method using a metal catalyst or a reduction method using a metal, for example.
  • the catalytic reduction method is preferably performed in a hydrogen atmosphere at normal pressure to 100 atm.
  • the metal catalyst used in this reaction include platinum, platinum oxide, platinum black, Raney nickel and palladium-carbon.
  • the solvent used in the present reaction varies according to the starting material, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include methanol, ethanol, diethyl ether, tetrahydrofuran, methylene chloride, chloroform and ethyl acetate.
  • An acidic substance such as acetic acid or hydrochloric acid may be appropriately added in order to make the reaction efficiently proceed.
  • the reduction method using a metal preferably employs zinc, iron or tin, for example, and is preferably performed under acidic conditions using hydrochloric acid, acetic acid or ammonium chloride, for example.
  • the solvent used in the present reaction varies according to the starting material, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • Preferable examples of the solvent include methanol, ethanol and 2-propanol.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 100°C. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique or/and crystallization.
  • the preferable amine compound (13) can also be prepared from a compound (15) as a starting material which is commercially available or can be obtained by a technique known to a person skilled in the art, according to coupling reaction in Step 2-8.
  • the coupling reaction in Step 2-8 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a method known to a person skilled in the art may be used for the reaction.
  • the catalyst that can be used include known palladium complexes such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) and tris(dibenzylideneacetone)dipalladium (0); and known nickel catalysts such as (1,5-cyclooctadiene)nickel (0).
  • palladium complexes such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) and tris(dibenzylideneacetone)dipalladium (0)
  • nickel catalysts such as (1,5-cyclooctadiene)nickel (0).
  • a phosphorus ligand such as triphenylphosphine, tri-o-tolylphosphine, tri-tert-butylphosphine, 2-(di-tert-butylphosphino)biphenyl, 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl, 1,2-bis(diphenylphosphino)ethane or 1,1'-bis(diphenylphosphino)ferrocene may be appropriately added in order to make the reaction efficiently proceed, for example.
  • a preferable result may be achieved in the presence of a base.
  • the base used is not particularly limited insofar as the base is used in a coupling reaction similar to this reaction.
  • the base include sodium hydroxide, barium hydroxide, potassium fluoride, cesium fluoride, sodium carbonate, potassium carbonate, cesium carbonate, potassium phosphate and sodium tert-butoxide.
  • the solvent used varies according to the starting material and the transition metal catalyst used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • Preferable examples of the solvent include acetonitrile, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, 1-methyl-2-pyrrolidone and N,N-dimethylformamide.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 100°C, for example.
  • This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere.
  • a method known to a person skilled in the art may be used for the treatment after the second stage (see T.W. Green, "Protective Groups in Organic Synthesis", John Wiley & Sons, Inc., 1981 ).
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique or/and crystallization.
  • L 4 can be modified by a method known to a person skilled in the art, and a hydrogen atom in L 4 can be preferably converted into a halogen substituent (see Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.14, Yuki Kagobutsu No Gosei To Hannou (Synthesis and Reaction of Organic Compounds) [I], edited by The Chemical Society of Japan, Maruzen Co., Ltd., November 1977, p.354-360 , for example).
  • the nitro compound (12) is commercially available or can be obtained by a technique known to a person skilled in the art. If not commercially available, the preferable compound (12), wherein L 4 represents a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, can be efficiently obtained from a corresponding precursor by a nitration reaction known to a person skilled in the art (see Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.14, Yuki Kagobutsu No Gosei To Hannou (Synthesis and Reaction of Organic Compounds) [III], edited by The Chemical Society of Japan, Maruzen Co., Ltd., February 1978, p.1261-1300 , for example).
  • the compound (17) can be obtained by a technique known to a person skilled in the art.
  • the compound (17) can be prepared i) from a compound (15) as a starting material according to Step 2-9 or ii) from an amine compound (13) as a starting material according to Step 2-7, for example.
  • Step 2-9 is performed by the same method as in the above Step 2-1.
  • an amine compound (13) can be efficiently converted into the compound (17) in Step 2-7 by treating the amine compound (13) with a mixed solvent of acetic anhydride and formic acid in a first stage, condensing the compound with a compound (14) under basic conditions in a second stage, and heating the condensate with ammonium acetate and acetic acid in a third stage, for example.
  • a compound (13) is stirred in a mixed solvent of 2.0 to 10.0 equivalents of acetic anhydride with respect to the compound (13) and 10.0 to 20.0 equivalents of formic acid with respect to the compound (13) at ice-cold temperature to 50°C.
  • 1.0 to 5.0 equivalents of a base is preferably used with respect to the compound (13).
  • the base include sodium hydride, sodium hydroxide, potassium hydroxide, lithium hydroxide, n-butyl lithium, lithium diisopropylamide, lithium bis(trimethylsilyl)amide and sodium bis(trimethylsilyl)amide.
  • the solvent used in the present reaction varies according to the starting material, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include diethyl ether, tetrahydrofuran, dimethyl sulfoxide and N,N-dimethylformamide.
  • potassium iodide or sodium iodide may be added, for example, in order to make the reaction efficiently proceed.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 100°C, for example.
  • the condensate is preferably treated in a mixture of 5.0 to 10.0 equivalents of ammonium acetate with respect to the compound (13) and 10.0 to 20.0 equivalents of acetic acid with respect to the compound (13) at 50 to 100°C.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique or/and crystallization.
  • the compound (14) used in the second stage of this step is commercially available or can be obtained by a technique known to a person skilled in the art. If not commercially available, the preferable compound (14) can be prepared from a corresponding carbonyl compound by a halogenation reaction known to a person skilled in the art (see Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.19, Yuki Gosei (Organic Synthesis) [I], edited by The Chemical Society of Japan, Maruzen Co., Ltd., June 1992, p.363-482 , for example).
  • L 4 in the compound (17) can be modified by a technique known to a person skilled in the art, and can be preferably converted into, for example, an iodine group (see S.L. Buchwald et al., "J. Am. Chem. Soc.”, 2002, vol.124, p.14844-14845 , for example), a lower alkyltin group (see J. Marti et al., "Synth. Commun.”, 2000, vol.30, p.3023-3030 , for example) or a boron group (see N. Miyaura et al., "J. Org. Chem.”, 1995, vol.60, p.7508-7510 , for example).
  • the compounds (18a) and (18b) are commercially available or can be obtained by a technique known to a person skilled in the art.
  • the compound of the general formula (I-9), general formula (I-4) or general formula (I-6), wherein two of R 10 , R 11 and R 12 form a ring can be prepared from the compound (2a) as a starting material, wherein R 10 and R 11 form a ring, by the same method as above.
  • the above General Preparation Method 2 includes a method of reacting a compound (1a) with an amine compound (23a) or amine compound (23b) according to Step 4-1 or Step 4-5 to convert the compound (1a) into a compound (24) or compound (26), or converting a compound (1a) into a compound (24) or compound (26) according to Step 4-9 or Step 4-10 which is a three-stage reaction including deprotection, and further reacting the resulting compound (24) or compound (26) with ammonia, an ammonium salt or formamide in Step 4-2 or Step 4-6 to prepare a compound of the general formula (I-9), the general formula (I-4), the general formula (I-6), the general formula (I-7) or the general formula (I-8); a method of once converting a compound (24) or compound (26) into an oxazole compound (25) or a compound (27) by dehydration reaction in Step 4-3 or Step 4-7, and then reacting the oxazole compound (25) or the compound (27) with ammonia, an
  • the compound of the general formula (I-4) can be prepared by i) reacting a compound (26) in the presence of an acid or base and optionally in the presence of ammonia, an ammonium salt, formamide or the like according to Step 4-6.
  • the compound can also be prepared by ii) reacting a compound (25) or compound (27) with an amine compound (22), ammonia, an ammonium salt, formamide or the like according to Step 4-4 or Step 4-8.
  • the method i), specifically, Step 4-6 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents may be used for the reaction (see Heterocyclic Compounds, Vol.5, Wiley, New York, N.Y. 1957, p.503 ; and Journal of Heterocyclic Chemistry, 1982, vol.19, p.193 , for example).
  • a compound (26), wherein Y 14 represents an oxygen atom or a sulfur atom is stirred in a solvent in the presence of 1.0 to 100.0 equivalents of ammonia, an ammonium salt such as ammonium acetate or ammonium carbonate or formamide with respect to the compound (26), for example.
  • the solvent used is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether; halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform; alcohol solvents such as amyl alcohol and isopropyl alcohol; polar solvents such as N,N-dimethylformamide and N-methylpyrrolidone; nonpolar solvents such as toluene, benzene and dichlorobenzene; organic acids such as acetic acid; water; and a mixture thereof.
  • ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether
  • halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform
  • alcohol solvents such as am
  • Formamide may be used as a solvent.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 200°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • a compound (26), wherein Y 4 represents a nitrogen atom is stirred in a solvent in the presence or absence of 0.1 to 10 equivalents of an acid, base or organic salt with respect to the compound (26).
  • the acid, base or organic salt used include inorganic acids such as hydrochloric acid and sulfuric acid; organic acids, such as p-toluenesulfonic acid and methanesulfonic acid; organic bases such as pyridine and dimethylamino pyridine; and organic salts such as pyridinium p-toluenesulfonate and tetrabutylammonium hydroxide.
  • the solvent used is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent that can be used include ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether; halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform; alcohol solvents such as methanol, ethanol, amyl alcohol and isopropyl alcohol; polar solvents such as N,N-dimethylformamide and N-methylpyrrolidone; nonpolar solvents such as toluene, benzene and dichlorobenzene; water; and a mixture thereof.
  • ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether
  • halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform
  • alcohol solvents such
  • the above acid, base or organic salt may be used as a solvent.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 200°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the method ii), specifically, Step 4-4 or Step 4-8 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents may be used for the reaction (see Heterocyclic Compounds, vol.5, Wiley, New York, N.Y. 1950, p.214 ; and The Journal of Organic Chemistry, 1962, vol.27, p.3240 , for example).
  • an oxazole compound (25) or a compound (27) and 1.0 to 100.0 equivalents of an amine compound (22), ammonia, an ammonium salt such as ammonium acetate or ammonium carbonate or formamide with respect to the compound (25) or compound (27) are stirred in a solvent.
  • the solvent used is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether; halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform; alcohol solvents such as amyl alcohol and isopropyl alcohol; polar solvents such as N,N-dimethylformamide and N-methylpyrrolidone; nonpolar solvents such as toluene, benzene and dichlorobenzene; organic acids such as acetic acid; water; and a mixture thereof.
  • ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether
  • halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform
  • alcohol solvents such as am
  • the amine source to be reacted may be used as a solvent.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 200°C, for example.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the amine compound (22) used in this step is commercially available or can be obtained by a technique known to a person skilled in the art.
  • the compound of the general formula (I-9), the general formula (I-6), the general formula (I-7) or the general formula (I-8) can be prepared by i) reacting a compound (24) or compound (25) in the presence of ammonia, an ammonium salt, formamide or the like according to Step 4-2 or Step 4-12.
  • the compound can also be prepared by ii) reacting a compound (1a) with an amine compound (23a) according to Step 4-11.
  • Step 4-2 or Step 4-12 is the same method as in Step 4-6.
  • the method ii), specifically, Step 4-11 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents may be used for the reaction (see Journal of the Chemical Society, 1962, p.5149 ; and Journal of Medicinal Chemistry, 1983, vol.26, p.1187 , for example).
  • a compound (1a), wherein Y 13 represents a nitrile group, a thioimino ether group or an imino ether group, and 1.0 to 5.0 equivalents of an amine compound (23a) with respect to the compound (1a) are stirred in a solvent.
  • the solvent used is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether; halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform; alcohol solvents such as methanol, ethanol, butanol, amyl alcohol and isopropyl alcohol; polar solvents such as N,N-dimethylformamide and N-methylpyrrolidone; nonpolar solvents such as toluene, benzene and dichlorobenzene; organic acids such as acetic acid; water; and a mixture thereof.
  • the yield may be improved when performing reaction in the presence of 1.0 to 10.0 equivalents of an organic amine such as triethylamine, diisopropylamine or pyridine or an alkali metal salt such as potassium carbonate or sodium carbonate with respect to the compound (1a).
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 200°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 72 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the compound (24) or compound (26) can be prepared by reacting a compound (1a) with an amine compound (23a) or amine compound (23b) according to Step 4-1 or Step 4-5.
  • Step 4-1 or Step 4-5 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents may be used for the reaction (see Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.22, Yuki Gosei (Organic Synthesis) [IV], edited by The Chemical Society of Japan, Maruzen Co., Ltd., November 1992, p.137-163 ; and Organic Synthesis, 1941, I, p.5 , for example).
  • a compound (1a), wherein Y 13 represents a carboxyl group, and 1.0 to 10.0 equivalents of a compound (23a) or compound (23b) with respect to the compound (1a) are stirred in a solvent in the presence of 0.1 to 10.0 equivalents of a condensing agent with respect to the compound (1a).
  • the condensing agent used varies according to the starting material and is not particularly limited.
  • the condensing agent include inorganic acids such as hydrochloric acid and sulfuric acid; organic acids such as p-toluenesulfonic acid and methanesulfonic acid, 1,3-dicyclohexylcarbodiimide, 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide, benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate, diethyl cyanophosphonate and bis(2-oxo-3-oxazolidinyl)phosphonic chloride.
  • inorganic acids such as hydrochloric acid and sulfuric acid
  • organic acids such as p-toluenesulfonic acid and methanesulfonic acid
  • 1,3-dicyclohexylcarbodiimide 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide
  • 1.0 to 5.0 equivalents of N-hydroxysuccinimide, N-hydroxybenzotriazole or dimethylaminopyridine may be added with respect to the compound (1a) in order to make the reaction efficiently proceed, for example.
  • the solvent used varies according to the starting material and the condensing agent used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include halogenated solvents such as chloroform, methylene chloride and 1,2-dichloroethane; and polar solvents such as tetrahydrofuran and N,N-dimethylformamide.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably ice-cold temperature to 150°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique or/and crystallization.
  • a compound (1a), wherein Y 13 represents a cyano group, an imino ether group or a thioimino ether group, and 1.0 to 100.0 equivalents of an amine compound (23a) or amine compound (23b) with respect to the compound (1a) are stirred in a solvent.
  • the solvent used is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether; halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform; alcohol solvents such as methanol, ethanol and isopropyl alcohol; polar solvents such as N,N-dimethylformamide and N-methylpyrrolidone; nonpolar solvents such as toluene, benzene and dichlorobenzene; organic acids such as acetic acid; organic bases such as pyridine; water; and a mixture thereof.
  • the amine compound (23a) or amine compound (24b) may be used as a solvent.
  • the yield may be improved when using 0.1 to 1.0 equivalent of an inorganic acid such as hydrochloric acid, a Lewis acid such as trifluoroborate or an organic acid such as p-toluenesulfonic acid with respect to the compound (1a) or when using 1.0 to 10.0 equivalents of an organic base such as triethylamine, pyridine or diisopropylethylamine with respect to the compound (1a).
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably 0 to 200°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • Step 4-9 or Step 4-10 consists of a three-stage reaction including a deprotection step.
  • a compound (1a) is condensed with a compound (23c) or compound (23d) by dehydration.
  • the protecting group is deprotected.
  • the condensate is condensed with a compound (23e).
  • the first-stage condensation reaction may be performed by the same method as in Step 4-1.
  • the second-stage deprotection reaction varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents may be used for the reaction (see T.W. Green, "Protective Groups in Organic Synthesis", John Wiley & Sons, Inc., 1999, p.615-626 ).
  • the condensation compound in the first stage, wherein P 1 represents a tert-butyl carbamate group is stirred in a solvent in the presence of 1.0 to 100.0 equivalents of an acid with respect to the compound, for example.
  • the acid used examples include inorganic acids such as hydrochloric acid and sulfuric acid; and organic acids such as trifluoroacetic acid and methanesulfonic acid.
  • the solvent used is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • Preferable examples of the solvent include ethyl acetate, methanol, ethanol, 1,4-dioxane, methylene chloride, chloroform, methanol, isopropyl alcohol, N,N-dimethylformamide and N-methylpyrrolidone.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably 0 to 100°C, for example.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the third-stage condensation reaction may be performed by the same method as in Step 4-1.
  • the compound (1a) can be prepared from a compound (4) or compound (17) by the same method as in the above Step 2-1 or Step 2-10.
  • the compound (25) or compound (27) can be prepared from the compound (24) or compound (26) by dehydration reaction according to Step 4-3 or Step 4-7.
  • Step 4-3 or Step 4-7 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents may be used for the reaction (see The Chemistry of Heterocyclic Compounds, 45; Wiley, New York, 1986, p.1 , for example).
  • the compound (24) or compound (26) is stirred in a solvent in the presence of 1.0 to 100.0 equivalents of a dehydration reagent with respect to the compound (24) or compound (26).
  • the dehydration reagent used varies according to the starting material and is not particularly limited.
  • the dehydration reagent include phosphorus oxychloride, thionyl chloride, phosgene, triphosgene, carbonyldiimidazole, hydrochloric acid, sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid, triphenylphosphine-carbon tetrachloride and triphenylphosphine-carbon tetrabromide.
  • the solvent used is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether; halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform; polar solvents such as N,N-dimethylformamide and N-methylpyrrolidone; nonpolar solvents such as toluene, benzene and dichlorobenzene; and a mixture thereof.
  • the dehydration reagent may be used as a solvent.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably 0 to 200°C, for example.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • compound (23a), compound (23b), compound (23c), compound (23d) and compound (23e) are commercially available or can be obtained by a technique known to a person skilled in the art.
  • the following partial structure is a partial structure corresponding to the above-described Het, wherein Ar 1 , Ar 2 , X 1 , X 5 , X 6 , Y 10 , Y 11 , R 10 , R 11 , R 12 , L 2 , L 4 , nd, ne, ni and nj are as defined above; and Pr represents a protecting group for a heterocycle nitrogen atom such as a trityl group, a methoxymethyl group, a benzyl group or a methanesulfonic acid group.
  • the above General Preparation Method 3 includes a method of reacting a compound (17) with a heterocyclic compound (28) in Step 5-1 to prepare a compound of the general formula (I-4), the general formula (I-7) or the general formula (I-8); and a method of reacting a compound (17) with a heterocyclic compound (29) having a protecting group in Step 5-2 to once convert the compound (17) into a compound of the general formula (I-5) having a protecting group and then deprotecting the protecting group of the compound of the general formula (I-5) and subsequently reacting the compound with a compound (2b) in Step 5-3 to prepare a compound of the general formula (I-4), the general formula (I-7) or the general formula (I-8).
  • the compound of the general formula (I-4) or (I-5) can be prepared by i) reacting a compound (17) with a compound (28) or compound (29) according to Step 5-1 or Step 5-2.
  • the compound of the general formula (I-4) can also be prepared by ii) deprotecting the protecting group of the compound of the general formula (I-5) and then reacting the compound with a compound (2b) according to Step 5-3.
  • the method i), specifically, Step 5-1 or Step 5-2 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents such as Mizoroki-Heck reaction (see R.F. Heck, “Org. Reactions.”, 1982, vol.27, p.345 , for example) or Sonogashira reaction (see K. Sonogashira, "Comprehensive Organic Synthesis", 1991, vol.3, p.521 , for example) may be used for the reaction.
  • a compound (17), wherein L 4 represents a chlorine atom, a bromine atom, an iodine atom or a sulfonate group such as a trifluoromethanesulfonate group, and 1.0 to 5.0 equivalents of a compound (28) or compound (29), wherein X 1 represents an alkenyl group, with respect to the compound (17) are stirred in a solvent in the presence of 0.01 to 0.5 equivalent of a transition metal catalyst with respect to the compound (17), for example.
  • the transition metal catalyst used is preferably a palladium complex, for example, and more preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0).
  • a phosphorus ligand such as triphenylphosphine, tri-o-tolylphosphine, tri-tert-butylphosphine or 2-(di-tert-butylphosphino)biphenyl may be preferably added, for example, in order to make the reaction efficiently proceed.
  • a preferable result may be achieved in the presence of a base.
  • the base used is not particularly limited insofar as the base is used in a coupling reaction similar to this reaction.
  • Preferable examples of the base include triethylamine, N,N-diisopropylethylamine, N,N-dicyclohexylmethylamine and tetrabutylammonium chloride.
  • the solvent used varies according to the starting material and the transition metal catalyst used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include acetonitrile, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, 1-methyl-2-pyrrolidone and N,N-dimethylformamide.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 150°C, for example.
  • This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • a compound (17), wherein L 4 represents a chlorine atom, a bromine atom, an iodine atom or a sulfonate group such as a trifluoromethanesulfonate group, and 1.0 to 5.0 equivalents of a compound (28) or compound (29), wherein X 1 represents an alkynyl group, with respect to the compound (17) are stirred in a solvent in the presence of 0.01 to 0.5 equivalent of a transition metal catalyst with respect to the compound (17), for example.
  • the transition metal catalyst used is preferably a known palladium complex, for example, and more preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0).
  • a phosphorus ligand such as triphenylphosphine, tri-o-tolylphosphine or tri-tert-butylphosphine may be preferably added, for example, in order to make the reaction efficiently proceed.
  • a good result may be achieved when adding a metal halide or a quaternary ammonium salt, preferably copper (I) iodide, lithium chloride, tetrabutylammonium fluoride or silver (I) oxide, for example.
  • a preferable result may be achieved in the presence of a base.
  • the base used here is not particularly limited insofar as the base is used in a coupling reaction similar to this reaction.
  • Preferable examples of the base include diethylamine, triethylamine, N,N-diisopropylethylamine, piperidine and pyridine.
  • the solvent used include acetonitrile, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide. More preferable examples of the solvent include tetrahydrofuran, 1,4-dioxane, 1-methyl-2-pyrrolidone and N,N-dimethylformamide.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 150°C, for example.
  • This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the method ii), specifically, Step 5-3 consists of first-stage deprotection reaction and second-stage reaction with a compound (2b).
  • the first-stage deprotection reaction varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents may be used for the reaction (see T.W. Green, "Protective Groups in Organic Synthesis", John Wiley & Sons, Inc., 1999, p.615-626 ).
  • the compound of the general formula (I-5) is stirred in a solvent in the presence of 1.0 to 100.0 equivalents of an acid or base with respect to the compound of the general formula (I-5), for example.
  • the acid used include inorganic acids such as hydrochloric acid and sulfuric acid; and organic acids such as trifluoroacetic acid, methanesulfonic acid and p-toluenesulfonic acid.
  • the base used include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as potassium carbonate and sodium carbonate; and organic amines such as ammonia and methylamine.
  • the solvent used is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include acetonitrile, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, ethyl acetate, methanol, ethanol, benzene, toluene, xylene, chloroform, methylene chloride, water and a mixed solvent thereof.
  • the acid or base may be used as a solvent.
  • the reaction temperature must be a temperature that can complete the deprotection reaction, and is preferably room temperature to 150°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • the second stage reaction of the compound (I-5) with the compound (2b) may be performed by the same method as in Step 1-3.
  • X 1 , Y 10 , Y 11 , Y 14 , R 10 , R 11 and R 12 are as defined above;
  • L 7 represents a hydrogen atom, a halogen atom such as a chlorine atom, a bromine atom or an iodine atom, a sulfonate group such as a trifluoromethanesulfonate group, a trialkyltin group or a leaving group such as a boronic acid or boronate group;
  • Y 15 represents an oxygen atom, or a nitrogen atom which may be substituted with a substituent selected from the above Substituent Group A1.
  • the compound (28) can be prepared by i) condensing a compound (31) with an alkene or alkyne compound according to Step 6-1.
  • the compound (28) can also be prepared by ii) cyclizing a compound (32) according to Step 6-2.
  • the method i), specifically, Step 6-1 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents such as Mizoroki-Heck reaction (see R.F. Heck, “Org. Reactions.”, 1982, vol.27, p.345 , for example), Suzuki-Miyaura reaction (see A. Suzuki, “Chem. Rev.”, 1995, vol.95, p.2457 , for example), Sonogashira reaction (see K. Sonogashira, “Comprehensive Organic Synthesis", 1991, vol.3, p.521 ) or Stille coupling reaction (see J.K. Stille, "Angew. Chem. Int. Ed. Engl.”, 1986, vol.25, p.508 , for example) may be used for the reaction.
  • a compound (31), wherein L 7 represents a chlorine atom, a bromine atom, an iodine atom or a sulfonate group such as a trifluoromethanesulfonate group, and 1.0 to 5.0 equivalents of an alkene compound, wherein the alkene compound refers to a compound having a double bond in the molecule, with respect to the compound (31) are stirred in a solvent in the presence of 0.01 to 0.2 equivalent of a transition metal catalyst with respect to the compound (31), for example.
  • the transition metal catalyst used is preferably a palladium complex, for example, and more preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0).
  • a phosphorus ligand such as triphenylphosphine, tri-o-tolylphosphine, tri-tert-butylphosphine or 2-(di-tert-butylphosphino)biphenyl may be preferably added, for example, in order to make the reaction efficiently proceed.
  • a preferable result may be achieved in the presence of a base.
  • the base used is not particularly limited insofar as the base is used in a coupling reaction similar to this reaction.
  • Preferable examples of the base include triethylamine, N,N-diisopropylethylamine, N,N-dicyclohexylmethylamine and tetrabutylammonium chloride.
  • the solvent used varies according to the starting material and the transition metal catalyst used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include acetonitrile, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, 1-methyl-2-pyrrolidone and N,N-dimethylformamide.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 150°C, for example.
  • This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the transition metal catalyst used is preferably a known palladium complex, and more preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0).
  • a phosphorus ligand such as triphenylphosphine, tri-o-tolylphosphine, tricyclohexylphosphine or tri-tert-butylphosphine may be preferably added, for example, in order to make the reaction efficiently proceed.
  • a quaternary ammonium salt preferably tetrabutylammonium chloride or tetrabutylammonium bromide, for example, may also be added in order to make the reaction efficiently proceed.
  • a preferable result may be achieved in the presence of a base.
  • the base used at this time varies according to the starting material, the solvent used and the like, and is not particularly limited.
  • Preferable examples of the base include sodium hydroxide, barium hydroxide, potassium fluoride, cesium fluoride, sodium carbonate, potassium carbonate, cesium carbonate and potassium phosphate.
  • the solvent used varies according to the starting material and the transition metal catalyst used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include acetonitrile, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, 1-methyl-2-pyrrolidone, N,N-dimethylformamide, water and a mixed solvent thereof.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 200°C, for example.
  • This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the desired compound (28) can also be obtained from a combination of the boronic acid compound or boronate compound (31), wherein L 7 represents a boronic acid group or a boronate group, with a halogenated alkene compound or an enol trifluoromethanesulfonate compound by the same method as above.
  • the transition metal catalyst used is preferably a known palladium complex, for example, and more preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0).
  • a phosphorus ligand such as triphenylphosphine, tri-o-tolylphosphine or tri-tert-butylphosphine may be preferably added, for example, in order to make the reaction efficiently proceed.
  • a good result may be achieved when adding a metal halide or a quaternary ammonium salt, preferably copper (I) iodide, lithium chloride, tetrabutylammonium fluoride or silver (I) oxide, for example.
  • a preferable result may be achieved in the presence of a base.
  • the base used here is not particularly limited insofar as the base is used in a coupling reaction similar to this reaction.
  • Preferable examples of the base include diethylamine, triethylamine, N,N-diisopropylethylamine, piperidine and pyridine.
  • the solvent used include acetonitrile, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide. More preferable examples of the solvent include tetrahydrofuran, 1,4-dioxane, 1-methyl-2-pyrrolidone and N,N-dimethylformamide.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 150°C, for example.
  • This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • a compound (31), wherein L 7 represents a chlorine atom, a bromine atom, an iodine atom or a trifluoromethanesulfonate group, and 1.0 equivalent or more of a trialkyltin compound, wherein the trialkyltin compound refers to an alkyltin compound directly bonded to a double bond or triple bond, with respect to the compound (31) are stirred in a solvent in the presence of 0.01 to 0.2 equivalent of a transition metal catalyst with respect to the compound (31), for example.
  • the transition metal catalyst used is preferably a palladium complex, for example, and more preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0).
  • a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0).
  • 0.1 to 5.0 equivalents of copper (I) halide or/and lithium chloride may be added.
  • the solvent used include toluene, xylene, N,N-dimethylformamide, N,N-dimethylacetamide, 1-methyl-2-pyrrolidone and dimethyl sulfoxide.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 150°C, for example.
  • This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • the desired compound (28) can also be obtained from a combination of the tin compound (31), wherein L 7 represents a trialkyltin group, with a halogenated alkene compound or enol trifluoromethanesulfonate compound by the same method as above.
  • the halogenated alkene compound refers to a compound of which the hydrogen atom bonded to the double bond in the molecule is replaced by a halogen atom.
  • the enol trifluoromethanesulfonate compound refers to a compound of which the hydrogen atom of the enol ester group in the molecule is replaced by a trifluoromethanesulfonyl group.
  • Step 6-2 may be performed by the same method as in Step 4-2 or Step 4-6.
  • the compound (31) is commercially available or prepared by a method known to a person skilled in the art. If not commercially available, the compound (31), wherein L 7 is a boronic acid group or a boronate group, can be prepared by a method known to a person skilled in the art, for example, although the method varies according to the starting material (see Shin Jikken Kagaku Koza ( New Courses in Experimental Chemistry), vol.22, Yuki Gosei (Organic Synthesis) [VI], edited by The Chemical Society of Japan, Maruzen Co., Ltd., September 1992, p.61-90 , for example).
  • the compound (31), wherein L 7 is a trialkyltin group can be prepared by a method known to a person skilled in the art, although the method varies according to the starting material (see Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.22, Yuki Gosei (Organic Synthesis) [VI], edited by The Chemical Society of Japan, Maruzen Co., Ltd., September 1992, p.179-201 , for example).
  • the compound (32) is commercially available or prepared by a method known to a person skilled in the art. If not commercially available, the compound (32) can be prepared by the same method as in Step 1-1 or Step 4-1, for example.
  • the compound (29) is commercially available or can be prepared by the same method as in the case of the compound (28) if not commercially available.
  • the compound of the general formula (I-7) or the general formula (I-8) can be prepared from the compound (28) or compound (29), wherein two of R 10 , R 11 and R 12 form a ring, as a starting material by the same method as above.
  • the following partial structure is a partial structure corresponding to the above-described Het, wherein Ar 1 , Ar 2 , X 1 , X 5 , X 6 , Y 10 , Y 11 , R 10 , R 11 , R 12 , L 2 , Pr, nd, ne, ni and nj are as defined above; and L 7 and L 7 ' each represent a halogen atom such as hydrogen, chlorine, bromine or iodine, a sulfonate group such as a trifluoromethanesulfonate group or a trialkyltin group or a leaving group such as a boron acid or boronate group.
  • a halogen atom such as hydrogen, chlorine, bromine or iodine
  • a sulfonate group such as a trifluoromethanesulfonate group or a trialkyltin group or a leaving group such as a boron acid or boron
  • the above General Preparation Method 4 includes a method of condensing a compound (33) with a heterocyclic compound (34a) in Step 7-1 to prepare a compound of the general formula (I-4), the general formula (I-7) or the general formula (I-8); and a method of condensing a compound (33) with a heterocyclic compound (34b) having a protecting group in Step 7-2 to convert the compound (33) into a compound of the general formula (I-5) having a protecting group and then deprotecting the protecting group of the compound of the general formula (I-5) and subsequently reacting the compound with a compound (2b) in Step 5-3 to prepare a compound of the general formula (I-4), the general formula (I-7) or the general formula (I-8).
  • the compound of the general formula (I-4) or the compound of the general formula (I-5) can be prepared by reacting a compound (33) with a compound (34a) or compound (34b) according to Step 7-1 or Step 7-2.
  • Step 7-1 or Step 7-2 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents may be used for the reaction.
  • Preferable examples of the method include Mizoroki-Heck reaction (see R.F. Heck, "Org. Reactions.”, 1982, vol.27, p.345 , for example), Suzuki-Miyaura reaction (see A. Suzuki, "Chem.
  • a compound (33), wherein L 7 ' represents a hydrogen atom and X 1 represents an alkenyl group, and 0.5 to 5.0 equivalents of a compound (34a) or compound (34b), wherein L 7 represents a chlorine atom, a bromine atom, an iodine atom or a sulfonate group such as a trifluoromethanesulfonate group, with respect to the compound (33) are stirred in a solvent in the presence of 0.01 to 1.0 equivalent of a transition metal catalyst with respect to the compound (33), for example.
  • the transition metal catalyst used is preferably a palladium complex, for example, and more preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0).
  • a phosphorus ligand such as triphenylphosphine, tri-o-tolylphosphine, tri-tert-butylphosphine or 2-(di-tert-butylphosphino)biphenyl may be preferably added, for example, in order to make the reaction efficiently proceed.
  • a preferable result may be achieved in the presence of a base.
  • the base used is not particularly limited insofar as the base is used in a coupling reaction similar to this reaction.
  • Preferable examples of the base include triethylamine, N,N-diisopropylethylamine, N,N-dicyclohexylmethylamine and tetrabutylammonium chloride.
  • the solvent used varies according to the starting material and the transition metal catalyst used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include acetonitrile, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, 1-methyl-2-pyrrolidone and N,N-dimethylformamide.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 150°C, for example.
  • This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • a compound (33), wherein L 7 ' represents a boronic acid or boronate group, and 0.5 to 5.0 equivalents of a compound (34a) or compound (34b), wherein L 7 represents a chlorine atom, a bromine atom, an iodine atom or a sulfonate group such as a trifluoromethanesulfonate group, with respect to the compound (33) are stirred in a solvent in the presence of 0.01 to 1.0 equivalent of a transition metal catalyst with respect to the compound (33), for example.
  • the transition metal catalyst used is preferably a known palladium complex, for example, and more preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0).
  • a phosphorus ligand such as triphenylphosphine, tri-o-tolylphosphine, tricyclohexylphosphine or tri-tert-butylphosphine may be preferably added, for example, in order to make the reaction efficiently proceed.
  • a good result may be achieved when appropriately adding a quaternary ammonium salt, preferably tetrabutylammonium chloride or tetrabutylammonium bromide, for example.
  • a preferable result may be achieved in the presence of a base.
  • the base used at this time varies according to the starting material, the solvent used and the like, and is not particularly limited.
  • Preferable examples of the base include sodium hydroxide, barium hydroxide, potassium fluoride, cesium fluoride, sodium carbonate, potassium carbonate, cesium carbonate and potassium phosphate.
  • the solvent used varies according to the starting material and the transition metal catalyst used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include acetonitrile, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, 1-methyl-2-pyrrolidone, N,N-dimethylformamide, water and a mixed solvent thereof.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 200°C, for example.
  • This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the desired compound of the general formula (I-4) or general formula (I-5) can also be obtained from a combination of the compound (33), wherein L 7 ' represents a chlorine atom, a bromine atom, an iodine atom or a sulfonate group such as a trifluoromethanesulfonate group, with the compound (34a) or compound (34b), wherein L 7 represents a boronic acid or boronate group, by the same method as above.
  • the transition metal catalyst used is preferably a known palladium complex, for example, and more preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0).
  • a phosphorus ligand such as triphenylphosphine, tri-o-tolylphosphine or tri-tert-butylphosphine may be preferably added, for example, in order to make the reaction efficiently proceed.
  • a good result may be achieved when adding a metal halide or a quaternary ammonium salt such as preferably copper (I) iodide, lithium chloride, tetrabutylammonium fluoride or silver (I) oxide, for example.
  • a preferable result may be achieved in the presence of a base.
  • the base used here is not particularly limited insofar as the base is used in a coupling reaction similar to this reaction.
  • Preferable examples of the base include diethylamine, triethylamine, N,N-diisopropylethylamine, piperidine and pyridine.
  • the solvent used include acetonitrile, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, 1-methyl-2-pyrrolidone, N,N-dimethylformamide, dimethyl sulfoxide and a mixture thereof. More preferable examples of the solvent include tetrahydrofuran, 1,4-dioxane, 1-methyl-2-pyrrolidone and N,N-dimethylformamide.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 150°C, for example.
  • This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • a compound (33), wherein L 7 ' represents a chlorine atom, a bromine atom, an iodine atom or a trifluoromethanesulfonate group, and 0.5 to 5 equivalents of a compound (34a) or compound (34b), wherein L 7 represents an alkyltin group, with respect to the compound (33) are stirred in a solvent in the presence of 0.01 to 1.0 equivalent of a transition metal catalyst with respect to the compound (33), for example.
  • the transition metal catalyst used is preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0), for example, and more preferably tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0), for example.
  • 0.1 to 5.0 equivalents of copper (I) halide or/and lithium chloride may be appropriately used.
  • the solvent used include toluene, xylene, N,N-dimethylformamide, N,N-dimethylacetamide, 1-methyl-2-pyrrolidone, dimethyl sulfoxide and a mixture thereof.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 150°C, for example.
  • This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • the desired compound of the general formula (I-4) or general formula (I-5) can also be obtained from a combination of the compound (33), wherein L 7 ' represents a trialkyltin group, with the compound (34a) or compound (35b), wherein L 7 represents a chlorine atom, a bromine atom, an iodine atom or a trifluoromethanesulfonate group, by the same method as above.
  • the compound (34a) or compound (34b) can be prepared by the same method as in the case of the compound (31).
  • the compound (33) can be prepared from a compound (13) or compound (15) by the same method as in Step 2-7 or Step 2-9.
  • the compound of the general formula (I-7) or the general formula (I-8) can be prepared from the compound (34a) or compound (34b), wherein two of R 10 , R 11 and R 12 form a ring, as a starting material by the same method as above.
  • R 1 , R 2 , R 10 , R 11 , R 12 , L 2 , Pr, nd, ne, ni and nj are as defined above; and L 8 represents a phosphite group such as a diethylphosphonyl group, a phosphonium salt such as triphenylphosphonium bromide or a silyl group such as a trimethylsilyl group.
  • the above General Preparation Method 5 is an example of a method of condensing a compound (35) with a heterocyclic compound (36a) in Step 8-1 to prepare a compound of the general formula (I-4), the general formula (I-7) or the general formula (I-8); or a method of reacting a compound (35) with a heterocyclic compound (36b) having a protecting group in Step 8-2 to once convert the compound (35) into a compound of the general formula (I-5) having a protecting group and then deprotecting the protecting group of the compound of the general formula (I-5) and subsequently reacting the compound with a compound (2b) in Step 5-3 to prepare a compound of the general formula (I-4), the general formula (I-7) or the general formula (I-8).
  • the compound of the general formula (I-4) or the compound of the general formula (I-5) can be prepared by reacting a compound (35) with a compound (36a) or (36b) according to Step 8-1 or Step 8-2.
  • Step 8-1 or Step 8-2 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents such as Wittig reaction, Horner-Emmons reaction or Peterson reaction (see Shin Jikken Kagaku Koza (new Courses in Experimental Chemistry), vol.19, Yuki Gosei (Organic Synthesis) [I], edited by The Chemical Society of Japan, Maruzen Co., Ltd., June 1992, p.57-85 , for example) may be used.
  • a compound (35), wherein L 8 represents a phosphonium salt, and 0.5 to 2.0 equivalents of a carbonyl compound (36a) or a compound (36b) with respect to the compound (35) are stirred in a solvent in the presence of 1.0 to 5.0 equivalents of a base with respect to the compound (35), for example.
  • This reaction may be a method of first reacting a compound (35) with a base to form a phosphorus ylide and then adding a carbonyl compound (36a) or a compound (36b) to the ylide; or a method of adding a base in the presence of a compound (35) and a carbonyl compound (36a) or a compound (36b).
  • the base used varies according to the starting material and the solvent and is not particularly limited.
  • Preferable examples of the base include alkali metal hydroxides such as sodium hydroxide and lithium hydroxide; alkali metal carbonates such as sodium carbonate; alkali metal salts of alcohols such as sodium methoxide and potassium tert-butoxide; organic bases such as triethylamine, pyridine and diazabicyclononene; organic metals such as butyl lithium and lithium diisobutylamide; and alkali metal hydrides such as sodium hydride.
  • the solvent used varies according to the starting material and the base used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent used include polar solvents such as nitromethane, acetonitrile, 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide; ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane; nonpolar solvents such as benzene, toluene and xylene; alcohol solvents such as ethanol and methanol; halogenated solvents such as chloroform and methylene chloride; water; and a mixed solvent thereof.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably -78 to 150°C, for example.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • a compound (35), wherein L 8 represents a phosphite group is reacted with 0.5 to 2.0 equivalents of a carbonyl compound (36a) or a compound (36b) with respect to the compound (35) in a solvent in the presence of 1.0 to 5.0 equivalents of a base with respect to the compound (35), for example.
  • This reaction may be a method of first treating a compound (35) and a base to form a carbanion and then adding a carbonyl compound (36a) or a compound (36b) to the carbanion; or a method of adding a base in the presence of a compound (35) and a carbonyl compound (36a) or a compound (36b).
  • the base used varies according to the starting material and the solvent and is not particularly limited.
  • Preferable examples of the base include alkali metal hydroxides such as sodium hydroxide and lithium hydroxide; alkali metal carbonates such as sodium carbonate; alkali metal salts of alcohols such as sodium methoxide and potassium tert-butoxide; organic bases such as triethylamine, pyridine and diazabicyclononene; organic metals such as butyl lithium and lithium diisobutylamide; alkali metal hydrides such as sodium hydride; and alkali metal ammonium salts such as sodium amide.
  • the solvent used varies according to the starting material and the base used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include polar solvents such as 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide; ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane; nonpolar solvents such as benzene, toluene and xylene; alcohol solvents such as ethanol and methanol; water; and a mixed solvent thereof.
  • polar solvents such as 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide
  • ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane
  • nonpolar solvents such as benzene, toluen
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably -78 to 150°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • a compound (35), wherein L 8 represents a silyl group is reacted with 0.5 to 2.0 equivalents of a carbonyl compound (36a) or a compound (36b) with respect to the compound (35) in a solvent in the presence of 1.0 to 5.0 equivalents of a base with respect to the compound (35), for example.
  • This reaction may be a method of first treating a compound (35) and a base to form a carbanion and then adding a carbonyl compound (3.6a) or a compound (36b) to the carbanion; or a method of adding a base in the presence of a compound (35) and a carbonyl compound (36a) or a compound (36b).
  • the base used varies according to the starting material and the solvent and is not particularly limited.
  • Preferable examples of the base include alkali metal hydroxides such as sodium hydroxide and lithium hydroxide; alkali metal carbonates such as sodium carbonate; alkali metal salts of alcohols such as sodium methoxide and potassium tert-butoxide; organic bases such as triethylamine, pyridine and diazabicyclononene; organic metals such as butyl lithium and lithium diisobutylamide; alkali metal hydrides such as sodium hydride; and alkali metal ammonium salts such as sodium amide.
  • the solvent used varies according to the starting material and the base used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include polar solvents such as 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide; ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane; nonpolar solvents such as benzene, toluene and xylene; alcohol solvents such as ethanol and methanol; water; and a mixed solvent thereof.
  • polar solvents such as 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide
  • ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane
  • nonpolar solvents such as benzene, toluen
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably -78 to 150°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the compound (36a) and the compound (36b) are commercially available or can be prepared by a technique known to a person skilled in the art. If not commercially available, the compounds can be prepared by acylation of a compound (31), for example (see Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.21, Yuki Gosei (Organic Synthesis) [III], edited by The Chemical Society of Japan, Maruzen Co., Ltd., February 1991, p.184-194 , for example).
  • the compound (35) can be prepared from a compound (6) or compound (17) as a starting material by a known method described in many documents.
  • the compound (35) as a Wittig reagent, wherein L 8 represents a phosphonium salt can be prepared by halogenating a corresponding alcohol compound by a method known to a person skilled in the art (see Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.19, Yuki Gosei (Organic Synthesis) [I], edited by The Chemical Society of Japan, Maruzen Co., Ltd., June 1992, p.430-438 , for example), and then reacting the compound with an organophosphorus compound such as triphenylphosphine (see Organic Reaction, 1965, vol.14, p.270 , for example).
  • an organophosphorus compound such as triphenylphosphine
  • the compound (35) as a Horner-Emmons reagent, wherein L 8 represents a phosphite, can be prepared by halogenating a corresponding alcohol compound by a method known to a person skilled in the art (see Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.19, Yuki Gosei (Organic Synthesis) [I], edited by The Chemical Society of Japan, Maruzen Co., Ltd., June 1992, p.430-438 , for example), and then reacting the compound with an alkyl phosphinite by Arbuzov reaction (see Chemical Review, 1981, vol.81, p.415 , for example) or with a metal phosphonite by Becker reaction (see Journal of the American Chemical Society, 1945, vol.67, p.1180 , for example).
  • the Horner-Emmons reagent can be prepared from a corresponding carbonyl compound and a chlorophosphate in the presence of a base (see The Journal of Organic Chemistry, 1989, vol.54, p.4750 , for example).
  • the compound (35) as a Peterson reagent, wherein L 9 represents a silyl group can be prepared from a corresponding halogen compound and a trialkylsilyl chloride in the presence of a base (see Journal of Organometallic Chemistry, 1983, vol.248, p.51 , for example).
  • the compound of the general formula (I-7) or the compound of the general formula (I-8) can be prepared from the compound (36a) or compound (36b), wherein two of R 10 , R 11 and R 12 form a ring, as a starting material by the same method as above.
  • the following partial structure is a partial structure corresponding to the above-described Het, wherein Ar 1 , Ar 2 , X 1 , X 5 , X 6 , Y 10 , Y 11 , R 1 , R 2 , R 10 , R 11 , R 12 , L 2 , L 8 , Pr, nd, ne, ni and nj are as defined above.
  • the above General Preparation Method 6 is an example of a method of condensing a compound (6) with a heterocyclic compound (38a) in Step 9-1 to prepare a compound of the general formula (I-4), the general formula (I-7) or the general formula (I-8); or a method of condensing a compound (6) with a heterocyclic compound (36b) having a protecting group in Step 8-2 to once convert the compound (6) into a compound of the general formula (I-5) having a protecting group and then deprotecting the protecting group of the compound of the general formula (I-5) and subsequently reacting the compound with a compound (2b) in Step 5-3 to prepare a compound of the general formula (I-4), the general formula (I-7) or the general formula (I-8).
  • the compound of the general formula (I-4) or general formula (I-5) can be prepared by reacting a compound (6) with a compound (38a) or compound (36b) according to Step 9-1 or Step 9-2.
  • Step 9-1 or Step 9-2 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents such as Wittig reaction, Horner-Emmons reaction or Peterson reaction may be used for the reaction (see Jikken Kagaku Koza (Courses in Experimental Chemistry), vol.19, Yuki Gosei (Organic Synthesis) [I], edited by The Chemical Society of Japan, Maruzen Co., Ltd., June 1992, p.57-85 , for example).
  • a carbonyl compound (6) and 0.5 to 2.0 equivalents of a compound (38a) or compound (38b), wherein L 8 represents a phosphonium salt, with respect to the carbonyl compound (6) are stirred in a solvent in the presence of 1.0 to 5.0 equivalents of a base with respect to the carbonyl compound (6), for example.
  • This reaction may be a method of first reacting a compound (38a) or compound (38b) with a base to form a phosphorus ylide and then adding a carbonyl compound (6) to the ylide; or a method of adding a base in the presence of a carbonyl compound (6) and a compound (38a) or compound (38b).
  • the base used varies according to the starting material and the solvent and is not particularly limited.
  • Preferable examples of the base include alkali metal hydroxides such as sodium hydroxide and lithium hydroxide; alkali metal carbonates such as sodium carbonate; alkali metal salts of alcohols such as sodium methoxide and potassium tert-butoxide; organic bases such as triethylamine, pyridine and diazabicyclononene; organic metals such as butyl lithium and lithium diisobutylamide; and alkali metal hydrides such as sodium hydride.
  • the solvent used varies according to the starting material and the base used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent used include polar solvents such as nitromethane, acetonitrile, 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide; ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane; nonpolar solvents such as benzene, toluene and xylene; alcohol solvents such as ethanol and methanol; halogenated solvents such as chloroform and methylene chloride; water; and a mixed solvent thereof.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably -78 to 150°C, for example.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • a carbonyl compound (6) and 0.5 to 2.0 equivalents of a compound (38a) or compound (38b), wherein L 8 represents a phosphite group, with respect to the carbonyl compound (6) are stirred in a solvent in the presence of 1.0 to 5.0 equivalents of a base with respect to the carbonyl compound (6), for example.
  • This reaction may be a method of first treating a compound (38a) or compound (38b) and a base to form a carbanion and then adding a carbonyl compound (6) to the carbanion; or a method of adding a base in the presence of a carbonyl compound (6) and a compound (38a) or compound (38b).
  • the base used varies according to the starting material and the solvent and is not particularly limited.
  • Preferable examples of the base include alkali metal hydroxides such as sodium hydroxide and lithium hydroxide; alkali metal carbonates such as sodium carbonate; alkali metal salts of alcohols such as sodium methoxide and potassium tert-butoxide; organic bases such as triethylamine, pyridine and diazabicyclononene; organic metals such as butyl lithium and lithium diisobutylamide; alkali metal hydrides such as sodium hydride; and alkali metal ammonium salts such as sodium amide.
  • the solvent used varies according to the starting material and the base used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include polar solvents such as 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide; ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane; nonpolar solvents such as benzene, toluene and xylene; alcohol solvents such as ethanol and methanol; water; and a mixed solvent thereof.
  • polar solvents such as 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide
  • ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane
  • nonpolar solvents such as benzene, toluen
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably -78 to 150°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the base used varies according to the starting material and the solvent and is not particularly limited.
  • Preferable examples of the base include alkali metal hydroxides such as sodium hydroxide and lithium hydroxide; alkali metal carbonates such as sodium carbonate; alkali metal salts of alcohols such as sodium methoxide and potassium tert-butoxide; organic bases such as triethylamine, pyridine and diazabicyclononene; organic metals such as butyl lithium and lithium diisobutylamide; alkali metal hydrides such as sodium hydride; and alkali metal ammonium salts such as sodium amide.
  • the solvent used varies according to the starting material and the base used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include polar solvents such as 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide; ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane; nonpolar solvents such as benzene, toluene and xylene; alcohol solvents such as ethanol and methanol; water; and a mixed solvent thereof.
  • polar solvents such as 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide
  • ether solvents such as tetrahydrofuran, 1,4-dioxane and 1,2-dimethoxyethane
  • nonpolar solvents such as benzene, toluen
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably -78 to 150°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the compound (38a) and the compound (38b) are commercially available or prepared by a technique known to a person skilled in the art. If not commercially available, for example, i) the compound (38a) or compound (38b) as a Wittig reagent, wherein L 8 represents a phosphonium salt, can be prepared by halogenating a corresponding alcohol compound by a method known to a person skilled in the art (see Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.19, Yuki Gosei (Organic Synthesis) [I], edited by The Chemical Society of Japan, Maruzen Co., Ltd., June 1992, p.430-438 , for example), and then reacting the compound with an organophosphorus compound such as triphenylphosphine (see Organic Reaction, 1965, vol.14, p.270 , for example).
  • an organophosphorus compound such as triphenylphosphine
  • the compound (38a) or compound (38b) as a Horner-Emmons reagent, wherein L 8 represents a phosphite can be prepared by halogenating a corresponding alcohol compound by a method known to a person skilled in the art (see Shin Jikken Kagaku Koza (New Courses in Experimental Chemistry), vol.19, Yuki Gosei (Organic Synthesis) [I], edited by The Chemical Society of Japan, Maruzen Co., Ltd., June 1992, p.430-438 , for example), and then reacting the compound with an alkyl phosphinite by Arbuzov reaction (see Chemical Review, 1981, vol.81, p.415 , for example) or with a metal phosphonite by Becker reaction (see Journal of the American Chemical Society, 1945, vol.67, p.1180 , for example).
  • the compound can be prepared from a corresponding carbonyl compound and a chlorophosphate in the presence of a base (see Journal of Organic Chemistry, 1989, vol.54, p.4750 , for example).
  • a base see Journal of Organic Chemistry, 1989, vol.54, p.4750 , for example.
  • the compound of the general formula (I-7) or the compound of the general formula (I-8) can be prepared from the compound (38a) or compound (38b), wherein two of R 10 , R 11 and R 12 form a ring, as a starting material by the same method as above.
  • the above General Preparation Method 7 is an example of a method of condensing a compound (39) with a compound (40) in Step 10 to prepare a compound of the general formula (I-4), the general formula (I-7) or the general formula (I-8).
  • the compound of the general formula (I-4) can be prepared by reacting a compound (39) with a compound (40) according to Step 10.
  • Step 10 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents such as Mizoroki-Heck reaction (see R.F. Heck, “Org. Reactions.”, 1982, vol.27, p.345 , for example), Suzuki-Miyaura reaction (see A. Suzuki, “Chem. Rev.”, 1995, vol.95, p.2457 , for example), Sonogashira reaction (see K.
  • the transition metal catalyst used is preferably a palladium complex, for example, and more preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0).
  • a phosphorus ligand such as triphenylphosphine, tri-o-tolylphosphine, tri-tert-butylphosphine or 2-(di-tert-butylphosphino)biphenyl may be preferably added, for example, in order to make the reaction efficiently proceed.
  • a preferable result may be obtained in the presence of a base, and the base used is not particularly limited insofar as the base is used in a coupling reaction the same as this reaction.
  • Preferable examples of the base include triethylamine, N,N-diisopropylethylamine, N,N-dicyclohexylmethylamine and tetrabutylammonium chloride.
  • the solvent used varies according to the starting material and the transition metal catalyst used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include acetonitrile, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, 1-methyl-2-pyrrolidone and N,N-dimethylformamide.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 150°C, for example.
  • This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • a compound (39), wherein L 7 ' represents a chlorine atom, a bromine atom, an iodine atom or a sulfonate group such as a trifluoromethanesulfonate group, and 1.0 to 10.0 equivalents of a compound (40), wherein L 7 represents a boronic acid group or a boronate group, with respect to the compound (39) are stirred in a solvent in the presence of 0.01 to 0.5 equivalent of a transition metal catalyst with respect to the compound (39), for example.
  • the transition metal catalyst used is preferably a known palladium complex, and more preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0).
  • a phosphorus ligand such as triphenylphosphine, tri-o-tolylphosphine, tricyclohexylphosphine or tri-tert-butylphosphine may be preferably added, for example, in order to make the reaction efficiently proceed.
  • a quaternary ammonium salt preferably tetrabutylammonium chloride or tetrabutylammonium bromide, for example, may also be added in order to make the reaction efficiently proceed.
  • a preferable result may be achieved in the presence of a base.
  • the base used at this time varies according to the starting material, the solvent used and the like, and is not particularly limited.
  • Preferable examples of the base include sodium hydroxide, barium hydroxide, potassium fluoride, cesium fluoride, sodium carbonate, potassium carbonate, cesium carbonate and potassium phosphate.
  • the solvent used varies according to the starting material and the transition metal catalyst used, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include acetonitrile, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, 1-methyl-2-pyrrolidone, N,N-dimethylformamide, water and a mixed solvent thereof.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 200°C, for example.
  • This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the desired compound of the general formula (I-4) can also be obtained from a combination of the compound (39), wherein L 7 ' represents a boronic acid group or a boronate group, with the compound (40), wherein L 7 represents a chlorine atom, a bromine atom, an iodine atom or a sulfonate group such as a trifluoromethanesulfonate group, by the same method as above.
  • the transition metal catalyst used is preferably a known palladium complex, for example, and more preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0).
  • a phosphorus ligand such as triphenylphosphine, tri-o-tolylphosphine or tri-tert-butylphosphine may be preferably added, for example, in order to make the reaction efficiently proceed.
  • a good result may be achieved when adding a metal halide or a quaternary ammonium salt, preferably copper (I) iodide, lithium chloride, tetrabutylammonium fluoride or silver (I) oxide, for example.
  • a preferable result may be obtained in the presence of a base, and the base used here is not particularly limited insofar as the base is used in a coupling reaction the same as this reaction.
  • the base include diethylamine, triethylamine, N,N-diisopropylethylamine, piperidine and pyridine.
  • the solvent used include acetonitrile, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, xylene, 1-methyl-2-pyrrolidone, N,N-dimethylformamide and dimethyl sulfoxide. More preferable examples of the solvent include tetrahydrofuran, 1,4-dioxane, 1-methyl-2-pyrrolidone and N,N-dimethylformamide.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 150°C, for example.
  • This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • a compound (39), wherein L 7 ' represents a chlorine atom, a bromine atom, an iodine atom or a trifluoromethanesulfonate group, and 1.0 equivalent or more of a compound (40), wherein L 7 represents a trialkyltin group, with respect to the compound (39) are stirred in a solvent in the presence of 0.01 to 0.2 equivalent of a transition metal catalyst with respect to the compound (39), for example.
  • the transition metal catalyst used is preferably a palladium complex, for example, and more preferably a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0).
  • a known palladium complex such as palladium (II) acetate, dichlorobis(triphenylphosphine)palladium (II), tetrakis(triphenylphosphine)palladium (0) or tris(dibenzylideneacetone)dipalladium (0).
  • 0.1 to 5.0 equivalents of copper (I) halide or/and lithium chloride may be added.
  • the solvent used include toluene, xylene, N,N-dimethylformamide, N,N-dimethylacetamide, 1-methyl-2-pyrrolidone and dimethyl sulfoxide.
  • the reaction temperature must be a temperature that can complete the coupling reaction, and is preferably room temperature to 150°C, for example.
  • This reaction is performed preferably in an inert gas atmosphere, and more preferably in a nitrogen or argon atmosphere, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • the desired compound of the general formula (I-4) can also be obtained from a combination of the compound (39), wherein L 7 ' represents a trialkyltin group, with the compound (40), wherein L 7 represents a chlorine atom, a bromine atom, an iodine atom or a trifluoromethanesulfonate group, by the same method as above.
  • the compound (40) is commercially available or can be prepared by a method known to a person skilled in the art.
  • the compound (39) can be prepared by a method in the above General Preparation Methods 1 to 6.
  • the compound of the general formula (I-7) or the general formula (I-8) can be prepared by the same method as above using, as a starting material, the compound (39), wherein R 10 and R 12 each represent an alkyl group substituted with an alkenyl group or an alkynyl group or an alkenyl group, an alkynyl group or an alkyl group substituted with a halogen atom and L 7 ' represents a chlorine atom, a bromine atom, an iodine atom, a sulfonate group such as a trifluoromethanesulfonate group, or a trialkyltin group, without use of the compound (40).
  • the above General Preparation Method 8 is an example of a method of condensing a compound (41) with a compound (42) in Step 12 to prepare a compound of the general formula (I-4), the general formula (I-7) or the general formula (I-8).
  • the compound of the general formula (I-4) can be prepared by condensing a compound (41) with a compound (42) according to Step 12.
  • Step 12 varies according to the starting material and is not particularly limited insofar as the conditions are similar to those in this reaction.
  • a known method described in many documents such as coupling reaction using a copper compound of an arylboronic acid derivative (see The Journal of Organic Chemistry, 2001, vol.66, p.7892 , for example), Ullmann reaction (see Journal of Medicinal Chemistry, 1981, vol.24, p.1139 , for example) or nucleophilic substitution reaction (see Journal of Medicinal Chemistry, 1991, vol.39, p.2671-2677 , for example) may be used for the reaction.
  • the coupling reaction of an arylboronic acid derivative using a copper compound is, for example, a method of stirring a compound (41), wherein L 3 represents a boronic acid group or a boronate group, and 1.0 to 10.0 equivalents of a compound (42) with respect to the compound (41) in a solvent in the presence of 0.01 to 1.0 equivalent of a copper reagent such as copper, copper bromide or copper iodide with respect to the compound (41) by addition of 1.0 to 10.0 equivalents of a base with respect to the compound (41).
  • the base used varies according to the starting material, the solvent used and the like, and is not particularly limited insofar as the base does not inhibit the reaction.
  • the base include organic bases such as triethylamine, pyridine and tetramethylethylenediamine; alkali metal salts such as potassium carbonate, sodium carbonate, potassium acetate, sodium acetate and cesium carbonate; and metal alkoxides such as sodium methoxide and potassium tert-butoxide.
  • the copper reagent used varies according to the starting material and is not particularly limited.
  • the copper reagent include copper acetate and di- ⁇ -hydroxo-bis[(N,N,N',N'-tetramethylethylenediamine)copper (II)] chloride.
  • the solvent used varies according to the starting material, the reagent and the like, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent include ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether; halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform; polar solvents such as ethyl acetate, N,N-dimethylformamide and N-methylpyrrolidone; nonpolar solvents such as toluene, benzene and dichlorobenzene; and a mixture thereof.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 200°C, for example. Good results such as reduction in the reaction time and improvement of the yield may be achieved when the reaction is performed in an oxygen atmosphere or air stream. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • a compound (41), wherein L 3 represents a halogen atom such as a chlorine atom, a bromine atom or an iodine atom, and 1.0 to 10.0 equivalents of a compound (42) with respect to the compound (41) are stirred in a solvent in the presence of 0.01 to 1.0 equivalent of a copper reagent such as copper, copper bromide or copper iodide with respect to the compound (41) by addition of 1.0 to 10.0 equivalents of a base with respect to the compound (41), for example.
  • the base used varies according to the starting material and is not particularly limited.
  • the base include alkali metal salts such as potassium carbonate, sodium carbonate, potassium acetate, sodium acetate and cesium carbonate; and metal alkoxides such as sodium methoxide and potassium tert-butoxide.
  • the solvent used varies according to the starting material, the reagent and the like, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • the solvent that can be used include ether solvents such as tetrahydrofuran, 1,4-dioxane and diethyl ether; halogenated solvents such as methylene chloride, 1,2-dichloroethane and chloroform; alcohol solvents such as amyl alcohol and isopropyl alcohol; polar solvents such as N,N-dimethylformamide and N-methylpyrrolidone; nonpolar solvents such as toluene, benzene and dichlorobenzene; and a mixture thereof.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 200°C, for example.
  • the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique.
  • An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique, extraction or/and crystallization.
  • the base used varies according to the starting material and is not particularly limited.
  • the base include sodium hydride, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, cesium carbonate, barium carbonate, pyridine, lutidine and triethylamine.
  • the solvent used varies according to the starting material, and is not particularly limited insofar as the solvent does not inhibit the reaction and allows the starting material to be dissolved therein to a certain extent.
  • Preferable examples of the solvent include acetonitrile, tetrahydrofuran, dimethyl sulfoxide, N,N-dimethylformamide and N-methylpyrrolidine.
  • the base may optionally be used as a solvent.
  • the reaction temperature must be a temperature that can complete the reaction without promoting formation of an undesirable by-product, and is preferably room temperature to 150°C, for example. Under preferable reaction conditions, the reaction is completed in 1 to 24 hours, and the progress of the reaction can be monitored by a known chromatography technique. An undesirable by-product can be removed by a technique known to a person skilled in the art such as a conventional chromatography technique or/and crystallization.
  • the compound (41) is prepared by the same method as in the above General Preparation Methods 1 to 7.
  • the compound (42) is commercially available or prepared by a method known to a person skilled in the art.
  • the compound of the general formula (I-7) or the general formula (I-8) can be prepared from the compound (41), wherein two of R 10 , R 11 and R 12 form a ring, as a starting material by the same method as above.
  • General Preparation Methods 1 to 8 for the compound of the present invention described above in detail are methods for preparing a compound represented by the general formula (I-9), the general formula (I-4), the general formula (I-5), the general formula (I-6), the general formula (I-7) or the general formula (I-8), wherein Het falls within a part of the definition of Het in the general formula (I).
  • the compound of the general formula (I), wherein Het falls within another part of the definition of Het can be prepared almost in the same manner as in the above General Preparation Methods 1 to 8, or can be prepared by another method itself known to a person skilled in the art.
  • the examples described later will provide reference to these Preparation Methods, and the compound of the general formula (I) can be easily prepared by a method itself known to a person skilled in the art based on these examples.
  • the compound of the general formula (I) or pharmacologically acceptable salt thereof according to the present invention is effective for prevention or treatment of a disease caused by A ⁇ and is excellent in terms of pharmacokinetics, toxicity, stability, absorption and the like.
  • a prophylactic or therapeutic agent for a disease caused by A ⁇ comprising the compound of the formula (I) or pharmacologically acceptable salt thereof according to the present invention as an active ingredient can be prepared by a conventional method.
  • Preferable examples of the dosage form include tablets, powders, fine granules, granules, coated tablets, capsules, syrups, troches, inhalants, suppositories, injections, ointments, ophthalmic solutions, ophthalmic ointments, nasal drops, ear drops, cataplasms and lotions.
  • the prophylactic or therapeutic agent can be prepared by using ingredients typically used such as an excipient, a binder, a lubricant, a colorant and a corrective, and ingredients used where necessary such as a stabilizer, an emulsifier, an absorbefacient, a surfactant, a pH adjuster, a preservative and an antioxidant, and can be prepared by blending ingredients generally used as materials for a pharmaceutical preparation.
  • ingredients typically used such as an excipient, a binder, a lubricant, a colorant and a corrective
  • ingredients used where necessary such as a stabilizer, an emulsifier, an absorbefacient, a surfactant, a pH adjuster, a preservative and an antioxidant, and can be prepared by blending ingredients generally used as materials for a pharmaceutical preparation.
  • ingredients include animal and vegetable oils such as soybean oil, beef tallow and synthetic glyceride; hydrocarbons such as liquid paraffin, squalane and solid paraffin; ester oils such as octyldodecyl myristate and isopropyl myristate; higher alcohols such as cetostearyl alcohol and behenyl alcohol; a silicone resin; silicone oil; surfactants such as polyoxyethylene fatty acid ester, sorbitan fatty acid ester, glycerin fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene hydrogenated castor oil and a polyoxyethylene-polyoxypropylene block copolymer; water-soluble polymers such as hydroxyethylcellulose, polyacrytic acid, a carboxyvinyl polymer, polyethylene glycol, polyvinylpyrrolidone and methylcellulose; lower alcohols such as ethanol and isopropanol; polyhydric alcohols such as glycerin
  • excipient used examples include lactose, corn starch, saccharose, glucose, mannitol, sorbitol, crystalline cellulose and silicon dioxide.
  • binder used include polyvinyl alcohol, polyvinyl ether, methylcellulose, ethylcellulose, gum arabic, tragacanth, gelatin, shellac, hydroxypropylmethylcellulose, hydroxypropylcellulose, polyvinylpyrrolidone, a polypropylene glycolpolyoxyethylene block copolymer and meglumine.
  • disintegrator used include starch, agar, gelatin powder, crystalline cellulose, calcium carbonate, sodium bicarbonate, calcium citrate, dextrin, pectin and carboxymethylcellulose calcium.
  • Examples of the lubricant used include magnesium stearate, talc, polyethylene glycol, silica and hydrogenated vegetable oil.
  • Examples of the colorant used include those permitted to be added to pharmaceuticals.
  • Examples of the corrective used include cocoa powder, menthol, empasm, mentha oil, borneol and cinnamon powder.
  • an oral preparation is prepared by adding an active ingredient compound or a salt thereof or a hydrate of the compound or salt, an excipient, and, where necessary, a binder, a disintegrant, a lubricant, a colorant and a corrective, for example, and then forming the mixture into powder, fine granules, granules, tablets, coated tablets or capsules, for example, by a conventional method. It is obvious that tablets or granules may be appropriately coated, for example, sugar coated, where necessary.
  • a syrup or an injection preparation is prepared by adding a pH adjuster, a solubilizer and an isotonizing agent, for example, and a solubilizing agent, a stabilizer and the like where necessary by a conventional method.
  • An external preparation may be prepared by any conventional method without specific limitations.
  • a base material any of various materials usually used for a pharmaceutical, a quasi drug, a cosmetic or the like may be used. Examples of the base material include materials such as animal and vegetable oils, mineral oils, ester oils, waxes, higher alcohols, fatty acids, silicone oils, surfactants, phospholipids, alcohols, polyhydric alcohols, water-soluble polymers, clay minerals and purified water.
  • a pH adjuster, an antioxidant, a chelator, a preservative and fungicide, a colorant, a flavor or the like may be added where necessary.
  • an ingredient having a differentiation inducing effect such as a blood flow enhancer, a bactericide, an antiphlogistic, a cell activator, vitamin, amino acid, a humectant or a keratolytic agent may be blended where necessary.
  • the dose of the therapeutic or prophylactic agent of the present invention varies according to the degree of symptoms, age, sex, body weight, mode of administration, type of salt and specific type of disease, for example.
  • the compound of the formula (I) or pharmacologically acceptable salt thereof is orally administered to an adult at about 30 ⁇ g to 10 g, preferably 100 ⁇ g to 5 g, and more preferably 100 ⁇ g to 100 mg per day, or is administered to an adult by injection at about 30 ⁇ g to 1 g, preferably 100 ⁇ g to 500 mg, and more preferably 100 ⁇ g to 30 mg per day, in a single dose or several divided doses, respectively.
  • the compound represented by the formula (I)or a pharmacologically acceptable salt thereof according to the present invention may be used in combination with for compounds having mechanisms as described below.
  • such compounds include cholinesterase inhibitors (e.g., donepezil, huperzine A, tacrine, rivastigmine, galantamine); AMPA receptor antagonists (e.g., 1,2-dihydropyridine compounds such as 3-(2-cyanophenyl)-5-(2-pyridyl)-1-phenyl-1,2-dihydropyridin-2-one); NMDA receptor antagonists (e.g., memantine); acetylcholine releasing stimulants (e.g., pramiracetam; aniracetam); calcium channel agonists (e.g., nefiracetam); free radical scavengers (e.g., EGb 761); platelet activating factor antagonists (e.g., EGb 761); platelet aggregation antagonists (e.g., EGb 761, triflusal); insulin sensitizers (e.g., rosiglitazone); peroxisome
  • angiogenesis inhibitors e.g., paclitaxel
  • immunosuppressants e.g., paclitaxel
  • tubulin antagonists e.g., paclitaxel
  • thromboxane A2 synthase inhibitors e.g., triflusal
  • antioxidants e.g., idebenone
  • alpha adrenoreceptor antagonists e.g., nicergoline
  • estrogen agonists e.g., conjugated estrogens, trilostane
  • 3-beta hydroxysteroid dehydrogenase inhibitors e.g., trilostane
  • signal transduction pathway inhibitors e.g., trilostane
  • melatonin receptor agonists e.g., ramelteon
  • immunostimulants e.g., immune globulin, icosapentethyl ester, procaine
  • HIV entry inhibitors e.g., pro
  • butylcholine esterase inhibitor e.g., bisnorcymserine
  • alpha adrenergic receptor antagonists e.g., nicergoline
  • NO synthase type II inhibitors e.g., arundic acid
  • chelating agents e.g., PBT 2
  • amyloid fibrillogenesis inhibitors e.g., TTP488, PF 4494700
  • serotonin 4 receptor agonists e.g., PRX 03140
  • serotonin 6 receptor antagonists e.g., SB 742457
  • benzodiazepine receptor inverse agonists e.g., radequinil
  • Ca channel antagonists e.g., safinamide
  • nicotinic receptor agonists e.g., ispronicline
  • ACE inhibitor e.g., CTS 21166
  • the above compounds include, for example, huperzine A, tacrine, rivastigmine, galantamine, pramiracetam, aniracetam, nefiracetam, EGb 761, rosiglitazone, rasagiline, levacecarnine, celecoxib, 3-(2-cyanophenyl)-5-(2-pyridyl)-1-phenyl-1,2-dihydropyridin-2-one, talampanel, becampanel, memantine, xaliproden, tarenflurbil, tramiprosate, leuprorelin-D, taltirelin, risperidone, cevimeline, modafinil, alosetron, aripiprazole, mifepristone, atorvastatin, propentofylline, choline alfoscerate, FPF 1070 (CAS Number 143637-01-8), rimonabant, dronabinol, doco
  • ABT 107 ABT 560, TC 5619, TAK 070, N-[(1S,2R)-3-(3,5-Difluorophenyl)-1-hydroxy-1-[(5S,6R)-5-methyl-6-(neopentyloxy)morpholin-3-yl]propan-2-yl]acetamide hydroCl, 6-Fluoro-5-(2-fluoro-5-methylphenyl)-3,4-dihydropyridine, 2-Amino-6-[2-(3'-methoxybiphenyl-3-yl)ethyl]-3,6-dimethyl-5,6-dihydropyrimidin-4(3H)-one, AZD 1080, ARA 014418, XD 4241, Z 321 (CAS No.
  • Monoclonal antibody 266 duloxetine, escitalopram oxalate, fluoxetine, fluvoxamine maleate, paroxetine, sertraline, dapoxetine, desvenlafaxine, sibutramine, nefazodone, milnacipran, desipramine, duloxetine, and bicifadine.
  • the resulting racemate was separated by CHIRALPAK TM IA manufactured by Daicel Chemical Industries, Ltd. (2 cm ⁇ 25 cm; mobile phase: ethanol) to obtain the title optically active compound with a retention time of 20 minutes and positive optical rotation (11 mg, >99% ee) and the title optically active compound with a retention time of 25 minutes and negative optical rotation (12 mg, >99% ee).
  • the resulting organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure.
  • (+)-2- ⁇ (E)-2-[5-methoxy-6-(4-methyl-1H-imidazol-1-yl)pyridin-3-yl]vinyl ⁇ -8-(3,4,5-trifluorophenyl)-5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridin-8-ol are as follows.
  • a lithium hydroxide monohydrate powder (2.23 g) was added to a suspension of 3-methoxy-4-(4-methyl-1H-imidazol-1-yl)benzaldehyde (CAS No. 870837-18-6, 10 g) and diethyl cyanomethylphosphonate (8.2 g) in THF (50 ml) under ice-cooling, and the reaction solution was stirred at the same temperature for one hour. Ethyl acetate (200 mL) and water were added to the reaction solution, and the organic layer was separated. The organic layer was washed with brine, dried over anhydrous magnesium sulfate and then filtered through a silica gel pad (carrier: Chromatorex TM NH).
  • the filtrate was concentrated under reduced pressure.
  • the resulting residue was crystallized from ethyl acetate and hexane, and the crystals were collected by filtration.
  • the resulting crystals were dried under reduced pressure to obtain 7.49 g of the title compound.
  • the property values of the compound are as follows.
  • (+)-8-(3-fluorophenyl)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridine are as follows.
  • a racemate of the title compound was obtained from 4-cyanophenylacetic acid (1 g) by the same method as in Examples 1 and 2.
  • the racemate (60 mg) was separated by CHIRALPAK TM IB manufactured by Daicel Chemical Industries, Ltd. (2 cm ⁇ 25 cm; mobile phase: ethanol) to obtain a (-)-isomer of the title optically active compound with a retention time of 18.5 minutes (22.3 mg; 98% ee) and a (+)-isomer of the title optically active compound with a retention time of 33 minutes (23 mg; 98% ee).
  • (+)-1- ⁇ 4- ⁇ 2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridin-8-yl ⁇ phenyl ⁇ pentan-1-one are as follows.
  • (+)-8-(4-isopropylphenyl)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridine are as follows. ESI-MS; m/z 454 [M++H].
  • (+)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -8-(4-methylsulfanylphenyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[1,5-a]pyridine are as follows.
  • (+)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -8-thiophen-2-yl-5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridine are as follows. ESI-MS; m/z 418 [M + +H].
  • the resulting organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure.
  • (+)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -8-thiophen-3-yl-5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridine are as follows.
  • (+)-8-benzyl-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridine are as follows.
  • a racemate of the title compound was obtained from (2-chloropyridyl)-5-acetic acid (500 mg) by the same method as in Examples 1 and 2.
  • (+)-8-(6-chloropyridin-3-yl)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridine are as follows.
  • BOPC1 (1.18 g) was added to a suspension of (E)-3-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]acrylic acid (800 mg), 1-amino-3-(4-bromophenyl)piperidin-2-one (898 mg) and TEA (0.9 mL) in DMF (20 mL), and the reaction solution was stirred at room temperature overnight. Water and ethyl acetate were added to the reaction mixture and the organic layer was separated. The resulting organic layer was washed with saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate and then concentrated under reduced pressure.
  • the property values of the title optically active compound with a retention time of 17 minutes are as follows.
  • Potassium methoxymethyl trifluoroborate (CAS No. 910251-11-5, 372 mg), palladium acetate (7 mg), BINAP (19 mg) and cesium carbonate (1.2 g) were added to a mixed solution of 8-(2-bromophenyl)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridine (150 mg) in dioxane (7 mL) and water (0.7 mL). The reaction solution was stirred in a nitrogen atmosphere at 100°C overnight. The reaction mixture was left to cool to room temperature.
  • the property values of the title optically active compound with a retention time of 16 minutes are as follows.
  • the property values of the title optically active compound with a retention time of 17 minutes are as follows.
  • tetrakis(triphenylphosphine)palladium (17.0 mg) was added and the reaction solution was stirred for 16 hours.
  • the reaction solution was diluted with ethyl acetate and the organic layer was washed with brine.
  • the resulting organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (elution solvent: heptane-ethyl acetate system) to obtain 15.4 mg of a racemate of the title compound.
  • the resulting racemate (15.4 mg) was separated by CHIRALPAK TM IB manufactured by Daicel Chemical Industries, Ltd.
  • the resulting residue was purified by silica gel column chromatography (carrier: Chromatorex NH; elution solvent: heptane-ethyl acetate system) to obtain 70 mg of a racemate of the title compound.
  • the resulting racemate (30 mg) was separated by CHIRALPAK TM ADH manufactured by Daicel Chemical Industries, Ltd. (2 cm ⁇ 25 cm, mobile phase: ethanol, flow rate: 10 mL/min) to obtain the title optically active compound with a retention time of 17 minutes and negative optical rotation (12.7 mg) and the title optically active compound with a retention time of 28 minutes and positive optical rotation (13.2 mg).
  • the property values of the title optically active compound with a retention time of 17 minutes are as follows.
  • Acetic anhydride (0.045 mL) was added to a solution of 2-((-)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -5,6,7,8-tetrahydro-[1,2,4]triazolo[1,5-a]pyridin-8-yl)phenylamine (41 mg) in pyridine (2 mL), and the reaction solution was stirred at 50°C overnight. The reaction mixture was left to cool to room temperature and then concentrated under reduced pressure. The resulting residue was purified by CHIRALPAK TM IB manufactured by Daicel Chemical Industries, Ltd.
  • the property values of the title optically active compound with a retention time of 24 minutes are as follows.
  • (+)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -8-(pyridin-2-yl)-5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridine are as follows. ESI-MS; m/z 413 [M + +H].
  • Methyl methylsulfinylmethyl sulfide (5.53 g) and potassium hydroxide (2 g) were added to a solution of 5-chloro-2-thiophenecarboxyaldehyde (6.21 g) in methanol (70 mL), and the reaction solution was stirred with heating under reflux for 21 hours. After leaving to cool to room temperature, the solvent was evaporated under reduced pressure. Methylene chloride was added to the residue, the insoluble matter was removed by filtration, and the solvent was evaporated under reduced pressure.
  • 5.2 mg of a racemate of the title compound was obtained from ethyl (5-chlorothiophen-2-yl)acetate (3.31 g) by the same method as in Examples 20 and 21.
  • (+)-8-(5-chlorothiophen-2-yl)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridine are as follows.
  • (+)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -8-(pyridin-2-yl)-5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridin-8-ol are as follows.
  • a racemate of title compound (67.1 mg) was obtained from 8-(4-isopropylphenyl)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridine synthesized in Examples 5 and 6 (117.4 mg) by the same method as in Examples 53 and 54.
  • the racemate of the title compound was separated by CHIRALPAK TM AD-H manufactured by Daicel Chemical Industries, Ltd.
  • (+)-8-(4-isopropylphenyl)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridin-8-ol are as follows.
  • the title optically active compound with a retention time of 14 minutes in CHIRALPAK TM ADH manufactured by Daicel Chemical Industries, Ltd. (2 cm ⁇ 25 cm, mobile phase: ethanol, flow rate: 10 mL/min) and negative optical rotation (9.5 mg) and the title optically active compound with a retention time of 16 minutes in the CHIRALPAK TM ADH and positive optical rotation (9.4 mg) were obtained from 2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -8-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridine (59 mg) by the same method as in Examples 53 and 54.
  • the title optically active compound with a retention time of 12 minutes in CHIRALPAK TM IA manufactured by Daicel Chemical Industries, Ltd. (2 cm ⁇ 25 cm, mobile phase: ethanol, flow rate: 10 mL/min) and positive optical rotation (20.6 mg) and the title optically active compound with a retention time of 14 minutes in the CHIRALPAK TM IA and negative optical rotation (17.2 mg) were obtained from 8-(2-fluorophenyl)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -5,6,7,8-tetrahydro-[1,2,4]triazolo[1,5-a]pyridine (50 mg) by the same method as in Examples 53 and 54.
  • Dess-Martin periodinane (304 mg) was added to a solution of (8-(3-fluorophenyl)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridin-8-yl)methanol (165 mg) in methylene chloride (10 mL), and the reaction solution was stirred in a nitrogen atmosphere at room temperature for four hours. Ethyl acetate and saturated sodium bicarbonate water were added to the reaction solution, and the organic layer was separated. The resulting organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to obtain 227 mg of the title compound.
  • the property value of the compound is as follows. ESI-MS; m/z 458 [M + +H].
  • 1,1'-Carbonylbis-1H-imidazole (290 mg) was added to a solution of 8-(3-fluorophenyl)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridine-8-carbaldehyde oxime (169 mg) in THF (15 mL), and the mixture was heated under reflux for 2.5 hours. The reaction solution was cooled to room temperature. Then, ethyl acetate and brine were added to the reaction solution and the organic layer was separated.
  • (+)-8-(3-fluorophenyl)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridine-8-carbonitrile are as follows.
  • 62 mg of a racemate of the title compound was obtained by the same method as in Examples 65 and 66 from 2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -8-(4-methylsulfanylphenyl)-5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridine obtained by the method in Examples 28 and 29 (135.6 mg).
  • the racemate (62 mg) was separated by CHIRALPAK TM AD-H manufactured by Daicel Chemical Industries, Ltd.
  • (+)-2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -8-(4-methylsulfanylphenyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[1,5-a]pyridine-8-carbonitrile are as follows.
  • the resulting organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain 194 mg of a racemic crude product.
  • the property values of the title optically active compound with a retention time of 9 minutes are as follows.
  • Dess-Martin periodinane (190 mg) was added to a solution of the crude product of ⁇ 2- ⁇ (E)-2-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]vinyl ⁇ -8-(3,4,5-trifluorophenyl)-5,6,7,8-tetrahydro[1,2,4]triazolo[1,5-a]pyridin-8-yl ⁇ methanol obtained in Examples 69 and 70 (111 mg) in methylene chloride (8 mL), and the reaction solution was stirred at room temperature for 10 hours. Ethyl acetate and saturated sodium bicarbonate water were added to the reaction solution, and the organic layer was separated.
  • the property values of the title optically active compound with a retention time of 16 minutes are as follows.
  • the property values of the title optically active compound with a retention time of 20 minutes and positive optical rotation corresponded to the values of the (-)-isomer.
  • BOPC1 (221 mg) was added to a suspension of (Z)-2-fluoro-3-[3-methoxy-4-(4-methyl-1H-imidazol-1-yl)phenyl]acrylic acid (CAS No. 870838-71-4, 240 mg), 1-amino-3-(2,4,6-trifluorophenyl)piperidin-2-one (106 g) and IPEA (0.45 mL) in DMF (5 mL), and the reaction solution was stirred at room temperature for 16 hours. Saturated sodium bicarbonate water and ethyl acetate were added to the reaction mixture and the organic layer was separated. The resulting organic layer was dried over anhydrous magnesium sulfate and then concentrated under reduced pressure.
  • Lithium hydroxide monohydrate (240 mg) was added to a mixed solution of 2-fluoro-5-methoxy-4-(4-methyl-1H-imidazol-1-yl)benzaldehyde (CAS No. 870851-52-8, 1.03 g) and triethyl phosphonoacetate (1.09 g) in THF (4 mL)-ethanol (1 mL), and the reaction solution was stirred at room temperature for five hours. A 2 N sodium hydroxide solution (4 mL) was added to the reaction solution, and the reaction solution was stirred for 17 hours. 2 N aqueous hydrochloric acid (4 mL) was added to the reaction solution, and the reaction solution was stirred at room temperature for 30 minutes.
  • the precipitated solid was collected by filtration and washed with water and ether. The resulting solid was air-dried to obtain 1.03 g of the title compound.
  • the property value of the compound is as follows. ESI-MS; m/z 277 [M + +H].
  • the property values of the title optically active compound with a retention time of 10 minutes are as follows.
  • Triethylamine (4.64 mL), p-toluenesulfonyl chloride (4.66 g) and DMAP (271 mg) were added to a solution of 4-(tert-butyldiphenylsilanyloxy)butan-2-ol (7.3 g; CAS #114079-44-6) in 1,2-dichloroethane (80 mL) at 0°C, and the reaction solution was stirred at 60°C for three hours. The reaction solution was left to cool to room temperature and then concentrated under reduced pressure. Ethyl acetate and brine were added to the residue, and the organic layer was separated. The resulting organic layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure.
  • n-Butyl lithium (4.89 mL; 2.66 M solution in hexane) was added dropwise to a solution of 4-fluorophenylacetic acid (1 g) in THF (30 mL) at -78°C, and the reaction solution was stirred for 20 minutes. The reaction solution was heated to 0°C and stirred for 30 minutes. Then, a solution of 3-(tert-butyldiphenylsilanyloxy)-1-methylpropyl toluene-4-sulfonate (3.2 g) in THF (10 mL) was added dropwise to the reaction solution. The reaction solution was heated to room temperature and stirred at the same temperature for 12 hours.
  • BOPC1 (860 mg) and IPEA (0.552 mL) were added to a solution of 5-(tert-butyldiphenylsilanyloxy-2-(4-fluorophenyl)-3-methylpentanoic acid (980 mg) and tert-butyl carbazate (558 mg) in methylene chloride (15 mL) at 0°C.
  • the reaction solution was stirred at room temperature for 15 hours. Then, ethyl acetate and a saturated ammonium chloride solution were added to the reaction solution, and the organic layer was separated. The resulting organic layer was washed with brine, dried over anhydrous magnesium sulfate and then concentrated under reduced pressure.
  • p-Toluenesulfonyl chloride (321 mg) was added to a solution of tert-butyl N'-[2-(4-fluorophenyl)-5-hydroxy-3-methylpentanoyl]hydrazinecarboxylate (520 mg) in pyridine (6 mL). The reaction solution was stirred at room temperature for 12 hours and then concentrated under reduced pressure. Ethyl acetate and brine were added to the residue, and the organic layer was separated. The resulting organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (elution solvent: ethyl acetate-methanol system) to obtain a racemate of the title compound.
  • the property values of the title compound with a retention time of 25 minutes are as follows. ESI-MS; m/z 444 [M + +H].
  • Triethylamine (0.808 mL) and benzyl chloroformate (0.752 mL) were sequentially added dropwise to a solution of 3,4,5-trifluorophenylacetic acid (1 g) in methylene chloride (15 mL) at 0°C, and the reaction solution was stirred at 0°C for five minutes.
  • DMAP (64.4 mg) was added to the reaction solution which was then stirred at 0°C for 30 minutes.
  • Ethyl acetate and saturated sodium bicarbonate water were added to the reaction solution, and the organic layer was separated. The resulting organic layer was washed with brine, dried over anhydrous magnesium sulfate and then concentrated under reduced pressure.
  • n-Butyl lithium (1.82 mL; 2.66 M solution in hexane) was added dropwise to a solution of diisopropylamine (0.735 mL) in THF (6 mL) at 0°C.
  • the reaction solution was stirred at 0°C for 20 minutes and then cooled to -78°C.
  • Benzyl (3,4,5-trifluorophenyl)acetate (1.13 g) in THF (18 mL) was added dropwise to the reaction solution, and the reaction solution was stirred at -78°C for 15 minutes. Thereafter, 3-(tert-butyldiphenylsiloxy)propanol (CAS No.
  • the reaction solution was stirred at room temperature for 15 hours. Then, ethyl acetate and a saturated ammonium chloride solution were added to the reaction solution, and the organic layer was separated. The resulting organic layer was washed with brine, dried over anhydrous magnesium sulfate and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (elution solvent: heptane-ethyl acetate system) to obtain 603 mg of the title compound.
  • the property value of the compound is as follows. ESI-MS; m/z 683 [M + +Na].
  • Triethylamine (0.209 mL) and methanesulfonyl chloride (58 uL) were added to a solution of tert-butyl N'-[(2S*,3R*)-5-hydroxy-3-methoxymethoxy-2-(3,4,5-trifluorophenyl)pentanoyl]hydrazinecarboxylate (264 mg) in methylene chloride (10 mL) at 0°C.
  • the reaction solution was stirred at 0°C for 30 minutes. Then, ethyl acetate and saturated sodium bicarbonate water were added to the reaction solution, and the organic layer was separated.
  • the residue was purified by silica gel column chromatography (elution solvent: heptane-ethyl acetate system) to obtain a racemate of the title compound.
  • the property values of the title compound with a retention time of 11 minutes are as follows. ESI-MS; m/z 482 [M + +H].
  • a racemate of the title compound (55.1 mg) was obtained from benzyl (2S*,3S*)-5-(tert-butyldiphenylsilanyloxy)-3-hydroxy-2-(3,4,5-trifluorophenyl)pentanoate (1.01 g) by the same method as in Examples 103 and 104.
  • the resulting racemate was separated by CHIRALPAK TM AD-H manufactured by Daicel Chemical Industries, Ltd. (2 cm ⁇ 25 cm; mobile phase: ethanol) to obtain the title optically active compound with a retention time of 6 minutes (11.0 mg, >99% ee) and the title optically active compound with a retention time of 11 minutes (8.6 mg, >99% ee).
  • n-Butyl lithium (7.89 mL; 2.66 M solution in hexane) was added to a solution of 3,4,5-trifluorophenylacetic acid (2 g) in THF (50 mL) at - 78°C.
  • the reaction solution was stirred at -78°C for 20 minutes.
  • the reaction solution was heated to 0°C and further stirred for 30 minutes.
  • Allyl bromide (0.999 mL) was added dropwise to the reaction solution, and the reaction solution was stirred at room temperature for three hours.
  • a 1 N sodium hydroxide solution and diethyl ether were added to the reaction solution, and the aqueous layer was separated.
  • BOPCl (2.57 g) and IPEA (1.65 mL) were added to a solution of 2-(3,4,5-trifluorophenyl)-4-pentenoic acid (1.45 g) and tert-butyl carbazate (1.94 g) in methylene chloride (30 mL) at 0°C.
  • the reaction solution was stirred at room temperature for 15 hours.
  • ethyl acetate and a saturated ammonium chloride solution were added to the reaction solution, and the organic layer was separated.
  • the resulting organic layer was washed with brine, dried over anhydrous magnesium sulfate and then concentrated under reduced pressure.
  • Osmium tetroxide (2.61 mL; 2.5 wt%) was added to a solution of tert-butyl N'-[2-(3,4,5-trifluorophenyl)penten-4-oyl]hydrazinecarboxylate (1.77 g) and N-methylmorpholine N-oxide (1.81 g) in acetone (40 mL) and water (40 mL).
  • the reaction solution was stirred at room temperature for 4 hours. Then, ethyl acetate and a saturated sodium thiosulfate solution were added to the reaction solution, and the organic layer was separated.
  • p-Toluenesulfonyl chloride (605 mg) was added to a solution of tert-butyl N'-[4,5-dihydroxy-2-(3,4,5-trifluorophenyl)pentanoyl]hydrazinecarboxylate (1.09 g) in pyridine (11 mL) at room temperature. The reaction solution was stirred at room temperature for 12 hours and then concentrated under reduced pressure. Ethyl acetate was added to the residue, and the organic layer was washed with brine, dried over anhydrous sodium sulfate and then concentrated under reduced pressure.
  • Lithium chloride (818 mg) was added to a solution of 5-(N'-tert-butoxycarbonylhydrazino)-2-hydroxy-5-oxo-4-(3,4,5-trifluorophenyl)pentyl toluene-4-sulfonate (1.03 g) in DMF (8 mL). The reaction solution was stirred at 80°C for three hours and then left to cool to room temperature. Water and ethyl acetate were added to the reaction solution, and the organic layer was separated. The resulting organic layer was washed with brine, dried over anhydrous magnesium sulfate and then concentrated under reduced pressure.
  • tert-Butyldiphenylchlorosilane 0.89 mL
  • imidazole 233 mg
  • DMAP 41.9 mg
  • tert-butyl N'-[5-chloro-4-hydroxy-2-(3,4,5-trifluorophenyl)pentanoyl]hydrazinecarboxylate 680 mg
  • DMF 5 mL
  • the reaction solution was stirred at 60°C for two hours and then left to cool to room temperature.
  • a saturated ammonium chloride solution and ethyl acetate were added to the reaction solution, and the organic layer was separated. The resulting organic layer was washed with brine, dried over anhydrous magnesium sulfate and then concentrated under reduced pressure.
  • n-Butyl lithium (2.64 M solution in hexane, 3.8 ml) was added dropwise to a solution of diisopropylamine (1.5 ml) in THF (15 ml) at -30°C, and the reaction solution was stirred at the same temperature for 15 minutes.
  • the reaction solution was cooled to -78°C.
  • a solution of cyclopropylacetic acid (CAS No. 5239-82-7, 500 mg) in THF (3 ml) was added dropwise and the reaction solution was further stirred at room temperature for three hours.
  • the reaction solution was cooled to 0°C, and then 1-bromo-3-chloropropane (CAS No. 109-70-6, 0.55 ml) was added dropwise.
  • the reaction solution was stirred at the same temperature for 10 minutes and at room temperature for further one hour. Ice water and diethyl ether were added to the reaction solution, and the aqueous layer was separated. Then, 5 N hydrochloric acid (3 ml) and ethyl acetate were added to the aqueous layer, and the organic layer was separated. The resulting ethyl acetate layer was washed with brine, dried over anhydrous magnesium sulfate and then concentrated under reduced pressure to obtain crude 5-chloro-2-cyclopropyl-valeric acid (550 mg).
  • Trifluoroacetic acid (0.5 ml) was added to a solution of tert-butyl N'-(5-chloro-2-cyclopropylpentanoyl)-hydrazinecarboxylate (208 mg) in methylene chloride (1 ml) under ice-cooling, and then the reaction solution was stirred at room temperature for two hours. A saturated sodium bicarbonate solution and ethyl acetate were added to the reaction solution, and the organic layer was separated. The organic layer was sequentially washed with a saturated sodium bicarbonate solution and brine. The combined aqueous layers were reextracted with ethyl acetate (twice).
  • the racemate was separated by CHIRALPAK TM IB manufactured by Daicel Chemical Industries, Ltd. (2 cm ⁇ 25 cm; mobile phase: 20% ethanol-hexane) to obtain the title optically active compound with a retention time of 28 minutes and negative optical rotation (16.4 mg; 100% ee) and the title optically active compound with a retention time of 49 minutes and positive optical rotation (16.3 mg; 99% ee).
  • the property values of the title optically active compound with a retention time of 28 minutes are as follows. ESI-MS; m/z 376 [M + +H].
  • n-Butyl lithium (2.64 M solution in hexane, 3.8 ml) was added dropwise to a solution of diisopropylamine (1.55 ml) in THF (15 ml) under ice-cooling, and the reaction solution was stirred at the same temperature for 10 minutes.
  • the reaction solution was cooled to -78°C.
  • a solution of methyl cyclohexylacetate (CAS No. 14352-61-5, 500 mg) in THF (3 ml) was added dropwise and the reaction solution was stirred at the same temperature for 30 minutes.
  • 1-chloro-3-iodopropane (CAS No. 6940-76-7, 1.1 ml) was added dropwise to the reaction solution.
  • the reaction solution was stirred at the same temperature for 20 minutes and then gradually heated to room temperature. Water and ethyl acetate were added to the reaction solution, and the organic layer was separated. The organic layer was sequentially washed with 1 N hydrochloric acid, water, a saturated sodium bicarbonate solution and brine, dried over anhydrous magnesium sulfate and then concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (elution solvent: hexane-diethyl ether system) to obtain 1.00 g of the title compound. The property value of the compound is as follows. ESI-MS; m/z 233 [M + +H].
  • the racemate was separated by CHIRALPAK TM IB manufactured by Daicel Chemical Industries, Ltd. (2 cm ⁇ 25 cm; mobile phase: 20% ethanol-hexane) to obtain the title optically active compound with a retention time of 16 minutes and positive optical rotation (11.0 mg; 100% ee) and the title optically active compound with a retention time of 39 minutes and negative optical rotation (10.2 mg; 100% ee).
  • the property values of the title optically active compound with a retention time of 16 minutes are as follows. ESI-MS; m/z 418 [M + +H].
  • a 4 N sodium hydroxide solution (4 ml) and 5-bromo-valeryl chloride (CAS No. 4509-90-4, 1.06 ml) were added to a solution of tert-butyl carbazate (CAS No. 870-46-2, 1 g) in methylene chloride (10 ml) under ice-cooling.
  • the reaction solution was stirred at the same temperature for 40 minutes, and then the organic layer was separated. The organic layer was sequentially washed with water and brine, dried over anhydrous magnesium sulfate and then concentrated under reduced pressure.
  • the resulting residue was purified by silica gel column chromatography (carrier: Chromatorex TM NH; elution solvent: ethyl acetate) to obtain 2.03 g of a carbazide compound.
  • Potassium tert-butoxide (850 mg) was added to a solution of the carbazide compound (2.03 g) in THF (30 ml) under ice-cooling. The reaction solution was stirred at the same temperature for 30 minutes and at room temperature for further 1.5 hours. Ethyl acetate and water were added to the reaction solution, and the organic layer was separated. The organic layer was sequentially washed with water and brine, dried over anhydrous magnesium sulfate and then concentrated under reduced pressure.
  • tert-Butyl (2-oxopiperidin-1-yl)carbamate (129 mg) was dissolved in a solution of 4 N hydrogen chloride in dioxane (2 ml), and the reaction solution was stirred at room temperature for one hour. The reaction solution was concentrated under reduced pressure to obtain 92 mg of the title compound.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
EP08828870.9A 2007-08-31 2008-08-28 Composé polycyclique Active EP2181992B8 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12191398.2A EP2559693B1 (fr) 2007-08-31 2008-08-28 Composé polycyclique

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007225045 2007-08-31
JP2008020009 2008-01-31
JP2008123057 2008-05-09
PCT/JP2008/065365 WO2009028588A1 (fr) 2007-08-31 2008-08-28 Composé polycyclique

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP12191398.2A Division EP2559693B1 (fr) 2007-08-31 2008-08-28 Composé polycyclique
EP12191398.2 Division-Into 2012-11-06

Publications (4)

Publication Number Publication Date
EP2181992A1 true EP2181992A1 (fr) 2010-05-05
EP2181992A4 EP2181992A4 (fr) 2011-09-14
EP2181992B1 EP2181992B1 (fr) 2013-05-01
EP2181992B8 EP2181992B8 (fr) 2013-06-26

Family

ID=40387302

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12191398.2A Active EP2559693B1 (fr) 2007-08-31 2008-08-28 Composé polycyclique
EP08828870.9A Active EP2181992B8 (fr) 2007-08-31 2008-08-28 Composé polycyclique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP12191398.2A Active EP2559693B1 (fr) 2007-08-31 2008-08-28 Composé polycyclique

Country Status (19)

Country Link
US (1) US9453000B2 (fr)
EP (2) EP2559693B1 (fr)
JP (1) JP5433418B2 (fr)
KR (1) KR20100055456A (fr)
CN (1) CN101815713B (fr)
AR (1) AR068121A1 (fr)
AU (1) AU2008292390B2 (fr)
BR (1) BRPI0815773A2 (fr)
CA (1) CA2694401C (fr)
CL (1) CL2008002542A1 (fr)
ES (1) ES2529648T3 (fr)
IL (1) IL203778A (fr)
MX (1) MX2010002098A (fr)
MY (1) MY150507A (fr)
NZ (1) NZ583515A (fr)
PE (1) PE20090674A1 (fr)
TW (1) TW200916469A (fr)
WO (1) WO2009028588A1 (fr)
ZA (1) ZA201000474B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098490A1 (fr) * 2009-02-26 2010-09-02 Eisai R&D Management Co., Ltd. Sel de dérivé de tétrahydrotriazolopyridine et ses cristaux
US8754100B2 (en) 2009-02-26 2014-06-17 Eisai R&D Management Co., Ltd. Nitrogen-containing fused heterocyclic compounds and their use as beta amyloid production inhibitors
US9453000B2 (en) 2007-08-31 2016-09-27 Eisai R&D Management Co., Ltd. Polycyclic compound

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10164139A1 (de) 2001-12-27 2003-07-10 Bayer Ag 2-Heteroarylcarbonsäureamide
US7935815B2 (en) * 2007-08-31 2011-05-03 Eisai R&D Management Co., Ltd. Imidazoyl pyridine compounds and salts thereof
US20090124651A1 (en) * 2007-08-31 2009-05-14 H. Lundbeck A/S Catecholamine derivatives and prodrugs thereof
RU2011111534A (ru) * 2008-08-27 2012-10-10 ЭЙСАЙ Ар энд Ди МЕНЕДЖМЕНТ КО., ЛТД. (JP) Способ получения определенных цинниамидных соединений
PT2889033T (pt) 2008-11-19 2018-06-18 Forum Pharmaceuticals Inc Tratamento de sintomas negativos da esquizofrenia com (r)-7-cloro-n-(-quinuclidin-3-il)benzo[b]tiofeno-2-carboxamida e sais farmacêuticos resultantes da mesma
TW201030002A (en) 2009-01-16 2010-08-16 Bristol Myers Squibb Co Bicyclic compounds for the reduction of beta-amyloid production
JP2012051805A (ja) * 2009-02-26 2012-03-15 Eisai R & D Management Co Ltd テトラヒドロトリアゾロピリジン誘導体の製造方法
JP2012121809A (ja) * 2009-02-26 2012-06-28 Eisai R & D Management Co Ltd 多環式化合物の製造法およびその中間体
JP2012526818A (ja) * 2009-05-11 2012-11-01 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ユビキチン化タンパク質レベルの減少方法
RU2011150248A (ru) * 2009-05-11 2013-06-20 Энвиво Фармасьютикалз, Инк. Лечение когнитивных расстройств с определенными рецепторами альфа-7 никотиновой кислоты в комбинации с ингибиторами ацетилхолинэстеразы
WO2011012319A1 (fr) * 2009-07-31 2011-02-03 Sandoz Ag Procede de preparation de ƒö-amino-alcaneamides et ω-amino-alcanethioamides
CA2784769A1 (fr) 2010-01-15 2011-07-21 Janssen Pharmaceuticals, Inc. Nouveaux derives de triazole substitues comme modulateurs de gamma secretase
EP2571874B1 (fr) 2010-05-17 2016-03-30 Forum Pharmaceuticals Inc. Forme cristalline de monohydrate d'hydrochlorure de (r)-7-chloro-n-(quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide
EP2691393B1 (fr) 2011-03-31 2016-09-14 Pfizer Inc Nouvelles pyridones bicycliques
AU2013259871A1 (en) 2012-05-08 2014-11-20 Forum Pharmaceuticals Inc. Methods of maintaining, treating or improving cognitive function
JP6106745B2 (ja) 2012-05-16 2017-04-05 ヤンセン ファーマシューティカルズ,インコーポレーテッド (特に)アルツハイマー病の治療に有用な置換3,4−ジヒドロ−2H−ピリド[1,2−a]ピラジン−1,6−ジオン誘導体
UA110688C2 (uk) 2012-09-21 2016-01-25 Пфайзер Інк. Біциклічні піридинони
AU2013366668B2 (en) 2012-12-20 2017-07-20 Janssen Pharmaceutica Nv Novel tricyclic 3,4-dihydro-2H-pyrido[1,2-alpha]pyrazine -1,6-dione derivatives as gamma secretase modulators
WO2014111457A1 (fr) 2013-01-17 2014-07-24 Janssen Pharmaceutica Nv Dérivés substitués de pyrido-pipérazinone d'un nouveau type en tant que modulateurs de la gamma-sécrétase
US10372396B2 (en) * 2013-02-21 2019-08-06 Lenovo ( Singapore) Pte. Ltd. Discovery and connection to wireless displays
US10562897B2 (en) 2014-01-16 2020-02-18 Janssen Pharmaceutica Nv Substituted 3,4-dihydro-2H-pyrido[1,2-a]pyrazine-1,6-diones as gamma secretase modulators
EP3253755B1 (fr) 2015-02-03 2020-08-26 Pfizer Inc Nouveaux pyridopyrazinediones cyclopropabenzofuranyl
EP4378463A2 (fr) * 2017-06-02 2024-06-05 Xeris Pharmaceuticals, Inc. Composition des petites molecules resistante a la precipitation
MX2020008082A (es) * 2018-02-05 2020-09-24 Univ Strasbourg Compuestos y composiciones para el tratamiento del dolor.
JP2022519779A (ja) * 2019-02-07 2022-03-24 アルサテック,インコーポレイテッド エモキシピンの多価誘導体

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1101156A (en) 1965-09-22 1968-01-31 Hickson & Welch Ltd Triazole derivatives and their use as optical whitening agents
US3989816A (en) 1975-06-19 1976-11-02 Nelson Research & Development Company Vehicle composition containing 1-substituted azacycloheptan-2-ones
FR2314731A1 (fr) 1975-06-19 1977-01-14 Nelson Res & Dev Azacycloalcan-2-ones 1-substituees et compositions pharmaceutiques contenant ces composes a titre d'excipients
US4508718A (en) 1984-01-16 1985-04-02 Warner-Lambert Company Cardiotonic and antihypertensive oxadiazinone compounds
DE3689506D1 (de) 1985-10-09 1994-02-17 Shell Int Research Neue Acrylsäureamide.
US4783463A (en) 1985-10-23 1988-11-08 Rorer Pharmaceutical Corporation Pyridyl-pyridazinone and pyridyl-pyrazolinone compounds and their use in the treatment of congestive heart failure
DE3541716A1 (de) 1985-11-26 1987-05-27 Celamerck Gmbh & Co Kg Neue acrylsaeureamide
FI91754C (fi) 1986-12-02 1994-08-10 Tanabe Seiyaku Co Analogiamenetelmä lääkeaineena käyttökelpoisen imidatsolijohdannaisen valmistamiseksi
FI902321A0 (fi) 1989-05-19 1990-05-09 Eisai Co Ltd Butensyraderivat.
JPH03206042A (ja) 1990-01-06 1991-09-09 Takeda Chem Ind Ltd 降圧剤
WO1991012237A1 (fr) 1990-02-08 1991-08-22 Eisai Co., Ltd. Derive de sulfonamide de benzene
AU680870B2 (en) 1993-04-28 1997-08-14 Astellas Pharma Inc. New heterocyclic compounds
GB9402807D0 (en) 1994-02-14 1994-04-06 Xenova Ltd Pharmaceutical compounds
KR970706242A (ko) 1994-10-04 1997-11-03 후지야마 아키라 우레아 유도체 및 ACAT-억제제로서 그의 용도(Urea derivatives and their use as ACAT-inhibitors)
JPH08283219A (ja) 1995-04-07 1996-10-29 Eisai Co Ltd アラルキルアミノアルキルアミド誘導体
US5804577A (en) 1995-09-12 1998-09-08 Hoffmann-La Roche Inc. Cephalosporin derivatives
AU713247B2 (en) 1995-10-19 1999-11-25 Merck & Co., Inc. Fibrinogen receptor antagonists
WO1997043287A1 (fr) 1996-05-10 1997-11-20 Icos Corporation Derives de carboline
WO1998003166A1 (fr) 1996-07-22 1998-01-29 Monsanto Company Inhibiteurs de metalloproteases a base de sulfonamide de thiol
US5672612A (en) 1996-09-09 1997-09-30 Pentech Pharmaceuticals, Inc. Amorphous paroxetine composition
JP2001508767A (ja) 1996-12-02 2001-07-03 藤沢薬品工業株式会社 5―ht拮抗作用を有するインドール―ウレア誘導体
WO1998043970A1 (fr) 1997-03-31 1998-10-08 Takeda Chemical Industries, Ltd. Composes de type azole, leur production et leur utilisation
JP3108997B2 (ja) 1997-03-31 2000-11-13 武田薬品工業株式会社 アゾール化合物、その製造法および用途
HUP0001434A3 (en) 1997-04-16 2001-01-29 Abbott Lab 5,7-disubstituted 4-aminopyrido[2,3-d]pyrimidine compounds, pharmaceutical compouads thereof and process for their preparation
TW379224B (en) 1997-12-02 2000-01-11 Fujisawa Pharmaceutical Co Urea derivatives
JP2001527083A (ja) 1997-12-31 2001-12-25 ザ・ユニバーシティ・オブ・カンザス 第二級および第三級アミン含有薬剤の水溶性プロドラッグおよびその製造方法
GB9816984D0 (en) 1998-08-05 1998-09-30 Smithkline Beecham Plc Novel compounds
US6048678A (en) * 1998-12-28 2000-04-11 Eastman Kodak Company Protective overcoat coating compositions
US6235728B1 (en) 1999-02-19 2001-05-22 Bristol-Myers Squibb Company Water-soluble prodrugs of azole compounds
EP1159263A1 (fr) 1999-02-26 2001-12-05 Merck & Co., Inc. Nouveaux composes de sulfonamide et utilisations correspondantes
WO2000051981A1 (fr) 1999-03-04 2000-09-08 Nortran Pharmaceuticals Inc. Composes d'aminocycloakyl-cinnamide destines a l'arythmie et utiles en tant qu'analgesiques et anesthesiants
US20040087798A1 (en) 2000-03-14 2004-05-06 Akira Yamada Novel amide compounds
US20010051642A1 (en) 2000-04-17 2001-12-13 Kyunghye Ahn Method for treating Alzheimer's disease
AU2001254555A1 (en) 2000-04-24 2001-11-07 Merck Frosst Canada & Co Method of treatment using phenyl and biaryl derivatives as prostaglandin E inhibitors and compounds useful therefore
US6710058B2 (en) 2000-11-06 2004-03-23 Bristol-Myers Squibb Pharma Company Monocyclic or bicyclic carbocycles and heterocycles as factor Xa inhibitors
CN1257894C (zh) 2000-12-04 2006-05-31 弗·哈夫曼-拉罗切有限公司 作为谷氨酸受体拮抗剂的苯基乙烯基或苯基乙炔基衍生物
GB0108770D0 (en) 2001-04-06 2001-05-30 Eisai London Res Lab Ltd Inhibitors
JP2005503400A (ja) 2001-09-13 2005-02-03 ベーリンガー インゲルハイム ファーマシューティカルズ インコーポレイテッド サイトカイン媒介病の治療方法
EP1429763B1 (fr) 2001-09-14 2007-05-30 Novo Nordisk A/S NOUVEAUX LIGANDS POUR LES SITES HisB10 Zn2+ D'HEXAMERES D'INSULINE EN R
JPWO2003043988A1 (ja) 2001-11-22 2005-03-10 小野薬品工業株式会社 ピペリジン−2−オン誘導体化合物およびその化合物を有効成分として含有する薬剤
AU2002364549B2 (en) 2001-12-10 2007-11-22 Amgen, Inc Vanilloid receptor ligands and their use in treatments
WO2003053912A1 (fr) 2001-12-20 2003-07-03 Bristol-Myers Squibb Company Derives d'$g(a)-(n-sulphonamido)acetamide en tant qu'inhibiteurs de $g(b)-amyloide
JP2003206280A (ja) 2001-12-28 2003-07-22 Takeda Chem Ind Ltd ビアリール化合物およびその用途
EP1509505A2 (fr) 2002-01-23 2005-03-02 Arena Pharmaceuticals, Inc. Modulateurs a petites molecules du recepteur de serotonine 5-ht2a utiles pour la prophylaxie et le traitement de troubles associes
US20050049267A1 (en) 2002-03-01 2005-03-03 Pintex Pharmaceuticals, Inc. Pin1-modulating compounds and methods of use thereof
GB0207436D0 (en) 2002-03-28 2002-05-08 Glaxo Group Ltd Novel compounds
TW200307667A (en) 2002-05-06 2003-12-16 Bristol Myers Squibb Co Sulfonylaminovalerolactams and derivatives thereof as factor Xa inhibitors
DE60335635D1 (de) 2002-05-22 2011-02-17 Amgen Inc Aminopyrimidin-derivate zur verwendung als vanilloid-rezeptor-liganden zur behandlung von schmerzen
ES2473581T3 (es) 2002-05-31 2014-07-07 Proteotech Inc. Compuestos, composiciones y métodos para el tratamiento de amiloidosis y sinucleinopat�as tales como la enfermedad de Alzheimer, la diabetes de tipo 2 y la enfermedad de Parkinson
WO2004002478A1 (fr) 2002-06-27 2004-01-08 Elan Pharmaceuticals, Inc. Methode de traitement de la maladie d'alzheimer utilisant des composes d'hydroxyethylene contenant un isostere a liaison amide heterocyclique
PL373329A1 (en) 2002-07-12 2005-08-22 Sanofi-Aventis Deutschland Gmbh Heterocyclically substituted benzoylureas, method for their production and their use as medicaments
US6900354B2 (en) 2002-07-15 2005-05-31 Hoffman-La Roche Inc. 3-phenyl-propionamido, 3-phenyl-acrylamido and 3-phenyl-propynamido derivatives
JP2006518738A (ja) * 2003-02-12 2006-08-17 トランス テック ファーマ,インコーポレイテッド 治療薬としての置換アゾール誘導体
JP2006522142A (ja) 2003-04-01 2006-09-28 プラス ケミカルズ ベスローテン フェンノートシャップ 非晶質シンバスタチン・カルシウムとその製造方法
CN1787822A (zh) * 2003-05-14 2006-06-14 托里派因斯疗法公司 化合物及其在调节淀粉样蛋白β中的用途
EP1628666B1 (fr) 2003-05-14 2015-09-23 NeuroGenetic Pharmaceuticals, Inc. Composes et leurs utilisations pour la modulation de l'amyloide-beta
AU2004268621C1 (en) 2003-08-29 2011-08-18 Exelixis, Inc. c-Kit modulators and methods of use
JP4698604B2 (ja) 2003-12-22 2011-06-08 ファイザー・インク バソプレシン・アンタゴニストとしてのトリアゾール誘導体
JP4898458B2 (ja) * 2004-02-12 2012-03-14 トランス テック ファーマ,インコーポレイテッド 置換アゾール誘導体、組成物及び使用方法
WO2005087768A1 (fr) 2004-03-09 2005-09-22 Merck & Co., Inc. Inhibiteurs de l'intégrase du vih
WO2005115990A1 (fr) 2004-05-26 2005-12-08 Eisai R & D Management Co., Ltd. Composé de cinnamide
US20080261952A1 (en) 2004-08-16 2008-10-23 Jason Bloxham Aryl Urea Derivatives for Treating Obesity
CN100577657C (zh) 2004-10-26 2010-01-06 卫材R&D管理有限公司 肉桂酰胺化合物的无定形物
US20060241038A1 (en) 2005-04-20 2006-10-26 Eisai Co., Ltd. Therapeutic agent for Abeta related disorders
WO2007034282A2 (fr) 2005-09-19 2007-03-29 Pfizer Products Inc. Composes de biphenylimidazole utilises comme antagonistes du recepteur du c3a
US20090270623A1 (en) 2005-11-18 2009-10-29 Naoyuki Shimomura Process for production of cinnamide derivative
WO2007058304A1 (fr) 2005-11-18 2007-05-24 Eisai R & D Management Co., Ltd. Sels de composé cynamide ou solvates de ces derniers
CA2629745A1 (fr) 2005-11-24 2007-05-31 Eisai R & D Management Co., Ltd. Composes cinnamide de type morpholine
TWI370130B (en) 2005-11-24 2012-08-11 Eisai R&D Man Co Ltd Two cyclic cinnamide compound
US20070117839A1 (en) 2005-11-24 2007-05-24 Eisai R&D Management Co., Ltd. Two cyclic cinnamide compound
TWI378091B (en) 2006-03-09 2012-12-01 Eisai R&D Man Co Ltd Multi-cyclic cinnamide derivatives
EA016464B1 (ru) 2006-03-09 2012-05-30 Эйсай Ар Энд Ди Менеджмент Ко., Лтд. Полициклические производные арилимидазола
AR062095A1 (es) 2006-07-28 2008-10-15 Eisai R&D Man Co Ltd Profarmaco de compuesto cinamida
WO2008097538A1 (fr) 2007-02-08 2008-08-14 Merck & Co., Inc. Agents thérapeutiques
TW200848054A (en) 2007-02-28 2008-12-16 Eisai R&D Man Co Ltd Two cyclic oxomorpholine derivatives
WO2008137102A2 (fr) 2007-05-04 2008-11-13 Torreypines Therapeutics, Inc. Procédés de modulation de la bêta-amyloïde et composés utiles pour cette modulation
RU2009144998A (ru) 2007-05-07 2011-06-20 Шеринг Корпорейшн (US) Модуляторы гамма-секретазы
CN101675045B (zh) 2007-05-11 2012-11-28 弗·哈夫曼-拉罗切有限公司 作为β-淀粉样蛋白调节剂的杂芳基苯胺
US8242150B2 (en) 2007-06-13 2012-08-14 Merck Sharp & Dohme Corp. Triazole derivatives for treating alzheimer'S disease and related conditions
EP2185522A1 (fr) 2007-08-06 2010-05-19 Schering Corporation Modulateurs de la gamma-sécrétase
US7935815B2 (en) 2007-08-31 2011-05-03 Eisai R&D Management Co., Ltd. Imidazoyl pyridine compounds and salts thereof
KR20100055456A (ko) 2007-08-31 2010-05-26 에자이 알앤드디 매니지먼트 가부시키가이샤 다환식 화합물
JP2011506335A (ja) 2007-12-06 2011-03-03 シェーリング コーポレイション γ−セクレターゼ調節剤
US20110086850A1 (en) * 2008-04-11 2011-04-14 Board Of Regents, The University Of Texas System Radiosensitization of tumors with indazolpyrrolotriazines for radiotherapy
RU2011111534A (ru) 2008-08-27 2012-10-10 ЭЙСАЙ Ар энд Ди МЕНЕДЖМЕНТ КО., ЛТД. (JP) Способ получения определенных цинниамидных соединений
JP2012051806A (ja) 2009-02-26 2012-03-15 Eisai R & D Management Co Ltd イミダゾリルピラジン誘導体
MA33132B1 (fr) 2009-02-26 2012-03-01 Glaxo Group Ltd Derives pyrazole utilises comme antagonistes du recepteur ccr4
EP2401277A1 (fr) 2009-02-26 2012-01-04 Eisai R&D Management Co., Ltd. Sel de dérivé de tétrahydrotriazolopyridine et ses cristaux
CN102414177B (zh) 2009-02-26 2014-07-02 贝林格尔.英格海姆国际有限公司 作为缓激肽b1拮抗剂的化合物
WO2010098466A1 (fr) 2009-02-27 2010-09-02 Hoya株式会社 Moule et procédé pour produire une lentille en matière plastique
KR20120050450A (ko) 2009-07-15 2012-05-18 얀센 파마슈티칼즈, 인코포레이티드 감마 세크레타제 조절제로서의 치환된 트리아졸 및 이미다졸 유도체
US8381014B2 (en) * 2010-05-06 2013-02-19 International Business Machines Corporation Node controller first failure error management for a distributed system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
No further relevant documents disclosed *
See also references of WO2009028588A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9453000B2 (en) 2007-08-31 2016-09-27 Eisai R&D Management Co., Ltd. Polycyclic compound
WO2010098490A1 (fr) * 2009-02-26 2010-09-02 Eisai R&D Management Co., Ltd. Sel de dérivé de tétrahydrotriazolopyridine et ses cristaux
US8703954B2 (en) 2009-02-26 2014-04-22 Eisai R&D Management Co., Ltd. Salt of tetrahydrotriazolopyridine derivative and crystal thereof
US8754100B2 (en) 2009-02-26 2014-06-17 Eisai R&D Management Co., Ltd. Nitrogen-containing fused heterocyclic compounds and their use as beta amyloid production inhibitors

Also Published As

Publication number Publication date
US9453000B2 (en) 2016-09-27
ZA201000474B (en) 2011-05-25
WO2009028588A1 (fr) 2009-03-05
AU2008292390B2 (en) 2013-04-04
MX2010002098A (es) 2010-03-30
BRPI0815773A2 (pt) 2019-09-24
EP2181992A4 (fr) 2011-09-14
IL203778A (en) 2013-11-28
CA2694401A1 (fr) 2009-03-05
CL2008002542A1 (es) 2009-01-02
JPWO2009028588A1 (ja) 2010-12-02
AR068121A1 (es) 2009-11-04
AU2008292390A1 (en) 2009-03-05
US20110009619A1 (en) 2011-01-13
EP2559693B1 (fr) 2014-11-26
CA2694401C (fr) 2012-12-04
EP2181992B1 (fr) 2013-05-01
MY150507A (en) 2014-01-30
JP5433418B2 (ja) 2014-03-05
PE20090674A1 (es) 2009-06-19
CN101815713B (zh) 2013-09-11
EP2181992B8 (fr) 2013-06-26
NZ583515A (en) 2011-05-27
EP2559693A1 (fr) 2013-02-20
CN101815713A (zh) 2010-08-25
ES2529648T3 (es) 2015-02-24
TW200916469A (en) 2009-04-16
KR20100055456A (ko) 2010-05-26

Similar Documents

Publication Publication Date Title
EP2181992B1 (fr) Composé polycyclique
US7935815B2 (en) Imidazoyl pyridine compounds and salts thereof
EP1992618B1 (fr) Dérivé polycyclique de cinnamide
ES2377740T3 (es) Derivados de cinamida policíclico
EP2401276B1 (fr) Composés héterocycliques fusionnés contenant de l'azote et leur utilisation en tant qu'inhibiteurs de la production de beta amyloide
WO2010098488A1 (fr) Composé arylimidazole et leur utilisation en tant qu'inhibiteurs de production de la protéine amyloïde bêta
EP1953158A1 (fr) Compose cinnamide bicyclique
EP1757591A1 (fr) Composé de cinnamide
WO2010098495A1 (fr) Dérivés d'imidazolylpyrazine
CA2707712A1 (fr) Modulateurs de la gamma secretase
EP2019094A1 (fr) Dérivé de cinnamide de type hétérocyclique
CA2708300A1 (fr) Modulateurs de gamma secretase
EP2233474A1 (fr) Dérivé d'aminodihydrothiazine condensée
WO2012019430A1 (fr) Dérivé de phtalazinone, son procédé de préparation et utilisation pharmaceutique
CA2700964A1 (fr) Modulateurs de gamma secretase

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAGIWARA, HIROAKI

Inventor name: HASEGAWA, DAIJU

Inventor name: UEMURA, TOSHIYUKI

Inventor name: TAKAISHI, MAMORU

Inventor name: ITO, KOICHI

Inventor name: DOKO, TAKASHI

Inventor name: MIYAGAWA, TAKEHIKO

Inventor name: KIMURA, TEIJI

Inventor name: SHINMYO, DAISUKE

Inventor name: KITAZAWA, NORITAKA

Inventor name: SASAKI, TAKEO

Inventor name: YOSHIDA, YU

Inventor name: KAWANO, KOKI

Inventor name: SATO, NOBUAKI

Inventor name: KANEKO, TOSHIHIKO

A4 Supplementary search report drawn up and despatched

Effective date: 20110811

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 31/5517 20060101ALI20110805BHEP

Ipc: C07D 498/04 20060101ALI20110805BHEP

Ipc: C07D 487/04 20060101ALI20110805BHEP

Ipc: A61K 31/4545 20060101ALI20110805BHEP

Ipc: C07D 471/04 20060101ALI20110805BHEP

Ipc: A61K 31/437 20060101ALI20110805BHEP

Ipc: A61K 31/522 20060101ALI20110805BHEP

Ipc: A61P 25/28 20060101ALI20110805BHEP

Ipc: A61K 31/4439 20060101ALI20110805BHEP

Ipc: A61P 43/00 20060101ALI20110805BHEP

Ipc: A61K 31/4196 20060101ALI20110805BHEP

Ipc: C07D 403/10 20060101AFI20110805BHEP

Ipc: A61K 31/444 20060101ALI20110805BHEP

Ipc: A61K 31/5383 20060101ALI20110805BHEP

Ipc: A61P 25/00 20060101ALI20110805BHEP

Ipc: A61K 31/4709 20060101ALI20110805BHEP

17Q First examination report despatched

Effective date: 20120426

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 609889

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IS IT LI LT LV NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008024309

Country of ref document: DE

Effective date: 20130627

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 609889

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130501

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130501

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130902

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130812

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130802

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130801

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130901

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130801

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008024309

Country of ref document: DE

Effective date: 20140204

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080828

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150819

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170822

Year of fee payment: 10

Ref country code: FR

Payment date: 20170822

Year of fee payment: 10

Ref country code: GB

Payment date: 20170822

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008024309

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180828