EP2107184B1 - Verfahren zum Betrieb einer Anordnung zum Mischen von Flüssigbeton - Google Patents

Verfahren zum Betrieb einer Anordnung zum Mischen von Flüssigbeton Download PDF

Info

Publication number
EP2107184B1
EP2107184B1 EP09155588.8A EP09155588A EP2107184B1 EP 2107184 B1 EP2107184 B1 EP 2107184B1 EP 09155588 A EP09155588 A EP 09155588A EP 2107184 B1 EP2107184 B1 EP 2107184B1
Authority
EP
European Patent Office
Prior art keywords
concrete
mixing drum
concrete pump
pump
fed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09155588.8A
Other languages
English (en)
French (fr)
Other versions
EP2107184A1 (de
Inventor
Wilhelm Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Putzmeister Engineering GmbH
Original Assignee
Putzmeister Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Putzmeister Engineering GmbH filed Critical Putzmeister Engineering GmbH
Publication of EP2107184A1 publication Critical patent/EP2107184A1/de
Application granted granted Critical
Publication of EP2107184B1 publication Critical patent/EP2107184B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/42Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
    • B28C5/4203Details; Accessories
    • B28C5/4234Charge or discharge systems therefor
    • B28C5/4244Discharging; Concrete conveyor means, chutes or spouts therefor
    • B28C5/4258Discharging; Concrete conveyor means, chutes or spouts therefor using pumps or transporting screws
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0436Devices for both conveying and distributing with distribution hose on a mobile support, e.g. truck

Definitions

  • the invention relates to a method for operating an arrangement for mixing and pumping of liquid concrete, in which liquid concrete mixed in a mixing drum and fed via a buffer tank of a motor-driven concrete pump and is supported by this via a feed line to a concreting, wherein the drive of the concrete pump over a remote control unit on and off and the level in the buffer tank is automatically monitored, the speed of the mixing drum is varied according to the capacity of the concrete pump, the amount of liquid concrete in the buffer tank in accordance with the level in the buffer tank and depending on the drive state of the concrete pump is controlled, wherein the level of the liquid concrete is monitored in the buffer tank at an upper limit position, and wherein upon reaching the upper limit position, an upper limit signal is emitted.
  • liquid concrete is mixed in the mixing drum and fed through the buffer memory of a hydraulically driven concrete pump and conveyed by this over the delivery line to a concreting.
  • a hydraulically driven concrete pump During pumping, enough concrete must always be added to the buffer tank to prevent air from being sucked in. Conversely, care must be taken to ensure that the mixer drum does not introduce too much concrete into the buffer tank so that it does not overflow.
  • the overflow has hitherto been prevented by the fact that a level probe was provided in the buffer tank, which turns the mixing drum on and off in the manner of a black and white circuit. Otherwise, the mixing drum and the concrete pump are controlled separately by the concrete pump driver.
  • the present invention seeks to improve the known method of the type mentioned in that the material supply and removal is better coordinated and that jerky movements when switching on and off the mixing drum are reduced and damped.
  • the solution according to the invention is based primarily on the fact that the drive of the concrete pump is switched on and off via a remote control that the level in the buffer memory is automatically monitored and that the amount of liquid concrete in the buffer tank in accordance with the level in the buffer tank and depending on Drive state of the concrete pump is controlled.
  • an additional information about the delivery rate of the pump to the drive of the mixing drum must be passed on.
  • the delivery rate of the concrete pump is adjusted by a setpoint input to a remote control unit, wherein the amount of liquid concrete added per unit time from the mixing drum at Absence of the upper limit signal higher and in the presence of which is set lower than the capacity of the concrete pump.
  • the level is monitored at a lower limit position, giving a lower limit signal.
  • An important application case is that the quantity addition of liquid concrete is increased at the occurrence of the lower limit signal to an adjustable maximum value, so that sufficient liquid concrete is available for removal.
  • the drive of the concrete pump can be interrupted briefly when the lower limit signal is delivered.
  • the quantity addition of liquid concrete can be increased or reduced by changing the speed of the mixing drum. In particular, the addition of liquid concrete can be interrupted by switching off the mixing drum drive.
  • the delivery rate of the concrete pump is adjusted by a setpoint input on the remote control unit, while the speed of the mixing drum according to specification the set flow rate is varied.
  • the speed can continuously between 0 and about 13 revolutions per Minute be varied.
  • a further improvement in this regard is achieved by reducing the quantity addition of liquid concrete at a predetermined delivery driven concrete pump and delivery of an upper limit signal by a predetermined amount and increases upon delivery of a lower limit signal by a predetermined amount until the respective threshold signal disappears ,
  • the truck mixer pump shown in the drawing consists essentially of a four-axle elongated chassis 10, a rotatably mounted in the central region of the chassis about the axis 12, with its feed and outlet opening 14 obliquely rearwardly facing up mixing drum 16, one with liquid concrete from the mixing drum
  • the concrete pump 20 is formed in the embodiment shown as a rotor hose pump (see. DE 42 04 330 B4 ), to the pressure outlet of which a delivery line 32 is connected, which consists of a plurality of pipe branches connected to the boom arms 28, 28 ', 28 "of the transfer boom 30, which are articulated to each other via rotary joints and which open into a flexible end hose 34
  • Concrete pump 30 is driven by a hydraulic motor, not shown, with continuously variable speed, so that the flow rate can be controlled continuously Fig. 1b can be seen, the buffer tank 18 is placed laterally next to the eccentrically mounted on the chassis 10 concrete pump 20.
  • the concrete boom 30 is arranged laterally offset on the chassis 10 in the folded and resting on the chassis condition.
  • the mixing drum 16 can be charged with liquid concrete from above via a feed funnel 36 opening into the feed and outlet opening 14.
  • a Auslasshose 38 At the bottom of the feed and outlet opening 14 is a Auslasshose 38, which opens with its lower free end in an obliquely downwardly pointing discharge chute 40.
  • the outlet chute 40 opens with its outlet end into the buffer container 18th
  • the mixing drum 16 is drivable by means of a rotary drive 42 with variable speed.
  • truck mixer pump shown has a microprocessor-controlled control device 44 which in turn is connected to the rotary drive 42 of the mixing drum and the drive mechanism of the concrete pump 20 is and with an operable by the concrete pump driver remote control device 46 is actuated.
  • the concrete supply via the mixing drum 16 in the buffer tank 18 and the concrete removal via the concrete pump 20 from the buffer tank 18 are coupled together. This means that always sufficient liquid concrete must be refilled during the pumping process, so on the one hand no air is sucked in and on the other hand, the buffer tank does not overflow. It should be noted that the contents of the buffer tank 18 is pumped at maximum capacity of the concrete pump 20 in just a few seconds, so that constantly liquid concrete must be refilled via the mixing drum 16 in sufficient quantity.
  • a special feature of the invention is that the concrete supply and the concrete removal are coordinated so that a hard braking and restarting the mixing drum 16 is largely avoided. Wear and vibration due to dynamic stress can be effectively reduced.
  • an upper level sensor 48 and a lower level sensor 50 are arranged in the buffer tank 18, which are responsive to the liquid level and which are coupled to the microprocessor-controlled controller 44 and depending on the level emit an upper and a lower limit signal.
  • the controller 44 includes software routines 60 responsive to the presence of the upper and lower limit signals for this purpose.
  • the upper limit signal 62 ensures that when filling the buffer tank 18 overflow is avoided, while the lower limit signal ensures that no air is sucked in via the concrete pump 20.
  • the control device 44 additionally has a software routine 64 that responds to the operating state of the concrete pump 20 or its delivery capacity, further parameters can be used be taken into account in the control of the liquid concrete supply via the control device.
  • the concrete supply is controlled via an adjustable at the rotary drive 42 of the mixing drum discharge speed, while the capacity of the concrete pump by the concrete pump driver can be adjusted continuously via the setpoint generator 45 of the remote control device 46.
  • a corresponding emptying speed can be calculated in a software routine 66 on the basis of the delivery rate of the concrete pump set via the remote control device 46.
  • the buffer tank 18 there is an upper level sensor 48.
  • a first strategy a little more concrete is always supplied from the mixing drum to the buffer tank 18 than it is conveyed away by the concrete pump 20 to ensure that there is sufficient concrete and no air is drawn. Once the level reaches the upper level probe 48, depending on the operating state of the concrete pump, the concrete supply must be reduced or switched off.
  • a second strategy is that a lower level probe 50 is additionally arranged in the buffer container 18. In this case, it can be determined metrologically whether the level is too low. In this case, starting from a starting state, the rotational speed of the mixing drum 16 can be increased until the supply quantity corresponds exactly to the discharge quantity.
  • the pumping process is running, the following applies: In the case of a signal 62 of the upper probe 48 is to reduce the mixer speed, at a signal of the lower probe 50 is to increase the mixer speed.
  • a third strategy provides that the loading condition of the mixing drum 18 and / or the delivery rate of the pump 20 are continuously measured in order to achieve better matching.
  • FIG. 3 is a typical flowchart of the operating software 44 'arranged in the control device.
  • liquid concrete is supplied to the buffer tank 18 by emptying the mixing drum 16.
  • the emptying speed D of the mixing drum 16 is selected.
  • a lower level probe 50 can with the same flowchart according to Fig. 2 be worked, the lower level probe 50 then acts correctively on the calculation of the emptying speed D over .
  • a speed curve D (t) of the mixing drum 16 shown in conventional control is a speed curve D (t) of the mixing drum 16 shown in conventional control.
  • the solid line D shows the set by the pump driver discharge speed of the mixing drum 16.
  • the dashed line indicates the delayed over the mixing drum 16 in the buffer tank 16 delivered concrete supply BZ (t), while the dotted line indicates when the liquid level reaches the upper level probe 48 and the upper limit signal 62 is output.
  • the mixing drum 16 is raised by the concrete pump driver via a starting ramp to the speed D max . In this case, it comes with a time delay to an addition of liquid concrete BZ in the buffer tank 18.
  • the rotary drive 42 of the mixing drum 16 is switched off abruptly to avoid an overflow. This leads to a wake of liquid concrete until the mixing drum 16 comes to a standstill due to their inertia.
  • the upper limit signal 62 disappears and the mixing drum is ramped abruptly to the maximum discharge speed D max .
  • the concrete supply BZ follows the drum movement with a corresponding delay. In this operating strategy is felt to be disadvantageous that the switching on and off of the mixing drum 16 at the occurrence of the upper limit signal 62 jerky takes place, with the result of increased bearing wear and the excitation of vibrations in the chassis and in the distribution boom.
  • the in the diagram according to Fig. 4 shown operating strategy can be applied.
  • the reversal between the various rotational drive states is in accordance with the presence or absence of the upper limit signal 62 (dot-dashed) and the operating state BF of the concrete pump (Dashed).
  • the rotary drive 42 of the mixing drum 16 is switched in each case via a switch-on and a Ausschalttrampe between the various states. Over time, the following operating states are recognizable:
  • the concrete pump 20 is turned on.
  • the mixing drum 16 moves up to its calculated speed D over .
  • the speed is reduced to D red .
  • the shutdown state lasts until the concrete pump 20 is switched on again (BF ⁇ 0). Since the upper limit signal 62 is output here, the rotary drive 42 of the mixing drum 16 moves to the reduced speed D red .
  • the limit value signal 62 disappears, so that after a short delay time the rotary drive 42 of the mixing drum 16 is raised to the calculated speed D over .
  • the calculated speed D ber leads to a flow rate BZ of liquid concrete per unit time, which slightly exceeds the concrete flow BF discharged via the concrete pump 16. Therefore, after a certain time, the upper level 48 is reached again.
  • the mixer speed is reduced again to the value D red until, when the concrete pump 20 is running, the upper limit signal 62 disappears again and the mixer speed is raised again to D over . As long is pumped, the mixer speed remains at its calculated value D over if not at the same time the upper limit value of signal 62 occurs.
  • This mode of operation leads to a quiet conveying operation within the truck mixer pump and thus to less wear and less vibration phenomena.
  • the invention relates to a mixer pump for liquid concrete, in which liquid concrete mixed in a mixing drum and fed via a buffer memory 18 of a motor-driven concrete pump 20 and is conveyed by this via a feed line 32 to a concreting. It is essential that the drive of the concrete pump 20 via a remote control unit 46 is turned on and off, that the level in the buffer tank 18 is automatically monitored and that the amount of liquid concrete in the buffer tank 18 in accordance with the level in the buffer tank and in dependence on the drive state Concrete pump 20 is controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betrieb einer Anordnung zum Mischen und Pumpen von Flüssigbeton, bei welchem Flüssigbeton in einer Mischtrommel gemischt und über einen Pufferbehälter einer motorisch angetriebenen Betonpumpe zugeführt und von dieser über eine Förderleitung zu einer Betonierstelle gefördert wird, wobei der Antrieb der Betonpumpe über eine Fernbedienungseinheit ein- und ausgeschaltet und der Füllstand im Pufferbehälter automatisch überwacht wird, wobei die Drehzahl der Mischtrommel nach Maßgabe der Förderleistung der Betonpumpe variiert wird, wobei die Mengenzugabe von Flüssigbeton in den Pufferbehälter nach Maßgabe des Füllstands im Pufferbehälter und in Abhängigkeit vom Antriebszustand der Betonpumpe gesteuert wird, wobei der Füllstand des Flüssigbetons im Pufferbehälter an einer oberen Grenzposition überwacht wird, und wobei bei Erreichen der oberen Grenzposition ein oberes Grenzwertsignal abgegeben wird.
  • Bei einem bekannten Verfahren dieser Art ( JP-2002-206343A ) wird Flüssigbeton in der Mischtrommel gemischt und über den Pufferspeicher einer hydraulisch angetriebenen Betonpumpe zugeführt und von dieser über die Förderleitung zu einer Betonierstelle gefördert. Während des Pumpbetriebs muss immer genügend Beton in den Pufferbehälter nachgefüllt werden, damit keine Luft angesaugt wird. Umgekehrt ist darauf zu achten, dass von der Mischtrommel nicht zu viel Beton in den Pufferbehälter eingebracht wird, damit dieser nicht überläuft. Der Überlauf wurde bisher dadurch verhindert, dass im Pufferbehälter eine Füllstandssonde vorgesehen wurde, die nach Art einer Schwarz-Weiß-Schaltung die Mischtrommel ein- und ausschaltet. Ansonsten werden die Mischtrommel und die Betonpumpe vom Betonpumpenfahrer getrennt angesteuert. Insbesondere gilt dies für die Mengensteuerung der Betonpumpe und für die Drehzahlsteuerung der Mischtrommel. Je schneller sich die Mischtrommel dreht, umso mehr Beton wird in den Pufferspeicher gegeben und umgekehrt. Die Mengenzufuhr und die Mengenabfuhr müssen aufeinander abgestimmt werden. Bei der bisherigen Vorgehensweise, bei der die Mischtrommel immer nur ein- und ausgeschaltet wurde, kam es zu dynamischen Lastspitzen und dadurch zu Verschleißerscheinungen. Weiter führt das abrupte Anhalten und Anfahren der Mischtrommel zu ruckweisen Bewegungen im Fahrgestell und zu Schwingungen im Verteilermast, die als nachteilig empfunden werden.
  • Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, das bekannte Verfahren der eingangs angegebenen Art dahingehend zu verbessern, dass die Materialzu- und -abfuhr besser aufeinander abgestimmt wird und dass ruckweise Bewegungen beim Ein- und Ausschalten der Mischtrommel reduziert und gedämpft werden.
  • Zur Lösung dieser Aufgabe wird die im Patentanspruch 1 angegebene Merkmalskombination vorgeschlagen. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
  • Die erfindungsgemäße Lösung geht vor allem davon aus, dass der Antrieb der Betonpumpe über eine Fernbedienungseinheit ein- und ausgeschaltet wird, dass der Füllstand im Pufferspeicher automatisch überwacht wird und dass die Mengenzugabe von Flüssigbeton in den Pufferbehälter nach Maßgabe des Füllstands im Pufferbehälter und in Abhängigkeit vom Antriebszustand der Betonpumpe gesteuert wird. Um den Zufluss und den Abfluss des Betons in und aus dem Pufferbehälter sanft aufeinander abstimmen zu können, muss zusätzlich eine Information über die Förderleistung der Pumpe an den Antrieb der Mischtrommel weitergegeben werden. Um dies zu ermöglichen, wird gemäß der Erfindung die Förderleistung der Betonpumpe durch eine Sollwertvorgabe an einer Fernbedienungseinheit eingestellt, wobei die Mengenzugabe von Flüssigbeton pro Zeiteinheit aus der Mischtrommel bei Nichtvorhandensein des oberen Grenzwertsignals höher und bei dessen Vorhandensein niedriger als die Förderleistung der Betonpumpe eingestellt wird. Eine wichtige Anwendung dieser Vorkehrungen besteht darin, dass die Mengenzugabe von Flüssigbeton in den Pufferbehälter bei Abgabe des oberen Grenzwertsignals und gleichzeitigem Antrieb der Betonpumpe auf einen vorgegebenen Zwischenwert reduziert und bei gleichzeitigem Nichtantrieb der Betonpumpe unterbrochen wird. Ein weiterer wichtiger Anwendungsfall besteht darin, dass die Mengenzugabe von Flüssigbeton in dem Pufferbehälter bei Nichtantrieb der Betonpumpe auf einen Zwischenwert reduziert und nach Abgabe des oberen Grenzwertsignals unterbrochen wird. In beiden Fällen wird dafür gesorgt, dass der Füllstand des Flüssigbetons im Pufferbehälter auf ausreichender Höhe gehalten wird, ohne dass es zu einem Oberlaufen des Pufferbehälters oder zu einem abrupten Abschalten der Mischtrommel kommt.
  • Weiter ist es damit möglich, dass der Füllstand an einer unteren Grenzwertposition unter Abgabe eines unteren Grenzwertsignals überwacht wird. Ein wichtiger Anwendungsfall besteht hierbei darin, dass die Mengenzugabe von Flüssigbeton bei Auftreten des unteren Grenzwertsignals auf einen einstellbaren Maximalwert erhöht wird, so dass genügend Flüssigbeton für den Abtransport zur Verfügung steht. Um die Gefahr einer Luftansaugung zu vermeiden, die zu Störungen beim Fördervorgang führen könnte, kann bei Abgabe des unteren Grenzwertsignals auch der Antrieb der Betonpumpe kurzzeitig unterbrochen werden. Die Mengenzugabe von Flüssigbeton kann durch Änderung der Drehzahl der Mischtrommel erhöht oder reduziert werden. Insbesondere kann die Zugabe von Flüssigbeton durch Abschalten des Mischtrommelantriebs unterbrochen werden.
  • Um den Betonzu- und -abfluss besser aufeinander abstimmen zu können, wird gemäß einer bevorzugten Ausgestaltung der Erfindung die Förderleistung der Betonpumpe durch eine Sollwertvorgabe an der Fernbedienungseinheit eingestellt, während die Drehzahl der Mischtrommel nach Maßgabe der eingestellten Förderleistung variiert wird. Bei üblichen Mischtrommeln kann die Drehzahl kontinuierlich zwischen 0 und etwa 13 Umdrehungen pro Minute variiert werden. Um stets einen ausreichenden Füllstand zu gewährleisten und trotzdem ein Überlaufen zu vermeiden, lässt sich mit den erfindungsgemäßen Vorkehrungen erreichen, dass die Mengenzugabe von Flüssigbeton pro Zeiteinheit aus der Mischtrommel bei Nichtvorhandensein des oberen Grenzwertsignals höher und bei dessen Vorhandensein niedriger als die Förderleistung der Betonpumpe ist. Eine weitere Verbesserung in dieser Hinsicht wird dadurch erzielt, dass die Mengenzugabe von Flüssigbeton bei mit vorgegebener Förderleistung angetriebener Betonpumpe und bei Abgabe eines oberen Grenzwertsignals um ein vorgegebenes Maß reduziert und bei Abgabe eines unteren Grenzwertsignals um ein vorgegebenes Maß erhöht wird, bis das jeweilige Grenzwertsignal verschwindet.
  • Im Folgenden wird die Erfindung anhand eines in der Zeichnung in schematischer Weise dargestellten Ausführungsbeispiels näher erläutert. Es zeigen
  • Fig. 1a
    und b eine Seitenansicht und eine Rückseitenansicht einer Fahrmischerpumpe im Transportzustand;
    Fig. 2
    ein Ablaufdiagramm für eine Betriebsoftware der Fahrmischerpumpe;
    Fig. 3
    ein Mischerdrehzahl/Zeitdiagramm bei vorbekannter Ansteuerung;
    Fig. 4
    ein Mischerdrehzahl/Zeitdiagramm bei patentgemäßer Ansteuerung.
  • Die in der Zeichnung dargestellte Fahrmischerpumpe besteht im Wesentlichen aus einem vierachsigen langgestreckten Fahrgestell 10, einer im mittleren Bereich des Fahrgestells um die Achse 12 drehbar angeordneten, mit ihrer Beschickungs- und Auslassöffnung 14 schräg nach hinten oben weisenden Mischtrommel 16, einem mit Flüssigbeton aus der Mischtrommel beschickbaren Pufferbehälter 18, einer an den Pufferbehälter angeschlossenen, mittels eines nicht dargestellten Antriebsmechanismus mit variabler Förderleistung antreibbaren Betonpumpe 20 und einem im Bereich der Vorderachsen 22,22' in der Nähe des Führerhauses 24 an einem Lagerbock 26 um eine vertikale Achse drehbar gelagerten, aus mehreren, gegeneinander verschwenkbaren Mastarmen 28,28',28" zusammengesetzten Verteilermast 30. Die Betonpumpe 20 ist bei dem gezeigten Ausführungsbeispiel als Rotorschlauchpumpe ausgebildet (vgl. DE 42 04 330 B4 ), an deren Druckausgang eine Förderleitung 32 angeschlossen ist, die aus mehreren mit den Mastarmen 28,28',28" des Verteilermasts 30 verbundene Rohrabschnitten besteht, die über Rohrdrehverbindungen gelenkig miteinander verbunden sind und die in einen flexiblen Endschlauch 34 münden. Der Rotor der Betonpumpe 30 ist über einen nicht dargestellten Hydromotor mit stufenlos verstellbarer Drehzahl angetrieben, so dass die Förderleistung stufenlos geregelt werden kann. Wie aus Fig. 1b zu ersehen ist, ist der Pufferbehälter 18 seitlich neben der außermittig am Fahrgestell 10 angeordneten Betonpumpe 20 platziert. Ebenso ist der Betonverteilermast 30 im zusammengeklappten und auf dem Fahrgestell aufliegenden Zustand seitlich versetzt am Fahrgestell 10 angeordnet.
  • Die Mischtrommel 16 ist von oben her über einen in die Beschickungs- und Auslassöffnung 14 mündenden Beschickungstrichter 36 mit Flüssigbeton beschickbar. An der Unterseite der Beschickungs- und Auslassöffnung 14 befindet sich eine Auslasshose 38, die mit ihrem unteren freien Ende in eine schräg nach unten weisende Auslaufschurre 40 mündet. Die Auslaufschurre 40 mündet mit ihrem auslaufseitigen Ende in den Pufferbehälter 18.
  • Die Mischtrommel 16 ist mittels eines Drehantriebs 42 mit variabler Drehzahl antreibbar.
  • Außerdem verfügt die gezeigte Fahrmischerpumpe über eine mikroprozessorgesteuerte Steuereinrichtung 44, die ihrerseits an den Drehantrieb 42 der Mischtrommel und den Antriebsmechanismus der Betonpumpe 20 angeschlossen ist und mit einem vom Betonpumpenfahrer betätigbaren Fernsteuergerät 46 betätigbar ist.
  • Bei Mischerpumpen mit kombinierter Mischer- und Pumpenansteuerung sind die Betonzufuhr über die Mischtrommel 16 in den Pufferbehälter 18 und die Betonabfuhr über die Betonpumpe 20 aus dem Pufferbehälter 18 miteinander gekoppelt. Dies bedeutet, dass beim Pumpvorgang immer genügend Flüssigbeton nachgefüllt werden muss, damit einerseits keine Luft angesaugt wird und andererseits der Pufferbehälter nicht überläuft. Dabei ist zu berücksichtigen, dass der Inhalt des Pufferbehälters 18 bei maximaler Förderleistung der Betonpumpe 20 in nur wenigen Sekunden abgepumpt ist, so dass ständig Flüssigbeton über die Mischtrommel 16 in ausreichender Menge nachgefüllt werden muss.
  • Eine Besonderheit der Erfindung besteht darin, dass die Betonzufuhr und die Betonabfuhr so aufeinander abgestimmt werden, dass ein hartes Abbremsen und Wiederanfahren der Mischtrommel 16 weitgehend vermieden wird. Verschleißerscheinungen und Schwingungserscheinungen aufgrund dynamischer Beanspruchungen können damit wirksam reduziert werden.
  • Um dies zu ermöglichen, sind im Pufferbehälter 18 eine obere Füllstandssonde 48 und eine untere Füllstandssonde 50 angeordnet, die auf den Flüssigkeitspegel ansprechen und die mit der mikroprozessorgesteuerten Steuereinrichtung 44 gekoppelt sind und je nach Füllstand ein oberes und ein unteres Grenzwertsignal abgeben. Die Steuereinrichtung 44 enthält zu diesem Zweck Softwareroutinen 60, die auf das Vorhandensein des oberen und des unteren Grenzwertsignals ansprechen. Das obere Grenzwertsignal 62 sorgt dafür, dass beim Befüllen des Pufferbehälters 18 ein Überlaufen vermieden wird, während das untere Grenzwertsignal dafür sorgt, dass über die Betonpumpe 20 keine Luft angesaugt wird. Wenn die Steuereinrichtung 44 dazuhin eine auf den Betriebszustand der Betonpumpe 20 oder deren Förderleistung ansprechende Softwareroutine 64 aufweist, können weitere Parameter bei der Steuerung der Flüssigbetonzufuhr über die Steuereinrichtung berücksichtigt werden. Insbesondere ist es damit möglich, die Förderleistung der Betonpumpe und die Mengenzufuhr von Flüssigbeton aus der Mischtrommel aufeinander abzustimmen. Die Betonzufuhr wird dabei über eine am Drehantrieb 42 der Mischtrommel einstellbare Entleerdrehzahl gesteuert, während die Förderleistung der Betonpumpe vom Betonpumpenfahrer stufenlos über den Sollwertgeber 45 des Fernsteuergeräts 46 eingestellt werden kann. Mit der Kontinuitätsgleichung lässt sich in einer Softwareroutine 66 anhand der über das Fernsteuergerät 46 eingestellten Förderleistung der Betonpumpe eine zugehörige Entleerdrehzahl errechnen.
  • Da die Förderströme beim Betrieb Schwankungen unterliegen, die beispielsweise von der Betonkonsistenz abhängig sind, können trotz exakter Berechnungen Differenzen im vorberechneten Füllstand auftreten. Um diese Differenzen regelungstechnisch eliminieren zu können, sind verschiedene Strategien möglich:
  • Im Pufferbehälter 18 befindet sich eine obere Füllstandssonde 48. Gemäß einer ersten Strategie wird immer etwas mehr Beton aus der Mischtrommel dem Pufferbehälter 18 zugeführt als von diesem über die Betonpumpe 20 weggefördert wird, um sicherzustellen, dass genügend Beton vorhanden ist und keine Luft angesaugt wird. Sobald der Pegel die obere Füllstandssonde 48 erreicht, muss je nach Betriebszustand der Betonpumpe die Betonzufuhr reduziert oder abgeschaltet werden.
  • Eine zweite Strategie besteht darin, dass im Pufferbehälter 18 zusätzlich eine untere Füllstandssonde 50 angeordnet ist. In diesem Fall kann messtechnisch festgestellt werden, ob der Füllstand zu tief ist. Dabei kann ausgehend von einem Startzustand die Drehzahl der Mischtrommel 16 erhöht werden, bis die Zuführmenge genau der Abführmenge entspricht. Bei laufendem Pumpvorgang gilt dann folgendes: Bei einem Signal 62 der oberen Sonde 48 ist die Mischerdrehzahl zu reduzieren, bei einem Signal der unteren Sonde 50 ist die Mischerdrehzahl zu erhöhen.
  • Eine dritte Strategie sieht vor, dass der Beladezustand der Mischtrommel 18 und/oder die Förderleistung der Pumpe 20 laufend gemessen wird, um eine bessere Abstimmung zu erreichen.
  • In Fig. 2 ist ein typisches Ablaufdiagramm der in der Steuereinrichtung angeordneten Betriebssoftware 44' dargestellt. Beim Start 68 des Programms wird Flüssigbeton dem Pufferbehälter 18 durch Entleeren der Mischtrommel 16 zugeführt. Je nach Betriebszustand 64 der Betonpumpe 20 (eingeschaltet oder ausgeschaltet) und nach Abtastung der oberen Sonde 48 wird die Entleerdrehzahl D der Mischtrommel 16 gewählt. Bei dem gezeigten Ausführungsbeispiel wird bei eingeschalteter Pumpe 20 und bei Nichtabgabe des oberen Grenzwertsignals 62 eine Entleerdrehzahl D=Dber nach der Kontinuitätsgleichung 66 berechnet und der Drehantrieb 42 der Mischtrommel 16 mit dieser Entleerdrehzahl angesteuert: Routine 70. Spricht die obere Sonde 48,60,61 durch Abgabe eines oberen Grenzwertsignals 62 an, so wird bei gleichzeitig eingeschalteter Pumpe 20,64 (ja) auf eine erniedrigte Entleerdrehzahl D=Dred umgeschaltet: Routine 72. Bei gleichzeitig abgeschalteter Pumpe 20,64 (nein) wird in diesem Fall die Entleerung gestoppt (D=0): Routine 73. Dadurch soll ein Überlaufen des Pufferbehälters 18 vermieden werden.
  • Wenn zusätzlich eine untere Füllstandssonde 50 vorgesehen ist, kann mit dem gleichen Ablaufdiagramm gemäß Fig. 2 gearbeitet werden, wobei die untere Füllstandssonde 50 dann korrigierend auf die Berechnung der Entleerdrehzahl Dber einwirkt.
  • Um die Unterschiede im Betriebsablauf nach dem vorbekannten Stand der Technik und mit der erfindungsgemäßen Steuereinrichtung 44 aufzuzeigen, wird auf die in Fig. 3 und 4 dargestellten Diagramme Bezug genommen.
  • Im Diagramm gemäß Fig. 3 ist ein Drehzahlverlauf D (t) der Mischtrommel 16 bei herkömmlicher Ansteuerung dargestellt. Die durchgezogene Linie D zeigt die vom Pumpenfahrer eingestellte Entleerdrehzahl der Mischtrommel 16. Die gestrichelte Linie deutet die verzögert über die Mischtrommel 16 in den Pufferbehälter 16 abgegebene Betonzufuhr BZ (t) an, während die strichpunktierte Linie signalisiert, wenn der Flüssigkeitspegel die obere Füllstandssonde 48 erreicht und das obere Grenzwertsignal 62 abgegeben wird. Nach dem Einschalten des Drehantriebs 42 wird die Mischtrommel 16 durch den Betonpumpenfahrer über eine Anfahrrampe auf die Drehzahl Dmax hochgefahren. Dabei kommt es zeitverzögert zu einer Zugabe von Flüssigbeton BZ in den Pufferbehälter 18. Sobald der Flüssigkeitspegel unter Abgabe des Grenzwertsignals 62 die obere Füllstandssonde 42 erreicht, wird zur Vermeidung eines Überlaufs der Drehantrieb 42 der Mischtrommel 16 abrupt abgeschaltet. Dies führt zu einem Nachlauf von Flüssigbeton, bis die Mischtrommel 16 aufgrund ihrer Trägheit zum Stillstand kommt. Wenn der Pegel anschließend unter die obere Füllstandssonde 42 absinkt, verschwindet das obere Grenzwertsignal 62 und die Mischtrommel wird abrupt auf die maximale Entleerdrehzahl Dmax hochgefahren. Die Betonzufuhr BZ folgt der Trommelbewegung mit einer entsprechenden Verzögerung. Bei dieser Betriebsstrategie wird als nachteilig empfunden, dass das Zu- und Abschalten der Mischtrommel 16 beim Auftreten des oberen Grenzwertsignals 62 ruckweise erfolgt, mit der Folge eines erhöhten Lagerverschleißes und der Anregung von Schwingungen im Fahrgestell und im Verteilermast.
  • Um diese Nachteile zu vermeiden, kann die im Diagramm gemäß Fig. 4 gezeigte Betriebsstrategie angewendet werden. In diesem Fall kann die Mischtrommel 16 mit einer berechneten Drehzahl Dber mit einer reduzierten Drehzahl Dred und im Abschaltzustand (D=0) angesteuert werden. Die Umsteuerung zwischen den verschiedenen Drehantriebszuständen erfolgt nach Maßgabe des Vorhandenseins oder Nichtvorhandenseins des oberen Grenzwertsignals 62 (strichpunktiert) und des Betriebszustands BF der Betonpumpe (gestrichelt). Der Drehantrieb 42 der Mischtrommel 16 wird jeweils über eine Einschalt- und eine Ausschaltrampe zwischen den verschiedenen Zuständen umgeschaltet. Im Zeitablauf sind folgende Betriebszustände erkennbar:
  • Kurze Zeit nach dem Anfahren der Mischtrommel 16 wird die Betonpumpe 20 eingeschaltet. Bei eingeschalteter Betonpumpe 20 fährt die Mischtrommel 16 auf ihre berechnete Drehzahl Dber hoch. Nach dem ersten Abschalten der Betonpumpe (BF=0) wird die Drehzahl auf Dred zurückgefahren. Erreicht der Füllstand im Pufferbehälter 16 die obere Füllstandssonde 42, wird das Grenzwertsignal 62 abgegeben, das bei abgeschalteter Betonpumpe 20 eine Abschaltung des Drehantriebs 42 (D=0) auslöst. Der Abschaltzustand dauert so lange, bis die Betonpumpe 20 wieder eingeschaltet (BF≠0) wird. Da hier noch das obere Grenzwertsignal 62 abgegeben wird, fährt der Drehantrieb 42 der Mischtrommel 16 auf die reduzierte Drehzahl Dred. Wenn anschließend der Pegel an der oberen Füllstandssonde 48 unterschritten wird, verschwindet das Grenzwertsignal 62, so dass nach einer kurzen Verzögerungszeit der Drehantrieb 42 der Mischtrommel 16 auf die berechnete Drehzahl Dber hochgefahren wird. Die berechnete Drehzahl Dber führt zu einer Mengenzufuhr BZ an Flüssigbeton pro Zeiteinheit, die den über die Betonpumpe 16 abgeführten Betonfluss BF etwas übersteigt. Deshalb wird nach einer gewissen Zeit wieder der obere Füllstand 48 erreicht. Mit Abgabe des Füllstandsignals 62 wird die Mischerdrehzahl erneut auf den Wert Dred zurückgefahren, bis bei laufender Betonpumpe 20 das obere Grenzwertsignal 62 wieder verschwindet und die Mischerdrehzahl wieder auf Dber angehoben wird. Solange gepumpt wird, bleibt die Mischerdrehzahl auf ihrem berechneten Wert Dber wenn nicht zugleich das obere Grenzwertsignal 62 auftritt.
  • Diese Betriebsweise führt zu einem ruhigen Förderbetrieb innerhalb der Fahrmischerpumpe und dadurch zu einem geringeren Verschleiß und zu weniger Schwingungserscheinungen.
  • Zusammenfassend ist folgendes festzuhalten: Die Erfindung bezieht sich auf eine Mischerpumpe für Flüssigbeton, bei welcher Flüssigbeton in einer Mischtrommel gemischt und über einen Pufferspeicher 18 einer motorisch angetriebenen Betonpumpe 20 zugeführt und von dieser über eine Förderleitung 32 zu einer Betonierstelle gefördert wird. Wesentlich ist, dass der Antrieb der Betonpumpe 20 über eine Fernbedienungseinheit 46 ein- und ausgeschaltet wird, dass der Füllstand im Pufferbehälter 18 automatisch überwacht wird und dass die Mengenzugabe von Flüssigbeton in den Pufferbehälter 18 nach Maßgabe des Füllstands im Pufferbehälter und in Abhängigkeit vom Antriebszustand der Betonpumpe 20 gesteuert wird.

Claims (9)

  1. Verfahren zum Betrieb einer Anordnung zum Mischen und Pumpen von Flüssigbeton, bei welchem Flüssigbeton in einer Mischtrommel (16) gemischt und über einen Pufferbehälter (18) einer motorisch angetriebenen Betonpumpe (20) zugeführt und von dieser über eine Förderleitung (32) zu einer Betonierstelle gefördert wird, wobei der Antrieb der Betonpumpe (20) über eine Fernbedienungseinheit (46) ein- und ausgeschaltet und der Füllstand im Pufferbehälter (18) automatisch überwacht wird, wobei die Drehzahl (Dber) der Mischtrommel (16) nach Maßgabe der Förderleistung der Betonpumpe variiert wird, wobei die Mengenzugabe von Flüssigbeton in den Pufferbehälter (18) nach Maßgabe des Füllstands im Pufferbehälter (18) und in Abhängigkeit vom Antriebszustand der Betonpumpe (20) gesteuert wird, wobei der Füllstand des Flüssigbetons im Pufferbehälter (18) an einer oberen Grenzposition (48) überwacht wird, und wobei bei Erreichen der oberen Grenzposition ein oberes Grenzwertsignal (62) abgegeben wird, dadurch gekennzeichnet, dass die Förderleistung der Betonpumpe (20) durch eine Sollwertvorgabe (45) an einer Fernbedienungseinheit (46) eingestellt wird, und dass die Mengenzugabe von Flüssigbeton pro Zeiteinheit aus der Mischtrommel (16) bei Nichtvorhandensein des oberen Grenzwertsignals (62) höher und bei dessen Vorhandensein niedriger als die Förderleistung der Betonpumpe (20) eingestellt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Mengenzugabe von Flüssigbeton in den Pufferbehälter (18) bei Abgabe des oberen Grenzwertsignals (62) und gleichzeitigem Antrieb der Betonpumpe (20) auf einen vorgegebenen Zwischenwert (Dred) reduziert und bei gleichzeitigem Nichtantrieb der Betonpumpe (20) unterbrochen wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Mengenzugabe von Flüssigbeton in den Pufferbehälter (18) bei Nichtantrieb der Betonpumpe (20) auf einen Zwischenwert (Dred) reduziert und nach Abgabe des oberen Grenzwertsignals unterbrochen wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Füllstand an einer unteren Grenzwertposition (50) unter Abgabe eines unteren Grenzwertsignals überwacht wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Mengenzugabe von Flüssigbeton bei Abgabe des unteren Grenzwertsignals auf einen einstellbaren Wert (Dber) erhöht wird.
  6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Antrieb der Betonpumpe (20) bei Abgabe des unteren Grenzwertsignals unterbrochen wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Mengenzugabe von Flüssigbeton durch Änderung der Drehzahl der Mischtrommel (16) erhöht oder reduziert wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Mengenzugabe von Flüssigbeton durch Abschaltung des Drehantriebs der Mischtrommel (16) unterbrochen wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Mengenzugabe von Flüssigbeton bei mit vorgegebener Förderleistung angetriebener Betonpumpe (20) und bei Abgabe eines oberen Grenzwertsignals (62) um ein vorgegebenes Maß reduziert und bei Abgabe eines unteren Grenzwertsignals um ein vorgegebenes Maß erhöht wird, bis das jeweilige Grenzwertsignal verschwindet.
EP09155588.8A 2008-04-02 2009-03-19 Verfahren zum Betrieb einer Anordnung zum Mischen von Flüssigbeton Active EP2107184B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008017123A DE102008017123A1 (de) 2008-04-02 2008-04-02 Mischerpumpe für Flüssigbeton sowie Verfahren zu deren Betrieb

Publications (2)

Publication Number Publication Date
EP2107184A1 EP2107184A1 (de) 2009-10-07
EP2107184B1 true EP2107184B1 (de) 2014-12-03

Family

ID=40823433

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09155588.8A Active EP2107184B1 (de) 2008-04-02 2009-03-19 Verfahren zum Betrieb einer Anordnung zum Mischen von Flüssigbeton

Country Status (2)

Country Link
EP (1) EP2107184B1 (de)
DE (1) DE102008017123A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107190738A (zh) * 2017-07-05 2017-09-22 汤始建华建材(苏州)有限公司 一种水下混凝土浇筑桩机

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230336A (zh) * 2011-04-08 2011-11-02 三一重工股份有限公司 一种协同作业系统及其方法、混凝土泵送设备和搅拌车
CN102324061B (zh) * 2011-05-19 2014-04-16 三一重工股份有限公司 一种泵车及搅拌车联合作业调度系统及方法
CN102350735B (zh) * 2011-10-26 2013-05-08 中联重科股份有限公司 放料监控方法和系统及具有该系统的混凝土搅拌车
CN102493649B (zh) * 2011-11-16 2013-09-11 山推楚天工程机械有限公司 泵送供料匹配系统
CN102493657A (zh) * 2011-12-29 2012-06-13 三一重工股份有限公司 卸料控制装置、混凝土泵送设备和卸料控制方法
CN103243916B (zh) * 2013-05-03 2015-07-01 华菱星马汽车(集团)股份有限公司 一种车辆协同控制方法及车辆协同控制系统
CN103243917B (zh) * 2013-05-07 2015-07-08 三一汽车制造有限公司 放料设备与泵送设备联合作业系统、搅拌车、泵送设备
CN103407357A (zh) * 2013-07-19 2013-11-27 北汽福田汽车股份有限公司 车载式混凝土泵车
CN105437372B (zh) * 2014-08-22 2018-09-28 中联重科股份有限公司 一种混凝土搅拌运输车的搅拌筒的控制方法及装置
CN104290643A (zh) * 2014-09-19 2015-01-21 贵州致力穿山机械设备有限责任公司 轨轮式混凝土搅拌输送车
CN104317316B (zh) * 2014-11-20 2017-12-12 徐州徐工施维英机械有限公司 基于料仓料位的控制方法及系统
NO2744831T3 (de) * 2015-03-30 2018-05-05
CN108843022B (zh) * 2018-06-26 2020-07-03 深圳市华宇泰幕墙工程有限公司 一种混凝土输送设备
CN109057346A (zh) * 2018-10-17 2018-12-21 三汽车制造有限公司 泵车
CN109057347A (zh) * 2018-10-17 2018-12-21 三汽车制造有限公司 泵车
CN109057348A (zh) * 2018-10-17 2018-12-21 三汽车制造有限公司 泵车
DE102019204437A1 (de) * 2019-03-29 2020-10-01 Zf Friedrichshafen Ag Verfahren zur Bestimmung des Füllungsgrades einer Mischtrommel eines Fahrmischers
DE102019108781A1 (de) * 2019-04-03 2020-10-08 Peri Gmbh Computergestütztes Verfahren und Einrichtung zur optimierten Steuerung der Förderleistung einer Betonpumpe oder dergleichen
CN114274362B (zh) * 2021-12-21 2024-01-30 三一汽车制造有限公司 泵送设备与搅拌设备的协同控制方法、系统及作业机械
CN115157448A (zh) * 2022-06-16 2022-10-11 太原理工大学 一种超声波扰动搅拌式混凝土制备系统及方法
CN115090630B (zh) * 2022-06-27 2023-05-12 三一电动车科技有限公司 混凝土搅拌罐的清洗方法、装置及车辆
CN116356828B (zh) * 2023-05-24 2023-11-10 江苏力引建材科技股份有限公司 一种水利支护冠梁的混凝土浇筑设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206343A (ja) * 2001-01-12 2002-07-26 Mitsubishi Heavy Ind Ltd コンクリートポンプ車、ミキサー車及びミキサー車用制御ユニット
US6817242B1 (en) * 2003-11-07 2004-11-16 Stephen M. Moran Concrete level indicator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7129239U (de) * 1971-07-30 1972-04-27 Schaubstahl-Werke Maschine zum weiteren durchmischen und foerdern von moertelaehnlichen massen
DE3618735A1 (de) * 1986-06-04 1987-12-10 Maurer Dietrich Beton-nassspritzmaschine
DE3824414A1 (de) * 1988-07-19 1990-02-15 Stetter Gmbh Transportbetonmischer mit automatischer steuerung
FI890687A (fi) * 1989-02-14 1990-08-15 Minkkinen Risto J Betongpumpningssystem.
DE4204330B4 (de) 1992-02-14 2006-05-04 Putzmeister Ag Fahrmischerpumpe
DE4208831A1 (de) * 1992-03-19 1993-09-23 Putzmeister Maschf Autobetonpumpe
JP2002274653A (ja) * 2001-03-19 2002-09-25 Ishikawajima Constr Mach Co コンクリートポンプ車のホッパ内コンクリート量表示装置
DE10155787A1 (de) * 2001-11-14 2003-05-22 Putzmeister Ag Materialaufgabebehälter für Zweizylinder-Dickstoffpumpen
DE102004015422A1 (de) * 2004-03-26 2005-10-13 Putzmeister Ag Anlage und Verfahren zur Herstellung von Betonfertigteilen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206343A (ja) * 2001-01-12 2002-07-26 Mitsubishi Heavy Ind Ltd コンクリートポンプ車、ミキサー車及びミキサー車用制御ユニット
US6817242B1 (en) * 2003-11-07 2004-11-16 Stephen M. Moran Concrete level indicator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107190738A (zh) * 2017-07-05 2017-09-22 汤始建华建材(苏州)有限公司 一种水下混凝土浇筑桩机

Also Published As

Publication number Publication date
DE102008017123A1 (de) 2009-11-26
EP2107184A1 (de) 2009-10-07

Similar Documents

Publication Publication Date Title
EP2107184B1 (de) Verfahren zum Betrieb einer Anordnung zum Mischen von Flüssigbeton
EP3079872B1 (de) Misch- und förderanlage für trockenbaustoffe aus einem vorratssilo
EP2827975B1 (de) System und verfahren zum anfahren von rührwerken in einem sediment
DE112013004429T5 (de) Mischer-Trommel-Antriebsvorrichtung
WO2008052530A2 (de) Misch- und fördervorrichtung für mörtel
DE102008041159A1 (de) Landwirtschaftliche Feldspritze und Verfahren für eine solche
EP1065033B1 (de) Verfahren und Vorrichtung zum Anmachen von abbindendem Material, insbesondere von einer trockenen oder rieselfähigen Baustoffmischung
DE19631312C2 (de) Fahrbare Anlage zur Herstellung von Fließestrich
DE102013018606B4 (de) 1 - Dickstoffpumpe mit Fördereinheit und Zuführeinheit
EP1727656A1 (de) Anlage und verfahren zur herstellung von betonfertigteilen
EP0367912B1 (de) Misch- und Druckluftfördergerät
DE60026101T2 (de) Maschine zum Zuführen von verflüssigter Erde
EP3489174B1 (de) Baustoff-druckluftförderer
DE2946813A1 (de) Misch- und foerdergeraet
WO2019224239A1 (de) System zur vermeidung einer dickstoffverstopfung in einer dickstoffförderleitung beim anpumpen von dickstoff in der dickstoffförderleitung
DE2713136A1 (de) Vorrichtung zum lagern und foerdern von beton und anderen breiigen massen
DE2451529A1 (de) Vorrichtung zum ansaugen von heterogenen fluessigkeiten aus tieferliegendem niveau
DE7214103U (de) Transportables Gerät zum Mischen und Einpressen von Mörtel in Hohlräume
DE3515124A1 (de) Hydraulikanlage
DE2200482A1 (de) Pumpe zum Foerdern fliessfaehigen Materials
WO2024078833A1 (de) Verfahren und system
EP2732161B1 (de) Dickstoffpumpe mit einem eine reinigungsöffnung aufweisenden materialaufgabebehälter
WO2021259620A1 (de) Verfahren zum betreiben einer bau- und/oder dickstoffpumpe zum fördern von bau- und/oder dickstoff und bau- und/oder dickstoffpumpe zum fördern von bau- und/oder dickstoff
DE10351335A1 (de) Materialaufgabebehälter für fließ- und/oder pumpfähiges Fördergut
DE4316361A1 (de) Hydraulisch arbeitendes Flurförderzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20091119

17Q First examination report despatched

Effective date: 20091214

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PUTZMEISTER ENGINEERING GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140821

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 699485

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009010292

Country of ref document: DE

Effective date: 20150115

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150303

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150304

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150403

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150403

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009010292

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150319

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20150904

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150319

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150319

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230317

Year of fee payment: 15

Ref country code: IT

Payment date: 20230323

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240321

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240320

Year of fee payment: 16

Ref country code: DE

Payment date: 20240320

Year of fee payment: 16