EP1899670B1 - Echangeur de chaleur - Google Patents

Echangeur de chaleur Download PDF

Info

Publication number
EP1899670B1
EP1899670B1 EP06762163.1A EP06762163A EP1899670B1 EP 1899670 B1 EP1899670 B1 EP 1899670B1 EP 06762163 A EP06762163 A EP 06762163A EP 1899670 B1 EP1899670 B1 EP 1899670B1
Authority
EP
European Patent Office
Prior art keywords
flow
heat exchanger
variable
structural elements
winglets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06762163.1A
Other languages
German (de)
English (en)
Other versions
EP1899670A1 (fr
Inventor
Peter Geskes
Ulrich Maucher
Michael Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Priority to EP15202230.7A priority Critical patent/EP3048407B9/fr
Publication of EP1899670A1 publication Critical patent/EP1899670A1/fr
Application granted granted Critical
Publication of EP1899670B1 publication Critical patent/EP1899670B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/14Arrangements for modifying heat-transfer, e.g. increasing, decreasing by endowing the walls of conduits with zones of different degrees of conduction of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Definitions

  • the invention relates to a heat exchanger according to the preamble of claim 1 - known by the US 4,314,587 ,
  • V-shaped arranged structural elements are formed by non-cutting deformation of the wall of the exhaust pipes.
  • the V-shaped arranged structural elements also referred to as so-called winglets can thus economically, ie introduced at low cost in the exhaust pipes.
  • the density of the structural elements is variable, and increases in the flow direction.
  • the heat transfer coefficient on the inside of the flow channel is variable, and the heat transfer increases in the flow direction, while it is comparatively low or minimal in the inlet region of the flow.
  • the invention is based on the recognition that the heat dissipation in the inlet region of the flow channel-for example, to a cooling medium flowing around the flow channel-is greater than in the downstream region of the flow channel due to the high temperature difference prevailing there, and that a forming on the inner wall of the flow channel, in the flow direction growing temperature boundary layer in the inlet region is still relatively thin.
  • structural elements for increasing the heat transfer on the inside of the flow channel in favor of a reduced pressure drop in this area can be dispensed with in the inlet region.
  • the density of the structural elements is adapted to the conditions prevailing locally in the flow channel with respect to temperature difference and temperature boundary layer.
  • the inlet region of the flow channel initially smooth-walled ie be formed without structural elements, since - as mentioned - already in this area due to the high temperature difference and the small boundary layer thickness, a high power density is achieved.
  • structural elements with increasing density or with the heat transfer increasingly increasing effect are arranged downstream in the flow channel.
  • the structural elements are formed as swirl-generating indentations in the wall of the flow channel, as so-called winglets, as are known for exhaust gas heat exchangers according to the aforementioned prior art.
  • the arrangement and design of the winglets in the flow channel is inventively made variable: so the distance between the winglets in the flow direction can increase continuously or gradually, as well as the height of the winglets, which extends into the flow. For manufacturing reasons, it is advantageous if the distances each amount to a multiple of the smallest distance. Further, the angle included by the V-shaped winglets can be increased continuously or stepwise in the flow direction, thereby also increasing the heat transfer, but also the pressure drop.
  • the inventive arrangement of structural elements with variable density, in particular for exhaust gas heat exchanger of internal combustion engines for motor vehicles is advantageously used.
  • Exhaust heat exchangers require one hand a high power density and on the other hand a low exhaust back pressure, so that the required EGR rates (proportion of recirculated exhaust gas in the total exhaust gas flow) can be achieved to achieve the emissions regulations.
  • the reduced pressure drop resulting from the invention thus has a particularly advantageous effect when used as an exhaust gas heat exchanger.
  • intercoolers for internal combustion engines and generally in gas flow channels are also be used.
  • ribs in particular rib ribs are arranged as structural elements on the inside of the flow channel, which increase the heat transfer.
  • the rib elements have a density which is variable in the flow direction, i. H. preferably gradually increases in the flow direction, which in turn can be dispensed with in the inlet area entirely on a réelleberippung.
  • the change in density can advantageously be achieved in the case of a rib ridge by means of a variable longitudinal or transverse distribution or by a variable angle of attack for the flow. This also achieves the advantage of a reduced pressure drop.
  • further measures could be taken to increase the heat transfer, e.g.
  • the measures according to the invention are particularly advantageous in the inlet region of the respective flow channel, d. H. in the area of the flow, where there are still transient conditions with respect to the temperature difference and the thickness of the boundary layer.
  • Fig. 1 shows a pipe 1 designed as a flow channel 2, which has an inlet cross-section 3 and is flowed through by a flow medium according to the arrow P.
  • the pipe 1 is traversed by a hot exhaust gas of an internal combustion engine, not shown, and is part of a Abgäs Scriübertragers, not shown.
  • the tube 1 has a smooth inner side or inner wall 1a and an outer wall or outer wall 1b, which is cooled by a preferably liquid coolant.
  • the hot exhaust gas releases its heat via the pipe 1 to the coolant.
  • a temperature boundary layer 4 forms on the inner wall 1a, which increases in its thickness d from the inlet cross-section 3 in the direction of flow of the arrow P.
  • the temperature profile in this boundary layer 4 is represented by a temperature profile 5.
  • the temperature in the temperature boundary layer thus rises from a temperature Ta on the inner wall 1a to a temperature level Ti in the interior of the flow channel (core flow), which corresponds to the exhaust gas inlet temperature. Due to the growing temperature boundary layer 4, the heat transfer conditions in the inlet region of the tube 1 deteriorate.
  • Fig. 2 shows a diagram in which the heat transfer coefficient ⁇ is plotted as a relative size over the length I of a smooth-walled flow channel, ie from the inlet cross-section (reference numeral 3 in Fig. 1 ) in the flow direction of the flow medium.
  • the length I is plotted in millimeters.
  • Fig. 3a, 3b, 3c, 3d and 3e show a first embodiment with five different variants, namely the arrangement of structural elements with variable density.
  • Fig. 3a shows in a first variant, which does not belong to the invention a schematically illustrated flow channel 6, preferably an exhaust pipe of a Abgastownschreibers not shown, wherein the exhaust pipe 6 is traversed according to the arrow P.
  • the outside of the exhaust pipe 6 is - what is not shown, but from the above-mentioned prior art is known - preferably lapped by a liquid coolant - but is also possible air cooling.
  • the exhaust pipe 6 is formed as a stainless steel tube, consisting of two halves welded together, with a rectangular cross-section.
  • the exhaust pipe 6 has an inlet region 6a, which is smooth-walled over a length L. Downstream of the smooth-walled region 6a, a region 6b adjoins, in which are arranged V-shaped structural elements 7, so-called winglets, embossed from the tube wall.
  • the winglet pairs 7 are arranged in the section 6b at the same distance and in the same formation.
  • the transition from the smooth-walled region 6a to the winglets 7 occupied area 6b thus takes place in the form of a "step".
  • a sufficiently large heat transfer or heat transfer is achieved in the smooth-walled region 6a, since the temperature difference is still sufficiently large and the temperature boundary layer is relatively small.
  • a rectangular tube 8 is shown in longitudinal section, which also has a smooth-walled inlet region 8a and a channel height H. Downstream of this smooth-walled region 8a winglet pairs 9 are arranged with equal distances a in the flow direction, but with different heights h: projecting into the flow cross-section of the exhaust pipe 8 heights h of the winglet pairs 9 grow continuously in the flow direction P. Thus, the heat transfer in This pipe section has been successively increased. At the same time, the pressure drop increases. The transition from smooth to not smooth is thus continuous. In a preferred embodiment, a range of 0.05 ⁇ h / H ⁇ 0.4 is selected for the ratio h / H.
  • Fig. 3c are in a tube 10 winglet pairs 11 with decreasing in the flow direction P distances a 1 , a 2 , a 3 arranged.
  • the heat transfer starting from the smooth inlet region 10a, successively increased, since the density of the structural elements or winglets 11 is greater.
  • the distances a 1 , a 2 , a 3 can each be a multiple of the minimum distance a x .
  • the latter is advantageously in a range of 5 ⁇ a x ⁇ 50 mm and preferably in a range of 8 ⁇ a x ⁇ 30 mm.
  • Fig. 3d shows a fourth variant, which does not belong to the invention for the arrangement of structural elements with different density in an exhaust pipe 12, which is permeable according to the arrow P of exhaust gas.
  • the smooth-walled entry region 12a is shorter in comparison to the previous embodiments.
  • This is followed by winglet pairs 13 with equal distances in the flow direction, but with different angles ⁇ (angle with respect to flow direction P).
  • the winglets of the upstream winglet pair 12 are aligned almost parallel ( ⁇ 0), while the angle ⁇ formed by the winglets of the downstream winglet pair 13 is about 45 degrees.
  • the intervening winglet pairs 13 have corresponding intermediate values, so that the heat transfer coefficient for the Inner wall of the exhaust pipe 13 due to the increasing spreading of the winglets in the flow direction grows, continuously or in small steps.
  • the angle ⁇ is advantageously in a range of 20 ° ⁇ ⁇ 50 °
  • Fig. 3e shows another variant of the invention with an exhaust pipe 30, a smooth-walled portion 30a and adjoining rows of parallel winglets 31, which each form an angle ⁇ with the flow direction P.
  • the rows have in the flow direction P decreasing distances a 1 , a 2 , a 3 , wherein the angle ⁇ of the winglets 31 from row to row changes the sign.
  • aiien pipes is preferably left at the beginning of the pipe and at the pipe end a smooth area without structural elements, so that at a lengthening of the tube a clean separation point can be produced.
  • Fig. 4 shows a further embodiment, which does not belong to the invention, for a flow channel 14 which is according to the arrow P flows of a flow medium - this may be, for example, a liquid coolant or even charge air.
  • the outside of the flow channel 14, 14 can be cooled by a gaseous or liquid cooling medium.
  • the flow channel 14 has a smooth-walled inlet region 14a, which is adjoined in the flow direction P by a first region 14b provided with internal ribs 15 and by another ribbed region 14c thereon.
  • the regions 14b and 14c have a different fin density - in the illustrated embodiment, the rib density in the downstream region 14c is twice as large as in the upstream region 14b, since between the continuous ribs 15 further ribs 16 are arranged. Thus, an increase of the heat transfer is also achieved, in stages from 14a to 14b to 14c.
  • Fig. 5 shows as a further embodiment, which does not belong to the invention, a gas flow channel in which a Stegrippe 17 with variable longitudinal pitch t 1 , t 2 , t 3 , t 4 , t 5 is arranged.
  • t 1 > t 2 > t 3 > t 4 > t 5 ie the heat transfer increases from t 1 to t 5 , ie in the flow direction P too.
  • Web ribs are used in particular for intercoolers and are preferably soldered to the pipes.
  • the ratio of the smallest pitch t x to the channel height H has a limit of 0.3 ⁇ t x / H.
  • Fig. 6 Also shows an embodiment, which does not belong to the invention, a gas flow channel in which a Stegrippe 18 with variable angles of attack ⁇ 1 , ⁇ 2 , ⁇ 3 ... ⁇ x is arranged.
  • Advantageous angles of attack are in the range of 0 ⁇ ⁇ 30 °.
  • Fig. 7 shows as an embodiment, which does not belong to the invention, a gas flow channel in which a ridge rib 19 with variable transverse pitch q 1 , q 2 , q 3 ... q 6 is arranged, the heat transfer with decreasing transverse division of q 1 in the direction q 6. ie in the flow direction P increases.
  • Advantageous areas for the transverse division q are 8>q> 1 mm and preferably 5>q> 2 mm.
  • Fig. 8 shows in a gas flow channel a corrugated in the flow direction P (deep waved) inner fin 20 with variable pitch t 1 , t 2 , t 3 , t 4 - the heat transfer increases here in the direction of decreasing pitch t.
  • Advantageous ranges for the pitch t are 10 ⁇ t ⁇ 50 mm.
  • a variation of the heat transfer in the flow channel can also be achieved by further means known from the prior art, for example by arranging gills or windows in the ribs.
  • other forms of structural elements for vortex generation or to increase the heat transfer can be selected.
  • the application of the invention is not limited to exhaust gas heat exchangers, but also extends to intercoolers whose tubes are flowed through by hot charge air, and generally to gas flow channels, which may be formed as tubes of a tube heat exchanger or as slices of Scheibennzoübertragers.

Claims (25)

  1. Echangeur de chaleur comprenant au moins un conduit d'écoulement pouvant être traversé par un milieu d'écoulement, depuis une section d'entrée jusqu'à une section de sortie, et présentant un côté intérieur et un côté extérieur, lequel conduit d'écoulement présente, sur le côté intérieur, des éléments de structure servant à l'augmentation du transfert de chaleur, où les éléments de structure (7, 9, 11, 13, 15, 16, 17, 18, 19, 20, 31) sont disposés et / ou configurés de façon variable, dans la direction d'écoulement (P), de manière telle que le conduit d'écoulement (6, 8, 10, 12, 14, 30) présente, sur le côté intérieur, un transfert de chaleur variable et augmentant dans la direction d'écoulement (P), où la densité des éléments de structure (11; 15, 16; 19; 31) est variable et croissante dans la direction d'écoulement (P), les éléments de structure étant configurés comme des générateurs de tourbillons, ce que l'on appelle des winglets (7, 9, 11, 13, 31), caractérisé en ce que les winglets (11, 31) sont disposées en rangées et forment, avec la direction d'écoulement (P), un angle (β), où l'angle (β) présente pour des winglets adjacentes, un signe identique ou opposé, et les winglets (11, 31) sont disposées en rangées transversalement par rapport à la direction d'écoulement (P), et en ce que les rangées présentent un espacement (a1, a2, a3 ... ax) variable et diminuant dans la direction d'écoulement.
  2. Echangeur de chaleur selon la revendication 1, caractérisé en ce que les éléments de structure (9, 11, 13, 15, 16, 17, 18, 19, 20, 31) présentent une résistance à l'écoulement par rapport au milieu d'écoulement et sont disposés et / ou configurés de manière telle, que la chute de pression soit variable dans le conduit d'écoulement (8, 10, 12, 14), en particulier qu'elle soit minimale dans la zone d'entrée (6a, 8a, 10a, 12a, 14a, 30a).
  3. Echangeur de chaleur selon la revendication 1 ou 2, caractérisé en ce que le conduit d'écoulement (6, 8, 10, 12, 14, 30) présente, à partir de la section d'entrée, une partie à paroi lisse (6a, 8a, 10a, 12a, 14a, 30a) sans élément de structure.
  4. Echangeur de chaleur selon la revendication 3, caractérisé en ce que la partie à paroi lisse (6a, 8a, 10a, 12a, 14a, 30a) présente, dans la direction d'écoulement (P), une longueur L où L est ≤ 100 mm.
  5. Echangeur de chaleur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les éléments de structure sont configurés comme un ailetage intérieur, comme des ailettes intérieures (15, 16, 20), des ailettes nervurées (17, 18, 19) et / ou comme des éléments rapportés créant des turbulences, et sont brasés en particulier dans les conduits d'écoulement.
  6. Echangeur de chaleur selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les winglets (13, 31) forment, avec la direction d'écoulement (P), un angle β qui est variable, augmentant en particulier dans la direction d'écoulement (P).
  7. Echangeur de chaleur selon la revendication 6, caractérisé en ce que l'angle β présente une zone de 20° < β < 50°.
  8. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que les winglets (9) présentent une hauteur (h) faisant saillie à l'intérieur du conduit d'écoulement, hauteur qui est variable, en particulier croissante dans la direction d'écoulement (P).
  9. Echangeur de chaleur selon la revendication 8, caractérisé en ce que le conduit d'écoulement (8) présente une hauteur H, et le rapport de h/H présente une zone de 0,05 ≤ h/H ≤ 0,4.
  10. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le plus petit espacement ax présente une zone de 5 < ax < 50 mm, en particulier une zone de 8 < ax < 30 mm.
  11. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que l'espacement (a1, a2, a3 ...) des rangées est un multiple (entier) du plus petit espacement ax.
  12. Echangeur de chaleur selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'une zone lisse (sans élément de structure) est laissée, comme point de séparation, au niveau de l'extrémité d'un conduit d'écoulement, située côté amont et côté aval.
  13. Utilisation de l'échangeur de chaleur selon l'une quelconque des revendications 1 à 4 ou 6 à 12, comme échangeur de chaleur de gaz d'échappement, où les conduits d'écoulement sont conçus comme des tuyaux d'échappement (6, 8, 10, 12, 30) traversés par des gaz d'échappement et baignés par un moyen de refroidissement en circulation.
  14. Echangeur de chaleur selon la revendication 5, caractérisé en ce que les éléments de structure, en particulier les ailettes intérieures (15, 16), présentent une densité d'ailettes qui est variable dans la direction d'écoulement, en particulier croissante dans la direction d'écoulement (P).
  15. Echangeur de chaleur selon la revendication 14, caractérisé en ce que la densité d'ailettes augmente par paliers (14b, 14c).
  16. Echangeur de chaleur selon la revendication 5, caractérisé en ce que l'ailette nervurée (17) présente une segmentation longitudinale variable (t1, t2, t3, t4, t5 ... tx).
  17. Echangeur de chaleur selon la revendication 16, caractérisé en ce que la plus petite segmentation longitudinale tx présente une valeur limite tx > 0,3 H, où H est la hauteur du conduit.
  18. Echangeur de chaleur selon la revendication 5, caractérisé en ce que l'ailette nervurée (18) présente un angle d'incidence variable (α1, α2, α3 ... αx), où l'angle d'incidence se situe de préférence dans la zone de 0 < α < 30°.
  19. Echangeur de chaleur selon la revendication 5, caractérisé en ce que l'ailette nervurée (19) présente une segmentation transversale variable (q1, q2, q3 ... qx).
  20. Echangeur de chaleur selon la revendication 19, caractérisé en ce que la segmentation transversale q présente une zone de 8 > q > 1 mm, de préférence de 5 > q > 2 mm.
  21. Echangeur de chaleur selon la revendication 5, caractérisé en ce que l'ailette intérieure (20) présente une ondulation longitudinale à segmentation variable (t1, t2, t3, t4).
  22. Echangeur de chaleur selon la revendication 21, caractérisé en ce que la segmentation t de l'ailette intérieure (20) présente une zone de 10 < t < 50 mm.
  23. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que les conduits d'écoulement sont conçus comme des tubes, en particulier comme des tubes d'un faisceau de tubes.
  24. Echangeur de chaleur selon l'une quelconque des revendications 1 à 22, caractérisé en ce que les conduits d'écoulement sont conçus comme des plaques, en particulier comme des plaques d'un paquet de plaques.
  25. Utilisation de l'échangeur de chaleur selon l'une quelconque des revendications 14 à 24, comme refroidisseur d'air de suralimentation servant au refroidissement d'air de combustion pour un moteur à combustion interne d'un véhicule automobile.
EP06762163.1A 2005-06-24 2006-06-23 Echangeur de chaleur Not-in-force EP1899670B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15202230.7A EP3048407B9 (fr) 2005-06-24 2006-06-23 Fluide caloporteur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005029321A DE102005029321A1 (de) 2005-06-24 2005-06-24 Wärmeübertrager
PCT/EP2006/006071 WO2006136437A1 (fr) 2005-06-24 2006-06-23 Echangeur de chaleur

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP15202230.7A Division EP3048407B9 (fr) 2005-06-24 2006-06-23 Fluide caloporteur
EP15202230.7A Division-Into EP3048407B9 (fr) 2005-06-24 2006-06-23 Fluide caloporteur

Publications (2)

Publication Number Publication Date
EP1899670A1 EP1899670A1 (fr) 2008-03-19
EP1899670B1 true EP1899670B1 (fr) 2016-08-10

Family

ID=37114549

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15202230.7A Active EP3048407B9 (fr) 2005-06-24 2006-06-23 Fluide caloporteur
EP06762163.1A Not-in-force EP1899670B1 (fr) 2005-06-24 2006-06-23 Echangeur de chaleur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15202230.7A Active EP3048407B9 (fr) 2005-06-24 2006-06-23 Fluide caloporteur

Country Status (5)

Country Link
US (1) US7942137B2 (fr)
EP (2) EP3048407B9 (fr)
JP (1) JP5112304B2 (fr)
DE (1) DE102005029321A1 (fr)
WO (1) WO2006136437A1 (fr)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007054913A1 (de) * 2006-11-15 2008-08-28 Behr Gmbh & Co. Kg Wärmeübertrager
US20080271877A1 (en) * 2007-02-21 2008-11-06 Gerald Glass Apparatus for multi-tube heat exchanger with turbulence promoters
JP5022075B2 (ja) * 2007-03-27 2012-09-12 東京ラヂエーター製造株式会社 建設機械用オイルクーラのチューブ内部構造
DE102007041338B3 (de) * 2007-08-31 2008-12-11 Pierburg Gmbh Wärmeübertragungseinheit für eine Verbrennungskraftmaschine
KR20100106434A (ko) * 2008-01-10 2010-10-01 베헤르 게엠베하 운트 콤파니 카게 열교환기용 압출 튜브
DE102008036222B3 (de) * 2008-08-02 2009-08-06 Pierburg Gmbh Wärmeübertragungseinheit für eine Verbrennungskraftmaschine
FR2938637B1 (fr) * 2008-11-18 2013-01-04 Cie Mediterraneenne Des Cafes Conduit de circulation d'un fluide
JP5254082B2 (ja) * 2009-03-05 2013-08-07 株式会社ユタカ技研 熱交換用チューブ
JP2010249373A (ja) * 2009-04-14 2010-11-04 Panasonic Corp 熱交換器およびそれを用いたヒートポンプ給湯機
DE102009026546B4 (de) 2009-05-28 2012-05-16 Schott Solar Ag Sonnenkollektor
IT1399246B1 (it) 2009-11-03 2013-04-11 Advanced Res Consulting S R L Scambiatore di calore tubolare, in particolare tubo ricevitore per un impianto solare a concentrazione.
JP2011214786A (ja) * 2010-03-31 2011-10-27 Yutaka Giken Co Ltd 熱交換器
CA2834938C (fr) * 2011-05-02 2019-06-25 Hitesh BINDRA Stockage d'energie thermique pour centrales a cycle combine
US20120312515A1 (en) * 2011-06-10 2012-12-13 Waukesha Electric Systems, Inc. Apparatus for heat dissipation of transforming radiators
JP5915187B2 (ja) * 2012-01-10 2016-05-11 マツダ株式会社 熱交換器
DE102012208742A1 (de) * 2012-03-28 2013-10-02 Mahle International Gmbh Abgaskühler
US20150122467A1 (en) * 2012-05-29 2015-05-07 Hangzhou Shenshi Energy Conservation Technology Co., Ltd. Micro-channel structure for heat exchanger and integrated type micro-channel heat exchanger
EP2857786B1 (fr) * 2012-05-30 2020-12-23 Kyocera Corporation Organe de trajet d'écoulement, et échangeur de chaleur et dispositif de fabrication de semi-conducteurs l'utilisant
DE102012013755B8 (de) * 2012-07-12 2022-01-13 Al-Ko Therm Gmbh Wärmetauscherplatteneinheit, Wärmetauscher und Verfahren zur Herstellung eines Wärmetauschers
FR2993354B1 (fr) * 2012-07-13 2018-07-13 Delphi Automotive Systems Lux Refroidisseur d'air de suralimentation
ES2685899T3 (es) 2013-03-14 2018-10-15 Duramax Marine, Llc Potenciador de turbulencia para refrigerador de quilla
JP6203080B2 (ja) * 2013-04-23 2017-09-27 カルソニックカンセイ株式会社 熱交換器
US20140332188A1 (en) * 2013-05-09 2014-11-13 Ford Global Technologies, Llc Heat exchanger
DE102013020469A1 (de) * 2013-12-06 2015-06-11 Webasto SE Wärmeübertrager und Verfahren zum Herstellen eines Wärmeübertragers
KR101569829B1 (ko) * 2014-06-13 2015-11-19 주식회사 코렌스 Egr 가스 차압 저감용 웨이브 핀 플레이트를 갖는 열교환기
JP6459027B2 (ja) * 2014-07-15 2019-01-30 国立大学法人 東京大学 熱交換器
DE102014010891A1 (de) * 2014-07-23 2016-01-28 Webasto SE Wärmeübertrager und Baukastensystem zur Herstellung eines Wärmeübertragers
JP6464598B2 (ja) * 2014-07-31 2019-02-06 いすゞ自動車株式会社 内燃機関の冷却システム
US9528771B2 (en) 2014-10-27 2016-12-27 Hussmann Corporation Heat exchanger with non-linear coil
JP6256295B2 (ja) * 2014-10-28 2018-01-10 株式会社デンソー 熱交換器
US20160123683A1 (en) * 2014-10-30 2016-05-05 Ford Global Technologies, Llc Inlet air turbulent grid mixer and dimpled surface resonant charge air cooler core
CN104602469B (zh) * 2015-01-15 2017-09-26 华为技术有限公司 机柜
JP6435209B2 (ja) * 2015-02-18 2018-12-05 ダイキョーニシカワ株式会社 発熱体の冷却構造
US10222106B2 (en) * 2015-03-31 2019-03-05 The Boeing Company Condenser apparatus and method
WO2016201211A1 (fr) 2015-06-10 2016-12-15 Corning Incorporated Réacteur à flux continu avec capacité de transfert de chaleur ajustable
CN105115338B (zh) * 2015-08-31 2017-08-25 东南大学 一种相变蓄热装置
ITUB20155713A1 (it) 2015-11-18 2017-05-18 Robur Spa Tubo di fiamma migliorato.
CN108474629B (zh) * 2015-12-28 2021-11-02 开利公司 用于热交换器应用的折叠导管
CN107105595A (zh) * 2016-02-19 2017-08-29 恩佐科技股份有限公司 利用散热体排列达低风压需求、低噪音、高效能的散热器
TWM528417U (zh) * 2016-02-19 2016-09-11 Enzotechnology Corp 利用散熱體排列達低風壓需求、低噪音、高效能之散熱器
US20170336153A1 (en) * 2016-05-12 2017-11-23 Price Industries Limited Gas turbulator for an indirect gas-fired air handling unit
JP6868633B2 (ja) * 2016-09-23 2021-05-12 住友精密工業株式会社 冷却装置
DE102016225508A1 (de) 2016-12-19 2018-06-21 Bayerische Motoren Werke Aktiengesellschaft Wärmeübertrager mit mehreren Wärmeübertragungsbereichen
CN106785828A (zh) * 2017-02-28 2017-05-31 武汉大学 一种用于光纤激光器的梯级冷却散热管
US20180328285A1 (en) * 2017-05-11 2018-11-15 Unison Industries, Llc Heat exchanger
CN107218825A (zh) * 2017-05-25 2017-09-29 合肥皖化电泵有限公司 一种具有高效热交换器的bcp泵
GB2565143B (en) * 2017-08-04 2021-08-04 Hieta Tech Limited Heat exchanger
DE102017222742A1 (de) * 2017-12-14 2019-06-19 Hanon Systems Rohr, insbesondere Flachrohr für einen Abgaskühler und Abgaskühler
CN109990638B (zh) * 2017-12-29 2021-08-24 杭州三花微通道换热器有限公司 扁管、换热器和扁管的制造方法
JP2019168171A (ja) * 2018-03-23 2019-10-03 サンデンホールディングス株式会社 熱交換器
DE102018124574B4 (de) * 2018-10-05 2022-09-29 Hanon Systems Rippenwärmeübertrager
DE102019204640A1 (de) * 2019-04-02 2020-10-08 Mahle International Gmbh Wärmeübertrager
US11073344B2 (en) * 2019-04-24 2021-07-27 Rheem Manufacturing Company Heat exchanger tubes
DE102019124277A1 (de) * 2019-09-10 2021-03-11 Carl Freudenberg Kg Mantelkühlungssystem
EP3836205A1 (fr) * 2019-12-13 2021-06-16 Valeo Siemens eAutomotive Germany GmbH Dispositif de refroidissement pour éléments de commutation à semiconducteur, dispositif d'onduleur, agencement et procédé de fabrication
DE102020004359A1 (de) 2020-07-20 2022-01-20 Daimler Ag Wärmeübertragungskörper
FR3133437A1 (fr) * 2022-03-08 2023-09-15 Valeo Systemes Thermiques Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile
FR3139891A1 (fr) * 2022-09-19 2024-03-22 Valeo Systemes Thermiques Echangeur thermique pour véhicule automobile, avec moyens de perturbation du fluide dans les canaux d’écoulement

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1095966A (fr) * 1953-02-14 1955-06-08 Conduit tubulaire pour échangeurs de chaleur
DE1066213B (fr) * 1956-11-21 1959-10-01
FR1252033A (fr) 1959-04-28 1961-01-27 Tubes d'échangeur de chaleur à surface rugueuse
NL263727A (fr) * 1960-04-18
DE1931148A1 (de) * 1969-06-19 1971-01-07 Otte & Co Kg Laurenz Konische Rauchgasfuehrung
JPS49123657U (fr) * 1973-02-16 1974-10-23
US4314587A (en) * 1979-09-10 1982-02-09 Combustion Engineering, Inc. Rib design for boiler tubes
US4353350A (en) * 1981-03-11 1982-10-12 Helmut Albrecht Fireplace heat exchanger
JPS58158247U (ja) * 1982-04-15 1983-10-21 松下電器産業株式会社 熱交換器
JPS60185094A (ja) * 1984-03-02 1985-09-20 Satoru Fujii 均一熱流伝熱管
US4945981A (en) * 1990-01-26 1990-08-07 General Motors Corporation Oil cooler
EP0766999B1 (fr) * 1993-07-05 2001-09-26 Packinox Procédé et appareil pour la régulation de températures réactionnelles
DE9406197U1 (de) 1994-04-14 1994-06-16 Behr Gmbh & Co Wärmetauscher zum Kühlen von Abgas eines Kraftfahrzeugmotors
US5600052A (en) * 1994-05-02 1997-02-04 Uop Process and apparatus for controlling reaction temperatures
DE19511665A1 (de) * 1995-03-30 1996-10-02 Abb Management Ag Verfahren und Vorrichtung zur Luftkühlung von Hubkolben-Verbrennungskraftmaschinen
US5655599A (en) * 1995-06-21 1997-08-12 Gas Research Institute Radiant tubes having internal fins
DE19540683A1 (de) 1995-11-01 1997-05-07 Behr Gmbh & Co Wärmeüberträger zum Kühlen von Abgas
WO1997037187A1 (fr) * 1996-03-30 1997-10-09 Imi Marston Limited Echangeur de chaleur a plaques presentant des zones de repartition
DE19654363B4 (de) * 1996-12-24 2007-09-27 Behr Gmbh & Co. Kg Abgaswärmeübertrager für einen Verbrennungsmotor
DE19654367A1 (de) 1996-12-24 1998-06-25 Behr Gmbh & Co Verfahren zum Anbringen von Laschen und/oder Vorsprüngen an einem Feinblech und Feinblech mit Laschen und/oder Vorrichtungen sowie Rechteckrohr aus Feinblechen
DE19654368B4 (de) 1996-12-24 2006-01-05 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere Abgaswärmeübertrager
DE19654366B4 (de) * 1996-12-24 2005-10-20 Behr Gmbh & Co Kg Strömungskanal, insbesondere für einen Abgaswärmeübertrager
US5901641A (en) * 1998-11-02 1999-05-11 Afc Enterprises, Inc. Baffle for deep fryer heat exchanger
SE521816C2 (sv) 1999-06-18 2003-12-09 Valeo Engine Cooling Ab Fluidtransportrör samt fordonskylare med sådant
WO2001018476A1 (fr) 1999-09-10 2001-03-15 Kasprzyk Martin R Insert pour tube radiant
DE10127084B4 (de) 2000-06-17 2019-05-29 Mahle International Gmbh Wärmeübertrager, insbesondere für Kraftfahrzeuge

Also Published As

Publication number Publication date
EP1899670A1 (fr) 2008-03-19
DE102005029321A1 (de) 2006-12-28
EP3048407B1 (fr) 2019-08-07
WO2006136437A1 (fr) 2006-12-28
US20100139631A1 (en) 2010-06-10
JP2008544207A (ja) 2008-12-04
JP5112304B2 (ja) 2013-01-09
EP3048407A1 (fr) 2016-07-27
EP3048407B9 (fr) 2019-11-27
US7942137B2 (en) 2011-05-17

Similar Documents

Publication Publication Date Title
EP1899670B1 (fr) Echangeur de chaleur
EP1837499B1 (fr) Dispositif destiné au refroidissement d&#39;un flux de gaz d&#39;échappement
EP1178278B1 (fr) Tube d&#39;échange de chaleur avec ailettes intérieures tordues
EP2267393B1 (fr) Canal d&#39;écoulement pour un échangeur de chaleur
EP2092259A1 (fr) Échangeur de chaleur
WO2004065876A1 (fr) Echangeur thermique, notamment refroidisseur de gaz d&#39;echappement pour automobiles
EP2066992A2 (fr) Échangeur thermique destiné à un moteur à combustion interne
EP1999423A2 (fr) Échangeur thermique pour véhicule automobile
EP1985953A1 (fr) Echangeur thermique, en particulier destiné au refroidissement des gaz d&#39;echappement, procédé d&#39;utiliser d&#39;un tel échangeur et système comprenant un refroidisseur EGR
DE102009047620B4 (de) Wärmeübertrager mit Rohrbündel
DE102007013302A1 (de) Wärmetauscher für ein Kraftfahrzeug
DE102010008175B4 (de) Wärmeübertrager
DE10100241A1 (de) Wärmetauscherrohr für flüssige oder gasförmige Medien
EP2029883A1 (fr) Échangeur de chaleur
EP3039372B1 (fr) Échangeur de chaleur
EP2096397A2 (fr) Nervure pour un échangeur thermique et procédé de fabrication
DE102008020230A1 (de) Wärmetauscher sowie Wärmetauscherrohr
EP1398592B1 (fr) Echangeur de chaleur à tubes plats
EP1673583B1 (fr) Refroidisseur d&#39;air de suralimentation / refrigerant
EP1331464B1 (fr) Echangeur de chaleur
DE102010043309A1 (de) Verfahren zum Anbringen von Winglets an einem Grundmaterial und Wingletrohr
EP2236789A1 (fr) Dispositif d&#39;introduction d&#39;air de combustion pour un moteur à combustion
EP1817533B1 (fr) Refroidisseur de fluide de refroidissement basse temperature
DE10349887A1 (de) Kühler für ein Abgas-Rückführ-System bei einem Verbrennungsmotor
DE102011006793A1 (de) Abgaskühler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

17Q First examination report despatched

Effective date: 20150427

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20160512

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 819450

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015099

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161210

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015099

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

26N No opposition filed

Effective date: 20170511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170623

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170623

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170623

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170623

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 819450

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200620

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200831

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006015099

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630