EP1899670B1 - Echangeur de chaleur - Google Patents
Echangeur de chaleur Download PDFInfo
- Publication number
- EP1899670B1 EP1899670B1 EP06762163.1A EP06762163A EP1899670B1 EP 1899670 B1 EP1899670 B1 EP 1899670B1 EP 06762163 A EP06762163 A EP 06762163A EP 1899670 B1 EP1899670 B1 EP 1899670B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flow
- heat exchanger
- variable
- structural elements
- winglets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/12—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/02—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/14—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by endowing the walls of conduits with zones of different degrees of conduction of heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/04—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
- F28F3/042—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/008—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
- F28D2021/0082—Charged air coolers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0003—Recuperative heat exchangers the heat being recuperated from exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/04—Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
- F28F2215/04—Assemblies of fins having different features, e.g. with different fin densities
Definitions
- the invention relates to a heat exchanger according to the preamble of claim 1 - known by the US 4,314,587 ,
- V-shaped arranged structural elements are formed by non-cutting deformation of the wall of the exhaust pipes.
- the V-shaped arranged structural elements also referred to as so-called winglets can thus economically, ie introduced at low cost in the exhaust pipes.
- the density of the structural elements is variable, and increases in the flow direction.
- the heat transfer coefficient on the inside of the flow channel is variable, and the heat transfer increases in the flow direction, while it is comparatively low or minimal in the inlet region of the flow.
- the invention is based on the recognition that the heat dissipation in the inlet region of the flow channel-for example, to a cooling medium flowing around the flow channel-is greater than in the downstream region of the flow channel due to the high temperature difference prevailing there, and that a forming on the inner wall of the flow channel, in the flow direction growing temperature boundary layer in the inlet region is still relatively thin.
- structural elements for increasing the heat transfer on the inside of the flow channel in favor of a reduced pressure drop in this area can be dispensed with in the inlet region.
- the density of the structural elements is adapted to the conditions prevailing locally in the flow channel with respect to temperature difference and temperature boundary layer.
- the inlet region of the flow channel initially smooth-walled ie be formed without structural elements, since - as mentioned - already in this area due to the high temperature difference and the small boundary layer thickness, a high power density is achieved.
- structural elements with increasing density or with the heat transfer increasingly increasing effect are arranged downstream in the flow channel.
- the structural elements are formed as swirl-generating indentations in the wall of the flow channel, as so-called winglets, as are known for exhaust gas heat exchangers according to the aforementioned prior art.
- the arrangement and design of the winglets in the flow channel is inventively made variable: so the distance between the winglets in the flow direction can increase continuously or gradually, as well as the height of the winglets, which extends into the flow. For manufacturing reasons, it is advantageous if the distances each amount to a multiple of the smallest distance. Further, the angle included by the V-shaped winglets can be increased continuously or stepwise in the flow direction, thereby also increasing the heat transfer, but also the pressure drop.
- the inventive arrangement of structural elements with variable density, in particular for exhaust gas heat exchanger of internal combustion engines for motor vehicles is advantageously used.
- Exhaust heat exchangers require one hand a high power density and on the other hand a low exhaust back pressure, so that the required EGR rates (proportion of recirculated exhaust gas in the total exhaust gas flow) can be achieved to achieve the emissions regulations.
- the reduced pressure drop resulting from the invention thus has a particularly advantageous effect when used as an exhaust gas heat exchanger.
- intercoolers for internal combustion engines and generally in gas flow channels are also be used.
- ribs in particular rib ribs are arranged as structural elements on the inside of the flow channel, which increase the heat transfer.
- the rib elements have a density which is variable in the flow direction, i. H. preferably gradually increases in the flow direction, which in turn can be dispensed with in the inlet area entirely on a réelleberippung.
- the change in density can advantageously be achieved in the case of a rib ridge by means of a variable longitudinal or transverse distribution or by a variable angle of attack for the flow. This also achieves the advantage of a reduced pressure drop.
- further measures could be taken to increase the heat transfer, e.g.
- the measures according to the invention are particularly advantageous in the inlet region of the respective flow channel, d. H. in the area of the flow, where there are still transient conditions with respect to the temperature difference and the thickness of the boundary layer.
- Fig. 1 shows a pipe 1 designed as a flow channel 2, which has an inlet cross-section 3 and is flowed through by a flow medium according to the arrow P.
- the pipe 1 is traversed by a hot exhaust gas of an internal combustion engine, not shown, and is part of a Abgäs Scriübertragers, not shown.
- the tube 1 has a smooth inner side or inner wall 1a and an outer wall or outer wall 1b, which is cooled by a preferably liquid coolant.
- the hot exhaust gas releases its heat via the pipe 1 to the coolant.
- a temperature boundary layer 4 forms on the inner wall 1a, which increases in its thickness d from the inlet cross-section 3 in the direction of flow of the arrow P.
- the temperature profile in this boundary layer 4 is represented by a temperature profile 5.
- the temperature in the temperature boundary layer thus rises from a temperature Ta on the inner wall 1a to a temperature level Ti in the interior of the flow channel (core flow), which corresponds to the exhaust gas inlet temperature. Due to the growing temperature boundary layer 4, the heat transfer conditions in the inlet region of the tube 1 deteriorate.
- Fig. 2 shows a diagram in which the heat transfer coefficient ⁇ is plotted as a relative size over the length I of a smooth-walled flow channel, ie from the inlet cross-section (reference numeral 3 in Fig. 1 ) in the flow direction of the flow medium.
- the length I is plotted in millimeters.
- Fig. 3a, 3b, 3c, 3d and 3e show a first embodiment with five different variants, namely the arrangement of structural elements with variable density.
- Fig. 3a shows in a first variant, which does not belong to the invention a schematically illustrated flow channel 6, preferably an exhaust pipe of a Abgastownschreibers not shown, wherein the exhaust pipe 6 is traversed according to the arrow P.
- the outside of the exhaust pipe 6 is - what is not shown, but from the above-mentioned prior art is known - preferably lapped by a liquid coolant - but is also possible air cooling.
- the exhaust pipe 6 is formed as a stainless steel tube, consisting of two halves welded together, with a rectangular cross-section.
- the exhaust pipe 6 has an inlet region 6a, which is smooth-walled over a length L. Downstream of the smooth-walled region 6a, a region 6b adjoins, in which are arranged V-shaped structural elements 7, so-called winglets, embossed from the tube wall.
- the winglet pairs 7 are arranged in the section 6b at the same distance and in the same formation.
- the transition from the smooth-walled region 6a to the winglets 7 occupied area 6b thus takes place in the form of a "step".
- a sufficiently large heat transfer or heat transfer is achieved in the smooth-walled region 6a, since the temperature difference is still sufficiently large and the temperature boundary layer is relatively small.
- a rectangular tube 8 is shown in longitudinal section, which also has a smooth-walled inlet region 8a and a channel height H. Downstream of this smooth-walled region 8a winglet pairs 9 are arranged with equal distances a in the flow direction, but with different heights h: projecting into the flow cross-section of the exhaust pipe 8 heights h of the winglet pairs 9 grow continuously in the flow direction P. Thus, the heat transfer in This pipe section has been successively increased. At the same time, the pressure drop increases. The transition from smooth to not smooth is thus continuous. In a preferred embodiment, a range of 0.05 ⁇ h / H ⁇ 0.4 is selected for the ratio h / H.
- Fig. 3c are in a tube 10 winglet pairs 11 with decreasing in the flow direction P distances a 1 , a 2 , a 3 arranged.
- the heat transfer starting from the smooth inlet region 10a, successively increased, since the density of the structural elements or winglets 11 is greater.
- the distances a 1 , a 2 , a 3 can each be a multiple of the minimum distance a x .
- the latter is advantageously in a range of 5 ⁇ a x ⁇ 50 mm and preferably in a range of 8 ⁇ a x ⁇ 30 mm.
- Fig. 3d shows a fourth variant, which does not belong to the invention for the arrangement of structural elements with different density in an exhaust pipe 12, which is permeable according to the arrow P of exhaust gas.
- the smooth-walled entry region 12a is shorter in comparison to the previous embodiments.
- This is followed by winglet pairs 13 with equal distances in the flow direction, but with different angles ⁇ (angle with respect to flow direction P).
- the winglets of the upstream winglet pair 12 are aligned almost parallel ( ⁇ 0), while the angle ⁇ formed by the winglets of the downstream winglet pair 13 is about 45 degrees.
- the intervening winglet pairs 13 have corresponding intermediate values, so that the heat transfer coefficient for the Inner wall of the exhaust pipe 13 due to the increasing spreading of the winglets in the flow direction grows, continuously or in small steps.
- the angle ⁇ is advantageously in a range of 20 ° ⁇ ⁇ 50 °
- Fig. 3e shows another variant of the invention with an exhaust pipe 30, a smooth-walled portion 30a and adjoining rows of parallel winglets 31, which each form an angle ⁇ with the flow direction P.
- the rows have in the flow direction P decreasing distances a 1 , a 2 , a 3 , wherein the angle ⁇ of the winglets 31 from row to row changes the sign.
- aiien pipes is preferably left at the beginning of the pipe and at the pipe end a smooth area without structural elements, so that at a lengthening of the tube a clean separation point can be produced.
- Fig. 4 shows a further embodiment, which does not belong to the invention, for a flow channel 14 which is according to the arrow P flows of a flow medium - this may be, for example, a liquid coolant or even charge air.
- the outside of the flow channel 14, 14 can be cooled by a gaseous or liquid cooling medium.
- the flow channel 14 has a smooth-walled inlet region 14a, which is adjoined in the flow direction P by a first region 14b provided with internal ribs 15 and by another ribbed region 14c thereon.
- the regions 14b and 14c have a different fin density - in the illustrated embodiment, the rib density in the downstream region 14c is twice as large as in the upstream region 14b, since between the continuous ribs 15 further ribs 16 are arranged. Thus, an increase of the heat transfer is also achieved, in stages from 14a to 14b to 14c.
- Fig. 5 shows as a further embodiment, which does not belong to the invention, a gas flow channel in which a Stegrippe 17 with variable longitudinal pitch t 1 , t 2 , t 3 , t 4 , t 5 is arranged.
- t 1 > t 2 > t 3 > t 4 > t 5 ie the heat transfer increases from t 1 to t 5 , ie in the flow direction P too.
- Web ribs are used in particular for intercoolers and are preferably soldered to the pipes.
- the ratio of the smallest pitch t x to the channel height H has a limit of 0.3 ⁇ t x / H.
- Fig. 6 Also shows an embodiment, which does not belong to the invention, a gas flow channel in which a Stegrippe 18 with variable angles of attack ⁇ 1 , ⁇ 2 , ⁇ 3 ... ⁇ x is arranged.
- Advantageous angles of attack are in the range of 0 ⁇ ⁇ 30 °.
- Fig. 7 shows as an embodiment, which does not belong to the invention, a gas flow channel in which a ridge rib 19 with variable transverse pitch q 1 , q 2 , q 3 ... q 6 is arranged, the heat transfer with decreasing transverse division of q 1 in the direction q 6. ie in the flow direction P increases.
- Advantageous areas for the transverse division q are 8>q> 1 mm and preferably 5>q> 2 mm.
- Fig. 8 shows in a gas flow channel a corrugated in the flow direction P (deep waved) inner fin 20 with variable pitch t 1 , t 2 , t 3 , t 4 - the heat transfer increases here in the direction of decreasing pitch t.
- Advantageous ranges for the pitch t are 10 ⁇ t ⁇ 50 mm.
- a variation of the heat transfer in the flow channel can also be achieved by further means known from the prior art, for example by arranging gills or windows in the ribs.
- other forms of structural elements for vortex generation or to increase the heat transfer can be selected.
- the application of the invention is not limited to exhaust gas heat exchangers, but also extends to intercoolers whose tubes are flowed through by hot charge air, and generally to gas flow channels, which may be formed as tubes of a tube heat exchanger or as slices of Scheibennzoübertragers.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Claims (25)
- Echangeur de chaleur comprenant au moins un conduit d'écoulement pouvant être traversé par un milieu d'écoulement, depuis une section d'entrée jusqu'à une section de sortie, et présentant un côté intérieur et un côté extérieur, lequel conduit d'écoulement présente, sur le côté intérieur, des éléments de structure servant à l'augmentation du transfert de chaleur, où les éléments de structure (7, 9, 11, 13, 15, 16, 17, 18, 19, 20, 31) sont disposés et / ou configurés de façon variable, dans la direction d'écoulement (P), de manière telle que le conduit d'écoulement (6, 8, 10, 12, 14, 30) présente, sur le côté intérieur, un transfert de chaleur variable et augmentant dans la direction d'écoulement (P), où la densité des éléments de structure (11; 15, 16; 19; 31) est variable et croissante dans la direction d'écoulement (P), les éléments de structure étant configurés comme des générateurs de tourbillons, ce que l'on appelle des winglets (7, 9, 11, 13, 31), caractérisé en ce que les winglets (11, 31) sont disposées en rangées et forment, avec la direction d'écoulement (P), un angle (β), où l'angle (β) présente pour des winglets adjacentes, un signe identique ou opposé, et les winglets (11, 31) sont disposées en rangées transversalement par rapport à la direction d'écoulement (P), et en ce que les rangées présentent un espacement (a1, a2, a3 ... ax) variable et diminuant dans la direction d'écoulement.
- Echangeur de chaleur selon la revendication 1, caractérisé en ce que les éléments de structure (9, 11, 13, 15, 16, 17, 18, 19, 20, 31) présentent une résistance à l'écoulement par rapport au milieu d'écoulement et sont disposés et / ou configurés de manière telle, que la chute de pression soit variable dans le conduit d'écoulement (8, 10, 12, 14), en particulier qu'elle soit minimale dans la zone d'entrée (6a, 8a, 10a, 12a, 14a, 30a).
- Echangeur de chaleur selon la revendication 1 ou 2, caractérisé en ce que le conduit d'écoulement (6, 8, 10, 12, 14, 30) présente, à partir de la section d'entrée, une partie à paroi lisse (6a, 8a, 10a, 12a, 14a, 30a) sans élément de structure.
- Echangeur de chaleur selon la revendication 3, caractérisé en ce que la partie à paroi lisse (6a, 8a, 10a, 12a, 14a, 30a) présente, dans la direction d'écoulement (P), une longueur L où L est ≤ 100 mm.
- Echangeur de chaleur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les éléments de structure sont configurés comme un ailetage intérieur, comme des ailettes intérieures (15, 16, 20), des ailettes nervurées (17, 18, 19) et / ou comme des éléments rapportés créant des turbulences, et sont brasés en particulier dans les conduits d'écoulement.
- Echangeur de chaleur selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les winglets (13, 31) forment, avec la direction d'écoulement (P), un angle β qui est variable, augmentant en particulier dans la direction d'écoulement (P).
- Echangeur de chaleur selon la revendication 6, caractérisé en ce que l'angle β présente une zone de 20° < β < 50°.
- Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que les winglets (9) présentent une hauteur (h) faisant saillie à l'intérieur du conduit d'écoulement, hauteur qui est variable, en particulier croissante dans la direction d'écoulement (P).
- Echangeur de chaleur selon la revendication 8, caractérisé en ce que le conduit d'écoulement (8) présente une hauteur H, et le rapport de h/H présente une zone de 0,05 ≤ h/H ≤ 0,4.
- Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le plus petit espacement ax présente une zone de 5 < ax < 50 mm, en particulier une zone de 8 < ax < 30 mm.
- Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que l'espacement (a1, a2, a3 ...) des rangées est un multiple (entier) du plus petit espacement ax.
- Echangeur de chaleur selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'une zone lisse (sans élément de structure) est laissée, comme point de séparation, au niveau de l'extrémité d'un conduit d'écoulement, située côté amont et côté aval.
- Utilisation de l'échangeur de chaleur selon l'une quelconque des revendications 1 à 4 ou 6 à 12, comme échangeur de chaleur de gaz d'échappement, où les conduits d'écoulement sont conçus comme des tuyaux d'échappement (6, 8, 10, 12, 30) traversés par des gaz d'échappement et baignés par un moyen de refroidissement en circulation.
- Echangeur de chaleur selon la revendication 5, caractérisé en ce que les éléments de structure, en particulier les ailettes intérieures (15, 16), présentent une densité d'ailettes qui est variable dans la direction d'écoulement, en particulier croissante dans la direction d'écoulement (P).
- Echangeur de chaleur selon la revendication 14, caractérisé en ce que la densité d'ailettes augmente par paliers (14b, 14c).
- Echangeur de chaleur selon la revendication 5, caractérisé en ce que l'ailette nervurée (17) présente une segmentation longitudinale variable (t1, t2, t3, t4, t5 ... tx).
- Echangeur de chaleur selon la revendication 16, caractérisé en ce que la plus petite segmentation longitudinale tx présente une valeur limite tx > 0,3 H, où H est la hauteur du conduit.
- Echangeur de chaleur selon la revendication 5, caractérisé en ce que l'ailette nervurée (18) présente un angle d'incidence variable (α1, α2, α3 ... αx), où l'angle d'incidence se situe de préférence dans la zone de 0 < α < 30°.
- Echangeur de chaleur selon la revendication 5, caractérisé en ce que l'ailette nervurée (19) présente une segmentation transversale variable (q1, q2, q3 ... qx).
- Echangeur de chaleur selon la revendication 19, caractérisé en ce que la segmentation transversale q présente une zone de 8 > q > 1 mm, de préférence de 5 > q > 2 mm.
- Echangeur de chaleur selon la revendication 5, caractérisé en ce que l'ailette intérieure (20) présente une ondulation longitudinale à segmentation variable (t1, t2, t3, t4).
- Echangeur de chaleur selon la revendication 21, caractérisé en ce que la segmentation t de l'ailette intérieure (20) présente une zone de 10 < t < 50 mm.
- Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que les conduits d'écoulement sont conçus comme des tubes, en particulier comme des tubes d'un faisceau de tubes.
- Echangeur de chaleur selon l'une quelconque des revendications 1 à 22, caractérisé en ce que les conduits d'écoulement sont conçus comme des plaques, en particulier comme des plaques d'un paquet de plaques.
- Utilisation de l'échangeur de chaleur selon l'une quelconque des revendications 14 à 24, comme refroidisseur d'air de suralimentation servant au refroidissement d'air de combustion pour un moteur à combustion interne d'un véhicule automobile.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15202230.7A EP3048407B9 (fr) | 2005-06-24 | 2006-06-23 | Fluide caloporteur |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005029321A DE102005029321A1 (de) | 2005-06-24 | 2005-06-24 | Wärmeübertrager |
PCT/EP2006/006071 WO2006136437A1 (fr) | 2005-06-24 | 2006-06-23 | Echangeur de chaleur |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15202230.7A Division EP3048407B9 (fr) | 2005-06-24 | 2006-06-23 | Fluide caloporteur |
EP15202230.7A Division-Into EP3048407B9 (fr) | 2005-06-24 | 2006-06-23 | Fluide caloporteur |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1899670A1 EP1899670A1 (fr) | 2008-03-19 |
EP1899670B1 true EP1899670B1 (fr) | 2016-08-10 |
Family
ID=37114549
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06762163.1A Not-in-force EP1899670B1 (fr) | 2005-06-24 | 2006-06-23 | Echangeur de chaleur |
EP15202230.7A Active EP3048407B9 (fr) | 2005-06-24 | 2006-06-23 | Fluide caloporteur |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15202230.7A Active EP3048407B9 (fr) | 2005-06-24 | 2006-06-23 | Fluide caloporteur |
Country Status (5)
Country | Link |
---|---|
US (1) | US7942137B2 (fr) |
EP (2) | EP1899670B1 (fr) |
JP (1) | JP5112304B2 (fr) |
DE (1) | DE102005029321A1 (fr) |
WO (1) | WO2006136437A1 (fr) |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100243220A1 (en) * | 2006-11-15 | 2010-09-30 | Behr Gmbh & Co. Kg | Heat exchanger |
US20080271877A1 (en) * | 2007-02-21 | 2008-11-06 | Gerald Glass | Apparatus for multi-tube heat exchanger with turbulence promoters |
JP5022075B2 (ja) * | 2007-03-27 | 2012-09-12 | 東京ラヂエーター製造株式会社 | 建設機械用オイルクーラのチューブ内部構造 |
DE102007041338B3 (de) * | 2007-08-31 | 2008-12-11 | Pierburg Gmbh | Wärmeübertragungseinheit für eine Verbrennungskraftmaschine |
EP2242979B1 (fr) * | 2008-01-10 | 2014-09-24 | Behr GmbH & Co. KG | Tube filé pour échangeur de chaleur |
DE102008036222B3 (de) | 2008-08-02 | 2009-08-06 | Pierburg Gmbh | Wärmeübertragungseinheit für eine Verbrennungskraftmaschine |
FR2938637B1 (fr) * | 2008-11-18 | 2013-01-04 | Cie Mediterraneenne Des Cafes | Conduit de circulation d'un fluide |
JP5254082B2 (ja) * | 2009-03-05 | 2013-08-07 | 株式会社ユタカ技研 | 熱交換用チューブ |
JP2010249373A (ja) * | 2009-04-14 | 2010-11-04 | Panasonic Corp | 熱交換器およびそれを用いたヒートポンプ給湯機 |
DE102009026546B4 (de) | 2009-05-28 | 2012-05-16 | Schott Solar Ag | Sonnenkollektor |
IT1399246B1 (it) * | 2009-11-03 | 2013-04-11 | Advanced Res Consulting S R L | Scambiatore di calore tubolare, in particolare tubo ricevitore per un impianto solare a concentrazione. |
JP2011214786A (ja) * | 2010-03-31 | 2011-10-27 | Yutaka Giken Co Ltd | 熱交換器 |
CA2834938C (fr) * | 2011-05-02 | 2019-06-25 | Hitesh BINDRA | Stockage d'energie thermique pour centrales a cycle combine |
US20120312515A1 (en) * | 2011-06-10 | 2012-12-13 | Waukesha Electric Systems, Inc. | Apparatus for heat dissipation of transforming radiators |
JP5915187B2 (ja) * | 2012-01-10 | 2016-05-11 | マツダ株式会社 | 熱交換器 |
DE102012208742A1 (de) * | 2012-03-28 | 2013-10-02 | Mahle International Gmbh | Abgaskühler |
US20150122467A1 (en) * | 2012-05-29 | 2015-05-07 | Hangzhou Shenshi Energy Conservation Technology Co., Ltd. | Micro-channel structure for heat exchanger and integrated type micro-channel heat exchanger |
JP6018196B2 (ja) * | 2012-05-30 | 2016-11-02 | 京セラ株式会社 | 流路部材およびこれを用いた熱交換器ならびに半導体製造装置 |
DE102012013755B8 (de) * | 2012-07-12 | 2022-01-13 | Al-Ko Therm Gmbh | Wärmetauscherplatteneinheit, Wärmetauscher und Verfahren zur Herstellung eines Wärmetauschers |
FR2993354B1 (fr) * | 2012-07-13 | 2018-07-13 | Delphi Automotive Systems Lux | Refroidisseur d'air de suralimentation |
BR112015021634A8 (pt) | 2013-03-14 | 2019-11-19 | Duramax Marine Llc | conjunto de arrefecimento de quilha para uso em uma embarcação marítima e tubo de líquido de arrefecimento |
JP6203080B2 (ja) * | 2013-04-23 | 2017-09-27 | カルソニックカンセイ株式会社 | 熱交換器 |
US20140332188A1 (en) * | 2013-05-09 | 2014-11-13 | Ford Global Technologies, Llc | Heat exchanger |
DE102013020469A1 (de) | 2013-12-06 | 2015-06-11 | Webasto SE | Wärmeübertrager und Verfahren zum Herstellen eines Wärmeübertragers |
KR101569829B1 (ko) * | 2014-06-13 | 2015-11-19 | 주식회사 코렌스 | Egr 가스 차압 저감용 웨이브 핀 플레이트를 갖는 열교환기 |
JP6459027B2 (ja) * | 2014-07-15 | 2019-01-30 | 国立大学法人 東京大学 | 熱交換器 |
DE102014010891A1 (de) * | 2014-07-23 | 2016-01-28 | Webasto SE | Wärmeübertrager und Baukastensystem zur Herstellung eines Wärmeübertragers |
JP6464598B2 (ja) * | 2014-07-31 | 2019-02-06 | いすゞ自動車株式会社 | 内燃機関の冷却システム |
US9528771B2 (en) | 2014-10-27 | 2016-12-27 | Hussmann Corporation | Heat exchanger with non-linear coil |
JP6256295B2 (ja) * | 2014-10-28 | 2018-01-10 | 株式会社デンソー | 熱交換器 |
US20160123683A1 (en) * | 2014-10-30 | 2016-05-05 | Ford Global Technologies, Llc | Inlet air turbulent grid mixer and dimpled surface resonant charge air cooler core |
CN104602469B (zh) * | 2015-01-15 | 2017-09-26 | 华为技术有限公司 | 机柜 |
JP6435209B2 (ja) * | 2015-02-18 | 2018-12-05 | ダイキョーニシカワ株式会社 | 発熱体の冷却構造 |
US10222106B2 (en) * | 2015-03-31 | 2019-03-05 | The Boeing Company | Condenser apparatus and method |
CN107921400B (zh) | 2015-06-10 | 2020-10-27 | 康宁股份有限公司 | 具有可调传热能力的连续流动反应器 |
CN105115338B (zh) * | 2015-08-31 | 2017-08-25 | 东南大学 | 一种相变蓄热装置 |
ITUB20155713A1 (it) * | 2015-11-18 | 2017-05-18 | Robur Spa | Tubo di fiamma migliorato. |
WO2017116845A1 (fr) * | 2015-12-28 | 2017-07-06 | Carrier Corporation | Conduit plié pour applications d'échangeur thermique |
CN107105595A (zh) * | 2016-02-19 | 2017-08-29 | 恩佐科技股份有限公司 | 利用散热体排列达低风压需求、低噪音、高效能的散热器 |
TWM528417U (zh) * | 2016-02-19 | 2016-09-11 | Enzotechnology Corp | 利用散熱體排列達低風壓需求、低噪音、高效能之散熱器 |
US20170336153A1 (en) * | 2016-05-12 | 2017-11-23 | Price Industries Limited | Gas turbulator for an indirect gas-fired air handling unit |
CN109691251A (zh) * | 2016-09-23 | 2019-04-26 | 住友精密工业株式会社 | 冷却装置 |
DE102016225508A1 (de) | 2016-12-19 | 2018-06-21 | Bayerische Motoren Werke Aktiengesellschaft | Wärmeübertrager mit mehreren Wärmeübertragungsbereichen |
CN106785828A (zh) * | 2017-02-28 | 2017-05-31 | 武汉大学 | 一种用于光纤激光器的梯级冷却散热管 |
US20180328285A1 (en) * | 2017-05-11 | 2018-11-15 | Unison Industries, Llc | Heat exchanger |
CN107218825A (zh) * | 2017-05-25 | 2017-09-29 | 合肥皖化电泵有限公司 | 一种具有高效热交换器的bcp泵 |
GB2565143B (en) * | 2017-08-04 | 2021-08-04 | Hieta Tech Limited | Heat exchanger |
DE102017222742A1 (de) * | 2017-12-14 | 2019-06-19 | Hanon Systems | Rohr, insbesondere Flachrohr für einen Abgaskühler und Abgaskühler |
CN109990638B (zh) * | 2017-12-29 | 2021-08-24 | 杭州三花微通道换热器有限公司 | 扁管、换热器和扁管的制造方法 |
JP2019168171A (ja) * | 2018-03-23 | 2019-10-03 | サンデンホールディングス株式会社 | 熱交換器 |
DE102018124574B4 (de) * | 2018-10-05 | 2022-09-29 | Hanon Systems | Rippenwärmeübertrager |
DE102019204640A1 (de) | 2019-04-02 | 2020-10-08 | Mahle International Gmbh | Wärmeübertrager |
US11073344B2 (en) * | 2019-04-24 | 2021-07-27 | Rheem Manufacturing Company | Heat exchanger tubes |
DE102019124277A1 (de) * | 2019-09-10 | 2021-03-11 | Carl Freudenberg Kg | Mantelkühlungssystem |
EP3836205A1 (fr) * | 2019-12-13 | 2021-06-16 | Valeo Siemens eAutomotive Germany GmbH | Dispositif de refroidissement pour éléments de commutation à semiconducteur, dispositif d'onduleur, agencement et procédé de fabrication |
JP7428538B2 (ja) * | 2020-02-27 | 2024-02-06 | 三菱重工業株式会社 | 熱交換コア |
DE102020004359A1 (de) | 2020-07-20 | 2022-01-20 | Daimler Ag | Wärmeübertragungskörper |
FR3133437A1 (fr) * | 2022-03-08 | 2023-09-15 | Valeo Systemes Thermiques | Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile |
KR102709138B1 (ko) * | 2022-08-30 | 2024-09-23 | 한양대학교 산학협력단 | 파워 모듈을 위한 히트싱크 |
FR3139891A1 (fr) * | 2022-09-19 | 2024-03-22 | Valeo Systemes Thermiques | Echangeur thermique pour véhicule automobile, avec moyens de perturbation du fluide dans les canaux d’écoulement |
US20240121913A1 (en) * | 2022-10-11 | 2024-04-11 | Amulaire Thermal Technology, Inc. | Vehicle water-cooling heat sink plate having fin sets with different surface areas |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1095966A (fr) * | 1953-02-14 | 1955-06-08 | Conduit tubulaire pour échangeurs de chaleur | |
DE1066213B (fr) * | 1956-11-21 | 1959-10-01 | ||
FR1252033A (fr) * | 1959-04-28 | 1961-01-27 | Tubes d'échangeur de chaleur à surface rugueuse | |
NL263727A (fr) * | 1960-04-18 | |||
DE1931148A1 (de) * | 1969-06-19 | 1971-01-07 | Otte & Co Kg Laurenz | Konische Rauchgasfuehrung |
JPS49123657U (fr) * | 1973-02-16 | 1974-10-23 | ||
US4314587A (en) * | 1979-09-10 | 1982-02-09 | Combustion Engineering, Inc. | Rib design for boiler tubes |
US4353350A (en) * | 1981-03-11 | 1982-10-12 | Helmut Albrecht | Fireplace heat exchanger |
JPS58158247U (ja) * | 1982-04-15 | 1983-10-21 | 松下電器産業株式会社 | 熱交換器 |
JPS60185094A (ja) * | 1984-03-02 | 1985-09-20 | Satoru Fujii | 均一熱流伝熱管 |
US4945981A (en) * | 1990-01-26 | 1990-08-07 | General Motors Corporation | Oil cooler |
CA2166564A1 (fr) * | 1993-07-05 | 1995-01-19 | Christine Jeannine Bernadette Girod | Procede et dispositif de reglage de temperature de reaction |
DE9406197U1 (de) | 1994-04-14 | 1994-06-16 | Behr Gmbh & Co | Wärmetauscher zum Kühlen von Abgas eines Kraftfahrzeugmotors |
US5600052A (en) * | 1994-05-02 | 1997-02-04 | Uop | Process and apparatus for controlling reaction temperatures |
DE19511665A1 (de) * | 1995-03-30 | 1996-10-02 | Abb Management Ag | Verfahren und Vorrichtung zur Luftkühlung von Hubkolben-Verbrennungskraftmaschinen |
US5655599A (en) * | 1995-06-21 | 1997-08-12 | Gas Research Institute | Radiant tubes having internal fins |
DE19540683A1 (de) | 1995-11-01 | 1997-05-07 | Behr Gmbh & Co | Wärmeüberträger zum Kühlen von Abgas |
EP0828983A1 (fr) * | 1996-03-30 | 1998-03-18 | Imi Marston Limited | Echangeur de chaleur a plaques presentant des zones de repartition |
DE19654363B4 (de) * | 1996-12-24 | 2007-09-27 | Behr Gmbh & Co. Kg | Abgaswärmeübertrager für einen Verbrennungsmotor |
DE19654366B4 (de) * | 1996-12-24 | 2005-10-20 | Behr Gmbh & Co Kg | Strömungskanal, insbesondere für einen Abgaswärmeübertrager |
DE19654368B4 (de) | 1996-12-24 | 2006-01-05 | Behr Gmbh & Co. Kg | Wärmeübertrager, insbesondere Abgaswärmeübertrager |
DE19654367A1 (de) * | 1996-12-24 | 1998-06-25 | Behr Gmbh & Co | Verfahren zum Anbringen von Laschen und/oder Vorsprüngen an einem Feinblech und Feinblech mit Laschen und/oder Vorrichtungen sowie Rechteckrohr aus Feinblechen |
US5901641A (en) * | 1998-11-02 | 1999-05-11 | Afc Enterprises, Inc. | Baffle for deep fryer heat exchanger |
SE521816C2 (sv) | 1999-06-18 | 2003-12-09 | Valeo Engine Cooling Ab | Fluidtransportrör samt fordonskylare med sådant |
US6484795B1 (en) * | 1999-09-10 | 2002-11-26 | Martin R. Kasprzyk | Insert for a radiant tube |
DE10127084B4 (de) | 2000-06-17 | 2019-05-29 | Mahle International Gmbh | Wärmeübertrager, insbesondere für Kraftfahrzeuge |
-
2005
- 2005-06-24 DE DE102005029321A patent/DE102005029321A1/de not_active Withdrawn
-
2006
- 2006-06-23 WO PCT/EP2006/006071 patent/WO2006136437A1/fr active Application Filing
- 2006-06-23 JP JP2008517429A patent/JP5112304B2/ja not_active Expired - Fee Related
- 2006-06-23 US US11/993,232 patent/US7942137B2/en not_active Expired - Fee Related
- 2006-06-23 EP EP06762163.1A patent/EP1899670B1/fr not_active Not-in-force
- 2006-06-23 EP EP15202230.7A patent/EP3048407B9/fr active Active
Also Published As
Publication number | Publication date |
---|---|
JP5112304B2 (ja) | 2013-01-09 |
US7942137B2 (en) | 2011-05-17 |
WO2006136437A1 (fr) | 2006-12-28 |
US20100139631A1 (en) | 2010-06-10 |
EP3048407A1 (fr) | 2016-07-27 |
EP1899670A1 (fr) | 2008-03-19 |
EP3048407B1 (fr) | 2019-08-07 |
DE102005029321A1 (de) | 2006-12-28 |
EP3048407B9 (fr) | 2019-11-27 |
JP2008544207A (ja) | 2008-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1899670B1 (fr) | Echangeur de chaleur | |
EP1837499B1 (fr) | Dispositif destiné au refroidissement d'un flux de gaz d'échappement | |
EP1178278B1 (fr) | Tube d'échange de chaleur avec ailettes intérieures tordues | |
DE69216389T2 (de) | Versetzt angeordnete streifenförmige rippe für einen kompakten wärmetauscher | |
EP2267393B1 (fr) | Canal d'écoulement pour un échangeur de chaleur | |
EP2092259A1 (fr) | Échangeur de chaleur | |
WO2004065876A1 (fr) | Echangeur thermique, notamment refroidisseur de gaz d'echappement pour automobiles | |
EP2066992A2 (fr) | Échangeur thermique destiné à un moteur à combustion interne | |
EP1999423A2 (fr) | Échangeur thermique pour véhicule automobile | |
DE102009047620B4 (de) | Wärmeübertrager mit Rohrbündel | |
DE102010008175B4 (de) | Wärmeübertrager | |
DE102007013302A1 (de) | Wärmetauscher für ein Kraftfahrzeug | |
DE10100241A1 (de) | Wärmetauscherrohr für flüssige oder gasförmige Medien | |
WO2007137863A1 (fr) | Échangeur de chaleur | |
EP3039372B1 (fr) | Échangeur de chaleur | |
EP2096397A2 (fr) | Nervure pour un échangeur thermique et procédé de fabrication | |
DE102008020230A1 (de) | Wärmetauscher sowie Wärmetauscherrohr | |
EP1398592B1 (fr) | Echangeur de chaleur à tubes plats | |
EP1673583B1 (fr) | Refroidisseur d'air de suralimentation / refrigerant | |
DE102010043309A1 (de) | Verfahren zum Anbringen von Winglets an einem Grundmaterial und Wingletrohr | |
EP2236789A1 (fr) | Dispositif d'introduction d'air de combustion pour un moteur à combustion | |
EP1817533B1 (fr) | Refroidisseur de fluide de refroidissement basse temperature | |
DE10349887A1 (de) | Kühler für ein Abgas-Rückführ-System bei einem Verbrennungsmotor | |
DE20013591U1 (de) | Wärmeübertragungsrohr mit gedrallten Innenrippen | |
DE102011006793A1 (de) | Abgaskühler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080124 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAHLE BEHR GMBH & CO. KG |
|
17Q | First examination report despatched |
Effective date: 20150427 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151216 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
INTG | Intention to grant announced |
Effective date: 20160512 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 819450 Country of ref document: AT Kind code of ref document: T Effective date: 20160815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502006015099 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160810 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160810 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161210 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160810 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161212 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160810 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161111 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160810 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160810 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160810 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160810 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006015099 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161110 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160810 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160810 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160810 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
26N | No opposition filed |
Effective date: 20170511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160810 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170623 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170623 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170623 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170623 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 819450 Country of ref document: AT Kind code of ref document: T Effective date: 20170623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20060623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160810 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200620 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200831 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006015099 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |