EP1899670B1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
EP1899670B1
EP1899670B1 EP06762163.1A EP06762163A EP1899670B1 EP 1899670 B1 EP1899670 B1 EP 1899670B1 EP 06762163 A EP06762163 A EP 06762163A EP 1899670 B1 EP1899670 B1 EP 1899670B1
Authority
EP
European Patent Office
Prior art keywords
flow
heat exchanger
variable
structural elements
winglets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06762163.1A
Other languages
German (de)
French (fr)
Other versions
EP1899670A1 (en
Inventor
Peter Geskes
Ulrich Maucher
Michael Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Priority to EP15202230.7A priority Critical patent/EP3048407B9/en
Publication of EP1899670A1 publication Critical patent/EP1899670A1/en
Application granted granted Critical
Publication of EP1899670B1 publication Critical patent/EP1899670B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/14Arrangements for modifying heat-transfer, e.g. increasing, decreasing by endowing the walls of conduits with zones of different degrees of conduction of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

Die Erfindung betrifft einen Wärmeübertrager nach dem Oberbegriff des Patentanspruches 1 - bekannt durch die US 4,314,587 .The invention relates to a heat exchanger according to the preamble of claim 1 - known by the US 4,314,587 ,

Es ist bekannt, in Strömungskanälen von Wärmeübertragern zur Erhöhung des Wärmeüberganges Strukturelemente anzuordnen, welche Wirbel und eine turbulente Strömung erzeugen. Derartige Strukturelemente sind in verschiedensten Ausführungsformen bekannt, z. B. als gewellte Innenrippen, Turbulenzeinlagen, Stegrippen oder auch als aus der Wand des Strömungskanals ausgeformte Wirbelerzeuger, welche in die Strömung hineinragen. Durch die EP 0 677 715 A1 , der Anmelderin wurde ein Wärmeübertrager mit Turbulenzeinlagen bekannt, welche paarweise aufgestellte, einen Winkel zur Strömungsrichtung bildende Laschen aufweisen. Der bekannte Wärmeübertrager wird insbesondere zur Kühlung von Abgas verwendet, wobei eine Flüssigkeitskühlung oder Luftkühlung vorgesehen ist. Die V-förmig angeordneten Laschen mit sich in Strömungsrichtung öffnendem V erzeugen einerseits eine turbulente Strömung und verhindern durch ihre Wirbelbildung eine Ablagerung von Ruß, welcher im Abgas enthalten ist.It is known to arrange in the flow channels of heat exchangers to increase the heat transfer structure elements which generate vortex and a turbulent flow. Such structural elements are known in various embodiments, for. B. as corrugated inner ribs, turbulence inserts, rib ribs or as formed from the wall of the flow channel vortex generator, which protrude into the flow. By the EP 0 677 715 A1 , the applicant has been known a heat exchanger with turbulence inserts, which have paired up, forming an angle to the flow direction tabs. The known heat exchanger is used in particular for cooling exhaust gas, wherein a liquid cooling or air cooling is provided. The V-shaped tabs with opening V in the flow direction on the one hand produce a turbulent flow and prevent by their vortex formation, a deposit of soot, which is contained in the exhaust gas.

Weiterentwicklungen der V-förmig angeordneten Strukturelemente wurden durch die DE 195 40 683 A1 , die DE 196 54 367 A1 sowie die DE 196 54 368 A1 der Anmelderin für Abgaswärmeübertrager bekannt. Dabei sind die V-förmig angeordneten Strukturelemente durch spanlose Umformung aus der Wandung der Abgasrohre ausgeformt. Die V-förmig angeordneten Strukturelemente, auch als so genannte Winglets bezeichnet, können somit wirtschaftlich, d. h. zu geringen Kosten in die Abgasrohre eingebracht werden.Further developments of the V-shaped arranged structural elements were by the DE 195 40 683 A1 , the DE 196 54 367 A1 as well as the DE 196 54 368 A1 the applicant for exhaust heat exchanger known. Here, the V-shaped arranged structural elements are formed by non-cutting deformation of the wall of the exhaust pipes. The V-shaped arranged structural elements, Also referred to as so-called winglets can thus economically, ie introduced at low cost in the exhaust pipes.

Wie durch die EP 1 061 319 A1 und die DE 101 27 084 A1 der Anmelderin bekannt geworden, werden ähnliche Strukturelemente auch für andere Arten von Wärmeübertragern, z. B. luftgekühlte Kühlmittelkühler verwendet. Allen bekannten Strukturelementen ist gemeinsam, dass sie im wesentlichen gleichmäßig über die gesamte Länge der betreffenden Strömungskanäle, seien es Abgasrohre oder Kühlmittelflachrohre, verteilt sind. Einerseits wird durch die Strukturelemente der gewünschte erhöhte Wärmeübergang erzielt, andererseits wird dieser Vorteil mit einem erhöhten Druckabfall auf der Abgas- bzw. Kühlmittelseite erkauft. Insbesondere bei Abgaswärmeübertragern, welche in der Abgasrückführung eines Verbrennungsmotors angeordnet sind, ist ein erhöhter Druckabfall wegen des damit einhergehenden erhöhten Abgasgegendruckes nicht erwünscht. Andererseits wird insbesondere für Abgaswärmeübertrager von Kraftfahrzeugen eine erhöhte Leistungsdichte gefordert.How through the EP 1 061 319 A1 and the DE 101 27 084 A1 become known to the applicant, similar structural elements for other types of heat exchangers, for. B. air-cooled coolant cooler used. All known structural elements have in common that they are distributed substantially uniformly over the entire length of the respective flow channels, be it exhaust pipes or coolant flat pipes. On the one hand, the desired increased heat transfer is achieved by the structural elements, on the other hand, this advantage is paid for with an increased pressure drop on the exhaust gas or coolant side. In particular, in exhaust gas heat exchangers, which are arranged in the exhaust gas recirculation of an internal combustion engine, an increased pressure drop is not desirable because of the associated increased exhaust backpressure. On the other hand, an increased power density is required in particular for exhaust gas heat exchanger of motor vehicles.

Es ist Aufgabe der vorliegenden Erfindung, einen Wärmeübertrager der eingangs genannten Art dahingehend zu verbessern, dass ein Optimum zwischen Leistungsdichte und Druckabfall erzielt wird.It is an object of the present invention to improve a heat exchanger of the type mentioned in that an optimum between power density and pressure drop is achieved.

Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst. Erfindungsgemäß ist vorgesehen, dass die Dichte der Strukturelemente variabel, ist und in Strömungsrichtung Zu nimmt. Mit dieser konstruktiven Maßnahme wird auch die Wärmeübergangszahl auf der Innenseite des Strömungskanals variabel, und der Wärmeübergang nimmt in Strömungsrichtung zu, während er im Eintrittsbereich der Strömung vergleichsweise gering oder minimal ist. Die Erfindung geht von der Erkenntnis aus, dass die Wärmeabfuhr im Eintrittsbereich des Strömungskanals - beispielsweise an ein den Strömungskanal umströmendes Kühlmedium - aufgrund der dort herrschenden hohen Temperaturdifferenz größer als im stromabwärtigen Bereich des Strömungskanals ist, und dass eine sich an der Innenwand des Strömungskanals ausbildende, in Strömungsrichtung wachsende Temperaturgrenzschicht im Eintrittsbereich noch relativ dünn ist. Insofern kann im Eintrittsbereich auf Strukturelemente zur Erhöhung des Wärmeüberganges auf der Innenseite des Strömungskanals zu Gunsten eines in diesem Bereich reduzierten Druckabfalls verzichtet werden. Die Dichte der Strukturelemente ist dabei an die lokal im Strömungskanal herrschenden Bedingungen bezüglich Temperaturdifferenz und Temperaturgrenzschicht angepasst. Mit der erfindungsgemäßen Anordnung der Strukturelemente wird der Vorteil erreicht, dass der Druckabfall im Strömungskanal bei hoher Leistungsdichte reduziert wird.This object is solved by the features of claim 1. According to the invention, it is provided that the density of the structural elements is variable, and increases in the flow direction. With this design measure, the heat transfer coefficient on the inside of the flow channel is variable, and the heat transfer increases in the flow direction, while it is comparatively low or minimal in the inlet region of the flow. The invention is based on the recognition that the heat dissipation in the inlet region of the flow channel-for example, to a cooling medium flowing around the flow channel-is greater than in the downstream region of the flow channel due to the high temperature difference prevailing there, and that a forming on the inner wall of the flow channel, in the flow direction growing temperature boundary layer in the inlet region is still relatively thin. In this respect, structural elements for increasing the heat transfer on the inside of the flow channel in favor of a reduced pressure drop in this area can be dispensed with in the inlet region. The density of the structural elements is adapted to the conditions prevailing locally in the flow channel with respect to temperature difference and temperature boundary layer. With the arrangement of the structural elements according to the invention, the advantage is achieved that the pressure drop in the flow channel is reduced at high power density.

Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen. Vorzugsweise kann der Eintrittsbereich des Strömungskanals zunächst glattwandig, d. h. ohne Strukturelemente ausgebildet sein, da - wie erwähnt - in diesem Bereich aufgrund der hohen Temperaturdifferenz und der geringen Grenzschichtdicke bereits eine hohe Leistungsdichte erzielt wird. Bei sinkender Temperaturdifferenz und zunehmender Grenzschichtdicke werden dann stromabwärts im Strömungskanal Strukturelemente mit zunehmender Dichte bzw. mit die Wärmeübertragung zunehmend erhöhender Wirkung angeordnet. Erfindungsgemäß sind die Strukturelemente als Wirbel erzeugende Einprägungen in der Wand des Strömungskanals ausgebildet, als so genannte Winglets, wie sie für Abgaswärmeübertrager gemäß dem eingangs genannten Stand der Technik bekannt sind. Die Anordnung und Ausbildung der Winglets im Strömungskanal wird erfindungsgemäß variabel gestaltet : so kann der Abstand der Winglets in Strömungsrichtung kontinuierlich oder stufenweise zunehmen, ebenso die Höhe der Winglets, die in die Strömung hineinreicht. Aus Fertigungsgründen ist es vorteilhaft, wenn die Abstände jeweils ein Vielfaches des kleinsten Abstandes betragen. Ferner kann der Winkel, den die V-förmig angeordneten Winglets einschließen, in Strömungsrichtung kontinuierlich oder stufenweise vergrößert werden, wodurch ebenfalls der Wärmeübergang, allerdings auch der Druckabfall erhöht wird.Advantageous embodiments of the invention will become apparent from the dependent claims. Preferably, the inlet region of the flow channel initially smooth-walled, ie be formed without structural elements, since - as mentioned - already in this area due to the high temperature difference and the small boundary layer thickness, a high power density is achieved. With decreasing temperature difference and increasing boundary layer thickness then structural elements with increasing density or with the heat transfer increasingly increasing effect are arranged downstream in the flow channel. According to the invention, the structural elements are formed as swirl-generating indentations in the wall of the flow channel, as so-called winglets, as are known for exhaust gas heat exchangers according to the aforementioned prior art. The arrangement and design of the winglets in the flow channel is inventively made variable: so the distance between the winglets in the flow direction can increase continuously or gradually, as well as the height of the winglets, which extends into the flow. For manufacturing reasons, it is advantageous if the distances each amount to a multiple of the smallest distance. Further, the angle included by the V-shaped winglets can be increased continuously or stepwise in the flow direction, thereby also increasing the heat transfer, but also the pressure drop.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist die erfindungsgemäße Anordnung der Strukturelemente mit variabler Dichte insbesondere für Abgaswärmeübertrager von Verbrennungsmotoren für Kraftfahrzeuge vorteilhaft verwendbar. Abgaswärmeübertrager erfordern einerseits eine hohe Leistungsdichte und andererseits einen geringen Abgasgegendruck, damit die benötigten AGR-Raten (Anteil des rückgeführten Abgases am Gesamtabgasstrom) zur Erreichung der Emissionsvorschriften erzielt werden können. Der aus der Erfindung resultierende reduzierte Druckabfall wirkt sich also bei Verwendung als Abgaswärmeübertrager besonders vorteilhaft aus. Darüber hinaus ist auch eine vorteilhafte Anwendung in Ladeluftkühlern für Verbrennungsmotoren und allgemein in Gasströmungskanälen gegeben.According to a further advantageous embodiment of the invention, the inventive arrangement of structural elements with variable density, in particular for exhaust gas heat exchanger of internal combustion engines for motor vehicles is advantageously used. Exhaust heat exchangers require one hand a high power density and on the other hand a low exhaust back pressure, so that the required EGR rates (proportion of recirculated exhaust gas in the total exhaust gas flow) can be achieved to achieve the emissions regulations. The reduced pressure drop resulting from the invention thus has a particularly advantageous effect when used as an exhaust gas heat exchanger. In addition, there is also an advantageous application in intercoolers for internal combustion engines and generally in gas flow channels.

In weiterer vorteilhafter Ausgestaltung der Erfindung sind auf der Innenseite des Strömungskanals Rippen, insbesondere Stegrippen als Strukturelemente angeordnet, welche den Wärmeübergang erhöhen. Erfindungsgemäß weisen die Rippenelmente eine Dichte auf, weiche in Strömungsrichtung variabel ist, d. h. vorzugsweise stufenweise in Strömungsrichtung zunimmt, wobei wiederum im Eintrittsbereich gänzlich auf eine Innenberippung verzichtet werden kann. Die Änderung der Dichte kann bei einer Stegrippe vorteilhaft durch eine variable Längs- oder Querteilung oder durch einen variablen Anstellwinkel für die Strömung erreicht werden. Auch dadurch wird der Vorteil eines reduzierten Druckabfalls erreicht. Zusätzlich zur Änderung der Rippendichte könnten weitere Maßnahmen zur Erhöhung des Wärmeüberganges getroffen werden, z. B. die Anordnung von Kiemen oder Fenstern in den Flanken der Wellrippen, ebenfalls mit dem Ziel, den Wärmeübergang in Strömungsrichtung variabel zu gestalten. Die erfindungsgemäßen Maßnahmen sind insbesondere im Eintrittsbereich des jeweiligen Strömungskanals vorteilhaft, d. h. in dem Bereich der Strömung, wo noch instationäre Verhältnisse bezüglich der Temperaturdifferenz und der Dicke der Grenzschicht herrschen. Diese Parameter erreichen stromabwärts einen nahezu stationären Zustand, wo eine variable Dichte der Strukturelemente keine wesentlichen Vorteile mehr bringt.In a further advantageous embodiment of the invention, ribs, in particular rib ribs are arranged as structural elements on the inside of the flow channel, which increase the heat transfer. According to the invention, the rib elements have a density which is variable in the flow direction, i. H. preferably gradually increases in the flow direction, which in turn can be dispensed with in the inlet area entirely on a Innenberippung. The change in density can advantageously be achieved in the case of a rib ridge by means of a variable longitudinal or transverse distribution or by a variable angle of attack for the flow. This also achieves the advantage of a reduced pressure drop. In addition to changing the rib density, further measures could be taken to increase the heat transfer, e.g. As the arrangement of gills or windows in the flanks of the corrugated fins, also with the aim to make the heat transfer in the flow direction variable. The measures according to the invention are particularly advantageous in the inlet region of the respective flow channel, d. H. in the area of the flow, where there are still transient conditions with respect to the temperature difference and the thickness of the boundary layer. These parameters reach a near stationary state downstream, where variable density of the structural elements no longer brings any significant advantages.

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher erläutert. Es zeigen

Fig. 1
ein Temperaturprofil im Eintrittsbereich eines Strömungskanals,
Fig. 2
die Abhängigkeit der Wärmeübergangszahl α von der Länge des Strömungskanals,
Fig. 3a - 3e
die erfindungsgemäße Anordnung von Strukturelementen mit variabler Dichte in einem Strömungskanal,
Fig. 4
ein zweites Ausführungsbeispiel der Erfindung mit Innenrippen unterschiedlicher Rippendichte,
Fig. 5
ein drittes Ausführungsbeispiel der Erfindung für eine Stegrippe mit variabler Längsteilung,
Fig. 6
ein viertes Ausführungsbeispiel der Erfindung für eine Stegrippe mit variablem Anstellwinkel,
Fig. 7
ein fünftes Ausführungsbeispiel der Erfindung für eine Stegrippe mit variabler Querteilung und
Fig. 8
ein sechstes Ausführungsbeispiel der Erfindung für eine gewellte Innenrippe mit variabler Wellenlänge (Teilung).
Embodiments of the invention are illustrated in the drawings and will be explained in more detail below. Show it
Fig. 1
a temperature profile in the inlet region of a flow channel,
Fig. 2
the dependence of the heat transfer coefficient α on the length of the flow channel,
Fig. 3a - 3e
the arrangement according to the invention of structural elements with variable density in a flow channel,
Fig. 4
A second embodiment of the invention with inner ribs of different fin density,
Fig. 5
A third embodiment of the invention for a rib with variable longitudinal pitch,
Fig. 6
A fourth exemplary embodiment of the invention for a rib with a variable angle of attack,
Fig. 7
a fifth embodiment of the invention for a rib with variable transverse distribution and
Fig. 8
a sixth embodiment of the invention for a wavy inner rib with variable wavelength (pitch).

Fig. 1 zeigt einen als Rohr 1 ausgebildeten Strömungskanal 2, welcher einen Eintrittsquerschnitt 3 aufweist und von einem Strömungsmedium entsprechend dem Pfeil P durchströmt wird. Vorzugsweise wird das Rohr 1 von einem heißen Abgas eines nicht dargestellten Verbrennungsmotors durchströmt und ist Teil eines nicht dargestellten Abgäswärmeübertragers. Das Rohr 1 weist eine glatte Innenseite bzw. Innenwandung 1a und eine Außenseite bzw. Außenwandung 1b auf, welche von einem vorzugsweise flüssigen Kühlmittel gekühlt wird. Das heiße Abgas gibt also seine Wärme über das Rohr 1 an das Kühlmittel ab Bei der Durchströmung des Strömungskanals 2 bildet sich an der Innenwand 1a eine Temperaturgrenzschicht 4 aus, welche vom Eintrittsquerschnitt 3 in Strömungsrichtung des Pfeiles P in ihrer Dicke d zunimmt. Der Temperaturverlauf in dieser Grenzschicht 4 ist durch ein Temperaturprofil 5 dargestellt. Die Temperatur in der Temperaturgrenzschicht steigt also von einer Temperatur Ta an der Innenwand 1a bis zu einem Temperaturniveau Ti im Inneren des Strömungskanals (Kernströmung), welche der Abgaseintrittstemperatur entspricht. Durch die wachsende Temperaturgrenzschicht 4 verschlechtern sich die Wärmeübergangsverhältnisse im Eintrittsbereich des Rohres 1. Fig. 1 shows a pipe 1 designed as a flow channel 2, which has an inlet cross-section 3 and is flowed through by a flow medium according to the arrow P. Preferably, the pipe 1 is traversed by a hot exhaust gas of an internal combustion engine, not shown, and is part of a Abgäswärmeübertragers, not shown. The tube 1 has a smooth inner side or inner wall 1a and an outer wall or outer wall 1b, which is cooled by a preferably liquid coolant. Thus, the hot exhaust gas releases its heat via the pipe 1 to the coolant. When flowing through the flow channel 2, a temperature boundary layer 4 forms on the inner wall 1a, which increases in its thickness d from the inlet cross-section 3 in the direction of flow of the arrow P. The temperature profile in this boundary layer 4 is represented by a temperature profile 5. The temperature in the temperature boundary layer thus rises from a temperature Ta on the inner wall 1a to a temperature level Ti in the interior of the flow channel (core flow), which corresponds to the exhaust gas inlet temperature. Due to the growing temperature boundary layer 4, the heat transfer conditions in the inlet region of the tube 1 deteriorate.

Fig. 2 zeigt ein Diagramm, bei welchem die Wärmeübergangszahl α als relative Größe aufgetragen ist über der Länge I eines glattwandigen Strömungskanals, d. h. vom Eintrittsquerschnitt (Bezugszahl 3 in Fig. 1) in Strömungsrichtung des Strömungsmediums. Die Länge I ist in Millimetern aufgetragen. Die Wärmeübergangszahl α ist im Eintrittsquerschnitt, d. h. bei I = 0 mit 1 (100 %) angesetzt. Mit zunehmender Länge, d. h. in Strömungsrichtung im Strömungskanal 2 (Fig. 1) sinkt die Wärmeübergangszahl α bis auf etwa 0,8 (80 %) des Wertes am Eintrittsquerschnitt ab. Dies ist in erster Linie auf die Ausbildung der Temperaturgrenzschicht 4 gemäß Fig. 1 zurückzuführen. Fig. 2 shows a diagram in which the heat transfer coefficient α is plotted as a relative size over the length I of a smooth-walled flow channel, ie from the inlet cross-section (reference numeral 3 in Fig. 1 ) in the flow direction of the flow medium. The length I is plotted in millimeters. The heat transfer coefficient α is set in the inlet cross-section, ie at 1 = 100 (100%). With increasing length, ie in the flow direction in the flow channel 2 (FIG. Fig. 1 ), the heat transfer coefficient α decreases to about 0.8 (80%) of the value at the inlet cross section. This is primarily due to the formation of the temperature boundary layer 4 according to Fig. 1 due.

Fig. 3a, 3b, 3c, 3d und 3e zeigen ein erstes Ausführungsbeispiel mit fünf verschiedenen Varianten, nämlich die Anordnung von Strukturelementen mit variabler Dichte. Fig. 3a zeigt in einer ersten Variante, die nicht zu Erfindung gehört einen schematisch dargestellten Strömungskanal 6, vorzugsweise ein Abgasrohr eines nicht dargestellten Abgaswärmeübertragers, wobei das Abgasrohr 6 entsprechend dem Pfeil P durchströmt wird. Die Außenseite des Abgasrohres 6 wird - was nicht dargestellt, jedoch aus dem eingangs genannten Stand der Technik bekannt ist - vorzugsweise von einem flüssigen Kühlmittel umspült - möglich ist allerdings auch eine Luftkühlung. Das Abgasrohr 6 ist als Edelstahlrohr, bestehend aus zwei miteinander verschweißten Hälften, mit rechteckigem Querschnitt ausgebildet. Das Abgasrohr 6 weist einen Eintrittsbereich 6a auf, der über eine Länge L glattwandig ausgebildet ist. An den glattwandigen Bereich 6a schließt sich stromabwärts ein Bereich 6b an, in welchem V-förmig angeordnete, aus der Rohrwand geprägte Strukturelemente 7, so genannte Winglets, angeordnet sind. Die Winglet-Paare 7 sind im Abschnitt 6b mit gleichem Abstand und in gleicher Ausbildung angeordnet. Der Übergang vom glattwandigen Bereich 6a auf den mit Winglets 7 belegten Bereich 6b erfolgt somit in Form einer "Stufe". Wie eingangs erwähnt, wird in dem glattwandigen Bereich 6a trotz fehlender Strukturelemente ein hinreichend großer Wärmeübergang bzw. Wärmedurchgang erzielt, da die Temperaturdifferenz noch hinreichend groß und die Temperaturgrenzschicht relativ gering ist. An der Stelle, wo diese Bedingungen nicht mehr zutreffen, sind Strukturelemente 7 angeordnet, die für eine. Verbesserung des Wärmeüberganges (Wärmeüberganszahl α) sorgen. Der glattwandige Bereich 6a - dies gilt auch für die nachfolgenden Varianten 3b, 3c, 3d, 3e-kann eine Länge von bis zu 100 mm aufweisen. Fig. 3a, 3b, 3c, 3d and 3e show a first embodiment with five different variants, namely the arrangement of structural elements with variable density. Fig. 3a shows in a first variant, which does not belong to the invention a schematically illustrated flow channel 6, preferably an exhaust pipe of a Abgaswärmeübertragers not shown, wherein the exhaust pipe 6 is traversed according to the arrow P. The outside of the exhaust pipe 6 is - what is not shown, but from the above-mentioned prior art is known - preferably lapped by a liquid coolant - but is also possible air cooling. The exhaust pipe 6 is formed as a stainless steel tube, consisting of two halves welded together, with a rectangular cross-section. The exhaust pipe 6 has an inlet region 6a, which is smooth-walled over a length L. Downstream of the smooth-walled region 6a, a region 6b adjoins, in which are arranged V-shaped structural elements 7, so-called winglets, embossed from the tube wall. The winglet pairs 7 are arranged in the section 6b at the same distance and in the same formation. The transition from the smooth-walled region 6a to the winglets 7 occupied area 6b thus takes place in the form of a "step". As mentioned above, despite the lack of structural elements, a sufficiently large heat transfer or heat transfer is achieved in the smooth-walled region 6a, since the temperature difference is still sufficiently large and the temperature boundary layer is relatively small. At the point where these conditions no longer apply, structural elements 7 are arranged, which for a. Improvement of the heat transfer (heat transfer coefficient α) provide. The smooth-walled Area 6a - this also applies to the following variants 3b, 3c, 3d, 3e-may have a length of up to 100 mm.

In einer zweiten Variante, die nicht zur Erfindung gehört gemäß Fig. 3b ist ein Rechteckrohr 8 im Längsschnitt dargestellt, welches ebenfalls einen glattwandigen Eintrittsbereich 8a und eine Kanalhöhe H aufweist. Stromabwärts dieses glattwandigen Bereiches 8a sind Winglet-Paare 9 mit in Strömungsrichtung gleichen Abständen a angeordnet, jedoch mit unterschiedlichen Höhen h: die in den Strömungsquerschnitt des Abgasrohres 8 hineinragenden Höhen h der Winglet-Paare 9 wachsen kontinuierlich in Strömungsrichtung P. Damit wird der Wärmeübergang in diesem Rohrabschnitt sukzessive gesteigert. Gleichzeitig wächst der Druckabfall. Der Übergang vom glatten zum nicht glatten Bereich ist somit kontinuierlich. in einer bevorzugten Ausführungsform ist für das Verhältnis h/H ein Bereich von 0,05 ≤ h/H ≤ 0,4 gewählt.In a second variant, which does not belong to the invention according to Fig. 3b a rectangular tube 8 is shown in longitudinal section, which also has a smooth-walled inlet region 8a and a channel height H. Downstream of this smooth-walled region 8a winglet pairs 9 are arranged with equal distances a in the flow direction, but with different heights h: projecting into the flow cross-section of the exhaust pipe 8 heights h of the winglet pairs 9 grow continuously in the flow direction P. Thus, the heat transfer in This pipe section has been successively increased. At the same time, the pressure drop increases. The transition from smooth to not smooth is thus continuous. In a preferred embodiment, a range of 0.05 ≦ h / H ≦ 0.4 is selected for the ratio h / H.

In einer erfindungsgemäßen Variante gemäß Fig. 3c sind in einem Rohr 10 Winglet-Paare 11 mit in Strömungsrichtung P abnehmenden Abständen a1, a2, a3 angeordnet. Damit wird der Wärmeübergang, ausgehend von dem glatten Eintrittsbereich 10a, sukzessive erhöht, da die Dichte der Strukturelemente bzw. Winglets 11 größer wird. Aus Gründen einer vereinfachten Fertigung können die Abstände a1, a2, a3 jeweils ein Vielfaches des minimalen Abstandes ax betragen. Letzterer liegt vorteilhaft in einem Bereich von 5 < ax < 50 mm und bevorzugt in einem Bereich von 8 < ax < 30 mm.In a variant according to the invention according to Fig. 3c are in a tube 10 winglet pairs 11 with decreasing in the flow direction P distances a 1 , a 2 , a 3 arranged. Thus, the heat transfer, starting from the smooth inlet region 10a, successively increased, since the density of the structural elements or winglets 11 is greater. For reasons of simplified production, the distances a 1 , a 2 , a 3 can each be a multiple of the minimum distance a x . The latter is advantageously in a range of 5 <a x <50 mm and preferably in a range of 8 <a x <30 mm.

Fig. 3d zeigt eine vierte Variante, die nicht zur Erfindung gehört für die Anordnung von Strukturelementen mit unterschiedlicher Dichte in einem Abgasrohr 12, welches entsprechend dem Pfeil P von Abgas durchströmbar ist. Der glattwandige Eintrittsbereich 12a ist vergleichsweise zu den vorherigen Ausführungsbeispielen kürzer. Daran schließen sich Winglet-Paare 13 mit in Strömungsrichtung gleichen Abständen, jedoch mit unterschiedlichem Winkel β (Winkel gegenüber Strömungsrichtung P) an. Die Winglets des stromaufwärts gelegenen Winglet-Paares 12 sind fast parallel ausgerichtet (β ≈ 0), während der von den Winglets gebildete Winkel β des stromabwärts gelegenen Winglet-Paares 13 ca. 45 Grad beträgt. Die dazwischen liegenden Winglet-Paare 13 weisen entsprechende Zwischenwerte auf, so dass die Wärmeübergangszahl für die Innenwand des Abgasrohres 13 infolge der zunehmenden Spreizung der Winglets in Strömungsrichtung wächst, und zwar kontinuierlich bzw. in kleinen Schritten. Der Winkel β liegt vorteilhaft in einem Bereich von 20° < β < 50° Fig. 3d shows a fourth variant, which does not belong to the invention for the arrangement of structural elements with different density in an exhaust pipe 12, which is permeable according to the arrow P of exhaust gas. The smooth-walled entry region 12a is shorter in comparison to the previous embodiments. This is followed by winglet pairs 13 with equal distances in the flow direction, but with different angles β (angle with respect to flow direction P). The winglets of the upstream winglet pair 12 are aligned almost parallel (β≈0), while the angle β formed by the winglets of the downstream winglet pair 13 is about 45 degrees. The intervening winglet pairs 13 have corresponding intermediate values, so that the heat transfer coefficient for the Inner wall of the exhaust pipe 13 due to the increasing spreading of the winglets in the flow direction grows, continuously or in small steps. The angle β is advantageously in a range of 20 ° <β <50 °

Fig. 3e zeigt eine andere erfindungsgemäße Variante mit einem Abgasrohr 30, einem glattwandigen Bereich 30a und daran anschließenden Reihen von parallel zueinander angeordneten Winglets 31, welche jeweils mit der Strömungsrichtung P einen Winkel β bilden. Die Reihen weisen in Strömungsrichtung P abnehmende Abstände a1, a2, a3 auf, wobei der Winkel β der Winglets 31 von Reihe zu Reihe das Vorzeichen wechselt. Fig. 3e shows another variant of the invention with an exhaust pipe 30, a smooth-walled portion 30a and adjoining rows of parallel winglets 31, which each form an angle β with the flow direction P. The rows have in the flow direction P decreasing distances a 1 , a 2 , a 3 , wherein the angle β of the winglets 31 from row to row changes the sign.

Bei aiien Rohren ist vorzugsweise am Rohranfang und am Rohrende ein glatter Bereich ohne Strukturelemente belassen, damit bei einer Ablängung der Röhre eine saubere Trennstelle herstellbar ist.In aiien pipes is preferably left at the beginning of the pipe and at the pipe end a smooth area without structural elements, so that at a lengthening of the tube a clean separation point can be produced.

Fig. 4 zeigt ein weiteres Ausführungsbeispiel, das nicht zur Erfindung gehört, für einen Strömungskanal 14, welcher entsprechend dem Pfeil P von einem Strömungsmedium angeströmt wird - hierbei kann es sich beispielsweise um ein flüssiges Kühlmittel oder auch um Ladeluft handeln. Die Außenseite des Strömungskanal, 14 kann durch ein gasförmiges oder flüssiges Kühlmedium gekühlt werden. Der Strömungskanal 14 weist einen glattwandigen Eintrittsbereich 14a auf, an welchen sich in Strömungsrichtung P ein erster mit Innenrippen 15 versehener Bereich 14b und daran ein weiterer berippter Bereich 14c anschließt. Die Bereiche 14b und 14c weisen eine unterschiedliche Rippendichte auf - im dargestellten Ausführungsbeispiel ist die Rippendichte im stromabwärts gelegenen Bereich 14c doppelt so groß wie im stromaufwärts gelegenen Bereich 14b, da zwischen den durchgehenden Rippen 15 weitere Rippen 16 angeordnet sind. Damit wird ebenfalls eine Erhöhung des Wärmeüberganges erreicht, und zwar in Stufen von 14a über 14b nach 14c. Fig. 4 shows a further embodiment, which does not belong to the invention, for a flow channel 14 which is according to the arrow P flows of a flow medium - this may be, for example, a liquid coolant or even charge air. The outside of the flow channel 14, 14 can be cooled by a gaseous or liquid cooling medium. The flow channel 14 has a smooth-walled inlet region 14a, which is adjoined in the flow direction P by a first region 14b provided with internal ribs 15 and by another ribbed region 14c thereon. The regions 14b and 14c have a different fin density - in the illustrated embodiment, the rib density in the downstream region 14c is twice as large as in the upstream region 14b, since between the continuous ribs 15 further ribs 16 are arranged. Thus, an increase of the heat transfer is also achieved, in stages from 14a to 14b to 14c.

Fig. 5 zeigt als ein weiteres Ausführungsbeispiel, das nicht zur Erfindung gehört, einen Gasströmungskanal, in welchem eine Stegrippe 17 mit variabler Längsteilung t1, t2, t3, t4, t5 angeordnet ist. In der zeichnerischen Darstellung ist t1 > t2 > t3 > t4 > t5, d. h. der Wärmeübergang nimmt von t1 nach t5, d. h. in Strömungsrichtung P zu. Stegrippen werden insbesondere bei Ladeluftkühlern eingesetzt und sind vorzugsweise mit den Rohren verlötet. Bei einer vorteilhaften Ausführung weist das Verhältnis der kleinsten Teilung tx zur Kanalhöhe H einen Grenzwert von 0,3 < tx/H auf. Fig. 5 shows as a further embodiment, which does not belong to the invention, a gas flow channel in which a Stegrippe 17 with variable longitudinal pitch t 1 , t 2 , t 3 , t 4 , t 5 is arranged. In the drawing, t 1 > t 2 > t 3 > t 4 > t 5 , ie the heat transfer increases from t 1 to t 5 , ie in the flow direction P too. Web ribs are used in particular for intercoolers and are preferably soldered to the pipes. In an advantageous embodiment, the ratio of the smallest pitch t x to the channel height H has a limit of 0.3 <t x / H.

Fig. 6 zeigt auch ein Ausführungsbeispiel, das nicht zur Erfindung gehört, einen Gasströmungskanal, in welchem eine Stegrippe 18 mit variablen Anstellwinkeln α1, α2, α3... αx angeordnet ist. Vorteilhafte Anstellwinkel liegen im Bereich von 0 < α < 30°. Fig. 6 Also shows an embodiment, which does not belong to the invention, a gas flow channel in which a Stegrippe 18 with variable angles of attack α 1 , α 2 , α 3 ... α x is arranged. Advantageous angles of attack are in the range of 0 <α <30 °.

Fig. 7 zeigt als ein Ausführungsbeispiel, das nicht zur Erfindung gehört, einen Gasströmungskanal, in welchem eine Stegrippe 19 mit variabler Querteilung q1, q2, q3... q6 angeordnet ist, wobei der Wärmeübergang mit kleiner werdender Querteilung von q1 in Richtung q6. d. h. in Strömungsrichtung P steigt. Vorteilhafte Bereiche für die Querteilung q sind 8 > q > 1 mm und bevorzugt 5 > q > 2mm. Fig. 7 shows as an embodiment, which does not belong to the invention, a gas flow channel in which a ridge rib 19 with variable transverse pitch q 1 , q 2 , q 3 ... q 6 is arranged, the heat transfer with decreasing transverse division of q 1 in the direction q 6. ie in the flow direction P increases. Advantageous areas for the transverse division q are 8>q> 1 mm and preferably 5>q> 2 mm.

Fig. 8 zeigt in einem Gasströmungskanal eine in Strömungsrichtung P gewellte (tiefengewellte) Innenrippe 20 mit variabler Teilung t1, t2, t3, t4 - der Wärmeübergang steigt hier in Richtung kleiner werdender Teilung t. Vorteilhafte Bereiche für die Teilung t sind 10 < t < 50 mm. Fig. 8 shows in a gas flow channel a corrugated in the flow direction P (deep waved) inner fin 20 with variable pitch t 1 , t 2 , t 3 , t 4 - the heat transfer increases here in the direction of decreasing pitch t. Advantageous ranges for the pitch t are 10 <t <50 mm.

In Abwandlung der dargestellten Ausführungsbeispiele kann eine Variation des Wärmeüberganges im Strömungskanal auch durch weitere aus dem Stand der Technik bekannte Mittel erreicht werden, beispielsweise durch Anordnung von Kiemen oder Fenstern in den Rippen. Darüber hinaus können andere Formen von Strukturelementen zur Wirbelerzeugung bzw. zur Erhöhung des Wärmeüberganges gewählt werden. Die Anwendung der Erfindung ist nicht auf Abgaswärmeübertrager beschränkt, sondern erstreckt sich auch auf Ladeluftkühler, deren Rohre von heißer Ladeluft durchströmt werden, sowie generell auf Gasströmungskanäle, welche als Rohre eines Rohrbündelwärmeübertragers oder als Scheiben eines Scheibenwärmeübertragers ausgebildet sein können.In a modification of the illustrated embodiments, a variation of the heat transfer in the flow channel can also be achieved by further means known from the prior art, for example by arranging gills or windows in the ribs. In addition, other forms of structural elements for vortex generation or to increase the heat transfer can be selected. The application of the invention is not limited to exhaust gas heat exchangers, but also extends to intercoolers whose tubes are flowed through by hot charge air, and generally to gas flow channels, which may be formed as tubes of a tube heat exchanger or as slices of Scheibenwärmeübertragers.

Claims (25)

  1. A heat exchanger, having at least one flow duct which can be flowed through by a flow medium from an inlet cross section to an outlet cross section and which has an inside and an outside, and which has, on the inside, structural elements for increasing the heat transfer, wherein the structural elements (7, 9, 11, 13, 15, 16, 17, 18, 19, 20, 31) are arranged and/or embodied variably in the direction of flow (P) such that, on the inside, the flow duct (6, 8, 10, 12, 14, 30) has variable heat transfer, increasing in the direction of flow (P), wherein the density of the structural elements (11; 15, 16; 19; 31) is variable and increasing in the direction of flow (P), the structural elements being embodied as eddy generators, referred to as winglets (7, 9, 11, 13, 31), characterised in that the winglets (11, 31) are arranged in rows and form, with the direction of flow (P), an angle (•), wherein the angle (•) has an identical or opposed sign for adjacent winglets, and the winglets (11, 31) are arranged in rows transverse with respect to the direction of flow (P), and in that the rows have a spacing (a1, a2, a3...ax) which is variable and decreasing in the direction of flow.
  2. The heat exchanger as claimed in claim 1, characterised in that the structural elements (9, 11, 13, 15, 16, 17, 18, 19, 20, 31) have a flow resistance with respect to the flow medium and are arranged and/or embodied such that the pressure drop in the flow duct (8, 10, 12, 14) is variable, in particular being minimal in the inlet region (6a, 8a, 10a, 12a, 14a, 30a).
  3. The heat exchanger as claimed in claim 1 or 2, characterised in that the flow duct (6, 8, 10, 12, 14, 30) has, starting from the inlet cross section, a smooth-walled section (6a, 8a, 10a, 12a, 14a, 30a) without structural elements.
  4. The heat exchanger as claimed in claim 3, characterised in that the smooth-walled section (6a, 8a, 10a, 12a, 14a, 30a) has a length L in the direction of flow (P), where L • 100 mm.
  5. The heat exchanger as claimed in one of claims 1 to 4, characterised in that the structural elements are embodied as internal ribbing, internal ribs (15, 16, 20), web ribs (17, 18, 19) and/or turbulence inlays and are, in particular, soldered into the flow ducts.
  6. The heat exchanger as claimed in one of claims 1 to 5, characterised in that the winglets (13, 31) form, with the direction of flow (P), an angle (•) which is variable, in particular increasing in the direction of flow (P).
  7. The heat exchanger as claimed in claim 6, characterised in that the angle • has a range of 20° < • < 50°.
  8. The heat exchanger as claimed in one of the preceding claims, characterised in that the winglets (9) have a height (h) which projects into the flow and which increases variably, in particular in the direction of flow (P).
  9. The heat exchanger as claimed in claim 8, characterised in that the flow duct (8) has a height H and the ratio of h/H has a range of 0.05 • h/H • 0.4.
  10. The heat exchanger as claimed in one of the preceding claims, characterised in that the smallest spacing ax has a range of 5 < ax < 50 mm, in particular a range of 8 < ax < 30 mm.
  11. The heat exchanger as claimed in one of the preceding claims, characterised in that the spacing (a1, a2, a3 ...) of the rows is an (integral) multiple of the smallest spacing ax.
  12. The heat exchanger as claimed in one of claims 1 to 11, characterised in that a smooth region (without structural elements) is left as a dividing point at the upstream and downstream ends of a flow duct.
  13. A use of the heat exchanger as claimed in one of claims 1 to 4 or 6 to 12 as an exhaust gas heat exchanger, wherein the flow ducts are embodied as exhaust pipes (6, 8, 10, 12, 30) through which exhaust gas can flow and around which a coolant can flow.
  14. The heat exchanger as claimed in claim 5, characterised in that the structural elements, in particular the internal ribs (15, 16), have a rib density which is variable in the direction of flow, in particular increasing in the direction of flow (P) .
  15. The heat exchanger as claimed in claim 14, characterised in that the rib density increases in stages (14b, 14c).
  16. The heat exchanger as claimed in claim 5, characterised in that the web rib (17) has a variable longitudinal pitch (t1, t2, t3, t4, t5, ... tx).
  17. The heat exchanger as claimed in claim 16, characterised in that the smallest longitudinal pitch tx has a limiting value tx > 0.3 H, where H is the duct height.
  18. The heat exchanger as claimed in claim 5, characterised in that the web rib (18) has a variable angle of incidence (•1, •2, •3 ... •x) wherein the angle of incidence is preferably in the range of 0 < • <30°.
  19. The heat exchanger as claimed in claim 5, characterised in that the web rib (19) has a variable transverse pitch (q1, q2, q3 ... qx).
  20. The heat exchanger as claimed in claim 19, characterised in that the transverse pitch q has a range of 8 > q > 1 mm, preferably 5 > q > 2 mm.
  21. The heat exchanger as claimed in claim 5, characterised in that the internal rib (20) has a longitudinal corrugation with variable pitch (t1, t2, t3, t4).
  22. The heat exchanger as claimed in claim 21, characterised in that the pitch t of the internal rib (20) has a range of 10 < t < 50 mm.
  23. The heat exchanger as claimed in one of the preceding claims, characterised in that the flow ducts are embodied as pipes, in particular as pipes of a pipe bundle.
  24. The heat exchanger as claimed in one of claims 1 to 22, characterised in that the flow ducts are embodied as disks, in particular as disks of a disk package.
  25. A use of the heat exchanger as claimed in one of claims 14 to 24 as the charge air cooler for cooling combustion air for an internal combustion engine of a motor vehicle.
EP06762163.1A 2005-06-24 2006-06-23 Heat exchanger Not-in-force EP1899670B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15202230.7A EP3048407B9 (en) 2005-06-24 2006-06-23 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005029321A DE102005029321A1 (en) 2005-06-24 2005-06-24 Heat exchanger for exhaust gas cooling has structural elements arranged so that duct has internal variable heat transfer increasing in direction of flow
PCT/EP2006/006071 WO2006136437A1 (en) 2005-06-24 2006-06-23 Heat exchanger

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP15202230.7A Division EP3048407B9 (en) 2005-06-24 2006-06-23 Heat exchanger
EP15202230.7A Division-Into EP3048407B9 (en) 2005-06-24 2006-06-23 Heat exchanger

Publications (2)

Publication Number Publication Date
EP1899670A1 EP1899670A1 (en) 2008-03-19
EP1899670B1 true EP1899670B1 (en) 2016-08-10

Family

ID=37114549

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06762163.1A Not-in-force EP1899670B1 (en) 2005-06-24 2006-06-23 Heat exchanger
EP15202230.7A Active EP3048407B9 (en) 2005-06-24 2006-06-23 Heat exchanger

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP15202230.7A Active EP3048407B9 (en) 2005-06-24 2006-06-23 Heat exchanger

Country Status (5)

Country Link
US (1) US7942137B2 (en)
EP (2) EP1899670B1 (en)
JP (1) JP5112304B2 (en)
DE (1) DE102005029321A1 (en)
WO (1) WO2006136437A1 (en)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100243220A1 (en) * 2006-11-15 2010-09-30 Behr Gmbh & Co. Kg Heat exchanger
US20080271877A1 (en) * 2007-02-21 2008-11-06 Gerald Glass Apparatus for multi-tube heat exchanger with turbulence promoters
JP5022075B2 (en) * 2007-03-27 2012-09-12 東京ラヂエーター製造株式会社 Internal structure of oil cooler tube for construction machinery
DE102007041338B3 (en) * 2007-08-31 2008-12-11 Pierburg Gmbh Heat transfer unit for an internal combustion engine
KR20100106434A (en) * 2008-01-10 2010-10-01 베헤르 게엠베하 운트 콤파니 카게 Extruded tube for a heat exchanger
DE102008036222B3 (en) 2008-08-02 2009-08-06 Pierburg Gmbh Heat transfer unit for an internal combustion engine
FR2938637B1 (en) * 2008-11-18 2013-01-04 Cie Mediterraneenne Des Cafes CIRCULATING CONDUIT OF A FLUID
JP5254082B2 (en) * 2009-03-05 2013-08-07 株式会社ユタカ技研 Heat exchange tube
JP2010249373A (en) * 2009-04-14 2010-11-04 Panasonic Corp Heat exchanger and heat pump water heater using the same
DE102009026546B4 (en) 2009-05-28 2012-05-16 Schott Solar Ag solar panel
IT1399246B1 (en) * 2009-11-03 2013-04-11 Advanced Res Consulting S R L TUBULAR HEAT EXCHANGER, IN PARTICULAR RECEIVER TUBE FOR A SOLAR CONCENTRATION SYSTEM.
JP2011214786A (en) * 2010-03-31 2011-10-27 Yutaka Giken Co Ltd Heat exchanger
WO2012150969A1 (en) * 2011-05-02 2012-11-08 Research Foundation Of The City University Of New York Thermal energy storage for combined cycle power plants
US20120312515A1 (en) * 2011-06-10 2012-12-13 Waukesha Electric Systems, Inc. Apparatus for heat dissipation of transforming radiators
JP5915187B2 (en) * 2012-01-10 2016-05-11 マツダ株式会社 Heat exchanger
DE102012208742A1 (en) * 2012-03-28 2013-10-02 Mahle International Gmbh exhaust gas cooler
JP3197685U (en) * 2012-05-29 2015-06-04 ハンジョウ・シェンシ・エナジー・コンサベーション・テクノロジー・カンパニー・リミテッドHangzhou Shenshi Energy Conservation Technology Co., Ltd. Microchannel structure of heat exchanger and integrated microchannel heat exchanger
JP6018196B2 (en) * 2012-05-30 2016-11-02 京セラ株式会社 Channel member, heat exchanger using the same, and semiconductor manufacturing apparatus
DE102012013755B8 (en) * 2012-07-12 2022-01-13 Al-Ko Therm Gmbh Heat exchanger plate assembly, heat exchanger and method of manufacturing a heat exchanger
FR2993354B1 (en) * 2012-07-13 2018-07-13 Delphi Automotive Systems Lux COOLING AIR COOLER
EP2972036B1 (en) 2013-03-14 2018-06-13 Duramax Marine, LLC Turbulence enhancer for keel cooler
JP6203080B2 (en) * 2013-04-23 2017-09-27 カルソニックカンセイ株式会社 Heat exchanger
US20140332188A1 (en) * 2013-05-09 2014-11-13 Ford Global Technologies, Llc Heat exchanger
DE102013020469A1 (en) 2013-12-06 2015-06-11 Webasto SE Heat exchanger and method for producing a heat exchanger
KR101569829B1 (en) * 2014-06-13 2015-11-19 주식회사 코렌스 Heat exchanger having wavy fin plate for reducing differential pressure of egr gas
JP6459027B2 (en) * 2014-07-15 2019-01-30 国立大学法人 東京大学 Heat exchanger
DE102014010891A1 (en) * 2014-07-23 2016-01-28 Webasto SE Heat exchanger and modular system for the production of a heat exchanger
JP6464598B2 (en) * 2014-07-31 2019-02-06 いすゞ自動車株式会社 Internal combustion engine cooling system
US9528771B2 (en) 2014-10-27 2016-12-27 Hussmann Corporation Heat exchanger with non-linear coil
JP6256295B2 (en) * 2014-10-28 2018-01-10 株式会社デンソー Heat exchanger
US20160123683A1 (en) * 2014-10-30 2016-05-05 Ford Global Technologies, Llc Inlet air turbulent grid mixer and dimpled surface resonant charge air cooler core
CN104602469B (en) * 2015-01-15 2017-09-26 华为技术有限公司 Rack
JP6435209B2 (en) * 2015-02-18 2018-12-05 ダイキョーニシカワ株式会社 Heating element cooling structure
US10222106B2 (en) * 2015-03-31 2019-03-05 The Boeing Company Condenser apparatus and method
US10183269B2 (en) 2015-06-10 2019-01-22 Corning Incorporated Continuous flow reactor with tunable heat transfer capability
CN105115338B (en) * 2015-08-31 2017-08-25 东南大学 A kind of phase transition heat accumulation unit
ITUB20155713A1 (en) * 2015-11-18 2017-05-18 Robur Spa IMPROVED FLAME TUBE.
WO2017116845A1 (en) * 2015-12-28 2017-07-06 Carrier Corporation Folded conduit for heat exchanger applications
TWM528417U (en) * 2016-02-19 2016-09-11 Enzotechnology Corp Heat radiator that achieves low wind pressure requirement, low noise, and high performance with heat sink arrangement
CN107105595A (en) * 2016-02-19 2017-08-29 恩佐科技股份有限公司 Low blast demand, low noise, dynamical radiator are reached using radiator arrangement
US20170336153A1 (en) * 2016-05-12 2017-11-23 Price Industries Limited Gas turbulator for an indirect gas-fired air handling unit
JP6868633B2 (en) * 2016-09-23 2021-05-12 住友精密工業株式会社 Cooling system
DE102016225508A1 (en) 2016-12-19 2018-06-21 Bayerische Motoren Werke Aktiengesellschaft Heat exchanger with several heat transfer areas
CN106785828A (en) * 2017-02-28 2017-05-31 武汉大学 A kind of step for optical fiber laser cools down radiating tube
US20180328285A1 (en) * 2017-05-11 2018-11-15 Unison Industries, Llc Heat exchanger
CN107218825A (en) * 2017-05-25 2017-09-29 合肥皖化电泵有限公司 A kind of BCP pumps with efficient heat exchanger
GB2565143B (en) * 2017-08-04 2021-08-04 Hieta Tech Limited Heat exchanger
DE102017222742A1 (en) * 2017-12-14 2019-06-19 Hanon Systems Pipe, in particular flat pipe for an exhaust gas cooler and exhaust gas cooler
CN109990638B (en) * 2017-12-29 2021-08-24 杭州三花微通道换热器有限公司 Flat tube, heat exchanger and manufacturing method of flat tube
JP2019168171A (en) * 2018-03-23 2019-10-03 サンデンホールディングス株式会社 Heat exchanger
DE102018124574B4 (en) * 2018-10-05 2022-09-29 Hanon Systems finned heat exchanger
DE102019204640A1 (en) 2019-04-02 2020-10-08 Mahle International Gmbh Heat exchanger
US11073344B2 (en) * 2019-04-24 2021-07-27 Rheem Manufacturing Company Heat exchanger tubes
DE102019124277A1 (en) * 2019-09-10 2021-03-11 Carl Freudenberg Kg Jacket cooling system
EP3836205A1 (en) * 2019-12-13 2021-06-16 Valeo Siemens eAutomotive Germany GmbH Cooling device for semiconductor switching elements, power inverter device, arrangement and manufacturing method
DE102020004359A1 (en) 2020-07-20 2022-01-20 Daimler Ag heat transfer body
FR3133437A1 (en) * 2022-03-08 2023-09-15 Valeo Systemes Thermiques Thermal regulation device, in particular cooling for a motor vehicle
FR3139891A1 (en) * 2022-09-19 2024-03-22 Valeo Systemes Thermiques Heat exchanger for a motor vehicle, with means of disturbing the fluid in the flow channels

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1095966A (en) * 1953-02-14 1955-06-08 Tubular duct for heat exchangers
DE1066213B (en) * 1956-11-21 1959-10-01
FR1252033A (en) 1959-04-28 1961-01-27 Rough Surface Heat Exchanger Tubes
NL263727A (en) * 1960-04-18
DE1931148A1 (en) * 1969-06-19 1971-01-07 Otte & Co Kg Laurenz Conical flue gas duct
JPS49123657U (en) * 1973-02-16 1974-10-23
US4314587A (en) * 1979-09-10 1982-02-09 Combustion Engineering, Inc. Rib design for boiler tubes
US4353350A (en) * 1981-03-11 1982-10-12 Helmut Albrecht Fireplace heat exchanger
JPS58158247U (en) * 1982-04-15 1983-10-21 松下電器産業株式会社 Heat exchanger
JPS60185094A (en) * 1984-03-02 1985-09-20 Satoru Fujii Heat transfer pipe of uniform heat flow type
US4945981A (en) * 1990-01-26 1990-08-07 General Motors Corporation Oil cooler
KR960703665A (en) * 1993-07-05 1996-08-31 티에니 펠레린 Process and apparatus for controlling reaction temperatures
DE9406197U1 (en) 1994-04-14 1994-06-16 Behr Gmbh & Co Heat exchanger for cooling exhaust gas from a motor vehicle engine
US5600052A (en) * 1994-05-02 1997-02-04 Uop Process and apparatus for controlling reaction temperatures
DE19511665A1 (en) * 1995-03-30 1996-10-02 Abb Management Ag Method of air cooling IC piston engines
US5655599A (en) * 1995-06-21 1997-08-12 Gas Research Institute Radiant tubes having internal fins
DE19540683A1 (en) 1995-11-01 1997-05-07 Behr Gmbh & Co Heat exchanger for cooling exhaust gas
WO1997037187A1 (en) * 1996-03-30 1997-10-09 Imi Marston Limited Plate-type heat exchanger with distribution zone
DE19654367A1 (en) * 1996-12-24 1998-06-25 Behr Gmbh & Co Method for attaching tabs and / or protrusions to a sheet and sheet with tabs and / or devices and rectangular tube made of sheet
DE19654366B4 (en) * 1996-12-24 2005-10-20 Behr Gmbh & Co Kg Flow channel, in particular for an exhaust gas heat exchanger
DE19654368B4 (en) * 1996-12-24 2006-01-05 Behr Gmbh & Co. Kg Heat exchanger, in particular exhaust gas heat exchanger
DE19654363B4 (en) * 1996-12-24 2007-09-27 Behr Gmbh & Co. Kg Exhaust gas heat exchanger for an internal combustion engine
US5901641A (en) * 1998-11-02 1999-05-11 Afc Enterprises, Inc. Baffle for deep fryer heat exchanger
SE521816C2 (en) 1999-06-18 2003-12-09 Valeo Engine Cooling Ab Fluid transport pipes and vehicle coolers
US6484795B1 (en) * 1999-09-10 2002-11-26 Martin R. Kasprzyk Insert for a radiant tube
DE10127084B4 (en) * 2000-06-17 2019-05-29 Mahle International Gmbh Heat exchanger, in particular for motor vehicles

Also Published As

Publication number Publication date
EP3048407A1 (en) 2016-07-27
US20100139631A1 (en) 2010-06-10
WO2006136437A1 (en) 2006-12-28
US7942137B2 (en) 2011-05-17
EP1899670A1 (en) 2008-03-19
JP5112304B2 (en) 2013-01-09
JP2008544207A (en) 2008-12-04
EP3048407B9 (en) 2019-11-27
DE102005029321A1 (en) 2006-12-28
EP3048407B1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
EP1899670B1 (en) Heat exchanger
EP1837499B1 (en) Device for cooling an exhaust gas stream
EP1178278B1 (en) Heat exchange tube with twisted inner fins
EP2267393B1 (en) Flow channel for heat exchanger
EP2092259A1 (en) Heat exchanger
WO2004065876A1 (en) Heat exchanger, particularly exhaust gas cooler for motor vehicles
WO2008034604A2 (en) Heat exchanger for an internal combustion engine
EP1999423A2 (en) Heat exchanger for a motor vehicle
EP1985953A1 (en) Heat exchanger, in particular exhaust gas cooler; method for operating such a heat exchanger; system with an exhaust gas cooler
DE102009047620B4 (en) Heat exchanger with tube bundle
DE102007013302A1 (en) Heat exchanger e.g. u-flow exhaust gas heat exchanger, for e.g. Otto engine of passenger car, has flow path with flow channels sustained as continuous channels, which are separated from each other, in deflecting area and in another path
DE102010008175B4 (en) Heat exchanger
DE10100241A1 (en) Heat exchanger tube for liquid or gaseous media
EP2029883A1 (en) Heat exchanger
EP3039372B1 (en) Heat exchanger
EP2096397A2 (en) Ridge for a heat exchanger and manufacturing method
DE102008020230A1 (en) Heat exchanger for vehicle combustion engine coolant radiator has exchanger tube wall perpendicular to longitudinal direction with zigzag profile and/or zigzag flow cross-section for first medium; cross-section can also have interruptions
EP1398592B1 (en) Flat tubes heat exchanger
EP1673583B1 (en) Charge air / coolant cooler
EP1331464B1 (en) Heat exchanger
DE102010043309A1 (en) Method for attachment of winglets on base material for producing winglet tube for e.g. exhaust gas heat exchanger in internal combustion engine, involves embossing winglets into base material by using extrusion process
DE10349887B4 (en) Radiator for an exhaust gas recirculation system in an internal combustion engine
EP1817533B1 (en) Low-temperature coolant cooler
DE102011006793A1 (en) exhaust gas cooler
DE102016217787A1 (en) Process for producing a honeycomb body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

17Q First examination report despatched

Effective date: 20150427

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20160512

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 819450

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015099

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161210

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015099

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

26N No opposition filed

Effective date: 20170511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170623

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170623

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170623

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170623

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 819450

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200620

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200831

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006015099

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630