EP2267393B1 - Flow channel for heat exchanger - Google Patents

Flow channel for heat exchanger Download PDF

Info

Publication number
EP2267393B1
EP2267393B1 EP10181882.1A EP10181882A EP2267393B1 EP 2267393 B1 EP2267393 B1 EP 2267393B1 EP 10181882 A EP10181882 A EP 10181882A EP 2267393 B1 EP2267393 B1 EP 2267393B1
Authority
EP
European Patent Office
Prior art keywords
flow
structural elements
rows
heat exchanger
opposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10181882.1A
Other languages
German (de)
French (fr)
Other versions
EP2267393A2 (en
EP2267393A3 (en
Inventor
Peter Geskes
Michael Schmidt
Martin Schindler
Rainer Lutz
Ulrich Maucher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP2267393A2 publication Critical patent/EP2267393A2/en
Publication of EP2267393A3 publication Critical patent/EP2267393A3/en
Application granted granted Critical
Publication of EP2267393B1 publication Critical patent/EP2267393B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Definitions

  • the invention relates to a flow channel through which a medium can flow in a flow channel for a heat exchanger according to the preamble of patent claim 1.
  • Flow channels for heat exchangers are from a first medium, eg. B. flows through an exhaust gas or a liquid coolant and define this first medium against a second medium to which the heat of the first medium is to be transmitted, from.
  • a first medium eg. B. flows through an exhaust gas or a liquid coolant and define this first medium against a second medium to which the heat of the first medium is to be transmitted, from.
  • Such flow channels may be tubes with a round cross-section, rectangular tubes, flat tubes or disc pairs, in which two plates or letters are connected at the edge.
  • the media that are in heat exchange with each other, different, z. B. flows in the pipes a hot, laden with soot particles exhaust gas, and on the outside of the exhaust pipes are flowed around by a liquid coolant, which has different heat transfer conditions on the inside and outside of the tubes result.
  • the winglet pairs of the two half shells are either in the longitudinal direction of the tubes, ie offset in the flow direction against each other ( DE 196 54 367 . DE 196 54 368 ) or facing each other ( DE 195 40 683 ) arranged.
  • the applicant has proposed a heat exchanger, in particular a coolant / air cooler with flat tubes and corrugated fins, in which the flat sides of the flat tubes have a structure consisting of structural elements.
  • the structural elements are elongated, V-shaped arranged in rows transverse to the coolant flow direction and transverse to the longitudinal axis of the tubes and act as a vortex generator to increase the heat transfer on the coolant side.
  • the vortex generators are embossed in both opposite pipe walls and protrude inwards into the coolant flow.
  • the rows of vortex generators on one flat tube side are offset in the flow direction from the rows on the other flat tube side.
  • EP-A 1 061 319 has been known a flat tube for a motor vehicle radiator, which has on its flat sides a structure consisting of individual elongated, arranged in rows structural elements.
  • rows with differently oriented structural elements are arranged in the flow direction, so that the flow in the interior of the flat tube is deflected approximately in a zigzag shape.
  • the rows are arranged with structural elements on a flat tube side in the flow direction offset from the rows of the opposite flat tube side.
  • a row of structural elements thus faces a smooth area of the flat tube inner wall.
  • the flow within the coolant tube is thus alternately influenced by the structural elements of one and the other flat tube side, but not simultaneously. This is to be avoided, inter alia, a blockage of the pipes.
  • the heat transfer capability there are still potentials here.
  • At least two rows of structural elements on substantially opposite heat transfer surfaces have an overlap with each other, such that a structural element of a heat transfer surface has an overlap with an opposing structural element on the opposite heat transfer surface, wherein the structural elements are elongate and rectangular in shape and have a straight longitudinal axis, and wherein the structural elements on one heat transfer surface are oppositely oriented with respect to the structural elements of the other heat transfer surface so that they have an opposite outflow angle and wherein the rows of structural elements on the one heat transfer surface are opposite Rows of the structural elements on the other heat exchanger surface in the flow direction offset si nd.
  • a row of structural elements is formed in the context of the present invention of one or more structural elements, which are arranged in the flow direction P substantially side by side.
  • a row can thus also be formed by a single structural element, next to which, for example, no further structural elements are arranged.
  • the offset in the flow direction results in a lower pressure loss. If the opposing structures touch and are joined by welding or soldering, the strength can be increased.
  • the structural elements are not arranged at regular intervals in a row, but these rows have gaps, which in each case on the opposite side structural elements are opposite and thus "fill in” these gaps - in plan view. Also, the advantage of a lower pressure loss is achieved.
  • knobs and / or webs can be pronounced outwardly or inwardly to achieve a "support” and thus an increase in strength.
  • the vortex generating structures can also take over this function in whole or in part.
  • the substantially opposing heat transfer surfaces are primary heating surfaces.
  • the heat transfer surfaces are heat-technical secondary surfaces, which are formed in particular by preferably welded to the flow channel, welded or jammed ribs, webs or the like.
  • the height h of the structural elements is in the range of 2 mm to 10 mm, in particular in the range of 3 mm to 4 mm, preferably by 3.7 mm.
  • the flow channel is rectangular and has a width b, which is in particular in the range of 5 mm to 120 mm, preferably in the range of 10 mm to 50 mm.
  • a hydraulic diameter of the flow channel is in the range of 3 mm to 26 mm, in particular in the range of 3 mm to 10 mm.
  • each structural element row each comprises a plurality of structural elements.
  • the aforementioned flow channels are provided as flat, round, oval or rectangular tubes of a heat exchanger, advantageously a Abgastownübertragers.
  • the arrangement of the structural elements according to the invention ie advantageously their impression in the pipe inner walls brings an increase in performance of the heat exchanger with it.
  • Particularly advantageous are the arranged in rows structural elements for exhaust gas heat exchanger, because in this case a soot deposition is avoided in the interior of the flat tubes.
  • the exhaust pipes are surrounded on their outside by a coolant, which is taken from the coolant circuit of the exhaust gases ejecting the engine. It is also possible that the structures are also stamped in plates or slices to produce heat exchangers from them.
  • the angle of attack ⁇ is in each case greater than the outflow angle ⁇ .
  • the radius R is in the range of 1 to 10 mm, preferably in the range of 1 to 5 mm.
  • a distance a between two structural elements can be different within at least one row.
  • the distance a is in the range of 0 to 8 mm.
  • the individual structural elements of a row are offset from one another in the flow direction P by an amount f, the amount f being smaller than the depth T of the structural elements and T being the projection of the length L transverse to the flow direction P.
  • the opposing rows have an offset f in the flow direction P, where f is smaller than the depth T of a row.
  • the rows lying opposite one another have gaps between the structural elements, which in each case are opposite structural elements of the other row.
  • the substantially opposing heat transfer surfaces heat-technical primary surfaces or secondary surfaces are formed in particular by preferably soldered to the flow channel, welded or jammed ribs, webs or the like.
  • the height h is in the range of 2 mm to 10 mm, in particular in the range of 3 mm to 4 mm, preferably by 3.7 mm.
  • the flow channel is rectangular and has a width b which is in particular in the range of 5 mm to 120 mm, preferably in the range of 10 mm to 50 mm.
  • a hydraulic diameter of the flow channel is in the range of 3 mm to 26 mm, in particular in the range of 3 mm to 10 mm.
  • each structural element row each comprise a plurality of structural elements.
  • the flow channels are designed as soldered or welded flat or rectangular tubes and the heat transfer surfaces as flat tube walls.
  • the flow channels are formed by stacking plates or disks having structural elements.
  • the structural elements are molded into the tube walls, in particular stamped.
  • the pipes can be flowed through by exhaust gas and can be flowed around by a liquid coolant.
  • the rows of structural elements in the flow direction have a distance s which contributes 2 to 6 times the length L of a structural element.
  • outwardly pronounced structural elements are supporting nubs, webs or elements and touch or soldered or welded together.
  • Fig. 1 shows a simplified representation of a flow channel 1, which is designed as a rectangular tube, a rectangular inlet cross section 2, two opposite flat sides F1, F2 and two opposite narrow sides S1, S2 has.
  • the channel 1 is from a flow medium, for. B. flows through an exhaust gas in the direction of the arrow P.
  • V-shaped vortex generators 3a, 3b, 4a, 4b which cause by generating vortices an increased turbulence of the flow and at the same time - with an exhaust gas flow - prevent soot deposition.
  • This representation corresponds to the aforementioned prior art.
  • the paired V-shaped exhibited, in the flow direction diffuser-like expanding vortex generators 3a, 3b and 4a, 4b are also referred to as winglets.
  • Fig. 2a shows the cross section of a formed as a flat tube flow channel 1, in which both on the upper flat side F1 and on the flat side F2 winglet pairs 5a, 5b and 6a, 6b are arranged.
  • the channel cross-section has a channel height H and a channel width b.
  • the winglets 5a, 5b, 6a, 6b have a height h projecting into the channel cross-section. This arrangement of winglets corresponds to the aforementioned prior art.
  • the designations F1, F2 also apply to the following exemplary embodiments.
  • Fig. 2b shows the cross section of a round tube formed as flow channel 1 ', in which both on the upper flat side F1 and on the lower flat side F2 structural elements 13' and 13 are arranged.
  • the channel cross section has a channel height H.
  • Fig. 2c shows the cross section of a formed as a flat tube flow channel 1, in which theatoriumübertragunos vom F1, F2 thermally represent secondary surfaces, as they do not transfer heat directly from one to the other medium.
  • the heat transfer surfaces have structural elements 13, 13 '.
  • Fig. 3 shows a flow channel, which is formed as a flat tube 7, which is partially shown in a plan view.
  • the flat tube 7 has a longitudinal axis 7a, a width b and two rows 8, 9 of V-shaped arranged structural elements or winglets 10, 11 which are each embossed both in the top F1 and in the bottom F2 of the flat tube 7, and with the same pattern, so that the top winglet row covers the underlying row.
  • the number of winglets may also be below six, with wider tubes or discs / plates also above eight.
  • the two rows 8, 9 have a distance s to each other, which is measured from center to center and is about 2 times to 6 times the length of the winglets. Between the individual rows, therefore, there is a smooth area in each case, into which, for example, support structures are embossed.
  • the rows of winglets extend over the entire length of the flat tube 7, in each case with the distance s, on both sides of the flat tube 7.
  • Fig. 4 shows a bottom half shell 7b of the flat tube 7 in a view in the direction of the longitudinal axis 7a of the flat tube 7.
  • the half shell 7b has a bottom F2 and two lateral legs 7c, 7d, wherein on the bottom or the bottom F2 winglets 11 'arranged , ie are imprinted in the pipe wall.
  • the upper half shell is not shown; it is mirror-inverted and is longitudinally welded to the lower half-shell 7b on the lateral legs 7c, 7d.
  • the winglets 11 ' have a height h, with which they protrude into the clear cross-sectional area of the flat tube 7.
  • the tube can also be made from a sheet that is formed and welded on one side.
  • the width b of the flat tube is 40 mm or 20 mm, the overall height of the flat tube about 4.5 mm and the height h of the winglets about 1.3 mm.
  • a clear channel height of 4.0 mm With a clear channel height of 4.0 mm, a clear cross-sectional height of 1.4 mm for a core flow remains as a result of the winglets projecting from both sides into the channel cross-section, each with a height of 1.3 mm.
  • the distance s of the rows is about 20 mm.
  • the flat tube 7 is preferably used for per se known exhaust gas heat exchanger (not shown), ie it is traversed on the inside of exhaust gas of an internal combustion engine of a motor vehicle and cooled on its outside by coolant of a coolant circuit of the internal combustion engine.
  • the outside of the flat tubes 7 - as known from the prior art - be smooth and be kept for example by embossed knobs at a distance with adjacent tubes.
  • FIGS. 5a, 5b, 5c and 5d show individual structural elements that are provided for a structure on the flow channels.
  • Fig. 5a shows an elongated structural element 13 with a longitudinal axis 13a, which forms with a reference line q an angle a, the outflow angle.
  • the flow direction for all representations 5a to 5d is the same in each case and represented by an arrow P.
  • the reference line q is perpendicular to the flow direction P.
  • the structural element 13 has a length L and a width B. The latter can be constant or variable, ie increasing in the direction P.
  • Fig. 5b shows an elongated, but angled structural element 14 with two mutually inclined longitudinal axes 14a, 14b, which enclose with the reference line q each have an angle ⁇ and ⁇ .
  • is referred to here as the angle of attack and ⁇ as the outflow angle.
  • the flow according to the arrow P is thus deflected in two stages, ie initially only slightly and then stronger. This results in a lower pressure drop - compared to a structural element according to Fig. 5a at the same outlet angle ⁇ .
  • the length of the structural element 14 along the longitudinal axes 14a, 14b is denoted by L.
  • Fig. 5c shows an arcuate structural element 15 with a curved longitudinal axis 15a, which corresponds to a circular arc with the radius R.
  • the upstream angle is referred to as the angle of attack ⁇ and the downstream angle is referred to as the outflow angle ⁇ .
  • Fig. 5d shows a further embodiment of a structural element 16. which is approximately Z-shaped and also has a Z-shaped extending longitudinal axis 16a.
  • the angle of attack is here denoted by ⁇ , the outflow angle by ⁇ , it corresponds to a flow deflection of (90 ° - ⁇ ), which takes place in the central region of the structural element 16.
  • the inflow and outflow of this structural element takes place practically in the flow direction P. This is a particularly low-pressure deflection of the flow given.
  • the length of the structural element along the longitudinal axis 16a is denoted by L.
  • the Fig. 6a, 6b . 6c, 6d . 6e, 6f . 6g . 6h show arrangement patterns of the structural elements 13 according to FIG Fig. 5a , in rows on a section of a flow channel. In embodiments not shown, only individual structural elements are opposite each other.
  • Fig. 6a shows the elongated structural elements 13 each arranged in two rows 17, 18, which have a distance s in the flow direction P.
  • the structural elements 13 shown in solid lines are impressed in the upper side F1 of the flow channel.
  • the lower heat exchanger surface or side F2 of the flow channel broken structure elements 13 ' also in rows 19, 20 are arranged.
  • the rows are shown by dashed lines.
  • the structural elements 13 'on the lower surface F2 are opposite to the structural elements 13 on the upper surface F1 aligned, ie they have an opposite outflow angle ⁇ (see. Fig. 5a ) on.
  • the rows 19, 20 offset from the rows 17, 18 in the flow direction P, by the amount f.
  • the structural elements 13 and 13 'and the associated rows 17, 18 19, 20 each have a depth T, ie, an extension in the flow direction P.
  • the offset f is smaller than the depth T, so that between the rows 18, 20 and 17, 19 an overlap Ü remains, which is from the difference of T and f.
  • Fig. 6b shows another pattern of in-line structure elements 13 in a row 21 and a row 22 with different outflow angles ⁇ (not shown).
  • the structural elements 13 in solid lines are embossed in the upper side F1 of the flow channel.
  • On the lower surface F2 of the flow channel are in the flow direction P, dashed at the same height illustrated structural elements 13 'arranged with opposite orientation, so that an upper structural element 13 and an opposite lower structural element 13' in the plan view in each case appear as a cross.
  • the upper row with structural elements 13 is thus not offset from the lower row with structural elements 13 '; the overlap Ü is 100%.
  • Fig. 6c to Fig. 6h show further arrangement patterns of the structural elements 13, 13 'on the upper (shown in solid) and the lower (shown broken) side F1, F2 of the flow channel.
  • Fig. 6h also shows on the outside of the flow channels supporting elements 13 ", which are arranged in this embodiment adjacent to the structural elements 13, 13 'and in particular within the rows formed by the structural elements 13, 13'
  • the support elements 13 advantageousously have a height which is desired Distance between two flow channels or between the respective flow channel and a housing wall of a heat exchanger corresponds.
  • FIGS. 7a and 7b show further variants for the arrangement of the structural elements 13 in rows
  • Fig. 7a shows a section of a flow channel with two rows 23, 24 of V-shaped arranged structural elements 13 on the upper side F1.
  • the structural elements 13 are not arranged at constant intervals next to each other, but instead have gaps 25, 26, 27, but are filled on the underside F 2 by structural elements 13 ', so that in the plan view a continuous uniform arrangement of structural elements 13 and 13 'results.
  • This arrangement of "discontinuous" rows 23, 24 and the corresponding rows on the bottom results in a lower pressure drop for the flow in the direction P, because the structural elements - seen in the width direction - only alternately engage from above and below in the flow.
  • Fig. 7b shows a similar patchy arrangement of parallel-aligned structural elements 13 on the upper side F1 in rows 28, 29.
  • the gaps between the structural elements 13 are in turn filled by structural elements 13 'on the underside F2, wherein the structural elements 13 on the upper side F1 and the structural elements 13 'on the bottom F2 to complement a zig-zag arrangement in the plan view.
  • This arrangement is relatively low pressure.
  • Fig. 8 shows a further embodiment for the arrangement of structural elements 13 and 13 'in two rows 30, 31 on the upper side F1.
  • the structural elements 13 of the row 30 and the structural elements 13 'of the opposite row (on the bottom F2) are parallel and in the same Spaced apart.
  • FIGS. 6a, 6b . 7a, 7b and 8th structures with the structural elements 13 were obtained according to FIG Fig. 5a shown.
  • the structural elements 13 can also be replaced by structural elements 14 (in FIG Fig. 5b ), 15 ( Fig. 5c ) or 16 ( Fig. 5d ) be replaced. It would also be possible in a number of different structural elements, eg. B. 13 and 14 to use.
  • Fig. 9a, 9b, 9c, 9d show variants of the structural elements 13, 14, 15, 16 by mirroring: This results in so-called winglet pairs 32, 33, 34, 35, wherein in each case a minimum distance a is provided between two structural elements.
  • the flow direction is usually in the direction of the arrow P, wherein the flow of the winglet pairs traditionally takes place at the narrowest point a. This results in decreasing pressure losses for the different winglet pairs 32 to 35 in this order.
  • These winglet pairs can be arranged side by side in rows, e.g. B. as in the FIGS. 6 to 8 ,
  • 10a, 10b, 10c, 10d show further variations of the structural elements 13, 14, 15, 16 by parallel displacement. This results in double elements 36, 37, 38, 39, each with equal distances a at the arrival and downstream, z. B. in the structures according to Fig. 6 to 8 can be integrated.
  • Fig. 11c vary the outflow angle of the structural elements 13, and in Fig. 11d vary the lengths L1, L2 of the structural elements 13.
  • a combination (not shown) of the variants according to Fig. 11b, 11c, 11d is also possible. These variations can also occur in the upper and / or lower surface F1 or F2.
  • Fig. 12a shows another structural element 43, which is formed as an angle with two straight legs 43a, 43b, which are connected at their apex by an arc 43c.
  • this structural element 43 constitutes a modification of the winglet pair 32 Fig. 9a
  • the flow is preferably in the direction of vertex 43c, according to the arrow P.
  • Fig. 12b shows a further modification of the structural element pair 34 according to Fig. 9c namely, a structural member 44 having two arcuate legs 44a, 44b joined at apex by a bend 44c.
  • the structural element 44 which is likewise flown in the direction of the apex 44c in accordance with the arrow P, initially causes a small flow deflection, which then amplifies due to the legs 44a, 44b curved into the flow.
  • Fig. 12a and Fig. 12b can be used in all previously shown arrangements where two structures arranged in V-shape can be found again.

Description

Die Erfindung betrifft einen von einem Medium in einer Strömungsrichtung durchströmbaren Strömungskanal für einen Wärmeübertrager nach dem Oberbegriff des Patentanspruches 1.The invention relates to a flow channel through which a medium can flow in a flow channel for a heat exchanger according to the preamble of patent claim 1.

Strömungskanäle für Wärmeübertrager werden von einem ersten Medium, z. B. einem Abgas oder einem flüssigen Kühlmittel durchströmt und grenzen dieses erste Medium gegenüber einem zweiten Medium, auf welches die Wärme des ersten Mediums übertragen werden soll, ab. Derartige Strömungskanäle können Rohre mit rundem Querschnitt, Rechteckrohre, Flachrohre oder auch Scheibenpaare sein, bei welchen zwei Platten oder Schreiben randseitig verbunden sind. Meistens sind die Medien, die miteinander in Wärmeaustausch stehen, verschieden, z. B. strömt in den Rohren ein heißes, mit Rußpartikeln beladenes Abgas, und auf der Außenseite werden die Abgasrohre von einem flüssigen Kühlmittel umströmt, was unterschiedliche Wärmeübertragungsverhältnisse auf der Innen- und der Außenseite der Rohre zur Folge hat. Man hat daher, insbesondere für Abgasrohre vorgeschlagen, auf deren Innenseite V-förmig und diffusorartig angeordnete Turbulenzerzeuger anzuordnen, die für eine Verwirbelung der Strömung und eine Verbesserung des Wärmeüberganges auf der Abgasseite sorgen sowie gleichzeitig eine Rußablagerung verhindern. Derartige Lösungen für Abgaswärmeübertrager gehen aus folgenden Druckschriften der Anmelderin hervor: EP-A 677 715 , DE-A 195 40 683 , DE-A 196 54 367 und DE-A 196 54 368 . Diese bekannten Abgaswärmeübertrager weisen Rechteckrohre aus Edelstahl auf, die aus zwei miteinander verschweißten Halbschalen zusammengesetzt sind, in welche die Turbulenzerzeuger, so genannte winglets eingeformt bzw. eingeprägt und hintereinander angeordnet sind. Die winglet-Paare der beiden Halbschalen sind entweder in Längsrichtung der Rohre, d. h. in Strömungsrichtung gegeneinander versetzt ( DE 196 54 367 , DE 196 54 368 ) oder einander gegenüber liegend ( DE 195 40 683 ) angeordnet.Flow channels for heat exchangers are from a first medium, eg. B. flows through an exhaust gas or a liquid coolant and define this first medium against a second medium to which the heat of the first medium is to be transmitted, from. Such flow channels may be tubes with a round cross-section, rectangular tubes, flat tubes or disc pairs, in which two plates or letters are connected at the edge. Most often, the media that are in heat exchange with each other, different, z. B. flows in the pipes a hot, laden with soot particles exhaust gas, and on the outside of the exhaust pipes are flowed around by a liquid coolant, which has different heat transfer conditions on the inside and outside of the tubes result. It has therefore been proposed, in particular for exhaust pipes, To arrange on the inside of a V-shaped and diffuser-like arranged turbulence generator, which provide a turbulence of the flow and an improvement of the heat transfer on the exhaust side and at the same time prevent soot deposition. Such solutions for exhaust gas heat exchanger are apparent from the following documents of the applicant: EP-A 677 715 . DE-A 195 40 683 . DE-A 196 54 367 and DE-A 196 54 368 , These known exhaust gas heat exchanger have rectangular tubes made of stainless steel, which are composed of two half-shells welded together, in which the turbulence generator, so-called winglets are molded or embossed and arranged one behind the other. The winglet pairs of the two half shells are either in the longitudinal direction of the tubes, ie offset in the flow direction against each other ( DE 196 54 367 . DE 196 54 368 ) or facing each other ( DE 195 40 683 ) arranged.

In der DE-A 101 27 084 der Anmelderin wurde ein Wärmeübertrager, insbesondere ein Kühlmittel/Luftkühler mit Flachrohren und Wellrippen vorgeschlagen, bei welchen die flachen Seiten der Flachrohre eine aus Strukturelementen bestehende Struktur aufweisen. Die Strukturelemente sind länglich ausgebildet, V-förmig in Reihen quer zur Kühlmittelströmungsrichtung bzw. quer zur Längsachse der Rohre angeordnet und fungieren als Wirbelerzeuger, um den Wärmeübergang auf der Kühlmittelseite zu erhöhen. Die Wirbelerzeuger sind in beide sich gegenüber liegenden Rohrwände eingeprägt und ragen nach innen in die Kühlmittelströmung. Die Reihen von Wirbelerzeugern auf einer Flachrohrseite sind in Strömungsrichtung versetzt gegenüber den Reihen auf der anderen Flachrohrseite. Damit ist es auch möglich, die nach innen ragende Höhe der Wirbeterzeuger größer als die halbe lichte Weite des Flachrohrquerschnittes zu bemessen.In the DE-A 101 27 084 The applicant has proposed a heat exchanger, in particular a coolant / air cooler with flat tubes and corrugated fins, in which the flat sides of the flat tubes have a structure consisting of structural elements. The structural elements are elongated, V-shaped arranged in rows transverse to the coolant flow direction and transverse to the longitudinal axis of the tubes and act as a vortex generator to increase the heat transfer on the coolant side. The vortex generators are embossed in both opposite pipe walls and protrude inwards into the coolant flow. The rows of vortex generators on one flat tube side are offset in the flow direction from the rows on the other flat tube side. Thus, it is also possible to measure the inwardly projecting height of the vortex generator greater than half the clear width of the flat tube cross-section.

Durch die EP-A 1 061 319 wurde ein Flachrohr für einen Kraftfahrzeugkühler bekannt, welches auf seinen flachen Seiten eine Struktur aufweist, die aus einzelnen länglichen, in Reihen angeordneten Strukturelementen besteht.By the EP-A 1 061 319 has been known a flat tube for a motor vehicle radiator, which has on its flat sides a structure consisting of individual elongated, arranged in rows structural elements.

Dabei sind in Strömungsrichtung Reihen mit unterschiedlich ausgerichteten Strukturelementen angeordnet, sodass die Strömung im Innere des Flachrohres etwa zick-zack-förmig umgelenkt wird. Insbesondere sind jedoch die Reihen mit Strukturelementen auf einer Flachrohrseite in Strömungsrichtung versetzt gegenüber den Reihen der gegenüberliegenden Flachrohrseite angeordnet. Einer Reihe von Strukturelementen liegt also jeweils ein glatter Bereich der Flachrohrinnenwand gegenüber. Die Strömung innerhalb des Kühlmittelrohres wird somit abwechselnd von den Strukturelementen der einen und der anderen Flachrohrseite, nicht jedoch gleichzeitig beeinflusst. Damit soll unter anderem eine Verstopfung der Rohre vermieden werden. Hinsichtlich der Wärmeübertragungsfähigkeit ergeben sich hier noch Potenziale.In this case, rows with differently oriented structural elements are arranged in the flow direction, so that the flow in the interior of the flat tube is deflected approximately in a zigzag shape. In particular, however, the rows are arranged with structural elements on a flat tube side in the flow direction offset from the rows of the opposite flat tube side. A row of structural elements thus faces a smooth area of the flat tube inner wall. The flow within the coolant tube is thus alternately influenced by the structural elements of one and the other flat tube side, but not simultaneously. This is to be avoided, inter alia, a blockage of the pipes. With regard to the heat transfer capability, there are still potentials here.

Es ist Aufgabe der vorliegenden Erfindung, einen Strömungskanal sowie einen Wärmeübertrager der eingangs genannten Art hinsichtlich seiner Wärmeübertragungsfähigkeit zu verbessern, insbesondere Turbulenz- und Wirbelbildung zu erhöhen, wobei der Druckverlust in einem noch vertretbaren Maß ansteigen soll.It is an object of the present invention to improve a flow channel and a heat exchanger of the type mentioned in terms of its heat transfer capacity, in particular to increase turbulence and vortex formation, the pressure loss should increase to an even more reasonable level.

Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst Erfindungsgemäß ist vorgesehen, dass zumindest zwei Reihen mit Strukturelementen auf sich im wesentlichen gegenüberliegenden Wärmeübertragerflächen eine überlappung miteinander aufweisen, derart, dass ein Strukturelement einer Wärmeübertragerfläche eine Überlappung mit einem gegenüberliegenden Strukturelement auf der gegenüberliegenden Warmeübertragerfläche aufweist, wobei die Strukturelemente länglich und rechteckförmig ausgebildet sind und eine gerade Längsachse aufweisen und wobei die Strukturelemente auf der einen Wärmeübertragerfläche gegenüber den Strukturelementen der anderen Wärmeübertragerfläche entgegengesetzt ausgerichtet sind, so dass sie einen entgegengesetzten Abströmwinkel aufweisen und wobei die Reihen der Strukturelemente auf der einen Wärmeübertragerfläche gegenüber den Reihen der Strukturelemente auf der anderen Wärmeübertragerfläche in Strömungsrichtung versetzt sind. Damit greifen gleichzeitig von der einen und der anderen Wärmeübertragerfläche abragende, in den Strömungskanal hineinragende Strukturelemente in die Strömung ein und bewirken eine Verwirbelung der Strömung, die eine Verbesserung der Wärmeübertragung auf der Innenseite des Strömungskanals zur Folge hat. Darüber hinaus wird - beispielsweise im Falle einer Abgasströmung - unter Umständen eine Rußablagerung verhindert. Der Druckverlust hält sich dabei in vertretbaren Grenzen. Die Strömung innerhalb des Strömungskanals wird somit von beiden Seiten gleichzeitig gestört, d. h. beide Grenzschichten werden gleichzeitig abgelöst, was zu einer besonders starken Verwirbelung führt. Die sich gegenüberliegenden Strukturelemente beziehungsweise Reihen aus Strukturelementen können sich ebenfalls auf der Außenseite des Strömungskanals - im Falle eines Abgaskühlers auf der Kühlmittelseite - befinden. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.This object is achieved by the features of claim 1. According to the invention it is provided that at least two rows of structural elements on substantially opposite heat transfer surfaces have an overlap with each other, such that a structural element of a heat transfer surface has an overlap with an opposing structural element on the opposite heat transfer surface, wherein the structural elements are elongate and rectangular in shape and have a straight longitudinal axis, and wherein the structural elements on one heat transfer surface are oppositely oriented with respect to the structural elements of the other heat transfer surface so that they have an opposite outflow angle and wherein the rows of structural elements on the one heat transfer surface are opposite Rows of the structural elements on the other heat exchanger surface in the flow direction offset si nd. At the same time, structural elements projecting from the one and the other heat exchanger surface and projecting into the flow channel enter the flow and cause a turbulence of the flow, which results in an improvement of the heat transfer on the inside of the flow channel. In addition, will - For example, in the case of exhaust gas flow - may prevent soot deposition. The pressure loss keeps within reasonable limits. The flow within the flow channel is thus disturbed simultaneously on both sides, ie both boundary layers are detached at the same time, which leads to a particularly strong turbulence. The opposing structural elements or rows of structural elements can also be on the outside of the flow channel - in the case of an exhaust gas cooler on the coolant side - are. Advantageous embodiments of the invention will become apparent from the dependent claims.

Eine Reihe mit Strukturelementen wird im Rahmen der vorliegenden Erfindung von einem oder mehreren Strukturelementen gebildet, die in Strömungsrichtung P im wesentlichen nebeneinander angeordnet sind. Insbesondere kann eine Reihe also auch durch ein einzelnes Strukturelement gebildet sein, neben dem beispielsweise keine weiteren Strukturelemente angeordnet sind.A row of structural elements is formed in the context of the present invention of one or more structural elements, which are arranged in the flow direction P substantially side by side. In particular, a row can thus also be formed by a single structural element, next to which, for example, no further structural elements are arranged.

Durch die Versetzung in Strömungsrichtung ergibt sich ein geringerer Druckverlust. Berühren sich die gegenüberliegenden Strukturen und werden diese durch Schweißen oder Löten verbunden, so kann die Festigkeit gesteigert werden. Nach einer weiteren Variante sind die Strukturelemente nicht in gleichmäßigen Abständen in einer Reihe angeordnet, vielmehr weisen diese Reihen Lücken auf, denen jeweils auf der gegenüberliegenden Seite Strukturelemente gegenüber liegen und diese Lücken somit - in der Draufsicht - "ausfüllen". Auch dadurch wird der Vorteil eines geringeren Druckverlustes erreicht.The offset in the flow direction results in a lower pressure loss. If the opposing structures touch and are joined by welding or soldering, the strength can be increased. According to a further variant, the structural elements are not arranged at regular intervals in a row, but these rows have gaps, which in each case on the opposite side structural elements are opposite and thus "fill in" these gaps - in plan view. Also, the advantage of a lower pressure loss is achieved.

Zwischen oder neben den Strukturelementen beziehungsweise zwischen oder innerhalb der "Strukturreihen" (Reihen mit Strukturelementen) können (in Strömungsrichtung P gesehen) auch Noppen und/oder Stege nach außen oder innen ausgeprägt werden, um eine "Abstützung" und damit eine Festigkeitssteigerung zu erreichen. Die Wirbel erzeugenden Strukturen können diese Funktion ebenfalls ganz oder teilweise übernehmen.Between or next to the structural elements or between or within the "structural rows" (rows with structural elements) (as viewed in the direction of flow P) also knobs and / or webs can be pronounced outwardly or inwardly to achieve a "support" and thus an increase in strength. The vortex generating structures can also take over this function in whole or in part.

Gemäß einer vorteilhaften Ausführungsform sind die sich im wesentlichen gegenüberliegenden Wärmeübertragungsflächen wärmetechnische Primärflachen. Gemäß einer Variante sind die Wärmeübertragungsflächen dagegen wärmetechnische Sekundärflächen, die insbesondere durch vorzugsweise mit dem Strömungskanal verlötete, verschweißte oder verklemmte Rippen, Stege oder dergleichen gebildet sind.According to an advantageous embodiment, the substantially opposing heat transfer surfaces are primary heating surfaces. According to a variant, however, the heat transfer surfaces are heat-technical secondary surfaces, which are formed in particular by preferably welded to the flow channel, welded or jammed ribs, webs or the like.

Gemäß einer vorteilhaften Ausführungsform liegt die Höhe h der Strukturelemente im Bereich von 2 mm bis 10 mm, insbesondere im Bereich von 3 mm bis 4 mm, vorzugsweise um 3,7 mm.According to an advantageous embodiment, the height h of the structural elements is in the range of 2 mm to 10 mm, in particular in the range of 3 mm to 4 mm, preferably by 3.7 mm.

Gemäß einer vorteilhaften Ausführungsform ist der Strömungskanal rechteckig und weist eine Breite b auf, die insbesondere im Bereich von 5 mm bis 120 mm, vorzugsweise im Bereich von 10 mm bis 50 mm liegt.According to an advantageous embodiment, the flow channel is rectangular and has a width b, which is in particular in the range of 5 mm to 120 mm, preferably in the range of 10 mm to 50 mm.

Gemäß einer vorteilhaften Ausführungsform liegt ein hydraulischer Durchmesser des Strömungskanals im Bereich von 3 mm bis 26 mm, insbesondere im Bereich von 3 mm bis 10 mm.According to an advantageous embodiment, a hydraulic diameter of the flow channel is in the range of 3 mm to 26 mm, in particular in the range of 3 mm to 10 mm.

Gemäß einer vorteilhaften Ausführungsform umfaßt zumindest eine, insbesondere jede Strukturelementreihe jeweils mehrere Strukturelemente.According to an advantageous embodiment, at least one, in particular each structural element row each comprises a plurality of structural elements.

Vorteilhaft sind die vorgenannten Strömungkanäle als Flach-, Rund-, Oval- oder Rechteckrohre eines Wärmeübertragers, vorteilhafterweise eines Abgaswärmeübertragers vorgesehen. Die erfindungsgemäße Anordnung der Strukturelemente, d. h. vorteilhafterweise ihre Einprägung in die Rohrinnenwände bringt eine Leistungssteigerung des Wärmeübertragers mit sich. Besonders vorteilhaft sind die in Reihen angeordneten Strukturelemente für Abgaswärmeübertrager, weil hierbei auch eine Rußablagerung im Inneren der Flachrohre vermieden wird. Die Abgasrohre werden auf ihrer Außenseite von einem Kühlmittel umströmt, welches dem Kühlmittelkreislauf der die Abgase ausstoßende Brennkraftmaschine entnommen wird. Es ist ebenfalls möglich, dass die Strukturen auch in Platten oder Scheiben eingeprägt werden, um aus ihnen Wärmetauscher herzustellen.Advantageously, the aforementioned flow channels are provided as flat, round, oval or rectangular tubes of a heat exchanger, advantageously a Abgaswärmeübertragers. The arrangement of the structural elements according to the invention, ie advantageously their impression in the pipe inner walls brings an increase in performance of the heat exchanger with it. Particularly advantageous are the arranged in rows structural elements for exhaust gas heat exchanger, because in this case a soot deposition is avoided in the interior of the flat tubes. The exhaust pipes are surrounded on their outside by a coolant, which is taken from the coolant circuit of the exhaust gases ejecting the engine. It is also possible that the structures are also stamped in plates or slices to produce heat exchangers from them.

Vorteilhaft ist, dass der Anströmwinkel β jeweils größer als der Abströmwinkel α ist.It is advantageous that the angle of attack β is in each case greater than the outflow angle α.

Vorteilhaft ist, dass der Radius R im Bereich von 1 bis 10 mm liegt, vorzugsweise im Bereich von 1 bis 5 mm.It is advantageous that the radius R is in the range of 1 to 10 mm, preferably in the range of 1 to 5 mm.

Vorteilhaft ist, dass die Radien R1 und R2 gleich dem Radius R sind.It is advantageous that the radii R1 and R2 are equal to the radius R.

Vorteilhaft ist, dass eine Reihe jeweils gleiche Strukturelemente aufweist.It is advantageous that a row each has the same structural elements.

Vorteilhaft ist, dass eine Reihe jeweils unterschiedliche Strukturelemente aufweist.It is advantageous that a row each has different structural elements.

Vorteilhaft ist, dass einzelne Strukturelemente zueinander gespiegelt und paarweise in einem Abstand a nebeneinander angeordnet sind.It is advantageous that individual structural elements are mirrored to each other and arranged in pairs at a distance a next to each other.

Vorteilhaft ist, dass einzelne oder alle Strukturelemente parallel zueinander verschoben und paarweise quer zur Strömungsrichtung in einem Abstand a angeordnet sind.It is advantageous that individual or all structural elements are displaced parallel to one another and arranged in pairs transversely to the flow direction at a distance a.

Vorteilhaft ist, dass ein Abstand a zwischen zwei Strukturelementen innerhalb mindestens einer Reihe unterschiedlich sein kann.It is advantageous that a distance a between two structural elements can be different within at least one row.

Vorteilhaft ist, dass der Abstand a im Bereich von 0 bis 8 mm liegt.It is advantageous that the distance a is in the range of 0 to 8 mm.

Die einzelnen Strukturelemente einer Reihe sind in Strömungsrichtung P um einen Betrag f gegeneinander versetzt, wobei der Betrag f kleiner als die Tiefe T der Strukturelemente und T die Projektion der Länge L quer zur Strömungsrichtung P ist.The individual structural elements of a row are offset from one another in the flow direction P by an amount f, the amount f being smaller than the depth T of the structural elements and T being the projection of the length L transverse to the flow direction P.

Vorteilhaft ist, dass einzelne Strukturelemente einer Reihe nicht parallel angeordnet und einen abweichenden Abströmwinkel α aufweisen.It is advantageous that individual structural elements of a row are not arranged in parallel and have a different outflow angle α.

Vorteilhaft ist, dass einzelne Strukturelemente einer Reihe unterschiedliche Längen L1, L2 aufweisen.It is advantageous that individual structural elements of a row have different lengths L1, L2.

Die sich gegenüberliegende Reihen weisen in Strömungsrichtung P einen Versatz f auf, wobei f kleiner als die Tiefe T einer Reihe ist.The opposing rows have an offset f in the flow direction P, where f is smaller than the depth T of a row.

Dabei sind einzelne oder alle Strukturelemente von sich gegenüberliegenden Reihen entgegengesetzt ausgerichtet und weisen einen entgegengesetzten Abströmwinkel α auf.In this case, individual or all structural elements of opposing rows are aligned opposite and have an opposite outlet angle α.

Vorteilhaft ist, dass die sich gegenüberliegenden Reihen zwischen den Strukturelementen Lücken aufweisen, denen jeweils Strukturelemente der anderen Reihe gegenüberliegen.It is advantageous that the rows lying opposite one another have gaps between the structural elements, which in each case are opposite structural elements of the other row.

Vorteilhaft ist, dass sich die Strukturelemente gegenüberliegender Reihen berühren, insbesondere durch Schweißung oder Verlötung verbunden sind.It is advantageous that the structural elements of opposite rows touch, in particular by welding or soldering are connected.

Vorteilhaft ist, dass sich gegenüberliegende Reihen von Strukturelementen eine gleiche Tiefe T in Strömungsrichtung P aufweisen.It is advantageous that opposite rows of structural elements have an equal depth T in the flow direction P.

Vorteilhaft ist, dass sich gegenüberliegende Reihen von Strukturelementen unterschiedliche Tiefen T1, T2 in Strömungsrichtung P aufweisen.It is advantageous that opposite rows of structural elements have different depths T1, T2 in the flow direction P.

Vorteilhaft ist, dass die sich im wesentlichen gegenüberliegenden Wärmeübertragungsflächen wärmetechnische Primärflächen oder Sekundärflächen sind, wobei die Sekundärflächen insbesondere durch vorzugsweise mit dem Strömungskanal verlötete, verschweißte oder verklemmte Rippen, Stege oder dergleichen gebildet sind.It is advantageous that the substantially opposing heat transfer surfaces heat-technical primary surfaces or secondary surfaces, the secondary surfaces are formed in particular by preferably soldered to the flow channel, welded or jammed ribs, webs or the like.

Vorteilhaft ist, dass die Höhe h im Bereich von 2 mm bis 10 mm, insbesondere im Bereich von 3 mm bis 4 mm, vorzugsweise um 3,7 mm liegt.It is advantageous that the height h is in the range of 2 mm to 10 mm, in particular in the range of 3 mm to 4 mm, preferably by 3.7 mm.

Vorteilhaft ist dass der Strömungskanal rechteckig ist und eine Breite b aufweist, die insbesondere im Bereich von 5 mm bis 120 mm, vorzugsweise im Bereich von 10 mm bis 50 mm liegt.It is advantageous that the flow channel is rectangular and has a width b which is in particular in the range of 5 mm to 120 mm, preferably in the range of 10 mm to 50 mm.

Vorteilhaft ist dass ein hydraulischer Durchmesser des Strömungskanals im Bereich von 3 mm bis 26 mm, insbesondere im Bereich von 3 mm bis 10 mm liegt.It is advantageous that a hydraulic diameter of the flow channel is in the range of 3 mm to 26 mm, in particular in the range of 3 mm to 10 mm.

Vorteilhaft ist, dass zumindest eine, insbesondere jede Strukturelementreihe jeweils mehrere Strukturelemente umfaßt.It is advantageous that at least one, in particular each structural element row each comprise a plurality of structural elements.

Vorteilhaft ist, dass die Strömungskanälen als gelötete oder geschweißte Flach- oder Rechteckrohre und die Wärmeübertragerflächen als flache Rohrwände ausgebildet sind.It is advantageous that the flow channels are designed as soldered or welded flat or rectangular tubes and the heat transfer surfaces as flat tube walls.

Vorteilhaft ist, dass die Strömungskanäle durch Aufeinanderstapeln von Platten oder Scheiben, die Strukturelemente aufweisen, gebildet werden.It is advantageous that the flow channels are formed by stacking plates or disks having structural elements.

Vorteilhaft ist, dass die Strukturelemente in die Rohrwände eingeformt, insbesondere eingeprägt sind.It is advantageous that the structural elements are molded into the tube walls, in particular stamped.

Vorteilhaft ist, dass die Rohre von Abgas durchströmbar und von einem flüssigen Kühlmittel umströmbar sind.It is advantageous that the pipes can be flowed through by exhaust gas and can be flowed around by a liquid coolant.

Vorteilhaft ist, dass die Reihen von Strukturelementen in Strömungsrichtung einen Abstand s aufweisen, der das 2-fache bis 6-fache der Länge L eines Strukturelementes beiträgt.It is advantageous that the rows of structural elements in the flow direction have a distance s which contributes 2 to 6 times the length L of a structural element.

Vorteilhaft ist, dass sich zwischen den Reihen mit Strukturelementen weitere Reihen mit Strukturelementen befinden, die nach außen in das Fluid zwei ragen.It is advantageous that there are further rows of structural elements between the rows of structural elements which project outwardly into the fluid two.

Vorteilhaft ist, dass die nach außen ausgeprägten Strukturelemente Abstütznoppen, -stege oder -elemente sind und sich berühren oder miteinander verlötet oder verschweißt sind.It is advantageous that the outwardly pronounced structural elements are supporting nubs, webs or elements and touch or soldered or welded together.

Vorteilhaft ist, dass die nach außen ausgeprägten Strukturelemente zur Verbesserung des Wärmeüberganges beitragen.It is advantageous that the outwardly pronounced structural elements contribute to improving the heat transfer.

Ausführungsbeispiele sind in den Zeichnungen dargestellt und werden im Folgenden näher beschrieben. Es zeigen

Fig. 1
einen Strömungskanal gemäß Stand der Technik,
Fig. 2a, b, c
einen Querschnitt von Strömungskanälen, einer
Fig. 3
ein Flachrohr mit einer Struktur,
Fig. 4
eine Halbschale des Flachrohres gemäß Fig. 3,
Fig. 5a, b, c, d
verschiedene Strukturelemente,
Fig. 6a, b, c, d, e, f, g, h
Strukturen auf Strömungskanälen,
Fig. 7a, b
weitere Strukturen,
Fig. 8
eine weitere Struktur,
Fig. 9a, b, c, d
gespiegelte Strukturelemente,
Fig. 10a, b, c, d
parallel verschobene Strukturelemente,
Fig. 11a, b, c, d
Reihen von Strukturelementen mit Abwandlungen und
Fig. 12a, b
weitere Strukturelemente.
Embodiments are illustrated in the drawings and will be described in more detail below. Show it
Fig. 1
a flow channel according to the prior art,
Fig. 2a, b, c
a cross section of flow channels, a
Fig. 3
a flat tube with a structure,
Fig. 4
a half-shell of the flat tube according to Fig. 3 .
Fig. 5a, b, c, d
different structural elements,
6a, b, c, d, e, f, g, h
Structures on flow channels,
Fig. 7a, b
further structures,
Fig. 8
another structure,
Fig. 9a, b, c, d
mirrored structural elements,
Fig. 10a, b, c, d
parallel shifted structural elements,
Fig. 11a, b, c, d
Rows of structural elements with variations and
Fig. 12a, b
further structural elements.

Fig. 1 zeigt in vereinfachter Darstellung einen Strömungskanal 1, welcher als Rechteckrohr ausgebildet ist, einen rechteckförmigen Eintrittsquerschnitt 2, zwei sich gegenüberliegende flache Seiten F1, F2 sowie zwei sich gegenüberliegende Schmalseiten S1, S2 aufweist. Der Kanal 1 wird von einem Strömungsmedium, z. B. einem Abgas in Richtung des Pfeils P durchströmt. Auf der unteren Flachseite F2 sind V-förmig ausgerichtete Wirbelerzeuger 3a, 3b, 4a, 4b angeordnet, welche durch Erzeugung von Wirbeln eine erhöhte Turbulenz der Strömung bewirken und gleichzeitig - bei einer Abgasströmung - eine Rußablagerung verhindern. Diese Darstellung entspricht dem eingangs genannten Stand der Technik. Danach werden die jeweils paarweise angeordneten V-förmig ausgestellten, sich in Strömungsrichtung diffusorartig erweiternden Wirbelerzeuger 3a, 3b bzw. 4a, 4b auch als so genannte winglets bezeichnet. Fig. 1 shows a simplified representation of a flow channel 1, which is designed as a rectangular tube, a rectangular inlet cross section 2, two opposite flat sides F1, F2 and two opposite narrow sides S1, S2 has. The channel 1 is from a flow medium, for. B. flows through an exhaust gas in the direction of the arrow P. On the lower flat side F2 arranged V-shaped vortex generators 3a, 3b, 4a, 4b, which cause by generating vortices an increased turbulence of the flow and at the same time - with an exhaust gas flow - prevent soot deposition. This representation corresponds to the aforementioned prior art. Thereafter, the paired V-shaped exhibited, in the flow direction diffuser-like expanding vortex generators 3a, 3b and 4a, 4b are also referred to as winglets.

Fig. 2a zeigt den Querschnitt eines als Flachrohr ausgebildeten Strömungskanals 1, bei weichem sowohl an der oberen Flachseite F1 als auch an der unter Flachseite F2 Winglet-Paare 5a, 5b sowie 6a, 6b angeordnet sind. Der Kanalquerschnitt weist eine Kanalhöhe H und eine Kanalbreite b auf. Die Winglets 5a, 5b, 6a, 6b weisen eine in den Kanalquerschnitt ragende Höhe h auf. Auch diese Anordnung von Winglets entspricht dem eingangs genannten Stand der Technik. Die Bezeichnungen F1, F2 gelten auch für die nachfolgenden Ausführungsbeispiele. Fig. 2a shows the cross section of a formed as a flat tube flow channel 1, in which both on the upper flat side F1 and on the flat side F2 winglet pairs 5a, 5b and 6a, 6b are arranged. The channel cross-section has a channel height H and a channel width b. The winglets 5a, 5b, 6a, 6b have a height h projecting into the channel cross-section. This arrangement of winglets corresponds to the aforementioned prior art. The designations F1, F2 also apply to the following exemplary embodiments.

Fig. 2b zeigt den Querschnitt eines als Rundrohr ausgebildeten Strömungskanals 1', bei weichem sowohl an der oberen Flachseite F1 als auch an der unteren Flachseite F2 Strukturelemente 13' beziehungsweise 13 angeordnet sind. Der Kanalquerschnitt weist eine Kanalhöhe H auf. Fig. 2b shows the cross section of a round tube formed as flow channel 1 ', in which both on the upper flat side F1 and on the lower flat side F2 structural elements 13' and 13 are arranged. The channel cross section has a channel height H.

Fig. 2c zeigt den Querschnitt eines als Flachrohr ausgebildeten Strömungskanals 1, bei welchem die Wärmeübertragunosflächen F1, F2 wärmetechnisch Sekundärflächen darstellen, da sie nicht unmittelbar Wärme von dem einen auf das andere Medium übertragen. Die Wärmeübertragungsflächen weisen Strukturelemente 13, 13' auf. Fig. 2c shows the cross section of a formed as a flat tube flow channel 1, in which the Wärmeübertragunosflächen F1, F2 thermally represent secondary surfaces, as they do not transfer heat directly from one to the other medium. The heat transfer surfaces have structural elements 13, 13 '.

Fig. 3 zeigt einen Strömungskanal, der als Flachrohr 7 ausgebildet ist, welches in einer Draufsicht teilweise dargestellt ist. Das Flachrohr 7 weist eine Längsachse 7a, eine Breite b auf sowie zwei Reihen 8, 9 von V-förmig angeordneten Strukturelementen bzw. winglets 10, 11. welche jeweils sowohl in die Oberseite F1 als auch in die Unterseite F2 des Flachrohres 7 eingeprägt sind, und zwar mit dem selben Muster, sodass sich die jeweils oben liegende winglet-Reihe mit der darunter liegenden Reihe deckt. In einer Reihe sind jeweils acht winglets, gleichmäßig verteilt über die gesamte Breite b, angeordnet - es können jedoch auch sechs oder sieben winglets bei derselben Breite sein. Bei schmalen Rohren, Scheiben oder Platten kann die Zahl der winglets auch unterhalb von sechs liegen, bei breiteren Rohren oder Scheiben/Platten auch oberhalb von acht. Die beiden Reihen 8, 9 weisen zueinander einen Abstand s auf, welcher von Mitte zu Mitte gemessen ist und etwa das 2-fache bis 6-fache der Länge der winglets beträgt. Zwischen den einzelnen Reihen befindet sich also jeweils ein glatter Bereich, in den zum Beispiel Abstützstrukturen eingeprägt sind. Die Reihen von winglets erstrecken sich über die gesamte Länge des Flachrohres 7, jeweils mit dem Abstand s, und zwar auf beiden Seiten des Flachrohres 7. Fig. 3 shows a flow channel, which is formed as a flat tube 7, which is partially shown in a plan view. The flat tube 7 has a longitudinal axis 7a, a width b and two rows 8, 9 of V-shaped arranged structural elements or winglets 10, 11 which are each embossed both in the top F1 and in the bottom F2 of the flat tube 7, and with the same pattern, so that the top winglet row covers the underlying row. There are eight winglets in a row, evenly distributed over the entire width b, but six or seven winglets may be the same width. For narrow tubes, discs or plates, the number of winglets may also be below six, with wider tubes or discs / plates also above eight. The two rows 8, 9 have a distance s to each other, which is measured from center to center and is about 2 times to 6 times the length of the winglets. Between the individual rows, therefore, there is a smooth area in each case, into which, for example, support structures are embossed. The rows of winglets extend over the entire length of the flat tube 7, in each case with the distance s, on both sides of the flat tube 7.

Fig. 4 zeigt eine untere Halbschale 7b des Flachrohres 7 in einer Ansicht in Richtung der Längsachse 7a des Flachrohres 7. Die Halbschale 7b, weist einen Boden F2 sowie zwei seitliche Schenkel 7c, 7d auf, wobei auf dem Boden bzw. der Unterseite F2 winglets 11' angeordnet, d. h. in die Rohrwand eingeprägt sind. Die obere Halbschale ist nicht dargestellt; sie ist spiegelbildlich ausgebildet und wird mit der unteren Halbschale 7b an den seitlichen Schenkeln 7c, 7d längsverschweißt. Die winglets 11' weisen eine Höhe h auf, mit welcher sie in den lichten Querschnittsbereich des Flachrohres 7 hineinragen. Das Rohr kann auch aus einem Blech hergestellt werden, das umgeformt und einseitig verschweißt wird. Fig. 4 shows a bottom half shell 7b of the flat tube 7 in a view in the direction of the longitudinal axis 7a of the flat tube 7. The half shell 7b, has a bottom F2 and two lateral legs 7c, 7d, wherein on the bottom or the bottom F2 winglets 11 'arranged , ie are imprinted in the pipe wall. The upper half shell is not shown; it is mirror-inverted and is longitudinally welded to the lower half-shell 7b on the lateral legs 7c, 7d. The winglets 11 'have a height h, with which they protrude into the clear cross-sectional area of the flat tube 7. The tube can also be made from a sheet that is formed and welded on one side.

Bei einem bevorzugten Ausführungsbeispiel beträgt die Breite b des Flachrohres 40 mm oder 20 mm, die Gesamthöhe des Flachrohres etwa 4,5 mm und die Höhe h der winglets etwa 1,3 mm. Bei einer lichten Kanalhöhe von 4,0 mm verbleibt in Folge der von beiden Seiten in den Kanalquerschnitt hineinragenden winglets mit je 1,3 mm Höhe eine lichte Querschnittshöhe von 1,4 mm für eine Kernströmung. Der Abstand s der Reihen beträgt ca. 20 mm.In a preferred embodiment, the width b of the flat tube is 40 mm or 20 mm, the overall height of the flat tube about 4.5 mm and the height h of the winglets about 1.3 mm. With a clear channel height of 4.0 mm, a clear cross-sectional height of 1.4 mm for a core flow remains as a result of the winglets projecting from both sides into the channel cross-section, each with a height of 1.3 mm. The distance s of the rows is about 20 mm.

Das Flachrohr 7 wird vorzugsweise für an sich bekannte Abgaswärmeübertrager (nicht dargestellt) verwendet, d. h. es wird auf seiner Innenseite von Abgas einer Brennkraftmaschine eines Kraftfahrzeuges durchströmt und auf seiner Außenseite durch Kühlmittel eines Kühlmittelkreislaufes der Brennkraftmaschine gekühlt. Dabei kann die Außenseite der Flachrohre 7 - wie durch den Stand der Technik bekannt - glatt sein und beispielsweise durch eingeprägte Noppen auf Abstand mit benachbarten Rohren gehalten werden. Möglich ist jedoch auch, auf der Außenseite der Flachrohre 7 Rippen zur Verbesserung des Wärmeüberganges auf der Kühlmittelseite vorzusehen.The flat tube 7 is preferably used for per se known exhaust gas heat exchanger (not shown), ie it is traversed on the inside of exhaust gas of an internal combustion engine of a motor vehicle and cooled on its outside by coolant of a coolant circuit of the internal combustion engine. In this case, the outside of the flat tubes 7 - as known from the prior art - be smooth and be kept for example by embossed knobs at a distance with adjacent tubes. However, it is also possible to provide on the outside of the flat tubes 7 fins to improve the heat transfer on the coolant side.

Die Figuren 5a, 5b, 5c und 5d zeigen einzelne Strukturelemente, die für eine Struktur auf den Strömungskanälen vorgesehen sind.The Figures 5a, 5b, 5c and 5d show individual structural elements that are provided for a structure on the flow channels.

Fig. 5a zeigt ein längliches Strukturelement 13 mit einer Längsachse 13a, die mit einer Bezugslinie q einen Winkel a, den Abströmwinkel bildet. Die Strömungsrichtung für alle Darstellungen 5a bis 5d ist jeweils dieselbe und durch einen Pfeil P dargestellt. Die Bezugslinie q verläuft senkrecht zur Strömungsrichtung P. Das Strukturelement 13 weist eine Länge L und eine Breite B auf. Letztere kann konstant oder variabel sein, d. h. in Richtung P zunehmend. Fig. 5a shows an elongated structural element 13 with a longitudinal axis 13a, which forms with a reference line q an angle a, the outflow angle. The flow direction for all representations 5a to 5d is the same in each case and represented by an arrow P. The reference line q is perpendicular to the flow direction P. The structural element 13 has a length L and a width B. The latter can be constant or variable, ie increasing in the direction P.

Fig. 5b zeigt ein längliches, jedoch abgewinkeltes Strukturelement 14 mit zwei gegeneinander geneigten Längsachsen 14a, 14b, die mit der Bezugslinie q jeweils einen Winkel α und β einschließen. β wird hier als Anströmwinkel und α als Abströmwinkel bezeichnet. Die Strömung entsprechend dem Pfeil P wird somit in zwei Stufen umgelenkt, d. h. zunächst nur geringfügig und dann stärker. Dies ergibt einen geringeren Druckabfall - im Vergleich zu einem Strukturelement gemäß Fig. 5a bei gleichem Abströmwinkel α. Die Länge des Strukturelementes 14 entlang den Längsachsen 14a, 14b ist mit L bezeichnet. Fig. 5b shows an elongated, but angled structural element 14 with two mutually inclined longitudinal axes 14a, 14b, which enclose with the reference line q each have an angle α and β. β is referred to here as the angle of attack and α as the outflow angle. The flow according to the arrow P is thus deflected in two stages, ie initially only slightly and then stronger. This results in a lower pressure drop - compared to a structural element according to Fig. 5a at the same outlet angle α. The length of the structural element 14 along the longitudinal axes 14a, 14b is denoted by L.

Fig. 5c zeigt ein bogenförmiges Strukturelement 15 mit einer gekrümmten Längsachse 15a, die einem Kreisbogen mit dem Radius R entspricht. Der stromaufwärts gelegene Winkel wird als Anströmwinkel β und der stromabwärts gelegene Winkel wird als Abströmwinkel α bezeichnet. Auch hier erfolgt zunächst eine sanfte Umlenkung der Strömung um den Winkel (90° - β) und danach eine stärkere Umlenkung um den Winkel (90° - α). Durch diese kontinuierlich zunehmende Umlenkung der Strömung wird ebenfalls ein geringerer Druckverlust erreicht - im Vergleich zu dem Strukturelement 13 gemäß Fig. 5a. Die Länge des Strukturelementes 15 entlang der Längsachse 15a ist mit L bezeichnet. Fig. 5c shows an arcuate structural element 15 with a curved longitudinal axis 15a, which corresponds to a circular arc with the radius R. The upstream angle is referred to as the angle of attack β and the downstream angle is referred to as the outflow angle α. Again, there is a gentle deflection of the flow around the angle (90 ° - β) and then a stronger deflection around the angle (90 ° - α). As a result of this continuously increasing deflection of the flow, a lower pressure loss is likewise achieved-in comparison to the structural element 13 according to FIG Fig. 5a , The length of the structural element 15 along the longitudinal axis 15a is denoted by L.

Fig. 5d zeigt eine weitere Ausführungsform eines Strukturelementes 16. welches etwa Z-förmig ausgebildet ist und auch eine Z-förmig verlaufende Längsachse 16a aufweist. Die Längsachse 16a verbindet zwei Kreisbogenstücke unterschiedlicher Krümmung, jedoch mit demselben Radius R1 = R2. Der Anströmwinkel ist hier mit β, der Abströmwinkel mit α bezeichnet, er entspricht einer Strömungsumlenkung von (90° - α), welche im mittleren Bereich des Strukturelementes 16 erfolgt. Die An- und Abströmung dieses Strukturelementes erfolgt praktisch in Strömungsrichtung P. Damit ist eine besonders druckverlustarme Umlenkung der Strömung gegeben. Die Läge des Strukturelementes entlang der Längsachse 16a ist mit L bezeichnet. Fig. 5d shows a further embodiment of a structural element 16. which is approximately Z-shaped and also has a Z-shaped extending longitudinal axis 16a. The longitudinal axis 16a connects two circular arc pieces of different curvature, but with the same radius R1 = R2. The angle of attack is here denoted by β, the outflow angle by α, it corresponds to a flow deflection of (90 ° - α), which takes place in the central region of the structural element 16. The inflow and outflow of this structural element takes place practically in the flow direction P. This is a particularly low-pressure deflection of the flow given. The length of the structural element along the longitudinal axis 16a is denoted by L.

Die Fig. 6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h zeigen Anordnungsmuster der Strukturelemente 13 gemäß Fig. 5a, und zwar in Reihen auf einem Ausschnitt eines Strömungskanals. Bei nicht dargestellten Ausführungsbeispielen liegen sich nur einzelne Strukturelemente einander gegenüber.The Fig. 6a, 6b . 6c, 6d . 6e, 6f . 6g . 6h show arrangement patterns of the structural elements 13 according to FIG Fig. 5a , in rows on a section of a flow channel. In embodiments not shown, only individual structural elements are opposite each other.

Fig. 6a zeigt die länglichen Strukturelemente 13 jeweils in zwei Reihen 17, 18 angeordnet, welche in Strömungsrichtung P einen Abstand s aufweisen. Die durchgezogen dargestellten Strukturelemente 13 sind in die obere Seite F1 des Strömungskanals eingeprägt. In die untere Wärmeübertragerfläche bzw. Seite F2 des Strömungskanals sind gebrochen dargestellte Strukturelemente 13', ebenfalls in Reihen 19, 20 angeordnet. Die Reihen sind durch gestrichelte Begrenzungslinien dargestellt. Die Strukturelemente 13' auf der unteren Fläche F2 sind gegenüber den Strukturelementen 13 auf der oberen Fläche F1 entgegengesetzt ausgerichtet, d. h. sie weisen einen entgegengesetzten Abströmwinkel α (vgl. Fig. 5a) auf. Darüber hinaus sind die Reihen 19, 20 gegenüber den Reihen 17, 18 in Strömungsrichtung P versetzt, und zwar um den Betrag f. Die Strukturelemente 13 bzw. 13' und die zugehörigen Reihen 17, 18 19, 20 weisen jeweils eine Tiefe T auf, d. h. eine Erstreckung in Strömungsrichtung P. Der Versatz f ist kleiner als die Tiefe T, sodass zwischen den Reihen 18, 20 bzw. 17, 19 eine Überlappung Ü verbleibt, die sich aus der Differenz von T und f ergibt. Eine Überlappung Ü von 100 % bedeutet bei Reihen mit gleicher Tiefe T, dass der Versatz gleich Null ist (f = 0). Bei Reihen mit unterschiedlicher Tiefe T1 beziehungsweise T2, also beispielsweise T1 < T2, bedeutet eine Überlappung von 100%, daß die Überlappung Ü gleich der kleineren Tiefe T1 ist (Ü = T1). Durch einen Versatz der sich jeweils gegenüberliegenden Reihen 17, 19 bzw. 18, 20 ergibt sich ein geringerer Druckverlust als bei Reihen ohne Versatz. Fig. 6a shows the elongated structural elements 13 each arranged in two rows 17, 18, which have a distance s in the flow direction P. The structural elements 13 shown in solid lines are impressed in the upper side F1 of the flow channel. In the lower heat exchanger surface or side F2 of the flow channel broken structure elements 13 ', also in rows 19, 20 are arranged. The rows are shown by dashed lines. The structural elements 13 'on the lower surface F2 are opposite to the structural elements 13 on the upper surface F1 aligned, ie they have an opposite outflow angle α (see. Fig. 5a ) on. In addition, the rows 19, 20 offset from the rows 17, 18 in the flow direction P, by the amount f. The structural elements 13 and 13 'and the associated rows 17, 18 19, 20 each have a depth T, ie, an extension in the flow direction P. The offset f is smaller than the depth T, so that between the rows 18, 20 and 17, 19 an overlap Ü remains, which is from the difference of T and f. An overlap Ü of 100% for rows of equal depth T means that the offset is zero (f = 0). In the case of rows with different depths T1 or T2, for example T1 <T2, an overlap of 100% means that the overlap Ü is equal to the smaller depth T1 (U = T1). By an offset of each opposing rows 17, 19 and 18, 20 results in a lower pressure loss than in rows without offset.

Fig. 6b zeigt ein anderes Muster von in Reihen angeordneten Strukturelementen 13 in einer Reihe 21 und einer Reihe 22 mit unterschiedlichen Abströmwinkeln α (nicht dargestellt). Die Strukturelemente 13 in ausgezogenen Linien sind in die obere Seite F1 des Strömungskanals eingeprägt. Auf der unteren Fläche F2 des Strömungskanals sind, in Strömungsrichtung P, auf gleicher Höhe gestrichelt dargestellte Strukturelemente 13' mit entgegengesetzter Ausrichtung angeordnet, sodass ein oberes Strukturelement 13 und ein gegenüberliegendes unteres Strukturelement 13' in der Draufsicht jeweils als Kreuz erscheinen. Die obere Reihe mit Strukturelementen 13 ist somit nicht gegenüber der unteren Reihe mit Strukturelementen 13' versetzt; die Überlappung Ü beträgt 100 %. Fig. 6b shows another pattern of in-line structure elements 13 in a row 21 and a row 22 with different outflow angles α (not shown). The structural elements 13 in solid lines are embossed in the upper side F1 of the flow channel. On the lower surface F2 of the flow channel are in the flow direction P, dashed at the same height illustrated structural elements 13 'arranged with opposite orientation, so that an upper structural element 13 and an opposite lower structural element 13' in the plan view in each case appear as a cross. The upper row with structural elements 13 is thus not offset from the lower row with structural elements 13 '; the overlap Ü is 100%.

Fig. 6c bis Fig. 6h zeigen weitere Anordnungsmuster der Strukturelemente 13, 13' auf der oberen (durchgezogen dargestellt) und der unteren (gebrochen dargestellt) Seite F1, F2 des Strömungskanals. Fig. 6c to Fig. 6h show further arrangement patterns of the structural elements 13, 13 'on the upper (shown in solid) and the lower (shown broken) side F1, F2 of the flow channel.

Fig. 6h zeigt darüber hinaus auf der Außenseite der Strömungskanäle Abstützelemente 13", die bei diesem Ausführungsbeispiel benachbart zu den Strukturelementen 13, 13' und insbesondere innerhalb der durch die Strukturelemente 13, 13' gebildeten Reihen angeordnet sind. Bevorzugt sind die Abstützelemente in die Wand des Strömungskanals eingeprägt. Für eine gewünschte Abstützung des jeweiligen Strömungskanals weisen die Abstützelemente 13" vorteilhafterweise eine Höhe auf, die dem gewünschen Abstand zwischen zwei Strömungskanälen beziehungsweise zwischen dem jeweiligen Strömungskanals und einer Gehäusewand eines Wärmeübertragers entspricht. Fig. 6h also shows on the outside of the flow channels supporting elements 13 ", which are arranged in this embodiment adjacent to the structural elements 13, 13 'and in particular within the rows formed by the structural elements 13, 13' For a desired support of the respective flow channel, the support elements 13 "advantageously have a height which is desired Distance between two flow channels or between the respective flow channel and a housing wall of a heat exchanger corresponds.

Die Figuren 7a und 7b zeigen weitere Varianten für die Anordnung der Strukturelemente 13 in Reihen,The FIGS. 7a and 7b show further variants for the arrangement of the structural elements 13 in rows,

Fig. 7a zeigt einen Ausschnitt eines Strömungskanals mit zwei Reihen 23, 24 von V-förmig angeordneten Strukturelementen 13 auf der Oberseite F1. Die Strukturelemente 13 sind nicht in gleich bleibenden Abständen nebeneinander angeordnet, vielmehr weisen sie Lücken 25, 26, 27 auf, weiche jedoch auf der Unterseite F2 durch Strukturelemente 13' ausgefüllt sind, sodass sich in der Draufsicht eine durchgehende gleichmäßig Anordnung von Strukturelementen 13 und 13' ergibt. Diese Anordnung von "lückenhaften" Reihen 23, 24 und der entsprechenden Reihen auf der Unterseite ergibt einen geringeren Druckabfall für die Strömung in Richtung P, weil die Strukturelemente - in Breitenrichtung gesehen - nur abwechselnd von oben und unten in die Strömung eingreifen. Fig. 7a shows a section of a flow channel with two rows 23, 24 of V-shaped arranged structural elements 13 on the upper side F1. The structural elements 13 are not arranged at constant intervals next to each other, but instead have gaps 25, 26, 27, but are filled on the underside F 2 by structural elements 13 ', so that in the plan view a continuous uniform arrangement of structural elements 13 and 13 'results. This arrangement of "discontinuous" rows 23, 24 and the corresponding rows on the bottom results in a lower pressure drop for the flow in the direction P, because the structural elements - seen in the width direction - only alternately engage from above and below in the flow.

Fig. 7b zeigt eine ähnliche lückenhafte Anordnung von parallel ausgerichteten Strukturelementen 13 auf der Oberseite F1 in Reihen 28, 29. Die Lücken zwischen den Strukturelementen 13 sind wiederum durch Strukturelemente 13' auf der Unterseite F2 ausgefüllt, wobei sich die Strukturelemente 13 auf der Oberseite F1 und die Strukturelemente 13' auf der Unterseite F2 zu einer zick-zack-förmigen Anordnung in der Draufsicht ergänzen. Auch diese Anordnung ist relativ druckvenustarm. Fig. 7b shows a similar patchy arrangement of parallel-aligned structural elements 13 on the upper side F1 in rows 28, 29. The gaps between the structural elements 13 are in turn filled by structural elements 13 'on the underside F2, wherein the structural elements 13 on the upper side F1 and the structural elements 13 'on the bottom F2 to complement a zig-zag arrangement in the plan view. This arrangement is relatively low pressure.

Fig. 8 zeigt eine weitere Ausführungsform für die Anordnung von Strukturelementen 13 und 13' in zwei Reihen 30, 31 auf der Oberseite F1. Die Strukturelemente 13 der Reihe 30 und die Strukturelemente 13' der gegenüberliegenden Reihe (auf der Unterseite F2) sind parallel und in gleichem Abstand zueinander angeordnet. Gleiches gilt für die zweite Reihe 31 analog, wobei lediglich der Abströmwinkel entgegengesetzt ist, sodass sich, in Strömungsrichtung P gesehen, eine Umlenkung der Strömung ergibt. Fig. 8 shows a further embodiment for the arrangement of structural elements 13 and 13 'in two rows 30, 31 on the upper side F1. The structural elements 13 of the row 30 and the structural elements 13 'of the opposite row (on the bottom F2) are parallel and in the same Spaced apart. The same applies analogously to the second row 31, wherein only the outflow angle is opposite, so that, as seen in the direction of flow P, a deflection of the flow results.

In den Figuren 6a, 6b, 7a, 7b und 8 wurden jeweils Strukturen mit den Strukturelementen 13 gemäß Fig. 5a dargestellt. Die Strukturelemente 13 können ebenso durch Strukturelemente 14 (in Fig. 5b), 15 (Fig. 5c) oder 16 (Fig. 5d) ersetzt werden. Ebenso wäre es möglich, in einer Reihe unterschiedliche Strukturelemente, z. B. 13 und 14 zu verwenden.In the FIGS. 6a, 6b . 7a, 7b and 8th In each case, structures with the structural elements 13 were obtained according to FIG Fig. 5a shown. The structural elements 13 can also be replaced by structural elements 14 (in FIG Fig. 5b ), 15 ( Fig. 5c ) or 16 ( Fig. 5d ) be replaced. It would also be possible in a number of different structural elements, eg. B. 13 and 14 to use.

Fig. 9a, 9b, 9c, 9d zeigen Varianten der Strukturelemente 13, 14, 15, 16 durch Spiegelung: Es ergeben sich damit so genannte winglet-Paare 32, 33, 34, 35, wobei jeweils zwischen zwei Strukturelementen ein Mindestabstand a vorgesehen ist. Die Strömungsrichtung erfolgt in der Regel in Richtung des Pfeils P, wobei die Anströmung der winglet-Paare herkömmticherweise an der engsten Stelle a erfolgt. Damit ergeben sich für die verschiedenen winglet-Paare 32 bis 35 in dieser Reihenfolge abnehmende Druckverluste. Diese winglet-Paare können in Reihen nebeneinander angeordnet werden, z. B. wie in den Figuren 6 bis 8. Fig. 9a, 9b, 9c, 9d show variants of the structural elements 13, 14, 15, 16 by mirroring: This results in so-called winglet pairs 32, 33, 34, 35, wherein in each case a minimum distance a is provided between two structural elements. The flow direction is usually in the direction of the arrow P, wherein the flow of the winglet pairs traditionally takes place at the narrowest point a. This results in decreasing pressure losses for the different winglet pairs 32 to 35 in this order. These winglet pairs can be arranged side by side in rows, e.g. B. as in the FIGS. 6 to 8 ,

Fig. 10a, 10b, 10c, 10d zeigen weitere Variationen der Strukturelemente 13, 14, 15, 16 durch Parallelverschiebung. Damit ergeben sich Doppelelemente 36, 37, 38, 39 mit jeweils gleichen Abständen a an der An- und Abströmseite, die z. B. in die Strukturen gemäß Fig. 6 bis 8 integriert werden können. 10a, 10b, 10c, 10d show further variations of the structural elements 13, 14, 15, 16 by parallel displacement. This results in double elements 36, 37, 38, 39, each with equal distances a at the arrival and downstream, z. B. in the structures according to Fig. 6 to 8 can be integrated.

Wichtig dabei ist, dass die Strukturelemente einer Reihe oben und/oder unten nicht zwangsläufig gleiche geometrische Form bzw. Abmessungen aufweisen, wie es beispielhaft anhand von vier Strukturelementen in Fig. 11a gezeigt wird. Vielmehr können, wie in Fig. 11b gezeigt, die Strukturelemente mit einem Versatz f in Strömungsrichtung P angeordnet sein.It is important that the structural elements of a series above and / or below not necessarily have the same geometric shape or dimensions, as exemplified by four structural elements in Fig. 11a will be shown. Rather, as in Fig. 11b shown, the structural elements are arranged with an offset f in the flow direction P.

In Fig. 11c variieren die Abströmwinkel der Strukturelemente 13, und in Fig. 11d variieren die Längen L1, L2 der Strukturelemente 13. Eine Kombination (nicht dargestellt) der Varianten gemäß Fig. 11b, 11c, 11d ist ebenfalls möglich. Auch können diese Variationen in der oberen und/oder unteren Fläche F1 bzw. F2 auftreten.In Fig. 11c vary the outflow angle of the structural elements 13, and in Fig. 11d vary the lengths L1, L2 of the structural elements 13. A combination (not shown) of the variants according to Fig. 11b, 11c, 11d is also possible. These variations can also occur in the upper and / or lower surface F1 or F2.

Fig. 12a zeigt ein weiteres Strukturelement 43, welches als Winkel mit zwei geraden Schenkeln 43a, 43b ausgebildet ist, welche an ihrem Scheitelpunkt durch einen Bogen 43c verbunden sind. Insofern stellt dieses Strukturelement 43 eine Abwandlung des winglet-Paares 32 gemäß Fig. 9a dar. Die Anströmung erfolgt vorzugsweise in Richtung Scheitelpunkt 43c, entsprechend dem Pfeil P. Fig. 12a shows another structural element 43, which is formed as an angle with two straight legs 43a, 43b, which are connected at their apex by an arc 43c. In this respect, this structural element 43 constitutes a modification of the winglet pair 32 Fig. 9a The flow is preferably in the direction of vertex 43c, according to the arrow P.

Fig. 12b zeigt eine weitere Abwandlung des Strukturelementenpaares 34 gemäß Fig. 9c, nämlich ein Strukturelement 44 mit zwei gebogenen Schenkeln 44a, 44b, die im Scheitelpunkt durch einen Bogen 44c verbunden sind. Das Strukturelement 44, welches ebenfalls in Richtung auf den Scheitelpunkt 44c entsprechend dem Pfeil P angeströmt wird, bewirkt zunächst eine geringe Strömungsumlenkung, die sich dann aufgrund der in die Strömung hineingekrümmten Schenkel 44a, 44b verstärkt. Fig. 12b shows a further modification of the structural element pair 34 according to Fig. 9c namely, a structural member 44 having two arcuate legs 44a, 44b joined at apex by a bend 44c. The structural element 44, which is likewise flown in the direction of the apex 44c in accordance with the arrow P, initially causes a small flow deflection, which then amplifies due to the legs 44a, 44b curved into the flow.

Die Elemente gemäß Fig. 12a und Fig. 12b lassen sich in allen zuvor gezeigten Anordnungen, wo sich zwei in V-Form angeordnete Strukturen wieder finden, einsetzen.The elements according to Fig. 12a and Fig. 12b can be used in all previously shown arrangements where two structures arranged in V-shape can be found again.

Claims (8)

  1. A flow passage (1), through which a medium can flow in a direction of flow P, for a heat exchanger having two heat exchanger surfaces (F1, F2), which lie substantially opposite one another, are in particular arranged parallel and/or at a spacing of a passage height H and each have a structure formed from a plurality of structure elements that are arranged next to one another in rows transversely with respect to the direction of flow P and project into the flow passage, wherein the structure elements each have a width B, a length L, a height h, a flow off angle α and a longitudinal axis, wherein at least two rows (17, 18, 19, 20) with structure elements (13, 13') on substantially opposite heat exchanger surfaces (F1, F2) have an overlap (Ü) with one another, such that a structure element of a heat exchanger surface overlaps with an opposite structure element of the opposite heat exchanger surface, wherein the structure elements (13) are elongate and rectangular in form and have a straight longitudinal axis (13a), characterised in that the structure elements (13') on the one heat exchanger surface (F2) are arranged opposite to the structure elements (13) of the other heat exchanger surface (F1), so that they have an opposite flow-off angle α and in that the rows of the structure elements on the one heat exchanger surface (F2) are offset in the flow direction opposite the rows of the structure elements on the other heat exchanger surface (F1).
  2. The flow passage as claimed in claim 1, characterised in that the height h of at least one of the structure elements (13, 14, 15, 16) is 20% to 50% of the passage height H.
  3. The flow passage as claimed in claim 2, characterised in that the length L of at least one structure element (13, 14, 15, 16) is from 2 to 12 times the height h of the structure element.
  4. The flow passage as claimed in one of claims 1 to 3, characterised in that the distance s between the rows amounts to 0.5 to 8 times the depth T.
  5. The flow passage as claimed in one of claims 1 to 4, characterised in that the distance s between in each case two rows varies in the direction of flow P.
  6. The flow passage as claimed in one of claims 1 to 4, characterised in that at least one structure element (13, 14, 15, 16) has a constant width B in the range from 0.1 to 6.0 mm, preferably in the range from 0.1 to 3.0 mm.
  7. The flow passage as claimed in one of claims 1 to 4, characterised in that at least one structure element (13, 14, 15, 16) has a width which increases in the direction of flow between a starting width B1 and a finishing width B2, wherein the starting width B1 is in the range from 0.1 to 4 mm and the finishing width B2 is in the range from 0.1 to 6 mm.
  8. The flow passage as claimed in one of the preceding claims, characterised in that the flow off angle α is in the range from 20 to 70 degrees, preferably in the range from 40 to 65 degrees, and in particular has a value of from 50 to 60 degrees.
EP10181882.1A 2003-10-28 2004-09-20 Flow channel for heat exchanger Active EP2267393B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10350418 2003-10-28
EP04786965.6A EP1682842B1 (en) 2003-10-28 2004-09-20 Flow channel for a heat exchanger, and heat exchanger comprising such flow channels

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP04786965.6 Division 2004-09-20
EP04786965.6A Division EP1682842B1 (en) 2003-10-28 2004-09-20 Flow channel for a heat exchanger, and heat exchanger comprising such flow channels
EP04786965.6A Division-Into EP1682842B1 (en) 2003-10-28 2004-09-20 Flow channel for a heat exchanger, and heat exchanger comprising such flow channels

Publications (3)

Publication Number Publication Date
EP2267393A2 EP2267393A2 (en) 2010-12-29
EP2267393A3 EP2267393A3 (en) 2012-07-04
EP2267393B1 true EP2267393B1 (en) 2017-06-28

Family

ID=34485135

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10181882.1A Active EP2267393B1 (en) 2003-10-28 2004-09-20 Flow channel for heat exchanger
EP04786965.6A Active EP1682842B1 (en) 2003-10-28 2004-09-20 Flow channel for a heat exchanger, and heat exchanger comprising such flow channels

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP04786965.6A Active EP1682842B1 (en) 2003-10-28 2004-09-20 Flow channel for a heat exchanger, and heat exchanger comprising such flow channels

Country Status (9)

Country Link
US (2) US20070107882A1 (en)
EP (2) EP2267393B1 (en)
JP (1) JP2007510122A (en)
KR (1) KR20060101481A (en)
CN (1) CN1875240B (en)
BR (1) BRPI0415965B1 (en)
DE (1) DE102004045923A1 (en)
ES (1) ES2496943T3 (en)
WO (1) WO2005052490A1 (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE529023C2 (en) * 2005-06-17 2007-04-10 Sandvik Intellectual Property Coated carbide cutter
US20070044939A1 (en) * 2005-08-30 2007-03-01 Caterpillar Inc. Tube design for an air-to-air aftercooler
WO2007036238A1 (en) * 2005-09-23 2007-04-05 Pierburg Gmbh Heat exchanger
DE102005049310A1 (en) * 2005-10-12 2007-04-19 Behr Gmbh & Co. Kg Heat exchanger, in particular for motor vehicles
JP2007333254A (en) * 2006-06-13 2007-12-27 Calsonic Kansei Corp Tube for heat-exchanger
JP2008145024A (en) * 2006-12-07 2008-06-26 Usui Kokusai Sangyo Kaisha Ltd Manufacturing method of flat heat transfer tube, flat heat transfer tube obtained by method, and gas cooling device incorporating flat heat transfer tube
EP2165142A1 (en) 2007-07-06 2010-03-24 Eurotec London Ltd Heat exchanger module and heat exchanger system with projecting members
DE102007036308A1 (en) * 2007-07-31 2009-02-05 Behr Gmbh & Co. Kg Rib for a heat exchanger
DE102007048213B4 (en) * 2007-10-08 2009-12-24 Hans Runkel Apparatus for heat recovery in indirectly, with a plurality of radiant tube burners heated ovens
EP2242979B1 (en) * 2008-01-10 2014-09-24 Behr GmbH & Co. KG Extruded tube for a heat exchanger
DE102009004097B4 (en) 2008-01-10 2018-09-13 Denso Corporation Semiconductor cooling structure
DE102008031158A1 (en) * 2008-07-03 2010-01-07 Behr Gmbh & Co. Kg Extruded tube for e.g. intercooler in motor vehicle, has two parallel outside side walls comprising embossings that serve to form bulged portions that project into two ducts, where continuous web extends between side walls
DE102008036222B3 (en) * 2008-08-02 2009-08-06 Pierburg Gmbh Heat transfer unit for an internal combustion engine
JP5513738B2 (en) * 2008-12-24 2014-06-04 東芝キヤリア株式会社 Heat exchanger and heat pump water heater
US9557119B2 (en) * 2009-05-08 2017-01-31 Arvos Inc. Heat transfer sheet for rotary regenerative heat exchanger
JP5381328B2 (en) * 2009-05-26 2014-01-08 いすゞ自動車株式会社 Thermoelectric unit
DE102009026546B4 (en) * 2009-05-28 2012-05-16 Schott Solar Ag solar panel
CN102252554A (en) * 2010-05-17 2011-11-23 上海雷林低碳工程技术股份有限公司 Corrugated sheet for plate air cooler
DE102012008183B4 (en) * 2011-09-06 2013-07-18 Joachim Benz heat exchanger kit
US8827249B2 (en) * 2011-11-07 2014-09-09 Spx Cooling Technologies, Inc. Air-to-air atmospheric exchanger
FR2986472B1 (en) 2012-02-03 2014-08-29 Valeo Systemes Thermiques COOLING RADIATOR FOR A VEHICLE, IN PARTICULAR A MOTOR VEHICLE
DE102012205916B4 (en) 2012-04-11 2018-09-06 Mahle International Gmbh corrugated fin
JP2014016144A (en) * 2012-07-05 2014-01-30 Airec Ab Plate for heat exchanger, heat exchanger, and air cooler comprising heat exchanger
DE102012217333A1 (en) 2012-09-25 2014-03-27 Behr Gmbh & Co. Kg flat tube
CN103813689A (en) * 2012-11-01 2014-05-21 恩斯迈电子(深圳)有限公司 Heat radiation device and heat radiation fin thereof
JP6066065B2 (en) * 2013-02-20 2017-01-25 三菱日立パワーシステムズ株式会社 Gas turbine combustor with heat transfer device
DE102013216408A1 (en) * 2013-08-19 2015-02-19 Behr Gmbh & Co. Kg Heat exchanger
CN104807361A (en) * 2014-01-29 2015-07-29 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanging plate and plate heat exchanger comprising heat exchanging plate
CN103940283B (en) * 2014-04-02 2016-03-30 中国科学院广州能源研究所 A kind of longitudinal turbulence works in coordination with generating polynomial heat transfer element
US10816277B2 (en) * 2014-07-21 2020-10-27 Hanon Systems Heat exchanger tubes with fluid communication channels
DE102014015508B4 (en) 2014-10-21 2018-09-27 Joachim Benz heat exchanger kit
US9777635B2 (en) * 2014-12-31 2017-10-03 General Electric Company Engine component
CN105115338B (en) * 2015-08-31 2017-08-25 东南大学 A kind of phase transition heat accumulation unit
ES2630754B1 (en) 2016-02-19 2018-03-07 Valeo Térmico, S. A. CIRCULATION CHANNEL FOR DRIVING A FLUID OF A HEAT EXCHANGER, AND HEAT EXCHANGER
CN105674786A (en) * 2016-02-26 2016-06-15 国网上海市电力公司 Inner hot water heat dissipation component for cooling tower
CN105716444B (en) * 2016-02-26 2018-09-18 国网上海市电力公司 A kind of external cooler of auxiliary inner cold system
CN105758235B (en) * 2016-02-26 2018-05-08 国网上海市电力公司 A kind of hollow board-like air cooling compressor and its control method
WO2017179588A1 (en) * 2016-04-11 2017-10-19 カルソニックカンセイ株式会社 Heat exchanger
USD840958S1 (en) 2016-11-15 2019-02-19 Borgwamer Emissions Systems Spain, S.L.U. Shaped tube with a pattern
JP2020529573A (en) * 2017-07-31 2020-10-08 ヴァレオ システム テルミク Heat exchanger tube with disturber
FR3073611B1 (en) * 2017-07-31 2019-10-11 Valeo Systemes Thermiques HEAT EXCHANGER TUBE WITH VARIABLE GEOMETRY DISTURB DEVICE
DE102017214949A1 (en) * 2017-08-26 2019-02-28 Mahle International Gmbh Heat exchanger
JP6815965B2 (en) * 2017-10-12 2021-01-20 株式会社神戸製鋼所 Original metal plate used for heat exchange plates
JP6663899B2 (en) * 2017-11-29 2020-03-13 本田技研工業株式会社 Cooling system
DE102017222742A1 (en) * 2017-12-14 2019-06-19 Hanon Systems Pipe, in particular flat pipe for an exhaust gas cooler and exhaust gas cooler
DE102017223616A1 (en) * 2017-12-21 2019-06-27 Mahle International Gmbh Flat tube for an exhaust gas cooler
DE202019101397U1 (en) 2019-03-12 2019-04-01 Mahle International Gmbh exhaust gas cooler
DE102019204640A1 (en) 2019-04-02 2020-10-08 Mahle International Gmbh Heat exchanger
CN111397426A (en) * 2020-03-16 2020-07-10 南京理工大学 Enhanced heat transfer device for weakening heat stratification of pipeline section
DE102021108225A1 (en) 2021-03-31 2022-10-06 Dynamic Blue Holding Gmbh Flow control element for cold heating networks
CN113108640A (en) * 2021-04-02 2021-07-13 西安交通大学 S-shaped turbulence structure for large-air-volume build-up welding type plate heat exchanger
JP2023007171A (en) * 2021-07-01 2023-01-18 三菱重工業株式会社 Heat exchanger
FR3139891A1 (en) * 2022-09-19 2024-03-22 Valeo Systemes Thermiques Heat exchanger for a motor vehicle, with means of disturbing the fluid in the flow channels

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101094A (en) * 1995-10-03 1997-04-15 Sumitomo Precision Prod Co Ltd Laminated heat exchanger

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2017201A (en) * 1931-11-27 1935-10-15 Modine Mfg Co Condenser tube
SE433532B (en) * 1978-05-22 1984-05-28 Lockmans Ing Byra Ab LAMELLVERMEVEXLARE
US4470455A (en) * 1978-06-19 1984-09-11 General Motors Corporation Plate type heat exchanger tube pass
US4470452A (en) * 1982-05-19 1984-09-11 Ford Motor Company Turbulator radiator tube and radiator construction derived therefrom
DE3423736A1 (en) * 1984-06-28 1986-01-02 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8900 Augsburg Cross-flow plate heat exchanger
JPS6252785U (en) * 1985-09-19 1987-04-02
US5111878A (en) * 1991-07-01 1992-05-12 General Motors Corporation U-flow heat exchanger tubing with improved fluid flow distribution
FR2691528B1 (en) * 1992-05-22 1997-05-23 Packinox Sa PLATE HARNESS FOR A HEAT EXCHANGER AND METHOD FOR ASSEMBLING SUCH A PLATE BEAM.
DE9406197U1 (en) * 1994-04-14 1994-06-16 Behr Gmbh & Co Heat exchanger for cooling exhaust gas from a motor vehicle engine
DE19526917A1 (en) * 1995-07-22 1997-01-23 Fiebig Martin Prof Dr Ing Longitudinal swirl generating roughening elements
US5826646A (en) * 1995-10-26 1998-10-27 Heatcraft Inc. Flat-tubed heat exchanger
DE19540683A1 (en) * 1995-11-01 1997-05-07 Behr Gmbh & Co Heat exchanger for cooling exhaust gas
DE19654367A1 (en) * 1996-12-24 1998-06-25 Behr Gmbh & Co Method for attaching tabs and / or protrusions to a sheet and sheet with tabs and / or devices and rectangular tube made of sheet
DE19654368B4 (en) * 1996-12-24 2006-01-05 Behr Gmbh & Co. Kg Heat exchanger, in particular exhaust gas heat exchanger
JP3957021B2 (en) * 1998-05-22 2007-08-08 カルソニックカンセイ株式会社 Heat exchanger
GB9820712D0 (en) * 1998-09-24 1998-11-18 Btr Industries Ltd Heat exchanger
GB9913023D0 (en) * 1999-06-05 1999-08-04 Visteon Tech Llc Tube for conveying coolant through a heat exchanger
SE521816C2 (en) * 1999-06-18 2003-12-09 Valeo Engine Cooling Ab Fluid transport pipes and vehicle coolers
SE517450C2 (en) * 1999-06-18 2002-06-04 Valeo Engine Cooling Ab Fluid transport tubes and methods and apparatus for producing the same
JP2002005583A (en) * 2000-06-20 2002-01-09 Toray Eng Co Ltd Heat-exchanging segments and heat-exchanging element for gas to gas stacking the same
NL1013232C2 (en) * 1999-10-06 2001-04-09 Ursus Bv Plate package for heat generator.
US6364006B1 (en) * 1999-12-23 2002-04-02 Visteon Global Technologies, Inc. Beaded plate for a heat exchanger and method of making same
FR2809483B1 (en) * 2000-05-26 2003-08-15 Spirec IMPROVEMENTS ON SPIRAL TYPE HEAT EXCHANGERS
DE10127084B4 (en) * 2000-06-17 2019-05-29 Mahle International Gmbh Heat exchanger, in particular for motor vehicles
JP4212780B2 (en) * 2001-02-09 2009-01-21 三菱電機株式会社 Heat exchanger tube for heat exchanger, manufacturing method thereof, heat exchanger and refrigeration air conditioner using the same
EP1256772A3 (en) * 2001-05-11 2005-02-09 Behr GmbH & Co. KG Heat exchanger
JP3774843B2 (en) * 2001-05-25 2006-05-17 マルヤス工業株式会社 Multi-tube heat exchanger
US7182128B2 (en) * 2005-03-09 2007-02-27 Visteon Global Technologies, Inc. Heat exchanger tube having strengthening deformations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101094A (en) * 1995-10-03 1997-04-15 Sumitomo Precision Prod Co Ltd Laminated heat exchanger

Also Published As

Publication number Publication date
KR20060101481A (en) 2006-09-25
CN1875240A (en) 2006-12-06
WO2005052490A1 (en) 2005-06-09
US20070107882A1 (en) 2007-05-17
EP2267393A2 (en) 2010-12-29
BRPI0415965B1 (en) 2018-06-12
BRPI0415965A (en) 2007-01-23
JP2007510122A (en) 2007-04-19
CN1875240B (en) 2010-10-13
EP1682842A1 (en) 2006-07-26
EP2267393A3 (en) 2012-07-04
ES2496943T3 (en) 2014-09-22
US20120067557A1 (en) 2012-03-22
DE102004045923A1 (en) 2005-05-25
EP1682842B1 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
EP2267393B1 (en) Flow channel for heat exchanger
DE10127084B4 (en) Heat exchanger, in particular for motor vehicles
EP1654508B2 (en) Heat exchanger and method for the production thereof
DE3536325C2 (en)
DE2442420C3 (en) Desublimator for the production of sublimation products, especially phthalic anhydride, from reaction gases
DE69911131T2 (en) heat exchangers
DE202005009948U1 (en) Heat exchange element and thus produced heat exchanger
EP1910764B2 (en) Plate element for a plate cooler
EP0845647B1 (en) Flat tube heat exchanger with twisted tube ends
DE102009015849A1 (en) heat exchangers
EP1701125A2 (en) Heat exchanger with flat tubes and flat tube for heat exchanger
DE60310992T2 (en) HIGH PRESSURE HEAT EXCHANGE
WO2010015433A1 (en) Heat transfer unit for an internal combustion engine
DE2952736C2 (en)
EP0201665B1 (en) Heat transfer element comprising parallel tubes with fins
EP2169338A1 (en) Gas cooler
DE112014000649T5 (en) Heat exchange system
DE10100241A1 (en) Heat exchanger tube for liquid or gaseous media
EP1411310B1 (en) Heat exhanger with serpentine structure
EP1357345B1 (en) Corrugated heat exchange element
DE112009000983T5 (en) Heat exchanger with expanded metal vortex generator
DE60015701T2 (en) Bent tube for heat exchangers and its manufacture
DE202007017501U1 (en) Heat exchange element and thus produced heat exchanger
DE19515528C2 (en) Deflection chamber made of sheet metal for double or multi-flow flat tubes of heat exchangers for motor vehicles
EP1557627A1 (en) Flow duct

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1682842

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RTI1 Title (correction)

Free format text: FLOW CHANNEL FOR HEAT EXCHANGER AND HEAT EXCHANGER PROVIDED WITH SUCH FLOW CHANNEL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 1/40 20060101ALI20120529BHEP

Ipc: F28F 13/12 20060101AFI20120529BHEP

Ipc: F28F 3/04 20060101ALI20120529BHEP

17P Request for examination filed

Effective date: 20130104

17Q First examination report despatched

Effective date: 20130306

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20170517

AC Divisional application: reference to earlier application

Ref document number: 1682842

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 905262

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015550

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170929

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170928

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015550

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

26N No opposition filed

Effective date: 20180329

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170920

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170928

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 905262

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230918

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230928

Year of fee payment: 20

Ref country code: DE

Payment date: 20230920

Year of fee payment: 20