EP1411310B1 - Heat exhanger with serpentine structure - Google Patents

Heat exhanger with serpentine structure Download PDF

Info

Publication number
EP1411310B1
EP1411310B1 EP03020914A EP03020914A EP1411310B1 EP 1411310 B1 EP1411310 B1 EP 1411310B1 EP 03020914 A EP03020914 A EP 03020914A EP 03020914 A EP03020914 A EP 03020914A EP 1411310 B1 EP1411310 B1 EP 1411310B1
Authority
EP
European Patent Office
Prior art keywords
cooling
component
heat exchanger
cooling line
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03020914A
Other languages
German (de)
French (fr)
Other versions
EP1411310A3 (en
EP1411310A2 (en
Inventor
Karl Hofbauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modine Manufacturing Co
Original Assignee
Modine Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modine Manufacturing Co filed Critical Modine Manufacturing Co
Publication of EP1411310A2 publication Critical patent/EP1411310A2/en
Publication of EP1411310A3 publication Critical patent/EP1411310A3/en
Application granted granted Critical
Publication of EP1411310B1 publication Critical patent/EP1411310B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels

Definitions

  • the invention relates to a heat exchanger in serpentine construction with the features of the preamble of claim 1.
  • This heat exchanger is off DE 100 49 256 A1 known.
  • special deflection spaces are provided for forwarding the inner heat transfer medium (refrigerant) from a rear cooling line on the front cooling line (or vice versa), which are designed as individual tubes in which the ends of two constructed from serpentine curved multi-chamber flat tubes cooling strands or sections lead.
  • the cooling air flows through a plurality of cooling strands arranged one behind the other in the direction of the same.
  • This design is to be further improved because the provision of the deflection spaces seems to be problematic both logistically and because of the dense soldering of the deflection spaces.
  • the object of the invention is therefore in the provision of an improved heat exchanger, which seen in the cooling air flow direction, although to have multiple strands but no separate deflection spaces needed.
  • This object is achieved according to the invention in the heat exchanger according to the preamble by the characterizing features of claim 1. Due to the fact that the components forming the distributor channel and / or the collecting channel extend approximately over all cooling strands, wherein first and second deflection chambers are integrated in the components, no separate deflection spaces are required, which leads to a structural simplification of the heat exchanger. It is understood that it depends on the number of cooling strands, whether in both components a deflection space is present or not. Even with more than three Chillers is the inventive idea of integrating the deflection in the components applicable.
  • a heat exchanger is also provided, which has a higher efficiency of heat exchange, because he works in cross-countercurrent principle.
  • the heat exchanger has at least three cooling strands, which are reduced in the tube cross-section, the cooling air flows through the first cooling line, the cross-section is smallest, then meets the medium-sized cooling line to finally flow through the largest cooling line, and that the refrigerant flows first through the largest cooling line, then through the middle and finally through the smallest. (Cross-countercurrent) This provides a highly efficient condenser for the air conditioner, especially in a motor vehicle.
  • Another embodiment has a cooling line with a larger cross-section, in which the refrigerant enters first, and it has two following cooling strands reduced but the same cross section. There may also be more than two following cooling strands, of which z. B. two reduced compared to the first cooling line but have the same size cross-section and wherein further following cooling strands over the two equal cooling strands are again reduced in cross section.
  • the inventive idea is further, as can be seen, equally successfully applied to evaporators, although it has been described above using the example of a capacitor.
  • the distribution channel-containing component has a peripheral wall and a longitudinal partition, which extends approximately over the depth of two adjacent cooling strands and a transverse partition, wherein the longitudinal partition wall and the transverse partition part of the cross section of the component, wherein in this separated part, the second deflection of the refrigerant from a cooling line into the next cooling line, and further has an inlet channel (distribution channel) which extends along the longitudinal partition wall and the peripheral wall and leads to the inlet side Mehrkanalflachrohrende.
  • the collecting channel-containing component has a peripheral wall and a transverse partition, wherein the transverse partition wall two adjacent cooling strands of the hydraulically disconnects the third cooling line.
  • the first deflection of the refrigerant takes place from one cooling line into the next cooling line.
  • the outlet-side Mehrkanalflachrohrende the third (smallest) cooling line opens in the remaining part of the component, namely in the collecting channel.
  • the cooling fins are preferably designed continuously over all cooling cords, which is favorable from the point of view of manufacturability.
  • the components are preferably generally tubular in shape and each receive the entire cross-section of a single multi-channel flat tube or multiple multi-channel flat tubes which are / are soldered therein tightly and firmly.
  • a longitudinal slot in the component is present in a conventional manner, in which one end of the / multi-channel flat tubes / s is inserted / are.
  • a refrigerant inlet is disposed on an end face of the manifold-containing component seated at the distal end of the component from the entrance-side multi-channel flat tube end.
  • a refrigerant outlet is arranged on an end face of the component containing the collecting channel, which adjoins where the outlet-side Mehrkanalflachrohrende opens in the component.
  • the transverse partition in the distributor channel-containing component is arranged where the cooling line with the largest cross-section adjacent to the adjacent cooling line, or where the Mehrkanalflachrohr is hydraulically separated between the largest cooling line and the adjacent cooling line.
  • FIG. 7 shows a basic cross section through a single multi-channel flat tube 1 .
  • This multi-channel flat tube 1 includes all (in the embodiment, three) cooling strands 4 , 5 , 6 in itself, which is illustrated by the corresponding reference numerals on the cross section.
  • the reference numerals 22 and 24 denote the partial transverse wall 22 in the component 7 and the transverse wall 24 in the component 9 , which can be seen in Fig. 6.
  • the reference numerals 22 and 24 have been registered, in order to show clearly that the transverse walls 22 and 24 provide there for the hydraulic separation between the cooling strands 4 , 5 , 6 , because the Transverse walls 22 , 24 are arranged at the points in the components 7 and 9 , respectively, which correspond to the points marked 22 and 24 in the multi-channel flat tube 1 .
  • the multi-channel flat tube 1 itself can be formed identically with channel walls 28 , as shown, over all cooling strands 4 , 5 , 6 . Furthermore, it can clearly be seen that the pipe cross section of the cooling line 6 is greater than the same cross section of the cooling strands 5 and 4 .
  • the multi-channel flat tube 1 has only two channel walls 28 , which correspond to the positions of the partitions 22 and 24 in the components 7 and 9, respectively.
  • Another embodiment not shown has more than two but significantly fewer channel walls 28 than shown in Fig. 7, wherein the distances between the channel walls 28 and thus the cross sections of the individual channels, not the same size need.
  • the channel walls 28 give the multi-channel flat tube 1 a greater stability against internal pressure.
  • the components 7 and 9 are generally tubular, preferably circular in cross-section, with a peripheral wall 20 and 23. They extend approximately over the depth (Z direction, Fig. 1 and 6) of all cooling strands 4, 5, 6.
  • the components 7 and 9 are equipped with a longitudinal slot 30 (FIG.
  • the arrangement of the partitions 21 , 22 , 24 is best shown in FIG. 6.
  • the partial transverse wall 22 in the component 7 causes an inlet-side Mehrkanalflachrohrende 11 is hydraulically divided from the remaining cross-section of the Mehrkanalflachrohres 1 , which is to be understood that within the component 7 no hydraulic connection to the remaining cross-section of Mehrkanalflachrohrendes 1 .
  • the remaining cross section of the multi-channel flat tube end 1 is assigned to the end of the cooling strand 5 and the beginning of the cooling strand 4 .
  • the mentioned end and the mentioned beginning open in the second deflection space 13.2 , which is formed by the longitudinal partition wall 21 and the transverse partition wall 22 in the component 7 .
  • the distribution channel 8 is connected on one side via the passage 34 between the longitudinal wall 21 and the peripheral wall 20 with the inlet 25 and on the other side with the inlet-side Mehrkanalflachrohrende 11th
  • the component 9 is somewhat simpler compared to the component 7 , because it has only the transverse partition wall 24 which extends over the entire cross section of the component 9 .
  • two separate compartments are formed in the component 9 , of which the larger compartment is the first deflection 13.1 , in which the cooling strand 6 associated end of the Mehrkanalflachrohres 1 and the cooling line 5 associated with the beginning of Mehrkanalflachrohres 1 open.
  • the second department is the collecting space 10 , in which the outlet side Mehrkanalflachrohrende 12 associated with the cooling line 4 opens.
  • 4, 5 and 9 show, as already mentioned, the heat exchanger, consisting of three individual, approximately rectangular in cross section Mehrkanalflachrohren.
  • the multi-channel flat tube with the reference numeral 1.6 forms the cooling line 6 , with 1.5 the cooling line 5 and 1.4 consequently the cooling strand 4th
  • the multi-channel flat tubes 1.6 , 1.5 and 1.4 have been bent in an identical manner serpentine, and they are soldered together at their narrow sides 32 , which is shown only in principle. (Fig. 9)
  • the connected narrow sides 32 are located at the positions corresponding to the position of the partition walls 22 and 24, respectively.

Description

Die Erfindung betrifft einen Wärmeübertrager in Serpentinenbauweise mit den Merkmalen aus dem Oberbegriff des Anspruchs 1.
Dieser Wärmeübertrager ist aus DE 100 49 256 A1 bekannt. Bei dem bekannten Wärmeübertrager sind zur Weiterleitung des inneren wärmeübertragenden Mittels (Kältemittels) aus einem hinteren Kühlstrang auf den vorderen Kühlstrang (oder umgekehrt) spezielle Umlenkräume vorgesehen, die als einzelne Rohre gestaltet sind, in denen die Enden zweier aus serpentinenartig gebogenen Mehrkammerflachrohren aufgebauten Kühlstränge oder Abschnitte münden. Die Kühlluft strömt durch mehrere in Richtung derselben hintereinander angeordnete Kühlstränge. Diese Konstruktion ist weiter zu verbessern, weil das Vorsehen der Umlenkräume sowohl logistisch als auch wegen des dichten Lötens der Umlenkräume problematisch zu sein scheint.
Ein weiterer Wärmeübertrager ist aus US 5 036 909 bekannt, der als Verdampfer in einer Klimaanlage konzipiert ist. Auch dieser Wärmeübertrager besitzt ein separates Rohr, das zur Umlenkung des Kältemittels vom eintrittsseitigen Kühlstrang auf zwei nachfolgende Kühlstränge vorgesehen ist und das gleichzeitig als Mischkammer zur Vergleichmäßigung der Temperatur dienen soll. Ein weiterer Wärmeübertrager mit einem separaten Rohr als Umlenkraum ist der Anmelderin aus JP 06317363 A bekannt. Auf die dort veröffentlichte Lösung trifft das zu, was bereits zu den Lösungen aus den vorstehenden Dokumenten ausgeführt wurde.
Die aus den weiteren japanischen Veröffentlichungen Nr. 04-068297A bzw. Nr. 61-191 889 A bekannten Wärmeüberträger besitzen keinen separaten Umlenkraum, weil sie lediglich zwei Stränge aufweisen.
Die Aufgabe der Erfindung besteht demzufolge in der Bereitstellung eines verbesserten Wärmeübertragers, der in Kühlluftströmungsrichtung gesehen, zwar mehrere Stränge aufweisen soll aber keine separaten Umlenkräume benötigt.
Diese Aufgabe wird bei dem Wärmeübertrager gemäß Oberbegriff erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
Dadurch, dass sich die den Verteilerkanal und/oder den Sammelkanal bildenden Bauteile etwa über sämtliche Kühlstränge erstrecken, wobei erste bzw. zweite Umlenkräume in den Bauteilen integriert sind, sind keine separaten Umlenkräume erforderlich, was zu einer baulichen Vereinfachung des Wärmeübertragers führt. Es versteht sich, dass es von der Anzahl der Kühlstränge abhängig ist, ob in beiden Bauteilen ein Umlenkraum vorhanden ist oder nicht. Auch bei mehr als drei Kühlsträngen ist die erfinderische Idee der Integration der Umlenkräume in die Bauteile anwendbar.
Weil zusätzlich gemäß Anspruch 2 vorgesehen ist, dass die Kühlluftströmungsrichtung und die Strömungsrichtung des Kältemittels so gewählt sind, dass die Wärmeübertragung im Kreuzgegenstrom erfolgt, wird außerdem ein Wärmeübertrager geschaffen, der eine höhere Effizienz des Wärmeaustausches aufweist, weil er im Kreuzgegenstromprinzip arbeitet. Der Wärmeübertrager weist mindestens drei Kühlstränge auf, die im Rohrquerschnitt reduziert sind, wobei die Kühlluft zuerst durch den Kühlstrang strömt, dessen Querschnitt am kleinsten ist, dann auf den Kühlstrang mittlerer Größe trifft, um schließlich durch den größten Kühlstrang zu strömen, und dass das Kältemittel zuerst durch den größten Kühlstrang strömt, dann durch den mittleren und schließlich durch den kleinsten. (Kreuzgegenstrom) Dadurch wird ein hocheffizient arbeitender Kondensator für die Klimaanlage, insbesondere in einem Kraftfahrzeug zur Verfügung gestellt. Ein anderes Ausführungsbeispiel weist einen Kühlstrang mit größerem Querschnitt auf, in den das Kältemittel zuerst eintritt, und es besitzt zwei folgende Kühlstränge reduzierten aber gleich großen Querschnitts. Es können auch mehr als zwei folgende Kühlstränge vorhanden sein, wovon z. B. zwei einen gegenüber dem ersten Kühlstrang reduzierten aber gleich großen Querschnitt aufweisen und wobei weiter folgende Kühlstränge gegenüber den zwei gleich großen Kühlsträngen nochmals im Querschnitt reduziert sind. Die erfinderische Idee ist ferner, wie leicht zu sehen ist, mit gleichem Erfolg bei Verdampfern anzuwenden, obwohl sie vorstehend am Beispiel eines Kondensators beschrieben wurde.
Das den Verteilerkanal beinhaltende Bauteil weist eine Umfangswand und eine Längstrennwand auf, die etwa über die Tiefe zweier benachbarter Kühlstränge reicht und eine Quertrennwand, wobei die Längstrennwand und die Quertrennwand einen Teil des Querschnitts des Bauteils abtrennen, wobei in diesem abgetrennten Teil die zweite Umlenkung des Kältemittels von einem Kühlstrang in den nächsten Kühlstrang erfolgt, und weiter weist es einen Eintrittskanal (Verteilerkanal) auf, der sich entlang der Längstrennwand und der Umfangswand erstreckt und zum eintrittsseitigen Mehrkanalflachrohrende führt.
Das den Sammelkanal beinhaltende Bauteil besitzt eine Umfangswand und eine Quertrennwand, wobei die Quertrennwand zwei benachbarte Kühlstränge von dem dritten Kühlstrang hydraulisch abtrennt. In dem Teil des Bauteils der zwei Kühlstränge umfaßt, findet die erste Umlenkung des Kältemittels von einem Kühlstrang in den nächsten Kühlstrang statt. Das austrittsseitige Mehrkanalflachrohrende des dritten (kleinsten) Kühlstrangs mündet im verbleibenden Teil des Bauteils, nämlich im Sammelkanal.
The invention relates to a heat exchanger in serpentine construction with the features of the preamble of claim 1.
This heat exchanger is off DE 100 49 256 A1 known. In the known heat exchanger special deflection spaces are provided for forwarding the inner heat transfer medium (refrigerant) from a rear cooling line on the front cooling line (or vice versa), which are designed as individual tubes in which the ends of two constructed from serpentine curved multi-chamber flat tubes cooling strands or sections lead. The cooling air flows through a plurality of cooling strands arranged one behind the other in the direction of the same. This design is to be further improved because the provision of the deflection spaces seems to be problematic both logistically and because of the dense soldering of the deflection spaces.
Another heat exchanger is out US 5 036 909 known, which is designed as an evaporator in an air conditioner. Also, this heat exchanger has a separate tube which is provided for deflecting the refrigerant from the inlet-side cooling line to two subsequent cooling strands and which is also intended to serve as a mixing chamber to equalize the temperature. Another heat exchanger with a separate tube as the deflection is the applicant JP 06317363 A known. The solution published there applies to what has already been carried out to the solutions from the above documents.
From the other Japanese publications no. 04-068297A or no. 61-191 889 A known heat exchangers have no separate deflection, because they have only two strands.
The object of the invention is therefore in the provision of an improved heat exchanger, which seen in the cooling air flow direction, although to have multiple strands but no separate deflection spaces needed.
This object is achieved according to the invention in the heat exchanger according to the preamble by the characterizing features of claim 1.
Due to the fact that the components forming the distributor channel and / or the collecting channel extend approximately over all cooling strands, wherein first and second deflection chambers are integrated in the components, no separate deflection spaces are required, which leads to a structural simplification of the heat exchanger. It is understood that it depends on the number of cooling strands, whether in both components a deflection space is present or not. Even with more than three Chillers is the inventive idea of integrating the deflection in the components applicable.
In addition, because it is provided according to claim 2, that the cooling air flow direction and the flow direction of the refrigerant are chosen so that the heat transfer occurs in cross-countercurrent, a heat exchanger is also provided, which has a higher efficiency of heat exchange, because he works in cross-countercurrent principle. The heat exchanger has at least three cooling strands, which are reduced in the tube cross-section, the cooling air flows through the first cooling line, the cross-section is smallest, then meets the medium-sized cooling line to finally flow through the largest cooling line, and that the refrigerant flows first through the largest cooling line, then through the middle and finally through the smallest. (Cross-countercurrent) This provides a highly efficient condenser for the air conditioner, especially in a motor vehicle. Another embodiment has a cooling line with a larger cross-section, in which the refrigerant enters first, and it has two following cooling strands reduced but the same cross section. There may also be more than two following cooling strands, of which z. B. two reduced compared to the first cooling line but have the same size cross-section and wherein further following cooling strands over the two equal cooling strands are again reduced in cross section. The inventive idea is further, as can be seen, equally successfully applied to evaporators, although it has been described above using the example of a capacitor.
The distribution channel-containing component has a peripheral wall and a longitudinal partition, which extends approximately over the depth of two adjacent cooling strands and a transverse partition, wherein the longitudinal partition wall and the transverse partition part of the cross section of the component, wherein in this separated part, the second deflection of the refrigerant from a cooling line into the next cooling line, and further has an inlet channel (distribution channel) which extends along the longitudinal partition wall and the peripheral wall and leads to the inlet side Mehrkanalflachrohrende.
The collecting channel-containing component has a peripheral wall and a transverse partition, wherein the transverse partition wall two adjacent cooling strands of the hydraulically disconnects the third cooling line. In the part of the component comprising two cooling lines, the first deflection of the refrigerant takes place from one cooling line into the next cooling line. The outlet-side Mehrkanalflachrohrende the third (smallest) cooling line opens in the remaining part of the component, namely in the collecting channel.

Die Kühlrippen sind vorzugsweise durchgehend über alle Kühlstränge gestaltet, was aus Sicht der Herstellbarkeit günstig ist.The cooling fins are preferably designed continuously over all cooling cords, which is favorable from the point of view of manufacturability.

Die Bauteile sind vorzugsweise im allgemeinen rohrförmig ausgebildet und nehmen jeweils den gesamten Querschnitt eines einzigen Mehrkanalflachrohres oder mehrerer Mehrkanalflachrohre auf, das/die darin dicht und fest verlötet ist/sind. Dazu ist in an sich bekannter Weise ein Längsschlitz im Bauteil vorhanden, in dem ein Ende der/des Mehrkanalflachrohre/s eingesteckt ist/sind.The components are preferably generally tubular in shape and each receive the entire cross-section of a single multi-channel flat tube or multiple multi-channel flat tubes which are / are soldered therein tightly and firmly. For this purpose, a longitudinal slot in the component is present in a conventional manner, in which one end of the / multi-channel flat tubes / s is inserted / are.

Ein Kältemitteleinlass ist an einer Stirnseite des den Verteilerkanal beinhaltenden Bauteils angeordnet, der am vom eintrittsseitigen Mehrkanalflachrohrende entfernten Ende des Bauteils sitzt.A refrigerant inlet is disposed on an end face of the manifold-containing component seated at the distal end of the component from the entrance-side multi-channel flat tube end.

Ein Kältemittelauslass ist an einer Stirnseite des den Sammelkanal beinhaltenden Bauteils angeordnet, der dort anschließt, wo das austrittsseitige Mehrkanalflachrohrende im Bauteil mündet.A refrigerant outlet is arranged on an end face of the component containing the collecting channel, which adjoins where the outlet-side Mehrkanalflachrohrende opens in the component.

Die Quertrennwand im den Verteilerkanal beinhaltenden Bauteil ist dort angeordnet, wo der Kühlstrang mit dem größten Querschnitt an den benachbarten Kühlstrang angrenzt, bzw. wo das Mehrkanalflachrohr zwischen dem größten Kühlstrang und dem benachbarten Kühlstrang hydraulisch getrennt ist.The transverse partition in the distributor channel-containing component is arranged where the cooling line with the largest cross-section adjacent to the adjacent cooling line, or where the Mehrkanalflachrohr is hydraulically separated between the largest cooling line and the adjacent cooling line.

Weitere Merkmale und Vorteile ergeben sich aus der nachfolgenden Beschreibung, anhand der beiliegenden Zeichnungen.Further features and advantages will become apparent from the following description, with reference to the accompanying drawings.

Die beigefügten Figuren zeigen Folgendes:

  • Fig. 1 Vorderansicht auf den Wärmeübertrager;
  • Fig. 2 Draufsicht, erste Ausführung;
  • Fig. 3 Seitenansicht, erste Ausführung;
  • Fig. 4 Perspektivansicht einer zweiten Ausführung;
  • Fig. 5 Seitenansicht der zweiten Ausführung;
  • Fig. 6 Gestaltung der Bauteile im Prinzip;
  • Fig. 7 Schnitt durch das ein Mehrkammerflachrohr;
  • Fig. 8 Perspektivansicht der ersten Ausführung
  • Fig. 9 Schnitt durch drei Mehrkammerrohre
Der Wärmeübertrager gemäß den Fig. 2, 3, 6, 7 und 8 besteht aus einem einzigen serpentinenartig gebogenen Mehrkanalflachrohr 1, wodurch sich eine erste Ausführung auszeichnet. Die Fig. 4 und 5 zeigen den Wärmeübertrager mit drei einzelnen Mehrkanalflachrohren 1, wodurch die zweite Ausführung charakterisiert ist. Beide Ausführungen weisen drei Kühlstränge 4, 5, 6 auf. Aus den Fig. 1, 4 und 8 ist am besten verdeutlicht, dass das / die Mehrkanalflachrohr/e insgesamt 18 Biegungen um 180° aufweist, so dass 19 horizontale Strömungswege vorhanden sind, wobei die Zahl der Biegungen und Strömungswege freigestellt ist. Zwischen den Strömungswegen sind Wellrippen 3 angeordnet, durch die die Kühlluft hindurchströmt. In Fig. 1 wurden lediglich einige angedeutet. In fünf der erwähnten Biegungen befindet sich je ein Befestigungselement 30, zur Halterung des Wärmeübertragers, beispielsweise in einem Kraftfahrzeug, in dessen Klimaanlage der Wärmeübertrager in nicht gezeigter Weise eingebunden ist. Zum Zweck der Halterung besitzt jedes Befestigungselement 30 ein Durchgangsloch 31 zur Hindurchführung eines Stiftes oder dergleichen. Die hülsenförmigen Befestigungselemente 30 mit flanschartigen Abschlüssen an den beiden Enden geben dem Wärmeübertrager eine größere Stabilität, denn sie sind in den Biegungen des Mehrkanalflachrohres 1 eingelötet. Der Wärmeübertrager besitzt am in den Fig. 1, 4 und 8 zu sehenden unteren Ende des Mehrkanalflachrohres 1 ein Bauteil 9 und am oberen Ende ein anderes Bauteil 7. Am Bauteil 7 ist ein Einlass 25 für Kältemittel angeordnet und am Bauteil 9 der entsprechende Auslass 26. Sie befinden sich etwa an den Stirnseiten der Bauteile 7 bzw. 9 und verlängern dieselben geringfügig. Sie könnten jedoch auch in der Umfangswand 20, 23, d. h. nur in der Nähe der Stirnseite angeordnet sein, ohne dabei die Bauteile 7 bzw. 9 wesentlich zu verlängern. Im Bauteil 7 ist ein Verteilerkanal 8 integriert und ein zweiter Umlenkraum 13.2. Das Kältemittel strömt durch den Einlass 25 in den Verteilerkanal 8 und über das eintrittsseitige Mehrkanalflachrohrende 11 in den größten Kühlstrang 6, wie die Fig. 4 deutlich zeigt. Sämtliche Serpentinen des Kühlstrangs 6 werden zunächst durchströmt, was also bedeutet, dass das Kältemittel im Bild 4 von rechts nach links pendelt und dabei von oben nach unten wandert. Die eingezeichneten Pfeile zeigen allgemein die Fließrichtung des Kältemittels an. Am unteren Ende des Kühlstrangs 6 fließt das Kältemittel in das Bauteil 9 bzw. in den dort integrierten ersten Umlenkraum 13.1, was beispielsweise in den Fig. 4 und 6 zu sehen ist. Das Kältemittel gelangt von dort in den benachbarten und im Querschnitt reduzierten Kühlstrang 5, der der mittlere der drei Kühlstränge 4, 5, 6 ist. Dort strömt das Kältemittel durch den serpentinenartigen Strömungsweg von unten nach oben - dabei ständig von links nach rechts pendelnd - und gelangt so in das Bauteil 7 zurück, aber jetzt in den dort integrierten zweiten Umlenkraum 13.2, wie die Fig. 2 und 6 zeigen. Dieser Umlenkraum 13.2 ist durch die Anordnung einer partiellen Längswand 21 und einer partiellen Querwand 22 im Bauteil 7 gebildet worden, die einen Teil des von der Umfangswand 20 umfaßten Raumes des Bauteils 7 abtrennen. (genauer - siehe unten) Das Kältemittel wird dort in den letzten Kühlstrang 4 umgelenkt, der im Ausführungsbeispiel etwa den gleichen Querschnitt aufweist wie der mittlere Kühlstrang 5 aber gegenüber dem ersten Kühlstrang 6 deutlich reduziert ist, um der Tatsache Rechnung zu tragen, dass sich das Kältemittel nach und nach aus dem am Einlass 25 gasförmigen Aggregatzustand durch Abkühlung mittels Kühlluft in den flüssigen Aggregatzustand wandelt und demzufolge weniger Raum beansprucht.
Die Fig. 3 macht deutlich, wie der Wärmeaustausch im Kreuzgegenstrom realisiert ist. Die Kühlluft strömt dort, wie der Pfeil Air anzeigt, allgemein von rechts nach links durch die Kühlstränge 4, 5, 6, bzw. durch die Wellrippen 3 zwischen den Kühlsträngen, und zwar in der durch die Bezugszeichen angegebenen Reihenfolge. Da das Kältemittel, wie oben bereits beschrieben wurde, zunächst den Kühlstrang 6, dann 5 und schließlich 4 durchströmt, strömen das Kältemittel und die Kühlluft im Gegenstrom. Durch die gleichzeitige und ebenfalls bereits beschriebene Wanderung des Kältemittels in den Serpentinen, die die Kühlluftströmungsrichtung kreuzen, wird der hocheffiziente Kreuzgegenstrom verwirklicht, dessen verbesserte Wirkung auf größere Temperaturdifferenzen zwischen der Kühlluft und dem Kältemittel zurückzuführen ist. Die eintretende Kühlluft relativ niedriger Temperatur trifft zunächst auf den Kühlstrang 4, in dem sich bereits flüssiges Kältemittel befindet, also Kältemittel mit bereits reduzierter Temperatur. Die Kühlluft wird deshalb nicht so - stark erwärmt und besitzt beim Auftreffen auf den heißesten Kühlstrang 6 eine - über den gesamten Wärmeübertrager gesehen - bessere Kühlwirkung, als sie besitzen würde, wenn sie zuerst auf den heißesten Kühlstrang 6 träfe, also aus der entgegengesetzten Richtung anströmen würde.The attached figures show the following:
  • Fig. 1 front view of the heat exchanger;
  • Fig. 2 top view, first embodiment;
  • Fig. 3 side view, first embodiment;
  • Fig. 4 perspective view of a second embodiment;
  • Fig. 5 side view of the second embodiment;
  • Fig. 6 design of the components in principle;
  • 7 shows a section through a multi-chamber flat tube;
  • Fig. 8 perspective view of the first embodiment
  • Fig. 9 section through three multi-chamber pipes
The heat exchanger according to FIGS. 2, 3, 6, 7 and 8 consists of a single serpentine curved multi-channel flat tube 1 , whereby a first embodiment is characterized. 4 and 5 show the heat exchanger with three individual Mehrkanalflachrohren 1 , whereby the second embodiment is characterized. Both versions have three cooling cords 4 , 5 , 6 . It is best illustrated in Figures 1, 4 and 8 that the multi-channel flat tube (s) has a total of 18 bends of 180 °, so there are 19 horizontal flow paths, with the number of bends and flow paths being free. Between the flow paths corrugated fins 3 are arranged, through which the cooling air flows. In Fig. 1, only a few have been indicated. In five of the mentioned bends is ever a fastener 30 , for holding the heat exchanger, for example in a motor vehicle, in the air conditioning of the heat exchanger is integrated in a manner not shown. For the purpose of holding each fastener 30 has a through hole 31 for the passage of a pin or the like. The sleeve-shaped fastening elements 30 with flange-type terminations at the two ends give the heat exchanger greater stability, because they are soldered in the bends of the multichannel flat tube 1 . The heat exchanger has at the lower end of the multi-channel flat tube 1 to be seen in FIGS. 1, 4 and 8 a component 9 and at the upper end another component 7 . An inlet 25 for refrigerant is arranged on the component 7 and the corresponding outlet 26 on the component 9 . They are located approximately at the end faces of the components 7 and 9 and extend the same slightly. However, they could also be arranged in the peripheral wall 20 , 23 , ie only in the vicinity of the end face, without substantially lengthening the components 7 or 9 . In the component 7 , a distribution channel 8 is integrated and a second deflection 13.2 . The refrigerant flows through the inlet 25 into the distribution channel 8 and via the inlet-side Mehrkanalflachrohrende 11 in the largest cooling line 6, as shown in FIG. 4th clearly shows. All serpentines of the cooling line 6 are first flowed through, which means that the refrigerant in Figure 4 oscillates from right to left and migrates from top to bottom. The arrows shown generally indicate the flow direction of the refrigerant. At the lower end of the cooling line 6 , the refrigerant flows into the component 9 or into the first deflection space 13.1 integrated there, which can be seen, for example, in FIGS. 4 and 6. The refrigerant passes from there into the adjacent and reduced in cross-section of the cooling pipe 5 , which is the middle of the three cooling strands 4 , 5 , 6 . There, the refrigerant flows through the serpentine flow path from bottom to top - constantly oscillating from left to right - and thus passes back into the component 7 , but now in the second deflection space 13.2 integrated therein, as shown in FIGS. 2 and 6 show. This deflection 13.2 has been formed by the arrangement of a partial longitudinal wall 21 and a partial transverse wall 22 in the component 7 , which separate a part of the space enclosed by the peripheral wall 20 of the component 7 . (more precisely - see below) The refrigerant is deflected there in the last cooling line 4 , which in the embodiment has approximately the same cross-section as the central cooling line 5 but compared to the first cooling line 6 is significantly reduced to take into account the fact that the Refrigerant gradually converts from the gaseous state of aggregation at the inlet 25 by cooling by means of cooling air in the liquid state and, consequently, takes up less space.
Fig. 3 makes it clear how the heat exchange is realized in cross-counterflow. The cooling air flows there, as indicated by the arrow Air , generally from right to left through the cooling strands 4 , 5 , 6 , or by the corrugated fins 3 between the cooling strands, in the order indicated by the reference numerals. Since the refrigerant, as already described above, first flows through the cooling line 6 , then 5 and finally 4 , the refrigerant and the cooling air flow in countercurrent. The simultaneous and also already described migration of the refrigerant in the serpentines, which cross the cooling air flow direction, the highly efficient cross-countercurrent is realized, the improved effect is due to larger temperature differences between the cooling air and the refrigerant. The incoming cooling air relatively low temperature initially strikes the cooling line 4 , in which there is already liquid refrigerant, ie refrigerant with already reduced temperature. The cooling air is therefore not heated so much and has on impact with the hottest cooling line 6 a - over seen the entire heat exchanger - better cooling effect, as they would have if they first on the hottest cooling line 6 would occur, so would flow from the opposite direction.

In Fig. 7 ist ein prinzipieller Querschnitt durch ein einziges Mehrkanalflachrohr 1 zu sehen. Dieses Mehrkanalflachrohr 1 schließt alle (im Ausführungsbeispiel drei) Kühlstränge 4, 5, 6 in sich ein, was durch die entsprechenden Bezugszeichen an dem Querschnitt verdeutlicht ist. Die Bezugszeichen 22 und 24 bezeichnen die Teilquerwand 22 im Bauteil 7 bzw. die Querwand 24 im Bauteil 9, was in Fig. 6 zu sehen ist. In dem erwähnten Querschnitt des Mehrkanalflachrohres 1 in Fig. 7, wurden die Bezugszeichen 22 und 24 eingetragen, um damit ganz klar zu zeigen, dass die Querwände 22 und 24 dort für die hydraulische Trennung zwischen den Kühlsträngen 4, 5, 6 sorgen, denn die Querwände 22, 24 sind an den Stellen in den Bauteilen 7 bzw. 9 angeordnet, die den im Mehrkanalflachrohr 1 mit den Bezugszeichen 22 bzw. 24 markierten Stellen entsprechen. Das Mehrkanalflachrohr 1 selbst kann über alle Kühlstränge 4, 5, 6 identisch mit Kanalwänden 28, wie gezeigt, ausgebildet sein. Ferner ist deutlich zu sehen, dass der Rohrquerschnitt des Kühlstrangs 6 größer ist als derselbe Querschnitt der Kühlstränge 5 bzw. 4. Bei einem nicht gezeigten Ausführungsbeispiel besitzt das Mehrkanalflachrohr 1 allerdings nur zwei Kanalwände 28, die den Positionen der Trennwände 22 und 24 in den Bauteilen 7 bzw. 9 entsprechen. Ein anderes nicht gezeigtes Ausführungsbeispiel hat mehr als zwei aber deutlich weniger Kanalwände 28 als in Fig. 7 gezeigt, wobei die Abstände zwischen den Kanalwänden 28 und damit die Querschnitte der einzelnen Kanäle, nicht die gleiche Größe haben müssen. Die Kanalwände 28 geben dem Mehrkanalflachrohr 1 eine größere Stabilität gegen Innendruck.
Die Bauteile 7 und 9 sind allgemein rohrförmig, bevorzugt kreisförmig im Querschnitt, mit einer Umfangswand 20 bzw. 23. Sie erstrecken sich etwa über die Tiefe (Z-Richtung, Fig. 1 und 6) sämtlicher Kühlstränge 4, 5, 6. Die Bauteile 7 und 9 sind mit einem ebenfalls etwa über die gesamte Tiefe sämtlicher Kühlstränge 4, 5, 6 reichenden Längsschlitz 30 (Fig. 8) in der Umfangswand 20, 23 ausgestattet, was in den Figuren nicht deutlich abgebildet ist. In diesem Längsschlitz 30 ist jeweils der gesamte in Fig. 7 gezeigte Querschnitt des Mehrkanalflachrohres 1 eingefügt und mittels Löten dicht verbunden.
FIG. 7 shows a basic cross section through a single multi-channel flat tube 1 . This multi-channel flat tube 1 includes all (in the embodiment, three) cooling strands 4 , 5 , 6 in itself, which is illustrated by the corresponding reference numerals on the cross section. The reference numerals 22 and 24 denote the partial transverse wall 22 in the component 7 and the transverse wall 24 in the component 9 , which can be seen in Fig. 6. In the mentioned cross-section of the multi-channel flat tube 1 in Fig. 7, the reference numerals 22 and 24 have been registered, in order to show clearly that the transverse walls 22 and 24 provide there for the hydraulic separation between the cooling strands 4 , 5 , 6 , because the Transverse walls 22 , 24 are arranged at the points in the components 7 and 9 , respectively, which correspond to the points marked 22 and 24 in the multi-channel flat tube 1 . The multi-channel flat tube 1 itself can be formed identically with channel walls 28 , as shown, over all cooling strands 4 , 5 , 6 . Furthermore, it can clearly be seen that the pipe cross section of the cooling line 6 is greater than the same cross section of the cooling strands 5 and 4 . In an embodiment not shown, however, the multi-channel flat tube 1 has only two channel walls 28 , which correspond to the positions of the partitions 22 and 24 in the components 7 and 9, respectively. Another embodiment not shown has more than two but significantly fewer channel walls 28 than shown in Fig. 7, wherein the distances between the channel walls 28 and thus the cross sections of the individual channels, not the same size need. The channel walls 28 give the multi-channel flat tube 1 a greater stability against internal pressure.
The components 7 and 9 are generally tubular, preferably circular in cross-section, with a peripheral wall 20 and 23. They extend approximately over the depth (Z direction, Fig. 1 and 6) of all cooling strands 4, 5, 6. The components 7 and 9 are equipped with a longitudinal slot 30 (FIG. 8) in the peripheral wall 20 , 23 which likewise extends approximately over the entire depth of all the cooling strands 4 , 5 , 6 , which is not clearly illustrated in the figures. In this longitudinal slot 30 , the entire cross-section of the multi-channel flat tube 1 shown in FIG. 7 is inserted in each case and tightly connected by means of soldering.

Die Anordnung der Trennwände 21, 22, 24 geht am besten aus der Fig. 6 hervor. Die Teilquerwand 22 im Bauteil 7 bewirkt, dass ein eintrittsseitiges Mehrkanalflachrohrende 11 vom restlichen Querschnitt des Mehrkanalflachrohres 1 hydraulisch abgeteilt ist, worunter zu verstehen ist, dass innerhalb des Bauteils 7 keine hydraulische Verbindung zum restlichen Querschnitt des Mehrkanalflachrohrendes 1 besteht. Der restliche Querschnitt des Mehrkanalflachrohrendes 1 ist dem Ende des Kühlstrangs 5 und dem Anfang des Kühlstrangs 4 zugeordnet. Das erwähnte Ende und der erwähnte Anfang münden im zweiten Umlenkraum 13.2, der durch die Längstrennwand 21 und die Quertrennwand 22 im Bauteil 7 gebildet ist. Der Verteilerkanal 8 ist auf einer Seite über die Passage 34 zwischen der Längswand 21 und der Umfangswand 20 mit dem Einlass 25 verbunden und auf der anderen Seite mit dem einlassseitigen Mehrkanalflachrohrende 11. Das Bauteil 9 ist im Vergleich zum Bauteil 7 etwas einfacher konfiguriert, denn es besitzt lediglich die Quertrennwand 24, die über den gesamten Querschnitt des Bauteils 9 geht. Dadurch sind im Bauteil 9 zwei getrennte Abteilungen gebildet, wovon die größere Abteilung den ersten Umlenkraum 13.1 darstellt, in dem das dem Kühlstrang 6 zugeordnete Ende des Mehrkanalflachrohres 1 und der dem Kühlstrang 5 zugeordnete Anfang des Mehrkanalflachrohres 1 münden. Die zweite Abteilung ist der Sammelraum 10, in dem das dem Kühlstrang 4 zugeordnete austrittsseitige Mehrkanalflachrohrende 12 mündet.
Die Fig. 4, 5 und 9 zeigen, wie eingangs bereits erwähnt, den Wärmeübertrager, bestehend aus drei einzelnen, im Querschnitt etwa rechteckigen Mehrkanalflachrohren 1. Das Mehrkanalflachrohr mit dem Bezugszeichen 1.6 bildet den Kühlstrang 6, mit 1.5 den Kühlstrang 5 und mit 1.4 folglich den Kühlstrang 4. Die Mehrkanalflachrohre 1.6, 1.5 und 1.4 sind in identischer Weise serpentinenartig gebogen worden, und sie sind jeweils an ihren Schmalseiten 32 miteinander verlötet, was nur prinzipiell dargestellt ist. (Fig. 9) Die verbundenen Schmalseiten 32 befinden sich an den Stellen, die der Position der Trennwände 22 bzw. 24 entsprechen. Die Enden aller drei Mehrkanalrohre 1.6, 1.5, 1.4 sind in einem nicht deutlich gezeigten Längsschlitz 33 in den Bauteilen 7 bzw. 9 eingesetzt und dicht verlötet. In der Fig. 4 ist jedoch ein Teil des Längsschlitzes 33 in der Umfangswand 23 des Bauteils 9 angedeutet worden.
The arrangement of the partitions 21 , 22 , 24 is best shown in FIG. 6. The partial transverse wall 22 in the component 7 causes an inlet-side Mehrkanalflachrohrende 11 is hydraulically divided from the remaining cross-section of the Mehrkanalflachrohres 1 , which is to be understood that within the component 7 no hydraulic connection to the remaining cross-section of Mehrkanalflachrohrendes 1 . The remaining cross section of the multi-channel flat tube end 1 is assigned to the end of the cooling strand 5 and the beginning of the cooling strand 4 . The mentioned end and the mentioned beginning open in the second deflection space 13.2 , which is formed by the longitudinal partition wall 21 and the transverse partition wall 22 in the component 7 . The distribution channel 8 is connected on one side via the passage 34 between the longitudinal wall 21 and the peripheral wall 20 with the inlet 25 and on the other side with the inlet-side Mehrkanalflachrohrende 11th The component 9 is somewhat simpler compared to the component 7 , because it has only the transverse partition wall 24 which extends over the entire cross section of the component 9 . As a result, two separate compartments are formed in the component 9 , of which the larger compartment is the first deflection 13.1 , in which the cooling strand 6 associated end of the Mehrkanalflachrohres 1 and the cooling line 5 associated with the beginning of Mehrkanalflachrohres 1 open. The second department is the collecting space 10 , in which the outlet side Mehrkanalflachrohrende 12 associated with the cooling line 4 opens.
4, 5 and 9 show, as already mentioned, the heat exchanger, consisting of three individual, approximately rectangular in cross section Mehrkanalflachrohren. 1 The multi-channel flat tube with the reference numeral 1.6 forms the cooling line 6 , with 1.5 the cooling line 5 and 1.4 consequently the cooling strand 4th The multi-channel flat tubes 1.6 , 1.5 and 1.4 have been bent in an identical manner serpentine, and they are soldered together at their narrow sides 32 , which is shown only in principle. (Fig. 9) The connected narrow sides 32 are located at the positions corresponding to the position of the partition walls 22 and 24, respectively. The ends of all three multi-channel tubes 1.6 , 1.5 , 1.4 are inserted in a not clearly shown longitudinal slot 33 in the components 7 and 9 and soldered tight. 4, however, a part of the longitudinal slot 33 in the peripheral wall 23 of the component 9 has been indicated.

Claims (11)

  1. Heat exchanger of serpentine construction, which is composed of at least one serpentine-shaped multichannel flat tube (1) having cooling fins (3) arranged between the serpentines (2), the multichannel flat tube(s) (1) being hydraulically divided in order to provide a plurality of cooling lines (4, 5, 6) located one downstream of the other in the direction of flow of the cooling air, through which cooling lines (4, 5, 6) a refrigerant flows in succession, which heat exchanger comprises a component (7) arranged with its longitudinal axis in the direction of flow of the cooling air and acting as a distributor channel (8) and another component (9) acting as a collector channel (10) for the refrigerant, to which the entry-side multichannel flat tube end (11) or the exit-side multichannel flat tube end (12) is respectively connected, and having a deflection chamber (13) in order to allow the refrigerant to flow from one cooling line (6, 5) into the next cooling line (5, 4),
    characterized in that
    the component (7) containing the distributor channel (8) and/or the component (9) containing the collector channel (10) extend(s) approximately over the depth (Z) of all the cooling lines (4, 5, 6), the deflection chamber (13.1 or 13.2 respectively) being incorporated in the component(s) (7 or 8 respectively) but in a separated manner.
  2. Heat exchanger according to Claim 1, characterized in that the direction of flow of the cooling air and the direction of flow of the refrigerant are selected such that heat exchange takes place in countercrossflow.
  3. Heat exchanger according to Claim 2, characterized in that the heat exchanger comprises at least three cooling lines (4, 5, 6), of which at least one is of reduced cross section, the cooling air flowing firstly through the cooling line (4), whose cross section is small, then encountering the next cooling line (5) of medium or identical size, so as finally to flow through the largest cooling line (6), and in that the refrigerant firstly flows through the largest cooling line (6), then through the medium or smaller cooling line (5), so as finally to flow through the smallest or last cooling line (4).
  4. Heat exchanger according to Claims 1 to 3, characterized in that the component (7) containing the distributor channel (8) comprises a peripheral wall (20) and a longitudinal partition wall (21), which extends approximately over two adjacent cooling lines (4, 5), and a transverse partition wall (22), the longitudinal partition wall (21) and the transverse partition wall (22) separating off a part of the cross section of the component (7), and in that in this separated-off part (chamber 13.2) the refrigerant is deflected for the second time, from one cooling line (5) into the next cooling line (4), and further comprises an inlet channel (8) (distributor channel), which extends along the longitudinal partition wall (21) and the peripheral wall (20) and leads to the entry-side multichannel flat tube end (11).
  5. Heat exchanger according to Claims 1 to 3, characterized in that the component (9) containing the collector channel (10) comprises a peripheral wall (23) and a transverse partition wall (24), the transverse partition wall (24) hydraulically separating off two adjacent cooling lines (5, 6) from the third cooling line (4), in that the refrigerant is deflected for the first time, from one cooling line (6) into the next cooling line (5), in the part (chamber 13.1) of the component (9) which includes two cooling lines (5, 6), and in that the exit-side multichannel flat tube end (12) of the third cooling line (4) leads into the remaining part of the component (9) (in the collector channel 10).
  6. Heat exchanger according to the preceding claims, characterized in that the cooling fins (3) are continuous over all the cooling lines (4, 5, 6).
  7. Heat exchanger according to one of the preceding claims, characterized in that the components (7, 9) are preferably of generally tubular construction and in each case accommodate the entire cross section of the multichannel flat tube (1) or of the cooling lines (4, 5, 6) in a longitudinal slot, which is brazed firmly and in leakproof manner therein.
  8. Heat exchanger according to one of the preceding claims, in particular according to 1, 2 and 4, characterized in that a refrigerant inlet (25) is arranged preferably in the vicinity of one end face of the component (7) containing the distributor channel (8), which refrigerant inlet (25) is located at the end of the component (7) remote from the entry-side multichannel flat tube end (11).
  9. Heat exchanger according to one of the preceding claims, in particular according to 1, 2 and 5, characterized in that a refrigerant outlet (26) is arranged preferably in the vicinity of an end face of the component (9) containing the collector channel (10), which refrigerant outlet (26) is connected at the point where the exit-side multichannel flat tube end (12) leads into the component (9).
  10. Heat exchanger according to one of the preceding claims, characterized in that the transverse partition wall (22) is arranged in the component (7) containing the distributor channel (8) at the point where the cooling line (6) with the largest cross section adjoins the adjacent cooling block (5) or where the multichannel flat tube (1) is hydraulically divided between the largest cooling line (6) and the adjacent cooling line (5).
  11. Heat exchanger according to one of the preceding claims, characterized in that a single multichannel flat tube (1) or a plurality of multichannel flat tubes (1.6, 1.5, 1.4) is/are present.
EP03020914A 2002-10-18 2003-09-16 Heat exhanger with serpentine structure Expired - Lifetime EP1411310B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10248665A DE10248665A1 (en) 2002-10-18 2002-10-18 Heat exchanger in serpentine design
DE10248665 2002-10-18

Publications (3)

Publication Number Publication Date
EP1411310A2 EP1411310A2 (en) 2004-04-21
EP1411310A3 EP1411310A3 (en) 2005-12-28
EP1411310B1 true EP1411310B1 (en) 2007-12-05

Family

ID=32038764

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03020914A Expired - Lifetime EP1411310B1 (en) 2002-10-18 2003-09-16 Heat exhanger with serpentine structure

Country Status (3)

Country Link
US (1) US7069980B2 (en)
EP (1) EP1411310B1 (en)
DE (2) DE10248665A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014137217A1 (en) * 2013-03-04 2014-09-12 Norsk Hydro Asa Heat exchanger inlet and outlet design

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050279488A1 (en) * 2004-06-17 2005-12-22 Stillman Harold M Multiple-channel conduit with separate wall elements
US20050279127A1 (en) * 2004-06-18 2005-12-22 Tao Jia Integrated heat exchanger for use in a refrigeration system
WO2009111129A1 (en) * 2008-03-07 2009-09-11 Carrier Corporation Heat exchanger tube configuration for improved flow distribution
KR101186552B1 (en) 2010-06-30 2012-10-08 갑을오토텍(주) A heat exchanger
WO2012002698A2 (en) * 2010-06-30 2012-01-05 갑을오토텍(주) Heat exchanger
US9282650B2 (en) * 2013-12-18 2016-03-08 Intel Corporation Thermal compression bonding process cooling manifold
US10995996B2 (en) 2014-10-07 2021-05-04 Unison Industries, Llc Multi-branch furcating flow heat exchanger
US11892245B2 (en) 2014-10-07 2024-02-06 General Electric Company Heat exchanger including furcating unit cells
DE102014222113A1 (en) * 2014-10-29 2016-05-04 BSH Hausgeräte GmbH Refrigeration device with a heat circulation system
KR102568753B1 (en) * 2015-12-31 2023-08-21 엘지전자 주식회사 Heat Exchanger
US11209212B2 (en) 2018-03-23 2021-12-28 Modine Manufacturing Company High pressure capable liquid to refrigerant heat exchanger
US10982553B2 (en) 2018-12-03 2021-04-20 General Electric Company Tip rail with cooling structure using three dimensional unit cells
CA3147194A1 (en) * 2019-08-07 2021-02-11 Jianmin Yin High efficiency tankless water heater
US20210156339A1 (en) * 2019-11-27 2021-05-27 General Electric Company Cooling system for an engine assembly

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2657018A (en) * 1948-12-06 1953-10-27 Modine Mfg Co Heat exchanger
JPS5773392A (en) * 1980-10-22 1982-05-08 Hitachi Ltd Corrugated fin type heat exchanger
JPS60176375U (en) * 1984-05-01 1985-11-22 サンデン株式会社 Heat exchanger
JPS611994A (en) * 1984-06-13 1986-01-07 Mitsubishi Heavy Ind Ltd Manufacture of flat heat exchanger pipe
JPS61191889A (en) * 1985-02-20 1986-08-26 Matsushita Refrig Co Heat exchanger
JPH0682038B2 (en) * 1986-06-24 1994-10-19 昭和アルミニウム株式会社 Heat exchanger
DE3843305A1 (en) * 1988-12-22 1990-06-28 Thermal Waerme Kaelte Klima CONDENSER FOR A VEHICLE AIR CONDITIONING REFRIGERANT
US4982579A (en) * 1989-03-31 1991-01-08 Showa Aluminum Corporation Evaporator
US5036909A (en) * 1989-06-22 1991-08-06 General Motors Corporation Multiple serpentine tube heat exchanger
JP2997816B2 (en) * 1990-07-09 2000-01-11 昭和アルミニウム株式会社 Capacitor
JP2997817B2 (en) * 1990-07-23 2000-01-11 昭和アルミニウム株式会社 Heat exchanger
US5197539A (en) * 1991-02-11 1993-03-30 Modine Manufacturing Company Heat exchanger with reduced core depth
US5314013A (en) * 1991-03-15 1994-05-24 Sanden Corporation Heat exchanger
US5368097A (en) * 1992-10-27 1994-11-29 Sanden Corporation Heat exchanger
US5682944A (en) * 1992-11-25 1997-11-04 Nippondenso Co., Ltd. Refrigerant condenser
JPH06317363A (en) 1993-05-07 1994-11-15 Showa Alum Corp Heat exchanger
US5875837A (en) * 1998-01-15 1999-03-02 Modine Manufacturing Company Liquid cooled two phase heat exchanger
KR19990074845A (en) * 1998-03-16 1999-10-05 윤종용 Parallel flow heat exchanger
DE19933913C2 (en) * 1999-07-20 2003-07-17 Valeo Klimatechnik Gmbh Evaporator of an automotive air conditioning system
DE10049256A1 (en) 2000-10-05 2002-04-11 Behr Gmbh & Co Serpentine heat exchanger e.g. evaporator or condenser/gas cooler for automobile air-conditioning, has link sections between corresponding pipe sections of different serpentine pipe blocks
JP4180801B2 (en) * 2001-01-11 2008-11-12 三菱電機株式会社 Refrigeration and air conditioning cycle equipment
US20030102112A1 (en) * 2001-12-03 2003-06-05 Smithey David W. Flattened tube heat exchanger made from micro-channel tubing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014137217A1 (en) * 2013-03-04 2014-09-12 Norsk Hydro Asa Heat exchanger inlet and outlet design

Also Published As

Publication number Publication date
DE10248665A1 (en) 2004-04-29
EP1411310A3 (en) 2005-12-28
US20040194934A1 (en) 2004-10-07
EP1411310A2 (en) 2004-04-21
DE50308721D1 (en) 2008-01-17
US7069980B2 (en) 2006-07-04

Similar Documents

Publication Publication Date Title
DE602006000470T2 (en) Air-cooled oil cooler
EP0632245B1 (en) Water-air heat exchanger of aluminium for motor vehicles
DE60116922T2 (en) capacitor
DE69911131T2 (en) heat exchangers
EP1411310B1 (en) Heat exhanger with serpentine structure
EP0845647B1 (en) Flat tube heat exchanger with twisted tube ends
DE10314782A1 (en) Heat exchangers for heat exchange between an inner and an outer fluid and method for producing the same
DE60102104T2 (en) Heat exchanger and heat exchanger tube therefor
DE60203660T2 (en) Multi-flow heat exchanger in stack construction
DE102005010493A1 (en) Heat exchanger with flat tubes and flat heat exchanger tube
DE10033965A1 (en) Heat exchanger with plate-formed flowpath has bellied sector reaching into flow path and composed of bulged and ovalized cylinders abutting flatsheets to complete flow path sector.
DE10260107A1 (en) Heat exchanger, especially for a motor vehicle, has two flow path sections which are arranged adjacent to each other in the main flow direction of a second medium
EP0521298A2 (en) Heat exchange apparatus for dryer by refrigeration in compressed air plants and tubes/plates heat exchanger for this use
DE2952736C2 (en)
DE10349150A1 (en) Heat exchanger, in particular for motor vehicles
EP1881288B1 (en) Tube-fin-heat exchanger with connecting blocks
DE4305060C2 (en) Soldered heat exchanger, especially evaporator
EP0929784B1 (en) Motor vehicle flat tube heat exchanger with flat tubes retained on collars of a tube bottom
DE10054158A1 (en) Multi-chamber pipe with circular flow channels
DE69729836T2 (en) Evaporator
DE10257767A1 (en) Heat exchanger for condenser or gas cooler for air conditioning installations has two rows of channels for coolant with manifolds at ends and has ribs over which air can flow
DE102004002252B4 (en) Heat exchanger for vehicles
WO1998050750A1 (en) Flat tube heat exchanger with more than two flows and a deflecting bottom for motor vehicles, and process for manufacturing the same
DE3502619C2 (en)
DE19719257A1 (en) Collecting box of evaporator in car air-conditioning coolant circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20060628

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070111

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MODINE MANUFACTURING COMPANY

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50308721

Country of ref document: DE

Date of ref document: 20080117

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081003

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130930

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R231

Ref document number: 50308721

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20140814