JP5381328B2 - Thermoelectric unit - Google Patents

Thermoelectric unit Download PDF

Info

Publication number
JP5381328B2
JP5381328B2 JP2009126393A JP2009126393A JP5381328B2 JP 5381328 B2 JP5381328 B2 JP 5381328B2 JP 2009126393 A JP2009126393 A JP 2009126393A JP 2009126393 A JP2009126393 A JP 2009126393A JP 5381328 B2 JP5381328 B2 JP 5381328B2
Authority
JP
Japan
Prior art keywords
heat receiving
exhaust passage
heat
thermoelectric unit
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009126393A
Other languages
Japanese (ja)
Other versions
JP2010275872A (en
Inventor
悟 白鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2009126393A priority Critical patent/JP5381328B2/en
Publication of JP2010275872A publication Critical patent/JP2010275872A/en
Application granted granted Critical
Publication of JP5381328B2 publication Critical patent/JP5381328B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/022Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being wires or pins

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Description

本発明は、熱電素子を用いてエンジンの排気ガスから電気としてエネルギーを回収する熱電ユニットに関するものである。   The present invention relates to a thermoelectric unit that recovers energy as electricity from engine exhaust gas using a thermoelectric element.

エンジンの高温の排気ガスから電気としてエネルギーを回収する熱電ユニットは、熱電素子(熱電変換素子)の片面を受熱フィン背面に配置し、他面には冷却装置を配置する構造が一般的である。   A thermoelectric unit that recovers energy as electricity from high-temperature exhaust gas of an engine generally has a structure in which one side of a thermoelectric element (thermoelectric conversion element) is arranged on the back surface of the heat receiving fin and a cooling device is arranged on the other side.

一般的な受熱フィンの構造を図6,7に示す。図6の受熱フィン61は、断面視で櫛歯状に形成されており、板状の基部62の表面から突出するように板状のフィン63を等間隔で配置して、フィン63間に排気ガスの流路を形成したものである。また、図7の受熱フィン71は、2枚の対向した基部72間に多数の板状のフィン73を設け、フィン73間に狭い排気ガスの流路を多数形成したものである。   The structure of a general heat receiving fin is shown in FIGS. The heat receiving fins 61 in FIG. 6 are formed in a comb-like shape in a cross-sectional view, and plate-like fins 63 are arranged at equal intervals so as to protrude from the surface of the plate-like base portion 62, and the air is discharged between the fins 63. A gas flow path is formed. In addition, the heat receiving fins 71 of FIG. 7 are provided with a large number of plate-like fins 73 between two opposed bases 72 and a large number of narrow exhaust gas passages formed between the fins 73.

特開2002−199762号公報JP 2002-199762 A 特開平11−340524号公報JP 11-340524 A

ところで、熱電ユニットでは、熱電素子で効率よく受熱するために、受熱フィンにおける排気ガスからの熱伝達率を高くすることが求められている。   By the way, in the thermoelectric unit, in order to receive heat efficiently by the thermoelectric element, it is required to increase the heat transfer coefficient from the exhaust gas in the heat receiving fin.

しかしながら、図6の受熱フィン61を用いた場合、排気ガスがフィン63間を通過する際にフィン63に熱を伝えるが、受熱フィン61ではフィン63の間隔が広いため、層流熱伝達領域を脱することが困難であり、熱伝達率が悪いという問題がある。   However, when the heat receiving fins 61 shown in FIG. 6 are used, heat is transferred to the fins 63 when the exhaust gas passes between the fins 63. In the heat receiving fins 61, since the gaps between the fins 63 are wide, a laminar heat transfer region is formed. There is a problem that it is difficult to remove and the heat transfer rate is poor.

一般に、排気ガスなどの熱流体から受熱フィンで受熱する場合、熱流体が層流のままで受熱フィンを通過するよりも、乱流となって受熱フィンを通過した方が熱伝達率が高い。つまり、熱電ユニットにおける受熱フィンは、排気ガスに乱流を発生させる乱流熱伝達構造であることが望ましい。   Generally, when heat is received from a heat fluid such as exhaust gas by a heat receiving fin, the heat transfer rate is higher when the heat fluid passes through the heat receiving fin as a turbulent flow than when the heat fluid passes through the heat receiving fin in a laminar flow. That is, the heat receiving fin in the thermoelectric unit is desirably a turbulent heat transfer structure that generates turbulent flow in the exhaust gas.

そこで、図6の受熱フィン61を向かい合わせにしてフィン63を交互に配置することでフィン63の枚数を増やす、あるいは、狭い排気ガスの流路を多数形成した図7の受熱フィン71を用いることで、排気ガスに乱流を発生させて熱伝達率を向上させることが考えられる。   Therefore, the number of fins 63 is increased by alternately arranging the fins 63 with the heat receiving fins 61 of FIG. 6 facing each other, or the heat receiving fins 71 of FIG. 7 in which many narrow exhaust gas passages are formed are used. Thus, it is conceivable to improve the heat transfer coefficient by generating turbulent flow in the exhaust gas.

しかし、この場合、排気ガスが通過するための流路が狭くなるために排気抵抗が上昇し、エンジンの性能低下につながるという問題が生じる。   However, in this case, the flow path through which the exhaust gas passes becomes narrow, so that the exhaust resistance rises, resulting in a problem that the performance of the engine is reduced.

そこで、本発明の目的は、上記課題を解決し、排気抵抗を上昇させることなく、排気ガスから積極的に受熱できる乱流熱伝達構造の熱電ユニットを提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems and provide a thermoelectric unit having a turbulent heat transfer structure that can receive heat positively from exhaust gas without increasing exhaust resistance.

本発明は上記目的を達成するために創案されたものであり、エンジンの排気通路の対向する面に熱電素子を設け、その熱電素子の受熱フィンを前記排気通路内に臨ませた熱電ユニットにおいて、前記排気通路内で対向する受熱フィンが多数の円形ピンからなり、該円形ピンを、偶数列と奇数列でオフセットさせて千鳥構造に配置してなる熱電ユニットである。   The present invention was devised in order to achieve the above object, and in a thermoelectric unit in which a thermoelectric element is provided on an opposing surface of an exhaust passage of an engine and a heat receiving fin of the thermoelectric element faces the exhaust passage, The heat-receiving fins facing each other in the exhaust passage are composed of a large number of circular pins, and the circular pins are arranged in a staggered structure by offsetting them in even rows and odd rows.

前記受熱フィンは、前記円形ピンの前記偶数列と前記奇数列とが対向するように、前記排気通路に対向して設けられてもよい。   The heat receiving fins may be provided to face the exhaust passage so that the even rows and the odd rows of the circular pins face each other.

前記受熱フィンは、前記円形ピンがオーバーラップするように、前記排気通路に対向して設けられてもよい。   The heat receiving fin may be provided to face the exhaust passage so that the circular pins overlap each other.

本発明によれば、排気抵抗を上昇させることなく、排気ガスから積極的に受熱できる乱流熱伝達構造の熱電ユニットを提供できる。   According to the present invention, it is possible to provide a thermoelectric unit having a turbulent heat transfer structure that can receive heat positively from exhaust gas without increasing exhaust resistance.

本発明の一実施形態に係る熱電ユニットを示す図であり、(a)は平面図、(b)はその側断面図である。It is a figure which shows the thermoelectric unit which concerns on one Embodiment of this invention, (a) is a top view, (b) is the sectional side view. 図1の熱電ユニットで用いる受熱フィンを示す図であり、(a)は平面図、(b)はその2B−2B線断面図である。It is a figure which shows the heat receiving fin used with the thermoelectric unit of FIG. 1, (a) is a top view, (b) is the 2B-2B sectional view taken on the line. 図2の受熱フィンを対向させて排気通路を形成したときの図であり、(a)は正面図、(b)は上面図、(c)は側断面図、(d)は下面図である。It is a figure when the heat receiving fin of FIG. 2 is made to oppose, and an exhaust passage is formed, (a) is a front view, (b) is a top view, (c) is a sectional side view, (d) is a bottom view. . 図1の熱電ユニットにおける排気ガスの流れを説明する図であり、(a)は上面図、(b)は側断面図である。It is a figure explaining the flow of the exhaust gas in the thermoelectric unit of FIG. 1, (a) is a top view, (b) is a sectional side view. 本発明の熱電ユニットが搭載される車両の排気システムの概略図である。It is the schematic of the exhaust system of the vehicle by which the thermoelectric unit of this invention is mounted. 従来の熱電ユニットに用いる受熱フィンの一例を示す斜視図である。It is a perspective view which shows an example of the heat receiving fin used for the conventional thermoelectric unit. 従来の熱電ユニットに用いる受熱フィンの一例を示す斜視図である。It is a perspective view which shows an example of the heat receiving fin used for the conventional thermoelectric unit.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

図1(a)は、本実施の形態に係る熱電ユニットの平面図、図1(b)はその側断面図である。   FIG. 1A is a plan view of a thermoelectric unit according to the present embodiment, and FIG. 1B is a side sectional view thereof.

図1(a),(b)に示すように、熱電ユニット1は、エンジンの排気通路2の対向する面に熱電素子(熱電変換素子)3を設け、その熱電素子3の受熱フィン4を排気通路2内に臨ませてなる。熱電ユニット1は、排気通路2を通過するエンジンからの排気ガスGから受熱フィン4にて熱を受熱し、これを熱電素子3に伝達することにより、排気ガスGの熱から電気を回収するものである。   As shown in FIGS. 1A and 1B, the thermoelectric unit 1 is provided with a thermoelectric element (thermoelectric conversion element) 3 on the opposite surface of the exhaust passage 2 of the engine, and the heat receiving fins 4 of the thermoelectric element 3 are exhausted. It faces the passage 2. The thermoelectric unit 1 receives heat from the exhaust gas G from the engine passing through the exhaust passage 2 by the heat receiving fins 4 and transmits the heat to the thermoelectric element 3 to recover electricity from the heat of the exhaust gas G. It is.

本実施の形態では、排気通路2の対向する面(図1(b)では上下面)を受熱フィン4で形成すると共に、それら受熱フィン4の両側を側板5で接合して排気通路2を形成するようにしている。受熱フィン4は、平板7にフィンとしての円形ピン8を形成したものである。受熱フィン4の詳細については後述する。   In the present embodiment, opposing surfaces of the exhaust passage 2 (upper and lower surfaces in FIG. 1B) are formed by the heat receiving fins 4 and both sides of the heat receiving fins 4 are joined by the side plates 5 to form the exhaust passage 2. Like to do. The heat receiving fin 4 is formed by forming a circular pin 8 as a fin on a flat plate 7. Details of the heat receiving fins 4 will be described later.

受熱フィン4の背面(排気通路2と反対側の面)には、高温接触面を受熱フィン4側として複数(図1では上下8個ずつ)の熱電素子3が配置される。熱電素子3の他方の面である低温接触面には、冷却装置(放熱側冷却装置)6が設けられる。なお、図1(a)では、図の簡略化のため、冷却装置6を省略している。   On the rear surface of the heat receiving fin 4 (surface opposite to the exhaust passage 2), a plurality of thermoelectric elements 3 (upper and lower eight in FIG. 1) are arranged with the high temperature contact surface as the heat receiving fin 4 side. A cooling device (heat radiation side cooling device) 6 is provided on the low temperature contact surface which is the other surface of the thermoelectric element 3. In FIG. 1A, the cooling device 6 is omitted for simplification of the drawing.

熱電素子3は、低温接触面と高温接触面に温度差を与えると、ゼーベック効果により電圧を生じるものであり、一般にペルチェ素子、あるいはゼーベック素子と呼ばれるものである。   The thermoelectric element 3 generates a voltage due to the Seebeck effect when a temperature difference is given between the low temperature contact surface and the high temperature contact surface, and is generally called a Peltier element or a Seebeck element.

図2(a),(b)に示すように、受熱フィン4は、平板7と、平板7の表面から突出するように形成された、フィンとしての多数の円柱状の円形ピン(円管)8とからなる。   As shown in FIGS. 2A and 2B, the heat-receiving fin 4 includes a flat plate 7 and a large number of cylindrical circular pins (circular tubes) formed as fins so as to protrude from the surface of the flat plate 7. 8 and.

円形ピン8は、平板7に整列して配置され、その偶数列と奇数列(あるいは偶数行と奇数行)でオフセットさせて千鳥構造に配置される。奇数列の円形ピン8は、偶数列の円形ピン8の中間に位置するようにオフセットして配置される。各円形ピン8は、ロウ付け等により平板7に固定される。   The circular pins 8 are arranged in alignment with the flat plate 7 and are arranged in a staggered structure by offsetting the even columns and odd columns (or even rows and odd rows). The odd-numbered circular pins 8 are arranged so as to be offset in the middle of the even-numbered circular pins 8. Each circular pin 8 is fixed to the flat plate 7 by brazing or the like.

本実施の形態では、フィンとして円形ピン8を用いたが、多角形状あるいは円筒状のピンを用いることも可能である。   In the present embodiment, circular pins 8 are used as fins, but polygonal or cylindrical pins can also be used.

図3(a)〜(d)に示すように、2枚の受熱フィン4を円形ピン8の偶数列と奇数列とが対向するように、すなわち各円形ピン8の位相が交互になるように向かい合わせ、向かい合わせた受熱フィン4の両側を側板5を以て接合し、排気通路2を形成する。   As shown in FIGS. 3A to 3D, the two heat receiving fins 4 are arranged so that the even and odd rows of the circular pins 8 face each other, that is, the phases of the circular pins 8 are alternated. The heat receiving fins 4 facing each other are joined together with side plates 5 to form the exhaust passage 2.

このとき、両受熱フィン4は、円形ピン8がオーバーラップするようにされる。具体的には、排気抵抗が上昇しない範囲で円形ピン8が数ミリ〜数十ミリのオーバーラップdを有した状態となるようにされる。これにより、円形ピン8の上下にも排気通路2が形成される。   At this time, the heat receiving fins 4 are configured such that the circular pins 8 overlap. Specifically, the circular pin 8 has an overlap d of several millimeters to several tens of millimeters within a range where the exhaust resistance does not increase. Thereby, the exhaust passage 2 is also formed above and below the circular pin 8.

ここで、熱電ユニット1における排気ガスGの流れを図4(a),(b)を用いて説明する。   Here, the flow of the exhaust gas G in the thermoelectric unit 1 will be described with reference to FIGS.

図4(a)に示すように、受熱フィン4の前面(図示左側)から流入した排気ガスGは、1列目の円形ピン8に衝突し、1列目の円形ピン8の隙間を通過する。1列目の円形ピン8の隙間を通過した排気ガスGは、次なる千鳥状に配置した2列目の円形ピン8に衝突して、さらに左右に流路を強制されることとなる。また、図4(b)に示すように、排気ガスGは、円形ピン8のオーバーラップにより上下方向にも流路を強制されることとなる。   As shown in FIG. 4A, the exhaust gas G flowing in from the front surface (the left side in the figure) of the heat receiving fins 4 collides with the first row of circular pins 8 and passes through the gap between the first row of circular pins 8. . The exhaust gas G that has passed through the gap between the first-row circular pins 8 collides with the second-row circular pins 8 arranged in a staggered pattern, and is forced to flow further left and right. In addition, as shown in FIG. 4B, the exhaust gas G is forced to flow in the vertical direction due to the overlap of the circular pins 8.

これにより、排気ガスGは乱流を形成し、発生した乱流は、熱電ユニット1の後端(図示右側)まで持続することとなる。つまり、本実施の形態における受熱フィン4は、排気ガスGに乱流を発生させる乱流熱伝達構造となっており、そのため、受熱フィン4は、排気ガスGから積極的に受熱でき、受熱フィン4の熱伝達率は格段に上昇する。   As a result, the exhaust gas G forms a turbulent flow, and the generated turbulent flow continues to the rear end (right side in the figure) of the thermoelectric unit 1. That is, the heat receiving fin 4 in the present embodiment has a turbulent heat transfer structure that generates turbulent flow in the exhaust gas G. Therefore, the heat receiving fin 4 can actively receive heat from the exhaust gas G, and the heat receiving fin. The heat transfer coefficient of 4 increases significantly.

したがって、両受熱フィン4の背面(図4(b)では上側の受熱フィン4の上面及び下側の受熱フィン4の下面)に熱電素子3を配置することで、排気ガスGの熱から効率的に電気を回収できることとなる。   Therefore, by arranging the thermoelectric element 3 on the rear surfaces of the heat receiving fins 4 (in FIG. 4B, the upper surface of the upper heat receiving fin 4 and the lower surface of the lower heat receiving fin 4), the heat from the exhaust gas G can be efficiently obtained. It will be possible to recover electricity.

本実施の形態に係る熱電ユニット1は、車両に搭載され、エンジンの排気通路2に配置される。図5に示すように、エンジンEの排気通路2には、フレキシブルジョイント51、触媒52、サイレンサ(マフラー)53等が配置されており、エンジンEからの排気ガスGはこれらを経由して大気中に排出される。熱電ユニット1は、例えば、サイレンサ53の部分に設けられる。   A thermoelectric unit 1 according to the present embodiment is mounted on a vehicle and disposed in an exhaust passage 2 of an engine. As shown in FIG. 5, a flexible joint 51, a catalyst 52, a silencer (muffler) 53, and the like are arranged in the exhaust passage 2 of the engine E, and the exhaust gas G from the engine E passes through these in the atmosphere. To be discharged. The thermoelectric unit 1 is provided in the part of the silencer 53, for example.

以上説明したように、本実施の形態に係る熱電ユニット1では、排気通路2内で対向する受熱フィン4を多数の円形ピン8で形成し、その円形ピン8を、偶数列と奇数列でオフセットさせて千鳥構造に配置している。   As described above, in the thermoelectric unit 1 according to the present embodiment, the heat receiving fins 4 that are opposed to each other in the exhaust passage 2 are formed by a large number of circular pins 8, and the circular pins 8 are offset in even rows and odd rows. It is arranged in a staggered structure.

これにより、受熱フィン4に作用する排気ガスGの流れを乱流とし、熱電ユニット1の後端まで持続することが可能となり、排気抵抗を上昇させることなく、排気ガスGから積極的に受熱することが可能となり、乱流熱伝達構造を実現できる。したがって、熱伝達率を向上し、効率よく受熱、発電することが可能な熱電ユニット1を実現できる。   As a result, the flow of the exhaust gas G acting on the heat receiving fins 4 is made turbulent and can be maintained up to the rear end of the thermoelectric unit 1, and positively receives heat from the exhaust gas G without increasing the exhaust resistance. And a turbulent heat transfer structure can be realized. Therefore, it is possible to realize the thermoelectric unit 1 that can improve the heat transfer rate and efficiently receive and generate power.

また、熱電ユニット1では、受熱フィン4のフィンとして円形ピン8を用いているため、排気ガスGの流路が狭くなることがなく、排気抵抗の上昇を招くことない。よって、エンジン性能を低下させない。   Further, in the thermoelectric unit 1, since the circular pins 8 are used as the fins of the heat receiving fins 4, the flow path of the exhaust gas G is not narrowed and the exhaust resistance is not increased. Therefore, engine performance is not degraded.

さらに、熱電ユニット1では、受熱フィン4を、円形ピン8の偶数列と奇数列とが対向するように、かつ、円形ピン8がオーバーラップするように、排気通路2に対向して設けているため、排気ガスGの流路を上下方向にも強制でき、乱流を発生させることができるため、より熱伝達率を向上し、より効率よく受熱、発電することが可能となる。   Further, in the thermoelectric unit 1, the heat receiving fins 4 are provided to face the exhaust passage 2 so that the even and odd rows of the circular pins 8 face each other and the circular pins 8 overlap. Therefore, the flow path of the exhaust gas G can be forced in the vertical direction and a turbulent flow can be generated, so that the heat transfer rate can be further improved, and heat can be received and generated more efficiently.

1 熱電ユニット
2 排気通路
3 熱電素子
4 受熱フィン
5 側板
6 冷却装置
7 平板
8 円形ピン
1 Thermoelectric unit 2 Exhaust passage 3 Thermoelectric element 4 Heat receiving fin 5 Side plate 6 Cooling device 7 Flat plate 8 Circular pin

Claims (3)

エンジンの排気通路の対向する面に熱電素子を設け、その熱電素子の受熱フィンを前記排気通路内に臨ませた熱電ユニットにおいて、
前記排気通路内で対向する受熱フィンが多数の円形ピンからなり、該円形ピンを、偶数列と奇数列でオフセットさせて千鳥構造に配置してなり、
前記受熱フィンより上流側の前記排気通路が、所定の範囲において、上流側から下流側にかけて前記排気通路の対向する前記面に対して平行な方向に拡径すると共に、前記所定の範囲において、上流側から下流側にかけて前記排気通路の対向する前記面に対して垂直な方向に縮径する
ことを特徴とする熱電ユニット。
In the thermoelectric unit in which a thermoelectric element is provided on the opposing surface of the exhaust passage of the engine, and the heat receiving fin of the thermoelectric element faces the exhaust passage,
Said heat receiving fins facing the exhaust passage is a number of round pins, the circular pin, Ri Na arranged in a zigzag structure is offset by the even columns and odd columns,
The exhaust passage on the upstream side of the heat receiving fin expands in a predetermined range from the upstream side to the downstream side in a direction parallel to the opposing surface of the exhaust passage, and in the predetermined range, the upstream side A thermoelectric unit having a diameter that decreases in a direction perpendicular to the opposing surface of the exhaust passage from the side toward the downstream side .
前記受熱フィンは、前記円形ピンの前記偶数列と前記奇数列とが対向するように、前記排気通路に対向して設けられる請求項1記載の熱電ユニット。   2. The thermoelectric unit according to claim 1, wherein the heat receiving fin is provided to face the exhaust passage so that the even and odd rows of the circular pins face each other. 前記受熱フィンは、前記円形ピンがオーバラップするように、前記排気通路に対向して設けられる請求項1または2記載の熱電ユニット。   The thermoelectric unit according to claim 1, wherein the heat receiving fin is provided to face the exhaust passage so that the circular pins overlap each other.
JP2009126393A 2009-05-26 2009-05-26 Thermoelectric unit Expired - Fee Related JP5381328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009126393A JP5381328B2 (en) 2009-05-26 2009-05-26 Thermoelectric unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009126393A JP5381328B2 (en) 2009-05-26 2009-05-26 Thermoelectric unit

Publications (2)

Publication Number Publication Date
JP2010275872A JP2010275872A (en) 2010-12-09
JP5381328B2 true JP5381328B2 (en) 2014-01-08

Family

ID=43423075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009126393A Expired - Fee Related JP5381328B2 (en) 2009-05-26 2009-05-26 Thermoelectric unit

Country Status (1)

Country Link
JP (1) JP5381328B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6675899B2 (en) * 2016-03-23 2020-04-08 株式会社アツミテック Exhaust gas power generation unit
JP6842243B2 (en) * 2016-03-22 2021-03-17 株式会社アツミテック Thermoelectric conversion unit and thermoelectric conversion module
KR20180111947A (en) * 2016-03-22 2018-10-11 가부시키가이샤 아쯔미테크 A thermoelectric conversion unit, a thermoelectric conversion module, and an exhaust gas power generation unit
CN106194356B (en) * 2016-07-28 2019-01-04 湖北工业大学 A kind of new engine tail gas heat to electricity conversion automobile
WO2023243816A1 (en) * 2022-06-15 2023-12-21 성균관대학교산학협력단 Thermoelectric generator, manufacturing method therefor, and thermoelectric generating apparatus equipped therewith

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125395A (en) * 1982-12-29 1984-07-19 Showa Alum Corp Manufacture of tube for heat exchanger
JPS63262075A (en) * 1987-04-20 1988-10-28 Nippon Steel Corp Discharge gas heat thermoelectric conversion generator
US5730213A (en) * 1995-11-13 1998-03-24 Alliedsignal, Inc. Cooling tube for heat exchanger
JPH10197174A (en) * 1996-12-27 1998-07-31 Zexel Corp Heat exchanger
ES2496943T3 (en) * 2003-10-28 2014-09-22 Behr Gmbh & Co. Kg Circulation channel for a heat exchanger and heat exchanger with circulation channels comprising said circulation channels

Also Published As

Publication number Publication date
JP2010275872A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP5895301B2 (en) Heat exchanger
JP5381328B2 (en) Thermoelectric unit
JP5267336B2 (en) Thermoelectric unit
US9250021B2 (en) Heat exchanger
JP6133945B2 (en) Thermoelectric devices, in particular thermoelectric devices for generating electric currents in automobiles
JP6081583B2 (en) Thermoelectric module, heat exchanger, exhaust system and internal combustion engine
US9698332B2 (en) Hybrid device comprising a thermoelectric module, notably intended to generate an electric current in a motor vehicle and a heat exchanger
JP2013545269A (en) A method for manufacturing a thermoelectric device for generating electric current, particularly in an automobile
JP2013543656A (en) Thermoelectric devices, in particular thermoelectric devices for generating current in automobiles
JP5909235B2 (en) Thermoelectric devices for generating currents, especially in automobiles
JP2006303037A (en) Thermoelectric power generator
JP2016025271A (en) Thermoelectric conversion device
JP6348207B2 (en) Thermoelectric generator for exhaust system and contact member of thermoelectric generator
JP2010275976A (en) Thermoelectric unit
JP2010219255A (en) Thermoelectric power generation device
WO2018083912A1 (en) Thermoelectric power generation heat exchanger
WO2016098679A1 (en) Thermoelectric generation unit, thermoelectric generation device using same and mounting structure therefor, exhaust duct having same mounting structure, and engine
JP6358209B2 (en) Thermoelectric generator
JP6013024B2 (en) Cooler
US11282999B2 (en) Thermoelectric conversion unit, thermoelectric conversion module, and exhaust-gas electricity generation unit
KR20120024157A (en) Thermoelectric element module for vehicles
JP2014515914A (en) Thermoelectric assembly and apparatus for generating current, particularly in motor vehicles
JP2006041221A (en) Thermoelectric converter
JP6842243B2 (en) Thermoelectric conversion unit and thermoelectric conversion module
US10559739B2 (en) Thermoelectric module for a thermoelectric generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5381328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees