JPS63262075A - Discharge gas heat thermoelectric conversion generator - Google Patents

Discharge gas heat thermoelectric conversion generator

Info

Publication number
JPS63262075A
JPS63262075A JP9506687A JP9506687A JPS63262075A JP S63262075 A JPS63262075 A JP S63262075A JP 9506687 A JP9506687 A JP 9506687A JP 9506687 A JP9506687 A JP 9506687A JP S63262075 A JPS63262075 A JP S63262075A
Authority
JP
Japan
Prior art keywords
heat
thermoelectric conversion
exhaust gas
discharge gas
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9506687A
Other languages
Japanese (ja)
Inventor
Kei Kikuchi
菊池 勁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9506687A priority Critical patent/JPS63262075A/en
Publication of JPS63262075A publication Critical patent/JPS63262075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To obtain a large power by forming the discharge gas passage wall of a high temperature side heat absorbing section in a columnar shape to increase the heat absorbing efficiency. CONSTITUTION:A discharge gas heat thermoelectric conversion generator is composed of a heat absorber 1, a liquid cooling jacket 2, a coolant pipe 3, an exhaust gas inlet 4 and outlet 5, a thermoelectric converter unit 6, a voltage regulator, a current reverse flow preventing unit 7, a power meter 8, and a storage battery 9. In this case, a fin 10 is provided to efficiently perform a thermal exchange in the absorber 1 for thermally exchanging while passing discharge gas. Thus, it can be made compact, have good generating efficiency, and can be mounted at any position of the passage.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、廃(排)気ガスの熱を利用する排気熱熱電変
換発電器に関し、特に自動車等内燃機関の排気ガスの熱
を利用する排気熱熱電変換発電器である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an exhaust heat thermoelectric conversion generator that utilizes the heat of waste (exhaust) gas, and particularly to an exhaust heat thermoelectric conversion generator that utilizes the heat of exhaust gas from an internal combustion engine such as an automobile. It is an exhaust heat thermoelectric conversion generator.

[従来の技術] 工場の排(廃)気、自動車等内燃機関の排気ガスの熱エ
ネルギーは、通常そのまま放出されることが多い。しか
し、近年は省エネルギ一時代を向かえ排気ガスの熱を利
用する研究が盛んに行われるようになった。
[Prior Art] Thermal energy of exhaust gas from factories and exhaust gas from internal combustion engines such as automobiles is usually released as is. However, in recent years, we are heading into an era of energy conservation, and research into utilizing the heat of exhaust gas has become active.

排気熱熱電変換発電器は、排気ガスが持つ熱エネルギー
を熱電変換素子を使って、直接電気エネルギーに変換し
電気エネルギーとして利用するもので、省エネルギーの
一手段として注目されている。
Exhaust heat thermoelectric conversion generators use thermoelectric conversion elements to directly convert the thermal energy of exhaust gas into electrical energy, which is then used as electrical energy, and is attracting attention as a means of energy conservation.

いままでに幾つかの特許が出されているが、特公昭58
−44842号公報、特公昭61−254082号公報
等いずれも電圧、電力が小さく、後述するように特に自
動車搭載用としては不十分と言える。
Several patents have been issued so far, but the
44842, Japanese Patent Publication No. 61-254082, etc., the voltage and power are low, and as will be described later, it can be said that they are insufficient especially for use in automobiles.

[発明が解決しようとする問題点] 熱電変換素子を利用した排気熱熱電変換発電器において
、熱電変換素子の性能を効率的に引き出すためには、次
式 Z=α2/ρに Z=性能指数 (10’/’C) α=電   圧  (V  /  ’C)ρ=比抵抗 
(Ω/cm) に=熱伝導率 (W m / °C) の内、ρ、には物質によって決まるからαを大きくしな
ければならない。αは温度差IT)によって定まる値 α=、4T= (Th −Tc) −T=温度差 Th=高温側の温度 Tc−低温側の温度 であるから、−Tを大きく取らなければならない。
[Problems to be Solved by the Invention] In an exhaust heat thermoelectric conversion generator using a thermoelectric conversion element, in order to efficiently bring out the performance of the thermoelectric conversion element, the following formula Z = α2 / ρ, Z = figure of merit (10'/'C) α=Voltage (V/'C) ρ=Resistance
(Ω/cm) = Thermal conductivity (W m / °C) Since ρ is determined by the material, α must be made large. Since α is a value determined by the temperature difference IT), 4T=(Th −Tc) −T=temperature difference Th=temperature on the high temperature side Tc−temperature on the low temperature side, −T must be set large.

以上の観点から、前述した各公報の提案は、熱電変換素
子の性能を十分に引き出すには方法、構造に無理がある
From the above point of view, the proposals in each of the above-mentioned publications are unreasonable in terms of methods and structures in order to fully bring out the performance of the thermoelectric conversion element.

例えば、特公昭58−44842号公報では吸熱、(熱
交換)放熱(抜熱)をフィンで行うのは良いが、構造上
取り付は位置が排気ガス出口近傍に限られ、排気ガスの
温度がかなり低くなった位置であるため、熱電変換素子
に大きな温度差を与えることが非常に難しいと言える。
For example, in Japanese Patent Publication No. 58-44842, it is good to use fins to absorb heat, (heat exchange), and dissipate heat (heat removal), but due to the structure, the installation is limited to the vicinity of the exhaust gas outlet, and the temperature of the exhaust gas is Since it is located at a fairly low location, it is extremely difficult to apply a large temperature difference to the thermoelectric conversion element.

又特公昭61−254082号公報では排気カス通路側
吸熱部は平滑で吸熱が不利であり、加えて冷却側放熱面
も平坦で放熱面積が少ない。したがって、熱電変換素子
を通過する排気ガスからの熱量が少なく、大きな電力を
得るには無理な構造と言える。
Further, in Japanese Patent Publication No. 61-254082, the heat absorbing portion on the exhaust gas passage side is smooth and is disadvantageous in heat absorption, and in addition, the cooling side heat dissipating surface is also flat and has a small heat dissipating area. Therefore, the amount of heat from the exhaust gas passing through the thermoelectric conversion element is small, and it can be said that this is an impossible structure to obtain a large amount of electric power.

本発明は、熱電変換素子の特性を熟知し、排気ガスを効
率的に利用して大きな温度差、大量の熱流を生じさせて
大電力を得るものである。
The present invention is based on a thorough knowledge of the characteristics of thermoelectric conversion elements, and utilizes exhaust gas efficiently to generate a large temperature difference and a large amount of heat flow, thereby obtaining large amounts of electric power.

更に本発明は、従来の不都合を勘案し無理のない方法、
構造で大きな温度差と大量の熱流を確保し、熱電変換素
子の性能を十分に効率よく活用した排気ガスの熱を利用
した排気熱熱電変換発電器を提供することを目的とする
Furthermore, the present invention takes into account the conventional disadvantages and provides a reasonable method,
The purpose of the present invention is to provide an exhaust heat thermoelectric conversion generator that utilizes the heat of exhaust gas, ensuring a large temperature difference and a large amount of heat flow through its structure, and fully and efficiently utilizing the performance of thermoelectric conversion elements.

[問題点を解決するための手段]   ゛本発明は、高
温側吸熱部の排気ガス通路壁面に熱交換を良くするため
、排気ガスと接触する面積増加を図る方法として柱状、
フィン、ハニカム(蜂の巣状)等、形状、構造の創意工
夫を図り吸熱効率を大きくしたこと、熱電変換素子を通
過した熱を取る低温側冷却部を液体式冷却ジャケットに
して比熱の大きい液体を使用することによる抜熱効率を
向上させたことなどによって、熱電変換素子に大きな温
度差と大量の熱エネルギーを流すことが可能となり大電
力を得るようにした。
[Means for Solving the Problems] ゛The present invention provides a column-shaped,
The heat absorption efficiency has been increased by ingenuity in the shape and structure of fins, honeycombs, etc., and the low-temperature side cooling section that collects the heat that has passed through the thermoelectric conversion element has been made into a liquid cooling jacket, and a liquid with a high specific heat is used. By improving the efficiency of heat removal through this process, it became possible to flow a large temperature difference and a large amount of thermal energy to the thermoelectric conversion element, thereby obtaining a large amount of electric power.

特に自動車搭載用としても自動車運行に必要な電力を確
保できる無理のない方法、構造を採用し、前記の目的を
達成するものである。
In particular, the above object is achieved by adopting a reasonable method and structure that can secure the electric power necessary for vehicle operation even when installed in a vehicle.

以下図面を用いて説明する。This will be explained below using the drawings.

第1図は、本発明の排気熱熱電変換発電器システムを示
し、点線内は本発明排気熱熱電変換発電器を示す。
FIG. 1 shows an exhaust heat thermoelectric conversion power generator system of the present invention, and the area within the dotted line indicates the exhaust heat thermoelectric conversion power generator of the present invention.

1は吸熱部、2は液体式冷却ジャケット、3は冷却水用
パイプ、4は排気ガス入口、5は排気ガス出口、6は熱
電変換素子のユニット、7は電圧調整器と電流逆流防止
器、8は電力計、9は蓄電池である。
1 is a heat absorption part, 2 is a liquid cooling jacket, 3 is a cooling water pipe, 4 is an exhaust gas inlet, 5 is an exhaust gas outlet, 6 is a thermoelectric conversion element unit, 7 is a voltage regulator and a current backflow preventer, 8 is a power meter, and 9 is a storage battery.

本発明の排気熱熱電変換発電器は、第2図および第3図
に示す排気ガスを通過させながら熱交換を行う吸熱部が
あり、吸熱部は熱交換を効率的に行うためにフィン10
を設けた。
The exhaust heat thermoelectric conversion generator of the present invention has a heat absorption part that exchanges heat while passing the exhaust gas as shown in FIGS. 2 and 3.
has been established.

第2図に示す吸熱部品のパターンは、重ね合わせると各
々が互い違いに咬み合うようになって内側を排気ガスが
通るようになる。
When the heat absorbing parts shown in FIG. 2 are overlapped, the heat absorbing parts interlock with each other, allowing exhaust gas to pass through the inside.

次ぎに、熱エネルギーを直接電気エネルギーに変換する
熱電変換素子は、第4図に示すように電極11を通して
、p型、n型12を交互に並べ、熱的に並列、電気的に
直列に70個を1単位(1ユニツト)として上面、下面
にアルミナ板を電気絶縁物として接着した。
Next, as shown in FIG. 4, a thermoelectric conversion element that directly converts thermal energy into electrical energy is made by arranging p-type and n-type 12 alternately through electrodes 11, and 70 Alumina plates were bonded to the top and bottom surfaces as electrical insulators.

尚1ユニツトのp型、n型12の組み合わせ個数は、数
個から百数十個の任意の数を用いることができる。
Note that the combined number of p-type and n-type 12 in one unit can be any number from several to over 100.

ユニットにした熱電変換素子は、第5図に示すゝように
10個のユニットを1平面に並べ、各々のユニットの電
気端子第4図13から電気的に直列に結線して雨量終端
子より電力を得る。尚ユニットの使用個数は、目的に応
じ任意の数で良い。
The thermoelectric conversion elements made into units are arranged in 10 units on one plane as shown in Fig. 5, and electrically connected in series from the electrical terminal of each unit (Fig. get. Note that any number of units may be used depending on the purpose.

第6図および第7図は、前述のユニットにした熱電変換
素子6を吸熱部1を中心に冷却部2との間に挟んだ様子
を示す。
FIGS. 6 and 7 show the above-described unit thermoelectric conversion element 6 sandwiched between the heat absorbing part 1 and the cooling part 2.

冷却部は、第8図に示すようなジャケット状2で冷却用
の水または温水が流れるように、通路14を設けた液体
式冷却ジャケットである。
The cooling section is a liquid cooling jacket having a jacket shape 2 as shown in FIG. 8 and provided with passages 14 through which cooling water or hot water flows.

[作  用] 排気熱熱電変換発電器を構成する部材は、大別して吸熱
部、冷却部、発電部から成る。
[Function] The members constituting the exhaust heat thermoelectric conversion generator are roughly divided into a heat absorption section, a cooling section, and a power generation section.

吸熱部は、熱伝導の良い材料を使用して排気ガス通路の
一部分に配置し、構造は排気ガスから熱を効率よく吸収
できるように柱状、フィン、ハニカム等排気ガスと吸熱
部のあいだで十分な熱交換が行えるようにする。
The heat absorbing part is placed in a part of the exhaust gas passage using a material with good thermal conductivity, and the structure is such that there is enough space between the exhaust gas and the heat absorbing part, such as columnar, fin, or honeycomb, to efficiently absorb heat from the exhaust gas. To enable proper heat exchange.

冷却部は、熱伝導の良い材料のジャケットで、ジャケッ
トの中層部分に液体が十分通過できるような通路を設け
、比熱の大きい液体を通して効率よく冷却する。
The cooling section is a jacket made of a material with good thermal conductivity, and a passage is provided in the middle layer of the jacket to allow a sufficient amount of liquid to pass through, allowing the liquid with a large specific heat to pass through for efficient cooling.

発電部は、熱電変換素子p型、n型を数十〜百数十個交
互に電極を通して並べ、熱的に並列、電気的に直列に配
置したものを1単位(ユニット)とし、使用の内容に応
じてユニットの数を決めて使用する。
The power generation section consists of tens to hundreds of thermoelectric conversion elements, p-type and n-type, arranged alternately through electrodes, arranged thermally in parallel and electrically in series. Decide and use the number of units depending on the situation.

各々の部分は組み合わされて排気熱熱電変換発電器とな
るが、糺合せは吸熱部と冷却部の間に発電部を挟み、各
々の部分の組み合わせ接触面に隙間の無いように組み立
てる。もし、隙間が生じるようであれば熱伝導性の良い
コンバンド等を使用するとよい。
Each part is assembled to form an exhaust heat thermoelectric conversion generator, and the power generation part is sandwiched between the heat absorption part and the cooling part, and the parts are assembled so that there is no gap between the combined contact surfaces of the parts. If there is a gap, it is recommended to use a combination band with good thermal conductivity.

以上のようにしてできた本発明は、従来品に較べ非常に
コンパクトでしかも発電効率が良く、排気ガス通路のど
んな位置でも装備可能である。内燃機関に使用する場合
は、内燃機関に近い位置が好ましく、使用方法によって
は消音器の一部を兼ねることができる。
The present invention created as described above is much more compact than conventional products, has better power generation efficiency, and can be installed at any position in the exhaust gas passage. When used in an internal combustion engine, it is preferably located close to the internal combustion engine, and depending on how it is used, it can also serve as part of a muffler.

前述に加えて、本発明を自動車用発電器として使用する
場合は、蓄電池と併用することが好ましく、本発明の電
力取り出し側に電圧調整器、電流逆流防止器を取り付け
ることが望ましい。
In addition to the above, when the present invention is used as a generator for an automobile, it is preferable to use it together with a storage battery, and it is desirable to attach a voltage regulator and a current backflow preventer to the power extraction side of the present invention.

冷却用液体は、エンジン冷却水を用いれば良く、使用中
に冷却水の温度が上がっても、本発明の排気熱熱電変換
発電器の発電機能が損なわれることはない。
Engine cooling water may be used as the cooling liquid, and even if the temperature of the cooling water rises during use, the power generation function of the exhaust heat thermoelectric conversion generator of the present invention will not be impaired.

したがって、現在の自動車のエンジン回転力を利用した
オルタネイタ−発電機の補助発電器あるいは代替発電器
として使用できる。特に、現在使用されている自動車発
電機オルタネイタ−の代替として使用すれば、エンジン
出力のうち発電に要するエネルギーは不用となり、エン
ジン出力全てが走行駆動力に利用できるため、走行性能
アップにつながり、加えて排気熱利用のため燃料節約に
も貢献する非常に大きなメリットがある。
Therefore, it can be used as an auxiliary or alternative generator for an alternator-generator that utilizes the rotational power of a current automobile engine. In particular, if used as a replacement for the currently used automobile generator alternator, the energy required for power generation out of the engine output will be unnecessary and all of the engine output can be used for driving force, leading to improved driving performance and additional This has the great advantage of contributing to fuel savings as it utilizes exhaust heat.

本発明の用途は勿論自動車の排気熱の利用にとどまらず
、一般の工場から発生する廃(排)気熱の利用に広く活
用できる。
The application of the present invention is, of course, not limited to the use of exhaust heat from automobiles, but can be widely applied to the use of waste (exhaust) heat generated from general factories.

[実 施 例] 図で説明した本発明の排気熱熱電変換発電器を用いた実
施例を以下に説明する。
[Example] An example using the exhaust heat thermoelectric conversion generator of the present invention illustrated in the drawings will be described below.

吸熱は、第1図排気ガス人口4より熱風を送風し、吸熱
部1で熱交換を行い温度の下がった熱風は排出口5より
外気へ放出する。
For heat absorption, hot air is blown from the exhaust gas port 4 in FIG.

冷却は、恒温水槽により60℃に温度調節した温水を液
体式冷却ジャケット2にパイプ3を通して送水し、液体
式冷却ジャケット2を通過した温水は、恒温水槽に戻し
て循環使用した。
For cooling, hot water whose temperature was adjusted to 60° C. in a constant temperature water bath was sent to the liquid cooling jacket 2 through the pipe 3, and the hot water that had passed through the liquid cooling jacket 2 was returned to the constant temperature water bath and used for circulation.

熱電変換素子のユニット6は片面10個ずつ計20個の
ユニットを使って実施した。
Unit 6 of thermoelectric conversion elements was carried out using a total of 20 units, 10 on each side.

結果は、熱電変換素子に与える温度差iT)が、 JT=70℃の時   43W A T = 100℃の時   95WΔT = 11
7℃の時  131W の電力が得られた。
The results are that the temperature difference (iT) given to the thermoelectric conversion element is: 43W when JT = 70°C 95WΔT = 11 when T = 100°C
A power of 131W was obtained at 7°C.

[発明の効果] 本発明により排気ガスの排気熱利用効果を高めたことと
、抜熱部に水冷方式を採用したことにより、小型で発電
能力も大きく、実隙に自動車に搭載可能な優れた排気熱
熱電変換発電器を提供することができる。
[Effects of the invention] The present invention improves the effect of utilizing exhaust heat from exhaust gas and uses a water-cooling system for the heat extraction section, making it an excellent product that is compact and has a large power generation capacity, making it ideal for mounting on automobiles. An exhaust heat thermoelectric conversion generator can be provided.

さらに本発明は一般の工場の排気ガスの廃気熱の有効利
用に供することを可能とするものである。
Furthermore, the present invention makes it possible to effectively utilize waste heat of exhaust gas from general factories.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の模式図、第2図は吸熱部の一例の平面
図、第3図は第2図の側面図、第4図は熱電変換素子を
ユニットにした模式図、第5図は本発明のユニットの使
用方法の説明図、第6図は本発明の吸熱部、発電部およ
び冷却部を組み合わせた状態を示す模式図、第7図は第
6図の正面図、第8図は液体式冷却ジャケットの模式図
である。 1・・・吸熱部 2・・・液体式冷却ジャケット 3・・・冷却水用パイプ   4・・・排気ガス人口5
・・・排気ガス出口 6・・・熱電変換素子のユニット 7・・・電圧調整器と電流逆流防止器 8・・・電力計       9・・・蓄電池10・・
・フィン      11・・・電極12・・・熱電変
換素子(p型、n型)13・・・電気端子      
14・・・、冷却水出入口状 理 人  弁理士  茶
野木 立 夫第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図
Fig. 1 is a schematic diagram of the present invention, Fig. 2 is a plan view of an example of a heat absorption part, Fig. 3 is a side view of Fig. 2, Fig. 4 is a schematic diagram of thermoelectric conversion elements as a unit, and Fig. 5 is an explanatory diagram of how to use the unit of the present invention, FIG. 6 is a schematic diagram showing a state in which the heat absorption section, power generation section, and cooling section of the present invention are combined, FIG. 7 is a front view of FIG. 6, and FIG. 8 is a schematic diagram of a liquid cooling jacket. 1... Heat absorption part 2... Liquid cooling jacket 3... Cooling water pipe 4... Exhaust gas population 5
... Exhaust gas outlet 6 ... Thermoelectric conversion element unit 7 ... Voltage regulator and current backflow preventer 8 ... Power meter 9 ... Storage battery 10 ...
・Fin 11... Electrode 12... Thermoelectric conversion element (p type, n type) 13... Electrical terminal
14... Cooling water inlet/outlet condition Attorney Tatsuo Chanoki, patent attorney Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 熱エネルギーを電気エネルギーに変換する熱電変換素子
と、排気ガスの熱エネルギーを吸熱する吸熱部と抜熱す
る抜熱側冷却部からなる排気熱熱電変換発電器において
、吸熱部の排ガス通路側吸熱面を柱状、フィン状又はハ
ニカム状構造となし、抜熱側冷却部を液体式冷却ジャケ
ット構造となし、吸熱部を中心に熱電変換素子、抜熱側
冷却部と重ね固定したことを特徴とする排気熱熱電変換
発電器。
In an exhaust heat thermoelectric conversion generator consisting of a thermoelectric conversion element that converts thermal energy into electrical energy, a heat absorption section that absorbs heat energy of exhaust gas, and a heat removal side cooling section that removes heat, the heat absorption surface of the heat absorption section on the exhaust gas passage side has a columnar, fin-shaped or honeycomb-like structure, the heat extraction side cooling section has a liquid cooling jacket structure, and the heat absorption section is stacked and fixed with a thermoelectric conversion element and a heat extraction side cooling section. Thermal thermoelectric conversion generator.
JP9506687A 1987-04-20 1987-04-20 Discharge gas heat thermoelectric conversion generator Pending JPS63262075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9506687A JPS63262075A (en) 1987-04-20 1987-04-20 Discharge gas heat thermoelectric conversion generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9506687A JPS63262075A (en) 1987-04-20 1987-04-20 Discharge gas heat thermoelectric conversion generator

Publications (1)

Publication Number Publication Date
JPS63262075A true JPS63262075A (en) 1988-10-28

Family

ID=14127632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9506687A Pending JPS63262075A (en) 1987-04-20 1987-04-20 Discharge gas heat thermoelectric conversion generator

Country Status (1)

Country Link
JP (1) JPS63262075A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035825A (en) * 1998-07-17 2000-02-02 Honda Motor Co Ltd Power generator for vehicle
KR20000056028A (en) * 1999-02-12 2000-09-15 음국배 Self generator using thermoelectric semiconductor and its controlling method in electric-automobile
US6172427B1 (en) 1997-02-13 2001-01-09 Nissan Motor Co., Ltd. Electric energy supply system for vehicle
KR100386472B1 (en) * 2000-11-16 2003-06-02 한국에너지기술연구원 Thermoelectric Generation System for Automobile Exhaust Heat Recovery
KR20040024196A (en) * 2002-09-13 2004-03-20 현대자동차주식회사 Apparatus for cooling engine using thermoelectric element in a vehicle
KR100452909B1 (en) * 2001-12-29 2004-10-14 한국동서발전(주) Apparatus for generating thermoelectric semiconductor using of exhaust gas heat
EP1564822A3 (en) * 2004-02-17 2009-05-20 Toyota Jidosha Kabushiki Kaisha Electric power generating apparatus and its control method
JP2010275872A (en) * 2009-05-26 2010-12-09 Isuzu Motors Ltd Thermoelectric unit
KR101191076B1 (en) * 2010-08-17 2012-10-16 충북대학교 산학협력단 An Apparatus for thermoelectric generator using exhaust gas
KR101242612B1 (en) * 2010-10-13 2013-03-19 충북대학교 산학협력단 Thermoelectric Power Generation System

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172427B1 (en) 1997-02-13 2001-01-09 Nissan Motor Co., Ltd. Electric energy supply system for vehicle
JP2000035825A (en) * 1998-07-17 2000-02-02 Honda Motor Co Ltd Power generator for vehicle
KR20000056028A (en) * 1999-02-12 2000-09-15 음국배 Self generator using thermoelectric semiconductor and its controlling method in electric-automobile
KR100386472B1 (en) * 2000-11-16 2003-06-02 한국에너지기술연구원 Thermoelectric Generation System for Automobile Exhaust Heat Recovery
KR100452909B1 (en) * 2001-12-29 2004-10-14 한국동서발전(주) Apparatus for generating thermoelectric semiconductor using of exhaust gas heat
KR20040024196A (en) * 2002-09-13 2004-03-20 현대자동차주식회사 Apparatus for cooling engine using thermoelectric element in a vehicle
EP1564822A3 (en) * 2004-02-17 2009-05-20 Toyota Jidosha Kabushiki Kaisha Electric power generating apparatus and its control method
US7667132B2 (en) 2004-02-17 2010-02-23 Toyota Jidosha Kabushiki Kaisha Electric power generating apparatus and control method for electric power generating apparatus
JP2010275872A (en) * 2009-05-26 2010-12-09 Isuzu Motors Ltd Thermoelectric unit
KR101191076B1 (en) * 2010-08-17 2012-10-16 충북대학교 산학협력단 An Apparatus for thermoelectric generator using exhaust gas
KR101242612B1 (en) * 2010-10-13 2013-03-19 충북대학교 산학협력단 Thermoelectric Power Generation System

Similar Documents

Publication Publication Date Title
US20070095379A1 (en) Thermoelectric generator
EP0813253A2 (en) Thermoelectric generator
CN110492135B (en) Fuel cell automobile waste heat power generation system, working method thereof and fuel cell automobile
RU2007114911A (en) THERMOELECTRIC TRANSFORMATION MODULE, THERMOELECTRIC DEVICE FOR ELECTRIC POWER GENERATION AND METHOD WITH ITS USE, SYSTEM OF RECOVERY OF HEAT OF EXHAUST GASES, SYSTEM OF REDUNDANCE
JP2000286469A (en) Thermoelectric power-generating device
JP2012041033A (en) Heating part cooling structure for hybrid electric automobile
JP2013110825A (en) Thermoelectric generator
JP5939143B2 (en) Thermoelectric generator
JPS63262075A (en) Discharge gas heat thermoelectric conversion generator
CN103078560A (en) Semiconductor temperature difference power generation system
JP2014131458A (en) Accumulated type thermoelectric generator for vehicle
KR101401065B1 (en) Thermoelectric generator of vehicle
JP4328803B2 (en) Electricity cogeneration using the Seebeck effect inside a fuel cell
JP2004140202A (en) Thermoelectric conversion system
JP2014225509A (en) Waste heat power generator
JP2002199762A (en) Exhaust heat thermoelectric converter, exhaust gas exhausting system using it, and vehicle using it
JP6350297B2 (en) Thermoelectric generator
CN208939848U (en) Heat recovery apparatus and engine assembly
JPH0638560A (en) Generator by exhaust gas
JP2563524B2 (en) Thermoelectric device
CN113067054B (en) Battery based on phase-change material coupling fin and battery thermal management system thereof
JPH10150787A (en) Thermoelectric generator for outdoor use
JPH0679168U (en) Exhaust heat power generator
JP3562733B2 (en) Thermoelectric generator and power generator using this thermoelectric generator
JPH07227092A (en) Thermoelectric type electricity generator