JP2563524B2 - Thermoelectric device - Google Patents

Thermoelectric device

Info

Publication number
JP2563524B2
JP2563524B2 JP63257564A JP25756488A JP2563524B2 JP 2563524 B2 JP2563524 B2 JP 2563524B2 JP 63257564 A JP63257564 A JP 63257564A JP 25756488 A JP25756488 A JP 25756488A JP 2563524 B2 JP2563524 B2 JP 2563524B2
Authority
JP
Japan
Prior art keywords
heat
semiconductor
type
air
wedge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63257564A
Other languages
Japanese (ja)
Other versions
JPH02103969A (en
Inventor
義明 山本
博由 田中
文俊 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63257564A priority Critical patent/JP2563524B2/en
Publication of JPH02103969A publication Critical patent/JPH02103969A/en
Application granted granted Critical
Publication of JP2563524B2 publication Critical patent/JP2563524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はペルチェ効果を利用し、電気的に冷房もしく
は暖房を行う空調装置、もしくはゼーベック効果により
温度差を用いて発電を行う発電装置に有用な熱電装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric generator useful for an air conditioner that electrically cools or heats by utilizing the Peltier effect, or a power generator that generates electricity using a temperature difference by the Seebeck effect. Regarding the device.

従来の技術 従来、熱を電気に変換し、もしくは電気を熱に変換す
る熱電素子は、第2図に示す様に、金属板1、及び金属
板2によってN型半導体3、もしくはP型半導体4を挟
み込む構成を有し、両側の金属の温度差により発電を行
い、もしくは電流を通ずることにより冷却を行うもので
ある。
2. Description of the Related Art Conventionally, as shown in FIG. 2, a thermoelectric element for converting heat into electricity or converting electricity into heat has an N-type semiconductor 3 or a P-type semiconductor 4 with a metal plate 1 and a metal plate 2. It has a structure of sandwiching, and power is generated by the temperature difference between the metals on both sides, or cooling is performed by passing an electric current.

第2図の従来例は、N型の半導体3とP型の半導体4
を交互に直列的に配列した熱電素子であり、端子5と端
子6間に電位を与えると、金属板の一方が冷却され、他
方が加熱される。
In the conventional example of FIG. 2, the N-type semiconductor 3 and the P-type semiconductor 4 are used.
Are alternately arranged in series, and when a potential is applied between the terminals 5 and 6, one of the metal plates is cooled and the other is heated.

第3図従来の熱電装置を冷暖房用に使用した場合の例
を示したものである。このような熱電装置は、中央に第
2図に示したような熱電素子7を配置し、2個のファン
8,ファン9によって外気10,11を熱電素子表面に導いて
いる。
FIG. 3 shows an example in which the conventional thermoelectric device is used for heating and cooling. In such a thermoelectric device, the thermoelectric element 7 as shown in FIG.
The outside air 10, 11 is guided to the thermoelectric element surface by the 8, fan 9.

外気10,11は、熱電素子7の表面および熱電素子7と
外気10,11との伝熱面積を確保するため熱電素子7表面
と熱的に接触しているグリッド12,13より、加熱もしく
は冷却してグリッド12,13から吹き出すものである。
The outside air 10, 11 is heated or cooled from the surface of the thermoelectric element 7 and the grids 12, 13 which are in thermal contact with the surface of the thermoelectric element 7 in order to secure a heat transfer area between the thermoelectric element 7 and the outside air 10, 11. Then it is blown out from the grids 12 and 13.

発明が解決しようとする課題 しかしながらこのような従来の熱電装置では、熱伝素
子とグリッドの構成上、 1. 外気との熱交換面積を確保するグリッドと伝熱素子
との接触熱抵抗が大きい。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in such a conventional thermoelectric device, due to the configuration of the heat transfer element and the grid, 1. The contact heat resistance between the grid and the heat transfer element that secures a heat exchange area with the outside air is large.

2. 熱伝素子全体から発生する大量の熱を空気と熱交換
するため、グリッドの伝熱面積を大きくする必要があ
り、グリッドの長さが長くなりフィン効率が低下する。
2. Since a large amount of heat generated from the entire heat transfer element is exchanged with air, it is necessary to increase the heat transfer area of the grid, which lengthens the grid and reduces fin efficiency.

等の問題点から、熱電素子の両端面間の温度差が大きく
なり、効率の低下を招くという課題があった。
Due to such problems, there is a problem that the temperature difference between both end faces of the thermoelectric element becomes large and the efficiency is lowered.

本発明は、上記課題にもとづき熱電素子と空気間の吸
熱および排熱を低温度差で実現し、熱電性能を向上させ
る構造の熱電装置を提供するものである。
The present invention provides a thermoelectric device having a structure that realizes heat absorption and exhaust heat between a thermoelectric element and air with a low temperature difference based on the above problems, and improves thermoelectric performance.

課題を解決するための手段 板状のN型(またはP型)半導体、板状のP型(また
はN型)半導体をくさび形に接合したものを、N型半導
体とP型半導体が交互に位置するように複数組電気的に
接合し、くさび形の凹部にくさび形の2倍のピッチを有
する2つのコルゲート状のフィンを配置した構成となっ
ている。
Means for Solving the Problems A plate-shaped N-type (or P-type) semiconductor, or a plate-shaped P-type (or N-type) semiconductor joined in a wedge shape, the N-type semiconductor and the P-type semiconductor are alternately positioned. As described above, a plurality of sets are electrically connected to each other, and two corrugated fins having twice the pitch of the wedge shape are arranged in the wedge-shaped recess.

作用 上記のような構成によって、各半導体毎にコルゲート
状のフィンが存在することから、空気との伝熱が容易で
あり、また、くさび状の半導体とコルゲート状のフィン
を別々に作成した後に、機械的に熱電装置を作成する構
造であることから、コルゲート状のフィンの形状は自由
に作成することができる。したがって、空気との熱伝達
に応じたフィンの設計が可能であり、またくさび状の半
導体との接触面積も確保できることから熱抵抗の減少を
図り、空気と半導体との温度差を抑え、高効率の熱電装
置が可能となる。
With the above configuration, since there is a corrugated fin for each semiconductor, it is easy to transfer heat to the air, and after the wedge-shaped semiconductor and the corrugated fin are created separately, Since the thermoelectric device is mechanically formed, the corrugated fins can be freely formed. Therefore, the fin can be designed according to the heat transfer with the air, and the contact area with the wedge-shaped semiconductor can be secured to reduce the thermal resistance, suppress the temperature difference between the air and the semiconductor, and achieve high efficiency. Thermoelectric devices are possible.

実施例 以下に本発明による実施例を図面により説明する。Embodiment An embodiment according to the present invention will be described below with reference to the drawings.

第1図は本発明の実施例の熱電装置の構成を示すもの
である。
FIG. 1 shows the configuration of a thermoelectric device according to an embodiment of the present invention.

図中、N型半導体17、P型半導体18はくさび状に交互
に接合されている。N型半導体17と、P型半導体18はど
ちらでもよく、加える電圧の方向によって冷却部と加熱
部を切り替えることができる。くさびの凸部にはくさび
と同一ピッチで作成したコルゲートフィン19が接してい
る。また、くさびの凹部には別のコルゲートフィン19が
接している。半導体17,18とコルゲートフィン19は機械
的に接合する構造であることから、接触部の熱抵抗が大
きくならない構造となっている。コルゲートフィン19の
材料としては、熱伝導の大きい銅またはアルミが用いら
れる。熱電装置に流れ込んだ電流は、半導体17と18の界
面でペルチェ効果により発熱もしくは吸熱する。このと
き、N型半導体17とP型半導体18は相互に並んでいるこ
とから、くさびの凸部の界面は、すべて発熱(もしくは
吸熱)となり、凹部の界面はすべて吸熱(もしくは発
熱)となる。各界面は熱電導性の高いコルゲートフィン
19を介して周囲の空気からの熱の授受を行なう。したが
って、上部の空気から熱を吸収(もしくは空気への熱の
発散)、下部の空気への熱の発散(もしくは空気からの
熱の吸収)となる。
In the figure, N-type semiconductors 17 and P-type semiconductors 18 are alternately joined in a wedge shape. Either the N-type semiconductor 17 or the P-type semiconductor 18 may be used, and the cooling unit and the heating unit can be switched depending on the direction of the applied voltage. The corrugated fins 19 made at the same pitch as the wedge are in contact with the convex portion of the wedge. Further, another corrugated fin 19 is in contact with the concave portion of the wedge. Since the semiconductors 17 and 18 and the corrugated fin 19 are mechanically joined to each other, the thermal resistance of the contact portion does not increase. As a material for the corrugated fins 19, copper or aluminum having high heat conductivity is used. The current flowing into the thermoelectric device generates or absorbs heat at the interface between the semiconductors 17 and 18 due to the Peltier effect. At this time, since the N-type semiconductor 17 and the P-type semiconductor 18 are lined up with each other, all the interfaces of the convex portions of the wedge generate heat (or endotherm) and all the interfaces of the concave portions absorb heat (or generate heat). Corrugated fins with high thermal conductivity at each interface
Transfers heat from the surrounding air via 19. Therefore, the heat is absorbed from the upper air (or the heat is dissipated to the air), and the heat is dissipated to the lower air (or the heat is absorbed from the air).

本実施例の熱電装置を壁として使用することにより、
壁の内外におけるヒートポンプが完成する。
By using the thermoelectric device of this embodiment as a wall,
The heat pump inside and outside the wall is completed.

本実施例では、コルゲートフィン19は上下ともに同じ
寸法としたが、吸熱・排熱比や、おのおのの空気側条件
により最適寸法で製作することも容易な形状といえる。
一般に、排熱量は吸熱量と入力電力との和に等しく、効
率の悪い熱電素子を用いると、吸熱量と排熱量の差が大
きくなる。したがって、空気側との伝熱に必要な伝熱面
積の差も大きくなる。本実施例では、吸熱側と排熱側の
コルゲートフィン19の長さを変えることによって、最適
な形状を容易に得ることができる。
In this embodiment, the corrugated fins 19 have the same size on the upper and lower sides, but it can be said that the shape is easy to manufacture with the optimum size depending on the heat absorption / exhaust heat ratio and each air side condition.
Generally, the amount of waste heat is equal to the sum of the amount of heat absorbed and the input power, and if a thermoelectric element with low efficiency is used, the difference between the amount of heat absorbed and the amount of waste heat becomes large. Therefore, the difference in the heat transfer area required for heat transfer from the air side also becomes large. In this embodiment, the optimum shape can be easily obtained by changing the lengths of the heat absorbing side corrugated fins 19 and the heat exhausting side.

以上のように本実施例においては、空気側の伝熱面を
自由かつ容易に設計することが可能であり、熱電素子と
空気間の吸熱および排熱を低温度差で実現し、熱電性能
を向上させることができる。
As described above, in the present embodiment, it is possible to freely and easily design the heat transfer surface on the air side, realize the heat absorption and the heat exhaustion between the thermoelectric element and the air with a low temperature difference, and improve the thermoelectric performance. Can be improved.

発明の効果 以上のように、板状のN型(またはP型)半導体、板
状のP型(またはN型)半導体をくさび形に接合したも
のを、N型半導体とP型半導体が交互に位置するように
複数組電気的に接合し、くさび形の凹部にくさび形の2
倍のピッチを有する2つのコルゲート状のフィンを配置
する構造にしたため、各半導体毎にコルゲート状のフィ
ンが存在することとなり、空気との伝熱が容易であり、
また、くさび状の半導体とコルゲート状のフィンを別々
に作成した後に、機械的に熱電装置を作成する構造であ
ることから、コルゲート状のフィンの形状は自由に作成
することができる。したがって、空気との熱伝達に応じ
たファンの設計が可能であり、またくさび状の半導体と
の接触面積も確保できることから、熱抵抗の減少を図
り、空気と半導体との温度差を抑え、高効率の熱電装置
が可能となる。
EFFECTS OF THE INVENTION As described above, a plate-shaped N-type (or P-type) semiconductor and a plate-shaped P-type (or N-type) semiconductor joined in a wedge shape are alternately used as the N-type semiconductor and the P-type semiconductor. 2 sets of wedge-shaped recesses that are electrically connected to each other so that they are positioned
Since the structure is such that two corrugated fins having a double pitch are arranged, a corrugated fin exists for each semiconductor, and heat transfer with air is easy,
Further, since the structure is such that the thermoelectric device is mechanically produced after the wedge-shaped semiconductor and the corrugated fin are separately produced, the shape of the corrugated fin can be freely produced. Therefore, the fan can be designed according to the heat transfer with the air, and the contact area with the wedge-shaped semiconductor can be secured, so the thermal resistance can be reduced, the temperature difference between the air and the semiconductor can be suppressed, and An efficient thermoelectric device is possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の熱電装置の慨略図、第2図
は、従来の熱電装置の斜視図、第3図は従来の熱電装置
の側面図である。3、4、17、18……半導体、19……コ
ルゲートフィン。
FIG. 1 is a schematic view of a thermoelectric device according to an embodiment of the present invention, FIG. 2 is a perspective view of a conventional thermoelectric device, and FIG. 3 is a side view of the conventional thermoelectric device. 3, 4, 17, 18 ... Semiconductor, 19 ... Corrugated fin.

フロントページの続き (56)参考文献 特開 昭63−163787(JP,A) 特開 昭63−189792(JP,A) 実公 昭42−9210(JP,Y1)Continuation of the front page (56) References JP-A-63-163787 (JP, A) JP-A-63-189792 (JP, A) Jitsuko 42-9210 (JP, Y1)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】板状のN型(またはP型)半導体、板状の
P型(またはN型)半導体をくさび形に接合したもの
を、N型半導体とP型半導体が交互に位置するように複
数組電気的に接合し、前記くさび形の凹部に前記くさび
形の2倍のピッチを有する2つのコルゲート状のフィン
を配置してなる熱電装置。
1. A plate-shaped N-type (or P-type) semiconductor or a plate-shaped P-type (or N-type) semiconductor bonded in a wedge shape so that the N-type semiconductor and the P-type semiconductor are alternately located. A plurality of corrugated fins electrically connected to each other, and two corrugated fins having a pitch twice that of the wedge are arranged in the wedge-shaped recess.
JP63257564A 1988-10-13 1988-10-13 Thermoelectric device Expired - Lifetime JP2563524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63257564A JP2563524B2 (en) 1988-10-13 1988-10-13 Thermoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63257564A JP2563524B2 (en) 1988-10-13 1988-10-13 Thermoelectric device

Publications (2)

Publication Number Publication Date
JPH02103969A JPH02103969A (en) 1990-04-17
JP2563524B2 true JP2563524B2 (en) 1996-12-11

Family

ID=17308022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63257564A Expired - Lifetime JP2563524B2 (en) 1988-10-13 1988-10-13 Thermoelectric device

Country Status (1)

Country Link
JP (1) JP2563524B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT508277B1 (en) * 2009-06-09 2011-09-15 Avl List Gmbh THERMOELECTRIC MODULE WITH PAIR-TYPED P AND N-DOTED TILES

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0369670A3 (en) * 1988-11-18 1992-06-03 Aspden, Harold Dr. Thermoelectric energy conversion
JPH0430586A (en) * 1990-05-28 1992-02-03 Matsushita Electric Ind Co Ltd Thermoelectric device
JPH0997930A (en) * 1995-07-27 1997-04-08 Aisin Seiki Co Ltd Thermoelectric cooling module and manufacture thereof
WO2005117153A1 (en) * 2004-05-31 2005-12-08 Denso Corporation Thermoelectric converter and its manufacturing method
JP4800727B2 (en) * 2005-10-04 2011-10-26 白川 利久 Thermoelectric converter with semiconductor pin junction
RU2444814C1 (en) * 2011-03-29 2012-03-10 Юрий Феликсович Верниковский Thermoelectric cluster, method of its operation, device to connect active element in it with heat power line, generator (versions) and heat pump (versions) on its basis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS429210Y1 (en) * 1965-02-27 1967-05-18
JPS63163787A (en) * 1986-12-26 1988-07-07 Matsushita Refrig Co Heat exchanger
JPS63189792A (en) * 1987-01-30 1988-08-05 Matsushita Refrig Co Fin for heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT508277B1 (en) * 2009-06-09 2011-09-15 Avl List Gmbh THERMOELECTRIC MODULE WITH PAIR-TYPED P AND N-DOTED TILES

Also Published As

Publication number Publication date
JPH02103969A (en) 1990-04-17

Similar Documents

Publication Publication Date Title
CN102130076B (en) Thermoelectric computer chip radiator
US20070095379A1 (en) Thermoelectric generator
JP2003124531A (en) Thermoelectric module
JP2007173372A (en) Power converter
JP2563524B2 (en) Thermoelectric device
JPH06151979A (en) Thermoelectric device
JP2924369B2 (en) Heat pump device
KR101753322B1 (en) Thermoelectic moudule and Apparatus for cooling and heating a vehicle seat having the same
JPH0430586A (en) Thermoelectric device
JP4328803B2 (en) Electricity cogeneration using the Seebeck effect inside a fuel cell
JPS63262075A (en) Discharge gas heat thermoelectric conversion generator
JPH07106640A (en) Thermoelectric cooling unit
KR101260776B1 (en) Thermoelectric Power Generating Heat Exchanger
JPH0640478Y2 (en) Thermoelectric generator using Zebeck element
KR101177266B1 (en) Heat Exchanger using Thermoelectric Modules
JPH04101472A (en) Cooler
JPH02155281A (en) Thermoelectric device
JP3305777B2 (en) Light / heat combined panel
JPH08121898A (en) Thermoelectric converter
JPH02130878A (en) Thermoelectric device
JP2000009361A (en) Thermoelectric conversion system
JPH04280482A (en) Cooling device utilizing solar light
JPS63299383A (en) Thermoelectric converting module
JPH02198180A (en) Thermoelectric device
JPH09250836A (en) Thermoelectric converter