JPH04101472A - Cooler - Google Patents

Cooler

Info

Publication number
JPH04101472A
JPH04101472A JP2219294A JP21929490A JPH04101472A JP H04101472 A JPH04101472 A JP H04101472A JP 2219294 A JP2219294 A JP 2219294A JP 21929490 A JP21929490 A JP 21929490A JP H04101472 A JPH04101472 A JP H04101472A
Authority
JP
Japan
Prior art keywords
conductor
heat
thermoelectric
conductors
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2219294A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yamamoto
義明 山本
Hisaaki Gyoten
久朗 行天
Fumitoshi Nishiwaki
文俊 西脇
Yasushi Nakagiri
康司 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2219294A priority Critical patent/JPH04101472A/en
Publication of JPH04101472A publication Critical patent/JPH04101472A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To reduce weight, volume, and cost and improve performance by accumulating a plurality of sets of thermoelectric circuits, where P-type and N-type semiconductors are provided in opposition at the slant parts of a corrugated-filmshaped substrate and conductors are provided at the crests and the troughs, and making the uppermost layer the heat absorption side and the lowermost layer the heat radiation side. CONSTITUTION:Heat conductors 14, 15, 16, and 17 are installed between three corrugated thermoelectric circuits 11, 12, and 13 and at both ends. In the thermoelectric circuit 11, thermoelectric elements consisting of N-type semiconductors 19, at the first slants 18A on one side of a corrugated insulating film 18, first conductors 20A, at the crests, P-type semiconductors 21, at the next second slant parts 18B, and second conductors 20B, at the subsequent troughs are formed in order side by side. When a current is let to flow to the semiconductors 19, 21, and the conductors 20A and 20B along the insulating film substrate 18, the conductor 20A becomes a heat absorbing part and the other heat conductor in contact with it becomes a heat absorbing part. Moreover, the other heat conductor 15 in contact with the conductor 20B becomes a heat radiating part. Accordingly, the temperature difference about three times the temperature difference being gotten by each thermoelectric circuit can be gotten between the heat conductor 14 and the heat conductor 17.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はペルチェ効果を利用し電気的に低温を得る冷却
装置、特に極低温を得る冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a cooling device that electrically obtains a low temperature by utilizing the Peltier effect, and particularly relates to a cooling device that obtains an extremely low temperature.

従来の技術 従来 ペルチェ効果を利用して極低温を得る冷却装置(
よ 第3図に示す従来例のように 金属板1および金属
板2によって、N型半導体3およびP型半導体4を挟み
込んだ熱電回路を複数個積層した構成を有している。各
熱電回路+i  N型半導体3とP型半導体4を直列に
配列しており、電流を流すと、各熱電回路の上面が冷却
側1 下面が放熱側となり、上部に位置する熱電回路の
放熱を下部に位置する熱電回路が冷却する。したがって
、最下部に位置する金属板2を室温程度に保ち、端子5
と端子6間に電位を与えると、最上部の金属板1で極低
温が得られる。一般的に(よ 冷却側の熱量よりも放熱
側の熱量が大きいことから、処理する熱量は下方に位置
する熱電回路の方が大きくなるたム 下方の素子数を多
くしている。
Conventional technology Conventional cooling device that uses the Peltier effect to obtain extremely low temperatures (
As in the conventional example shown in FIG. 3, the thermoelectric circuit has a structure in which a plurality of thermoelectric circuits in which an N-type semiconductor 3 and a P-type semiconductor 4 are sandwiched between a metal plate 1 and a metal plate 2 are stacked. Each thermoelectric circuit +i N-type semiconductor 3 and P-type semiconductor 4 are arranged in series, and when a current is applied, the top surface of each thermoelectric circuit becomes the cooling side 1 and the bottom surface becomes the heat dissipation side, and the heat dissipation of the thermoelectric circuit located above becomes. A thermoelectric circuit located at the bottom provides cooling. Therefore, the metal plate 2 located at the bottom is kept at about room temperature, and the terminal 5
When a potential is applied between the terminal 6 and the terminal 6, an extremely low temperature is obtained at the uppermost metal plate 1. Generally speaking, since the amount of heat on the heat dissipation side is larger than the amount of heat on the cooling side, the amount of heat processed by the thermoelectric circuit located at the bottom is larger, so the number of elements on the bottom is increased.

発明が解決しようとする課題 しかしながら、このような従来の冷却装置でζ戴半導体
材料および金属板をバルクで使用する構成となっている
ため、 1、  Te、Bi等の希少材料を大量に必要とL 熱
電素子の重量および容積が大きくなり、材料コストがあ
がる。
Problems to be Solved by the Invention However, since such conventional cooling devices are configured to use zeta semiconductor materials and metal plates in bulk, 1. Large quantities of rare materials such as Te and Bi are required. L The weight and volume of the thermoelectric element increases, increasing material cost.

2、半導体と金属板との接合に(よ 接触部の電気抵抗
および熱抵抗の低減を図るためろう付は等が必要である
2. Brazing, etc. is necessary for joining semiconductors and metal plates (to reduce the electrical resistance and thermal resistance of the contact area).

3、半導体の断面積が太きいた嵌 加熱部がら冷却部へ
の熱流が大きく、効率が低下する。
3. Fitting with a large cross-sectional area of the semiconductor The heat flow from the heating section to the cooling section is large, reducing efficiency.

等の課題があった 本発明は 上記課題を解決するものてミ 熱電素子の材
料コスト、重量および容積を大幅に低減するとともに 
接触抵抗および半導体内の熱流を抑えることにより、冷
却性能を向上させる構造の冷却装置を提供することを目
的とするものである。
The present invention solves the above problems.It significantly reduces the material cost, weight and volume of thermoelectric elements, and
The object of the present invention is to provide a cooling device having a structure that improves cooling performance by suppressing contact resistance and heat flow within a semiconductor.

課題を解決するための手段 本発明は上記目的を達成するために 凹凸を繰り返すコ
ルゲート状の絶縁性フィルム基板上へ第1の傾斜部に形
成されたN型半導体と、凸部にそのN型半導体に電気的
に接続して形成された第1の導電体と、第2の傾斜部に
その第1の導電体に電気的に接続して形成されたP型半
導体と、凹部にそのP型半導体に電気的に接続して形成
された第2の導電体とからなる熱電素子を順次1組以上
並べた熱電回路を 熱伝導体を介して複数個積層し 最
上層の前記熱電回路の第1の導電体に接して吸熱用熱伝
導体を、最下層の前記熱電回路の第2の導電体に接して
放熱用熱伝導体をそれぞれ設けた構成よりなる。
Means for Solving the Problems In order to achieve the above object, the present invention has the following features: An N-type semiconductor formed on a first inclined part on a corrugated insulating film substrate having repeated irregularities, and an N-type semiconductor formed on a convex part. A first conductor formed in electrical connection with the first conductor, a P-type semiconductor formed in the second inclined part electrically connected to the first conductor, and a P-type semiconductor formed in the recessed part. A plurality of thermoelectric circuits in which one or more sets of thermoelectric elements each consisting of a second conductor electrically connected to a second conductor are sequentially arranged are stacked via a heat conductor, and the first thermoelectric circuit in the uppermost layer It has a configuration in which a heat-absorbing heat conductor is provided in contact with the conductor, and a heat-radiating heat conductor is provided in contact with the second conductor of the thermoelectric circuit at the bottom layer.

作用 本発明は上記構成により、膜状になった熱電素子は 薄
く構成することが可能で、コンパクトで軽くなり、材料
の使用量は バルクで使用する場合に比べ非常に少なく
なり、半導体の断面積が小さいことから、加熱部から冷
却部への熱伝導が減少し また半導体と導電体が真空装
置内においてほぼ同時に成膜されることから、半導体と
導電体との接触電気抵抗がほとんどなくなることにより
、熱電素子と熱伝導体との温度差が小さくなる。
Effect of the present invention With the above structure, the thermoelectric element in the form of a film can be constructed thinly, compactly and lightweight, the amount of material used is much smaller than when used in bulk, and the cross-sectional area of the semiconductor is reduced. Since the conductor is small, heat conduction from the heating section to the cooling section is reduced, and since the semiconductor and the conductor are formed almost simultaneously in the vacuum equipment, the electrical contact resistance between the semiconductor and the conductor is almost eliminated. , the temperature difference between the thermoelectric element and the thermal conductor becomes smaller.

実施例 以下に本発明による一実施例を図面により説明する。第
1図に示すように  三つのコルゲート状熱電回路11
、12、13の間および両端部に熱伝導体14、15、
16、17を設置している。
EXAMPLE An example according to the present invention will be described below with reference to the drawings. As shown in Figure 1, three corrugated thermoelectric circuits 11
, 12, 13 and at both ends, thermal conductors 14, 15,
16 and 17 are installed.

熱電回路11の詳細を第2図に示す。コルゲート状絶縁
性フィルム基板18の片面α 第1の傾斜部18Aには
N型半導体19、凸部に第1の導電体2(1,次の第2
の傾斜部18BにはP型半導体21、続く凹部に第2の
導電体20Bからなる熱電素子が順次並んで形成されて
いる。N型半導体19、導電体20A、20B、P型半
導体21(よ 各々の端部が接触する構造になっており
、接触部の電気抵抗および熱抵抗が大きくならない構造
となっている。導電体2OA、20Bの材料として(瓜
 電気抵抗の小さい銅またはアルミニウムが用いられる
Details of the thermoelectric circuit 11 are shown in FIG. One side α of the corrugated insulating film substrate 18. The first inclined portion 18A has an N-type semiconductor 19, and the convex portion has a first conductor 2 (1, the next second
A P-type semiconductor 21 is formed in the inclined portion 18B, and a thermoelectric element made of a second conductor 20B is formed in the concave portion. The N-type semiconductor 19, the conductors 20A and 20B, and the P-type semiconductor 21 (the ends of each of them are in contact with each other, and the structure is such that the electrical resistance and thermal resistance of the contact parts do not increase.The conductor 2OA , 20B is made of copper or aluminum, which has low electrical resistance.

絶縁性フィルム基板18(よ 凹凸を繰り返すコルゲー
ト状に加工されており、導電体2OAを形成したすべて
の凸部ζ戴 第1図に示すよう圏 一方の熱伝導体14
と熱的に接触し 導電体20Bを形成したすべての凹部
c!  他方の熱伝導体・15と接触している。絶縁性
フィルム基板18にそって半導体19、21および導電
体20A、20Bに電流を流す。これにより、半導体1
9、21と導電体20A、20Bのそれぞれの界面でペ
ルチェ効果により発熱もしくは吸熱を生じる。このとき
、N型半導体19とP型半導体21は交互に並んでいる
ことから、導電体21 20Bは交互に発熱部または吸
熱部となる。すなわち導電体2OAは吸熱部となり、そ
れに接している一方の熱伝導体14は吸熱となる。また
 導電体20Bに接している他方の熱伝導体15は発熱
となる。したがって、熱伝導体14の温度(友 熱伝導
体15よりも低い温度となる。熱伝導体15の下面には
 熱電回路12の吸熱部が位置することがら熱電回路1
1の発熱が熱伝導体15を介して熱電回路12の吸熱部
に吸収される。同様に 熱電回路12の発熱を熱伝導体
16を介して熱電回路13の吸熱部が吸収する。
The insulating film substrate 18 is processed into a corrugated shape with repeated unevenness, and has all the convex portions forming the conductor 2OA.As shown in Fig. 1, one thermal conductor 14
All the recesses c! that were in thermal contact with and formed the conductor 20B! It is in contact with the other heat conductor 15. A current is passed through the semiconductors 19 and 21 and the conductors 20A and 20B along the insulating film substrate 18. As a result, semiconductor 1
Heat generation or heat absorption occurs at the interfaces between the conductors 9 and 21 and the conductors 20A and 20B due to the Peltier effect. At this time, since the N-type semiconductors 19 and the P-type semiconductors 21 are arranged alternately, the conductors 21 and 20B alternately serve as heat generating portions or heat absorbing portions. That is, the conductor 2OA becomes a heat absorbing portion, and one of the thermal conductors 14 in contact with it becomes a heat absorbing portion. Further, the other thermal conductor 15 in contact with the conductor 20B generates heat. Therefore, the temperature of the heat conductor 14 is lower than that of the heat conductor 15.Since the heat absorption part of the thermoelectric circuit 12 is located on the lower surface of the heat conductor 15, the temperature of the thermoelectric circuit 14 is lower than that of the heat conductor 15.
1 is absorbed into the heat absorbing portion of the thermoelectric circuit 12 via the heat conductor 15. Similarly, heat generated by the thermoelectric circuit 12 is absorbed by the heat absorbing portion of the thermoelectric circuit 13 via the thermal conductor 16.

このような構造により、各熱電回路で得られる温度差の
約3倍の温度差を、熱伝導体14と熱伝導体17の間で
得られることになる。したがって放熱用熱伝導体17を
室温に保つと、吸熱用熱伝導体14は極低温となる。
With such a structure, a temperature difference approximately three times as large as that obtained in each thermoelectric circuit can be obtained between the thermal conductor 14 and the thermal conductor 17. Therefore, when the heat dissipation heat conductor 17 is kept at room temperature, the heat absorption heat conductor 14 becomes extremely low temperature.

熱電回路11から熱電回路13が処理する熱量(友 順
に大きくなることから、回路内の半導体および導電体の
数を順に大きくしている。また本発明の冷却装置で(よ
 絶縁性フィルム基板18の凹凸のピッチを自由に設定
できる構造であることから、必要な素子数が多くなる下
段のピッチを小さ(し 下段の熱伝導体17が大きくな
らないように設計することも容易である。
Since the amount of heat processed by the thermoelectric circuits 11 to 13 increases in order, the number of semiconductors and conductors in the circuit is increased in order. Since the structure allows the pitch of the unevenness to be freely set, it is easy to design the lower pitch where the number of elements required is small (and so that the lower thermal conductor 17 does not become large).

以上のように本発明において(よ 半導体および導電体
を薄く構成することが可能であり軽い装置とすることが
できる。また 半導体と導電体との温度差も小さくなり
安価で、高性能な冷却装置が提供される。
As described above, in the present invention, it is possible to make the semiconductor and the conductor thinner, resulting in a lighter device.In addition, the temperature difference between the semiconductor and the conductor is reduced, resulting in an inexpensive and high-performance cooling device. is provided.

発明の効果 以上の実施例から明らなように本発明によれば凹凸を繰
り返すコルゲート状の絶縁性フィルム基板上の、第1の
傾斜部に形成されたN型半導体と、凸部にそのN型半導
体に電気的に接続して形成された第1の導電体と、第2
の傾斜部にその第1の導電体に電気的に接続して形成さ
れただP型半導体と、凹部にそのP型半導体に電気的に
接続して形成された第2の導電体とからなる熱電素子を
順次1組以上並べた熱電回路を 熱伝導体を介して複数
個積層し 最上層の前記熱電回路の第1の導電体に接し
て吸熱用熱伝導体を、最下層の前記熱電回路の第2の導
電体に接して放熱用熱伝導体を設けた構成よりなるので
、  非常に軽量、コンパクトで経済性に富へ しかも
性能の高い冷却装置を実現できる。
Effects of the Invention As is clear from the above embodiments, according to the present invention, on a corrugated insulating film substrate having repeating irregularities, an N-type semiconductor formed on the first inclined portion and an N-type semiconductor formed on the convex portion are formed. a first conductor formed electrically connected to the type semiconductor;
A thermoelectric conductor consisting of a P-type semiconductor formed in the slope of the slanted portion electrically connected to the first conductor, and a second conductor formed in the recessed portion electrically connected to the P-type semiconductor. A plurality of thermoelectric circuits in which one or more sets of elements are sequentially arranged are stacked with a thermal conductor in between, and a heat-absorbing thermal conductor is placed in contact with the first conductor of the thermoelectric circuit in the uppermost layer, and Since it has a configuration in which a thermal conductor for heat radiation is provided in contact with the second conductor, it is possible to realize a cooling device that is extremely lightweight, compact, and highly economical, and has high performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の冷却装置の概略断面巨 第
2図は同冷却装置を構成する熱電回路の詳細巨 第3図
は従来の冷却装置の断面図である。 11、12.13・−熱電回IK  14,15,16
.17・・・熱伝導体18・・・絶縁性フィルム基板、
18A・・・第1の傾斜部18B・・・第2の傾斜に1
9・・・N型半導i  2OA・・・第1の導電体 2
0B・・・第2の導電体 21・・・P型半導俟
FIG. 1 is a schematic cross-sectional view of a cooling device according to an embodiment of the present invention. FIG. 2 is a detailed view of a thermoelectric circuit constituting the cooling device. FIG. 3 is a cross-sectional view of a conventional cooling device. 11, 12.13・-Thermoelectric circuit IK 14, 15, 16
.. 17... Thermal conductor 18... Insulating film substrate,
18A...First slope part 18B...1 on the second slope
9...N-type semiconductor i 2OA...first conductor 2
0B...Second conductor 21...P-type semiconductor

Claims (3)

【特許請求の範囲】[Claims] (1)凹凸を繰り返すコルゲート状の絶縁性フィルム基
板上の、第1の傾斜部に形成されたN型半導体と、凸部
に前記N型半導体に電気的に接続して形成された第1の
導電体と、第2の傾斜部に前記第1の導電体に電気的に
接続して形成されたP型半導体と、凹部に前記P型半導
体に電気的に接続して形成された第2の導電体とからな
る熱電素子を順次1組以上並べた熱電回路を熱伝導体を
介して複数個積層し、最上層の前記熱電回路の第1の導
電体に接して吸熱用熱伝導体を、最下層の前記熱電回路
の第2の導電体に接して放熱用熱伝導体をそれぞれ設け
た冷却装置。
(1) On a corrugated insulating film substrate with repeating unevenness, an N-type semiconductor formed on a first slope, and a first semiconductor formed on a convex portion electrically connected to the N-type semiconductor. a conductor, a P-type semiconductor formed in a second inclined part electrically connected to the first conductor, and a second semiconductor formed in the recessed part electrically connected to the P-type semiconductor. A plurality of thermoelectric circuits in which one or more sets of thermoelectric elements each consisting of a conductor are sequentially arranged are stacked via a thermal conductor, and a heat-absorbing thermal conductor is placed in contact with the first conductor of the thermoelectric circuit in the uppermost layer. A cooling device in which a heat conductor for heat dissipation is provided in contact with the second conductor of the thermoelectric circuit in the lowermost layer.
(2)各層の熱電回路を構成する熱電素子の数を熱電回
路の積層方向に順次減少または増加させた請求項1記載
の冷却装置。
(2) The cooling device according to claim 1, wherein the number of thermoelectric elements constituting the thermoelectric circuit in each layer is sequentially decreased or increased in the stacking direction of the thermoelectric circuit.
(3)各層の熱電回路における絶縁性フィルム基板の凹
凸のピッチを熱電回路の積層方向に順次減少または増加
させた請求項1記載の冷却装置。
(3) The cooling device according to claim 1, wherein the pitch of the unevenness of the insulating film substrate in the thermoelectric circuit of each layer is sequentially decreased or increased in the stacking direction of the thermoelectric circuit.
JP2219294A 1990-08-20 1990-08-20 Cooler Pending JPH04101472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2219294A JPH04101472A (en) 1990-08-20 1990-08-20 Cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2219294A JPH04101472A (en) 1990-08-20 1990-08-20 Cooler

Publications (1)

Publication Number Publication Date
JPH04101472A true JPH04101472A (en) 1992-04-02

Family

ID=16733245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2219294A Pending JPH04101472A (en) 1990-08-20 1990-08-20 Cooler

Country Status (1)

Country Link
JP (1) JPH04101472A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970021589A (en) * 1995-10-31 1997-05-28 유상부 Mechanical parking facility and method of vertical two-row elevator structure
JPH10190071A (en) * 1996-12-20 1998-07-21 Aisin Seiki Co Ltd Multistage electronic cooling device
JPH1158591A (en) * 1997-08-22 1999-03-02 Furukawa Electric Co Ltd:The Heat-conductive sheet
EP2592668A1 (en) * 2011-11-10 2013-05-15 Acome Société Cooperative et Participative Société Anonyme Cooperative de Production à Capital Variable Thermoelectric core, thermoelectric structure including said core, method for manufacturing same and uses thereof
WO2016046713A1 (en) * 2014-09-22 2016-03-31 Consorzio Delta Ti Research Silicon integrated, out-of-plane heat flux thermoelectric generator
WO2016051313A1 (en) * 2014-10-01 2016-04-07 Consorzio Delta Ti Research Silicon integrated bivalve thermoelectric generator of out-of-plane heat flux configuration
WO2016055892A1 (en) * 2014-10-09 2016-04-14 Consorzio Delta Ti Research 3d integrated thermoelectric generator operating in an out-of-plane heat flux configuration with internal voids and heat conduction paths conditioning vias
DE112014006636B4 (en) * 2014-05-01 2019-07-18 Mitsubishi Electric Corporation Thermoelectric converter and method of manufacturing a thermoelectric converter
JP2021090001A (en) * 2019-12-05 2021-06-10 国立大学法人大阪大学 Thermoelectric conversion device, manufacturing method of thermoelectric conversion device, and electric device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970021589A (en) * 1995-10-31 1997-05-28 유상부 Mechanical parking facility and method of vertical two-row elevator structure
JPH10190071A (en) * 1996-12-20 1998-07-21 Aisin Seiki Co Ltd Multistage electronic cooling device
JPH1158591A (en) * 1997-08-22 1999-03-02 Furukawa Electric Co Ltd:The Heat-conductive sheet
EP2592668A1 (en) * 2011-11-10 2013-05-15 Acome Société Cooperative et Participative Société Anonyme Cooperative de Production à Capital Variable Thermoelectric core, thermoelectric structure including said core, method for manufacturing same and uses thereof
FR2982709A1 (en) * 2011-11-10 2013-05-17 Acome Soc Cooperative Et Participative Sa Cooperative De Production A Capital Variable THERMOLELECTRIC AME, THERMOELECTRIC STRUCTURE COMPRISING THE SAID AME, ITS PRODUCTION METHOD AND USES THEREOF
US10497850B2 (en) 2014-05-01 2019-12-03 Mitsubishi Electric Corporation Thermoelectric converter and manufacturing method for manufacturing thermoelectric converter
DE112014006636B4 (en) * 2014-05-01 2019-07-18 Mitsubishi Electric Corporation Thermoelectric converter and method of manufacturing a thermoelectric converter
JP2017530563A (en) * 2014-09-22 2017-10-12 コンソルツィオ デルタ ティ リサーチ Silicon integrated out-of-plane heat flux thermoelectric generator
US10050190B2 (en) 2014-09-22 2018-08-14 Consorzio Delta Ti Research Silicon integrated, out-of-plane heat flux thermoelectric generator
WO2016046713A1 (en) * 2014-09-22 2016-03-31 Consorzio Delta Ti Research Silicon integrated, out-of-plane heat flux thermoelectric generator
JP2017537460A (en) * 2014-10-01 2017-12-14 コンソルツィオ デルタ ティ リサーチ Silicon integrated bi-valve thermoelectric generator with out-of-plane heat flux configuration
US10003002B2 (en) 2014-10-01 2018-06-19 Consorzio Delta Ti Research Silicon integrated bivalve thermoelectric generator of out-of-plane heat flux configuration
WO2016051313A1 (en) * 2014-10-01 2016-04-07 Consorzio Delta Ti Research Silicon integrated bivalve thermoelectric generator of out-of-plane heat flux configuration
WO2016055892A1 (en) * 2014-10-09 2016-04-14 Consorzio Delta Ti Research 3d integrated thermoelectric generator operating in an out-of-plane heat flux configuration with internal voids and heat conduction paths conditioning vias
JP2017531922A (en) * 2014-10-09 2017-10-26 コンソルツィオ デルタ ティ リサーチ 3D integrated thermoelectric generator operating in an out-of-plane heat flux configuration with internal voids and heat conduction path adjusting vias
JP2021090001A (en) * 2019-12-05 2021-06-10 国立大学法人大阪大学 Thermoelectric conversion device, manufacturing method of thermoelectric conversion device, and electric device

Similar Documents

Publication Publication Date Title
US8997502B2 (en) Thermoelectric assembly for improved airflow
JP6529777B2 (en) Heat converter
CN111433924B (en) Heat conversion equipment
KR102434261B1 (en) Heat conversion device
KR20150130169A (en) Device using thermoelectric moudule
KR20210069432A (en) Power generating apparatus
US4049469A (en) Film thermoelement
JPH04101472A (en) Cooler
JPH0430586A (en) Thermoelectric device
KR20150123055A (en) Device using thermoelectric moudule
KR102316222B1 (en) Heat conversion device
KR20160130733A (en) Device using thermoelectric moudule
JPH02103969A (en) Thermoelectric apparatus
JP3467891B2 (en) Multi-stage electronic cooler
KR102368960B1 (en) Thermoelectric element and thermoelectric conversion device comprising the same
KR102249020B1 (en) Heat conversion device
KR102476995B1 (en) Heat conversion device
JPH02155281A (en) Thermoelectric device
KR102580765B1 (en) Heat conversion device
JPH02130878A (en) Thermoelectric device
JPH02198180A (en) Thermoelectric device
KR20170107273A (en) Thermoelectric module
JPH01164079A (en) Thermoelectric device
JPH0555639A (en) Thermoelectric device
KR20220038956A (en) Thermoelectric module