JPH0430586A - Thermoelectric device - Google Patents

Thermoelectric device

Info

Publication number
JPH0430586A
JPH0430586A JP2137833A JP13783390A JPH0430586A JP H0430586 A JPH0430586 A JP H0430586A JP 2137833 A JP2137833 A JP 2137833A JP 13783390 A JP13783390 A JP 13783390A JP H0430586 A JPH0430586 A JP H0430586A
Authority
JP
Japan
Prior art keywords
heat
conductor
semiconductors
contact
thermoelectric device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2137833A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yamamoto
義明 山本
Fumitoshi Nishiwaki
文俊 西脇
Yasushi Nakagiri
康司 中桐
Hisaaki Gyoten
久朗 行天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2137833A priority Critical patent/JPH0430586A/en
Publication of JPH0430586A publication Critical patent/JPH0430586A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve thermoelectric performance by forming a film substrate having conductors disposed in protrusion and recess in a corrugated state, and mounting heat exchanging means in contact with the protrusion and the recess. CONSTITUTION:An insulating film substrate 14 is formed in a corrugated state in which ever other conductors 16 are repetitively in protrusions and recesses in such a manner that all the protrusions are brought into thermal contact with one pressure vessel 12 and all the recesses are brought into contact with other pressure vessels 12. A current flows to the semiconductors 15, 17 and a conductor 16 along the substrate 14. A boundary between the semiconductors 15, 17 and the conductor 16 generates heat or absorbs heat by means of Peltier effect. In this case, since the semiconductors 15, 17 are alternately aligned, the conductor 16 alternately generates or absorbs heat, and one vessel 12 in contact with every other semiconductors 16 absorbs heat, and the other vessel 12 generates heat. Accordingly, heat is absorbed from fluid above the board 14, and heat is dissipated to fluid flowing thereunder.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はペルチェ効果を利用し 電気的に冷房もしくは
暖房を行う空調装置 もしくはゼーベック効果により温
度差を用いて発電を行う発電装置に有用な熱電装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thermoelectric device useful for an air conditioner that electrically cools or heats air using the Peltier effect or a power generator that generates electricity using a temperature difference due to the Seebeck effect. .

従来の技術 従来 熱を電気に変換味 もしくは電気を熱に変換する
熱電素子は 第4図に示す従来例の様に金属板1および
金属板2によって、N型半導体3およびP型半導体4を
挟み込む構成を有LN型半導体3とP型半導体4を交互
に直列的に配列している。したがって、金属板1および
2に温度差を与えるとゼーベック効果により端子5と端
子6との間に電位差が生し 発電効果を生む また端子
5と端子6間に電位を与えるとペルチェ効果により、金
属板の一方が冷却され 他方が加熱される。
Conventional Technology Conventional A thermoelectric element that converts heat into electricity or electricity into heat has an N-type semiconductor 3 and a P-type semiconductor 4 sandwiched between a metal plate 1 and a metal plate 2, as shown in the conventional example shown in FIG. The structure is such that LN type semiconductors 3 and P type semiconductors 4 are alternately arranged in series. Therefore, when a temperature difference is applied between metal plates 1 and 2, a potential difference is generated between terminals 5 and 6 due to the Seebeck effect, producing a power generation effect.Also, when a potential is applied between terminals 5 and 6, a potential difference is generated between terminals 5 and 6 due to the Peltier effect. One side of the plate is cooled and the other side is heated.

発明が解決しようとする課題 しかしなが収 このような従来の熱電装置では半導体材
料および金属板をバルクで使用する構成となっているた
6  (1)Te、Bi等の希少材料を大量に必要とし
 熱電素子の重量および容積が大きくなり、材料コスト
があが4(2)半導体と金属板との接合には 接触部の
電気抵抗および熱抵抗の低減を図るためろう付は等が必
要であ工(3)半導体の断面積が大きいたへ 加熱部か
ら冷却部への熱流が大きく、効率が低下する等の問題が
あった本発明(上 上記問題点にもとづき熱電素子の材
料コスト、重量および容積を大幅に低減するととも番ミ
  接触抵抗および半導体内の熱流を抑えることにより
、熱電性能を向上させる構造の熱電装置を提供するもの
である。
Problems to be Solved by the Invention However, such conventional thermoelectric devices have a structure that uses semiconductor materials and metal plates in bulk.6 (1) Large amounts of rare materials such as Te and Bi are required. As a result, the weight and volume of the thermoelectric element increases, and the material cost increases (2) Brazing, etc. is required to reduce the electrical resistance and thermal resistance of the contact part when joining the semiconductor and metal plate. (3) Semiconductor has a large cross-sectional area This invention had problems such as a large heat flow from the heating section to the cooling section, resulting in reduced efficiency (above) Based on the above problems, the material cost, weight, and The present invention provides a thermoelectric device having a structure that significantly reduces volume and improves thermoelectric performance by suppressing contact resistance and heat flow within the semiconductor.

課題を解決するための手段 本発明の熱電装置は 絶縁性フィルム基板上の面方向に
 N型半導体 導電体1、P型半導体導電体2の順に 
各半導体・導電体の端部が電気的に導通するように熱電
回路を形成し 導電体lを凸部に導電体2を凹部に位置
するようにフィルム基板をコルゲート状に構成し 前記
凸部および凹部と接触する熱交換手段を双方に設置する
ことにより、上記のような問題点を解決するものであム 作用 膜状になった熱電素子は 薄く構成することが可能であ
りコンパクトで軽い装置とすることができも また 材
料の使用量(よ バルクで使用する場合に比べ非常に少
なくできも また 半導体の断面積が小さいことか収 
加熱部から冷却部への熱伝導を減少できべ 半導体と導
電体が真空塔においてほぼ同時に成膜されることか収 
半導体と導電体との接触電気抵抗がほとんどない等によ
り、熱電素子と空気との温度差を小さくでき、性能向上
が図ることができる。
Means for Solving the Problems The thermoelectric device of the present invention includes an N-type semiconductor conductor 1 and a P-type semiconductor conductor 2 in the plane direction on an insulating film substrate.
A thermoelectric circuit is formed so that the ends of each semiconductor/conductor are electrically connected, and the film substrate is configured in a corrugated shape so that the conductor 1 is located in a convex part and the conductor 2 is located in a concave part, By installing heat exchange means in contact with the recess on both sides, the above-mentioned problems can be solved.The thermoelectric element in the form of a dam-action film can be constructed thinly, making it a compact and lightweight device. Moreover, the amount of material used can be significantly reduced (compared to when used in bulk), and the small cross-sectional area of semiconductors also makes it possible to
It is possible to reduce heat conduction from the heating section to the cooling section.
Since there is almost no electrical contact resistance between the semiconductor and the conductor, the temperature difference between the thermoelectric element and the air can be reduced, and performance can be improved.

実施例 以下に本発明による実施例について図面とともに説明す
も 〈実施例1〉 第1図は本発明の一実施例の熱電装置の構成を示すもの
であも 熱電回路を形成したコルゲート状の熱電素子1
1の両側に圧力容器12を設置し圧力容器12には流路
13が形成する。冷却装置として使う場合に?友 熱電
素子11に電流を流して、流路13を流れる2つの流体
の一方から熱を吸い上1デ、他方の流体へ熱を捨てるヒ
ートポンプサイクルを形成する。また 発電装置として
使う場合には 流路13を流れる温度の違う2つの流体
から起電力を得る。熱電素子11の詳細を第2図に示す
。絶縁性フィルム基板14の片面にはN型半導体15、
導電体16、P型半導体17、導電体16が順に成膜さ
れていも N型半導体I2、導電体13、P型半導体1
411  各々の端部が接触する構造になっており、接
触部の電気抵抗および熱抵抗が大きくならない構造とな
っている。導電体13の材料として(戴 電気抵抗の小
さい銅またはアルミが用いられも 絶縁性フィルム基板
14(瓜 導電体16の1つおきに凹凸を繰り返すコル
ゲート状に加工されており、すべての凸部ζよ一方の圧
力容器12と熱的に接触し すべての凹部(&  他方
の圧力容器12と接触していも冷却装置として使用する
場合にCよ 絶縁性フィルム基板14にそって半導体1
5、17および導電体16に電流を流す。これにより、
半導体15.17と導電体16の界面でペルチェ効果に
より発熱もしくは吸熱を生じも このとき、N型半導体
15とP型半導体17は交互に並んでいることか収 導
電体16は交互に発熱部または吸熱部となり、前述のご
とく導電体16の1つおきに接する一方の圧力容器12
は 吸熱(または発熱)となa また 他方の圧力容器
121友 発熱(または吸熱)となる。したがって、絶
縁性フィルム基板14の上部の流体から熱を吸収(もし
くは流体への熱の発散)、下部を流れる流体への熱の発
散(もしくは流体からの熱の吸収)となる。
EXAMPLES Below, examples according to the present invention will be described with reference to the drawings. <Example 1> Fig. 1 shows the configuration of a thermoelectric device according to an example of the present invention. Element 1
A pressure vessel 12 is installed on both sides of the pressure vessel 1, and a flow path 13 is formed in the pressure vessel 12. When using it as a cooling device? A heat pump cycle is formed in which a current is passed through the thermoelectric element 11 to absorb heat from one of the two fluids flowing through the flow path 13 and discard the heat to the other fluid. When used as a power generation device, electromotive force is obtained from two fluids with different temperatures flowing through the flow path 13. Details of the thermoelectric element 11 are shown in FIG. On one side of the insulating film substrate 14, an N-type semiconductor 15,
Even if the conductor 16, the P-type semiconductor 17, and the conductor 16 are formed in this order, the N-type semiconductor I2, the conductor 13, and the P-type semiconductor 1
411 Each end is in contact with each other, and the structure is such that the electrical resistance and thermal resistance of the contact portions do not increase. Although copper or aluminum, which has low electrical resistance, is used as the material for the conductor 13, the insulating film substrate 14 is processed into a corrugated shape with repeated irregularities on every other conductor 16, and all convex parts ζ In thermal contact with the other pressure vessel 12, the semiconductor 1
5, 17 and the conductor 16. This results in
At the interface between the semiconductors 15 and 17 and the conductor 16, heat generation or absorption may occur due to the Peltier effect. One pressure vessel 12 serves as a heat absorption part and contacts every other conductor 16 as described above.
is endothermic (or exothermic), and the other pressure vessel 121 is exothermic (or endothermic). Therefore, heat is absorbed from the fluid above the insulating film substrate 14 (or heat is radiated to the fluid), and heat is radiated to the fluid flowing below (or heat is absorbed from the fluid).

発電装置として使用する場合に(上 おのおのの圧力容
器12を流れる2つの流体に温度差をつける。これによ
り、導電体16は交互に高温と低温となり、ゼーベック
効果により起電力を生ずることができも 〈実施例2〉 第2図は本発明の他の実施例であり、熱電装置の構成を
示すものであム 熱電素子11の構成は 第2図に示した構成と同様であ
るので、説明を省略すも 熱電素子11の上部にはコル
ゲートフィン18が、下部には輻射伝熱面19が設置さ
れていも 実施例1で説明したと同様番ミ  コルゲー
トフィン18は凸部に位置する導電体16と熱的に接し
 輻射伝熱面19は凹部に位置する導電体16と熱的に
接触すも冷却装置として使用する場合に(よ 熱電素子
11に電流を流すことにより、コルゲートフィン18は
吸熱(または発熱)となり、他方の輻射伝熱面19は発
熱(または吸熱)となる。したがって、輻射冷房や輻射
暖房が可能となる。
When used as a power generation device (above), a temperature difference is created between the two fluids flowing through each pressure vessel 12. As a result, the conductor 16 becomes alternately high and low temperature, and an electromotive force can be generated due to the Seebeck effect. <Embodiment 2> FIG. 2 shows another embodiment of the present invention, and shows the configuration of a thermoelectric device.The configuration of the thermoelectric element 11 is the same as that shown in FIG. Although the corrugated fins 18 are installed on the upper part of the thermoelectric element 11 and the radiant heat transfer surface 19 is installed on the lower part, the corrugated fins 18 have the same number as explained in Example 1. The radiant heat transfer surface 19 is in thermal contact with the conductor 16 located in the concave portion, and when used as a cooling device, the corrugated fin 18 absorbs heat (by passing a current through the thermoelectric element 11, The other radiant heat transfer surface 19 generates heat (or absorbs heat). Therefore, radiant cooling and heating are possible.

発電装置として使用する場合にζ瓜 太陽熱等により輻
射伝熱面19を暖へ コルゲートフィン18に冷却用の
空気を流すことにより、導電体16は交互に高温と低温
となり、ゼーベック効果により起電力を生ずることがで
きも 本発明では 熱電素子11の両側に設置する熱交換手段
を自由に選ぶことができ、輻射も含め熱交換流体の特性
に適した構成が可能となも したがって、液体と輻射の
組合せへ 気体と液体の組合せ等にも適応可能であム 以上のように本発明において1よ 熱電素子を薄く構成
することが可能でありコンパクトで軽い装置とすること
ができも また 熱電素子部分、流路部を独立して作製
した後に一体化できることか収 作製上も容易で安価な
熱電装置が提供されも発明の効果 以上のように本発明による熱電装置は コンパクトで軽
い装置とすることができる。また 材料の使用量Ct 
 バルクで使用する場合に比べ非常に少なくできゑ ま
た 半導体の断面積が小さいことか収 加熱部から冷却
部への熱伝導を減少できべ 半導体と導電体が真空塔に
おいてほぼ同時に成膜されろこ七か叡 半導体と導電体
との接触電気抵抗がほとんどなt\ さら艮 フィン部
および流路部の構造は 半導体の構造による制約を受は
哄 流体側の伝熱条件に応じて自由に設計することがで
き、また 半導体部とは別に作製した上で一体化ができ
ることから構成上からも安価にでき
When used as a power generation device, the radiant heat transfer surface 19 is heated by solar heat, etc. By flowing cooling air through the corrugated fins 18, the conductor 16 becomes high and low temperature alternately, and the Seebeck effect increases the electromotive force. However, in the present invention, the heat exchange means installed on both sides of the thermoelectric element 11 can be freely selected, and a configuration suitable for the characteristics of the heat exchange fluid, including radiation, can be made. As described above, in the present invention, it is possible to construct a thermoelectric element thinner than 1, and it is possible to make a compact and light device. The fact that the flow path portions can be fabricated independently and then integrated together provides a thermoelectric device that is easy to fabricate and is inexpensive.As can be seen from the effects of the invention, the thermoelectric device according to the present invention can be made into a compact and lightweight device. . Also, the amount of material used Ct
This is much less than when used in bulk. Also, due to the small cross-sectional area of the semiconductor, it is possible to reduce heat conduction from the heating section to the cooling section. Shichikaei The contact electrical resistance between the semiconductor and the conductor is almost negligible.The structure of the fin and flow path is subject to restrictions due to the structure of the semiconductor, but can be freely designed according to the heat transfer conditions on the fluid side. In addition, since it can be fabricated separately from the semiconductor part and then integrated, it can be made at low cost in terms of structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の熱電装置の断面医第2図は
熱電装置を構成する熱電素子の断面医第3図は本発明の
他の実施例の熱電装置の断面医第4図は従来例の熱電装
置の構成を示す斜視図であム 3、4.15.1?、 、 、半導体 14.、、絶縁
性フィルム基板18、、、導電体 12. 、 、流1
1@、、  18.、、コルゲートフィン。 代理人の氏名 弁理士 粟野重孝 ほか1多環 図
FIG. 1 is a cross-sectional view of a thermoelectric device according to one embodiment of the present invention. FIG. 2 is a cross-sectional view of a thermoelectric element constituting the thermoelectric device. FIG. 3 is a cross-sectional view of a thermoelectric device according to another embodiment of the present invention. 4.15.1 is a perspective view showing the configuration of a conventional thermoelectric device. , , , Semiconductor 14. ,, Insulating film substrate 18, , Conductor 12. , , style 1
1@,, 18. ,, corrugated fin. Name of agent: Patent attorney Shigetaka Awano and 1 other polycyclic diagrams

Claims (5)

【特許請求の範囲】[Claims] (1)絶縁性フィルム基板上の面方向に、N型半導体、
第1の導電体、P型半導体、第2の導電体の順に、各半
導体・導電体の端部が電気的に導通するように熱電回路
を形成し、導電体1を凸部に導電体2を凹部に位置する
ようにフィルム基板をコルゲート状に構成し、前記凸部
および凹部と接触する熱交換手段を双方に設置した熱電
装置。
(1) N-type semiconductor,
A thermoelectric circuit is formed in the order of the first conductor, the P-type semiconductor, and the second conductor so that the ends of each semiconductor/conductor are electrically connected, and the conductor 1 is connected to the convex part of the conductor 2. 1. A thermoelectric device, wherein a film substrate is configured in a corrugated shape so that a film substrate is located in a concave portion, and heat exchange means that contacts the convex portion and the concave portion are installed on both sides.
(2)熱交換手段の一方または双方が、流体が通過可能
な圧力容器とする請求項1記載の熱電装置。
(2) The thermoelectric device according to claim 1, wherein one or both of the heat exchange means is a pressure vessel through which a fluid can pass.
(3)熱交換手段の一方または双方が、コルゲート状の
フィンである請求項1記載の熱電装置。
(3) The thermoelectric device according to claim 1, wherein one or both of the heat exchange means are corrugated fins.
(4)熱交換手段の一方または双方が、輻射面である請
求項1記載の熱電装置。
(4) The thermoelectric device according to claim 1, wherein one or both of the heat exchange means is a radiant surface.
(5)コルゲート状のフィンに、スリットまたはルーバ
ーを設けた請求項3記載の熱電装置。
(5) The thermoelectric device according to claim 3, wherein the corrugated fins are provided with slits or louvers.
JP2137833A 1990-05-28 1990-05-28 Thermoelectric device Pending JPH0430586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2137833A JPH0430586A (en) 1990-05-28 1990-05-28 Thermoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2137833A JPH0430586A (en) 1990-05-28 1990-05-28 Thermoelectric device

Publications (1)

Publication Number Publication Date
JPH0430586A true JPH0430586A (en) 1992-02-03

Family

ID=15207900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2137833A Pending JPH0430586A (en) 1990-05-28 1990-05-28 Thermoelectric device

Country Status (1)

Country Link
JP (1) JPH0430586A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209718A (en) * 2004-01-20 2005-08-04 Ritsumeikan Thermoelectric conversion device
WO2005117154A1 (en) * 2004-05-31 2005-12-08 Kazukiyo Yamada High-density integrated type thin-layer thermoelectric module and hybrid power generating system
JP2006108480A (en) * 2004-10-07 2006-04-20 Japan Aerospace Exploration Agency Self-power-generation type panel
JP2006114793A (en) * 2004-10-18 2006-04-27 Toyota Central Res & Dev Lab Inc Thermoelement
JP2009289860A (en) * 2008-05-28 2009-12-10 Murata Mfg Co Ltd Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2012057808A (en) * 2010-09-03 2012-03-22 Institute Of National Colleges Of Technology Japan Floor air-conditioning system
JP2014514904A (en) * 2011-03-29 2014-06-19 ユーリ・フェリコヴィッチ・ヴェルニコフスキー Thermoelectric cluster, method for operating it, thermoelectric drive based thereon, generator (deformation) and device for connecting active elements in said cluster to heat pump (deformation)
WO2016114220A1 (en) * 2015-01-13 2016-07-21 株式会社日立製作所 Thermoelectric conversion module and mounting method therefor
WO2017038324A1 (en) * 2015-08-31 2017-03-09 富士フイルム株式会社 Thermoelectric conversion module
JPWO2017038525A1 (en) * 2015-08-31 2018-08-02 富士フイルム株式会社 Thermoelectric conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224202B2 (en) * 1982-11-02 1987-05-27 Honda Motor Co Ltd
JPS62145783A (en) * 1985-12-20 1987-06-29 Hitachi Ltd Thin film thermoelectric module
JPH02103969A (en) * 1988-10-13 1990-04-17 Matsushita Electric Ind Co Ltd Thermoelectric apparatus
JPH02130878A (en) * 1988-11-10 1990-05-18 Matsushita Electric Ind Co Ltd Thermoelectric device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224202B2 (en) * 1982-11-02 1987-05-27 Honda Motor Co Ltd
JPS62145783A (en) * 1985-12-20 1987-06-29 Hitachi Ltd Thin film thermoelectric module
JPH02103969A (en) * 1988-10-13 1990-04-17 Matsushita Electric Ind Co Ltd Thermoelectric apparatus
JPH02130878A (en) * 1988-11-10 1990-05-18 Matsushita Electric Ind Co Ltd Thermoelectric device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520163B2 (en) * 2004-01-20 2010-08-04 学校法人立命館 Thermoelectric conversion device
JP2005209718A (en) * 2004-01-20 2005-08-04 Ritsumeikan Thermoelectric conversion device
WO2005117154A1 (en) * 2004-05-31 2005-12-08 Kazukiyo Yamada High-density integrated type thin-layer thermoelectric module and hybrid power generating system
JP2006108480A (en) * 2004-10-07 2006-04-20 Japan Aerospace Exploration Agency Self-power-generation type panel
JP4715157B2 (en) * 2004-10-18 2011-07-06 株式会社豊田中央研究所 Thermoelectric element
JP2006114793A (en) * 2004-10-18 2006-04-27 Toyota Central Res & Dev Lab Inc Thermoelement
JP2009289860A (en) * 2008-05-28 2009-12-10 Murata Mfg Co Ltd Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2012057808A (en) * 2010-09-03 2012-03-22 Institute Of National Colleges Of Technology Japan Floor air-conditioning system
JP2014514904A (en) * 2011-03-29 2014-06-19 ユーリ・フェリコヴィッチ・ヴェルニコフスキー Thermoelectric cluster, method for operating it, thermoelectric drive based thereon, generator (deformation) and device for connecting active elements in said cluster to heat pump (deformation)
WO2016114220A1 (en) * 2015-01-13 2016-07-21 株式会社日立製作所 Thermoelectric conversion module and mounting method therefor
WO2017038324A1 (en) * 2015-08-31 2017-03-09 富士フイルム株式会社 Thermoelectric conversion module
JPWO2017038324A1 (en) * 2015-08-31 2018-06-07 富士フイルム株式会社 Thermoelectric conversion module
JPWO2017038525A1 (en) * 2015-08-31 2018-08-02 富士フイルム株式会社 Thermoelectric conversion device

Similar Documents

Publication Publication Date Title
JP4781606B2 (en) Thermoelectric module, method of thermally changing material in thermoelectric module, and method of manufacturing thermoelectric module
JP3166228B2 (en) Thermoelectric converter
JP2006294935A (en) High efficiency and low loss thermoelectric module
JPWO2004001865A1 (en) Thermoelectric element and electronic component module and portable electronic device using the same
JP4131029B2 (en) Thermoelectric conversion module
JPH0430586A (en) Thermoelectric device
JPH06151979A (en) Thermoelectric device
KR101753322B1 (en) Thermoelectic moudule and Apparatus for cooling and heating a vehicle seat having the same
JPH0539966A (en) Heat pump device
JP3920403B2 (en) Thermoelectric converter
JP2563524B2 (en) Thermoelectric device
KR101177266B1 (en) Heat Exchanger using Thermoelectric Modules
JPH1054624A (en) Thermoelectric cooling device
JPH04101472A (en) Cooler
JPH02130878A (en) Thermoelectric device
JPH02155281A (en) Thermoelectric device
JP2011082272A (en) Thermoelectric cooling device
KR101451160B1 (en) Water cooling type and air cooling type thermoelement system
JPH04259265A (en) Thermoelectric device
JPH0430585A (en) Thermoelectric device
JPH02198180A (en) Thermoelectric device
KR101619626B1 (en) Water cooling type and Air cooling type Thermoelectric devices
JPH08236819A (en) Thermal electronic element
JPH03137462A (en) Thermo-electrical device
JPH0555639A (en) Thermoelectric device