WO2011036854A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2011036854A1
WO2011036854A1 PCT/JP2010/005610 JP2010005610W WO2011036854A1 WO 2011036854 A1 WO2011036854 A1 WO 2011036854A1 JP 2010005610 W JP2010005610 W JP 2010005610W WO 2011036854 A1 WO2011036854 A1 WO 2011036854A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating substrate
heat
thermoelectric element
type thermoelectric
electrode
Prior art date
Application number
PCT/JP2010/005610
Other languages
French (fr)
Japanese (ja)
Inventor
寺木潤一
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2011036854A1 publication Critical patent/WO2011036854A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a heat exchanger.
  • thermoelectric element type heat exchanger in which heat is exchanged between fluids using a thermoelectric element
  • PTL 1 discloses a Peltier heat pump that is a thermoelectric element type heat exchanger.
  • Non-Patent Document 1 discloses a heat exchanger in which Peltier elements are arranged so as to sandwich both sides of a microchannel. In this heat exchanger, when the thermoelectric element is energized, for example, the microchannel side becomes the heat dissipation side and the fin group side becomes the heat absorption side. And the liquid which flows through a microchannel is heated, and the air which distribute
  • FIG. 10A is a longitudinal sectional view showing a configuration of a conventional thermoelectric element.
  • the thermoelectric element (50) includes an electrode (51) between a first insulating substrate (A) and a second insulating substrate (B) made of ceramic or the like.
  • the p-type and n-type thermoelectric materials (5, 6) are sandwiched.
  • a current is passed through the thermoelectric element (50)
  • a temperature difference is generated between the first and second insulating substrates (A, B).
  • thermoelectric element (50) when the first insulating substrate (A) is on the heat dissipation side and the second insulating substrate (B) is on the heat absorbing side, as shown in FIG.
  • the second insulating substrate (B) deforms so as to contract. Therefore, thermal stress is generated at the end faces of the p-type thermoelectric material (5) and the n-type thermoelectric material (6), and the joint between the electrode (51) and the p-type and n-type thermoelectric material (5, 6) is destroyed. There is a risk that.
  • the thermal stress increases at the end in the longitudinal direction as the size of the thermoelectric element (50) increases, it becomes difficult to manufacture the thermoelectric element (50) extending in a strip shape.
  • the first and second insulating substrates (A, B) may be changed to a flexible material such as polyimide, or the first and second insulating substrates (A, B).
  • a flexible material such as polyimide
  • the thermoelectric element (50) is manufactured, the solder is melted in the furnace in order to join the electrode (51) and the p-type and n-type thermoelectric materials (5, 6) with the solder.
  • the solder is melted in the furnace in order to join the electrode (51) and the p-type and n-type thermoelectric materials (5, 6) with the solder.
  • a large-sized thermoelectric element (50) cannot be produced because the size in the furnace is limited.
  • the present invention has been made in view of such a point, and an object thereof is to make it possible to easily produce a thermoelectric element having a size necessary for ensuring heat exchange performance.
  • the present invention configures a heat exchanger using a thermoelectric element in which a strip electrode array extending in an in-plane direction of an insulating substrate is formed.
  • the present invention provides a thermoelectric element (22) and a first fluid that is disposed so as to sandwich the thermoelectric element (22) and performs heat exchange between the thermoelectric element (22) and a target fluid.
  • a thermoelectric element (22) and a first fluid that is disposed so as to sandwich the thermoelectric element (22) and performs heat exchange between the thermoelectric element (22) and a target fluid.
  • thermoelectric element (22) A first insulating substrate (A) and a second insulating substrate (B) that are stacked on each other and extend in a strip shape along the longitudinal direction of the first fluid channel member (21) and the second fluid channel member (25).
  • a plurality of first electrodes formed on the surface of the first insulating substrate (A) on the second insulating substrate (B) side and spaced apart from each other in the longitudinal direction of the first insulating substrate (A).
  • the first insulating substrate (A) is formed on both surfaces of the first insulating substrate (A) so as to be adjacent to the first electrodes (2) and spaced apart from the first electrode (2).
  • a plurality of second electrodes (3) whose both surfaces are connected by through holes (7) extending in the thickness direction of Through-holes formed on both surfaces of the second insulating substrate (B) at intervals in the longitudinal direction of the second insulating substrate (B) and extending in the thickness direction of the second insulating substrate (B)
  • a plurality of third electrodes (8) having both surfaces connected by holes (7) and having a surface on the first insulating substrate (A) side connected to the first electrode (2);
  • the first electrode (2) and the second electrode (3) adjacent to the first electrode (2) The first conductive thermoelectric material (5) and the second conductive thermoelectric material (6) formed in a thin film so as to be in contact with each other are provided.
  • the first electrode (2) and the first conductive type At the interface between the thermoelectric material (5) and the second conductivity type thermoelectric material (6) and at the interface between the second electrode (3) and the first conductivity type thermoelectric material (5) and the second conductivity type thermoelectric material (6)
  • the Peltier effect generates heat and heat. That is, a temperature difference corresponding to both ends of the first conductivity type thermoelectric material (5) and the second conductivity type thermoelectric material (6).
  • the first electrode (2) becomes a heat absorption side electrode
  • the second electrode (3) becomes a heat dissipation side electrode.
  • the surface on the second insulating substrate (B) side of the second electrode (3) and the opposite surface are connected by the through hole (7). Heat is radiated from the surface side of the first insulating substrate (A).
  • the third electrode (8) formed on the surface of the second insulating substrate (B) on the first insulating substrate (A) side is connected to the first electrode (2), the third electrode (8) is the endothermic electrode.
  • the surface on the first insulating substrate (A) side of the third electrode (8) and the surface opposite thereto are connected by the through hole (7). Heat is absorbed from the surface side of the second insulating substrate (B).
  • thermoelectric element (22) of a type that radiates heat from one surface of the first insulating substrate (A) and absorbs heat from one surface of the second insulating substrate (B) is realized.
  • thermoelectric element (22) of a type that radiates heat from one surface of the first insulating substrate (A) and absorbs heat from one surface of the second insulating substrate (B) is realized.
  • thermoelectric material (5) and a second conductive thermoelectric material (6) in a thin film only between the first insulating substrate (A) and the second insulating substrate (B), The thermal stress acting on the conductive thermoelectric material (5) and the second conductive thermoelectric material (6) is small, and even if the size of the thermoelectric element (22) is increased, the increase in thermal stress is suppressed.
  • the distance from the low temperature side to the high temperature side is The temperature difference increases.
  • the first conductive thermoelectric material (5) and the second conductive thermoelectric material (6) are provided between the first insulating substrate (A) and the second insulating substrate (B), Compared with the case where the first conductive thermoelectric material (5) and the second conductive thermoelectric material (6) are provided on the surface, the first conductive thermoelectric material (5) and the second conductive thermoelectric material even when bending force is applied. The tensile stress or compressive stress acting on (6) is reduced, making it difficult to break.
  • thermoelectric element (22) can be produced and the manufacturing cost can be greatly reduced.
  • One of the first and second fluid flow paths (21, 25) is composed of a refrigerant pipe (21) through which a refrigerant as a target fluid flows, and the other is a group of fins that exchange heat with air as a target fluid ( 25).
  • one of the first and second fluid flow paths (21, 25) is constituted by a refrigerant pipe (21) through which a refrigerant as a target fluid flows.
  • the other is composed of a fin group (25) that exchanges heat with air as the target fluid.
  • thermoelectric element (22) is provided in a pair so as to sandwich the refrigerant pipe (21),
  • the fin group (25) is provided on the surface of each thermoelectric element (22) opposite to the refrigerant pipe (21) side.
  • the refrigerant pipe (21) is sandwiched between the pair of thermoelectric elements (22).
  • a fin group (25) is provided on the surface of each thermoelectric element (22) opposite to the refrigerant pipe (21) side.
  • thermoelectric element (22) includes the first to third electrodes (2, 3, 8) and a strip electrode array (9) composed of the first and second conductivity type thermoelectric materials (5, 6). Are provided at intervals in the air flow direction, Each of the strip electrode rows (9) is supplied with currents having different current values.
  • thermoelectric element (22) is provided with a plurality of strip electrode rows (9) spaced apart from each other in the air flow direction.
  • This strip electrode array (9) is composed of first to third electrodes (2, 3, 8) and first and second conductivity type thermoelectric materials (5, 6), and each strip electrode array (9) Are supplied with currents having different current values.
  • the heat exchange efficiency (COP) in each strip electrode array (9) can be maximized.
  • the thermoelectric element (22) the temperature difference between the air and the refrigerant is larger on the upstream side in the air flow direction than on the downstream side. Therefore, when the current value of the current supplied to the thermoelectric element (22) is constant, the heat exchange efficiency is lowered. Therefore, while increasing the current value supplied to the strip electrode array (9) arranged on the upstream side where the temperature difference is large, the current value supplied to the strip electrode array (9) arranged on the downstream side where the temperature difference is small By reducing the size, the heat exchange efficiency can be maximized in all the strip electrode arrays (9).
  • thermoelectric element (22) includes the first to third electrodes (2, 3, 8) and a strip electrode array (9) composed of the first and second conductivity type thermoelectric materials (5, 6). Are provided at intervals in the air flow direction, Each of the strip electrode rows (9) is electrically connected in series.
  • thermoelectric element (22) is provided with a plurality of strip electrode arrays (9) spaced apart from each other in the air flow direction.
  • This strip electrode array (9) is composed of first to third electrodes (2, 3, 8) and first and second conductivity type thermoelectric materials (5, 6).
  • Each strip electrode array (9) Electrically connected in series. With such a configuration, the strip electrode arrays (9) are electrically connected in series, and the surfaces of the first conductive thermoelectric material (5) and the second conductive thermoelectric material (6) formed into a thin film are formed. Current can flow inward.
  • thermoelectric element (22) includes the first to third electrodes (2, 3, 8) and a strip electrode array (9) composed of the first and second conductivity type thermoelectric materials (5, 6). Are provided at intervals in the air flow direction, Each of the strip electrode rows (9) is electrically connected in parallel.
  • thermoelectric element (22) is provided with a plurality of strip electrode rows (9) spaced apart from each other in the air flow direction.
  • This strip electrode array (9) is composed of first to third electrodes (2, 3, 8) and first and second conductivity type thermoelectric materials (5, 6).
  • Each strip electrode array (9) Electrically connected in parallel. With such a configuration, the strip electrode arrays (9) are electrically connected in parallel, and the surfaces of the first conductive thermoelectric material (5) and the second conductive thermoelectric material (6) formed into a thin film are formed. Current can flow inward.
  • Each strip electrode array (9) is characterized in that the widths of the first and second conductivity type thermoelectric materials (5, 6) are different between the upstream side and the downstream side in the air flow direction. .
  • the widths of the first and second conductivity type thermoelectric materials (5, 6) of each strip electrode array (9) are different between the upstream side and the downstream side in the air flow direction. With such a configuration, the heat exchange efficiency (COP) in each strip electrode array (9) can be maximized.
  • thermoelectric element (22) the temperature difference between the air and the refrigerant is larger on the upstream side in the air flow direction than on the downstream side. Therefore, when the current value of the current supplied to the thermoelectric element (22) is constant, the heat exchange efficiency is lowered.
  • the first and second conductivity type thermoelectric materials (5, 6) are characterized in that the current that maximizes the heat exchange efficiency increases as the width decreases. Therefore, by utilizing this, the width of the first and second conductivity type thermoelectric materials (5, 6) of the strip electrode array (9) arranged on the upstream side where the temperature difference is large is widened while the temperature difference is small. Narrowing the width of the first and second conductivity type thermoelectric materials (5, 6) of the strip electrode array (9) arranged on the downstream side maximizes the heat exchange efficiency in all strip electrode arrays (9) can do.
  • each of the strip electrode arrays (9) is characterized in that the thicknesses of the first and second conductivity type thermoelectric materials (5, 6) are different between the upstream side and the downstream side in the air flow direction. .
  • the thicknesses of the first and second conductivity type thermoelectric materials (5, 6) of each strip electrode array (9) are different between the upstream side and the downstream side in the air flow direction.
  • the heat exchange efficiency (COP) in each strip electrode array (9) can be maximized.
  • the first and second conductivity type thermoelectric materials (5, 6) are characterized by the fact that the current that maximizes the heat exchange efficiency increases as the thickness increases.
  • the first and second conductivity type thermoelectric materials (5, 6) of the arranged strip electrode array (9) are made thin, while the first of the strip electrode array (9) arranged on the downstream side with a small temperature difference. Further, by increasing the thickness of the second conductivity type thermoelectric material (5, 6), the heat exchange efficiency can be maximized in all the strip electrode arrays (9).
  • each of the strip electrode arrays (9) is characterized in that the number of the first and second conductivity type thermoelectric materials (5, 6) is different between the upstream side and the downstream side in the air flow direction. .
  • the number of the first and second conductivity type thermoelectric materials (5, 6) in each strip electrode array (9) is different between the upstream side and the downstream side in the air flow direction.
  • the heat exchange efficiency (COP) in each strip electrode array (9) can be maximized.
  • the quantity of the first and second conductivity type thermoelectric materials (5, 6) is increased, the voltage at which the heat exchange efficiency is maximized increases. Therefore, the strip electrode array arranged on the upstream side having a large temperature difference.
  • thermoelectric element (22) of a type that radiates heat from one surface of the first insulating substrate (A) and absorbs heat from one surface of the second insulating substrate (B).
  • thermoelectric element (22) of a type that radiates heat from one surface of the first insulating substrate (A) and absorbs heat from one surface of the second insulating substrate (B).
  • thermoelectric material (5) and the second conductive thermoelectric material (6) in a thin film only between the first insulating substrate (A) and the second insulating substrate (B). Even if the size of the thermoelectric element (22) is increased, an increase in thermal stress acting on the first conductivity type thermoelectric material (5) and the second conductivity type thermoelectric material (6) is suppressed. Moreover, since a current is caused to flow in the in-plane direction of the first conductive type thermoelectric material (5) and the second conductive type thermoelectric material (6) formed into a thin film to cause a temperature difference, the distance from the low temperature side to the high temperature side is The temperature difference increases.
  • first conductive thermoelectric material (5) and the second conductive thermoelectric material (6) are provided between the first insulating substrate (A) and the second insulating substrate (B), Compared with the case where the first conductive thermoelectric material (5) and the second conductive thermoelectric material (6) are provided on the surface, the first conductive thermoelectric material (5) and the second conductive thermoelectric material even when bending force is applied. The tensile stress or compressive stress acting on (6) is reduced, making it difficult to break.
  • the first to third electrodes (2, 3, 8) and the strip electrode array (9) composed of the first and second conductivity type thermoelectric materials (5, 6) are spaced apart from each other in the air flow direction. And change the current value of the current supplied to each strip electrode row (9), the width and thickness of the first and second conductivity type thermoelectric materials (5, 6) of each strip electrode row (9), By changing the quantity and the like, the heat exchange efficiency (COP) in each strip electrode array (9) can be maximized.
  • COP heat exchange efficiency
  • FIG. 1 is a front view schematically showing a configuration of a heat exchanger according to Embodiment 1 of the present invention.
  • 2A is a longitudinal sectional view of the heat exchanger
  • FIG. 2B is a sectional view taken along line XX of FIG. 2A.
  • FIG. 3 is a YY cross-sectional view of FIG.
  • FIG. 4 is a cross-sectional view between the insulating substrates of the thermoelectric element.
  • FIG. 5 is a plan view showing the configuration of the thermoelectric element.
  • FIG. 6 is a longitudinal sectional view showing the configuration of the thermoelectric element.
  • FIG. 7A is a graph showing the change in the maximum COP with respect to the current value and the temperature difference, and FIG.
  • FIG. 7B is a plan view showing the configuration of the thermoelectric element according to the second embodiment.
  • FIG. 8A is a graph showing a change in the maximum COP with respect to the shape of the thermoelectric material
  • FIG. 8B is a diagram corresponding to FIG. 7B of the thermoelectric element according to the third embodiment.
  • FIG. 9A is a graph showing the change in the maximum COP with respect to the number of thermoelectric materials
  • FIG. 9B is a diagram corresponding to FIG. 7B of the thermoelectric element according to the fourth embodiment.
  • FIG. 10 is a longitudinal sectional view showing a configuration of a conventional thermoelectric element.
  • Embodiment 1 1 is a front view schematically showing the configuration of a heat exchanger according to Embodiment 1 of the present invention
  • FIG. 2 is a sectional view showing the configuration of a heat exchanger
  • FIG. 3 is a YY sectional view of FIG. is there.
  • the heat exchanger (10) is a gas cooler that cools air as a target fluid (hereinafter referred to as target air), and includes a plurality of heat exchange modules (20), an inlet, A side header (35) and an outlet side header (36) are provided.
  • the heat exchange module (20) includes a microchannel (21) as a refrigerant tube through which a refrigerant flows, a pair of thermoelectric elements (22) disposed so as to sandwich the microchannel (21), and a pair of fin groups (25 ).
  • the microchannel (21) constitutes the first fluid flow path member according to the present invention.
  • the fin group (25) constitutes a second fluid flow path member according to the present invention.
  • the microchannel (21) is composed of a porous flat tube having a plurality of microchannels (21a) inside.
  • the microchannel (21) is formed in a rectangular body that is flat in the flow direction of the target air.
  • the microchannel (21) is formed so that the microchannels (21a) are arranged in a line in the flow direction of the target air.
  • thermoelectric element (22) is formed in a strip shape extending in the longitudinal direction of the microchannel (21) (that is, the vertical direction in FIG. 1 and FIG. 2 (a)). Each thermoelectric element (22) is arranged so as to sandwich the microchannel (21) from the flat surface side. The detailed configuration of the thermoelectric element (22) will be described later.
  • thermoelectric elements (22) are shorter in length than the microchannel (21) and overlap at other than both ends of the microchannel (21). That is, the thermoelectric element (22) does not overlap at both ends of the microchannel (21). Furthermore, the width of each thermoelectric element (22) is substantially equal to the width of the microchannel (21) (the width of the microchannel (21) is slightly longer).
  • the fin group (25) is provided on a flat surface opposite to the microchannel (21) side of each thermoelectric element (22).
  • Each fin group (25) includes a base plate (24) in contact with the thermoelectric element (22) and a plurality of heat dissipating fins (27) that exchange heat between the air provided in the base plate (24) and flowing therethrough. It is comprised by what is called a corrugated fin formed by. Note that corrugated fins generally have a small fin thickness, a low fin height, and a narrow fin pitch.
  • the fin group (25) has a surface opposite to the heat dissipating fin (27) side of the base plate (24) bonded to the flat surface of the thermoelectric element (22).
  • the length of the base plate (24), that is, the length of the fin group (25) is shorter than the length of the microchannel (21) and slightly longer than the length of the thermoelectric element (22).
  • the width of the base plate (24), that is, the width of the fin group (25) is longer than the width of the thermoelectric element (22).
  • the end plate in the air flow direction and the end plate in the longitudinal direction of the base plate (24) of the fin group (25) are respectively filled with the sealing material (26), and the microchannel (21) and the base plate The gap with (24) is blocked.
  • the microchannel (21) and the thermoelectric element (22) are joined by an adhesive. Further, the thermoelectric element (22) and the base plate (24) of the fin group (25) are joined together by an adhesive.
  • a heat conductive type adhesive is used. Accordingly, the microchannel (21), the thermoelectric element (22), and the fin group (25) are integrally formed to constitute the heat exchange module (20).
  • a plurality of heat exchange modules (20) are juxtaposed in a direction orthogonal to the flow direction of the target air.
  • the inlet-side header (35) and the outlet-side header (36) are both constituted by circular tubes extending in a direction orthogonal to the flow direction of the target air.
  • the inlet side header (35) is connected to one end side (the upper side of FIG. 2A) which is the inlet end of the microchannel (21) of each heat exchange module (20).
  • the outlet side header (36) is connected to the other end side (the lower side of FIG. 2A) which is the outlet end of the microchannel (21) of each heat exchange module (20).
  • the inlet end and the outlet end of the microchannel (21) protrude and open into the inlet header (35) and the outlet header (36). That is, each heat exchange module (20) is connected in parallel to the inlet side header (35) and the outlet side header (36).
  • the inlet header (35) is provided with a refrigerant inlet through which refrigerant flows from the outside
  • the outlet header (36) is provided with a refrigerant outlet through which refrigerant flows out.
  • the inlet-side header (35) is configured so that the refrigerant flowing from the outside is distributed and flows into the micro flow path (21a) of the micro channel (21) of each heat exchange module (20).
  • the outlet header (36) is configured such that the refrigerant that has flowed out of the microchannels (21a) of the microchannels (21) merges and flows out.
  • cover (35a, 36a) is attached to the both-ends opening of the said inlet side header (35) and the outlet side header (36).
  • the heat exchanger (10) includes a side plate (37) attached to the lids (35a, 36a) of the inlet side header (35) and the outlet side header (36). That is, the side plate (37) constitutes the right side piece and the left side piece of the heat exchanger (10) when viewed from the air flow direction.
  • the gap between the fin groups (25) constitutes the air circulation part (16).
  • the heat exchanger (10) is provided with a header heat insulating material (31), a side plate heat insulating material (32), and a pipe heat insulating material (33).
  • a header heat insulating material (31) is wound around the outer peripheral surfaces of the inlet header (35) and the outlet header (36).
  • a side plate heat insulating material (32) is attached to the inner side surface of the side plate (37) (that is, the surface in contact with the air circulation part (16)).
  • the heat insulating material for pipes (33) is provided in the front side (lower side in FIG. 3) and the rear side (upper side in FIG. 3) of the thermoelectric element (22) in the distribution direction of the target air. That is, the front surface and the rear surface of the microchannel (21) and the thermoelectric element (22) are covered with the heat insulating material for pipe (33) so as not to touch the target air.
  • thermoelectric element configuration- 4 is a cross-sectional view between the insulating substrates of the thermoelectric element
  • FIG. 5 is a plan view
  • FIG. 6 is a vertical cross-sectional view.
  • the thermoelectric element (22) is formed by laminating a first insulating substrate (A) and a second insulating substrate (B).
  • a plurality of heat absorption side electrodes (2), heat radiation side electrodes (3), p-type thermoelectric materials (5) and n-type thermoelectric materials (6) are formed on the upper surface of the first insulative substrate (A) in a strip shape. Is formed. These are the heat dissipation side electrode (3), n-type thermoelectric material (6), heat absorption side electrode (2), p type thermoelectric material (5), heat dissipation side electrode (3), ..., p type thermoelectric material (5) The heat radiation side electrodes (3) are arranged in this order to form a strip electrode array (9). Electric wires (17, 18) are connected to the heat radiation side electrodes (3) at both ends of the strip electrode array (9).
  • Each of the p-type thermoelectric material (5) and the n-type thermoelectric material (6) is formed into a thin film by a method such as vapor deposition so as to be in contact with the adjacent electrodes (2, 3).
  • the p-type thermoelectric material (5) and the n-type thermoelectric material (6) are provided between the first insulating substrate (A) and the second insulating substrate (B) (that is, the p-type thermoelectric material ( 5) and the n-type thermoelectric material (6) are sandwiched between the first insulating substrate (A) and the second insulating substrate (B)), so even if the size of the thermoelectric element (22) is increased, An increase in thermal stress acting on the p-type thermoelectric material (5) and the n-type thermoelectric material (6) is suppressed.
  • thermoelectric material (5) and the n-type thermoelectric material (6) can be prevented from being damaged, and a highly reliable thermoelectric element (22) can be provided.
  • a plurality of strip-shaped heat radiation side electrodes (3) are formed on both surfaces of the first insulating substrate (A) (see FIG. 5).
  • Each of the heat dissipating side electrodes (3) formed on the upper surface of the first insulating substrate (A) is connected to the corresponding heat dissipating side electrode (3) on the lower surface of the first insulating substrate (A) by a through hole (7). It is connected to the.
  • the through hole (7) is formed, for example, by filling a hole formed in the substrate (A) with a paste.
  • the said heat absorption side electrode (2) comprises the 1st electrode which concerns on this invention.
  • the heat radiation side electrode (3) constitutes the second electrode according to the present invention.
  • the p-type thermoelectric material (5) and the n-type thermoelectric material (6) constitute the first conductivity type thermoelectric material and the second conductivity type thermoelectric material according to the present invention, respectively.
  • a plurality of strip-like heat absorption side electrodes (8) are formed on both surfaces of the second insulating substrate (B) (see FIGS. 4 and 5).
  • Each of the heat absorption side electrodes (8) formed on the upper surface of the second insulating substrate (B) is provided with a corresponding heat absorption side electrode (8) on the lower surface of the second insulating substrate (B) by a through hole (7). It is connected to the.
  • the heat absorption side electrode (8) formed on the lower surface of the second insulating substrate (B) is bonded to the heat absorption side electrode (2) formed on the upper surface of the first insulating substrate (A). Connected through.
  • the bonding layer (12) needs to have heat conductivity, and may be a heat conductive adhesive or the like having no conductivity in addition to a conductive material such as solder. When a non-conductive material is used, no current flows through each heat absorption side electrode (8) and through hole (7) of the substrate (B), and only heat flows.
  • the heat absorption side electrode (8) comprises the 3rd electrode which concerns on this invention.
  • the first insulating substrate (A) and the second insulating substrate (B) are preferably insulative and highly heat-insulating. This is to prevent heat leakage from the heat dissipation side (high temperature side) to the heat absorption side (low temperature side).
  • glass, resin, foamed resin, or the like for example, it is conceivable to use glass, resin, foamed resin, or the like.
  • the electrodes (2, 3, 8) are preferably formed of a material having low electrical resistance and high thermal conductivity (for example, copper, aluminum, etc.). Also, in order to improve the bonding with the p-type thermoelectric material (5) and n-type thermoelectric material (6) and to increase the durability, the electrodes (2, 3, 8) are plated with nickel or gold. It is desirable to apply.
  • the first insulating substrate (A) is provided with a heat radiation side heat transfer plate (13) through an insulating layer (11).
  • a heat absorption side heat transfer plate (14) is provided on the second insulating substrate (B) via an insulating layer (11).
  • a groove is formed on the lower surface of the second insulating substrate (B) to avoid heat conduction between the p-type thermoelectric material (5), the n-type thermoelectric material (6), and the heat radiation side electrode (3).
  • a shaped space (15) is formed. In order to reduce heat conduction, it is desirable to enclose a vacuum or a gas having low heat conductivity (such as chlorofluorocarbon or xenon) in the space (15).
  • thermoelectric element (22) absorbs heat at the interface between each endothermic electrode (2) and each thermoelectric material (5,6) by passing a current through the electric wire (17,18) between the endothermic electrodes (3). Is generated, and heat is generated at the interface between each heat radiation side electrode (3) and each thermoelectric material (5, 6). As a result, a temperature difference corresponding to both ends of each thermoelectric material (5, 6) occurs.
  • thermoelectric material (5, 6) formed into a thin film to generate a temperature difference, so the distance from the low temperature side to the high temperature side can be increased, and the temperature difference is increased.
  • the thickness of each thermoelectric material (5, 6) is t
  • the width is W (see FIG. 4)
  • the length is L (see FIG. 6)
  • the length of the junction with each electrode (2, 3) is also applied in the in-plane direction. be able to.
  • the element form factor (L / tW) can be made equivalent to that of a normal Peltier module. Can do. Therefore, characteristics (resistance, heat absorption, efficiency, etc.) similar to those of a normal Peltier module can be obtained.
  • t a thin film of about 10 ⁇ m W is extremely larger than t (for example, about 1000 times), and L is about 10 times t, for example, the volume of thermoelectric material (LtW) is reduced to a normal Peltier. The volume of the thermoelectric material used for the module can be reduced to about 1/100. As a result, resource saving and cost reduction and environmental compatibility are greatly improved.
  • each electrode (2, 3) and each thermoelectric material (5, 6) has a loss by reducing the electrical resistance and thermal resistance of the junction and reducing the current density and thermal density of the periphery. It is desirable to make it large (specifically, Lc> t). However, if it is too large, the material is wasted, so there is an optimum value. For the same reason, it is desirable that the thickness of each electrode (2, 3) is larger than the thickness of each thermoelectric material (5, 6).
  • thermoelectric element (22) the heat radiation side electrodes (3) formed on both surfaces of the first insulating substrate (A) are connected to each other by the through holes (7). And radiate heat from the heat-dissipation side heat transfer plate (13). Further, in the thermoelectric element (22), the heat absorption side electrodes (8) on both surfaces of the second insulating substrate (B) are connected to each other by the through holes (7) and the heat absorption side electrodes on the upper surface of the first insulating substrate (A). Since it is connected to (2) via the bonding layer (12), it absorbs heat from the heat absorption side electrode (8) and the heat absorption side heat transfer plate (14) on the upper surface of the second insulating substrate (B).
  • the microchannel (21) is provided on the heat radiating side heat transfer plate (13) side to become a heating surface
  • the fin group (25) is provided on the heat absorption side heat transfer plate (14) side. It is a cooling surface.
  • the microchannel (21) becomes the heat dissipation side
  • the fin group (25) becomes the heat absorption side.
  • the refrigerant (liquid) that has flowed into the inlet header (35) flows into the microchannel (21) of each heat exchange module (20).
  • the target air flows into the fin group (25) of each heat exchange module (20).
  • the refrigerant flowing into the microchannel (21) is dissipated from the thermoelectric elements (22) on both sides and evaporates.
  • the target air flowing through the fin group (25) is absorbed by the fins and cooled to a predetermined temperature.
  • the cooled target air is supplied to the user side.
  • the p-type thermoelectric material (5) is provided only between the first insulating substrate (A) and the second insulating substrate (B). Since the n-type thermoelectric material (6) is formed into a thin film, the thermal stress acting on the p-type thermoelectric material (5) and the n-type thermoelectric material (6) increases even if the size of the thermoelectric element (22) is increased. It is suppressed. In addition, since a current is caused to flow in the in-plane direction of the thin-film formed p-type thermoelectric material (5) and n-type thermoelectric material (6), the distance from the low temperature side to the high temperature side increases, The difference increases.
  • thermoelectric material (5) and the n-type thermoelectric material (6) are provided between the first insulating substrate (A) and the second insulating substrate (B), the p-type thermoelectric material ( Compared with the case where 5) and n-type thermoelectric material (6) are provided on the surface, the tensile stress or compressive stress acting on p-type thermoelectric material (5) and n-type thermoelectric material (6) even when bending force is applied. Smaller and less likely to break.
  • FIG. 7A is a graph showing the change in the maximum COP with respect to the current value and the temperature difference
  • FIG. 7B is a plan view showing the configuration of the thermoelectric element according to the second embodiment. Since the difference from the first embodiment is that currents having different current values are supplied to the respective strip electrode rows (9), the same parts as those in the first embodiment are denoted by the same reference numerals. Only the differences will be described.
  • thermoelectric element (22) according to the second embodiment is provided with three strip electrode arrays (9) at intervals in the air circulation direction.
  • the wires (17, 18) are independently connected to the heat radiation side electrodes (3) at both ends of each strip electrode array (9). As a result, currents having different current values can be supplied to the respective strip electrode rows (9).
  • thermoelectric element (22) the temperature difference between the air and the refrigerant on the upstream side in the air flow direction is large, and the temperature difference is small on the downstream side. Therefore, when the current value of the current supplied to each strip electrode array (9) of the thermoelectric element (22) is constant, the maximum position of the heat exchange efficiency (COP) changes as shown in FIG. Therefore, the heat exchange efficiency cannot be maximized in each strip electrode array (9).
  • the current value supplied to the strip electrode array (9) disposed on the upstream side where the temperature difference between the air and the refrigerant is large is increased, while the strip electrode array disposed on the downstream side where the temperature difference is small.
  • the current value supplied to (9) was made smaller. Thereby, the heat exchange efficiency can be maximized in all the strip electrode arrays (9).
  • FIG. 8A is a graph showing a change in the maximum COP with respect to the shape of the thermoelectric material
  • FIG. 8B is a diagram corresponding to FIG. 7 of the thermoelectric element according to the third embodiment.
  • the difference from Embodiment 1 is that the width and thickness of the p-type thermoelectric material (5) and the n-type thermoelectric material (6) in each strip electrode array (9) are changed.
  • thermoelectric element (22) As shown in FIG. 8 (b), the thermoelectric element (22) according to the third embodiment is provided with three strip electrode rows (9) spaced in the air flow direction.
  • the wire (17) is connected to the left heat dissipation side electrode (3) of the upper band electrode array (9), while the right end heat dissipation side electrode (3) is connected to the center band electrode array.
  • the heat dissipation side electrode (3) at the right end of (9) is connected.
  • the leftmost heat radiation side electrode (3) of the central beltlike electrode array (9) is connected to the leftmost heat radiation side electrode (3) of the lower beltlike electrode array (9), while the rightmost heat radiation side electrode Wire (18) is connected to (3).
  • column (9) is electrically connected in series.
  • the maximum position of the heat exchange efficiency varies depending on the shapes of the p-type thermoelectric material (5) and the n-type thermoelectric material (6). Specifically, as the widths of the p-type thermoelectric material (5) and the n-type thermoelectric material (6) are reduced or the thickness is increased, the current value at which the heat exchange efficiency is maximized is increased.
  • the width of the p-type and n-type thermoelectric materials (5, 6) of the strip electrode array (9) arranged on the upstream side where the temperature difference between the air and the refrigerant is large is wide (or thin).
  • the widths of the p-type and n-type thermoelectric materials (5, 6) of the strip electrode array (9) arranged on the downstream side where the temperature difference is small are made narrow (or thick).
  • FIG. 9A is a graph showing the change in the maximum COP with respect to the number of thermoelectric materials
  • FIG. 9B is a diagram corresponding to FIG. 7 of the thermoelectric element according to the fourth embodiment.
  • the difference from Embodiment 1 is that the number of thermoelectric materials is changed between the strip electrode arrays (9).
  • thermoelectric element (22) As shown in FIG. 9B, the thermoelectric element (22) according to the fourth embodiment is provided with three strip electrode arrays (9) at intervals in the air circulation direction. Electric wires (17, 18) are connected to the heat radiation side electrodes (3) at both ends of each strip electrode row (9), and each strip electrode row (9) is electrically connected in parallel.
  • the maximum position of the heat exchange efficiency changes according to the quantity of the p-type thermoelectric material (5) and the n-type thermoelectric material (6). Specifically, the voltage that maximizes the heat exchange efficiency increases as the number of p-type thermoelectric materials (5) and n-type thermoelectric materials (6) increases.
  • the number of p-type and n-type thermoelectric materials (5, 6) in the strip electrode array (9) arranged on the upstream side where the temperature difference between air and refrigerant is large is reduced, while the temperature difference is reduced.
  • the number of p-type and n-type thermoelectric materials (5, 6) in the strip electrode array (9) arranged on the small downstream side was increased. Thereby, the heat exchange efficiency can be maximized in all the strip electrode arrays (9).
  • the heat exchanger (10) as a gas cooler for cooling the target air has been described, but the present invention can also be applied as a gas heater for heating the target air.
  • the microchannel (21) side becomes the heat absorption side
  • the fin group (25) side becomes the heat dissipation side.
  • the target air is radiated and heated by the fin group (25).
  • the gas (air) flowing through the fin group (25) is used.
  • a liquid (refrigerant) flowing through the microchannel (21) may be used.
  • the heat exchanger (10) configured by one heat exchange module (20) may be used by omitting the inlet side header (35) and the outlet side header (36).
  • a fin type other than the corrugated fin may be used for the fin group (25), or a pipe having one flow path instead of the microchannel (21) may be used as the refrigerant pipe.
  • the gas (air) flowing through the fin group (25) is used after being cooled or heated, but is not limited to this form.
  • a load is connected in place of the power source of the thermoelectric element (22), and heat is input from the outside to the heat absorption side to dissipate the heat from the heat dissipation side.
  • a power generation module using the Seebeck effect can be obtained.
  • the present invention provides a highly practical effect that a thermoelectric element having a size necessary for ensuring heat exchange performance can be easily produced.
  • the availability is high.

Abstract

A thermoelectric element (22) is provided with a first insulating substrate (A) and a second insulating substrate (B) which extend in the form of strips, one on top of the other. The thermoelectric element (22) is also provided with: a plurality of heat-absorbing side electrodes (2) formed on the upper surface of the first insulating substrate (A); a plurality of heat-emitting side electrodes (3) formed on both surfaces of the first insulating substrate (A) and connected by through-holes (7); and p-type thermoelectric material (5) and n-type thermoelectric material (6) formed as thin films so as to respectively contact the heat-absorbing side electrodes (2) and heat-emitting side electrodes (3). The thermoelectric element (22) is further provided with a plurality of heat-absorbing side electrodes (8) which are formed on both surfaces of the second insulating substrate (B) and which are connected by the through-holes (7) and have undersurfaces connected with the heat-absorbing side electrodes (2).

Description

熱交換器Heat exchanger
 本発明は、熱交換器に関するものである。 The present invention relates to a heat exchanger.
 従来より、熱電素子を用いて流体同士を熱交換させる、いわゆる熱電素子型の熱交換器が知られている。例えば、特許文献1には、熱電素子型の熱交換器であるペルチェ式ヒートポンプが開示されている。また、非特許文献1には、マイクロチャネルの両面を挟み込むようにペルチェ素子を配置した熱交換器が開示されている。この熱交換器では、熱電素子に通電すると、例えば、マイクロチャネル側が放熱側となり、フィン群側が吸熱側となる。そして、マイクロチャネルを流れる液体が加熱され、フィン群を流通する空気が冷却される。 Conventionally, a so-called thermoelectric element type heat exchanger in which heat is exchanged between fluids using a thermoelectric element is known. For example, PTL 1 discloses a Peltier heat pump that is a thermoelectric element type heat exchanger. Non-Patent Document 1 discloses a heat exchanger in which Peltier elements are arranged so as to sandwich both sides of a microchannel. In this heat exchanger, when the thermoelectric element is energized, for example, the microchannel side becomes the heat dissipation side and the fin group side becomes the heat absorption side. And the liquid which flows through a microchannel is heated, and the air which distribute | circulates a fin group is cooled.
特開2008-106958号公報JP 2008-106958 A
 しかしながら、上述した熱交換器では、熱交換性能を確保するために必要なサイズの熱電素子を作製することが困難であるという問題があった。図10(a)は、従来の熱電素子の構成を示す縦断面図である。図10(a)に示すように、この熱電素子(50)は、セラミック等で形成された第1絶縁性基板(A)と第2絶縁性基板(B)との間に電極(51)と、p型及びn型熱電材料(5,6)とを挟み込んだ構造となっている。この熱電素子(50)に電流を流すと、第1及び第2絶縁性基板(A,B)間に温度差が生じる。 However, the above-described heat exchanger has a problem that it is difficult to produce a thermoelectric element having a size necessary for ensuring heat exchange performance. FIG. 10A is a longitudinal sectional view showing a configuration of a conventional thermoelectric element. As shown in FIG. 10A, the thermoelectric element (50) includes an electrode (51) between a first insulating substrate (A) and a second insulating substrate (B) made of ceramic or the like. The p-type and n-type thermoelectric materials (5, 6) are sandwiched. When a current is passed through the thermoelectric element (50), a temperature difference is generated between the first and second insulating substrates (A, B).
 例えば、第1絶縁性基板(A)が放熱側、第2絶縁性基板(B)が吸熱側となる場合には、図10(b)に示すように、熱電素子(50)は、第1絶縁性基板(A)が膨張するとともに第2絶縁性基板(B)が収縮するように変形する。そのため、p型熱電材料(5)及びn型熱電材料(6)の端面に熱応力が発生し、電極(51)とp型及びn型熱電材料(5,6)との接合部が破壊されてしまうおそれがある。また、このような熱応力は、熱電素子(50)のサイズが大きくなるほどその長手方向の端部で増加するため、帯状に延びる熱電素子(50)を作製することが困難となる。 For example, when the first insulating substrate (A) is on the heat dissipation side and the second insulating substrate (B) is on the heat absorbing side, as shown in FIG. As the insulating substrate (A) expands, the second insulating substrate (B) deforms so as to contract. Therefore, thermal stress is generated at the end faces of the p-type thermoelectric material (5) and the n-type thermoelectric material (6), and the joint between the electrode (51) and the p-type and n-type thermoelectric material (5, 6) is destroyed. There is a risk that. In addition, since the thermal stress increases at the end in the longitudinal direction as the size of the thermoelectric element (50) increases, it becomes difficult to manufacture the thermoelectric element (50) extending in a strip shape.
 また、熱応力を低下させるために、第1及び第2絶縁性基板(A,B)をポリイミド等のフレキシブルな材質のものに変更したり、第1及び第2絶縁性基板(A,B)自体を無くしてしまう等の対策を施すことも考えられるが、熱電素子(50)の平面精度や強度が低下してしまうため好ましくない。さらに、熱電素子(50)の作製時には、電極(51)とp型及びn型熱電材料(5,6)とを半田で接合するために炉内で半田を溶融させる処理を行っているが、炉内のサイズに制限があるため、大きなサイズの熱電素子(50)を作製することができないという問題がある。 In order to reduce the thermal stress, the first and second insulating substrates (A, B) may be changed to a flexible material such as polyimide, or the first and second insulating substrates (A, B). Although measures such as eliminating itself may be considered, it is not preferable because the planar accuracy and strength of the thermoelectric element (50) are reduced. Furthermore, when the thermoelectric element (50) is manufactured, the solder is melted in the furnace in order to join the electrode (51) and the p-type and n-type thermoelectric materials (5, 6) with the solder. There is a problem that a large-sized thermoelectric element (50) cannot be produced because the size in the furnace is limited.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、熱交換性能を確保するために必要なサイズの熱電素子を容易に作製できるようにすることにある。 The present invention has been made in view of such a point, and an object thereof is to make it possible to easily produce a thermoelectric element having a size necessary for ensuring heat exchange performance.
 上述した目的を達成するため、本発明は、絶縁性基板の面内方向に延びる帯状電極列が形成された熱電素子を用いて熱交換器を構成するようにした。 In order to achieve the above-described object, the present invention configures a heat exchanger using a thermoelectric element in which a strip electrode array extending in an in-plane direction of an insulating substrate is formed.
 具体的に、本発明は、熱電素子(22)と、該熱電素子(22)を挟み込むように配置され、該熱電素子(22)と対象流体との間で熱交換を行うための第1流体流路部材(21)及び第2流体流路部材(25)とを備えた熱交換器を対象とし、次のような解決手段を講じた。 Specifically, the present invention provides a thermoelectric element (22) and a first fluid that is disposed so as to sandwich the thermoelectric element (22) and performs heat exchange between the thermoelectric element (22) and a target fluid. For the heat exchanger provided with the flow path member (21) and the second fluid flow path member (25), the following solution was taken.
 すなわち、第1の発明は、前記熱電素子(22)は、
 互いに積層されるとともに前記第1流体流路部材(21)及び第2流体流路部材(25)の長手方向に沿って帯状に延びる第1絶縁性基板(A)及び第2絶縁性基板(B)と、
 前記第1絶縁性基板(A)の前記第2絶縁性基板(B)側の面に、該第1絶縁性基板(A)の長手方向に互いに間隔をあけて形成された複数の第1電極(2)と、
 前記第1絶縁性基板(A)の両面に、前記各第1電極(2)に隣り合うように該第1電極(2)と離隔してそれぞれ形成され、該第1絶縁性基板(A)の厚さ方向に延びるスルーホール(7)によって両面が接続された複数の第2電極(3)と、
 前記第2絶縁性基板(B)の両面に、該第2絶縁性基板(B)の長手方向に互いに間隔をあけて形成され、該第2絶縁性基板(B)の厚さ方向に延びるスルーホール(7)によって両面が接続されるとともに、前記第1絶縁性基板(A)側の面が前記第1電極(2)に接続された複数の第3電極(8)と、
 前記第1絶縁性基板(A)の前記第2絶縁性基板(B)側の面に、前記第1電極(2)と該第1電極(2)の両隣の前記第2電極(3)とにそれぞれ接するように薄膜形成された第1導電型熱電材料(5)及び第2導電型熱電材料(6)とを備えていることを特徴とするものである。
That is, in the first invention, the thermoelectric element (22)
A first insulating substrate (A) and a second insulating substrate (B) that are stacked on each other and extend in a strip shape along the longitudinal direction of the first fluid channel member (21) and the second fluid channel member (25). )When,
A plurality of first electrodes formed on the surface of the first insulating substrate (A) on the second insulating substrate (B) side and spaced apart from each other in the longitudinal direction of the first insulating substrate (A). (2) and
The first insulating substrate (A) is formed on both surfaces of the first insulating substrate (A) so as to be adjacent to the first electrodes (2) and spaced apart from the first electrode (2). A plurality of second electrodes (3) whose both surfaces are connected by through holes (7) extending in the thickness direction of
Through-holes formed on both surfaces of the second insulating substrate (B) at intervals in the longitudinal direction of the second insulating substrate (B) and extending in the thickness direction of the second insulating substrate (B) A plurality of third electrodes (8) having both surfaces connected by holes (7) and having a surface on the first insulating substrate (A) side connected to the first electrode (2);
On the surface of the first insulating substrate (A) on the second insulating substrate (B) side, the first electrode (2) and the second electrode (3) adjacent to the first electrode (2) The first conductive thermoelectric material (5) and the second conductive thermoelectric material (6) formed in a thin film so as to be in contact with each other are provided.
 第1の発明では、薄膜形成された第1導電型熱電材料(5)及び第2導電型熱電材料(6)の面内方向に電流を流すと、第1電極(2)と第1導電型熱電材料(5)及び第2導電型熱電材料(6)との界面、並びに第2電極(3)と第1導電型熱電材料(5)及び第2導電型熱電材料(6)との界面において、ペルチェ効果により吸熱及び発熱が発生する。つまり、第1導電型熱電材料(5)及び第2導電型熱電材料(6)の両端には、それに相当した温度差が生じる。その結果、例えば、第1電極(2)が吸熱側電極となり、第2電極(3)が放熱側電極となる。 In the first invention, when a current is passed in the in-plane direction of the first conductive type thermoelectric material (5) and the second conductive type thermoelectric material (6) formed into a thin film, the first electrode (2) and the first conductive type At the interface between the thermoelectric material (5) and the second conductivity type thermoelectric material (6) and at the interface between the second electrode (3) and the first conductivity type thermoelectric material (5) and the second conductivity type thermoelectric material (6) The Peltier effect generates heat and heat. That is, a temperature difference corresponding to both ends of the first conductivity type thermoelectric material (5) and the second conductivity type thermoelectric material (6). As a result, for example, the first electrode (2) becomes a heat absorption side electrode, and the second electrode (3) becomes a heat dissipation side electrode.
 そして、第1絶縁性基板(A)において、第2電極(3)における第2絶縁性基板(B)側の面とそれとは反対の面とがスルーホール(7)によって接続されているため、第1絶縁性基板(A)の表面側から放熱される。 In the first insulating substrate (A), the surface on the second insulating substrate (B) side of the second electrode (3) and the opposite surface are connected by the through hole (7). Heat is radiated from the surface side of the first insulating substrate (A).
 一方、第2絶縁性基板(B)の第1絶縁性基板(A)側の面に形成された第3電極(8)が第1電極(2)と接続されているため、その第3電極(8)が吸熱側電極となる。そして、第2絶縁性基板(B)において、第3電極(8)における第1絶縁性基板(A)側の面とそれとは反対の面とがスルーホール(7)によって接続されているため、第2絶縁性基板(B)の表面側から吸熱される。 On the other hand, since the third electrode (8) formed on the surface of the second insulating substrate (B) on the first insulating substrate (A) side is connected to the first electrode (2), the third electrode (8) is the endothermic electrode. In the second insulating substrate (B), the surface on the first insulating substrate (A) side of the third electrode (8) and the surface opposite thereto are connected by the through hole (7). Heat is absorbed from the surface side of the second insulating substrate (B).
 これにより、第1絶縁性基板(A)の一方の面から放熱し、第2絶縁性基板(B)の一方の面から吸熱する形式の熱電素子(22)を用いた熱交換器が実現される。つまり、第1絶縁性基板(A)及び第2絶縁性基板(B)において、対向する面を除く基板表面側において吸熱及び放熱が発生する。 Thereby, a heat exchanger using a thermoelectric element (22) of a type that radiates heat from one surface of the first insulating substrate (A) and absorbs heat from one surface of the second insulating substrate (B) is realized. The That is, in the first insulating substrate (A) and the second insulating substrate (B), heat absorption and heat dissipation occur on the substrate surface side excluding the opposing surfaces.
 吸熱及び放熱が発生すると、第1絶縁性基板(A)及び第2絶縁性基板(B)との間に温度差が発生し、吸熱側が収縮、放熱側が膨張するような熱変形が発生するが、第1絶縁性基板(A)と第2絶縁性基板(B)との間は中立面となり、熱変形が最も小さくなる。この第1絶縁性基板(A)と第2絶縁性基板(B)との間にのみ第1導電型熱電材料(5)及び第2導電型熱電材料(6)を薄膜形成するため、第1導電型熱電材料(5)及び第2導電型熱電材料(6)に作用する熱応力は小さく、熱電素子(22)のサイズを大きくしても熱応力が増加することが抑制される。 When heat absorption and heat dissipation occur, a temperature difference occurs between the first insulating substrate (A) and the second insulating substrate (B), and thermal deformation occurs such that the heat absorption side contracts and the heat dissipation side expands. A neutral surface is formed between the first insulating substrate (A) and the second insulating substrate (B), and thermal deformation is minimized. In order to form a first conductive thermoelectric material (5) and a second conductive thermoelectric material (6) in a thin film only between the first insulating substrate (A) and the second insulating substrate (B), The thermal stress acting on the conductive thermoelectric material (5) and the second conductive thermoelectric material (6) is small, and even if the size of the thermoelectric element (22) is increased, the increase in thermal stress is suppressed.
 また、薄膜形成された第1導電型熱電材料(5)及び第2導電型熱電材料(6)の面内方向に電流を流して温度差を生じさせるため、低温側から高温側までの距離が大きくなり、温度差が大きくなる。また、第1絶縁性基板(A)と第2絶縁性基板(B)との間に第1導電型熱電材料(5)及び第2導電型熱電材料(6)が設けられているため、第1導電型熱電材料(5)及び第2導電型熱電材料(6)を表面に設ける場合に比べて、曲げ力が作用したときでも第1導電型熱電材料(5)及び第2導電型熱電材料(6)に作用する引張応力又は圧縮応力が小さくなって、破損しにくくなる。 Moreover, since a current is caused to flow in the in-plane direction of the first conductive type thermoelectric material (5) and the second conductive type thermoelectric material (6) formed into a thin film to cause a temperature difference, the distance from the low temperature side to the high temperature side is The temperature difference increases. In addition, since the first conductive thermoelectric material (5) and the second conductive thermoelectric material (6) are provided between the first insulating substrate (A) and the second insulating substrate (B), Compared with the case where the first conductive thermoelectric material (5) and the second conductive thermoelectric material (6) are provided on the surface, the first conductive thermoelectric material (5) and the second conductive thermoelectric material even when bending force is applied. The tensile stress or compressive stress acting on (6) is reduced, making it difficult to break.
 また、例えば、ロール状に巻かれたフレキシブル基板に回路パターンを印刷し、別のロール状に巻かれた封止膜と貼り合わせてから再びロール状に巻き取る、いわゆるロール・ツー・ロール方式で熱電素子(22)を作製することができ、製造コストを大幅に低減することができる。 In addition, for example, in a so-called roll-to-roll method, a circuit pattern is printed on a flexible substrate wound in a roll shape, and is bonded to a sealing film wound in another roll shape and then wound again in a roll shape. A thermoelectric element (22) can be produced and the manufacturing cost can be greatly reduced.
 第2の発明は、第1の発明において、
 前記第1及び第2流体流路(21,25)のうち一方は、対象流体としての冷媒が流れる冷媒管(21)で構成され、他方は、対象流体としての空気と熱交換するフィン群(25)で構成されていることを特徴とするものである。
According to a second invention, in the first invention,
One of the first and second fluid flow paths (21, 25) is composed of a refrigerant pipe (21) through which a refrigerant as a target fluid flows, and the other is a group of fins that exchange heat with air as a target fluid ( 25).
 第2の発明では、第1及び第2流体流路(21,25)のうち一方が、対象流体としての冷媒が流れる冷媒管(21)で構成される。また、他方が、対象流体としての空気と熱交換するフィン群(25)で構成される。このような構成とすれば、例えば、冷媒管(21)側の面が加熱面(放熱面)となり、フィン群(25)側の面が冷却面(吸熱面)となると、冷媒管(21)を流れる冷媒が加熱される一方、フィン群(25)を流通する空気が冷却される。そして、この冷却された空気は利用側へ送られ、熱電素子(22)を用いた熱交換器が実現される。 In the second invention, one of the first and second fluid flow paths (21, 25) is constituted by a refrigerant pipe (21) through which a refrigerant as a target fluid flows. The other is composed of a fin group (25) that exchanges heat with air as the target fluid. With this configuration, for example, when the surface on the refrigerant tube (21) side becomes a heating surface (heat dissipating surface) and the surface on the fin group (25) side becomes a cooling surface (heat absorbing surface), the refrigerant tube (21) While the refrigerant flowing through is heated, the air flowing through the fin group (25) is cooled. And this cooled air is sent to the utilization side, and the heat exchanger using a thermoelectric element (22) is implement | achieved.
 第3の発明は、第2の発明において、
 前記熱電素子(22)は、前記冷媒管(21)を挟み込むように一対で設けられ、
 前記各熱電素子(22)の前記冷媒管(21)側とは反対側の面には、前記フィン群(25)が設けられていることを特徴とするものである。
According to a third invention, in the second invention,
The thermoelectric element (22) is provided in a pair so as to sandwich the refrigerant pipe (21),
The fin group (25) is provided on the surface of each thermoelectric element (22) opposite to the refrigerant pipe (21) side.
 第3の発明では、冷媒管(21)は、一対の熱電素子(22)で挟み込まれる。各熱電素子(22)の冷媒管(21)側とは反対側の面には、フィン群(25)が設けられる。このような構成とすれば、冷媒管(21)が一対の熱電素子(22)で挟まれているため、熱電素子が1つの場合に比べて、冷媒管(21)と熱電素子(22)との接触面積が多くなる。したがって、冷媒管(21)の冷媒に対する放熱作用及び吸熱作用が増す。一方、各熱電素子(22)にフィン群(25)が設けられているため、対象流体に対する吸熱作用及び放熱作用が増す。 In the third invention, the refrigerant pipe (21) is sandwiched between the pair of thermoelectric elements (22). A fin group (25) is provided on the surface of each thermoelectric element (22) opposite to the refrigerant pipe (21) side. With this configuration, since the refrigerant pipe (21) is sandwiched between the pair of thermoelectric elements (22), the refrigerant pipe (21) and the thermoelectric element (22) The contact area increases. Therefore, the heat radiation action and the heat absorption action of the refrigerant pipe (21) with respect to the refrigerant are increased. On the other hand, since the fin group (25) is provided in each thermoelectric element (22), the heat absorption effect and the heat radiation effect on the target fluid are increased.
 第4の発明は、第2の発明において、
 前記熱電素子(22)には、前記第1乃至第3電極(2,3,8)、並びに前記第1及び第2導電型熱電材料(5,6)で構成される帯状電極列(9)が、空気流通方向に互いに間隔をあけて複数設けられ、
 前記各帯状電極列(9)には、それぞれ異なる電流値の電流が供給されていることを特徴とするものである。
According to a fourth invention, in the second invention,
The thermoelectric element (22) includes the first to third electrodes (2, 3, 8) and a strip electrode array (9) composed of the first and second conductivity type thermoelectric materials (5, 6). Are provided at intervals in the air flow direction,
Each of the strip electrode rows (9) is supplied with currents having different current values.
 第4の発明では、熱電素子(22)には、空気流通方向に互いに間隔をあけて帯状電極列(9)が複数設けられる。この帯状電極列(9)は、第1乃至第3電極(2,3,8)、並びに第1及び第2導電型熱電材料(5,6)で構成され、各帯状電極列(9)には、それぞれ異なる電流値の電流が供給される。 In the fourth invention, the thermoelectric element (22) is provided with a plurality of strip electrode rows (9) spaced apart from each other in the air flow direction. This strip electrode array (9) is composed of first to third electrodes (2, 3, 8) and first and second conductivity type thermoelectric materials (5, 6), and each strip electrode array (9) Are supplied with currents having different current values.
 このような構成とすれば、各帯状電極列(9)における熱交換効率(COP)を最大化することができる。具体的に、熱電素子(22)では、空気流通方向の上流側の方が下流側に比べて空気と冷媒との温度差が大きくなっている。そのため、熱電素子(22)に供給する電流の電流値が一定の場合には、熱交換効率が低下してしまう。そこで、温度差の大きい上流側に配置された帯状電極列(9)に供給する電流値を大きくする一方、温度差の小さい下流側に配置された帯状電極列(9)に供給する電流値を小さくすることで、全ての帯状電極列(9)において熱交換効率を最大化することができる。 With such a configuration, the heat exchange efficiency (COP) in each strip electrode array (9) can be maximized. Specifically, in the thermoelectric element (22), the temperature difference between the air and the refrigerant is larger on the upstream side in the air flow direction than on the downstream side. Therefore, when the current value of the current supplied to the thermoelectric element (22) is constant, the heat exchange efficiency is lowered. Therefore, while increasing the current value supplied to the strip electrode array (9) arranged on the upstream side where the temperature difference is large, the current value supplied to the strip electrode array (9) arranged on the downstream side where the temperature difference is small By reducing the size, the heat exchange efficiency can be maximized in all the strip electrode arrays (9).
 第5の発明は、第2の発明において、
 前記熱電素子(22)には、前記第1乃至第3電極(2,3,8)、並びに前記第1及び第2導電型熱電材料(5,6)で構成される帯状電極列(9)が、空気流通方向に互いに間隔をあけて複数設けられ、
 前記各帯状電極列(9)は、電気的に直列に接続されていることを特徴とするものである。
According to a fifth invention, in the second invention,
The thermoelectric element (22) includes the first to third electrodes (2, 3, 8) and a strip electrode array (9) composed of the first and second conductivity type thermoelectric materials (5, 6). Are provided at intervals in the air flow direction,
Each of the strip electrode rows (9) is electrically connected in series.
 第5の発明では、熱電素子(22)には、空気流通方向に互いに間隔をあけて帯状電極列(9)が複数設けられる。この帯状電極列(9)は、第1乃至第3電極(2,3,8)、並びに第1及び第2導電型熱電材料(5,6)で構成され、各帯状電極列(9)は、電気的に直列に接続される。このような構成とすれば、各帯状電極列(9)を電気的に直列に接続して、薄膜形成された第1導電型熱電材料(5)及び第2導電型熱電材料(6)の面内方向に電流を流すことができる。 In the fifth invention, the thermoelectric element (22) is provided with a plurality of strip electrode arrays (9) spaced apart from each other in the air flow direction. This strip electrode array (9) is composed of first to third electrodes (2, 3, 8) and first and second conductivity type thermoelectric materials (5, 6). Each strip electrode array (9) , Electrically connected in series. With such a configuration, the strip electrode arrays (9) are electrically connected in series, and the surfaces of the first conductive thermoelectric material (5) and the second conductive thermoelectric material (6) formed into a thin film are formed. Current can flow inward.
 第6の発明は、第2の発明において、
 前記熱電素子(22)には、前記第1乃至第3電極(2,3,8)、並びに前記第1及び第2導電型熱電材料(5,6)で構成される帯状電極列(9)が、空気流通方向に互いに間隔をあけて複数設けられ、
 前記各帯状電極列(9)は、電気的に並列に接続されていることを特徴とするものである。
A sixth invention is the second invention, wherein:
The thermoelectric element (22) includes the first to third electrodes (2, 3, 8) and a strip electrode array (9) composed of the first and second conductivity type thermoelectric materials (5, 6). Are provided at intervals in the air flow direction,
Each of the strip electrode rows (9) is electrically connected in parallel.
 第6の発明では、熱電素子(22)には、空気流通方向に互いに間隔をあけて帯状電極列(9)が複数設けられる。この帯状電極列(9)は、第1乃至第3電極(2,3,8)、並びに第1及び第2導電型熱電材料(5,6)で構成され、各帯状電極列(9)は、電気的に並列に接続される。このような構成とすれば、各帯状電極列(9)を電気的に並列に接続して、薄膜形成された第1導電型熱電材料(5)及び第2導電型熱電材料(6)の面内方向に電流を流すことができる。 In the sixth invention, the thermoelectric element (22) is provided with a plurality of strip electrode rows (9) spaced apart from each other in the air flow direction. This strip electrode array (9) is composed of first to third electrodes (2, 3, 8) and first and second conductivity type thermoelectric materials (5, 6). Each strip electrode array (9) Electrically connected in parallel. With such a configuration, the strip electrode arrays (9) are electrically connected in parallel, and the surfaces of the first conductive thermoelectric material (5) and the second conductive thermoelectric material (6) formed into a thin film are formed. Current can flow inward.
 第7の発明は、第4乃至第6の発明のうち何れか1つにおいて、
 前記各帯状電極列(9)は、空気流通方向の上流側と下流側とで前記第1及び第2導電型熱電材料(5,6)の幅が異なっていることを特徴とするものである。
In a seventh aspect based on any one of the fourth to sixth aspects,
Each strip electrode array (9) is characterized in that the widths of the first and second conductivity type thermoelectric materials (5, 6) are different between the upstream side and the downstream side in the air flow direction. .
 第7の発明では、各帯状電極列(9)の第1及び第2導電型熱電材料(5,6)の幅が、空気流通方向の上流側と下流側とで異なる。このような構成とすれば、各帯状電極列(9)における熱交換効率(COP)を最大化することができる。 In the seventh invention, the widths of the first and second conductivity type thermoelectric materials (5, 6) of each strip electrode array (9) are different between the upstream side and the downstream side in the air flow direction. With such a configuration, the heat exchange efficiency (COP) in each strip electrode array (9) can be maximized.
 具体的に、熱電素子(22)では、空気流通方向の上流側の方が下流側に比べて空気と冷媒との温度差が大きくなっている。そのため、熱電素子(22)に供給する電流の電流値が一定の場合には、熱交換効率が低下してしまう。ここで、第1及び第2導電型熱電材料(5,6)には、その幅を狭くするほど熱交換効率が最大となる電流が大きくなるという特徴がある。そこで、これを利用して、温度差の大きい上流側に配置された帯状電極列(9)の第1及び第2導電型熱電材料(5,6)の幅を広くする一方、温度差の小さい下流側に配置された帯状電極列(9)の第1及び第2導電型熱電材料(5,6)の幅を狭くすることで、全ての帯状電極列(9)において熱交換効率を最大化することができる。 Specifically, in the thermoelectric element (22), the temperature difference between the air and the refrigerant is larger on the upstream side in the air flow direction than on the downstream side. Therefore, when the current value of the current supplied to the thermoelectric element (22) is constant, the heat exchange efficiency is lowered. Here, the first and second conductivity type thermoelectric materials (5, 6) are characterized in that the current that maximizes the heat exchange efficiency increases as the width decreases. Therefore, by utilizing this, the width of the first and second conductivity type thermoelectric materials (5, 6) of the strip electrode array (9) arranged on the upstream side where the temperature difference is large is widened while the temperature difference is small. Narrowing the width of the first and second conductivity type thermoelectric materials (5, 6) of the strip electrode array (9) arranged on the downstream side maximizes the heat exchange efficiency in all strip electrode arrays (9) can do.
 第8の発明は、第4乃至第6の発明のうち何れか1つにおいて、
 前記各帯状電極列(9)は、空気流通方向の上流側と下流側とで前記第1及び第2導電型熱電材料(5,6)の厚みが異なっていることを特徴とするものである。
According to an eighth invention, in any one of the fourth to sixth inventions,
Each of the strip electrode arrays (9) is characterized in that the thicknesses of the first and second conductivity type thermoelectric materials (5, 6) are different between the upstream side and the downstream side in the air flow direction. .
 第8の発明では、各帯状電極列(9)の第1及び第2導電型熱電材料(5,6)の厚みが、空気流通方向の上流側と下流側とで異なる。このような構成とすれば、各帯状電極列(9)における熱交換効率(COP)を最大化することができる。具体的に、第1及び第2導電型熱電材料(5,6)には、その厚みが厚くなるほど熱交換効率が最大となる電流が大きくなるという特徴があるから、温度差の大きい上流側に配置された帯状電極列(9)の第1及び第2導電型熱電材料(5,6)の厚みを薄くする一方、温度差の小さい下流側に配置された帯状電極列(9)の第1及び第2導電型熱電材料(5,6)の厚みを厚くすることで、全ての帯状電極列(9)において熱交換効率を最大化することができる。 In the eighth invention, the thicknesses of the first and second conductivity type thermoelectric materials (5, 6) of each strip electrode array (9) are different between the upstream side and the downstream side in the air flow direction. With such a configuration, the heat exchange efficiency (COP) in each strip electrode array (9) can be maximized. Specifically, the first and second conductivity type thermoelectric materials (5, 6) are characterized by the fact that the current that maximizes the heat exchange efficiency increases as the thickness increases. The first and second conductivity type thermoelectric materials (5, 6) of the arranged strip electrode array (9) are made thin, while the first of the strip electrode array (9) arranged on the downstream side with a small temperature difference. Further, by increasing the thickness of the second conductivity type thermoelectric material (5, 6), the heat exchange efficiency can be maximized in all the strip electrode arrays (9).
 第9の発明は、第4乃至第6の発明のうち何れか1つにおいて、
 前記各帯状電極列(9)は、空気流通方向の上流側と下流側とで前記第1及び第2導電型熱電材料(5,6)の数量が異なっていることを特徴とするものである。
According to a ninth invention, in any one of the fourth to sixth inventions,
Each of the strip electrode arrays (9) is characterized in that the number of the first and second conductivity type thermoelectric materials (5, 6) is different between the upstream side and the downstream side in the air flow direction. .
 第9の発明では、各帯状電極列(9)の第1及び第2導電型熱電材料(5,6)の数量が、空気流通方向の上流側と下流側とで異なる。このような構成とすれば、各帯状電極列(9)における熱交換効率(COP)を最大化することができる。具体的に、第1及び第2導電型熱電材料(5,6)の数量を多くするほど熱交換効率が最大となる電圧が大きくなるから、温度差の大きい上流側に配置された帯状電極列(9)の第1及び第2導電型熱電材料(5,6)の数量を少なくする一方、温度差の小さい下流側に配置された帯状電極列(9)の第1及び第2導電型熱電材料(5,6)の数量を多くすることで、全ての帯状電極列(9)において熱交換効率を最大化することができる。 In the ninth invention, the number of the first and second conductivity type thermoelectric materials (5, 6) in each strip electrode array (9) is different between the upstream side and the downstream side in the air flow direction. With such a configuration, the heat exchange efficiency (COP) in each strip electrode array (9) can be maximized. Specifically, as the quantity of the first and second conductivity type thermoelectric materials (5, 6) is increased, the voltage at which the heat exchange efficiency is maximized increases. Therefore, the strip electrode array arranged on the upstream side having a large temperature difference. While reducing the quantity of the first and second conductivity type thermoelectric materials (5, 6) of (9), the first and second conductivity type thermoelectrics of the strip electrode array (9) arranged on the downstream side with a small temperature difference By increasing the quantity of the materials (5, 6), the heat exchange efficiency can be maximized in all the strip electrode arrays (9).
 本発明によれば、第1絶縁性基板(A)の一方の面から放熱し、第2絶縁性基板(B)の一方の面から吸熱する形式の熱電素子(22)を用いた熱交換器が実現される。つまり、第1絶縁性基板(A)及び第2絶縁性基板(B)において、対向する面を除く基板表面側において吸熱及び放熱が発生する。 According to the present invention, a heat exchanger using a thermoelectric element (22) of a type that radiates heat from one surface of the first insulating substrate (A) and absorbs heat from one surface of the second insulating substrate (B). Is realized. That is, in the first insulating substrate (A) and the second insulating substrate (B), heat absorption and heat dissipation occur on the substrate surface side excluding the opposing surfaces.
 このように、第1絶縁性基板(A)と第2絶縁性基板(B)との間にのみ第1導電型熱電材料(5)及び第2導電型熱電材料(6)を薄膜形成するため、熱電素子(22)のサイズを大きくしても、第1導電型熱電材料(5)及び第2導電型熱電材料(6)に作用する熱応力が増加することが抑制される。また、薄膜形成された第1導電型熱電材料(5)及び第2導電型熱電材料(6)の面内方向に電流を流して温度差を生じさせるため、低温側から高温側までの距離が大きくなり、温度差が大きくなる。また、第1絶縁性基板(A)と第2絶縁性基板(B)との間に第1導電型熱電材料(5)及び第2導電型熱電材料(6)が設けられているため、第1導電型熱電材料(5)及び第2導電型熱電材料(6)を表面に設ける場合に比べて、曲げ力が作用したときでも第1導電型熱電材料(5)及び第2導電型熱電材料(6)に作用する引張応力又は圧縮応力が小さくなって、破損しにくくなる。 Thus, in order to form the first conductive thermoelectric material (5) and the second conductive thermoelectric material (6) in a thin film only between the first insulating substrate (A) and the second insulating substrate (B). Even if the size of the thermoelectric element (22) is increased, an increase in thermal stress acting on the first conductivity type thermoelectric material (5) and the second conductivity type thermoelectric material (6) is suppressed. Moreover, since a current is caused to flow in the in-plane direction of the first conductive type thermoelectric material (5) and the second conductive type thermoelectric material (6) formed into a thin film to cause a temperature difference, the distance from the low temperature side to the high temperature side is The temperature difference increases. In addition, since the first conductive thermoelectric material (5) and the second conductive thermoelectric material (6) are provided between the first insulating substrate (A) and the second insulating substrate (B), Compared with the case where the first conductive thermoelectric material (5) and the second conductive thermoelectric material (6) are provided on the surface, the first conductive thermoelectric material (5) and the second conductive thermoelectric material even when bending force is applied. The tensile stress or compressive stress acting on (6) is reduced, making it difficult to break.
 また、第1乃至第3電極(2,3,8)、並びに第1及び第2導電型熱電材料(5,6)で構成される帯状電極列(9)を空気流通方向に互いに間隔をあけて複数設け、各帯状電極列(9)に供給する電流の電流値を変更したり、各帯状電極列(9)の第1及び第2導電型熱電材料(5,6)の幅、厚み、数量等をそれぞれ変更することで、各帯状電極列(9)における熱交換効率(COP)を最大化することができる。 The first to third electrodes (2, 3, 8) and the strip electrode array (9) composed of the first and second conductivity type thermoelectric materials (5, 6) are spaced apart from each other in the air flow direction. And change the current value of the current supplied to each strip electrode row (9), the width and thickness of the first and second conductivity type thermoelectric materials (5, 6) of each strip electrode row (9), By changing the quantity and the like, the heat exchange efficiency (COP) in each strip electrode array (9) can be maximized.
図1は、本発明の実施形態1に係る熱交換器の構成を概略的に示す正面図である。FIG. 1 is a front view schematically showing a configuration of a heat exchanger according to Embodiment 1 of the present invention. 図2(a)は熱交換器の縦断面図、図2(b)は図2(a)のX-X断面図である。2A is a longitudinal sectional view of the heat exchanger, and FIG. 2B is a sectional view taken along line XX of FIG. 2A. 図3は、図2(a)のY-Y断面図である。FIG. 3 is a YY cross-sectional view of FIG. 図4は、熱電素子の絶縁性基板間における横断面図である。FIG. 4 is a cross-sectional view between the insulating substrates of the thermoelectric element. 図5は、熱電素子の構成を示す平面図である。FIG. 5 is a plan view showing the configuration of the thermoelectric element. 図6は、熱電素子の構成を示す縦断面図である。FIG. 6 is a longitudinal sectional view showing the configuration of the thermoelectric element. 図7(a)は電流値と温度差に対する最大COPの変化を示すグラフ図、図7(b)は本実施形態2に係る熱電素子の構成を示す平面図である。FIG. 7A is a graph showing the change in the maximum COP with respect to the current value and the temperature difference, and FIG. 7B is a plan view showing the configuration of the thermoelectric element according to the second embodiment. 図8(a)は熱電材料の形状に対する最大COPの変化を示すグラフ図、図8(b)は本実施形態3に係る熱電素子の図7(b)相当図である。FIG. 8A is a graph showing a change in the maximum COP with respect to the shape of the thermoelectric material, and FIG. 8B is a diagram corresponding to FIG. 7B of the thermoelectric element according to the third embodiment. 図9(a)は熱電材料の数量に対する最大COPの変化を示すグラフ図、図9(b)は本実施形態4に係る熱電素子の図7(b)相当図である。FIG. 9A is a graph showing the change in the maximum COP with respect to the number of thermoelectric materials, and FIG. 9B is a diagram corresponding to FIG. 7B of the thermoelectric element according to the fourth embodiment. 図10は、従来の熱電素子の構成を示す縦断面図である。FIG. 10 is a longitudinal sectional view showing a configuration of a conventional thermoelectric element.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
 《実施形態1》
 図1は、本発明の実施形態1に係る熱交換器の構成を概略的に示す正面図、図2は熱交換器の構成を示す断面図、図3は図2のY-Y断面図である。図1~図3に示すように、この熱交換器(10)は、対象流体として空気(以下、対象空気という)を冷却する気体冷却器であり、複数の熱交換モジュール(20)と、入口側ヘッダ(35)と、出口側ヘッダ(36)とを備えている。
Embodiment 1
1 is a front view schematically showing the configuration of a heat exchanger according to Embodiment 1 of the present invention, FIG. 2 is a sectional view showing the configuration of a heat exchanger, and FIG. 3 is a YY sectional view of FIG. is there. As shown in FIGS. 1 to 3, the heat exchanger (10) is a gas cooler that cools air as a target fluid (hereinafter referred to as target air), and includes a plurality of heat exchange modules (20), an inlet, A side header (35) and an outlet side header (36) are provided.
 前記熱交換モジュール(20)は、冷媒が流れる冷媒管としてのマイクロチャネル(21)と、マイクロチャネル(21)を挟み込むように配置された一対の熱電素子(22)と、一対のフィン群(25)とを備えている。なお、マイクロチャネル(21)は、本発明に係る第1流体流路部材を構成している。フィン群(25)は、本発明に係る第2流体流路部材を構成している。 The heat exchange module (20) includes a microchannel (21) as a refrigerant tube through which a refrigerant flows, a pair of thermoelectric elements (22) disposed so as to sandwich the microchannel (21), and a pair of fin groups (25 ). The microchannel (21) constitutes the first fluid flow path member according to the present invention. The fin group (25) constitutes a second fluid flow path member according to the present invention.
 前記マイクロチャネル(21)は、内部に複数の微小流路(21a)を有する多孔扁平管で構成されている。このマイクロチャネル(21)は、対象空気の流通方向に扁平な矩形体に形成されている。また、マイクロチャネル(21)は、微小流路(21a)が対象空気の流通方向に一列に並ぶように形成されている。 The microchannel (21) is composed of a porous flat tube having a plurality of microchannels (21a) inside. The microchannel (21) is formed in a rectangular body that is flat in the flow direction of the target air. The microchannel (21) is formed so that the microchannels (21a) are arranged in a line in the flow direction of the target air.
 前記熱電素子(22)は、マイクロチャネル(21)の長手方向(すなわち、図1や図2(a)における上下方向)に延びる帯状に形成されている。そして、各熱電素子(22)は、マイクロチャネル(21)をその扁平面側から挟み込むように配置されている。この熱電素子(22)の詳細な構成については後述する。 The thermoelectric element (22) is formed in a strip shape extending in the longitudinal direction of the microchannel (21) (that is, the vertical direction in FIG. 1 and FIG. 2 (a)). Each thermoelectric element (22) is arranged so as to sandwich the microchannel (21) from the flat surface side. The detailed configuration of the thermoelectric element (22) will be described later.
 前記各熱電素子(22)は、マイクロチャネル(21)よりも長さが短く、マイクロチャネル(21)の両端部以外で重なっている。つまり、マイクロチャネル(21)の両端部には熱電素子(22)が重なっていない。さらに、各熱電素子(22)の幅は、マイクロチャネル(21)の幅と略等しい(マイクロチャネル(21)の幅の方が僅かに長い)。 The thermoelectric elements (22) are shorter in length than the microchannel (21) and overlap at other than both ends of the microchannel (21). That is, the thermoelectric element (22) does not overlap at both ends of the microchannel (21). Furthermore, the width of each thermoelectric element (22) is substantially equal to the width of the microchannel (21) (the width of the microchannel (21) is slightly longer).
 前記フィン群(25)は、各熱電素子(22)のマイクロチャネル(21)側とは反対側の扁平面に設けられている。各フィン群(25)は、熱電素子(22)に接するベース板(24)と、ベース板(24)に設けられて流通する空気との間で熱交換を行う複数の放熱フィン(27)とで形成された、いわゆるコルゲートフィンにより構成されている。なお、コルゲートフィンは、一般に、フィン厚さが薄く、フィン高さが低く、フィンピッチが狭い。 The fin group (25) is provided on a flat surface opposite to the microchannel (21) side of each thermoelectric element (22). Each fin group (25) includes a base plate (24) in contact with the thermoelectric element (22) and a plurality of heat dissipating fins (27) that exchange heat between the air provided in the base plate (24) and flowing therethrough. It is comprised by what is called a corrugated fin formed by. Note that corrugated fins generally have a small fin thickness, a low fin height, and a narrow fin pitch.
 そして、前記フィン群(25)は、ベース板(24)の放熱フィン(27)側とは反対側の面が熱電素子(22)の扁平面に接着されている。ベース板(24)の長さ、すなわちフィン群(25)の長さは、マイクロチャネル(21)の長さよりも短く、熱電素子(22)の長さよりも若干長い。ベース板(24)の幅、すなわちフィン群(25)の幅は、熱電素子(22)の幅よりも長い。 The fin group (25) has a surface opposite to the heat dissipating fin (27) side of the base plate (24) bonded to the flat surface of the thermoelectric element (22). The length of the base plate (24), that is, the length of the fin group (25) is shorter than the length of the microchannel (21) and slightly longer than the length of the thermoelectric element (22). The width of the base plate (24), that is, the width of the fin group (25) is longer than the width of the thermoelectric element (22).
 前記フィン群(25)のベース板(24)の空気流通方向における端縁部及び長手方向における端縁部には、それぞれシール材(26)が充填されており、マイクロチャネル(21)とベース板(24)との隙間が塞がれている。 The end plate in the air flow direction and the end plate in the longitudinal direction of the base plate (24) of the fin group (25) are respectively filled with the sealing material (26), and the microchannel (21) and the base plate The gap with (24) is blocked.
 前記熱交換モジュール(20)では、マイクロチャネル(21)と熱電素子(22)とが接着剤によって接合されている。また、熱電素子(22)とフィン群(25)のベース板(24)とが接着剤によって接合されている。ここで、接着剤は熱伝導型のものが用いられる。これにより、マイクロチャネル(21)と熱電素子(22)とフィン群(25)とが一体に形成されて熱交換モジュール(20)を構成している。そして、熱交換モジュール(20)が対象空気の流通方向に直交する方向に複数並列されている。 In the heat exchange module (20), the microchannel (21) and the thermoelectric element (22) are joined by an adhesive. Further, the thermoelectric element (22) and the base plate (24) of the fin group (25) are joined together by an adhesive. Here, a heat conductive type adhesive is used. Accordingly, the microchannel (21), the thermoelectric element (22), and the fin group (25) are integrally formed to constitute the heat exchange module (20). A plurality of heat exchange modules (20) are juxtaposed in a direction orthogonal to the flow direction of the target air.
 前記入口側ヘッダ(35)及び出口側ヘッダ(36)は、何れも対象空気の流通方向に直交する方向に延びる円形管で構成されている。入口側ヘッダ(35)は、各熱交換モジュール(20)のマイクロチャネル(21)の入口端である一端側(図2(a)の上側)に接続されている。出口側ヘッダ(36)は、各熱交換モジュール(20)のマイクロチャネル(21)の出口端である他端側(図2(a)の下側)に接続されている。マイクロチャネル(21)の入口端及び出口端は、入口側ヘッダ(35)及び出口側ヘッダ(36)の内部に突出して開口している。つまり、各熱交換モジュール(20)が入口側ヘッダ(35)及び出口側ヘッダ(36)に対して並列に接続されている。 The inlet-side header (35) and the outlet-side header (36) are both constituted by circular tubes extending in a direction orthogonal to the flow direction of the target air. The inlet side header (35) is connected to one end side (the upper side of FIG. 2A) which is the inlet end of the microchannel (21) of each heat exchange module (20). The outlet side header (36) is connected to the other end side (the lower side of FIG. 2A) which is the outlet end of the microchannel (21) of each heat exchange module (20). The inlet end and the outlet end of the microchannel (21) protrude and open into the inlet header (35) and the outlet header (36). That is, each heat exchange module (20) is connected in parallel to the inlet side header (35) and the outlet side header (36).
 なお、図示しないが、入口側ヘッダ(35)には外部から冷媒が流入する冷媒流入口が、出口側ヘッダ(36)には外部へ冷媒が流出する冷媒流出口がそれぞれ設けられている。 Although not shown, the inlet header (35) is provided with a refrigerant inlet through which refrigerant flows from the outside, and the outlet header (36) is provided with a refrigerant outlet through which refrigerant flows out.
 前記入口側ヘッダ(35)は、外部から流入した冷媒が各熱交換モジュール(20)のマイクロチャネル(21)の微小流路(21a)へ分配流入するように構成されている。出口側ヘッダ(36)は、各マイクロチャネル(21)の微小流路(21a)から流出した冷媒が合流して外部へ流出するように構成されている。 The inlet-side header (35) is configured so that the refrigerant flowing from the outside is distributed and flows into the micro flow path (21a) of the micro channel (21) of each heat exchange module (20). The outlet header (36) is configured such that the refrigerant that has flowed out of the microchannels (21a) of the microchannels (21) merges and flows out.
 そして、前記入口側ヘッダ(35)及び出口側ヘッダ(36)の両端開口には、蓋(35a,36a)が取り付けられている。また、熱交換器(10)は、入口側ヘッダ(35)及び出口側ヘッダ(36)の蓋(35a,36a)に取り付けられる側板(37)を備えている。つまり、この側板(37)は、空気の流通方向から見て熱交換器(10)の右側片及び左側片を構成している。なお、この熱交換器(10)では、フィン群(25)の隙間が空気流通部(16)を構成している。 And the lid | cover (35a, 36a) is attached to the both-ends opening of the said inlet side header (35) and the outlet side header (36). Further, the heat exchanger (10) includes a side plate (37) attached to the lids (35a, 36a) of the inlet side header (35) and the outlet side header (36). That is, the side plate (37) constitutes the right side piece and the left side piece of the heat exchanger (10) when viewed from the air flow direction. In the heat exchanger (10), the gap between the fin groups (25) constitutes the air circulation part (16).
 また、前記熱交換器(10)には、ヘッダ用断熱材(31)と、側板用断熱材(32)と、管用断熱材(33)とが設けられている。具体的に、入口側ヘッダ(35)及び出口側ヘッダ(36)の外周面にはヘッダ用断熱材(31)が巻かれている。また、側板(37)の内側面(すなわち、空気流通部(16)に接する面)には側板用断熱材(32)が取り付けられている。また、対象空気の流通方向における熱電素子(22)の前面側(図3における下側)と後面側(図3における上側)に管用断熱材(33)が設けられている。つまり、マイクロチャネル(21)及び熱電素子(22)の前面及び後面が管用断熱材(33)によって覆われて対象空気に触れないようになっている。 The heat exchanger (10) is provided with a header heat insulating material (31), a side plate heat insulating material (32), and a pipe heat insulating material (33). Specifically, a header heat insulating material (31) is wound around the outer peripheral surfaces of the inlet header (35) and the outlet header (36). A side plate heat insulating material (32) is attached to the inner side surface of the side plate (37) (that is, the surface in contact with the air circulation part (16)). Moreover, the heat insulating material for pipes (33) is provided in the front side (lower side in FIG. 3) and the rear side (upper side in FIG. 3) of the thermoelectric element (22) in the distribution direction of the target air. That is, the front surface and the rear surface of the microchannel (21) and the thermoelectric element (22) are covered with the heat insulating material for pipe (33) so as not to touch the target air.
 -熱電素子の構成-
 図4は、熱電素子の絶縁性基板間における横断面図、図5は平面図、図6は縦断面図である。図4~図6に示すように、熱電素子(22)は、第1絶縁性基板(A)と第2絶縁性基板(B)とが積層されて構成されている。
-Thermoelectric element configuration-
4 is a cross-sectional view between the insulating substrates of the thermoelectric element, FIG. 5 is a plan view, and FIG. 6 is a vertical cross-sectional view. As shown in FIGS. 4 to 6, the thermoelectric element (22) is formed by laminating a first insulating substrate (A) and a second insulating substrate (B).
 前記第1絶縁性基板(A)の上面には、吸熱側電極(2)、放熱側電極(3)、p型熱電材料(5)及びn型熱電材料(6)がそれぞれ細帯状に且つ複数形成されている。これらは放熱側電極(3)、n型熱電材料(6)、吸熱側電極(2)、p型熱電材料(5)、放熱側電極(3)、・・・、p型熱電材料(5)、放熱側電極(3)の順に配置されて、帯状電極列(9)を構成している。この帯状電極列(9)の両端の放熱側電極(3)には、電線(17,18)が接続されている。p型熱電材料(5)及びn型熱電材料(6)の各々は、両隣の各電極(2,3)に接するように蒸着等の方法により薄膜状に形成されている。 A plurality of heat absorption side electrodes (2), heat radiation side electrodes (3), p-type thermoelectric materials (5) and n-type thermoelectric materials (6) are formed on the upper surface of the first insulative substrate (A) in a strip shape. Is formed. These are the heat dissipation side electrode (3), n-type thermoelectric material (6), heat absorption side electrode (2), p type thermoelectric material (5), heat dissipation side electrode (3), ..., p type thermoelectric material (5) The heat radiation side electrodes (3) are arranged in this order to form a strip electrode array (9). Electric wires (17, 18) are connected to the heat radiation side electrodes (3) at both ends of the strip electrode array (9). Each of the p-type thermoelectric material (5) and the n-type thermoelectric material (6) is formed into a thin film by a method such as vapor deposition so as to be in contact with the adjacent electrodes (2, 3).
 このように、前記第1絶縁性基板(A)と第2絶縁性基板(B)との間にp型熱電材料(5)及びn型熱電材料(6)を設ける(すなわちp型熱電材料(5)及びn型熱電材料(6)を第1絶縁性基板(A)と第2絶縁性基板(B)とで挟み込む)ようにしたので、熱電素子(22)のサイズを大きくしても、p型熱電材料(5)及びn型熱電材料(6)に作用する熱応力が増加することが抑制される。また、曲げ力が作用したときでもp型熱電材料(5)及びn型熱電材料(6)に作用する引張応力又は圧縮応力が小さくなる。したがって、p型熱電材料(5)及びn型熱電材料(6)が破損してしまうことを抑制でき、信頼性の高い熱電素子(22)を提供することができる。 Thus, the p-type thermoelectric material (5) and the n-type thermoelectric material (6) are provided between the first insulating substrate (A) and the second insulating substrate (B) (that is, the p-type thermoelectric material ( 5) and the n-type thermoelectric material (6) are sandwiched between the first insulating substrate (A) and the second insulating substrate (B)), so even if the size of the thermoelectric element (22) is increased, An increase in thermal stress acting on the p-type thermoelectric material (5) and the n-type thermoelectric material (6) is suppressed. Further, even when a bending force is applied, the tensile stress or compressive stress acting on the p-type thermoelectric material (5) and the n-type thermoelectric material (6) is reduced. Therefore, the p-type thermoelectric material (5) and the n-type thermoelectric material (6) can be prevented from being damaged, and a highly reliable thermoelectric element (22) can be provided.
 前記第1絶縁性基板(A)の両面には、細帯状の複数の放熱側電極(3)が形成されている(図5参照)。第1絶縁性基板(A)の上面に形成された放熱側電極(3)の各々は、スルーホール(7)によって、第1絶縁性基板(A)の下面の対応する放熱側電極(3)に接続されている。スルーホール(7)は、例えば基板(A)に形成された孔をペーストで埋める等により形成される。 A plurality of strip-shaped heat radiation side electrodes (3) are formed on both surfaces of the first insulating substrate (A) (see FIG. 5). Each of the heat dissipating side electrodes (3) formed on the upper surface of the first insulating substrate (A) is connected to the corresponding heat dissipating side electrode (3) on the lower surface of the first insulating substrate (A) by a through hole (7). It is connected to the. The through hole (7) is formed, for example, by filling a hole formed in the substrate (A) with a paste.
 なお、前記吸熱側電極(2)は、本発明に係る第1電極を構成している。放熱側電極(3)は、本発明に係る第2電極を構成している。p型熱電材料(5)及びn型熱電材料(6)は、それぞれ本発明に係る第1導電型熱電材料及び第2導電型熱電材料を構成している。 In addition, the said heat absorption side electrode (2) comprises the 1st electrode which concerns on this invention. The heat radiation side electrode (3) constitutes the second electrode according to the present invention. The p-type thermoelectric material (5) and the n-type thermoelectric material (6) constitute the first conductivity type thermoelectric material and the second conductivity type thermoelectric material according to the present invention, respectively.
 一方、前記第2絶縁性基板(B)の両面には、細帯状の複数の吸熱側電極(8)が形成されている(図4及び図5参照)。第2絶縁性基板(B)の上面に形成された吸熱側電極(8)の各々は、スルーホール(7)によって、第2絶縁性基板(B)の下面の対応する吸熱側電極(8)に接続されている。 On the other hand, a plurality of strip-like heat absorption side electrodes (8) are formed on both surfaces of the second insulating substrate (B) (see FIGS. 4 and 5). Each of the heat absorption side electrodes (8) formed on the upper surface of the second insulating substrate (B) is provided with a corresponding heat absorption side electrode (8) on the lower surface of the second insulating substrate (B) by a through hole (7). It is connected to the.
 そして、第2絶縁性基板(B)の下面に形成された吸熱側電極(8)は、第1絶縁性基板(A)の上面に形成された吸熱側電極(2)に接合層(12)を介して接続されている。接合層(12)は、伝熱性が必要であり、半田等の導電性材料の他に、導電性を有しない熱伝導性の接着剤等であってもよい。導電性を有しない材料を用いた場合、基板(B)の各吸熱側電極(8)及びスルーホール(7)には電流は流れず、熱のみが流れることとなる。なお、吸熱側電極(8)は、本発明に係る第3電極を構成している。 The heat absorption side electrode (8) formed on the lower surface of the second insulating substrate (B) is bonded to the heat absorption side electrode (2) formed on the upper surface of the first insulating substrate (A). Connected through. The bonding layer (12) needs to have heat conductivity, and may be a heat conductive adhesive or the like having no conductivity in addition to a conductive material such as solder. When a non-conductive material is used, no current flows through each heat absorption side electrode (8) and through hole (7) of the substrate (B), and only heat flows. In addition, the heat absorption side electrode (8) comprises the 3rd electrode which concerns on this invention.
 前記第1絶縁性基板(A)及び第2絶縁性基板(B)については絶縁性で且つ断熱性の高いものが望ましい。これは放熱側(高温側)から吸熱側(低温側)への熱漏れを防ぐためである。例えば、ガラス、樹脂及び発泡樹脂等を用いることが考えられる。 The first insulating substrate (A) and the second insulating substrate (B) are preferably insulative and highly heat-insulating. This is to prevent heat leakage from the heat dissipation side (high temperature side) to the heat absorption side (low temperature side). For example, it is conceivable to use glass, resin, foamed resin, or the like.
 前記各電極(2,3,8)は、電気抵抗が小さく熱伝導率が高い材料(例えば、銅やアルミ等)で形成されることが望ましい。また、p型熱電材料(5)及びn型熱電材料(6)との接合を良好にしたり、耐久性を上げるために、各電極(2,3,8)にはニッケルや金等のメッキを施すことが望ましい。 The electrodes (2, 3, 8) are preferably formed of a material having low electrical resistance and high thermal conductivity (for example, copper, aluminum, etc.). Also, in order to improve the bonding with the p-type thermoelectric material (5) and n-type thermoelectric material (6) and to increase the durability, the electrodes (2, 3, 8) are plated with nickel or gold. It is desirable to apply.
 また、図6に示すように、前記第1絶縁性基板(A)には、絶縁層(11)を介して放熱側伝熱板(13)が設けられている。一方、第2絶縁性基板(B)には、絶縁層(11)を介して吸熱側伝熱板(14)が設けられている。また、第2絶縁性基板(B)の下面には、p型熱電材料(5)と、n型熱電材料(6)及び放熱側電極(3)との間の熱伝導を避けるために、溝状の空間(15)が形成されている。空間(15)の内部は熱伝導を小さくするために、真空又は熱伝導率の低いガス(フロン、キセノン等)を封入することが望ましい。 Further, as shown in FIG. 6, the first insulating substrate (A) is provided with a heat radiation side heat transfer plate (13) through an insulating layer (11). On the other hand, a heat absorption side heat transfer plate (14) is provided on the second insulating substrate (B) via an insulating layer (11). Further, a groove is formed on the lower surface of the second insulating substrate (B) to avoid heat conduction between the p-type thermoelectric material (5), the n-type thermoelectric material (6), and the heat radiation side electrode (3). A shaped space (15) is formed. In order to reduce heat conduction, it is desirable to enclose a vacuum or a gas having low heat conductivity (such as chlorofluorocarbon or xenon) in the space (15).
 前記熱電素子(22)では、放熱側電極(3)間に電線(17,18)によって電流を流すことにより、各吸熱側電極(2)と各熱電材料(5,6)との界面において吸熱が発生し、各放熱側電極(3)と各熱電材料(5,6)との界面において放熱が発生する。その結果、各熱電材料(5,6)の両端には、それに相当した温度差が生じる。 The thermoelectric element (22) absorbs heat at the interface between each endothermic electrode (2) and each thermoelectric material (5,6) by passing a current through the electric wire (17,18) between the endothermic electrodes (3). Is generated, and heat is generated at the interface between each heat radiation side electrode (3) and each thermoelectric material (5, 6). As a result, a temperature difference corresponding to both ends of each thermoelectric material (5, 6) occurs.
 このように、薄膜形成された熱電材料(5,6)の面内方向に電流を流して温度差を生じさせるため、低温側から高温側までの距離を大きくすることができ、温度差を大きく取ることができる。具体的に、各熱電材料(5,6)の厚みをt、幅をW(図4参照)、長さをL(図6参照)、各電極(2,3)との接合部分の長さをLc(図6参照)として説明すると、電流は薄膜の面内方向に流れるため、温度差も面内方向に付くことになり、薄膜であってもLを大きく取れるため、温度差を大きく取ることができる。また、tに比べWを極端に大きく(例えば、1000倍程度)、Lをtの例えば10倍程度とすることにより、素子の形状因子(L/tW)を通常のペルチェモジュールと同等にすることができる。したがって、通常のペルチェモジュールと同様の特性(抵抗、吸熱量、効率等)を得ることができる。さらに、tを10μm程度の薄膜とし、tに比べWを極端に大きく(例えば、1000倍程度)、Lをtの例えば10倍程度とすることにより、熱電材料の体積(LtW)を通常のペルチェモジュールに使用される熱電材料の体積の1/100程度に減らすことができる。これにより、省資源によるコストダウン、環境適合性が大幅に向上する。 In this way, current flows in the in-plane direction of the thermoelectric material (5, 6) formed into a thin film to generate a temperature difference, so the distance from the low temperature side to the high temperature side can be increased, and the temperature difference is increased. Can be taken. Specifically, the thickness of each thermoelectric material (5, 6) is t, the width is W (see FIG. 4), the length is L (see FIG. 6), and the length of the junction with each electrode (2, 3). As Lc (see FIG. 6), since the current flows in the in-plane direction of the thin film, the temperature difference is also applied in the in-plane direction. be able to. In addition, by making W significantly larger than t (for example, about 1000 times) and L being about 10 times t, for example, the element form factor (L / tW) can be made equivalent to that of a normal Peltier module. Can do. Therefore, characteristics (resistance, heat absorption, efficiency, etc.) similar to those of a normal Peltier module can be obtained. Furthermore, by making t a thin film of about 10 μm, W is extremely larger than t (for example, about 1000 times), and L is about 10 times t, for example, the volume of thermoelectric material (LtW) is reduced to a normal Peltier. The volume of the thermoelectric material used for the module can be reduced to about 1/100. As a result, resource saving and cost reduction and environmental compatibility are greatly improved.
 なお、各電極(2,3)と各熱電材料(5,6)との接合面は、接合部の電気抵抗及び熱抵抗を小さくし、且つ、周辺の電流密度及び熱密度を小さくして損失を小さくするために、大きく取ることが望ましい(具体的には、Lc>t)。ただし、大きすぎると材料を無駄に使用することとなるため最適値が存在する。また、同様の理由により、各電極(2,3)の厚みは各熱電材料(5,6)の厚みよりも大きくすることが望ましい。 It should be noted that the junction surface between each electrode (2, 3) and each thermoelectric material (5, 6) has a loss by reducing the electrical resistance and thermal resistance of the junction and reducing the current density and thermal density of the periphery. It is desirable to make it large (specifically, Lc> t). However, if it is too large, the material is wasted, so there is an optimum value. For the same reason, it is desirable that the thickness of each electrode (2, 3) is larger than the thickness of each thermoelectric material (5, 6).
 前記熱電素子(22)は、第1絶縁性基板(A)の両面に形成された放熱側電極(3)がスルーホール(7)によって互いに接続されているため、下面の放熱側電極(3)及び放熱側伝熱板(13)から放熱する。また、熱電素子(22)では、第2絶縁性基板(B)の両面の吸熱側電極(8)がスルーホール(7)によって互いに接続され且つ第1絶縁性基板(A)上面の吸熱側電極(2)と接合層(12)を介して接続されているため、第2絶縁性基板(B)上面の吸熱側電極(8)及び吸熱側伝熱板(14)から吸熱する。 In the thermoelectric element (22), the heat radiation side electrodes (3) formed on both surfaces of the first insulating substrate (A) are connected to each other by the through holes (7). And radiate heat from the heat-dissipation side heat transfer plate (13). Further, in the thermoelectric element (22), the heat absorption side electrodes (8) on both surfaces of the second insulating substrate (B) are connected to each other by the through holes (7) and the heat absorption side electrodes on the upper surface of the first insulating substrate (A). Since it is connected to (2) via the bonding layer (12), it absorbs heat from the heat absorption side electrode (8) and the heat absorption side heat transfer plate (14) on the upper surface of the second insulating substrate (B).
 前記熱交換器(10)では、放熱側伝熱板(13)側にマイクロチャネル(21)が設けられて加熱面となり、吸熱側伝熱板(14)側にフィン群(25)が設けられて冷却面となっている。これにより、マイクロチャネル(21)が放熱側となり、フィン群(25)が吸熱側となる。 In the heat exchanger (10), the microchannel (21) is provided on the heat radiating side heat transfer plate (13) side to become a heating surface, and the fin group (25) is provided on the heat absorption side heat transfer plate (14) side. It is a cooling surface. Thereby, the microchannel (21) becomes the heat dissipation side, and the fin group (25) becomes the heat absorption side.
 前記入口側ヘッダ(35)に流入した冷媒(液体)は、各熱交換モジュール(20)のマイクロチャネル(21)に流入する。一方、各熱交換モジュール(20)のフィン群(25)に対象空気が流入する。マイクロチャネル(21)に流入した冷媒は、両側の熱電素子(22)から放熱されて蒸発する。フィン群(25)を流通する対象空気は、フィンによって吸熱されて所定温度に冷却される。冷却された対象空気は利用側へ供給される。 The refrigerant (liquid) that has flowed into the inlet header (35) flows into the microchannel (21) of each heat exchange module (20). On the other hand, the target air flows into the fin group (25) of each heat exchange module (20). The refrigerant flowing into the microchannel (21) is dissipated from the thermoelectric elements (22) on both sides and evaporates. The target air flowing through the fin group (25) is absorbed by the fins and cooled to a predetermined temperature. The cooled target air is supplied to the user side.
 -実施形態1の効果-
 以上のように、本実施形態1に係る熱交換器(10)によれば、第1絶縁性基板(A)と第2絶縁性基板(B)との間にのみp型熱電材料(5)及びn型熱電材料(6)を薄膜形成するため、熱電素子(22)のサイズを大きくしても、p型熱電材料(5)及びn型熱電材料(6)に作用する熱応力が増加することが抑制される。また、薄膜形成されたp型熱電材料(5)及びn型熱電材料(6)の面内方向に電流を流して温度差を生じさせるため、低温側から高温側までの距離が大きくなり、温度差が大きくなる。また、第1絶縁性基板(A)と第2絶縁性基板(B)との間にp型熱電材料(5)及びn型熱電材料(6)が設けられているため、p型熱電材料(5)及びn型熱電材料(6)を表面に設ける場合に比べて、曲げ力が作用したときでもp型熱電材料(5)及びn型熱電材料(6)に作用する引張応力又は圧縮応力が小さくなって、破損しにくくなる。
-Effect of Embodiment 1-
As described above, according to the heat exchanger (10) according to Embodiment 1, the p-type thermoelectric material (5) is provided only between the first insulating substrate (A) and the second insulating substrate (B). Since the n-type thermoelectric material (6) is formed into a thin film, the thermal stress acting on the p-type thermoelectric material (5) and the n-type thermoelectric material (6) increases even if the size of the thermoelectric element (22) is increased. It is suppressed. In addition, since a current is caused to flow in the in-plane direction of the thin-film formed p-type thermoelectric material (5) and n-type thermoelectric material (6), the distance from the low temperature side to the high temperature side increases, The difference increases. Further, since the p-type thermoelectric material (5) and the n-type thermoelectric material (6) are provided between the first insulating substrate (A) and the second insulating substrate (B), the p-type thermoelectric material ( Compared with the case where 5) and n-type thermoelectric material (6) are provided on the surface, the tensile stress or compressive stress acting on p-type thermoelectric material (5) and n-type thermoelectric material (6) even when bending force is applied. Smaller and less likely to break.
 《実施形態2》
 図7(a)は電流値と温度差に対する最大COPの変化を示すグラフ図、図7(b)は本実施形態2に係る熱電素子の構成を示す平面図である。前記実施形態1との違いは、各帯状電極列(9)に対してそれぞれ異なる電流値の電流を供給するようにした点であるため、以下、実施形態1と同じ部分については同じ符号を付し、相違点についてのみ説明する。
<< Embodiment 2 >>
FIG. 7A is a graph showing the change in the maximum COP with respect to the current value and the temperature difference, and FIG. 7B is a plan view showing the configuration of the thermoelectric element according to the second embodiment. Since the difference from the first embodiment is that currents having different current values are supplied to the respective strip electrode rows (9), the same parts as those in the first embodiment are denoted by the same reference numerals. Only the differences will be described.
 本実施形態2に係る熱電素子(22)は、図7(b)に示すように、空気流通方向に間隔をあけて帯状電極列(9)が3つ設けられている。そして、各帯状電極列(9)の両端の放熱側電極(3)には、電線(17,18)がそれぞれ独立して接続されている。これにより、各帯状電極列(9)に対してそれぞれ異なる電流値の電流を供給することができる。 As shown in FIG. 7B, the thermoelectric element (22) according to the second embodiment is provided with three strip electrode arrays (9) at intervals in the air circulation direction. The wires (17, 18) are independently connected to the heat radiation side electrodes (3) at both ends of each strip electrode array (9). As a result, currents having different current values can be supplied to the respective strip electrode rows (9).
 ここで、前記熱電素子(22)では、空気流通方向の上流側における空気と冷媒との温度差が大きく、下流側ではその温度差が小さくなっている。そのため、熱電素子(22)の各帯状電極列(9)に供給する電流の電流値が一定の場合には、図7(a)に示すように、熱交換効率(COP)の最大位置が変化してしまい、各帯状電極列(9)において熱交換効率を最大化することができない。 Here, in the thermoelectric element (22), the temperature difference between the air and the refrigerant on the upstream side in the air flow direction is large, and the temperature difference is small on the downstream side. Therefore, when the current value of the current supplied to each strip electrode array (9) of the thermoelectric element (22) is constant, the maximum position of the heat exchange efficiency (COP) changes as shown in FIG. Therefore, the heat exchange efficiency cannot be maximized in each strip electrode array (9).
 そこで、本発明では、空気と冷媒との温度差が大きい上流側に配置された帯状電極列(9)に供給する電流値を大きくする一方、温度差が小さい下流側に配置された帯状電極列(9)に供給する電流値を小さくするようにした。これにより、全ての帯状電極列(9)において熱交換効率を最大化することができる。 Therefore, in the present invention, the current value supplied to the strip electrode array (9) disposed on the upstream side where the temperature difference between the air and the refrigerant is large is increased, while the strip electrode array disposed on the downstream side where the temperature difference is small. The current value supplied to (9) was made smaller. Thereby, the heat exchange efficiency can be maximized in all the strip electrode arrays (9).
 《実施形態3》
 図8(a)は熱電材料の形状に対する最大COPの変化を示すグラフ図、図8(b)は本実施形態3に係る熱電素子の図7相当図である。前記実施形態1との違いは、各帯状電極列(9)におけるp型熱電材料(5)及びn型熱電材料(6)の幅や厚みを変更するようにした点である。
<< Embodiment 3 >>
FIG. 8A is a graph showing a change in the maximum COP with respect to the shape of the thermoelectric material, and FIG. 8B is a diagram corresponding to FIG. 7 of the thermoelectric element according to the third embodiment. The difference from Embodiment 1 is that the width and thickness of the p-type thermoelectric material (5) and the n-type thermoelectric material (6) in each strip electrode array (9) are changed.
 本実施形態3に係る熱電素子(22)は、図8(b)に示すように、空気流通方向に間隔をあけて帯状電極列(9)が3つ設けられている。図8(b)で上側の帯状電極列(9)の左端の放熱側電極(3)には電線(17)が接続される一方、右端の放熱側電極(3)には中央の帯状電極列(9)の右端の放熱側電極(3)が接続されている。また、下側の帯状電極列(9)の左端の放熱側電極(3)には中央の帯状電極列(9)の左端の放熱側電極(3)が接続される一方、右端の放熱側電極(3)には電線(18)が接続されている。これにより、各帯状電極列(9)が電気的に直列に接続される。 As shown in FIG. 8 (b), the thermoelectric element (22) according to the third embodiment is provided with three strip electrode rows (9) spaced in the air flow direction. In FIG. 8 (b), the wire (17) is connected to the left heat dissipation side electrode (3) of the upper band electrode array (9), while the right end heat dissipation side electrode (3) is connected to the center band electrode array. The heat dissipation side electrode (3) at the right end of (9) is connected. In addition, the leftmost heat radiation side electrode (3) of the central beltlike electrode array (9) is connected to the leftmost heat radiation side electrode (3) of the lower beltlike electrode array (9), while the rightmost heat radiation side electrode Wire (18) is connected to (3). Thereby, each strip | belt-shaped electrode row | line | column (9) is electrically connected in series.
 ここで、図8(a)に示すように、p型熱電材料(5)及びn型熱電材料(6)の形状に応じて、熱交換効率の最大位置が変化していることが分かる。具体的に、p型熱電材料(5)及びn型熱電材料(6)の幅が狭くなるほど、又は厚みが厚くなるほど、熱交換効率が最大となる電流値が大きくなっている。 Here, as shown in FIG. 8A, it can be seen that the maximum position of the heat exchange efficiency varies depending on the shapes of the p-type thermoelectric material (5) and the n-type thermoelectric material (6). Specifically, as the widths of the p-type thermoelectric material (5) and the n-type thermoelectric material (6) are reduced or the thickness is increased, the current value at which the heat exchange efficiency is maximized is increased.
 そこで、本発明では、空気と冷媒との温度差が大きい上流側に配置された帯状電極列(9)のp型及びn型熱電材料(5,6)の幅を広く(又は厚みを薄く)する一方、温度差の小さい下流側に配置された帯状電極列(9)のp型及びn型熱電材料(5,6)の幅を狭く(又は厚みを厚く)するようにした。これにより、全ての帯状電極列(9)において熱交換効率を最大化することができる。 Therefore, in the present invention, the width of the p-type and n-type thermoelectric materials (5, 6) of the strip electrode array (9) arranged on the upstream side where the temperature difference between the air and the refrigerant is large is wide (or thin). On the other hand, the widths of the p-type and n-type thermoelectric materials (5, 6) of the strip electrode array (9) arranged on the downstream side where the temperature difference is small are made narrow (or thick). Thereby, the heat exchange efficiency can be maximized in all the strip electrode arrays (9).
 《実施形態4》
 図9(a)は熱電材料の数量に対する最大COPの変化を示すグラフ図、図9(b)は本実施形態4に係る熱電素子の図7相当図である。前記実施形態1との違いは、各帯状電極列(9)間で熱電材料の数量を変更するようにした点である。
<< Embodiment 4 >>
FIG. 9A is a graph showing the change in the maximum COP with respect to the number of thermoelectric materials, and FIG. 9B is a diagram corresponding to FIG. 7 of the thermoelectric element according to the fourth embodiment. The difference from Embodiment 1 is that the number of thermoelectric materials is changed between the strip electrode arrays (9).
 本実施形態4に係る熱電素子(22)は、図9(b)に示すように、空気流通方向に間隔をあけて帯状電極列(9)が3つ設けられている。各帯状電極列(9)の両端の放熱側電極(3)には電線(17,18)が接続されて、各帯状電極列(9)が電気的に並列に接続されている。 As shown in FIG. 9B, the thermoelectric element (22) according to the fourth embodiment is provided with three strip electrode arrays (9) at intervals in the air circulation direction. Electric wires (17, 18) are connected to the heat radiation side electrodes (3) at both ends of each strip electrode row (9), and each strip electrode row (9) is electrically connected in parallel.
 ここで、図9(a)に示すように、p型熱電材料(5)及びn型熱電材料(6)の数量に応じて、熱交換効率の最大位置が変化していることが分かる。具体的に、p型熱電材料(5)及びn型熱電材料(6)の数量が多くなるほど熱交換効率が最大となる電圧が大きくなっている。 Here, as shown in FIG. 9A, it can be seen that the maximum position of the heat exchange efficiency changes according to the quantity of the p-type thermoelectric material (5) and the n-type thermoelectric material (6). Specifically, the voltage that maximizes the heat exchange efficiency increases as the number of p-type thermoelectric materials (5) and n-type thermoelectric materials (6) increases.
 そこで、本発明では、空気と冷媒との温度差が大きい上流側に配置された帯状電極列(9)のp型及びn型熱電材料(5,6)の数量を少なくする一方、温度差の小さい下流側に配置された帯状電極列(9)のp型及びn型熱電材料(5,6)の数量を多くするようにした。これにより、全ての帯状電極列(9)において熱交換効率を最大化することができる。 Therefore, in the present invention, the number of p-type and n-type thermoelectric materials (5, 6) in the strip electrode array (9) arranged on the upstream side where the temperature difference between air and refrigerant is large is reduced, while the temperature difference is reduced. The number of p-type and n-type thermoelectric materials (5, 6) in the strip electrode array (9) arranged on the small downstream side was increased. Thereby, the heat exchange efficiency can be maximized in all the strip electrode arrays (9).
 《その他の実施形態》
 本発明は、前記実施形態について、以下のような構成としてもよい。
<< Other Embodiments >>
The present invention may be configured as follows with respect to the embodiment.
 例えば、前記実施形態では、対象空気を冷却する気体冷却器としての熱交換器(10)について説明したが、本発明は、対象空気を加熱する気体加熱器としても適用することができる。その場合、熱電素子(22)に逆電流を流すことにより、マイクロチャネル(21)側が吸熱側となり、フィン群(25)側が放熱側となる。これにより、対象空気がフィン群(25)によって放熱されて加熱される。 For example, in the above-described embodiment, the heat exchanger (10) as a gas cooler for cooling the target air has been described, but the present invention can also be applied as a gas heater for heating the target air. In that case, by applying a reverse current to the thermoelectric element (22), the microchannel (21) side becomes the heat absorption side, and the fin group (25) side becomes the heat dissipation side. Thus, the target air is radiated and heated by the fin group (25).
 また、前記実施形態では、フィン群(25)を流通する気体(空気)を利用するようにしているが、マイクロチャネル(21)を流れる液体(冷媒)を利用するようにしてもよい。 In the embodiment, the gas (air) flowing through the fin group (25) is used. However, a liquid (refrigerant) flowing through the microchannel (21) may be used.
 また、前記入口側ヘッダ(35)及び出口側ヘッダ(36)を省略して、1つの熱交換モジュール(20)で構成した熱交換器(10)であってもよい。 Also, the heat exchanger (10) configured by one heat exchange module (20) may be used by omitting the inlet side header (35) and the outlet side header (36).
 また、前記実施形態において、コルゲートフィン以外のフィン形式をフィン群(25)に用いてもよいし、マイクロチャネル(21)ではなく流路を1つ有する管を冷媒管として用いてもよい。 In the above embodiment, a fin type other than the corrugated fin may be used for the fin group (25), or a pipe having one flow path instead of the microchannel (21) may be used as the refrigerant pipe.
 また、前記実施形態では、フィン群(25)を流通する気体(空気)を冷却又は加熱して利用するようにしているが、この形態に限定するものではない。例えば、本発明の熱交換器(10)は、熱電素子(22)の電源の代わりに負荷を接続し、吸熱側に外部より熱入力を与えて放熱側より放熱させることにより、すなわち吸熱側の温度が放熱側の温度よりも高くなることにより、ゼーベック効果を利用した発電モジュールとすることができる。 In the above embodiment, the gas (air) flowing through the fin group (25) is used after being cooled or heated, but is not limited to this form. For example, in the heat exchanger (10) of the present invention, a load is connected in place of the power source of the thermoelectric element (22), and heat is input from the outside to the heat absorption side to dissipate the heat from the heat dissipation side. When the temperature is higher than the temperature on the heat dissipation side, a power generation module using the Seebeck effect can be obtained.
 以上説明したように、本発明は、熱交換性能を確保するために必要なサイズの熱電素子を容易に作製することができるという実用性の高い効果が得られることから、きわめて有用で産業上の利用可能性は高い。 As described above, the present invention provides a highly practical effect that a thermoelectric element having a size necessary for ensuring heat exchange performance can be easily produced. The availability is high.
  2  吸熱側電極(第1電極)
  3  放熱側電極(第2電極)
  5  p型熱電材料(第1導電型熱電材料)
  6  n型熱電材料(第2導電型熱電材料)
  7  スルーホール
  8  吸熱側電極(第3電極)
 10  熱交換器
 21  マイクロチャネル(第1流体流路部材、冷媒管)
 22  熱電素子
 25  フィン群(第2流体流路部材)
  A  第1絶縁性基板
  B  第2絶縁性基板
2 Endothermic electrode (first electrode)
3 Heat dissipation side electrode (second electrode)
5 p-type thermoelectric material (first conductivity type thermoelectric material)
6 n-type thermoelectric material (second conductivity type thermoelectric material)
7 Through hole 8 Heat absorption side electrode (3rd electrode)
10 Heat exchanger 21 Micro channel (first fluid flow path member, refrigerant pipe)
22 Thermoelectric element 25 Fin group (second fluid flow path member)
A 1st insulating substrate B 2nd insulating substrate

Claims (9)

  1.  熱電素子(22)と、該熱電素子(22)を挟み込むように配置され、該熱電素子(22)と対象流体との間で熱交換を行うための第1流体流路部材(21)及び第2流体流路部材(25)とを備えた熱交換器であって、
     前記熱電素子(22)は、
     互いに積層されるとともに前記第1流体流路部材(21)及び第2流体流路部材(25)の長手方向に沿って帯状に延びる第1絶縁性基板(A)及び第2絶縁性基板(B)と、
     前記第1絶縁性基板(A)の前記第2絶縁性基板(B)側の面に、該第1絶縁性基板(A)の長手方向に互いに間隔をあけて形成された複数の第1電極(2)と、
     前記第1絶縁性基板(A)の両面に、前記各第1電極(2)に隣り合うように該第1電極(2)と離隔してそれぞれ形成され、該第1絶縁性基板(A)の厚さ方向に延びるスルーホール(7)によって両面が接続された複数の第2電極(3)と、
     前記第2絶縁性基板(B)の両面に、該第2絶縁性基板(B)の長手方向に互いに間隔をあけて形成され、該第2絶縁性基板(B)の厚さ方向に延びるスルーホール(7)によって両面が接続されるとともに、前記第1絶縁性基板(A)側の面が前記第1電極(2)に接続された複数の第3電極(8)と、
     前記第1絶縁性基板(A)の前記第2絶縁性基板(B)側の面に、前記第1電極(2)と該第1電極(2)の両隣の前記第2電極(3)とにそれぞれ接するように薄膜形成された第1導電型熱電材料(5)及び第2導電型熱電材料(6)とを備えていることを特徴とする熱交換器。
    A thermoelectric element (22), a first fluid flow path member (21) and a first fluid channel member (21), which are arranged so as to sandwich the thermoelectric element (22) and perform heat exchange between the thermoelectric element (22) and a target fluid A heat exchanger comprising two fluid flow path members (25),
    The thermoelectric element (22)
    A first insulating substrate (A) and a second insulating substrate (B) that are stacked on each other and extend in a strip shape along the longitudinal direction of the first fluid channel member (21) and the second fluid channel member (25). )When,
    A plurality of first electrodes formed on the surface of the first insulating substrate (A) on the second insulating substrate (B) side and spaced apart from each other in the longitudinal direction of the first insulating substrate (A). (2) and
    The first insulating substrate (A) is formed on both surfaces of the first insulating substrate (A) so as to be adjacent to the first electrodes (2) and spaced apart from the first electrode (2). A plurality of second electrodes (3) whose both surfaces are connected by through holes (7) extending in the thickness direction of
    Through-holes formed on both surfaces of the second insulating substrate (B) at intervals in the longitudinal direction of the second insulating substrate (B) and extending in the thickness direction of the second insulating substrate (B) A plurality of third electrodes (8) having both surfaces connected by holes (7) and having a surface on the first insulating substrate (A) side connected to the first electrode (2);
    On the surface of the first insulating substrate (A) on the second insulating substrate (B) side, the first electrode (2) and the second electrode (3) adjacent to the first electrode (2) A heat exchanger comprising: a first conductivity type thermoelectric material (5) and a second conductivity type thermoelectric material (6) formed in a thin film so as to be in contact with each other.
  2.  請求項1において、
     前記第1及び第2流体流路(21,25)のうち一方は、対象流体としての冷媒が流れる冷媒管(21)で構成され、他方は、対象流体としての空気と熱交換するフィン群(25)で構成されていることを特徴とする熱交換器。
    In claim 1,
    One of the first and second fluid flow paths (21, 25) is composed of a refrigerant pipe (21) through which a refrigerant as a target fluid flows, and the other is a group of fins that exchange heat with air as a target fluid ( A heat exchanger characterized by comprising 25).
  3.  請求項2において、
     前記熱電素子(22)は、前記冷媒管(21)を挟み込むように一対で設けられ、
     前記各熱電素子(22)の前記冷媒管(21)側とは反対側の面には、前記フィン群(25)が設けられていることを特徴とする熱交換器。
    In claim 2,
    The thermoelectric element (22) is provided in a pair so as to sandwich the refrigerant pipe (21),
    The heat exchanger, wherein the fin group (25) is provided on a surface of each thermoelectric element (22) opposite to the refrigerant pipe (21) side.
  4.  請求項2において、
     前記熱電素子(22)には、前記第1乃至第3電極(2,3,8)、並びに前記第1及び第2導電型熱電材料(5,6)で構成される帯状電極列(9)が、空気流通方向に互いに間隔をあけて複数設けられ、
     前記各帯状電極列(9)には、それぞれ異なる電流値の電流が供給されていることを特徴とする熱交換器。
    In claim 2,
    The thermoelectric element (22) includes the first to third electrodes (2, 3, 8) and a strip electrode array (9) composed of the first and second conductivity type thermoelectric materials (5, 6). Are provided at intervals in the air flow direction,
    Each of the strip electrode rows (9) is supplied with currents having different current values.
  5.  請求項2において、
     前記熱電素子(22)には、前記第1乃至第3電極(2,3,8)、並びに前記第1及び第2導電型熱電材料(5,6)で構成される帯状電極列(9)が、空気流通方向に互いに間隔をあけて複数設けられ、
     前記各帯状電極列(9)は、電気的に直列に接続されていることを特徴とする熱交換器。
    In claim 2,
    The thermoelectric element (22) includes the first to third electrodes (2, 3, 8) and a strip electrode array (9) composed of the first and second conductivity type thermoelectric materials (5, 6). Are provided at intervals in the air flow direction,
    Each said strip | belt-shaped electrode row | line | column (9) is electrically connected in series, The heat exchanger characterized by the above-mentioned.
  6.  請求項2において、
     前記熱電素子(22)には、前記第1乃至第3電極(2,3,8)、並びに前記第1及び第2導電型熱電材料(5,6)で構成される帯状電極列(9)が、空気流通方向に互いに間隔をあけて複数設けられ、
     前記各帯状電極列(9)は、電気的に並列に接続されていることを特徴とする熱交換器。
    In claim 2,
    The thermoelectric element (22) includes the first to third electrodes (2, 3, 8) and a strip electrode array (9) composed of the first and second conductivity type thermoelectric materials (5, 6). Are provided at intervals in the air flow direction,
    Each of the strip-shaped electrode arrays (9) is electrically connected in parallel.
  7.  請求項4乃至6のうち何れか1つにおいて、
     前記各帯状電極列(9)は、空気流通方向の上流側と下流側とで前記第1及び第2導電型熱電材料(5,6)の幅が異なっていることを特徴とする熱交換器。
    In any one of claims 4 to 6,
    Each of the strip electrode arrays (9) is characterized in that the widths of the first and second conductivity type thermoelectric materials (5, 6) are different between the upstream side and the downstream side in the air flow direction. .
  8.  請求項4乃至6のうち何れか1つにおいて、
     前記各帯状電極列(9)は、空気流通方向の上流側と下流側とで前記第1及び第2導電型熱電材料(5,6)の厚みが異なっていることを特徴とする熱交換器。
    In any one of claims 4 to 6,
    Each of the strip electrode rows (9) is characterized in that the thicknesses of the first and second conductivity type thermoelectric materials (5, 6) are different between the upstream side and the downstream side in the air flow direction. .
  9.  請求項4乃至6のうち何れか1つにおいて、
     前記各帯状電極列(9)は、空気流通方向の上流側と下流側とで前記第1及び第2導電型熱電材料(5,6)の数量が異なっていることを特徴とする熱交換器。
    In any one of claims 4 to 6,
    Each of the strip electrode rows (9) is characterized in that the quantity of the first and second conductivity type thermoelectric materials (5, 6) is different between the upstream side and the downstream side in the air flow direction. .
PCT/JP2010/005610 2009-09-25 2010-09-14 Heat exchanger WO2011036854A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009221322A JP4770973B2 (en) 2009-09-25 2009-09-25 Heat exchanger
JP2009-221322 2009-09-25

Publications (1)

Publication Number Publication Date
WO2011036854A1 true WO2011036854A1 (en) 2011-03-31

Family

ID=43795624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005610 WO2011036854A1 (en) 2009-09-25 2010-09-14 Heat exchanger

Country Status (2)

Country Link
JP (1) JP4770973B2 (en)
WO (1) WO2011036854A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860470A1 (en) * 2013-10-04 2015-04-15 Delphi Technologies, Inc. Heat exchanger having a plurality of thermoelectric modules connected in series

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708174B2 (en) * 2011-04-12 2015-04-30 富士通株式会社 Thermoelectric conversion device and manufacturing method thereof
JP5857792B2 (en) * 2012-02-27 2016-02-10 富士通株式会社 Thermoelectric device and manufacturing method thereof
KR101534978B1 (en) 2013-12-23 2015-07-08 현대자동차주식회사 Heat exchanger and manufacture method thereof
WO2015163178A1 (en) * 2014-04-25 2015-10-29 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion element manufacturing method
WO2016039022A1 (en) 2014-09-08 2016-03-17 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288376A (en) * 1989-04-28 1990-11-28 Matsushita Electric Ind Co Ltd Thermoelectric device
JPH07111345A (en) * 1993-10-14 1995-04-25 Matsushita Electric Ind Co Ltd Thermoelectric power generating device
JPH08236819A (en) * 1995-02-23 1996-09-13 Matsushita Electric Works Ltd Thermal electronic element
JPH1079532A (en) * 1996-09-04 1998-03-24 Nanba Kikujiro Thermoelectric conversion device
JPH10325561A (en) * 1997-05-23 1998-12-08 Matsushita Electric Works Ltd Peltier module unit, heat-exchanger, ventilation device
JP2000286459A (en) * 1999-03-30 2000-10-13 Aisin Seiki Co Ltd Thermoelectric conversion device
JP2008072775A (en) * 2006-09-12 2008-03-27 Nissan Motor Co Ltd Exhaust heat energy recovery system
JP2008167626A (en) * 2007-01-04 2008-07-17 Toyota Motor Corp Thermal power generator
JP2009158760A (en) * 2007-12-27 2009-07-16 Daikin Ind Ltd Thermoelectric device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288376A (en) * 1989-04-28 1990-11-28 Matsushita Electric Ind Co Ltd Thermoelectric device
JPH07111345A (en) * 1993-10-14 1995-04-25 Matsushita Electric Ind Co Ltd Thermoelectric power generating device
JPH08236819A (en) * 1995-02-23 1996-09-13 Matsushita Electric Works Ltd Thermal electronic element
JPH1079532A (en) * 1996-09-04 1998-03-24 Nanba Kikujiro Thermoelectric conversion device
JPH10325561A (en) * 1997-05-23 1998-12-08 Matsushita Electric Works Ltd Peltier module unit, heat-exchanger, ventilation device
JP2000286459A (en) * 1999-03-30 2000-10-13 Aisin Seiki Co Ltd Thermoelectric conversion device
JP2008072775A (en) * 2006-09-12 2008-03-27 Nissan Motor Co Ltd Exhaust heat energy recovery system
JP2008167626A (en) * 2007-01-04 2008-07-17 Toyota Motor Corp Thermal power generator
JP2009158760A (en) * 2007-12-27 2009-07-16 Daikin Ind Ltd Thermoelectric device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860470A1 (en) * 2013-10-04 2015-04-15 Delphi Technologies, Inc. Heat exchanger having a plurality of thermoelectric modules connected in series

Also Published As

Publication number Publication date
JP2011071338A (en) 2011-04-07
JP4770973B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP5511737B2 (en) Thermoelectric device with improved thermal separation
JP4770973B2 (en) Heat exchanger
AU2008344797B2 (en) Thermoelectric device
JP2011035305A (en) Heat exchanger
JP2009295878A (en) Heat exchange device
US20130255739A1 (en) Passively cooled thermoelectric generator cartridge
JP4622577B2 (en) Cascade module for thermoelectric conversion
JP2006294935A (en) High efficiency and low loss thermoelectric module
KR20150130168A (en) Device using thermoelectric moudule
KR101373225B1 (en) A Heat Exchanger using Thermoelectric Modules
JP2008066459A (en) Thermoelectric element module and thermoelectric conversion device employing it
JP2013161973A (en) Thermoelectric conversion module
JP2011069552A (en) Heat exchanger
JP2008078587A (en) Fin for heat exchange
JP2013062370A (en) Planar thin-film thermoelectric module
CN115244764A (en) Battery pack
KR101373126B1 (en) A Heat Exchanger using Thermoelectric Modules
JPH0430586A (en) Thermoelectric device
KR101177266B1 (en) Heat Exchanger using Thermoelectric Modules
JP2012028720A (en) Cooling apparatus
JP2011159663A (en) Semiconductor device
KR20150123055A (en) Device using thermoelectric moudule
WO2013002423A1 (en) Thermoelectric conversion modules
JP2009264719A (en) Heat exchanger
JP2006287066A (en) Thermoelectric conversion apparatus and method of manufacturing the apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10818535

Country of ref document: EP

Kind code of ref document: A1