JP2008078587A - Fin for heat exchange - Google Patents

Fin for heat exchange Download PDF

Info

Publication number
JP2008078587A
JP2008078587A JP2006259436A JP2006259436A JP2008078587A JP 2008078587 A JP2008078587 A JP 2008078587A JP 2006259436 A JP2006259436 A JP 2006259436A JP 2006259436 A JP2006259436 A JP 2006259436A JP 2008078587 A JP2008078587 A JP 2008078587A
Authority
JP
Japan
Prior art keywords
heat
fin
heat exchange
joining surface
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006259436A
Other languages
Japanese (ja)
Inventor
Isao Azeyanagi
功 畔柳
Akio Matsuoka
彰夫 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006259436A priority Critical patent/JP2008078587A/en
Publication of JP2008078587A publication Critical patent/JP2008078587A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fin for heat exchange adapted to improve a heat-exchange efficiency without preparing a louver. <P>SOLUTION: The fin for heat exchange 10 is shaped in such a fashion that junction planes 11, which are heat-conductively joined with a heated body, and heat-exchanging sections 13, which exchange heat with air, are formed into a wave-like fold by folding, the fin 10 having the junction planes 11 arranged in a plurality of parallel trains aligned in the same direction with respect to a flow of the air, with the heat-exchanging sections 13, which are aligned in adjoining trains, disposed to intersect along the flow of air. This arrangement of the fin improves a heat-exchange efficiency. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱体に伝熱可能に接合される接合面と空気と熱交換する熱交換部とが折り曲げにより波形状に形成された熱交換用のフィンに関するものであり、特に、隣接する列に配される熱交換部の形状に関する。   The present invention relates to a heat exchange fin in which a joining surface joined to a heat body so as to be able to conduct heat and a heat exchange part that exchanges heat with air are bent into a wave shape, and in particular, adjacent rows It relates to the shape of the heat exchanging part arranged in the.

従来、この種の熱交換用のフィンとして、例えば、非特許文献1に示すように、折り曲げによって接合面、熱交換部を連続的に波形状に形成されるコルゲートフィンが知られている。このコルゲートフィンには、最も簡素な形状として、図8・9(非特許文献1の125頁参照)に記載のように、平板状の板材を用いて、接合面、熱交換部、山部、熱交換部、接合面の順に連続して折り曲げによって凸凹状に形成される平板フィンがある。   Conventionally, as this type of heat exchange fin, for example, as shown in Non-Patent Document 1, a corrugated fin in which a joining surface and a heat exchange part are continuously formed in a wave shape by bending is known. For this corrugated fin, as shown in FIGS. 8 and 9 (see page 125 of Non-Patent Document 1), as shown in FIGS. 8 and 9 (refer to page 125 of Non-Patent Document 1), a joining surface, a heat exchange part, a mountain part, There is a flat plate fin that is formed in an uneven shape by bending the heat exchange part and the joint surface in this order.

平板フィン100は、例えば、図11に示すように、凹部が接合面110で、凸部が山部120あって、接合面110の外方に突き出した縦方向に延びる面が熱交換部130である。接合面110は平面状に形成されて、PTCヒータなどの発熱体の外郭部材150に伝熱可能に接合されている。   For example, as shown in FIG. 11, the flat plate fin 100 has a concave portion as a joint surface 110, a convex portion as a ridge 120, and a surface extending in the vertical direction protruding outward from the joint surface 110 as a heat exchange portion 130. is there. The joining surface 110 is formed in a flat shape and joined to an outer member 150 of a heating element such as a PTC heater so that heat can be transferred.

そして、接合面110の外方に空気を流すことで発熱体の熱が接合面110を介して熱交換部130と山部120とに伝熱されて、この部位に流れる空気と熱交換される。これにより、発熱体の熱が熱交換部130と山部120とで放熱される。
瀬下裕、藤井雅雄著「コンパクト熱交換器」、初版第1刷、日刊工業新聞社、1992年8月22日発行、p125、図8・9
And by flowing air outside the joint surface 110, the heat of the heating element is transferred to the heat exchange part 130 and the mountain part 120 via the joint surface 110, and is exchanged with the air flowing through this part. . Thereby, the heat of the heating element is dissipated between the heat exchanging unit 130 and the mountain portion 120.
Hiroshi Seshita, Masao Fujii, “Compact Heat Exchanger”, first edition, 1st edition, Nikkan Kogyo Shimbun, August 22, 1992, p. 125, Fig. 8 ・ 9

しかしながら、上記非特許文献1のような形状の平板フィン100は、図12に示すように、接合面110、山部120、および熱交換部130を空気流れに沿って複数列、外郭部材150に平行配置するように構成すると、空気の流れは山部120、熱交換部130に沿って流れることになる。   However, as shown in FIG. 12, the flat plate fin 100 having the shape as described in Non-Patent Document 1 includes the joining surface 110, the crest 120, and the heat exchanging unit 130 in a plurality of rows and outer members 150 along the air flow. If it arrange | positions so that it may arrange in parallel, the flow of air will flow along the peak part 120 and the heat exchange part 130. FIG.

発明者らの検討によると、このときにおける空気の流れを詳細に観察すると、空気と熱交換部130とが熱交換されない領域があることを見出した。換言すると、互いに隣り合う熱交換部130同士の間に、空気と熱交換部130とが熱交換されない領域Aが縦長状に形成されることが分かった。さらに、その領域Aは空気流れの下流側にも連続して形成されていることを見出した。   According to the study by the inventors, when the air flow at this time is observed in detail, it has been found that there is a region where the air and the heat exchanging unit 130 are not subjected to heat exchange. In other words, it has been found that a region A in which heat is not exchanged between the air and the heat exchanging unit 130 is formed vertically between the heat exchanging units 130 adjacent to each other. Furthermore, it discovered that the area | region A was continuously formed also in the downstream of the air flow.

この領域Aをなくすために、一般的には熱交換部130に切り起こしなどによる加工でルーバーを設ける方法があるが、その場合には部品コストが上昇する。また、表面処理を施す際に処理液が膜張りし易くなる等の問題が生ずる。   In order to eliminate this area A, there is generally a method of providing a louver by processing such as cutting and raising in the heat exchanging section 130, but in this case, the cost of parts increases. In addition, there is a problem in that the surface of the treatment liquid is likely to be coated with a film.

そこで、本発明の目的は、上記点に鑑みたものであり、ルーバーを設けることもなく、熱交換効率の向上が図れる熱交換用フィンを提供することにある。   Therefore, an object of the present invention is to provide a heat exchange fin that can improve heat exchange efficiency without providing a louver.

上記目的を達成するために、請求項1ないし請求項6に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、熱体に伝熱可能に接合される接合面(11)と空気と熱交換する熱交換部(13)とが折り曲げにより波形状に形成された熱交換用のフィン(10)であって、
フィン(10)は、接合面(11)が空気流れに対して同一方向に複数列平行配置され、かつ隣接する列に配列される熱交換部(13)が空気流れに沿って交差するように配置されることを特徴としている。
In order to achieve the above object, the technical means described in claims 1 to 6 are employed. That is, in the invention according to claim 1, the heat exchange in which the joining surface (11) joined to the heat body so as to be able to conduct heat and the heat exchanging portion (13) exchanging heat with air are formed into a wave shape by bending. Fin (10) for use,
The fins (10) are arranged such that the joint surfaces (11) are arranged in parallel in a plurality of rows in the same direction with respect to the air flow, and the heat exchange sections (13) arranged in adjacent rows intersect along the air flow. It is characterized by being arranged.

この発明によれば、空気流れに隣接する熱交換部(13)が交差するように配置されることで空気と熱交換部(13)とが熱交換されない領域を減らすことができる。これにより、熱交換効率の向上が図れる。   According to this invention, the area | region where heat is not exchanged between air and the heat exchange part (13) can be reduced by arrange | positioning so that the heat exchange part (13) adjacent to an air flow may cross | intersect. Thereby, the heat exchange efficiency can be improved.

請求項2に記載の発明では、フィン(10)は、接合面(11)および熱交換部(13)が平板状の薄板で形成され、熱交換部(13)が接合面(11)の外方に延出して傾斜状もしくは湾曲状のいずれかに形成されることを特徴としている。この発明によれば、フィン(10)が空気流れに複数列平行配置させたときに、従来の空気と熱交換部(13)とが熱交換されない領域に熱交換部(13)を配列することができる。これにより、空気と熱交換部(13)とが熱交換されない領域を減らすことができる。   In the invention according to claim 2, the fin (10) has the joining surface (11) and the heat exchanging portion (13) formed of a thin plate, and the heat exchanging portion (13) is outside the joining surface (11). It is characterized by being formed in either an inclined shape or a curved shape. According to the present invention, when the fins (10) are arranged in parallel to the air flow, the heat exchange part (13) is arranged in a region where the conventional air and the heat exchange part (13) are not heat exchanged. Can do. Thereby, the area | region where air and the heat exchange part (13) are not heat-exchanged can be reduced.

請求項3に記載の発明では、フィン(10)は、接合面(11)、熱交換部(13)、山部(12)、熱交換部(13)の順に折り曲げによって形成され、かつ接合面(11)と山部(12)とが同一形状で形成されて隣接する列に配置される接合面(11)が反転させて配置されることを特徴としている。この発明によれば、空気流れの前後において共通のフィン(10)で構成することができる。   In the invention according to claim 3, the fin (10) is formed by bending the joining surface (11), the heat exchange part (13), the mountain part (12), and the heat exchange part (13) in this order, and the joining surface. (11) and the peak part (12) are formed in the same shape, and the joining surface (11) arrange | positioned at an adjacent row | line | column is inverted and arrange | positioned, It is characterized by the above-mentioned. According to this invention, it can comprise with a common fin (10) before and behind an air flow.

請求項4に記載の発明では、熱体は、発熱体、高熱体、または冷熱体であって、接合面(11)は、発熱体、高熱体、または冷熱体のいずれかの熱を熱交換部(13)に伝熱可能に接合されていることを特徴としている。   In the invention according to claim 4, the heating element is a heating element, a high heating element, or a cooling element, and the joining surface (11) exchanges heat of any of the heating element, the high heating element, or the cooling element. It is characterized by being joined to the part (13) so as to be able to transfer heat.

この発明によれば、例えば、PTCヒータ、ヒートシンクなどの発熱体を冷却する冷却装置の熱交換用のフィンに適用できる。高温または低温の熱媒体を放熱、吸熱する熱交換器の熱交換用のフィンに適用できる。   According to the present invention, for example, the present invention can be applied to a heat exchange fin of a cooling device that cools a heating element such as a PTC heater or a heat sink. The present invention can be applied to heat exchange fins of heat exchangers that radiate and absorb high-temperature or low-temperature heat medium.

請求項5に記載の発明では、熱体は、P型とN型とからなる熱電素子(32、33)を交互に配列して電気的に接続された高熱体、または冷熱体であって、接合面(11)は、高熱体、または冷熱体のいずれかの熱を熱交換部(13)に伝熱可能に接合されていることを特徴としている。この発明によれば、ペルチェ効果を備える熱電変換装置の熱交換用のフィンに適用できる。   In the invention according to claim 5, the thermal body is a high temperature body or a cold body in which thermoelectric elements (32, 33) composed of P-type and N-type are alternately arranged and electrically connected, The joining surface (11) is characterized by being joined to the heat exchanging part (13) so that heat of either the high temperature body or the cold body can be transferred. According to the present invention, the present invention can be applied to a heat exchange fin of a thermoelectric conversion device having a Peltier effect.

請求項6に記載の発明では、接合面(11)に対向配置される山部(12)は、空気流れに沿って同一直線上に平行配置されることを特徴としている。この発明によれば、熱電変換装置のフィンは、隣り合う互いのフィン(10)が電気的な絶縁が必要であるため、複数のフィン(10)を一体的に形成し、接合面(11)を電極部材に結合した後に、山部(12)を切断することで隣り合う互いのフィン(10)を分離することができる。従って、山部(12)が同一直線上に配置すれば切断が容易に行うことができる。   The invention according to claim 6 is characterized in that the peaks (12) arranged opposite to the joint surface (11) are arranged in parallel on the same straight line along the air flow. According to this invention, since the fins (10) adjacent to each other need to be electrically insulated, the fins of the thermoelectric conversion device are integrally formed with a plurality of fins (10), and the joining surface (11). After joining to the electrode member, the adjacent fins (10) can be separated by cutting the peak (12). Therefore, cutting can be easily performed if the peaks (12) are arranged on the same straight line.

なお、上記各手段の括弧内の符号は、後述する実施形態の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment mentioned later.

(第1実施形態)
以下、本発明の第1実施形態における熱交換器用のフィンを図1ないし図4に基づいて説明する。図1は本実施形態における冷却装置の全体構成を示す平面図である。図2は図1に示すA−A断面図である。図3は図1に示すB−B断面図である。本実施形態では、熱交換器用のフィンを、発熱体を冷却する冷却装置に適用したものである。
(First embodiment)
Hereinafter, a fin for a heat exchanger in a first embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG. 1 is a plan view showing the overall configuration of the cooling device in the present embodiment. FIG. 2 is a cross-sectional view taken along line AA shown in FIG. 3 is a cross-sectional view taken along line BB shown in FIG. In the present embodiment, the heat exchanger fin is applied to a cooling device that cools the heating element.

冷却装置は、例えば、PTCヒータ、ヒートシンクなどの発熱体の熱を外部に放熱する装置である。フィン10は、図1ないし図3に示すように、薄肉状の平板を用いて、接合面11、熱交換部13、山部12、熱交換部13、接合面11の順に複数個連続して折り曲げによって波型状に形成されたコルゲートフィンである。   The cooling device is a device that radiates heat from a heating element such as a PTC heater or a heat sink to the outside. As shown in FIGS. 1 to 3, a plurality of fins 10 are continuously formed in the order of a joining surface 11, a heat exchanging portion 13, a mountain portion 12, a heat exchanging portion 13, and a joining surface 11 using a thin flat plate. It is a corrugated fin formed in a corrugated shape by bending.

また、材質は、アルミニウムまたは銅などの熱伝導性の高い金属の板材を用いて、ローラー等の曲げ加工により所定の形状(例えば、凹凸状)に連続形成される。これにより、接合面11、熱交換部13および山部12は平面状に形成される。そして、曲げ加工後に、接合面11と山部12とを連なる二つの平面を傾斜状に成形して熱交換部13を形成する。   The material is continuously formed in a predetermined shape (for example, uneven shape) by bending a roller or the like using a metal plate having high thermal conductivity such as aluminum or copper. Thereby, the joining surface 11, the heat exchange part 13, and the peak part 12 are formed in planar shape. Then, after the bending process, the two planes connecting the joint surface 11 and the peak portion 12 are formed in an inclined shape to form the heat exchange portion 13.

言い換えると、接合面11に対して熱交換部13の二つの平面を傾斜させることで、接合面11に対向する上方の部位に隣の山部12が配置される。つまり、熱交換部13、山部12、熱交換部13と連なる凸部が略平行四辺形状に形成されて、熱交換部13が接合面11に対して垂直方向よりも右方向に傾いて隣の山部12に連なるようになる。   In other words, by inclining the two planes of the heat exchanging portion 13 with respect to the joining surface 11, the adjacent peak portion 12 is disposed at an upper portion facing the joining surface 11. In other words, the heat exchanging portion 13, the mountain portion 12, and the convex portion connected to the heat exchanging portion 13 are formed in a substantially parallelogram shape, and the heat exchanging portion 13 is inclined to the right with respect to the joining surface 11 in the right direction and adjacent to the joining surface 11. It becomes connected to the mountain part 12 of.

従って、単純な加工を施すことで接合面11の上方側、および隣の山部12の下方側の空間に熱交換部13が形成される。さらに、熱交換部13および山部12が接合面11に対して外方に延出するように形成される。ここで、熱交換部13、山部12、熱交換部13と連なる平面が空気と熱交換される熱交換部である。   Therefore, the heat exchange part 13 is formed in the space above the joining surface 11 and the lower side of the adjacent peak part 12 by performing simple processing. Furthermore, the heat exchange part 13 and the peak part 12 are formed to extend outward with respect to the joint surface 11. Here, the flat surface connected to the heat exchanging portion 13, the mountain portion 12, and the heat exchanging portion 13 is a heat exchanging portion that exchanges heat with air.

さらに、以上のような形状に形成されたフィン10において、凹状の底部となる接合面11と凸状の頂部となる山部12とを同一形状で形成し、かつ接合面11と山部12とを上下方向に反転させると、熱交換部13が接合面11に対して垂直方向よりも左方向に傾いて配置できる。   Furthermore, in the fin 10 formed in the shape as described above, the joint surface 11 that is a concave bottom portion and the peak portion 12 that is a convex top portion are formed in the same shape, and the joint surface 11 and the peak portion 12 are Is inverted in the up-down direction, the heat exchanging portion 13 can be arranged to be tilted to the left with respect to the joining surface 11 with respect to the vertical direction.

そこで、本実施形態では、図1に示すように、発熱体の外郭部材20にフィン10を空気流れに対して複数列配置するように構成している。具体的には、接合面11が空気流れに対して同一方向に複数列平行配置されるとともに、空気流れの隣接する列に配列される熱交換部13が空気流れに沿って交差するように配置されている。   Therefore, in the present embodiment, as shown in FIG. 1, the fins 10 are arranged in a plurality of rows on the outer member 20 of the heating element with respect to the air flow. Specifically, the joining surfaces 11 are arranged in parallel in a plurality of rows in the same direction with respect to the air flow, and the heat exchange units 13 arranged in adjacent rows of the air flow are arranged so as to intersect along the air flow. Has been.

より具体的には、例えば、下方から一列目に配置するフィン10と、その隣の下方から2列目に配置するフィン10とは、どちらか一方のフィン10の接合面11と山部12とを上下方向に反転させて外郭部材20に交互に複数列平行配置すれば良い。   More specifically, for example, the fins 10 arranged in the first row from the lower side and the fins 10 arranged in the second row from the lower side next to the bonding surface 11 and the mountain portion 12 of one of the fins 10 May be reversed in the vertical direction and arranged in parallel in plural rows on the outer member 20 alternately.

これにより、空気流れの上流側が眺めると、図2に示すように、接合面11と山部12との間の空気が流れる空間を空気流れの前後に隣接する熱交換部13で空気流れに沿って交差できる。従って、空気と熱交換部13とが熱交換されない領域を減らすことができる。   As a result, when the upstream side of the air flow is viewed, as shown in FIG. 2, the space where the air flows between the joint surface 11 and the mountain portion 12 flows along the air flow in the heat exchanging unit 13 adjacent to the front and rear of the air flow. Can intersect. Accordingly, it is possible to reduce a region where heat is not exchanged between the air and the heat exchange unit 13.

ここで、接合面11は、外郭部材20に半田、ろう材などの熱伝導率の高い接合材により接合される。また、複数列に配置されたフィン10は、図示しないケース部材でフィン10の外方を覆って送風通路を形成し、その送風通路に空気を流通することで、発熱体から伝熱された熱を熱交換部13、山部12、熱交換部13と連なる面で放熱することができる。   Here, the joining surface 11 is joined to the outer member 20 by a joining material having high thermal conductivity such as solder or brazing material. Further, the fins 10 arranged in a plurality of rows cover the outside of the fin 10 with a case member (not shown) to form a ventilation passage, and heat is transferred from the heating element by circulating air through the ventilation passage. Can be dissipated on the surface connected to the heat exchanging portion 13, the mountain portion 12, and the heat exchanging portion 13.

次に、以上の構成によるフィン10の作用効果について図4に基づいて説明する。図4は放熱量と風量との関係を示す特性図である。発明者らが、図12に示す形状の平板フィン100を発熱体の外郭部材20に複数列配置したときと、本実施形態による形状のフィン10を発熱体の外郭部材20に複数列配置したときの冷却装置の放熱量と風量との関係を実験によって求めた特性図である。   Next, the effect of the fin 10 by the above structure is demonstrated based on FIG. FIG. 4 is a characteristic diagram showing the relationship between the heat radiation amount and the air volume. When the inventors arrange a plurality of rows of flat fins 100 having the shape shown in FIG. 12 on the outer member 20 of the heating element, and when arranging the fins 10 having the shape according to the present embodiment on the outer member 20 of the heating element. It is the characteristic view which calculated | required the relationship between the heat dissipation of a cooling device, and the air volume by experiment.

図中に示す符号Xが図12に示す形状の平板フィン100を配置したときの放熱量と風量との関係を特性であり、図中に示す符号Yが本実施形態による形状のフィン10を配置したときの放熱量と風量との関係を特性である。これによると、本実施形態による形状のフィン10の方が図12に示す形状の平板フィン100よりも放熱量が15%程度向上することが分かった。   The symbol X shown in the figure is a characteristic of the relationship between the amount of heat radiation and the air volume when the flat plate fin 100 having the shape shown in FIG. 12 is arranged, and the symbol Y shown in the drawing arranges the fin 10 having the shape according to the present embodiment. The relationship between the amount of heat released and the air volume is a characteristic. According to this, it was found that the heat radiation amount of the fin 10 having the shape according to the present embodiment is improved by about 15% as compared with the flat plate fin 100 having the shape shown in FIG.

これは、空気の流れを詳細に観察すると、図12に示す形状の平板フィン100の場合には、空気と熱交換部130とが熱交換されない領域があるが、熱交換部13を傾斜させたことで、空気流れの前後に隣接する熱交換部13の側端がクロス状に配置されるため、空気と熱交換部130とが熱交換されない領域を減らすことができた。これにより、熱交換効率の向上が図れる。   When the air flow is observed in detail, in the case of the flat fin 100 having the shape shown in FIG. 12, there is a region where heat is not exchanged between the air and the heat exchange unit 130, but the heat exchange unit 13 is inclined. Thus, since the side ends of the heat exchanging units 13 adjacent to each other before and after the air flow are arranged in a cross shape, it is possible to reduce an area where the air and the heat exchanging unit 130 are not heat exchanged. Thereby, the heat exchange efficiency can be improved.

以上の第1実施形態による熱交換用フィンによれば、フィン10は、接合面11が空気流れに対して同一方向に複数列平行配置され、かつ隣接する列に配列される熱交換部13が空気流れに沿って交差するように配置されることにより、接合面11と山部12との間の空間に交差状に熱交換部13が配置されるため空気と熱交換部13とが熱交換されない領域を減らすことができる。これにより、熱交換効率の向上が図れる。   According to the heat exchange fin according to the first embodiment described above, the fin 10 has the heat exchange portions 13 in which the joint surfaces 11 are arranged in parallel in a plurality of rows in the same direction with respect to the air flow and arranged in adjacent rows. By being arranged so as to intersect along the air flow, the heat exchange unit 13 is arranged in a crossing manner in the space between the joint surface 11 and the mountain portion 12, so that the air and the heat exchange unit 13 exchange heat. Can be reduced. Thereby, the heat exchange efficiency can be improved.

具体的には、フィン10は、接合面11および熱交換部13が平板状の薄板で形成され、熱交換部13が接合面11の外方に延出して傾斜状に形成されることにより、フィン10が空気流れに複数列平行配置させたときに、従来の空気と熱交換部13とが熱交換されない領域に熱交換部13を配列することができる。   Specifically, in the fin 10, the joining surface 11 and the heat exchanging portion 13 are formed of a flat plate, and the heat exchanging portion 13 extends outward from the joining surface 11 and is formed in an inclined shape. When the fins 10 are arranged in parallel with the air flow in a plurality of rows, the heat exchange unit 13 can be arranged in a region where the conventional air and the heat exchange unit 13 are not heat exchanged.

より具体的には、フィン10は、接合面11、熱交換部13、山部12、熱交換部13の順に折り曲げによって形成され、かつ接合面11と山部12とが同一形状で形成されて隣接する列に配置される接合面11が反転させて配置されることにより、同一形状のひとつのフィン10で複数列配置することができ、かつ共通使用することができる。   More specifically, the fin 10 is formed by bending the joining surface 11, the heat exchange part 13, the mountain part 12, and the heat exchange part 13 in this order, and the joining surface 11 and the mountain part 12 are formed in the same shape. By arranging the joining surfaces 11 arranged in adjacent rows so as to be reversed, a plurality of rows can be arranged with one fin 10 having the same shape and can be used in common.

(第2実施形態)
以上の第1実施形態では、フィン10を接合面11、熱交換部13、山部12、熱交換部13、接合面11の順に、凹凸状に連続形成して、接合面11と山部12とを連なる二つの平面を傾斜状に成形して熱交換部13を形成したが、これに限らず、接合面11と山部12とを連なる二つの平面を略くの字状、もしくは山状からなる傾斜状に形成しても良い。
(Second Embodiment)
In the first embodiment described above, the fin 10 is continuously formed in an uneven shape in the order of the joint surface 11, the heat exchange portion 13, the mountain portion 12, the heat exchange portion 13, and the joint surface 11, and the joint surface 11 and the mountain portion 12. The heat exchange part 13 is formed by forming the two planes that are connected to each other in an inclined shape. However, the present invention is not limited to this, and the two planes that connect the joint surface 11 and the peak part 12 are substantially in the shape of a letter or a peak. You may form in the inclined form which consists of.

具体的には、図5および図6に示すように、接合面11と山部12とを連なる二つの平面を一方の傾斜と他方の傾斜が中途で頂部を形成する略くの字状、もしくは山状からなる傾斜状に形成している。ここで、頂部は接合面11と山部12との中間高さに形成すると良い。   Specifically, as shown in FIG. 5 and FIG. 6, two planes connecting the joint surface 11 and the mountain portion 12 are formed in a substantially square shape in which one slope and the other slope form a top part, or It is formed in an inclined shape consisting of a mountain shape. Here, the top portion is preferably formed at an intermediate height between the joint surface 11 and the peak portion 12.

この場合には、第1実施形態と同じように、薄肉状の板材を用いて、接合面11、熱交換部13、山部12、熱交換部13、接合面11の順にローラー等の曲げ加工により凹凸状の形状に連続形成される。そして、曲げ加工後に、接合面11と山部12とを連なる二つの平面を略くの字状、もしくは山状からなる傾斜状に成形して熱交換部13を形成する。   In this case, as in the first embodiment, a thin plate material is used to bend the rollers and the like in the order of the joining surface 11, the heat exchange unit 13, the mountain portion 12, the heat exchange unit 13, and the joining surface 11. Thus, it is continuously formed in an uneven shape. Then, after the bending process, the heat exchange part 13 is formed by forming two planes connecting the joint surface 11 and the peak part 12 into a substantially square shape or a sloped shape like a peak.

そして、どちらか一方のフィン10の接合面11と山部12とを上下方向に反転させて外郭部材20に交互に空気流れに対して複数列平行配置すれば、図5に示すように、接合面11と山部12との間の空気が流れる空間を空気流れの前後に隣接する熱交換部13で空気流れに沿って交差できる。これにより、空気と熱交換部13とが熱交換されない領域を減らすことができる。   Then, if the joining surface 11 and the peak portion 12 of either one of the fins 10 are inverted in the vertical direction and arranged in parallel to the outer member 20 in a plurality of rows in parallel with the air flow, as shown in FIG. The space where the air flows between the surface 11 and the mountain portion 12 can intersect along the air flow at the heat exchanging portion 13 adjacent to the front and rear of the air flow. Thereby, the area | region where air and the heat exchange part 13 are not heat-exchanged can be reduced.

(第3実施形態)
以上の実施形態では、フィン10の熱交換部13の形状を傾斜状に形成したが、これに限らず、接合面11と山部12とを連なる二つの平面を湾曲状に成形して熱交換部13を形成しても良い。
(Third embodiment)
In the above embodiment, the shape of the heat exchanging portion 13 of the fin 10 is formed in an inclined shape. However, the shape is not limited to this, and two planes connecting the joint surface 11 and the mountain portion 12 are formed in a curved shape to perform heat exchange. The portion 13 may be formed.

具体的には、図7および図8に示すように、薄肉状の板材を用いて、フィン10を接合面11、熱交換部13、山部12、熱交換部13、接合面11の順にローラー等の曲げ加工により凹凸状の形状に連続形成される。そして、曲げ加工後に、接合面11と山部12とを連なる二つの平面を湾曲状に成形して熱交換部13を形成する。   Specifically, as shown in FIG. 7 and FIG. 8, the fin 10 is a roller in the order of the joining surface 11, the heat exchange part 13, the mountain part 12, the heat exchange part 13, and the joining surface 11 using a thin plate material. It is continuously formed into a concavo-convex shape by bending such as. Then, after the bending process, the two flat surfaces connecting the joint surface 11 and the mountain portion 12 are formed into a curved shape to form the heat exchange portion 13.

そして、どちらか一方のフィン10の接合面11と山部12とを上下方向に反転させて外郭部材20に交互に空気流れに対して複数列平行配置すれば、図7に示すように、接合面11と山部12との間の空気が流れる空間を空気流れの前後に隣接する熱交換部13で空気流れに沿って交差できる。これにより、空気と熱交換部13とが熱交換されない領域を減らすことができる。   Then, if the joining surface 11 and the peak portion 12 of either one of the fins 10 are inverted in the vertical direction and arranged in parallel to the outer member 20 alternately in a plurality of rows with respect to the air flow, as shown in FIG. The space where the air flows between the surface 11 and the mountain portion 12 can intersect along the air flow at the heat exchanging portion 13 adjacent to the front and rear of the air flow. Thereby, the area | region where air and the heat exchange part 13 are not heat-exchanged can be reduced.

(第4実施形態)
以上の実施形態では、発熱体を冷却する冷却装置にフィン10を適用したが、これに限らず、P型とN型とからなる熱電素子を交互に配列して電気的に直接接続された冷熱側の電極部、もしくは高熱側の電極部の熱を吸熱もしくは放熱するために熱電変換装置にフィン10を適用させても良い。
(Fourth embodiment)
In the above embodiment, the fin 10 is applied to the cooling device that cools the heating element. However, the present invention is not limited to this, and cooling heat that is electrically directly connected by alternately arranging P-type and N-type thermoelectric elements. The fin 10 may be applied to the thermoelectric conversion device in order to absorb or dissipate heat of the electrode portion on the side or the electrode portion on the high heat side.

まず、本実施形態の熱電変換装置は、例えば、車両用のシートの着座部内と背当部内とにそれぞれ熱電変換装置を配設し、その熱電変換装置により冷却された冷風をシート表面から吹き出すシート空調装置に用いられている。   First, the thermoelectric conversion device according to the present embodiment is, for example, a seat in which a thermoelectric conversion device is disposed in each of a seat portion and a backrest portion of a vehicle seat, and the cold air cooled by the thermoelectric conversion device is blown from the seat surface. Used in air conditioners.

その具体的な構成は、図9および図10に示すように、P型熱電素子32、N型熱電素子33、電極部材20、フィン10とから構成されている。より具体的には、平板状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、LCP樹脂もしくはPET樹脂など)からなる第1保持板31に、一対のP型熱電素子32とN型熱電素子33とを交互に略碁盤目状に複数対配列してなる熱電素子群を列設し、隣接する一対の熱電素子32、33の両端面に電極部材20を接合して一体に構成している。   As shown in FIGS. 9 and 10, the specific configuration includes a P-type thermoelectric element 32, an N-type thermoelectric element 33, an electrode member 20, and a fin 10. More specifically, a pair of P-type thermoelectric elements 32 and N-type thermoelectric elements 33 are provided on a first holding plate 31 made of a flat insulating material (for example, glass epoxy, PPS resin, LCP resin, or PET resin). A plurality of thermoelectric element groups are alternately arranged in a substantially grid pattern, and the electrode members 20 are joined to both end faces of a pair of adjacent thermoelectric elements 32 and 33 so as to be integrated.

P型熱電素子32はBi−Te系化合物からなるP型半導体により構成され、N型熱電素子33はBi−Te系化合物からなるN型半導体により構成された極小部品である。なお、P型熱電素子32およびN型熱電素子33は、その上端面、下端面が第1保持板31よりも突き出すように形成されている。   The P-type thermoelectric element 32 is composed of a P-type semiconductor made of a Bi—Te-based compound, and the N-type thermoelectric element 33 is a minimal component composed of an N-type semiconductor composed of a Bi—Te-based compound. The P-type thermoelectric element 32 and the N-type thermoelectric element 33 are formed so that the upper end surface and the lower end surface protrude beyond the first holding plate 31.

電極部材20は、平板状の銅材などの導電性金属から形成され、第1保持板31に配列された熱電素子群のうち、隣接する一対のP型熱電素子32およびN型熱電素子33を電気的に直列接続する電極である。   The electrode member 20 is formed of a conductive metal such as a flat copper material, and includes a pair of adjacent P-type thermoelectric elements 32 and N-type thermoelectric elements 33 among the thermoelectric element groups arranged on the first holding plate 31. The electrodes are electrically connected in series.

上方に配置される電極部材20は、隣接するN型熱電素子33からP型熱電素子32に向けて電流を流すための電極であり、下方に配置される電極部材20は、隣接するP型熱電素子32からN型熱電素子33に電流を流すための電極である。なお、電極部材30は、熱電素子32、33の端面に予めペーストハンダなどをスクリーン印刷で薄く均一に塗っておいてから半田付けで接合される。   The electrode member 20 disposed above is an electrode for allowing a current to flow from the adjacent N-type thermoelectric element 33 toward the P-type thermoelectric element 32, and the electrode member 20 disposed below is adjacent to the P-type thermoelectric element. This is an electrode for flowing current from the element 32 to the N-type thermoelectric element 33. The electrode member 30 is bonded by soldering after applying paste solder or the like thinly and uniformly on the end faces of the thermoelectric elements 32 and 33 in advance by screen printing.

熱電素子32、33の両末端には、図示しない直流電源の正側端子および直流電源の負側端子が設けられている。例えば、正側端子から入力された直流電源は、図1中に示す左端のN型熱電素子33から上方に配設された電極部材20を介して隣のP型熱電素子32に直列的に流れ、次に、このP型熱電素子32から下方に配設された電極部材20を介してN型熱電素子33に直列的に流れる。   At both ends of the thermoelectric elements 32 and 33, a positive side terminal of a DC power source and a negative side terminal of a DC power source (not shown) are provided. For example, the DC power input from the positive terminal flows in series from the leftmost N-type thermoelectric element 33 shown in FIG. 1 to the adjacent P-type thermoelectric element 32 through the electrode member 20 disposed above. Next, the P-type thermoelectric element 32 flows in series to the N-type thermoelectric element 33 through the electrode member 20 disposed below.

このときに、PN接合部を構成する下方に配設された電極部材20は、ペルチェ効果によって高温の状態となり、NP接合部を構成する上方に配設された電極部材20は低温の状態となる。つまり、上方側に配置された電極部材20は冷熱体であり低温状態の熱が生ずる。また、下方側に配置された電極部材20は高熱体であり高温状態の熱が生ずる。   At this time, the electrode member 20 disposed below the PN junction portion is in a high temperature state due to the Peltier effect, and the electrode member 20 disposed above the NP junction portion is in a low temperature state. . That is, the electrode member 20 disposed on the upper side is a cold body and generates heat in a low temperature state. Further, the electrode member 20 disposed on the lower side is a high-temperature body, and heat in a high temperature state is generated.

そこで、本実施形態では、電熱部材20に対応する部位にフィン10を設けている。上述したように、まず、フィン10を、薄肉状の板材を用いて、接合面11、熱交換部13、山部12、熱交換部13、接合面11の順にローラー等の曲げ加工により凹凸状の形状に連続形成される。そして、曲げ加工後に、接合面11と山部12とを連なる二つの平面を傾斜状に成形して熱交換部13を形成する。   Therefore, in the present embodiment, the fin 10 is provided at a site corresponding to the electric heating member 20. As described above, first, the fin 10 is formed into a concavo-convex shape by bending a roller or the like in the order of the joining surface 11, the heat exchange portion 13, the mountain portion 12, the heat exchange portion 13, and the joining surface 11, using a thin plate material. The shape is continuously formed. Then, after the bending process, the two planes connecting the joint surface 11 and the peak portion 12 are formed in an inclined shape to form the heat exchange portion 13.

そして、図9に示すように、第1保持板31に配設された電極部材20にフィン10を空気流れに対して複数列配置するように構成している。具体的には、接合面11が空気流れに対して同一方向に複数列平行配置されるとともに、空気流れの隣接する列に配列される熱交換部13が空気流れに沿って交差するように配置されている。   And as shown in FIG. 9, it is comprised so that the fin 10 may be arrange | positioned with respect to the air flow in the electrode member 20 arrange | positioned at the 1st holding plate 31 in multiple rows. Specifically, the joining surfaces 11 are arranged in parallel in a plurality of rows in the same direction with respect to the air flow, and the heat exchange units 13 arranged in adjacent rows of the air flow are arranged so as to intersect along the air flow. Has been.

より具体的には、例えば、右方から一列目に配置するフィン10と、その隣の左方から2列目に配置するフィン10とは、どちらか一方のフィン10の接合面11と山部12とを上下方向に反転させて外郭部材20に交互に複数列平行配置している。   More specifically, for example, the fins 10 arranged in the first row from the right side and the fins 10 arranged in the second row from the left side adjacent thereto are the joint surface 11 and the peak portion of either one of the fins 10. 12 are reversed in the vertical direction and arranged in parallel in plural rows on the outer member 20 alternately.

これにより、空気流れの上流側が眺めると、図10に示すように、接合面11と山部12との間の空気が流れる空間を空気流れの前後に隣接する熱交換部13で空気流れに沿って交差できる。従って、空気と熱交換部13とが熱交換されない領域を減らすことができる。   As a result, when the upstream side of the air flow is viewed, as shown in FIG. 10, the space in which the air flows between the joint surface 11 and the mountain portion 12 flows along the air flow in the heat exchange unit 13 adjacent to the front and rear of the air flow. Can intersect. Accordingly, it is possible to reduce a region where heat is not exchanged between the air and the heat exchange unit 13.

ところで、接合面11が電極部材20に直接接合するように構成されているため、波形状に連続的に形成されたフィン10は、列方向において電気的な絶縁が必要である。そこで、本実施形態では、接合面11が空気流れに対して同一方向に複数列平行配置されていることで、山部12においても空気流れに対して同一直線上に複数列平行配置されている。   By the way, since the joining surface 11 is configured to be joined directly to the electrode member 20, the fins 10 continuously formed in a wave shape need to be electrically insulated in the column direction. Therefore, in the present embodiment, the joining surfaces 11 are arranged in parallel in a plurality of rows in the same direction with respect to the air flow, so that a plurality of rows are arranged in parallel on the same straight line with respect to the air flow in the mountain portion 12. .

従って、同一直線上に配置された山部12に切断部12aを形成することで、互いに隣り合う接合面11および熱交換部13同士の電気的な絶縁ができる。ここで、切断部12aは、より具体的には、それぞれの電極部材20にそれぞれの接合面11が接合した後に、例えば、ナイフなどの切断治具を用いて、空気流れに対して同一直線上に切断治具を移動することで良い。これによれば、容易に複数の切断部12aを形成することができる。   Therefore, by forming the cutting part 12a in the peak part 12 arranged on the same straight line, the mutually adjacent joining surface 11 and the heat exchange part 13 can be electrically insulated. Here, more specifically, the cutting portion 12a is collinear with respect to the air flow using, for example, a cutting jig such as a knife after each joining surface 11 is joined to each electrode member 20. It is sufficient to move the cutting jig. According to this, the some cutting part 12a can be formed easily.

ここで、上方に配置されたフィン10は吸熱熱交換部を形成して低温状態の熱が電極部材20から伝熱されて空気と熱交換され、下方側に設置されたフィン10は放熱熱交換部を形成して高温状態の熱が電極部材20から伝熱されて空気と熱交換される。   Here, the fin 10 disposed at the upper side forms an endothermic heat exchanging portion, and heat in a low temperature state is transferred from the electrode member 20 to exchange heat with air, and the fin 10 disposed at the lower side exchanges heat by heat dissipation. The heat in the high temperature state is formed from the electrode member 20 and exchanges heat with air.

そして、第1保持板31を区画壁として、図示しないケース部材でフィン10を覆うように送風通路を形成し、その送風通路に空気を流通することで、熱交換部13および山部12と空気とが熱交換される。そして、上側のフィン10で空気を冷却することができ、下側のフィン10で空気を加熱することができる。   Then, with the first holding plate 31 as a partition wall, an air passage is formed so as to cover the fin 10 with a case member (not shown), and air is circulated through the air passage, whereby the heat exchange unit 13 and the mountain portion 12 and the air And heat exchange. The air can be cooled by the upper fin 10 and the air can be heated by the lower fin 10.

図中に示す符号35は、複数のフィン10を保持するための第2保持板である。この第2保持板35は、平板状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、LCP樹脂もしくはPET樹脂など)より形成されている。フィン10は、第2保持板35に形成された図示しない取付穴に接合面11が配設されて一体的に構成している。   Reference numeral 35 shown in the drawing is a second holding plate for holding the plurality of fins 10. The second holding plate 35 is made of a flat insulating material (for example, glass epoxy, PPS resin, LCP resin, or PET resin). The fin 10 is configured integrally with a joint surface 11 disposed in a mounting hole (not shown) formed in the second holding plate 35.

これにより、第1保持板31に配設されたそれぞれの電極部材20に第2保持板35に配設された接合面11を重ね合わせることで、電極部材20と接合面11とを一斉に接合することができる。また、本実施形態では、切断部12aを電極部材20と接合面11とを接合した後に形成したが、これに限らず、第2保持板35にフィン10を複数列配設したときに、切断部12aを形成しても良い。   Accordingly, the electrode member 20 and the bonding surface 11 are bonded together by superimposing the bonding surfaces 11 disposed on the second holding plate 35 on the respective electrode members 20 disposed on the first holding plate 31. can do. In the present embodiment, the cutting portion 12a is formed after the electrode member 20 and the bonding surface 11 are bonded. However, the present invention is not limited to this, and the cutting is performed when the fins 10 are arranged in a plurality of rows on the second holding plate 35. The portion 12a may be formed.

以上の構成によれば、接合面11に対向配置される山部12は、空気流れに沿って同一直線上に平行配置されることにより、熱電変換装置に適用されるフィン10は、隣り合う互いのフィン10が電気的な絶縁が必要であるため、複数のフィン10を一体的に形成し、接合面11を電極部材20に結合した後に、山部12を切断することで隣り合う互いのフィン10を分離することができる。従って、山部12が同一直線上に配置すれば切断が容易に行うことができる。   According to the above configuration, the ridges 12 arranged opposite to the joint surface 11 are arranged in parallel on the same straight line along the air flow, so that the fins 10 applied to the thermoelectric converter are adjacent to each other. Since the fins 10 of the first and second fins need to be electrically insulated, the plurality of fins 10 are integrally formed, the joint surface 11 is coupled to the electrode member 20, and then the ridges 12 are cut so that the adjacent fins are adjacent to each other. 10 can be separated. Therefore, cutting can be easily performed if the peaks 12 are arranged on the same straight line.

(他の実施形態)
以上の実施形態では、熱交換用フィンを、発熱体を冷却する冷却装置、およびP型とN型とからなる熱電素子31、32を交互に配列して電気的に直接接続された冷熱側の電極部材20、もしくは高熱側の電極部材20の熱を吸熱もしくは放熱するために熱電変換装置に適用させたが、これに限らず、高温または低温の熱媒体を放熱、吸熱する熱交換器の熱交換用のフィンに適用できる。
(Other embodiments)
In the above embodiment, the heat exchanging fins are arranged on the cold side in which the cooling device for cooling the heating element and the thermoelectric elements 31 and 32 composed of P-type and N-type are alternately arranged and electrically connected directly. Although it was applied to the thermoelectric conversion device in order to absorb or dissipate heat of the electrode member 20 or the electrode member 20 on the high heat side, the heat of the heat exchanger that dissipates and absorbs heat of a high or low temperature heat medium is not limited thereto. Applicable to replacement fins.

また、以上の実施形態ではフィン10を、接合面11、熱交換部13、山部12、熱交換部13、接合面11の順に複数個連続して折り曲げによって波型状に形成したが、これに限らず、接合面11、熱交換部13、山部12、熱交換部13、の順に連なる単位で、単品で形成しても良い。   Further, in the above embodiment, the fin 10 is formed into a wave shape by bending a plurality of the joining surfaces 11, the heat exchanging portions 13, the peaks 12, the heat exchanging portions 13, and the joining surfaces 11 in this order. The unit is not limited to this, and may be formed as a single unit in the order of the joining surface 11, the heat exchange part 13, the mountain part 12, and the heat exchange part 13.

また、以上の実施形態では、接合面11と山部12とを同一形状で形成して共通使用するように構成したが、これに限ることはない。   In the above embodiment, the joint surface 11 and the mountain portion 12 are formed in the same shape and used in common. However, the present invention is not limited to this.

本発明の第1実施形態における冷却装置の全体構成を示す平面図である。It is a top view which shows the whole structure of the cooling device in 1st Embodiment of this invention. 図1に示すA−A断面図である。It is AA sectional drawing shown in FIG. 図1に示すB−B断面図である。It is BB sectional drawing shown in FIG. 本発明の第1実施形態における放熱量と風量との関係を示す特性図である。It is a characteristic view which shows the relationship between the thermal radiation amount and air volume in 1st Embodiment of this invention. 本発明の第2実施形態における冷却装置の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of the cooling device in 2nd Embodiment of this invention. 本発明の第2実施形態におけるフィン10の形状を示す縦断面図である。It is a longitudinal cross-sectional view which shows the shape of the fin 10 in 2nd Embodiment of this invention. 本発明の第3実施形態における冷却装置の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of the cooling device in 3rd Embodiment of this invention. 本発明の第3実施形態におけるフィン10の形状を示す縦断面図である。It is a longitudinal cross-sectional view which shows the shape of the fin 10 in 3rd Embodiment of this invention. 本発明の第4実施形態における熱電変換装置の全体構成を示す側面図である。It is a side view which shows the whole structure of the thermoelectric conversion apparatus in 4th Embodiment of this invention. 図9に示すA−A部分断面図である。FIG. 10 is a partial cross-sectional view taken along line AA shown in FIG. 9. 従来技術における冷却装置の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of the cooling device in a prior art. 従来技術におけるフィンの配列形態を示す平面図である。It is a top view which shows the arrangement | sequence form of the fin in a prior art.

符号の説明Explanation of symbols

10…フィン
11…接合面
12…山部
13…熱交換部
32…P型熱電素子、熱電素子
33…N型熱電素子、熱電素子
DESCRIPTION OF SYMBOLS 10 ... Fin 11 ... Joining surface 12 ... Mountain part 13 ... Heat exchange part 32 ... P-type thermoelectric element, thermoelectric element 33 ... N-type thermoelectric element, thermoelectric element

Claims (6)

熱体に伝熱可能に接合される接合面(11)と空気と熱交換する熱交換部(13)とが折り曲げにより波形状に形成された熱交換用のフィン(10)であって、
前記フィン(10)は、前記接合面(11)が空気流れに対して同一方向に複数列平行配置され、かつ隣接する列に配列される前記熱交換部(13)が空気流れに沿って交差するように配置されることを特徴とする熱交換用のフィン。
A heat exchange fin (10) in which a joining surface (11) joined to a heat body so as to be capable of heat transfer and a heat exchanging portion (13) for exchanging heat with air are formed into a wave shape by bending,
In the fin (10), the joining surfaces (11) are arranged in parallel in a plurality of rows in the same direction with respect to the air flow, and the heat exchanging portions (13) arranged in adjacent rows intersect along the air flow. A fin for heat exchange, which is arranged to be
前記フィン(10)は、前記接合面(11)および前記熱交換部(13)が平板状の薄板で形成され、前記熱交換部(13)が前記接合面(11)の外方に延出して傾斜状もしくは湾曲状のいずれかに形成されることを特徴とする請求項1に記載の熱交換用のフィン。   In the fin (10), the joining surface (11) and the heat exchanging part (13) are formed of a thin plate, and the heat exchanging part (13) extends outward from the joining face (11). The heat exchange fin according to claim 1, wherein the fin is formed in an inclined shape or a curved shape. 前記フィン(10)は、前記接合面(11)、前記熱交換部(13)、山部(12)、前記熱交換部(13)の順に折り曲げによって形成され、かつ前記接合面(11)と前記山部(12)とが同一形状で形成されて隣接する列に配置される前記接合面(11)が反転させて配置されることを特徴とする請求項1または請求項2に記載の熱交換用のフィン。   The fin (10) is formed by bending the joining surface (11), the heat exchange part (13), the peak part (12), and the heat exchange part (13) in this order, and the joining surface (11) The heat according to claim 1 or 2, wherein the ridges (12) are formed in the same shape and the joint surfaces (11) arranged in adjacent rows are reversed. Replacement fin. 前記熱体は、発熱体、高熱体、または冷熱体であって、
前記接合面(11)は、発熱体、高熱体、または冷熱体のいずれかの熱を前記熱交換部(13)に伝熱可能に接合されていることを特徴とする請求項1ないし請求項3のいずれか一項に記載の熱交換用のフィン。
The heating element is a heating element, a high heating element, or a cooling element,
The said joining surface (11) is joined to the said heat exchange part (13) so that heat of any of a heat generating body, a high temperature body, or a cold body can be heat-transferred. The fin for heat exchange as described in any one of 3.
前記熱体は、P型とN型とからなる熱電素子(32、33)を交互に配列して電気的に接続された高熱体、または冷熱体であって、
前記接合面(11)は、高熱体、または冷熱体のいずれかの熱を前記熱交換部(13)に伝熱可能に接合されていることを特徴とする請求項1ないし請求項3のいずれか一項に記載の熱交換用のフィン。
The heat body is a high heat body or a cold body in which thermoelectric elements (32, 33) composed of P-type and N-type are alternately arranged and electrically connected,
The said joining surface (11) is joined to the said heat exchanging part (13) so that heat of either a high heat body or a cold body may be heat-transferred, Any of Claim 1 thru | or 3 characterized by the above-mentioned. The heat exchange fin according to claim 1.
前記接合面(11)に対向配置される前記山部(12)は、空気流れに沿って同一直線上に平行配置されることを特徴とする請求項5に記載の熱交換用のフィン。   6. The fin for heat exchange according to claim 5, wherein the ridges (12) arranged to face the joint surface (11) are arranged in parallel on the same straight line along the air flow.
JP2006259436A 2006-09-25 2006-09-25 Fin for heat exchange Pending JP2008078587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006259436A JP2008078587A (en) 2006-09-25 2006-09-25 Fin for heat exchange

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006259436A JP2008078587A (en) 2006-09-25 2006-09-25 Fin for heat exchange

Publications (1)

Publication Number Publication Date
JP2008078587A true JP2008078587A (en) 2008-04-03

Family

ID=39350308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006259436A Pending JP2008078587A (en) 2006-09-25 2006-09-25 Fin for heat exchange

Country Status (1)

Country Link
JP (1) JP2008078587A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110017957A (en) * 2009-08-17 2011-02-23 한국전자통신연구원 The thermoelectric-generator
JP2013033810A (en) * 2011-08-01 2013-02-14 Fujitsu Ltd Thermoelectric conversion module
JP2015032657A (en) * 2013-08-01 2015-02-16 トヨタ自動車株式会社 Thermoelectric power generation device
JP2017172437A (en) * 2016-03-23 2017-09-28 株式会社アツミテック Exhaust gas power generation unit
WO2017164180A1 (en) * 2016-03-22 2017-09-28 株式会社アツミテック Thermoelectric conversion unit, thermoelectric conversion module, and exhaust gas power generation unit
JP2017174900A (en) * 2016-03-22 2017-09-28 株式会社アツミテック Thermoelectric conversion unit and thermoelectric conversion module
JPWO2016136856A1 (en) * 2015-02-25 2018-01-11 京セラ株式会社 Thermoelectric module

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110017957A (en) * 2009-08-17 2011-02-23 한국전자통신연구원 The thermoelectric-generator
KR101596288B1 (en) 2009-08-17 2016-02-23 한국전자통신연구원 The thermoelectric-generator
JP2013033810A (en) * 2011-08-01 2013-02-14 Fujitsu Ltd Thermoelectric conversion module
JP2015032657A (en) * 2013-08-01 2015-02-16 トヨタ自動車株式会社 Thermoelectric power generation device
JPWO2016136856A1 (en) * 2015-02-25 2018-01-11 京セラ株式会社 Thermoelectric module
JP2017174900A (en) * 2016-03-22 2017-09-28 株式会社アツミテック Thermoelectric conversion unit and thermoelectric conversion module
WO2017164180A1 (en) * 2016-03-22 2017-09-28 株式会社アツミテック Thermoelectric conversion unit, thermoelectric conversion module, and exhaust gas power generation unit
CN108886082A (en) * 2016-03-22 2018-11-23 株式会社渥美精机 Thermoelectric converting unit, thermo-electric conversion module and exhaust gas generator unit
KR20200034001A (en) * 2016-03-22 2020-03-30 가부시키가이샤 아쯔미테크 Exhaust gas power generation unit
KR102261839B1 (en) 2016-03-22 2021-06-08 가부시키가이샤 아쯔미테크 Exhaust gas power generation unit
US11282999B2 (en) 2016-03-22 2022-03-22 Atsumiiec Co. Ltd. Thermoelectric conversion unit, thermoelectric conversion module, and exhaust-gas electricity generation unit
CN108886082B (en) * 2016-03-22 2022-04-19 株式会社渥美精机 Thermoelectric conversion unit, thermoelectric conversion module, and exhaust gas power generation unit
JP2017172437A (en) * 2016-03-23 2017-09-28 株式会社アツミテック Exhaust gas power generation unit

Similar Documents

Publication Publication Date Title
JP3166228B2 (en) Thermoelectric converter
JP2008078587A (en) Fin for heat exchange
JP5157681B2 (en) Stacked cooler
JP4581802B2 (en) Thermoelectric converter
JP6735664B2 (en) Radiator for liquid cooling type cooling device and manufacturing method thereof
JP2007173372A (en) Power converter
US20120057305A1 (en) Semiconductor unit
JP2005228877A (en) Cooling apparatus
JP4770973B2 (en) Heat exchanger
KR101753322B1 (en) Thermoelectic moudule and Apparatus for cooling and heating a vehicle seat having the same
CN208173581U (en) Radiator and heat sink assembly
JP6301938B2 (en) Heat sink, associated heating module, and corresponding assembly method
JP6917230B2 (en) Dissipator and liquid-cooled cooling device using it
JP2011069552A (en) Heat exchanger
JP5005356B2 (en) Helicon type liquid cooling heat sink
JP2002005591A (en) Heat exchanger
JP2012049483A (en) Heat radiator
JP2006041221A (en) Thermoelectric converter
JP2009124054A (en) Joint structure of heating element and radiating element
JP4626263B2 (en) Thermoelectric conversion device and method for manufacturing the thermoelectric conversion device
JP2008066663A (en) Thermoelectric converter
JP2006128193A (en) Flat type heat exchange member and heat exchange apparatus
JP2006080228A (en) Thermoelectric converter and its manufacturing process
CN213755502U (en) Copper-aluminum combined radiator
JP2009264719A (en) Heat exchanger